A165743

Reference Manual on Interference Seals and Connectors for Undersea Electrical Applications

NAVAL FACILITIES ENGINEERING COMMAND Chesapeake Division, Washington Navy Yard Washington, D.C. 20374

Prepared by

Applied Physics Laboratory University of Washington Seattle, Washington

JULY 1976

· · · · ·	
Unclassified	AD-A165743
SECORITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTA	ATION PAGE
1a. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS
Unclassified	
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION AVAILABILITY OF REP.
	Approved for public release; distribution is unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE	distribution is untimited
4. PERFORMING ORGANIZATION REPORT NUMBER	5. MONITORING ORGANIZATIC REPORT #
	FPO 7605
6a. NAME OF PERFORM. ORG. 6b. OFFICE SYM	7a. NAME OF MONITORING ORGANIZATION
Applied Physics Laboratory	Ocean Engineering
University of Washington	& Construction
	Project Office
6c. ADDRESS (City, State, and Zip Code)	7b. ADDRESS (City, State, and Zip)
Seattle, Washington	BLDG. 212, Washington Navy Yard
9. NAME OF FINIDING ODG OF OFFICE CITY	Washington, D.C. 20374-2121
ba. NAME OF FUNDING ORG. 8B. OFFICE SYM	9. PROCOREMENT INSTRUMENT INDENT #
8C. ADDRESS (City, State & Zip)	DECEMBERS
	ELEMENT # # ACCESS #
11. TITLE (Including Security Classificat:	ion)
Reference Manual on Interference Seals and	d Connectors for Undersea Electrical
Applications	
12. PERSONAL AUTROR(5)	
13a. TYPE OF REPORT 13b. TIME COVERED	14. DATE OF REP. (YYMMDD) 15. PAGES
FROM TO	76-07325
16. SUPPLEMENTARY NOTATION	
17. COSATI CODES 18. SUBJE	CT TERMS (Continue on reverse if nec.
FIELD GROUP SUB-GROUP Inter	cerence seals, Connectors, Underwater
edath	
19. ABSTRACT (Continue on reverse if neces	ssary & identify by block number)
This manual investigates the factors invo	lved in the theory and design of
underwater cable seals or packings of the standards for the sizes proportions and	interference type. It establishes
for assemblies of seals with both single a	and multiple packings. It (Con't
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFICATIO
SAME AS RPT.	225 THE PRUME 222 APRILOF AND
Jacqueline B. Rilev	220. IELEFRONE 220. OFFICE SYMBO 202-433-3881
DD FORM 1473, 84MAR	SECURITY CLASSIFICATION OF THIS PAG
-	

AND - MARKARY . MARKARY - NO

BLOCK 19 (Con't)

'classifies commercially available underwater electrical connector series according to their material composition, and describesthem through the use of a standard matrix which lists several critical design features. It supplies manufacturers' addresses and a list of significan users of their underwater electrical connectors. Additional organizations with special underwater electrical connector design capabilities are also listed. The manual also identifies and describes practiced methods of preventing failures.

ABSTRACT

This manual investigates the factors involved in the theory and design of underwater cable seals or packings of the interference type. It establishes standards for the sizes, proportions and materials for component parts, and for assemblies of seals with both single and multiple packings. It classifies commercially available underwater electrical connector series according to their material composition. and describes them through the use of a standard matrix which lists several critical design features. It supplies manufacturers' addresses and a list of significant users of their underwater electrical connectors. Additional organizations with special underwater electrical connector design capabilities are also listed. The manual also identifies and describes the most common failure modes in submerged electrical connectors and describes practiced methods of preventing failures. Included under a separate binding is a Master Catalogue containing the available catalogues of known connector companies. The Master Catalogue is interreferenced with the connector matrices and company listings of the manual.

8

R

F

No.

ğ

的日

XX

Acc NTI DTIC Una Justi	esion For S CRA&I C TAB nnounced fication		
By Dist i	bi/tio'; /		
	Availability Co	odes	
Dist A-/	Avail and J Special	or	

PREFACE

(CAN)

S

R

8

The <u>Reference Manual on Interference Seals and Connectors for</u> <u>Undersea Electrical Applications was prepared in July 1976, for the</u> <u>Naval Facilities Engineering Command, Chesapeake Division, Washington</u> <u>Navy Yard, Washington, D.C. It was compiled under Contract Number</u> <u>N00017-74-C-1208 by the Applied Physics Laboratory, University of</u> <u>Washington, with the technical assistance of James Morrison and Colin</u> <u>Sandwith, under the general editorship of James Paradis.</u>

CONTENTS

Ţ	`i	t	1	е

STATE FREEDERSE, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHWEREN, SCHW

8

8

题(

<u>.</u>81

EZ

R

SI SI

一日上部以前的前面 一日後後日前在外有人一日前有方方

上記をための ちとうない ある 大部町

a provention and the second

Section	Title	Page
	Abstract Preface Table of Contents Introduction	iii iv v vii
1 1.1 1.1.1 1.1.2 1.1.3 1.2 1.2.1 1.3 1.3.1 1.3.2 1.3.3 1.4 1.4.1 1.5 1.5.1 1.5.2 1.5.3	AN INVESTIGATION OF INTERFERENCE CABLE SEALS Summary Conclusions of the Investigation Design Suggestions for Interference Cable Glands Plans for Further Investigation Introduction Typical Cable Glands An Analysis of Sealing Action Stress-Strain Relationships in a Tri-Axial Stress System Mechanical Properties of Packing Materials Gland Behavior Interference (Automatic) Seals Interference Seal Behavior Experimental Investigation of Interference Seals Preliminary Testing Tests Using a Brass Pressure Unit Tests Using a Transparent Pressure Chamber	$ \begin{array}{c} 1-1\\ 1-1\\ 1-1\\ 1-2\\ 1-3\\ 1-3\\ 1-3\\ 1-3\\ 1-5\\ 1-5\\ 1-7\\ 1-8\\ 1-10\\ 1-10\\ 1-13\\ 1-13\\ 1-15\\ 1-18\\ \end{array} $
1.5.4 1.6 1.7	An Experimental Interference Seal Cable Seal Design References	1-26 1-27 1-28
2 2.1 2.1.1 2.1.2 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.5	A STANDARD FOR SIMPLE INTERFERENCE CABLE SEALS Introduction Scope Principle of Operation General Description Assembly Procedure Design SpecificationsMaterials and Dimensions Housing and Retaining Ring Packing Retaining Washer (Seal W/O Boot) Retaining Washer (Seal with Boot) Boot (Optional) References	2-1 2-1 2-2 2-2 2-4 2-5 2-6 2-8 2-10 2-12 2-14 2-16
3 3.1 3.1.1 3.1.2 3.1.2.1 3.1.2.2	STANDARD FOR AN INTERFERENCE CABLE SEAL AND REPEATER HOUSING ASSEMBLY Introduction Scope Principle of Operation Seal Support Additional Design Possibilities	3-1 3-1 3-2 3-2 3-3 3-4

Section	Title	Page
3.2 3.2.1 3.3 3.3.1 3.4 3.5	Cable Specifications and Sources Cable Splicing General Description Parts List Assembly Procedure Design SpecificationsMaterials and Dimensions	3-5 3-6 3-10 3-14 3-15 3-24
4	COMMERCIAL OFF-THE-SHELF UNDERWATER ELECTRICAL CONNECTO A CLASSIFICATION WITH DESCRIPTIVE MATRICES	0RS 4-1
4.1. 4.2	Cope Critical Design Factors	4-1 4-3 4-4
4.2.1	The Housing Electrical Contacts	4-6 4-7
4.2.3 4.2.4	Electrical Insulation Cable to Plug/Receptacle Seals and Mating Seals	4-8 4-8
4.2.5 4.3 4.3 1	Strength Member Termination and Strain Relief Connector Classification Molded Rubber Assemblies (RM)	4-9 4-10 4-10
4.3.2 4.3.3	Molded Plastic Assemblies (PM) Metal Shell Assemblies (MS)	4-10 4-11 4-12
4.3.5 4.4	Underwater Mateable Assemblies (UM) Connector Matrices	4-14 4-14 4-15
4.4.1 4.5	Matrix Disclaimer References	4-15 4-16
5	GUIDE TO UNDERWATER ELECTRICAL CONNECTOR MANUFACTURERS-	-
5.1 5.1.1	STANDARD AND CUSTOM DESIGNS Introduction Scope	5-1 5-1 5-1
5.2 5.3	Combined Custom and Standard Line Manufacturers Custom Underwater Connector Manufacturers	5-2 5-20
6 6.1 6.1.1 6.1.2	REFERENCE SECTION Failure Analysis and Prevention Introduction Remformance/Failure Analyses: Some Results	6-1 6-1 6-1
6.1.3	and Recommendations Failure Mode Analysis	6-3 6-8
6.1.4	Quality Assurance: Quality Control and Certification Guidelines	6-24
6.1.6 6.1.7	Performance/Failure Analysis Plan Directions for Future Research References	6-39 6-43 6-44
6.2	Pertinent Military Specifications Bibliographies on Connector Technology and Related	6-45
	Subjects	6-49

о с. С.

8

3

je P

3

<u>B</u>

Y

INTRODUCTION

CONTENT

3

X

8

J.

M

83

从

R

The information in this manual is divided into two general classifications--interference seal theory and design (Sections 1-3), and commercial underwater electrical connector descriptions, sources, and failure analyses (Sections 4-6). The purpose of the manual is to provide a reference on underwater connectors and seals for use by engineers in selecting or designing an appropriate connector or interference seal for a particular underwater application. The manual deals primarily with interference seals and electrical connectors intended for long-term underwater use.

Section 1 examines the mechanics of cable seals or glands with flexible packings which are designed for use at ocean depths of up to 1,000 feet, and is based on studies made by James Morrison in 1954 that led to the design of the Morrison, or interference, seal. The purpose of such seals is to prevent leakage at the point of entry of electrical cables into undersea vessels and bulkheads.

Section 2 provides a design standard for the construction of simple interference seals. It establishes recommended sizes, proportions, and materials for seals utilizing single rubber packings for use at depths up to 1,000 feet.

Section 3 establishes dimensions and materials for the advanced interference seal design called the Cable Seal and Repeater Housing Assembly. This unit is designed to seal a number of standard coaxial range cables for a duration of 20 years and at depths of up to 7,000 feet. It is also used as a field splice.

Section 4 examines the commercial/underwater electrical connector market. It discusses various factors that must be taken into consideration in selecting a connector from a commercial manufacturer, and considers critical design factors in connector technology. This section classifies commercial connectors according to material composition. The classes of connectors include: Rubber Molded (RM), Plastic Molded (PM), Metal Shell (MS), Pressure-Balanced Oil-Filled (PBOF), Underwater Mateables (UM), and Miscellaneous Connectors (Misc.). At the end of Section 4 is a series of matrices, organized into units according to the classification just described, that provides a material, mechanical, electrical and environmental profile on representative connector series made by commerical connector manufacturers. This section is interreferenced with the Master Catalogue that accompanies this manual. Section 5 lists approximately 40 organizations that are presently involved in the commercial production of underwater electrical connectors. Many of these firms produce both standard and custom lines of connectors. This section is also interreferenced with the Master Catalogue that accompanies this manual.

Section 6 is a reference section, but is also devoted to failure analysis and failure prevention for connectors and interference seals. It contains a number of detailed considerations of connector performance and failure rationales, failure mode analyses, quality assurance tests, and a performance and failure analysis plan.

FORMAT

The manual is organized into six sections, each of which is meant to be an independent reference unit. Section dividers are provided for quick reference.

The Master Catalogue is a collection of currently available supplier literature and catalogues on electrical connectors, and is meant to be used in conjunction with the manual itself. It is organized alphabetically by manufacturer and is interreferenced with Sections 4 and 5 of the manual.

INFORMATION SOURCES

Technical information contained in this manual has been supplied by the Applied Physics Laboratory staff, and by commercial producers of interference seals. Sections 1, 2, 3, and 6 contain information and specifications that have, for the most part, been generated through 20 years of experience at APL in the design and use of interference seals, also known as Morrison seals. Some of the information on service experience with submerged electrical connectors used to compose Section 6.1.2 was supplied by the Naval Torpedo Station, Keyport, Washington. The information on commercial organizations in Sections 4 and 5 was obtained through product research, including an extensive mail survey of all organizations that were identified as producers of underwater electrical connectors. The Applied Physics Laboratory has neither validated nor investigated the claims of manufacturers. The primary purpose of Sections 4 and 5 is to identify the connector products on the commercial market today and to give some indication of the applications for which they are intended.

UPDATING THIS MANUAL

The information contained in Sections 4 and 5 is highly variable and should be updated periodically, preferably every two years. New matrices should be added and new catalogues obtained from connector manufacturers and added to the Master Catalogue. Addresses for connector manufacturers listed in Section 5 should be checked periodically, and new manufacturers added as they are brought to the user's attention.

Section 1

Cardo.

19. -

8

ŝ

8

TABLE OF CONTENTS

Section	Title	Page
1.1	Summary	1-1
1.1.1	Conclusions of the Investigation	1-1
1.1.2	Design Suggestions for Interference Cable Glands	1-2
1.1.3	Plans for Further Investigation	1-3
1.2	Introduction	1-3
1.2.1	Typical Cable Glands	1-4
1.3	An Analysis of Sealing Action	1-5
1.3.1	Stress-Strain Relationships in a Tri-axial Stress System	1-5
1.3.2	Mechanical Properties of Packing Materials	1-7
1.3.3	Gland Behavior	1-8
1.4	Interference (Automatic) Seals	1-10
1.4.1	Interference Seal Behavior	1-10
1.5	Experimental Investigation of Interference Seals	1-13
1.5.1	Preliminary Testing	1-13
1.5.2	Tests Using a Brass Pressure Unit	1-15
1.5.3	Tests Using a Transparent Pressure Chamber	1-18
1.5.4	An Experimental Interference Seal	1-26
1.6	Cable Jeal Design	1-27
1.7	References	1-28

i

Section 1

LIST OF FIGURES AND TABLES

and the state of t

Sec.

1000000000

竊絕

調迎

語る

1

Figure	Title	Page
1-1	Typical Compression Type Cable Glands	1-4
1-2	The Tri-axial Stress System of the Seal	1-5
1-3	Effect of Tightening a Compression Cable Gland	1-8
1-4	A Typical O-ring Installation	1-11
1-5	Action of a Rubber Interference Seal Under Fluid Pressure	1-12
1-6	Modified Cable Junction Shamber	1-14
1-7	Brass Pressure Test Unit	1-15
1-8	Packing Test Unit with Transparent Pressure Chamber	1-18
· 1-9	Parts of Transparent Tube Assembly	1-19
1-10	Parts of Test Unit	1-20
1-11	Testing Arrangement for Transparent Test Unit	1-20
1- 12	Pressure Distribution on Seal Face	1-23
1-13	Effect of Axial Tightening on an Interference Packing	1-25
1-14	An Experimental Interference Seal	1-27
Table	Title	Page
1-1	Values of Fluid Pressure (P _f) and Seal Face Pressure (P _S) on an Interference Cable Gland with No Axial Tightening	1-23

Values of Fluid Pressure $(P_{\rm f})$ and Seal Face Pressure $(P_{\rm S})$ on an Interference Cable Gland with Initial 1-2 Axial Tightening 1-25

Section I

AN INVESTIGATION OF INTERFERENCE CABLE SEALS

1.1 Summary

Ř

The bulk of this 1954 investigation is devoted to the fundamental mechanics of cable seals or glands employing flexible packings at ocean depths of up to 1000 feet or approximately 500 psi. The principles set forth in the following study, completed in 1954 by Professor James Morrison at the Applied Physics Laboratory of the University of Washington, led to the original design of the Interference Cable Seal, also known as the Morrison Seal. This sealing technique is now in wide use.

1.1.1 CONCLUSIONS OF THE INVESTIGATION

Morrison drew the following conclusions from his investigation in support of interference or automatic cable seals over other conventional cable glands:

- 1. To obtain a dependable static seal against fluid leakage it is necessary that the seal surfaces be held together with a pressure in excess of the fluid pressure to be contained.
- 2. The mechanical properties of rubber make it a highly desirable packing material for cable seals.
- 3. The use of radial interference between packing and cable and between packing and gland wall establishes an automatic sealing action by the rubber packing; whereas if gland and cable clearance are provided in the packing, the sealing action depends upon the correct subsequent tightening of the gland nut.
- 4. The effectiveness of conventional cable glands is improved by substituting interference packings of rectangular cross section.

1.1.2 DESIGN SUGGESTIONS FOR INTERFERENCE CABLE GLANDS

The following general recommendations are offered for the design of interference cable seals (for more detailed specifications, see Section 2 of this manual, "A Standard for Simple Interference Cable Seals"):

- The packing should be natural or synthetic rubber compound of 35±5 durometer hardness. Compounds with maximum resistance to permanent set are most desirable.
- 2. Where possible, the packing should be molded. Otherwise, the inner and outer circumferential surfaces should be made smooth, as by finishing with fine emery cloth.
- 3. The axial length of the packing should be at least one cable diameter.
- 4. The hole through the packing should be from 0.5 to 0.7 times the cable diameter, depending upon the cable construction. Less interference is required with a firm coaxial cable than with a softer twisted type.
- 5. The inside diameter of the gland body should be from two to three times the cable diameter with a surface of 32 machine finish or better.
- 6. The outside diameter of the packing should be from 1/64 to 1/32 inch larger than the gland body diameter, before assembly.
- 7. Bushings or washers used at the ends of the packing should fit the cable diameter as closely as possible without interference.
- 8. The cable should be supported against sharp bends for at least one cable diameter outside the packing by a close-fitting bushing with the corners rounded to prevent cable damage.
- 9. That portion of the cable in contact with the packing should be free of any surface defects or sharp indentations.
- 10. Where a snap ring is used to retain the parts, allowance should be made for the increase of axial length of the packing when assembled. This may be done by assuming a constant volume for the packing and neglecting deformation of the cable.
- 11. Leakage is less likely where the "downstream" end face of the packing is supported directly by the gland body than where a separate washer or bushing is used between these surfaces.

1.1.3 PLANS FOR FURTHER INVESTIGATION

Morrison recommended that continuation of his 1954 study include further investigation of the following topics:

- 1. Theoretical and experimental investigation of durability in interference and compression type cable glands.
- 2. Investigation of the effects of tensile forces, torsion, and bending of the cable in the vicinity of the packing.
- 3. Determination of means to prevent extrusion of the packing through the clearance space.
- 4. The establishment of optimum design proportions for cable glands, including design for economy and ease of assembly.
- 5. A study of gland sealing at pressures in excess of 500 psi.

1.2 Introduction

S

ï

ž

 $\mathcal{F}_{\mathcal{F}}$

ł,

 $\frac{1}{2}$

Research conducted at the Applied Physics Laboratory in 1954 led to the design of the interference cable seal which, for reasons which the following study will make clear, offers several advantages over the older compression type cable gland. One of the basic insights of the study was the recognition of the superior design of the widely-used O-ring as a sealing device against ambient hydrostatic pressure, and the application of the same interference principle to cable packing glands. Like the O-ring, the interference cable seal establishes an automatic seal which eliminates the need for a compression adjustment. Thus, the tightening of a gland nut, which is a critical and exacting procedure in the application of compression cable glands, is no longer required. The interference seal is automatic in the sense that once the cable is passed through the packing no further compression adjustment is required. The initial pressure established against the cable as it is passed through the packing remains in constant excess of whatever additional pressures are generated (within the test parameters of this study) by increased depth and hydrostatic pressure.

1.2.1 TYPICAL CABLE GLANDS

Early glands which were devised to prevent water leakage at the point of entry of insulated electrical cable into a bulkhead were typically of the type illustrated in Figure 1-1. Of these compression type cable glands, the simplest assemblies, (a) and (b), consist of a housing or gland body, a rubber packing, a packing nut, and a washer or bushing to prevent relative motion between the nut and the packing when the nut is rotated. Packing shapes shown in (a) and (b) are used extensively. Although no evidence has been found to this effect, it is assumed that the trapezoidal shape shown in (b) is intended to increase the pressure between the packing and cable through a wedging action when the nut is tightened. For convenience in assembly and disassembly an additional washer or bushing is frequently used between the packing and the bottom of the gland, as shown in (c). This allows for a larger hole through the gland body and alleviates a difficulty which is sometimes experienced in disassembly due to the tendency of the rubber packing to stick to the bottom of the gland after a prolonged period under pressure.

I.3 An Analysis of Sealing Action

M

3

Ň

1

30

8

Before examining the interference cable seal, a general analysis of sealing action will clarify the principles of sealing and provide a theoretical basis for comparing the performance of the interference seal with that of the compression cable gland.

1.3.1 STRESS-STRAIN RELATIONSHIPS IN A TRI-AXIAL STRESS SYSTEM

As explained in Section 1.2, the compression type of cable packing gland now in wide use is dependent upon the axial compression of a rubber packing to the point where the rubber is upset radially and compressed against the cable and the surrounding gland wall. In analyzing the behavior of such a seal, it is well to consider the behavior of an elastic material under a tri-axial stress system.

Figure 1-2. The Tri-axial Stress System of the Seal

In Figure 1-2, an elementary cube of an elastic material undergoes stress on its three pairs of opposite faces according to the unit compressive stresses σ_x , σ_y , and σ_z . (For convenience, compressive stresses and strains are considered positive in sign.) Assume that E represents the modulus of elasticity for the material and μ its Poisson ratio. Unit strains in the three directions are denoted by ε_x , ε_y , and ε_z , and are evaluated as follows:

3

11 22

If four faces of the cube are prevented from expanding (as by rigid constraining walls) when a pressure is applied to the other pair of faces, then a pressure will be induced on the restrained faces. If the pressure applied to the two free faces is σ_x , then the induced pressure $\sigma_y = \sigma_z$ on the restrained faces may be determined from Equation 1(b) by substituting $\varepsilon_y = 0$ and $\sigma_z = \sigma_y$. Then,

$$0 = \frac{\sigma_y}{E} - \frac{\mu}{E} (\sigma_x + \sigma_y)$$

from which

 $\sigma_{\mathbf{y}} = \sigma_{\mathbf{z}} = \sigma_{\mathbf{x}} \left(\frac{\mu}{1-\mu} \right) \qquad (2)$

From Equation 2 it is seen that the amount of the induced pressure is dependent only upon μ , the Poisson ratio for the material, and σ_{χ} , the applied pressure.

If incremental pressures $d\sigma_x = d\sigma_y = d\sigma_z$ are applied to an initially unstressed cube L inches on a side, the volume of the cube will be reduced by an amount dV. Since the initial volume, V, equals L^3 , then

$$dV = 3L^2 dL = 3L^3 \frac{dL}{L} = 3V \frac{dL}{L}$$

and

From Equation 1(a), substituting $d\sigma_x = d\sigma_y = d\sigma_z$, and noting that, for a homogeneous material, $\varepsilon_x = \varepsilon_y = \varepsilon_z = \frac{dL}{L}$,

$$\frac{dL}{L} = \frac{d\sigma_x}{E} - \frac{\mu}{E} (d\sigma_x + d\sigma_x)$$

or

8

8

8

Ľ,

$$\frac{dL}{L} = \frac{d\sigma_x}{E} (1-2\mu) \qquad (4)$$

Combining Equation 4 and Equation 3,

$$\frac{\mathrm{d}V}{\mathrm{V}} = \frac{3\mathrm{d}\sigma}{\mathrm{E}} (1-2\mu)$$

or

$$\frac{\mathrm{d}\sigma}{\mathrm{IV}/\mathrm{V}} = \frac{\mathrm{E}}{3(1-2\mu)} \qquad (5)$$

Equation 5 defines the bulk modulus of elasticity, $\frac{d\sigma_x}{dV/V}$, in terms of the elastic properties E and μ .

1.3.2 MECHANICAL PROPERTIES OF PACKING MATERIALS

The most common packing material for cable gland seals is rubber or rubber-like compounds. Rubber is often said to be incompressible (see pp. 362-368 of Reference 4). Actually, the compressibility of rubber is about the same as that of water (see p. 38 of Reference 3), which, at atmospheric pressure and 70°F, has a bulk modulus of elasticity of about 320,000 psi (see p. 6-04 of Reference 6). The modulus of elasticity in compression depends upon the rubber compound and ranges from 180 psi to 510 psi for soft rubbers (40-70 durometer) at room temperatures (see p. 22 of Reference 4).

By substituting the above values into Equation 5, it may be seen that for soft rubbers $\mu = 0.499$ or 0.500 for practical purposes. By placing this value into Equation 2, it is apparent that rubber, when confined, transmits pressure in much the same manner as a fluid.

Other packing materials such as leather, felt, graphited asbestos fiber, and rubber-cork compounds are considerably more compressible than rubber, so that the Poisson ratio (if such a property may be defined for these materials) is considerably less than 0.500. For cork, μ can be taken equal to zero (see p. 51 of Reference 12). Ŋ

きる

M

違い

Ņ

1.3.3 GLAND BEHAVIOR

It is seen, therefore, that in glands where rubber packing is used the sealing pressure, P_s , exerted by the packing against the cable and the gland wall is approximately equal to the axial pressure, P_a , applied by the gland nut. The pressure P_s is always slightly less than P_a , however, since 1) a small initial axial pressure is required before the packing fills the clearance space which is provided for ease of assembly; and 2) the cable surface undergoes an appreciable deformation and hence cannot be considered as a rigid restraint for the packing. The above effects are illustrated in Figure 1-3. In order to provent leakage of fluid past the seal the gland nut must be tightened until P_s is somewhat in excess of the fluid pressure, P_f . As was pointed out in Section 1.2, the tightening operation is a critical procedure and may result in either a leaky gland or a damaged cable if not performed correctly.

Figure 1-3. Effect of Tightening a Compression Cable Gland

Considering next the possible paths of fluid leakage through the gland, assume, as is usually the case, that all metal-to-metal contact surfaces are imperfectly fitted and will permit leakage between them. The seal then depends upon the ability of the soft packing to conform under pressure to the surface irregularities of the gland body and the cable covering.

8

8

N.

Ň

R

In the compression glands shown in Figure 1-1, (a) and (b), two leakage paths are possible. Fluid must pass either 1) between the packing and the cable; or 2) past the outer circumference of the packing and then between the packing and the bottom of the gland. It is sufficient therefore that adequate pressure exist on the inner and bottom surfaces of the packing. This is a possible justification for the shape of packing shown in Figure 1-1(b), since pressure on the outer circumference of the packing is not necessarily critical. In the gland shown in Figure 1-1(c), however, leakage must be stopped by pressures at the inner and outer circumferential surfaces of the packing since fluid may now pass between the lower bushing and the bottom surface of the gland body. Hence a packing of rectangular cross section seems more desirable here, especially if the packing is short. The combination of radially inward cable deformation and the possible wedging action of a trapezoidal packing section (Figure 1-1(b)) might result in a lessening of pressure on the outer circumference, thereby causing a leak.

If we may assume that the nut has been correctly tightened it would appear that the seal is safe. There are two factors, however, which tend to decrease the sealing pressure, P_s , after assembly. The first factor is the creep or cold flow of the plastic or rubber cable covering, either axially away from the packing or into the voids between electrical conductors inside. The second factor is the tendency of the packing itself to flow into the increased clearance space opened by the compression of the cable. Both of these actions result in a decrease of volume of material within the gland space. Since the rubber packing is virtually incompressible it is apparent that only a small volume of material must be squeezed out in order to cause a considerable decrease in the pressure exerted by the packing upon its surroundings. Hence, it is possible that leakage may occur after the seal has been assembled for some period of time.

The application of fluid pressure to the compression type of gland has no appreciable effect upon the pressures within the system. Since P_f must be less than P_s and since, as explained earlier, P_s is less than P_a , the fluid pressure can act only upon the small areas exposed by the clearance spaces on the upstream side. If P_f is increased until it exceeds P_s , danger of leakage exists. It may therefore be concluded that the effectiveness of this type of seal depends almost entirely upon the skill of the mechanic who tightens the gland nut and upon the creep resistance of the cable and packing materials.

1.4 Interference (Automatic) Seals

Most of the shortcomings of compression cable seals in current use can be eliminated if a seal of the automatic or self-sealing type is utilized for underwater cable applications. The term "automatic seal" is here used to describe any arrangement of sealing elements in which the fluid pressure, P_f , activates the seal causing a pressure on the sealed surfaces, P_s , that is sufficient to prevent leakage. An automatic seal eliminates the n cessity for correct tightening of a gland nut. Only a small initial seal pressure is required to start the automatic action of the seal. The second advantage is the diminished importance of such factors as cable creep, since the activating force, namely the fluid pressure, remains fully intact in spite of such action.

1.4.1 INTERFERENCE SEAL BEHAVIOR

For several years a packing known as the O-ring has found wide acceptance for many applications. It consists of a molded rubber ring, usually round in cross section, which is assembled between more or less rigid parts, one of which is grooved to accommodate the ring. Figure 1-4 illustrates a typical O-ring installation. The ring cross section is compressed by about 10 percent of its diameter (as per manufacturers'

3

8

S

Figure 1-4. A Typical O-ring Installation

standard recommendations) upon assembly. When fluid pressure is applied to one side, the ring slides over against the opposite side of the groove and blocks the possible paths of leakage. The seal remains effective until the O-ring wears out due to relative motion of the parts or until extreme pressures cause an extrusion of the ring through the clearance space between parts. Packings of this type are sometimes made with a cross section that is square or of some other shape.

White and Denny conducted an experimental investigation covering many aspects of the use of this type of seal (see Reference 14). On measuring pressures upon the various surfaces of these packings, it was found that the pressure upon the circumferential surfaces is the sum of the fluid pressure and the initial pressure resulting from interference between parts. Thus $P_s > P_f$ at all times and the seal satisfies the basic requirement as stated in conclusion 1 of Section 1.1.1.

A logical explanation for this distribution of pressures results from a consideration of the elastic properties of rubber, as outlined in Section 1.3. It was here pointed out that for rubber μ is very nearly 0.500. Substituting this value into Equation 2, Section 1.3.1, it is seen that $\sigma_y = \sigma_z = \sigma_x$, or that the application of pressure to opposite sides of a piece of confined and initially unstressed rubber results in an equal pressure induced upon the confined surfaces. In this way, rubber transmits pressures in the same manner as a fluid. Rubber differs

from a fluid, however, in that rubber can support a difference of principal stresses by virtue of its static shear strength, whereas a fluid cannot. It is thus possible that a piece of rubber may contain a residual stress system in which the principal stresses (or pressures) are not equal in all directions, which condition exists in a rubber packing compressed as shown in Figure 1-4. Equation 2 then refers to those pressures or stresses that are superimposed upon the residual stress system. In view of this, Equation 2 is better stated in the form

For rubber, then, $\Delta \sigma_y = \Delta \sigma_z = \Delta \sigma_x$, very nearly.

The application of this relationship is best seen by considering the action of an interference packing of rectangular cross section, as shown in Figure 1-5. The initial pressure P_0 exists by virtue of the initial compression of the rubber between the metal parts. The application of fluid pressure to the system results in the pressure relationships shown in Figure 1-5(b) and the fluid is prevented from leaking past the circumferential contact surfaces. (For simplicity, pressures are shown to be uniformly distributed over the surfaces. This is not strictl: true, but the principle still applies (see Reference 13).) Although it is not necessarily apparent from the preceding explanation, packing of circular and other cross sections behaves in the same manner, as indicated by measurements made by White and Denny (see Reference 13).

(a) As assembled, no fluid pressure

Figure 1-5. Action of a Rubber Interference Seal Under Fluid Pressure In applying the interference principle to a cable gland seal, it is apparent that the packing must be of considerably different proportions than those for standard O-rings in order to allow for the decrease in cable diameter due to pressure (see p. 18-03 of Reference 7). With sufficient interference, however, it has been found in experiments which are later described that the interference principle is fully applicable to cable seals.

This type of seal possesses several unique advantages. Its action is fully automatic but does not depend upon the cable extrusion force. Hence its action is not affected by tensile loads on the cable nor by clamping the cable inside the gland to prevent its extrusion into the vessel. The seal is not dependent upon friction nor is it adversely affected by friction between surfaces. Another feature of this seal which should be advantageous at higher pressures is that the pressure on the sealed surfaces is only a relatively small amount in excess of the fluid pressure--just enough to prevent leakage. Thus the possibility of damaging the cable by overcompression is minimized. For these reasons and because of the fact that O-rings and similar packings employing this principle hav_ proved to be highly dependable as static seals, it is felt that the interference type of cable seal will become a highly dependable application.

1.5 Experimental Investigation of Interference Seals

In the section that follows, several tests are outlined which use equipment specifically designed or modified to simulate hydrostatic pressures of up to 500 psi.

1.5.1 PRELIMINARY TESTING

8

55

1

At the beginning of the investigation of cable sealing problems, a brief test was conducted to determine the effectiveness of the seals

X

12. 78.

199

Ø

2.12

Figure 1-6. Molded Cable Junction Chamber

on an underwater cable junction chamber in current use. In this chamber, made of brass, five seals were incorporated. The chamber, as modified for test purposes, is illustrated in Figure 1-6. A large (approximately 0.60 inch diameter) cable entered at one end and was sealed by a gland of the type shown in Figure 1-1(c), Section 1.2.1, except that the packing used was of trapezoidal cross section. At the opposite end, a metal cap was sealed with a standard 0-ring. Three smaller cables (approximately 0.30 inch diameter) entered the chamber radially near one end and were sealed with glands of the type shown in Figure 1-1(b), Section 1.2.1. All packings were molded of neoprene, approximately 40 durometer. The larger cable was covered with a vinyl plastic of about the same mechanical properties as ordinary plastic garden hose. The smaller cables were covered with neoprene of about the same hardness as the packings.

Since no high-pressure container was available of sufficient size to accommodate the entire sealed junction chamber, it was decided to fill the chamber with water and to apply inside pressure. This also permitted the immediate observation of any leakage. A pressure fitting was installed in the end cap and the inner ends of the cables were sealed by comenting rubber plugs inside the cable covering as shown in the detail in Figure 1-6.

Test results showed that, once applied hydrostatic pressure reached the initial radial pressure created by tightening the gland nut, the seal

1-14

leaked. Alternate tightening of the nut and application of fluid pressure established clearly that the sealing effectiveness of the compression glands increased with the initial load on the packing. A very heavy torque on the packing nut was necessary to seal pressures in excess of 300 psi.

Once the initial leakage point had been reached, rapid application of additional pressure to the system would commonly raise the pressure to the point where leakage stopped. In each case, similar patterns of leakage occurred, with an intermediate pressure range in which there was leakage. (For a more complete explanation of the mid-range leakage phenomenon in compression cable glands, see Chapters 4 and 5 of Reference 8.)

1.5.2 TESTS USING A BRASS PRESSURE UNIT

X

Š

)

 \overline{M}

<u>B</u>

83

X

Ļ

Further investigation of the theory and action of the interference type of automatic seal was initiated, using a specially designed pressure unit.

1.5.2.1 Apparatus. The test unit was built as illustrated in Figure 1-7. The cable was passed directly through the pressure chamber and sealed at either end of the chamber by a packing gland. Thus the cable extrusion force was eliminated and the seal depended on the action of the packing alone.

Figure 1-7. Brass Pressure Test Unit

Four sets of bushings were made for this unit, two to accommodate trapezoidal packings and two to accommodate rectangular packings. The inside diameter of the bushings was just large enough to accommodate the cable when assembled by hand. The bushing 0.D. was made 0.010 inch smaller than the gland body diameter. The glands on this unit were of the same general dimensions as the large gland on the junction chamber used in the preliminary test. The cable used was vinyl-covered, multiconductor, twisted cable with an overall diameter of about 0.60 inch. The inside diameter of the gland body (nominal 0.D. of the packing) was 1.38 inch.

1.5.2.2 Manufacture of Test Packings. Molded trapezoidal packings, identical to those used in the preliminary test, were available from stock supplies. These packings, as before, formed a clearance fit with the cable and gland wall. To save time and expense the rectangular-section packings were cut from rubber sheet. This way, the dimensions could be adjusted as desired without depending upon a mold of fixed size. In this and later tests, rectangular-section packings were cut from 40-50 durometer neoprene sheets, 1/8 inch and 1/4 inch thick. Holes were made in the sheet with arch punches (sharpened tubular shape) by wetting the punch with soapy water and rotating the tool by hand as it was pushed through the sheet. This method produced a fairly clean cut and was found to be satisfactory. An approximate outside diameter was cut with scissors, leaving a margin for finishing. A stack of packings was then placed upon a mandrel and the desired outside diameter was obtained by sanding with emery cloth at high speed in a lathe. A fairly good surface was obtained if a fine grade of emery was used to remove the last few thousandths of rubber from the outside diameter.

1.5.2.3 <u>Initial Test of Interference Packings</u>. In the initial test with this unit, each gland was made up of a stack of five rubber packings, 1.41 inches O.D., 0.50 inch I.D., and 0.13 inch thick. The interference was therefore about 1/8 inch at the hole and about 1/32 inch at the outside diameter. The packing was slightly longer than one cable diameter. The packings, cable, and gland body were lightly lubricated with a silicone grease to facilitate assembly. Slight difficulty was encountered during assembly when air became trapped between the individual packing laminations. This was overcome by the temporary insertion of a small wire between the packing and the gland body, compressing the packing

locally and providing tiny openings for the escape of the air. The packing nuts were tightened by hand to make the packings lie flat, then backed off to relieve any initial axial pressure on the packing.

ないというない。

13

闷闷

X

8

X

55 (

83

No.

8

Fluid pressure was applied and measured with the same equipment used in preliminary testing, except that a globe-type shutoff valve was incorporated in the hose line.

Pressure was gradually applied until the gauge limit of 800 psi was reached. No trace of leakage was observed. The pressure was then slowly decreased, again without leakage. This process was repeated several times, and the seals proved to be completely successful.

A pressure of 800 psi was then applied to the unit and the shutoff valve closed. The unit was left overnight under pressure, without a trace of gland leakage. (The pressure dropped to 300 psi, due to slight leakage at the shutoff valve and some creep of the cable covering through the glands.) At 300 psi, the cable was pushed back and forth through the unit and rotated but the seals held.

The pressure was then decreased and the unit disassembled for inspection. In each gland, some permanent set was observed in the two downstream laminations, indicating some extrusion of the packing between the cable and the downstream bushing. The remaining laminations were apparently unaffected.

The unit was then reassembled, using only three laminations in each packing. Another overnight pressure test was made, the results being the same as before.

The unit was assembled again with five laminations in each gland, and a pressure of about 500 psi was maintained for a period of fortyeight hours. No leaks occurred and the appearance of the laminations was as previously observed.

1.5.2.4 <u>Interference Packing vs Compression Packing</u>. In order to compare the actions of the interference seal with one of the compression type, a trapezoidal-section packing gland was installed in one end of the unit, the other gland being the same as before. The compression gland nut was then tightened and pressure applied to the system. The compression gland leaked at about 80 psi. The packing nut was tightened further, as in the preliminary testing, and the pressure raised. Another leak occurred at about 150 psi. Rapid pumping of the hydraulic cylinder raised the pressure in the system, but the leakage continued. No "upper limit" could be found at which leakage would stop. As before, the effectiveness of this gland was directly proportional to the initial pressure applied by the packing nut. When this initial pressure was overcome by fluid pressure, leakage resulted. It was also found that the fluid pressure capacity of this gland decreased with time if the nut was not continually tightened, the amount of decrease being about ten percent in twenty minutes, thirty percent in two hours.

1.1

Ŗ

8

8

1

A STATE

The interference gland did not leak at any time, even though the packing nut was loose.

This test was repeated, substituting a laminated rectangular "clearance" packing for the trapezoidal shape. The behavior of this gland was similar to the gland containing the trapezoidal packing, indicating that the initial fit of the packing with its surroundings is a critical factor.

1.5.3 TESTS USING A TRANSPARENT PRESSURE CHAMBER

For further investigation of interference glands, another test unit was built incorporating a transparent plastic (Lucite) pressure chamber.

Figure 1-8. Packing Test Unit with Transparent Pressure Chamber

The assembled unit is illustrated in Figure 1.5.3.1 Apparatus. Because of the relatively low strength of the plastic, a different 1-8. type of construction was employed than had been used with the previous test units. In this case a frame was built from steel channel sections to support the axial thrust of the fluid pressure upon the gland assemblies. A tubular adjusting screw was provided at one end of the frame for positioning the packings and, if desired, exerting an axial compression upon the packings. Axial loads from the adjusting screw were transmitted to both packings by means of a clear plastic tubular spacer placed between the two inner bushings. A number of holes were drilled in the spacer to permit fluid to fill completely the space between packings. To avoid the problem of attaching a pressure fitting to the somewhat brittle Lucite tubing, it was decided to encircle the tube with an annular metal pressure manifold, sealed at either end by O-rings. A pressure fitting was threaded into the cylindrical wall of the manifold. The fluid under pressure was transmitted to the inside of the Lucite tube through a hole drilled in the tube wall, the manifold being positioned so as to include this hole between the O-ring seals.

いたかいですが、「「「ないないのです」」、「ないないない」、「たちないのから、「「ないない」」、「ないない」」、「ないない」、

ß

λX NS

沿

V.

8

5

 $\langle N \rangle$

2.9 (

To permit the measurement of pressure on the packing surface, a small (0.014 inch dia.) hole was drilled through the wall of the tube near one end. A second pressure manifold, identical to that described above, was used to apply a fluid pressure at the small hole.

Further construction details for this unit are shown in the photographs in Figures 1-9, 1-10 and 1-11.

Figure 1-9. Parts of the Transparent Tube Assembly: A. Cable, B. Lucite Tube, C. Spacer, D. Bushing, E. Packing

N V

12 2

N

S.

S

1.25

Figure 1-10. Parts of the Test Unit: A. Frame, B. Adjusting Screw, C. Cable, D. Tube Assembly, E. Pressure Manifolds

Figure 1-11. Testing Arrangement for the Transparent Unit: A. Tube Assembly, B. Hydraulic Cylinders, C. Screw Clamps, D. Flexible Hose, E. Shutoff Valve, F. Main Pressure Gauge, G. Auxiliary Pressure Gauge

1.5.3.2 <u>Technique of Measuring Seal Pressure</u>. The technique employed in measuring pressure upon the outer circumferential surface of the packing was suggested by White and Denny (see p. 35 of Reference 13). An auxiliary fluid pressure is applied through the small hole to the surface of the packing in contact with the tube wall. When the fluid pressure equals the sealing pressure, the packing is lifted from contact and the auxiliary fluid escapes, either to the system or to the atmosphere. The small hole could be moved to cover different portions of the packing face by sliding the Lucite tube in an axial direction with respect to the packing.

8

 \Im

183

33

8

X3

3

N

R

1.2.2.6.4

Two pressure gauges were employed, one for measuring the fluid pressure applied to the inside of the tube, the other for measuring the auxiliary fluid pressure applied at the small hole over the packing. These gauges were calibrated and adjusted to give identical readings under the same fluid pressure.

Pressures were applied to the manifolds from water-filled hydraulic cylinders connected to the manifolds by flexible hydraulic hose. Screw-type clamps were employed to compress the hydraulic cylinders.

1.5.3.3 Test of Unit. The unit was assembled using laminated neoprene interference packings, similar to those used in the brass test chamber, and fluid pressure was gradually applied up to 800 psi to determine whether the strength of the unit was adequate. The adjusting screw (Figure 1-8) was not tightened. The packings sealed successfully, as before, and the unit worked as planned.

An attempt was made to measure the sealing pressure on the circumference of the packings by the method described above. When adequate auxiliary fluid pressure was applied, the fluid entered the packing between laminations, which sealed on either side, forming a small separate pressure chamber which held pressure up to the limit of the gauge. At the time of this test a 0-300 psi gauge was used to measure the auxiliary pressure. No larger gauge was immediately available other than a 0-800 psi gauge which was used to measure the main fluid pressure. Even when the small hole was positioned near the downstream end of the downstream lamination, the auxiliary fluid entered between this and the next lamination.

To avoid this difficulty, one-piece packings were cut from 40 durometer neoprene sheet, 1/4 inch thick. The holes were cut with a 1/2-inch arch punch, and the outside diameters were finished with emery cloth, as before, to measure 1.53 inches. The inside diameter of the Lucite tube was 1.50 inches and the cable diameter was 0.60 inch, as before. 8

8

2. R. 10

8

3

N

ß

1.5.3.4 <u>Fluid Pressure vs Seal Pressure</u>. The unit was assembled without axial pressure from the adjusting screw, and a fluid pressure of 800 psi was applied inside the tube. Even at this pressure, the 1/4-inch packings sealed successfully. The internal pressure was subsequently reduced to 200 psi. The small hole was then positioned at about the center of the packing face, and when sufficient auxiliary pressure was applied the auxiliary fluid escaped into the main pressure chamber.

The main fluid pressure was then relieved altogether and the interference pressure on the packing face was measured by positioning the small hole at a series of axial locations along the packing. The interference pressure was found to be 12 psi, uniform along the packing from end to end.

At the completion of this measurement, a main fluid pressure of 295 psi was applied inside the tube, creating a sealing pressure of 300 psi at the center of the packing face. The main fluid pressure was then gradually reduced. At the same time the auxiliary pressure decreased of its own accord as fluid escaped into the system. Simultaneous readings were taken on the two pressure gauges so that the difference in pressures could be determined. The results, tabulated in Table 1-1, verify the theory of interference seal mechanics. The seal pressure $P_{\rm g}$ remained a relatively constant amount greater than the fluid pressure $P_{\rm f}$. Actually the difference of pressures was less at higher pressures, probably because of deformation of the cable inside the packing. (A subsequent test, in which the cable was replaced by a 5/8-inch diameter metal rod, showed a constant difference between $P_{\rm g}$ and $P_{\rm f}$ of 23 psi throughout the full range of pressures.)

1.5.3.5 <u>Distribution of Pressure on Packing Face</u>. During the above test, whenever pressure existed in the main system, the auxiliary

Table 1-1. Values of Fluid Pressure (P_f) and Seal Face Pressure (P_s) on an Interference Cable Gland with No Axial Tightening (pressures measured in psi)

A.

ŝ.

N.

 $\sum_{i=1}^{N}$

(

() ()

27

3

3

P _f	0	19	29	39	60	90	110	131	151	172	192	215	234	255	273	295
Ps	12	30	40	50	70	100	120	140	160	180	200	220	240	260	280	300
P _s - P _f	12	11	11	11	10	10	10	9	9	8	8	5	6	5	7	5

fluid escaped into that system rather than to the atmosphere. This result was consistent, even when the small hole was located near the downstream end of the packing. In order to determine the cause of this phenomenon, the pressure distribution on the packing face was measured while a fluid pressure of 160 psi was maintained in the main system. A packing with somewhat greater interference was used in this test. A plot of the pressure distribution is shown in Figure 1-12 indicating an increasing pressure toward the downstream end. The measuring process was repeated with the ends of the packing reversed, the results being about the same as before.

Figure 1-12. Pressure Distribution on Seal Face

A possible explanation for this distribution of pressure may be based upon the tendency of the cable <u>covering</u> to be extruded slightly through the gland when fluid pressure is applied within the chamber. The resulting friction between the cable covering and the packing may well cause the pressure on the downstream end of the packing to exceed that on the upstream end. ra F

S

Ö

21

3

Pressure distribution along the packing was again measured at a fluid pressure of 100 psi, this time with a metal rod replacing the cable. A constant seal pressure of 128 psi was measured across the entire face of the packing except for a very narrow band at the downstream edge, where the pressure was measured to be 165 psi. As before, all auxiliary fluid escaped "upstream" into the main system. A possible cause of this peak pressure might be the wedging action of the corner of the packing as it was forced against the slightly chamfered face of the downstream bushing. Similar measurements were obtained, however, after the bushing was re-machined with a square corner. In exploring the pressure distribution on the outer surface of somewhat similar seals, White and Denny found no such pressure peak (see pp. 19 and 28 of Reference 13). No indication was given in this work, however, as to the direction of escape of the auxiliary fluid. At the present time, no satisfactory explanation has been found for the existence of a peak pressure at the downstream edge of the packing.

1.5.3.6 Effect of Axial Tightening. A further test was conducted with this equipment to determine the effect of tightening the gland nut in a gland employing an interference packing. In this test, the unit was assembled with 1/4-inch-thick single neoprene packings similar to those previously described. With the adjusting screw (Figure 1-8) loose, the interference pressure at the center of the packing face measured 12 psi. The adjusting screw was subsequently tightened to produce a pressure of 70 psi on the packing face. Fluid pressure was applied to the unit and simultaneous measurements were made of the fluid pressure and the seal pressure while the fluid pressure was increased. The results are tabulated in Table 1-2. Figure 1-13 shows t⁺ variation of sealing pressure margin ($P_s - P_f$) with the fluid pressure P_f . From this curve,

Table 1-2. Values of Fluid Pressure (P_f) and Seal Face Pressure (P_S) on an Interference Cable Gland with Initial Axial Tightening (pressure in psi)

546

6.18 (

8

3

 $\overline{\mathcal{X}}$

1.4

3

いいたちのうちょう

And the second s

12444

P _f	0	38	68	100	125	148	170	191	212	233	256	273
P s	70	80	100	120	140	160	180	200	220	240	260	280
P _s - P _f	70	42	32	20	15	12	10	9	8	7	4	7 ¹

Figure 1-13. Effect of Axial Tightening on an Interference Packing.

it is evident that the initial margin of seal pressure provided by tightening the adjusting screw was soon overcome by the fluid pressure, after which time the seal continued to function as an interference seal. Similar results were obtained when the test was repeated, using higher initial tightening pressures. Hence, the effect of packing nut pressure is to increase the sealing pressure margin $(P_s - P_f)$ until such fluid pressure is applied as to replace the pressure from the nut. The seal is then automatic, providing an approximately constant sealing pressure margin as the fluid pressure increases.
1.5.3.7 Leakage Caused by Twisting Cable. In all experiments thus far described, the cable core consisted of three main conductors, twisted together. This core was encased in a vinyl cover. The result was a moderately firm cable which was not truly round. When under pressure, the covering was forced between the conductors, forming spiral creases in the surface. This cable was picked for experimental purposes, since it was considered more difficult to seal than firmer coaxial types. ₩ ۱

8

N N N

Ì

During several of the tests, it was observed that leakage would occur between the cable and the packing when the cable was severely twisted at its free ends. This occurred only at pressures over about 275 psi. In other instances, no leak would occur when the cable was twisted.

As yet, no remedy has been found for this condition, although little time has been thus far devoted to its investigation.

1.5.4 AN EXPERIMENTAL INTERFERENCE SEAL

To provide further information on the reliability of interference packings for cable seals, a number of experimental glands were incorporated in underwater equipment in current use at the University of Washington's Applied Physics Laboratory. To simplify the construction of the glands and to better check the dependability of interference packings, the gland assemblies were held together with snap rings in such a way as to produce no initial axial pressure on the packing. Figure 1-14 illustrates the construction of these glands. The cables in each case were of the coaxial type, being 0.40 inch in diameter and of fairly firm construction. The cable covering was a vinyl plastic. The packings were 1/4-inch-thick neoprene, 40 durometer, and two packings were used in each gland. The gland body diameter was 1.375 inches. The interference between the cable and packing was about 0.15 inch and that between the packing and the gland body was 0.03 inch.

Two units employing these glands were assembled at opposite ends of a short length of cable. The units and cable were then placed in a high-pressure vessel and subjected to an external water pressure of 500 psi. No evidence of leakage was present when the glands were disassembled.

Figure 1-14. An Experimental Interference Seal

I.6 Cable Seal Design

۱ ۲

KV

Ň

22

The interference cable seal has gained wide use since this study was originally made. For details on design for an interference cable family used by the Applied Physics Laboratory, see Section 2 of this manual--"A Standard for Simple Interference Cable Seals."

1.7 References

- 1. Bridgman, Percy F., <u>The Physics of High Pressure</u>, McMillan, N.Y., 1931.
- 2. Brkich, A,, "Mechanical Seals, Theory and Criteria for their Design," <u>Product Engineering</u>, April 1950.

2.5

1 32.55

1 1 2

進ま

Ň

- Burton, Walter E., <u>Engineering with Rubber</u>, McGraw-Hill Book Co., Inc., N.Y., 1949.
- 4. Chilton, E.G. "Large Deformations of an Elastic Solid," <u>Journal</u> of <u>Applied Mechanics</u>, Dec. 1948.
- Dayton, E.R., "Hermetic Sealing," <u>Sperry Engineering Review</u>, Volume 6, No. 5, September-October 1953.
- Eshbach, Ovid W., <u>Handbook of Engineering Fundamentals</u>, 2nd Ed., John Wiley and Sons, N.Y., 1952.
- Kent, William and Robert T. Kent, <u>Design</u>, Vol. II of <u>Mechanical</u> Engineer's Handbook, 12th Ed., John Wiley and Sons, N.Y., 1950.
- Morrison, J.B., <u>An Investigation of Cable Seals</u>, Applied Physics Laboratory, University of Washington, Report No. 54-41, March 1, 1954. (Essentially a longer version of this manual section.)
- 9. Schmitz, C.E., "The Mechanical Seal," ASME Transactions, August 1949.
- Sears, Francis W., <u>Principles of Physics</u>, Vol. I, Addison-Wesley Press, Inc., Cambridge, Mass., 1947.
- Summary Technical Report, Div. 6, National Defense Research Committee, Washington, D.C., 1946, Vol. 12.
- Summary Technical Report, Div. 6, National Defense Research Committee, Washington, D.C., 1946, Vol. 13.

Timoshenko, S., <u>Strength of Materials</u>, Part I, 2nd Ed.,
D. Van Nostrand Co., Inc., N.Y., 1940.

×.

<u>ः द्र</u>ाहर

56.32

調める

K.

Ň

あまし

14. White, C.M. and Denny, D.F., <u>The Sealing Mechanism of Flexible</u> <u>Packings</u>, <u>Ministry of Supply</u>, Scientific and Technical Memorandum No. 3/47. H.M. Stationery Office, London, 1948.

TABLE OF CONTENTS

Section	Title	Page
2.1	Introduction	2-1
2.1.1	Scope	2-1
2.1.2	Principle of Operation	2-2
2.2	General Description	2-2
2.3	Assembly Procedure	2-4
2.4	Design SpecificationsMaterials and Dimensions	2-5
2.4.1	Housing and Retaining Ring	2-6
2.4.2	Packing	2-8
2.4.3	Retaining Washer (Seal W/O Boot)	2-10
2.4.4	Retaining Washer (Seal with Boot)	2-12
2.4.5	Boot (Optional)	2-14
2.5	References	2-16

New York 8 2X 2X 2X 22 888 X <u>8</u> 12.23 12.23 х. У ß X

Ø

S

8

LIST OF FIGURES

Figure	Title	Page
2-1	Interference Seal Assembly	2-3
2-2	Cut Cable End	2-4
2-3	Housing with Retaining Ring Groove	2-6
2-4	Packing	2-8
2-5	Retaining Washer (Seal W/O Boot)	2-10
2-6	Retaining Washer (Seal with Boot)	2 -12
2-7	Boot	2 - 14

LIST OF TABLES

Table	Title	Page
2-1	Housing and Retaining Ring Dimensions	2-7
2-2	Packing Dimensions	2-9
2-3	Retaining Washer Dimensicns (Seal W/O Boot)	2-11
2-4	Retaining Washer Dimensions (Seal with Boot)	2 -13
2-5	Boot Dimensions	2 - 15

ii

A STANDARD FOR SIMPLE INTERFERENCE CABLE SEALS

2.1 Introduction

山田の南部町の御子、朝鮮新教教堂部一部武武西武武部

No.

5

協民

3

X

N.S.

ĝ.

The purpose of this standard is to establish recommended sizes, proportions and materials for the component parts of interference cable seals with single packings. The purpose of interference seals is to prevent leakage at the point of entry of electrical and similar cables into undersea vessels and bulkheads. They must effectively maintain seal integrity under substantial hydrostatic pressures and against corrosive action over lengthy periods of time.

All dimensions and materials given in this section are the design recommendations of James Morrison and are based directly on his test findings, as outlined in Section 1 of this manual.

2.1.1 SCOPE

This standard describes eight seal groups for sealing cables ranging from 0.100 inch to 1.120 inches in diameter. These simple interference seals are designed to seal smooth-jacketed cables of approximately circular cross section at pressures of up to 500 psi or 1150 feet in ocean depth. The 500 psi maximum design pressure is an arbitrary figure, dictated by the limitation of Morrison's test facilities when he undertook his design study of interference seals in 1954 (see Sections 1.5.3.3 and 1.5.4). In a 1957 article, Morrison indicated that he had subsequently tested the design to a pressure of 5000 psi without failure (see Reference 1). However, funds to systematically test the seal under varying conditions at such pressures have not been made available, and hence 500 psi remains the last pressure at which the design was thoroughly tested. Pressure limits for the inter-

ference seal seem to be determined by the crush strength of the cable, the stiffness of the retaining washer, the housing-to-washer clearance, and the creep strength of the seal (see Figure 2-1). This design provides only for the sealing mechanism and will not necessarily prevent cable extrusion (slippage of the cable through the packing) or cable rotation. It will be the responsibility of the designing engineer to provide suitable anti-extrusion and anti-rotation devices.

2.1.2 PRINCIPLE OF OPERATION

The action of the interference seal is automatic which means simply that once the cable is passed through the packing no additional compression adjustments are required. The initial pressure established by passing the cable through a packing of interference fit remains in constant excess of whatever additional hydrostatic pressure is generated through increased ocean depth. This sealing action is due to the properties of pliable solid rubber compounds which are readily deformed, but are practically incompressible. The seal requires no tightening or special preparation for immersion other than that provided by the fit of the packing with its surroundings and the fit of the cable with the packing. (For a theoretical discussion of Interference Cable Seals, see Section 1 of this manual.)

2.2 General Description

The simple interference seal assembly, shown in Figure 2-1, consists of 4-5 components, excluding the cable. These include:

- A) The Housing. The Housing Cavity is machined to standard dimensions, depending upon cable size, into the wall of the vessel or an extension thereof.
- B) The Packing. The Packing is a thick washer of soft, solid rubber, proportioned so as to have radial interference between the Housing wall and the cable when in place.

- C) The Retaining Washer. The metal Retaining Washer, along with the Retaining Ring, performs the function of holding the Packing--and, when used, the Boot--in place within the Housing.
- D) The Retaining Ring.

1/2) 1-4)

3.423

R

537

5

50 [3]

i,

j.

÷

E) The Boot (Optional). The Boot is optional and for simplicity may be omitted. It is a flanged sleeve of a somewhat harder grade of rubber than the Packing. Its purpose is to help support the cable against local bending and to provide a finished appearance to the seal assembly.

Figure 2-1. Interference Seal Assembly

21.3 Assembly Procedure

- A) Recommended Method.
 - 1. Determine whether the Boot will be used or not and assemble the appropriate parts.

B

Ţ

2

S.

88

3

Ķ.

H

S

2. Cut the end of the cable as shown in Figure 2-2, removing any sharp wire ends which protrude from the jacket.

- 3. Apply a light coating of silicone compound, such as Dow-Corning DC-55, to several inches of cable. Other lubricants which do not deteriorate the rubber may be used.
- 4. Slide the Retaining Washer over the cable and push it back out of the way.
- (5.) Slide the Boot, if used, over the cable and push it back out of the way.
- 6. Lubricate the Packing lightly and push it onto the cable, sliding it out of the way as necessary.
- 7. Prepare the end of the cable for making electrical connections. This may also be done after seal has been assembled.
- 8. Push the cable the desired amount through the hole in the Housing bore.

M K) K E. 合計 S R C Ŋ 3 Ŕ

9. Push the Packing into the annular space between the housing and the cable. If the packing has been lubricated, this step is easily accomplished with thumb pressure only, provided that the Packing is not harder than 35 durometer. If additional pressure is required, use a blunt rod to force the cable through the Packing.

- 10. Slide the Boot and/or Washer into place and fasten them with the Retaining Ring.
- 11. Apply anti-extrusion and anti-rotation devices, as required (see section 2.1.1).
- B) Alternate Method. As an alternate method of assembly, the lubricated cable end, cut as shown in Figure 2-2, may be pushed through a preassembled gland.

2.4 Design Specifications-Materials and Dimensions

Eight standard sizes of seals are specified for sealing cables of sizes ranging from 0.100 inch to 1.120 inches in diameter. Each of the eight standard seal sizes covers a small range of possible cable diameters. Seal proportions for cable sizes beyond this range may be determined by increasing or decreasing all dimensions in proportion to the cable diameter.

2.4.1 HOUSING AND RETAINING RING

A) Housing Materials. The Housing may be constructed from any non-porous metal or other material suitable for withstanding the anticipated pressure and the exposure to the corrosive action of sea water. R

8

2.4.2

Î R

2

8

- B) Retaining Ring Materials. Should be of corrosion-resisting Steel.
- C) Housing and Retaining Ring Dimensions. See Figure 2-3 and Table 2-1, below. The length of the Housing bore (C) varies for a given cable, depending on whether or not the optional Boot is used.

Figure 2-3. Housing with Retaining Ring Groove

Table 2-1. Housing and Retainin' Ring Dimensions (in.)

Second Contraction

S

R S

N.Y.

Fix

53 53

Вй Л

223

R ZZ

су 1

F

g Ring	Truarc* Cat, No.	N5000-	3	- 62-	3	- 87-	3		3	•	137-	3	1	162-	X	1	187-	W		- 677	
Retainin	H	0 524	±0.003	0.659	±0.003	0.922	±0.003	1.197	±0.004		1.450	±0.004		1.715	±0.005		1.975	±0.005	012 (±0.006	
	ш	0.039	-0.000	0.039	-0.000	0.046+0.003	-0.000	0.056+0.004	-0.000	0.056	+0.004	-0.000	0.068	+0.004	-0.000	0.068	+0.004	-0.000	0.086	-0.000	
Q	± 0,005	0.100		0.100		0.107		0.132			0.132			0.161			0.101		0 179		
U	W. Boot ± 0.005	0.500		0.500		0.647		0.899			1.075			1.305		1.7.2	1.0.1		1 . 762		
C	W/U Boot ± 0.005	0.485		0.485		0.632		0.884			1.060			1 062.1		1 464	000.1		1.747		
B			J.	of 9:	out	ears ed	sn [၁	lst 9Id	191 23	iei Tt	p P	ici SI	11 0	ed 0 (S	00	•0		<u> </u>	
A	± 0.005	0.500		0.625		0.875		1.125			1.375		1 225	C70.1		1 875			2.250		
Range of Cable	Diameters	0.100 - 0.184		0.185 - 0.269		0.270 - 0.372		0.373 - 0.494		0 101	0.495 = 0.054		0 635 - 0 770			0.780 - 0.934			0.935 - 1.120		
Seal	No.	н		8		ю		4		U	n		Ŷ)		7			80		

Ð The groove (E, * Other flat or spiral-type retaining rings of suitable material are acceptable. should be dimensioned to fit the particular ring selected.

2.4.2 PACKING

TERMENT NORMAN TERMES " TERMES PROVIDE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA

To ensure proper sealing action, it is important that the following conditions be met, insofar as the Packing is concerned: (1) <u>The Packing must be solid rubber</u>, with no air cells, cork or other compressible materials included; and (2) The Packing must be an interference fit <u>both</u> with the housing wall and the cable.

> A) Packing Material. The Packing should be of synthetic rubber compound, preferably neoprene, with a hardness of 35 ± 5 durometer. Other physical properties should correspond to those of MIL-R-3065, Grade SC 310 (ASTM Grade SC 310).

 \mathbb{S}

Ľ,

因因

3

If the seal is to be used between bare electrical conductors or a shield and a conductive housing, the seal packing should be of chlorinated butyl or some other suitable non-conductive elastomer of 35 ± 5 durometer hardness.

B) Packing Surfaces. Must be smooth and free of breaks or other imperfections. Surfaces in Figure 2-3 below marked

 $\sqrt{=}$ Molded Finish 63/.

C) Packing Dimensions. See Figure 2-4 and Table 2-2, below. The packing dimensions remain constant whether or not the optional boot is used.

Seal No.	Range of Cable Diameters	M ± 0.015	N ± 0.015	P + 0.000 - 0.020
1	0.100 - 0.184	0.530	0.063	0.250
2	0.185 - 0.269	0.655	0.125	0.250
3	0.270 - 0.372	0.905	0.188	0.375
4	0.373 - 0.494	1,155	0.233	0.500
5	0.495 - 0.634	1.405	0.375	0.625
6	0.635 - 0.779	1.670	0.500	0.750
7	0.780 - 0.934	1.935	0.563	1.000
8	0.935 - 1.120	2.310	0.688	1.000

Table 2-2. Packing Dimensions (in.)

articles and the second second second

6 N 557

XX •

E

÷Ţ

22

Ň

2.4.3 RETAINING WASHER (SEAL W/O BOOT)

The sector sector sector

A STATE OF A

South and the second second

Participation and a second a second second second second

This section and the section which follows give specifications for two Retaining Washers. The washer specified in this section is designed for the seal without the optional boot. It is of greater thickness and has a radius on the outside edge of its inner diameter to prevent cable wear.

> A) Retaining Washer Materials. The Retaining Washer can be of any material, compatible with the housing, such as corrosion resisting steel, brass, Teflon or nylon, with suitable resistance to corrosion and with rigidity sufficient to retain the other parts in place.

ß

 $\int
 \int
 d$

3

5

Ŋ

S

N

ß

R

B) Dimensions. See Figure 2-5 and Table 2-3, below. The Retaining Washer for the booted seal follows this section.

Seal	Range of	J	K	L	R
No.	Diameter	± 0.005		± 0.005	± 0.015
-1	0.100 - 0.184	0.470		0.100	0.062
-2	0.185 - 0.269	0.470	netra cula	0.100	0.062
-3	0.270 - 0.372	0.617	dian arti	0.100	0.062
-4	0.373 - 0.494	0.869	015 or p	0.175	0.093
5	0.495 - 0.634	1.045	to 0. Ice f	0.195	0.125
-6	0.635 - 0.779	1.275	005 t carar ole u	0.235	0,187
-7	0.780 - 0.934	1.641	0.0 cle cat	0.235	0.187
-8	0.935 - 1.120	1.732		0.300	0,250

Table 2-3. Retaining Washer Dimensions (Seal W/O Boot) (in.)

4" 1."1

8

683

S.

e Ne

89

8

N N

8

3

2.4.4 RETAINING WASHER (SEAL WITH OPTIONAL BOOT)

A) Materials. Same as for section 2.4.3.

B) Dimensions. See Figure 2-6 and Table 2-4, below.

X

N

EN EN

B

Figure 2-6. Retaining Washer (Seal with Boot)

See 1	Range of	J	К	L
No.	Diameters	± 0.005		± 0.005
-1	0.100 - 0.184	0.490	F-1 54	0.063
-2	0.185 - 0.269	0.615	etra cula	0.063
-3	0.270 - 0.372	0.865	diam arti	0.063
-4	0.373 - 0.494	1.115	015 or p	0.125
-5	0.495 - 0.634	1.365	0.0 c ce fc sed	0.125
-6	0.635 - 0.779	1.615	05 to aran le u	0.188
-7	0.780 - 0.934	1.865	cab.	0.188
-8	0.935 - 1.120	2.240		0.250

S

83

Ň

R.

 $\frac{N}{2}$

. Vj

 $\tilde{\chi}_{A}$

R L

Table 2-4. Retaining Washer Dimensions (Seal with Boot) (in.)

2.4.5 BOOT (OPTIONAL)

A) Boot Material. The Boot should be constructed from synthetic rubber compound of 50 ± 5 durometer hardness, such as ASTM Grade SC 520 (MIL-R-3065, Grade SC 520). のです。

あます

同じ

B) Boot Dimensions. See Figure 2-7 and Table 2-5, below.

61	Range of	R	S	T	U	v	₩	x	Y
No.	Diameters	±0.015	±0.015	±0.060	±0.060	±0.015	±0.015	±0.015	±0.015
-1	0.100 - 0.184	0.450	0.150	0.875	0.625	0.063	0.275	0.150	0.094
-2	0.185 - 0.269	0.563	0.210	1.000	0.750	0.063	0.335	0,180	0.120
-3	0.270 - 0.372	0.813	0.315	1.250	0.875	0.063	0.440	0.270	0.200
-4	0.373 - 0.494	1.000	0.475	1.500	1.000	0.094	0.663	0.370	0.300
-5	0.495 - 0.634	1.300	0.530	1.625	1.125	0.125	0.718	0,480	0.400
-6	0.635 - 0.779	1.430	0,675	1.750	1,250	0.125	0.925	0,550	0.460
-7	0.780 - 0.934	1.750	0.300	2.000	1.500	0.125	1.050	0.780	0.660
-8	0.935 - 1.120	2.125	0.990	2.500	1.750	0.188	1,365	0.905	0.780

Table 2-5. Boot Dimensions (in.)

12

いい記

50 1

¥3

以

) []

61 61

2.5 References

である。

と対応に設め

E

NOT 1

6 . . . A

N.S.S.

10.5

200

222

Х Х

888

5. 		Section 3	
23 		TABLE OF CONTENTS	
	Section	Title	Page
-	3.1	Introduction	3-1
US	3.1.1	Scope	3-2
	3.1.2	Principle of Operation	3-2
ŝ	3.1.2.1	Seal Support	3-3
5	3.1.2.2	Additional Design Possibilities	3-4
	3.2	Cable Specifications and Sources	3-5
	3.2.1	Cable Splicing	3-6
N	3.3	General Description	3-10
22	3.3.1	Parts List	3-14
	3.4	Assembly Procedure	3-15
	3.5	Design SpecificationsMaterials and Dimensions	3-24
6.			
W			
8			
• •••			
8			
<i>V</i> \$			
23			
×.			
N7.			
R.		i	

1,1

and Antonio states

Constant Services

ESSE .

1

E SA

5.73

Parts.

5

5

K.W

2224 2553

Free Press

LIST OF FIGURES

Figure	Title	Page
3-1	Autec CableGeneral Specifications	3-7
3-2	Condex CableGeneral Specifications	3-8
3-3	U.S.S. 2Q90XCRDimensions	3-9
3-4	Upper and Lower Seal and Washer Assembly	3-10
35	Cable Seal and Repeater Housing Assembly	3-11
3-6	Cable Stripping Unit	3-16
3-7	Removing Polyethylene Strips from Inner Sheath	3-17
3-8	Strain Wire and Nicopress Fitting Arrangement	3-18
3-9	Micarta Spacing Fork and Aluminum Cup Mold	3-19
3-10	Potted Strain Wires	3-20
3-11	Bell Fitting of Vacuum Pump	3-22
3-12	Cap and Fairlead: 1-(X)	3-26
3-13	Cable Seal Housing: 2	3-28
3-14	Spacer: 3-(X)	- 3-29
3-15	Seal Washer: 4-(X)	3-30
3-16	Backup Washer: 5-(X)	3-31
3-17	Thrust Washer: 6-(X)	3-32
3-18	Tension Washer: 8-(X)	3-33
3-19	Sleeve, Torque Resisting Pins: 10	3-34
3-20	Cup: 11-(X)	3-35
3-21	Torque Washer: 12-(X)	3-36
3-22	Inner Jacket Seal: 13-(X)	3-37
3-23	Backup Washer: 14-(X)	3-38

ii

Figure	Title	Page
3-24	Insulator Cup: 15-(X)	3-39
3-25	Shield Pin: 16-(X)	3-40
3-26	Middle Backup Washer: 17-(X)	3-41
3-27	Middle Seal: 18-(X)	3-42
3-28	Inner Pressure Washer: 19	3-43
3-29	Inner Seal: 20	3-44
3-30	Lower Pressure Washer: 21-(X)	3-45
3-31	Thrust Washer: 22	3-46
3-32	Center Pin: 23	3-47
3-33	Main Nut: 24	3-48
3-34	Spacer: 27	3-49
3-35	Electronics Housing: 29	3-51
3-36	Keyed Spacer: 30	3-52
3-37	Collar: 31	3-53
3-38	Junction Housing (Optional): 23	3-55
3-39	Pressure Cap: 34	3-57

.`

Ĵ

÷

. .

:

LIST OF TABLES

Table	Title	Page
3-1	Coaxial Submarine Cables	3-5
3-2	Cable Manufacturers	3-6
3-3	Parts List for Cable Seal and Repeater Housing	3-12

STANDARD FOR AN INTERFERENCE CABLE SEAL AND REPEATER HOUSING ASSEMBLY

3.1 Introduction

Ň

 \tilde{S}

EZ3

N.

ŝ

87 27

K.

 \widetilde{X}

N N

A.

This standard establishes dimensions and materials for components of a multi-level coaxial submarine cable seal which was developed at the Applied Physics Laboratory at the University of Washington. The complete assembly is made up of two discrete seal assemblies, each utilizing a stack of interference seals, joined together by a mid-section which is either an electronics housing or a simple junction housing.

The entire assembly is designed to meet the demanding requirements for low-maintenance cable seals intended for long-term submersion at substantial ocean depths. The assembly specified here was designed to seal a coaxial submarine cable for a duration of 20 years at depths of up to 7,000 feet (additional testing would be required for greater depths--see Section 3.1.2.2). While the seal might be applied to any type of coaxial submarine cable, it was intended primarily for instrumentation and communication lines.

Due to the specific design of the Cable Seal and Repeater Housing Assembly, which utilizes two independent seal assemblies joined by a middle housing section (see Figure 3-5), the application may also be used as a field splice to join two lengths of either the same cable or different kinds of cable. When this kind of application is intended a Junction Housing is used in place of the Electronics Housing as the mid-section. While the factory type of cable splice is preferable, it may not always be practical due to time limitations and other contingencies. The Cable Seal and Repeater Housing Assembly is designed to be as reliable as a factory splice. While it is bulkier than a factory splice, it has a considerable advantage in that it may be made-up on shipboard in the relatively short period of 2 hours, once the technique has been learned.

3.1.1 SCOPE

The Cable Seal and Repeater Housing Assembly described and specified in this manual section is both a cable termination and a field splicing device. In addition, it has the capability to house a repeater amplifier in the Electronics Housing which is situated between the two seals of the assembly. Utilizing a stack of interference seals of several materials and sizes, it is designed for a low-maintenance, 20-year duration, and for depths of up to 7,000 feet or approximately 3,000 psi. This standard establishes materials and dimensions for the seal components which may be applied to any of three coaxial submarine cables. These include the Autec, Condex and U.S. Steel cables identified in Section 3.2, below. Antirotation and anti-extrusion devices are integrated into the seal design. All materials and dimensions have been carefully tested and it is essential that the specifications given in this manual be followed if the seal is to operate properly.

3.1.2 PRINCIPLE OF OPERATION

The basic principle of multi-level interference seal action is identical to that of the simple interference seal or the O-ring. A cable is passed through a rubber packing of interference fit, thus establishing an initial radial pressure between the cable and packing which remains in constant excess of additional pressures generated by increased ocean depth. A similar initial pressure is established by the interference fit of the seal with its housing, thus blocking the alternate leakage path in an identical fashion. (See Section 1.4 for theoretical discussion.)

The multi-level interference seal provides a double or series seal for every layer of a given cable to prevent leakage or hosing into the inner electronics in the event of a cut at any depth whatever in the cable. The series seal is installed at every sealing point, including those utilizing the standard O-ring, to provide the highly reliable redundant seals.

The center conductor will continue to operate even when a cut occurs to the depth of the return conductor or shield, allowing power to be transmitted down and back again until the damage is repaired.

N. V

33

2

N.S.

 \vec{K}

必世

Ļ

「「「「「「「」」」」

ŝ

The assembly also seals the inner electronics housing in the event of a complete shear, either in the cable or in the seal assembly itself.

3.1.2.1 <u>Seal Support</u>. The somewhat more complicated design of the multi-level interference seal is due partially to the need to support of the soft rubber seals which tend to extrude under substantial pressures. The seal washers of the upper housing area (See Part No. 4, Figure 3-5) are constructed from soft 35 durometer rubber which, because of its softness, has excellent sealing properties. Under pressures of more than 1000 psi, however, the soft rubber will begin to extrude into spaces downstream in the housing assembly, thereby diminishing the volume and effectiveness of the seal. For this reason, a backup washer of a firmer 70 durometer rubber is positioned directly beneath the primary seals to provide support and to fill any gaps along the cable immediately below the primary seals.

The pressure forces in the lower housing assembly beneath the Cerrobend Cup (Part No. 11, Figure 3-5) are both downstream and upstream and the soft rubber seals have been found to require support both above and below.

The two Inner Jacket Seals (Part No. 13, Figure 3-5) situated immediately beneath the Cerrobend Cup may extrude upward into the air space but are prevented from further upward extrusion by the Cerrobend potting around the cable immediately above them. On the downstream side they are supported by a backup washer of Teflon. The cold flow characteristics of Teflon are such that at about 1000 psi it will begin to flow out and fill the gaps left by its clearance fit with the cable and provide the required support for the softer rubber seal.

Teflon washers are used similarly for backup support of either side of the middle and inner seal pairs (Part Nos. 18 and 20, Figure 3-5).

The Cable Seal and Repeater Housing Assembly has been tested to a lower limit of 14,000 feet; it is therefore recommended for applications of up to 7,000 feet. Whether or not the Teflon backup support is adequate for any depth beyond 7,000 feet is not known. 24月1

N N

NN.

3.1.2.2 Additional Design Possibilities. At depths of less than 2,000 feet, Teflon washers are not required and may be replaced with hard rubber washers of 70 durometer. At depths of from 2,000 to 7,000 feet, the Teflon backup washers are required.

While the Teflon washers may be adequate for much greater depths, additional testing would be required to establish this. Should such testing prove the Teflon to provide inadequate support against seal extrusion, at greater depths than 7,000 feet, additional support washers could be constructed from lead to provide backup support for the Teflon washers. Such a seal design would be based on the fact that lead, like Teflon, is essentially incompressible, and will cold flow at substantially higher pressures. The theory behind the use of lead for seal support at great pressures is not new and has been examined by Bridgman in his work with extremely high pressure seals (see Reference 1, Section 1.7).

Lead washers for the Seal Assembly would be situated so as to provide backup support for each Teflon washer, either upstream or downstream, depending upon whether the Teflon washer itself is upstream or downstream with regard to the soft rubber packing it is supporting. The lead washers would be of approximately the same dimensions as the Teflon washers. Where insulation was required between the lead washer and the center conductor, the lead washer would be chambered to permit the insertion of a Teflon insulating sleeve. Once such a sealing design was fully worked out and tested, it would very likely be effective at any ocean depth whatever.

3.2 Cable Specifications and Sources

i si

X

7 2

The Cable Seal and Repeater Housing Assembly has been used with three types of coaxial submarine cable to date. These include the Autec, Condex and U.S. Steel cables, as listed in Table 3-1, and as shown in Figures 3-1, 3-2, and 3-3, below. The seal is not limited to use with these cables; however, the design drawings of this manual section meet the specific requirements for the construction, dimensions and materials of the Autec, Condex and U.S. Steel cables identified. Note that the cable specifications listed in Figures 3-1, 3-2, and 3-3, are only for purposes of identifying the cable dimensions appropriate to the parts dimensions of the seal, as specified in Section 3.5, below. The most recent cable specifications, or the complete specifications of the cables listed here, should be secured at the manufacturer sources which are listed in Table 3-2, below. Minor diametral variations in cable dimensions may be accommodated with proportionate diametral variations in the seal component specifications of section 3.5, below.

Table 3-1. Coaxial Submarine Cables

Assembly Dash No.	Cable Unit	Documentation Source	
-1	Autec*	Keyport Sketch NTS No. 7356	Figure 2-1
-2	Condex	Condex Corp. Drawing No. 1260	Figure 2-2
3	U.S. Steel	Spec. for Type 2Q90XCR	Figure 2-3

* Conforms to Simplex Range Cable 0.057"/0.180".

Each of the cables listed was chosen for the low resistivity of the central conductor, long-term durability and the expense of its manufacture. Suggested sources of supply are listed below. The manufacturers are either presently supplying the cable or have indicated that they have the continued capability to produce the cable on order. In addition, the suppliers will furnish additional specifications for their respective cables upon inquiry. The Naval Torpedo Scation at Keyport, Washington, has used the Simplex range cable extensively and found it to be very satisfactory. They are presently purchasing the same cable from 1TT, however. APL has used all three cables on the St. Croix range.

3

Table 3-2. Cable Manufacturers

Λ u t e c	Simplex Wire and Cable Co. Hydrospace Systems Division Portsmouth, N.H. 03801 (603) 436-6100
	ITT Cable-Hydrospace P.O. Box 81446 San Diego, Calif. 92138 (714) 474-6341
Condex	Condex Corporation Point and Erie Streets Camden, N.J. 08102 (609) 966-0915
U S S	U.S. Steel Electrical Cable Division Ballard Street Worcester, Mass. 01607 (617) 752-6711

3.2.1 CABLE SPLICING

The Cable Seal Assembly, with its independent sealing units connected by a middle Junction Housing (see Table 3-3, Part No. 33), may be used as a splice between two different kinds of cable. Thus the Autec, Condex or U.S. Steel cables may be spliced together as desired into a single line application.

۵ĩ ,

2 92

8

5

N.

8

Ĩ.

ß

			· · · ·							
						· · · · · · · · · · · · · · · · · · ·		:		- 2
								ι		
			10	A BE					•	8
•							· ·		• • •	
: : :					ŊŊ			• •	(in.)	
	per					<i>2</i>		·	cations	8
:	lid cop								Specifi	
	1285 so			. /.					eneral	E E
.:	0.								able, G	
•.	CONDUCT	weight ectric ene.		, 1, , 1,		· ^			ondex C	
•	CENTER	lecular tern El lyethyl	copper	r weigh n Elect thylena	042 DIA 1, 18 i	ntensit on 4 DIA.			3.2. 0	
	-	ty, Wes 5857 po	010 THK	olecula Westeri 7 polye	res, 0.0 ed stee tch.	high i ificati . 0.76			Figure	
		FRIC: F v densi on KS 10 08 DIA.	DR: 0.0	Hígh me ensity, (S 1685	18 wi t treat and pi	Black, ic Spec thylene		`		
		DIELECT al, low ficatíc ± 0.00	ONDUCTC 1ap.	EATH: low de ation k A.	EMBER: ed heat right b	EATH: Electri polyet				Š
		CORE Natur Speci 0.425	ETURN C 0% over	NNER SH atural, pecific .560 DI	TRAIN M alvaniz omínal	UTER SH estern S 16858				ې نې بې
			8 0	H E XO	N DE	OZY				
										Š

3-8

P

5

a i

N

N.

5.5

N

8

88

33

<u>[]</u>

S.

X

Figure 3-3. U.S.S. 2Q90XCR, Dimensions (in.), Including Shore Armor

3.3 General Description

The basic seal design, including the Electronics Housing and its components, consists of 32 specific kinds of parts. Six of these are secured from commercial sources and the remainder are tooled in shop.

The Assembly, as shown in Figure 3-5, consists of a Cable Seal connected to an Electronics Housing. A complete application would include two cable seals connected by a middle housing section, the total assembly measuring less than 3 feet in length with an outer diameter just under 4 inches.

8

ũ

ğ

 \mathbb{S}

The basic seal arrangement along the cable (Figure 3-4) is made up of an upper and lower seal and washer assembly, separated by a cup which contains a Cerrobend potting alloy. The seals have an interference fit with the cable and housing; their backup washers have a clearance fit.

Figure 3-4. Upper and Lower Seal and Washer Assembly

S

40 Y

ß

88

3

Ĉ

5

Х; КХ

Figure 3-5. Cable Seal and Repeater Housing Assembly. Parts numbers correspond to those of Table 3-3, which follows.

Table 3-3. Parts List for Cable Seal and Repeater Housing Assembly

Part No.*	Qty.	Manual Section	Description, Vendor
1-(X)	1	3.5.1	Cap and Fairlead
2	1	3.5.2	Cable Seal Housing
3-(X)	2	3.5.3	Spacer
4-(X)	2	3.5.4	Seal Washer
5-(X)	1	3.5.5	Backup Washer
6-(X)	1	3.5.6	Thrust Washer
7	1		Retaining Ring, Internal, 2.250 in. Housing Dia. Cres. Truarc: N5000-225-H
8-(X)	1	3.5.7	Tension Washer
9	AR		Cerrobend Alloy: Bismuth alloy, low melting point, 158 ^o F (70 ^o C), Cerro Metal Products Division
10	2	3.5.8	Sleeve, Torque Resisting Pins
11-(X)	1	3,5,9	Cup
12-(X)	1	3.5.10	Torque Washer
13-(X)	2	3.5.11	Inner Jacket Seal
14-(X)	1	3.5.12	Backup Washer
15-(X)	1	3.5.13	Insulator Cup
16-(X)	1	3.5.14	Shield Pin

For Autec cable assemblies, substitute (-1) for the (-X).
For Condex cable assemblies, substitute (-2) for the (-X).
For U.S. Steel cable assemblies, substitute (-3) for the (-X).

8 ß Ň 3 Ø E C SX 8

31,21,7

Table 3-3, cont. Parts List for Cable Seal and Repeater Housing Assembly

r

Part No.	Qty.	Manual Section	Description, Vendor
17-(X)	2	3.5.15	Middle Backup Washer
18-(X)	2	3.5.16	Middle Seal
19	1	3.5.17	Inner Pressure Washer
20	2	3.5.18	Inner Seal
21	1	3.5.19	Lower Pressure Washer
22	1	3.5.20	Lower Thrust Washer
23	1	3.5.21	Center Pin
24	1	3.5.22	Main Nut
25	2		Backup Ring 2.768 in., ID, Parker Seal Co.: 8-335-N300-9
26	2		O-Ring, 2.725 in., ID, 0.210 in. Width (MS28775-335)
27	1	3.5.23	Spacer
28	2		O-Ring, 2.859 in., ID, 0.139 in. Width (AN6230-11)
29	1	3.5.24	Electronics Housing
30	1	3.5.25	Keyed Spacer
31	1	3.5.26	Collar
32			Nicopress Splicing Sleeve, 1/16 in., National Telephone Supply Co.: 18-1-C
33	1	3.5.27	Junction Housing (Alternate to Part Nos. 27 28, 29 and 30)
34	1	3.5.28	Pressure Cap

3.3.1 PARTS LIST

CONTRACT CONSIST CONTRACTOR

The Parts List outlined in Table 3-3 identifies all required components for the Cable Seal and Repeater Housing Assembly. These include the following commercial items: the Retaining Ring (No. 7), the Cerrobend Alloy (No. 9), Backup Rings (No. 25), O-rings (Nos. 26 and 28), and the Nicopress Splicing Sleeves (No. 32). \overline{S}

R

N N

ß

0

СС И И И

5

A) The dash (X) numbers given after certain part numbers pertain to the type of cable the seal is being applied to (see Table 3-1, above). Thus the dash one (-1) would replace the (-X) for assemblies involving Autec cable.

Components without dash numbers are standard for all three types of cable.

- B) The Delrin Spacer (No. 3) is optional, being used only when there is space within the Housing to accommodate it. If, when seated, its upstream face protrudes from the Housing, it is pulled out, snipped and removed.
- C) The Center Pin (No. 23) is used only with the Autec (-1) cable. The Condex and .S. Steel cables have center conductors of sufficient diameter to dispense with the pin.
- D) The alternate Junction Housing (No. 33) is a substitute part for the Electronics Housing (No. 29) and the components of the Electronics Housing (Nos. 27, 28 and 30). It is used when the cable seal only is required, as, for example, in making a field splice.
- E) The Pressure Cap (No. 34) is used to protect the exposed end of the Electronics Housing or the Junction Housing.
- F) For additional tools and materials required during the assembly procedure, see Section 3.4, below.

3.4 Assembly Procedure

Į.

22

E.

Ę.

 $\sum_{i=1}^{n}$

(2) と)

83

Once mastered, the entire assembly procedure for the two seals and center housing should take two men approximately two hours.

- A) Preliminary Preparations.
 - Assemble and box the specified seal components which will be required for the assembly procedure (see Parts List, Table 3-3). Label the boxes for easy identification in the field. Be sure to include extra parts.
 - 2. In addition, the following tools and materials will be required.
 - (1) Hot Plate, 1500 watt
 - (1) Soldering Gun, Heavy Duty, AC, 350 watt
 - Cable Stripper (soldering unit with resistance hot tip)--See Figures 3-6, 3-7
 - (1) Heat Gun
 - Vacuum Pump (equipped with bell fitting, neoprene gasket)--See Figure 3-11.
 - (4 Lg. Tubes) Dow-Corning (DC-55) Lubricant
 - (1) Hacksaw Frame
 - (Several) Hacksaw Blades
 - (1) Thread File, No. 1
 - (6) Bench Vises
 - (1) Cerrobend Cup Mold, Aluminum--See Figure 3-9
 - (1) Heat Tongs
 - (1) Double Boiler Pot
 - (1) Steel Beaker
 - (1 Tube) Epoxy Glue, 5 Min.
 - (2) Strap Wrenches, Rigid, No. 5
 - Foam Pad on Stick (for applying DC-55 to lower seal housing)
 - (1) Piece of Plastic-coated Hookup Wire, 15 in.
 - (2) Micarta Spacer Forks, 1/4 in. and 1/16 in. --See Figure 3-9
 - (6 cans) Freon Coolant
 - (1 Pt.) Acetone
 - Snap Ring Pliers
 - Electrical Tape, Shrink Tubing
 - Solder
 - Miscellaneous Tools, Pliers, Wrenches, Drills, Mallets, Files, Extension Cords, etc.
 - Power Source

- B) Cut the cable with the hacksaw and then slide the Cap and Fairlead (No. 1), Collar (No. 31), and Main Nut (No. 24) up the cable and push them back out of the way. Liberally lubricate the cable with DC-55 and then slide the various washers and spacers of the upper Housing cavity--Nos. 3 (two), 4 (two), 5, 6, and 8--up the cable in their proper order and push them back out of the way.
- C) End Preparation of the Cable.

いたができた。 「たいたい」ではないためで、「たいたいではない」というです。 たいたいたいでは、「たいたいたい」では、このではないでは、「たいたいたい」では、このでは、「たいたいたい」では、このでは、

 Study Figure 3-5 carefully to see where the various layers of the cable terminate relative to the Seal components. The stripping length that must be given the most careful attention is that of the inner insulating sheath between the upstream side of the Cerrobend Cup (No. 11) and the upstream side of the Shield Pin (No. 16). The exposed length of this cable layer, after stripping, is 3-3/16 in. Note, however, that lengths may vary slightly from assembly to assembly. E S

N

1773

ES .

N

53

Ŋ

Ø

53 1

ЯÖ

- 2. Removing any remaining DC-55 from the area, begin stripping the end of the cable where the seal is to be assembled. The outer Sheath containing the strain wires must be carefully stripped back for a distance somewhat greater than 4-8/16 in. (Note: If the Center Conductor of the cable being used is of sufficient thickness to dispense with the Center Pin (No. 13) as in the Condex and U.S. Steel cables, then cable stripping must begin back an additional 1.62 in. to make up for the Center Pin-see item F.7 of these instructions, below.)
- 3. Stripping is accomplished best with a modified soldering unit, equipped at its tip with a hot wire bridge, as shown in Figure 3-6, below. Knives or sharp instruments should be used sparingly, since small nicks in the strain wires diminish the effective strain support, once the strain wires have been potted.

Figure 3-6. Cable Stripping Unit

3-16

4. While stripping the polyethylene all around the cable to the level of the strain wires, leave a collar or circular ridge of polyethylene at the very end of the cable to prevent the strain wires from springing out and getting in the way. Once the polyethylene has been stripped to the level of the strain wires, remove the remaining collar and pull the strain wires out with a needle nose pliers. Using the pliers, carefully remove the remaining strips of polyethylene along the inner insulating sheath, taking care not to damage the inner sheath (see Figure 3-7, below).

3

ß

X

8

X

3

じょう

ŝ

Figure 3-7. Removing Polyethylene Strips From Inner Sheath

- 5. Measuring 3-11/16 in. (this allows 1/2 in. for later adjustments) down from the point where the outer sheath terminates, strip the inner polyethylene sheath away from the shield all the way to the end of the cable.
- 6. Measuring an additional 1-5/16 in. from where the inner sheath terminates, remove the shield and core dielectric away from the center conductor.
- 7. Final termination adjustments for exact lengths of various cable layers should be completed as seals are being assembled along the cable.

- D) Coiling and Potting the Cable Strain Wires
 - 1. Glue the two Torque Pin Sleeves (No. 10) into the two socket holes of the Cerrobend Cup (No. 11) with Epoxy glue. Allow to harden.

22

3

B

20

3

贸

ä

Thread the cable strain wires through the Nicopress Fittings 2. (No. 32) in the following manner, using two fittings for every two strain wires. Slip a fitting up on a strain wire to about 1/16 in. from the outer cable sheath. Slip a second fitting up the neighboring strain wire. Cut the ends of the two strain wires, leaving just enough to loop their ends into and through the neighboring fitting. Thus, a strain wire should pass through Fitting One and loop around into Fitting Two where it is swaged to the neighboring strain wire. The neighboring strain wire should loop back into Fitting One where it is swaged similarly (see Figure 3-8, below). If there is not room in the Cerrobend Cup (No. 11) to accommodate two fittings for every two strain wires. then double up, alternately using two and then three strain wires for every two fittings. Optimum distribution of cable strain is achieved by using as many fittings as possible.

Figure 3-8. Strain Wire and Nicopress Fitting Arrangement

- 3. Clean off the surface of the Inner Cable Sheath, making sure that nicks, bits of polyethylene and other irregularities are removed. This may be done either by lightly sanding or by heating up the Inner Sheath with the Heat Gun.
- 4. Set up the Double Boiler, place the Cerrobend Alloy (No. 9) into the beaker, and melt the Alloy using boiling water.

13

T.U

A.

民

83

5. Slide the Cerrobend Cup (No. 11) up the cable and then clamp the cable into vertical position with a vise arrangement. Place the Cerrobend Cup Mold around the Cup and tighten it (Note: The Cup Mold--see Figure 3-9--is constructed snugly. from aluminum to fit snugly around the Cup and prevent its expansion during the potting process.) Arrange the Nicopress Fittings in the Cup and then secure the Cup and Cup Mold in a vise, as accurately perpendicular to the cable as possible. This will require careful adjustment and precision. (Note: For a successful potting process, it is necessary that the cable pass perpendicularly through the true center of the cup. If it doesn't, once the cable and strain leads are potted, the steel Tension Washer (No. 8) of the upper assembly will not slide down over the cable into the upper housing. It will then be necessary to melt the Cerrobend back out of the Cup and begin the potting process over.)

Figure 3-9. Micarta Spacing Fork and Aluminum Cup Mold

6. Pour the Liquid Cerrobend into the Cup, making sure that the Fittings are covered and that the Cup remains perpendicular to the cable. Allow the Cerrobend to cool (see Figure 3-10).

Figure 3-10. Potted Strain Wires

E) Air Spaces. There are three air spaces in the assembly, two of 1/16-in. and one of 1/4-in. Their function is to accommodate the longitudinal expansion of the rubber packings which must be squeezed radially into their proper positions in the housing bore. The air space of the upper packing assembly above the Cerrobend Cup (No. 11) is guaranteed by the Retaining Ring (No. 7) which fits into its groove 1/16-in. above the Tension Washer (No. 8). However, the two air spaces of the lower assembly beneath the Cup must be temporarily secured with two Micarta Spacing Forks--one of 1/4-in. and another of 1/16-in. thickness (see Figure 3-9). The Spacing Forks are placed in the appropriate positions until the lower seal assembly is ready to be slid into the lower housing bore, at which time the Spacing Forks are removed. The 1/4-in. Spacing Fork is placed just beneath the Torque Wisher (No. 12) and the 1/16-in. Spacing Fork fits into position between Washers Nos. 17 and 18, as shown in Figure 3-5. (Note: The exact position of the air spaces is not important, as long as there is one for each cluster of seals between any two fixed or soldered components along the central housing assembly.)

F) Assembling the Lower Seals and Washers

(* 1242

Ž

8

Ć

80

88 8

5

Ň

333

- Once the Cerrobend has sclidified, remove the Cup and cable from their vises and slide the Torque Washer (12) up under the Cup. Place the 1/4-in. Micarta Spacer under the Cup. Lubricate the cable with DC-55 and then slide seals No. 13 (two), the Backup Washer (No. 14) and the Insulator Cup (No. 15) into place.
- Placing the Shield Pin (No. 16) into position beneath the Insulator Cup (No. 15), determine whether the insulating sheath of the cable has been terminated to its proper length, as shown in Figure 3-5. If not, slide the Shield Pin and Insulator Cup back off and strip the insulating sheath to its proper length.
- 3. Pre-tin the Shield Pin (No. 16), leaving a solder pool evenly distributed along the lower circumference where the shield strands or tape are to be soldered.
- 4. Reverse the cable and secure it in place with vises so that it is vertically aligned, with its stripped end uppermost. Slip the Shield Pin in place and secure it there with a vise. Comb the Shield strands out and flatten them in place above the solder pool.
- 5. Solder the shield strands to the Shield Pin. This should be done as quickly as possible to prevent damage to the polyethylene of the insulators over the central conductor and the shield strands. To diminish the effect of the hot Shield Pin, spray the Freon coolant over the area, immediately after the soldering has been completed. Be sure to restrain the entire arrangment until the cable insulation has cooled down. Trim the shield strands and excess solder with a knife.
- 6. Slide the two Teflon Washers and the Middle Seals--Nos. 17 (two) and 18 (two)--up over the central cable conductor and Shield Pin, and into place beneath the Shield Pin. Place the Micarta Spacer temporarily between the lower seal and backup washer, to secure the 1/16-in. air space.
- 7. Solder the Center Pin (No. 23) to the center cable conductor. The shoulder of the Center Pin is an anti-extrusion device, and should be situated at the end where the pin is soldered to the central conductor. Allow the solder joint to cool. (Note: Cables like the Condex and U.S. Steel types have center conductors of sufficient diameter to dispense with the Center Pin.)

3-21

8. Slide the various washers and seals--Nos. 19,20 (two), 21 and 22--over the Center Pin and Shield Pin and into place. The Inner Pressure Washer (No. 19) has a socket on its upstream side to accommodate the shoulder of the Center Pin. Remove the two temporary Micarta spacers of the lower seal assembly.

- G) Insertion of the Seal Assembly into the Housing
 - 1. Set up the Vacuum Pump with its bell fitting clamped in a vise, as shown in Figure 3-11.

Figure 3-11. Bell Fitting of Vacuum Pump

- 2. Clean the inner bore of the Cable Seal Housing (No. 2) with acetone and then liberally lubricate it with DC-55, using the foam padded stick to apply lubricant to the lower housing bore. (Note: It is essential that the entire inner bore of the housing be honed. A tool finish is not acceptable due to the extreme friction caused by the length of the assembly, much of which is an interference fit with the housing wall.
- 3. Slide the lower seal assembly partway down into the lower Housing. Activate the Vacuum Pump and then apply the downstream end of the Housing to the lip of the Bell Fitting. Push on the assembly as the seals are pulled down into the Housing to prevent the seals from being pulled off the Center Pin and Shield Pin. Align the pins of the Torque Washer (No. 12) with their sockets in the Housing wall by pressing and turning until the ary properly seated.

- 4. Making sure that both cable and Housing bore are well lubricated, slide the Spacer (No. 3) and the Tension Washer (No. 8) into place just above the Cerrobend Cup (No. 11) in the upper housing cavity. (Note: At this point, if the cable has not been properly centered in the Cerrobend potting process, the steel Tension Washer will be forced off center by the eccentric cable and will not slide down into the upper housing.)
- 5. Insert the Retaining Ring (No. 7) into the housing wall, and then slide seals and washers into place--Nos. 6, 5, and 4 (two). In order to get this upper series of seals to seat properly, it is necessary to relieve the air from beneath each seal as it is pushed down into place. This may be done with a small piece of plastic-coated hookup wire, cut carefully so that its inner conducting wires don't protrude. Place the wire along the housing wall and then push each seal into place. The air will bleed back out along the wire. Once the seals are in place, pull the wire out
- 6. The optional Delrin Spacer (No. 3) is used only when there is room left over in the housing cavity to fully accommodate it, once all the seals and washers have been installed. It is important not to attempt to apply end pressure to squeeze this spacer into place. If the Spacer protrudes over the edge of the housing when installed, slide it back up and cut it off with a shears.
 - 7. Slide the Main Nut (No. 24) and Collar (No. 31) into place over the outer surface of the Cable Seal Housing. Then screw the Cap and Fairlead (No. 1) into place, tightening them with a strap wrench.
- H) Termination with the Repeater Housing Assembly

80

 ${}$

N 12422223

3

1. After the Cable Seal has been assembled, the Center Pin and Shield Pin are soldered to their counterparts in the Repeater Assembly which is housed in the Electronics Housing (No. 29). This termination is sealed by using Shrink Tubing. If no electronics are required, the Electronics Housing is replaced with a short transition piece, the Junction Housing (No. 33), which couples the two seal assemblies to one another.

3.5 Design Specifications-Materials and Dimensions

The specifications in this section are for the three types of cable listed before in Section 3.2, namely, the Autec, Condex and U.S. Steel cables. All dimensions are in inches, unless otherwise specified. For each component here described those dimensions that vary according to the cable used are specified in a small table which accompanies the drawing. ί.

ST S

8

Recommended supply sources are not given for such standard materials as commercial Delrin or commercial brass.

<u>Caution</u>: The materials specified in this section have been selected to meet diverse criteria. Substitutions of materials are likely to diminish or destroy the effectiveness of the Seal Assembly. A) Materials.

and the second second

a service of the serv

(

R

5

X

Fairlead (1): PRC Moca-Free Potting and Molding Compound, PR1588, Amber or Black.

- : (Alternate Material) PRC Polyurethane Non-Moca-Free Potting and Molding Compound PR1547, Amber or Black.
- : Use Primer PRC No. PR420 with both of the above compounds.
- : Suggested source of supply: Products Research and Chemical Corporation, 2919 Empire Avenue, Burbank, California 91504.

Cap (2) : Carbon Steel AISI 1010-1020; Cadmium Plate.

B) Dimensions (in.). See Figure 3-12, below.

Dash No.	Dimension H. ± 0.005 Dia.	Cable
-1	0.370	Autec
-2	0.570	Condex
-3	0.656	U.S. Steel

Cable variations, Dimension H:

Dimension H is constant through both Cap and Fairlead.

C) Unless otherwise specified.

To turnees on: Fractions $\pm 1/32$ Angles $\pm 2^{\circ}$

Remove all burrs, break sharp edges: 0.015 Max.

Dimensions and surface roughness to be met after protective coating.

83 83

S N

5.5

i.

Ì

ЦХ ХХ

3-26

3.5.2 CABLE SEAL HOUSING: Part No. 2.

子 口

ŝ

L.

í L

> NS NS

> Ř

- A) Materials. Commercial Mild Steel; Cadmium Plate
- B) Special Instructions. Hone all surfaces marked 32 after plating.
- C) Dimensions (in.). See Figure 3-13, below.
- D) Unless otherwise specified.

Tolerances on: Fractions $\pm 1/32$ 0.XXX ± 0.010 Angles $\pm 2^{\circ}$

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max., 0.005 Min.

Dimensions and surface roughness to be met <u>after</u> protective coating.

Figure 3-13. Cable Seal Housing: 2

3.5.3 SPACER: Part No. 3-(X).

B

ľ.

8

X.

X

5

l. L

L

- A) Materials. Commercial Delrin.
- B) Dimensions (in.). See Figure 3-14, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.781	Autec
-2	0.890	Condex
- 3	1.000	U.S. Steel

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Surface finish: 125/ Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-14. Spacer: 3-(X)

3.5.4 SEAL WASHER: Part No. 4-(X).

A) Materials. Commercial Neoprene, 35 ± 5 Durometer.

B) Dimensions (in.). See Figure 3-15, below.

Dash No.	Dimension H ± 0.010 Dia.	Cable
-1	0.500	Autec
-2	0.625	Condex
-3	0.750	U.S. Steel

Cable variations, Dimension H:

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$

3.5.5 BACKUP WASHER: Part No. 5-(X).

SX SX

<u>y</u>

R.S.

N.

Ň

Ŋ

3

2

Ũ

- A) Materials. Commercial Neoprene, 70 ± 5 Durometer.
- B) Dimensions (in.). See Figure 3-16, below.

Dash No.	Dimension H ± 0.010 Dia.	Cable
-1	0.660	Autec
-2	0.780	Condex
-3	0.900	U.S. Steel

Cable variations, Dimension H:

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-16. Backup Washer: 5-(X)

3.5.6 THRUST WASHER: Part No. 6-(X).

l.

- A) Materials. Commercial Mild Steel; Cadmium Plate.
- B) Dimensions (in.). See Figure 3-17, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.781	Autec
-2	0.890	Condex
-3	1.000	U.S. Steel

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010

Surface finish: 125,

Remove all burrs, break sharp edges: 0.008 Max.

Dimensions and surface roughness to be met after protective coating.

Figure 3-17. Thrust Washer: 6-(X)

3.5.7 TENSION WASHER: Part No. 8-(X).

9

X

No.

巡

X I

X

500 B

- A) Materials. Commercial Mild Steel; Cadmium Plate.
- B) Dimensions (in.). See Figure 3-18, below.

Dash No.	Dimension 1 ± 0.005 Dia.	Cable
-1	0.781	Autec
-2	0.890	Condex
-3	1.000	U.S. Steel

Cable variations, Dimension H:

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$

Surface finish: 125/

Remove all burrs, break sharp edges: 0.008 Max.

Pimensions and surface roughness to be met after protective coating.

Figure 3-18. Tension Washer: 8-(X)

3.5.8 SLEEVE, TORQUE RESISTING PINS: Part No. 10.

A) Materials. Commercial Delrin.

- B) Special Instructions. After potting, trim sleeve flush to surface of potting material, if necessary.
- C) Dimensions (in.). See Figure 3-19, below.
- D) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$ Fractions $\pm 1/32$

Surface finish: 125'

Machined Fillets: 0.015 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-19. Sleeve, Torque Resisting Pins: 10

3.5.9 CUP: Part No. 11-(X).

623

学ら

X

の変

日子

X

议

Š

A) Materials. Commercial Delrin.

B) Dimensions (in.). See Figure 3-20, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia	Cable
-1	0.370	Autec
-2	0.590	Condex
-3	0.656	U.S. Steel

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$ Fractions $\pm 1/32$

Surface finish: 125/

Machined Fillets: 0.015 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

2

Figure 3-20. Cup: 11-(X)

3.5.11 INNER JACKET SEAL: Part No. 13-(X).

Ě

認認

図辺

а.

10

EX X

EX.

8

1

232

こののない とう とうしょう 88 A) Materials. Commercial Neoprene, 35 ± 5 Durometer.

B) Dimensions (in.). See Figure 3-22, below.

Cable variations, Dimension H:

	Dash No.	Dimension H ± 0.005 Dia.	Cable
ſ		0.340	Autec
	-2	0 515	Condex
	-3	0.315	U.S. Steel

C) Unless otherwise specified.

> Tolerances on: $0.XXX \pm 0.010$ Fractions $\pm 1/32$

Surface finish: 125

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-22. Inner Jacket Seal: 13-(X)

3.5.12 BACKUP WASHER: Part No. 14-(X).

4

- A) Materials. Commercial Teflon.
- B) Dimensions (in.). See Figure 3-23, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.370	Autec
-2	0.570	Condex
-3	0.656	U.S. Steel

N.

ģ

R

2

Ă

Ŋ

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

3.5.13 INSULATOR CUF: Part No. 15-(X).

Ċ

8

B

00

Ş

8

议

 \mathfrak{X}

where we have not an and

and a service of the service of the

- A) Materials. Commercial Delrin.
- B) Dimensions (in.). See Figure 3-24, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.375	Autec
-2	0.578	Condex
-3	0.656	U.S. Steel

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Fractions ± 1/32 Surface finish: 125 Machined Fillets: 0.015 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-24. Insulator Cup: 15-(X)

3.5.14 SHIELD PIN: Part No. 16-(X).

- A) Materials. Commercial Brass.
- B) Dimensions (in.). See Figure 3-25, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.261	Autec
-2	0.500	Condex
-3	0.562	U.S. Steel

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$ Angles $\pm 2^{\circ}$ Fractions $\pm 1/32$

Surface finish: 125/

Machined Fillets: 0.015 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

出い

Figure 3-25. Shield Pin: 16-(X)

3.5.15 MIDDLE BACKUP WASHER: Part No. 17-(X).

H

3

89

8

88

ŝ

883

5115

- A) Materials. Commercial Teflon.
- B) Dimensions (in.). See Figure 3-26, below.

Cable variations, Dimension H:

Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.185	Autec
-2	0.422	Condex
-3	0.469	U.S. Steel

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-26. Middle Backup Washer: 17-(X)

3.5.16 MIDDLE SEAL: Part No. 18-(X).

- A) Materials: Chlorinated Butyl, 35 ± 5 Durometer.
- B) Dimensions (in.). See Figure 3-27, below.

Cable variations, Dimension H:

the second s		
Dash No.	Dimension H ± 0.005 Dia.	Cable
-1	0.130	Autec
-2	0.370	Condex
-3	0.413	U.S. Steel

Ferry

222

10 See - 4

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$

3.5.17 INNER PRESSURE WASHER: Part No. 19.

Strates - States

12220

1.5

B

Ø

6 6 6

97

188

8

8

X

A) Materials. Commercial Teflon.

B) Dimensions (in.). See Figure 3-28, below.

C) Unless otherwise specified.

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-28. Inner Pressure Washer: 19

3.5.18 INNER SEAL: Part No. 20

A) Materials. Chlorinated Butyl, 35 ± 5 Durometer.

B) Dimensions (in.). See Figure 3-29, below.

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010

Figure 3-29. Inner Seal: 20

3.5.19 LOWER PRESSURE WASHER: Part No. 21-(1).

S

19. Yes

いきをなる ひろうち ふうちち

K

253

Ň

X

- A) Materials. Commercial Teflon.
- B) Dimensions (in.). See Figure 3-30, below.

Cable variations, Dimension T:

Dash No.	Dimension T ± 0.005 Dia.	Cable
-1	0.188	Autec
-2	0.250	Condex
-3	0.125	U.S. Steel

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-30. Lower Pressure Washer: 21-(1)

3:5.20 LOWER THRUST WASHER: Part No. 22

A) Materials. Epoxy Glass dema G10

B) Dimensions (in.). See Figure 3-31, balow.

C) Unless otherwise specified.

Tolerances on 0.XXX ± 0.010

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Ŋ

 $\left\{ \right\}$

M

2

Figure 3-31. Lower Thrust Washer: 22

3.5.21 CENTER PIN: Part No. 23.

Ϋ́.

25

5

2

R

i i i

8

555

- A) Materials. Commercial Brass, Nickel Plate per QQ-N-290, Class 2, Type V (0.0005 + 0.0002 - 0.0000 Thk)
- B) Special Instructions: Omit center pin on -2 (Condex) and -3 U.S.S. assemblies.
- C) Dimensions (in.). See Figure 3-32, below.
- D) Unless otherwise specified.

Tolerances on: 0.XX ± 0.03 0.XXX ± 0.010

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Figure 3-32. Center Pin: 23
3.5.22 MAIN NUT: Part No. 24.

A) Materials. Commercial Mild Steel; Cadmium Plate.

B) Dimensions (in.). See Figure 3-33, below.

C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Fractions ± 1/32

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max.

Dimensions and surface roughness to be met after protective coating.

Figure 3-33. Main Nut: 24

3.5.23 SPACER: Part No. 27.

e-1

03

8

8

83

M

8

 A) Materials. Commercial Nylon or Delrin.

B) Dimensions (in.). See Figure 3-34, below.

C) Unless otherwise specified.

Tolerances on: $0.XXX \pm 0.010$ Fractions $\pm 1/32$

Surface finish: 125/

Machined Fillets: 0.031 R ± Max.

Remove all burrs, break sharp edges: 0.031 Max.

3-49

NV-wi

3.5.24 ELECTRONICS HOUSING: Part No. 29.

A) Materials. Commercial Mild Steel; Cadmium Plate.

- B) Dimensions (in.). See Figure 3-35, below.
- C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Angles ± 2° Fractions ± 1/32

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max., 0.005 Min.

同國

N.

2

Ň

 \hat{S}

Dimensions and surface roughness to be met after protective coating.

Contraction of the second s

NNSNTATATANAN INI AT

27.57.57

37

15151515151515151515151515151515 X ን ኑ እ ኑ ጉ $\gamma \rightarrow \gamma \rightarrow \gamma \rightarrow \gamma$

3.5.25 KEYED SPACER: Part No. 30.

- A) Materials. Commercial Nylon or Delrin.
- B) Dimensions (in.). See Figure 3-36, below.
- C) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Fractions ± 1/32

Surface finish: 125/

Machined Fillets: 0.031 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

P

S) Ř

ß

Ŋ

囹

ß

Ň

NA NA

3.5.26 COLLAR: Part No. 31.

83

8

8

8

F

20 1

E

X

 $\frac{1}{2}$

 $\sum_{i=1}^{n}$

. J. . J.

L.

A) Materials. Commercial Delrin.

B) Dimensions (in.). See Figure 3-37, below.

C) Unless otherwise specified.

Tolerances on: Fractions $\pm 1/32$

Surface finish: 125/

Remove all burrs, break sharp edges: 0.031 Max.

3.5.27 JUNCTION HOUSING (OPTIONAL): Part No. 33.

- A) Materials. Commercial Mild Steel.
- B) The Junction Housing is used to connect two Cable Seal Assemblies without using Items 27, 28, 29 and 30.

E S

20 20 20

[

Ŋ

Ä

8

- C) Dimensions (in.). See Figure 3-38, below.
- D) Unless otherwise specified.

Tolerances on: 0.XXX ± 0.010 Angles ± 2° Fractions ± 1/32

Surface finish: 125/

Remove all burrs, break sharp edges: 0.015 Max., 0.005 Min.

Dimensions and surface roughness to be met after protective coating.

3-55

11 [] 20

3.5.28 PRESSURE CAP: Part No. 34.

A) Materials. Commercial Mild Steel; Cadmium Plate.

Ņ

B

ß

3

2

- B) The cap is used to protect the exposed end of the Electronics Housing (29).
- C) Dimensions (in.). See Figure 3-39, below.
- D) Unless otherwise specified.

```
Tolerances on: 0.XXX ± 0.010
Angles ± 2°
Fractions ± 1/32
```

Surface finish: 125/

Machined Fillets: 0.031 R ± Max.

Remove all burrs, break sharp edges: 0.015 Max.

Dimensions and surface roughness to be met after protective coating.

Figure 3-39, Pressure Cap:

Section 4

TABLE OF CONTENTS

Section	Title	Page
4.1	Introduction	4-1
4.1.1	Scope	4-3
4.2	Critical Design Factors	4-4
4.2.1	The Housing	4-6
4.2.2	Electrical Contacts	4-7
4.2.3	Electrical Insulation	4-8
4.2.4	Cable to Plug/Receptacle Seals and Mating Seals	4-8
4.2.5	Strength Member Termination and Strain Relief	4-9
4.3	Connector Classification	4-10
4.3.1	Molded Rubber Assemblies (RM)	4-10
4.3.2	Molded Plastic Assemblies (PM)	4-11
4.3.3	Metal Shell Assembl_es (MS)	4-12
4.3.4	Pressure-balanced Oil-filled Assemblies (PBOF)	4-14
4.3.5	Underwater Mateable Assemblies (UM)	4-14
4.4	Connector Matrices	4-15
4.4.1	Matrix Disclaimer	4-15
4,5	References	4-16

. . N S) Х Х N IJ

and the second

10

i.

į

i

Section 4

語事

EZZ

ß

K

LIST OF FIGURES AND TABLES

Figure	Title	Page
4-1	Underwater Electrical Connector Design Considerations	4-5
Table .	Title	Page

4-1 Connector Classes 4-10

and a second hourses with a second second

ii

Section 4

COMMERCIAL OFF-THE-SHELF UNDERWATER ELECTRICAL CONNECTORS-A CLASSIFICATION WITH DESCRIPTIVE MATRICES

4.1 Introduction

of the second second

and the second s

te. 1. Transferent Vistorian Versionis (secondar (secondar) and the field and

N

Approximately twenty companies are manufacturing commercial lines of off-the-shelf underwater electrical connectors today. In addition, these same companies, together with another ten or so special design organizations, do a substantial business in supplying underwater connectors to meet special requirements specified by various industrial and military customers. The underwater cable termination business is a multimillion dollar industry which is undergoing substantial development and moving toward an increasingly sophisticated and reliable technology.

1440

It remains a fact, however, that few underwater connector series have been in use for more than 1J years and that design standards vary from organization to organization, with the exception of manufacturers utilizing Military Specifications. And even Military Specifications, as a 1969 report (Reference 2) has demonstrated, are patchy and frequently inadequate for more demanding deep ocean applications: "Electrical distribution systems have always been one of the critical subsystems in deep submergence operations. Problems arise not only from material and test specifications, but even from a supporting theory necessary for accurate use of test data and procedures." The deficiency in a general design theory for underwater electrical connectors has been partially corrected by a 1971 study (Reference 1).

Development of high-reliability connectors may require contractual documentation of the batch materials used in each device in order to establish performance history. Component traceability and labeling need to be accepted industry procedures. Formal test documentation, including failure, materials and design analyses, should be specified whenever other than production contracts are involved. Not only is

such documentation needed for expeditious hardware development, but it is also necessary for vendor qualification, and vehicle or system certification.

The capabilities of manufacturers are growing, however. Increasing research and development and expanded quality-control procedures have brought manufacturers a growing and respectable clientele over the past five years, and there are significant advantages to be obtained in using a number of the off-the-shelf connectors now available. 10. 10.

The chief advantages the connector manufacturer offers the prospective buyer are in terms of time and cost. A wide variety of moderately priced commercial terminations is now available, and many manufacturers can begin delivery of terminated cable systems within 5-8 weeks. Additional advantages are to be had in the numerous design options now available, in the accruing special design experience of most manufacturers, and in the factory facilities that will often allow for such quality-control testing procedures as are specified by the buyer.

A number of new developments have also occurred in connector technology. The connector seminar at the 1976 Offshore Technology Conference aired, although not decisively, the bond vs boot and the factory vs field capability question. Generally, factory terminations and bonded seals offer increased reliability. However, field termination, utilizing booted cable to connector seals, offers such advantages in terms of flexibility that a well-designed field-installable connector is frequently to be preferred. A third basic option, as pointed out in a recent study (see Reference 3), is that of wet vs dry connector capability. Among other things, underwater mateability allows cable structures to be aligned better, with less slack; also the order of events can be altered significantly if connections can be made underwater.

Most connector manufacturers exhibiting at the 1976 Offshore Technology Conference displayed new hardware which included upgraded standard designs and a variety of new connectors. Underwater mateability, once a rare capability--with the exception of the standard

sliding rubber seal design of Electro Oceanics. Inc.--has become more available with a new generation of connectors developed at the Naval Civil Engineering Laboratory (NCEL) at Port Hueneme, California, and a range of new underwater mateables developed by Viking, Rochester/ Brantner, and Glenaire, Inc. Electro Oceanics, Inc., has added a number of new lines to its "Watermate" series and Pelcon, Inc., has developed a new line of inductive couplers of reduced bulk and greater variety. Vector Cable has done considerable research and development on a new co-polymer bonding technique and is now offering connectors that feature ethylene/propylene co-polymer bonds to elastomers and polyurethane. D.G. O'Brien has a new series of fluid-filled electrical cable assemblies and connectors, with breakouts and adaptors, and Rochester/Brantner has expanded its standard line of pressure-balanced oil-filled connectors. ITT Cable-Hydrospace has been conducting research in fiber optics and is now offering, in addition to its standard line of connectors, fiber-optic cables, and terminations for single fibers and fiber bundles.

4.1.1 SCOPE

いたいである。

a service and the service of the ser

). |}

. D

3

8

X

A.

8

N

The object of this section is to present a representative listing of off-the-shelf underwater connectors available on the commercial market in order to assist the ocean engineer in identifying and selecting connectors for particular underwater applications. It includes (1) a consideration of some basic factors in connector design, drawn from references noted in the bibliography; (2) a brief discussion of connector classification; and (3) a standard product matrix form which classifies and describes common connector series that are available. The Master Catalogue which accompanies this manual should be consulted for additional manufacturer source information.

The matrices given in Section 4.4 represent only a portion of a given manufacturer's available connectors, since most manufacturers do 50-80% of their business in connectors of special design. Each matrix describes what is, in effect, a connector family, and represents a number of possible variations on the basic design. Information listed in the matrices has been supplied by the manufacturers and should not be considered in any manner the result of an independent performance or specification investigation by the Applied Physics Laboratory. The primary object of the matrices is to identify the kinds of underwater electrical connectors that are available as off-the-shelf items, and to assist the prospective buyer in determining what his options are in terms of materials and design. 23

3

8

4.2 Critical Design Factors

Most connectors feature a number of basic components in common. These include (1) a housing, (2) electrical contacts, (3) electrical insulation, (4) termination and mating seals, and (5) strength member termination and strain relief. The specific designs of these components are varied and often considered proprietary, with the result that there are several thousand specific commercial connector models available. Recent materials studies and increased production experience have increased connector capabilities. Many connector models on the market have a good durability and pressure range and, when properly installed and maintained, can feasibly tolerate pressures up to 10,000 psi for a period of 10 years or more. However, as with all commercially supplied equipment, it remains advisable for the prospective buyer to familiarize himself with the specific design and materials of the connector he is considering and to form an independent judgment as to whether the connector will measure up to his specific requirements. Until such time as manufacturers establish and implement an industry standard of quality control, the buyer may need to take measures to protect quality in submarine connectors.

Basic design considerations are listed below and shown in Figure 4-1 (see also Reference 2).

1. Connector Types and Sizes

2. Plug Design

3. Receptacle Design

4. Pin and Socket Contact Design and Configuration

5. Fastening--Plug to Receptacle

6. Sealing--Plug to Receptacle

7. Connection--Conductor to socket Contact

8. Insulation and Seal--Pin Contact

9. Insulation and Seal--Socket Contact

10. Seal--Cable to Plug

11. Electrical Requirements

12. Cable Strain Relief

13. Material Selection

14. Corrosion Properties

15. Fabricability

16. Safety

8

段公

N. N

20

8

3

4

. 1

17. Strength

18. Stiffness

19. Thermal Properties

20. Cost

Given a sound overall design, the importance of a single design factor may vary according to the requirements of the specific application that is under consideration. In general, long-term applications, high-stress applications, research applications and different electrical requirements not only dictate different connector designs, but also influence the choice of materials and the specifications for such factors as strength and thermal requirements. Generally, selection of a connector represents balancing desired characteristics and properties against inherent limitations in materials, design or performance.

4.2.1 THE HOUSING

Selection of housing materials (plug and receptacle) and coupling ring materials is one of the most important design considerations to be made. Commercial connector housings are generally available in a range of materials including rubber, plastics, special epoxies, stainless steel, titanium, brass and aluminum. Design considerations for the housing include the coupling arrangements between plug and receptacle and the mounting arrangements for bulkhead connectors. A coupling ring, often optional, is desirable since it provides additional strength; it should also facilitate mating and unmating. It is desirable that the receptacle be designed

M

R

E H

 $\tilde{\lambda}$

83

2

Ŋ

Figure 4-1. Underwater Electrical Connector Design Considerations.

so that the plug shell is not capable of striking the pin contacts when inserted off-axis. Polarization is another design consideration and may be important in preventing damage to the contacts and in providing phaseto-phase contact consistency. Additional considerations for housing design are its bondability to boot or potting, and provision for suitable strength termination shoulders for cable-to-connector termination, which generally represents the critical strength area of a system. The diametral requirements for connectors are generally dependent upon the size of the electrical contacts and the thickness of the housing, which is determined by the hydrostatic pressure requirements. The housing thickness also has the greatest effect upon connector weight. The housing material will need to meet corrosion, durability, strength, weight and cost requirements to the buyer's satisfaction.

4.2.2 ELECTRICAL CONTACTS

8

3

R

11 (.

Ŋ

E.

33

1

3

Electrical contact size and number are the most significant factors in determining overall connector size. Generally, contacts are also the significantly limiting factor in selecting off-the-shelf connectors due to the necessary standardization of contact numbers and sizes for a given connector series. While most manufacturers offer several options for contact numbers and sizes within a given connector series, these are often not acceptable to the buyer, who must then either make a special order, or modify his own size and number requirements. Available contact sizes generally range from #24 to #0000, and the number of contacts will range from one to 100+. They are available in several metals and alloys, usually gold or silver plated. Current ratings run from a few milliamperes to signals up to 200 amperes per phase. Maximum operating voltages are in the neighborhood of 1000 VAC. Most manufacturers also offer connector designs utilizing interchangable contact inserts which seal to the housings and provide a positive waterblock. Contacts are also critical factors for high-current applications because of heating, for signal applications because of noise, and for high-voltage applications because of the need for long tracking paths on the adjacent insulation. Contact configuration and materials should provide inherent resistance to electrolytic corrosion resulting

from stray leakage current, since very slight differences in potential can erode metal sections in a very short period of time. At the rear of the plug and receptacle, the contacts should be embedded in a material of high bulk modulus and high compressive strength in order to provide support for contacts and conductors when they are subjected to high hydrostatic pressure loading. The transition from the pins and sockets of the contacts to the conductor is a critical design area and requires support to prevent kinking and possible fracture. Actual termination of contact to conductor is accomplished with sockets, crimping pots and solder pots. M

Ø

N.

3

3

M

ß

Ŋ

B

88

4.2.3 ELECTRICAL INSULATION

1.1.23

Electrical insulation in underwater connectors normally serves not only as a dielectric, but also as a support against hydrostatic pressure that may be transmitted through the cable and plug assembly, and as a seal in the event of cable or connector damage. It should thus combine good dielectrical, strength and water-resisting properties. In most commercial molded systems, insulation is either neoprene rubber or glass-filled epoxy, while high-pressure systems may use fused glass and ceramics. A highly reliable system is also found in the pressure balanced systems utilizing a liquid dielectric which usually has good thermal properties, minimal compressibility, resistance to high-voltage tracking effects, and long-term durability. One of the most effective, and costly, combination insulation/seals is the hermetic seal, utilizing compression glass sealing for the contacts (MIL-C-22539, MIL-C-22249, MIL-C-24217 connector specifications).

4.2.4 CABLE TO PLUG/RECEPTACLE SEALS AND MATING SEALS

Boot seals for cable to plug/receptacle terminations are widely used in the connector industry, including bonded boots, compression molded boots and boots utilizing an automatic interference fit seal. Although jam grommets and O-ring gaskets are usually used in combination with boots, they are sometimes used alone to seal the cable-to-connector area. Boots provide additional cable strain relief and, when bonded

to the cable and plug body, provide one of the most reliable termination seals available. Potting and molding with urethane compounds is a frequent technique, and bonds of neoprene to stainless steel are also available. Additional techniques include polyethylene injection-molded cable seals to polyethylene-jacketed cable. Bonding techniques are undergoing substantial development in the connector industry at present with at least one manufacturer now offering ethylene or propylene copolymer bonding to elastomers and polyurethane.

Generally, the O-ring is a standard application for sealing the plug to the receptacle and the receptacle to the bulkhead for hull penetration. Redundant O-rings are available for some commercial connector series and are often sought for increased connector reliability.

4.2.5 STRENGTH MEMBER TERMINATION AND STRAIN RELIEF

Ň

28

8

N

 $\hat{\Sigma}$

保護

R

Ŕ

° I

The cable-to-connector area is one of the most critical areas in connector design. This termination area generally represents the weakest strength area of the cable system and it is necessary to carefully consider and specify general termination strength requirements when ordering commercial connectors. Termination strength is generally determined both by the tensile strength of connector materials and by the termination design at the rear of both plug and receptacle. Kubber molded connectors provide the least strength while metal connectors generally provide the greatest. Elaborate termination designs may be found in a number of the more complicated and reliable connector systems. However, even the glass-filled epoxy connectors may be expected to provide terminations that will resist 2,000 pounds of pull. Strength termination has numerous design possibilities, generally utilizing termination shoulders, flared-armour and cone, or a swagged ball for center strength members.

Cyclic hydrostatic pressure loading may result in Z kinking and fracture of conductors inside the plug shell area. Epoxy compounds provide good structural support for conductors, and cable strain relief may be accomplished with a number of devices, including grommets, compression molding, clamps, preformed grips and Kellam's grips.

4.3 Connector Classification

Connector classification raises certain problems due to the variety of critical factors in underwater connector design, any single one of which might conceivably be used as the basis for a classification system. Manufacturers use a range of criteria in organizing their connector catalogues, some of them arranging according to Mil-Spec criteria, others classifying according to materials, sizes or electrical characteristics. Ŋ

ŝ

M

N

2

5

Ŋ

N N

3

N

Generally, the shell or molding material appears to be the most widely accepted and helpful method of classification, since a knowledge of the materials gives a good indication of corrosion, strength, cost, installation and sealing factors for a given connector.

The classification adopted for this manual section is listed in Table 4-1. Note that the last three classes are not according to materials but represent designs of sufficient uniqueness to warrant a special classification.

Table 4-1. Connector Classes

1.	Molded Rubber AssembliesRM
2.	Molded Plastic AssembliesPM
3.	Metal Shell AssembliesMS
4.	Pressure-Balanced, Oil-filled AssembliesPBOF
5.	Underwater MateablesUM
6.	MiscellaneousMisc.

4.3.1 MOLDED RUBBER ASSEMBLIES (RM)

The molded rubber connector is essentially a cable length with its conductors terminated with male or female contacts. The entire length is molded or cast to the cable jacket. The molded area provides a sealing interface between plug and receptacle, and also provides for strain transition between contact area and cable. Polarization is normally accomplished by contact pattern, polarizing pins or

varying contact diameters. When polarizing pins are not used, the RM connector is vulnerable to electrical mismating and contact damage. Generally, RM connectors are available only in simple contact arrangements.

In fabricating the RM connector, neoprene is most often used for pressure molding and polyurethane for cast molding. Inability to properly control movement of the conductor during the pressure molding process can lead to broken circuits and electrical shorts that occur after the connector is situated in the operating environment. This may seriously affect reliability.

The RM connector, not having a rigid internal or external structure, does not provide for positive and controlled compression of interfacial seals. Most RM coupling and mounting devices are marginal because the material is subject to compression set. Low temperatures also affect the sealing mechanism due to loss of elasticity, and most RM designs have little or no protection for pin contacts.

Significant advantages are found, however, in the RM connector's low cost, light weight, resistance to abuse and in the simplicity of its sealing design. No significant corrosion problem exists. The dielectric qualities of elastomers preclude their contributing to galvanic corrosion of adjacent areas. Also, insulation is an integral function of the RM design. Material resilience provides for a void-free interface between the mated plug and receptacle.

4.3.2 MOLDED PLASTIC ASSEMBLIES (PM)

X

Ø

Ŋ

5

K

The PM connector comes in resin or epoxy materials, most of which are reinforced with glass and various fibers. They are relatively inexpensive and ideally suited to production in quantity. They incorporate a number of advantages of the RM connector, including a simple design that requires no internal seals, and an integral structural and dielectric material that is not affected by salt water corrosion and will not form a galvanic couple to damage adjacent metal parts. Their greatly increased strength provide an advantage over RM connectors; however, they are more brittle.

Plastics have several deficiencies as a connector fabricating material. Some thermosetting or thermoplastic materials do not appear to combine desirable electrical properties with all the required physical and mechanical properties necessary for use a deep submergence connectors. Desirable mechanical and physical properties include a high degree of dimensional stability, high impact strength, low mold shrinkage, low water absorption, high-compressive strength and nonflammability. Fabrication requirements further limit material choice. These requirements include good moldability at reasonable temperatures and pressures when using any necessary reinforcing fiber.

Some of the more common defects found in PM connector parts include the following: Cracks at points of high stress which are generated in the molding process and proliferate with use; threads that fail under load or are damaged by impact; failure in areas that are rich in mold resin and lack the necessary fiber content; seal surfaces that do not present the required finish due to excessive flash or porosity. PM connectors exposed to higher levels of pressure cycling have shown evidence of minute fiber displacement followed by fatigue and eventual structural failure. In addition, the effectiveness of the cable-to-connector seal may be limited by bondability and by cable temperature restrictions.

4.3.3 METAL SHELL ASSEMBLIES (MS)

Metal shell construction provides substantial rigidity and is generally considered to be the most reliable of underwater designs. However, it is of a more complex design, and is heavier and more costly. Reliability and resistance to handling and environmental damage may more than compensate for its disadvantages. Added initial cost may become insignificant when compared to overall system cost, given the critical role the connector plays in the system. Connector failures not only may render entire systems inoperable, but they may cause extensive damage to equipment, as well. 23

E B

The metal plug shell provides a rigid and adequate bonding surface for the cable seal and thus provides adequate cable strain relief at this point. The rigid construction makes possible a greater degree of wire position control in molding a cable to the plug, and therefore much less chance of electrical shorts or open circuits due to uncontrolled migration of conductors during the cable end sealing process. The metal shell provides a positive stop for controlled gasket squeeze in seal areas between plug and receptacle and between receptacle and mounting surface. Metal has the necessary strength and dimensional stability to provide reliable threaded parts. A metal receptacle shell provides the necessary support for a positive and reliable pressure barrier in case of accidental exposure to sea pressure. Metal construction provides for a more reliable mounting of bulkhead types and an additional mounting method--a seal weld. An individual insulator in combination with snap-in socket contacts provides good contact positioning with adequate flotation for proper mating alignment. Metal bodies are best adapted for a positive keying arrangement to polarize plug with receptacle. Where both plug and receptacle shell are of a nonresilient material, a more reliable coupling can be accomplished. Elastomer compression set and material flow with resulting loosening is not a problem.

X

8

Ŋ

Disadvantages of the metal-type connector include the need for additional individual contact seals which are inherent in the integrally molded rubber-type connector. Sealing surfaces are subject to damage causing possible seal failure. Metal parts are subject to varying degrees of corrosion depending on material choice and environment. This condition can be compounded by other interfacing metals and/or stray electrical currents.

Insulating components must be provided for electrical isolation of the conductors. Means of securing and sealing these parts must also be provided. Applications that require the metal connector to be subjected to a considerable degree of pressure cycling call for special attention to the manner of wiring and how the conductors are supported

in the back end of the plug between the cable end seal and conductor termination. Otherwise, fatigue failure of the conductor can occur. Where nonresilient parts interface at plug and receptacle, a minimum volume void is always present because necessary dimensional tolerances preclude interfacial contact at this point. This void can cause some electrical degradation due to condensation of moisture in the contact area. This degradation can be significant depending on application and environmental temperature and humidity ranges. Contact insulation composed of compression glass seals must be adequately protected from welding temperatures when components are fastened or sealed by this method. 8

к, Ф

S.

R

2

必

8

4.3.4 PRESSURE-BALANCED OIL-FILLED ASSEMBLIES (PBOF)

The PBOF connector, utilizing a metal shell and a liquid dielectric, is another highly reliable but costly connector. It is similar in many ways to the MS connector, but eliminates the need for potting, and the liquid filling provides void-free support against high pressure. Generally it is easier to assemble in the field since no potting is required. When assembled, the connector interface O-ring seal functions primarily to restrict oil leakage, since pressures inside and outside the connector are balanced. If the cable jacket is cut after application, the system continues to operate for a considerable period of time until the oil is forced out.

4.3.5 UNDERWATER MATEABLE ASSEMBLIES (UM)

Commercial UM connectors may be fabricated from any of the previously listed materials; they come in a variety of shapes, sizes and price ranges. Although some of them have been available on the commercial market for more than 10 years, they continue to undergo substantial research and development. Included in this class of connectors are the inductive couplers which are essentially transformers.

4.4 Connector Matrices

X

S

8

2

Ţ.

The matrix form used in this section is designed to furnish a quick comparative guide to commercial connectors of various classes by summarizing 35 design items for each of the connector series treated. Not every connector on the market is treated, since such an undertaking would result in a multi-volume work; however, the basic and significant connector families that manufacturers wish to identify as their stan-___ dard products are represented with as much information as could be assembled about them. These matrices should furnish the prospective buyer with comparative profiles of similar products. After studying the matrices, the next step would be to consult the section of the Master Catalogue listed in the lower right-hand corner of each matrix for additional diagrams, dimensions and source information. Additional manufacturer information, including a listing of company addresses and phone numbers, as well as a summary of product users being undertaken by each company, is given in Section 5 of this manual. To facilitate updating, the matrices are not numbered.

4.4.1 MATRIX DISCLAIMER

The information contained in the list of matrices which follows has been supplied by product manufacturers as the result of a mail survey conducted during the first half of 1976. The Applied Physics Laboratory has neither validated nor investigated the claims of manufacturers, other than to check the information supplied in the questionnaires against the information contained in a given company's catalogue. Inclusion of a product in the matrices in no way constitutes a recommendation for its use by APL. Any ommissions of manufacturers or their products are due either to an inability to identify and locate them, or an inability to acquire the necessary information.

4.5 References

- Haworth, J., et al. <u>Handbook of Vehicle Electrical Penetrators</u>, <u>Connectors</u>, and <u>Harresses for Deep Ocean Applications</u>, NTIS No. <u>AD-888-281</u>, July 1971.
- Thomas, J.F., "A Study of Cable, Connector, and Penetrator Specifications," Naval Ship Research and Development Laboratory, Annapolis, Maryland, ATD-14, 1969.
- 3. Wilson, Jeffrey V., "General Technology Review of Electrical/ Electromechanical Cable Connections in Ocean Systems," Naval Civil Engineering Laboratory, Port Hueneme, California, L43/JVN/1h, 1973.

N.

S

8

8

8

and a second second

STANDARD MATERIALS		
Shell	Molded Neoprene	
Boot/Jacket		
Contacts & Plating	Brass	
Insulator	Neoprene	
Coupling Ring/Nut	<u> </u>	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		Visual
Maximum Diameter*	.812" to 1.38"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)	Crimp	
Size Range	16, 12	Between Contacts & Wire:
Number Range	2-8	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Peripheral Seal	
Cable to Plug	Boot	
Contact Seal		
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage	600 volts	
Withstanding Voltage	1000 V ac	
Contact Resistance		
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER:
Vibration		burton Electrical Engineering
Physical Shock		SERIES:
Corrosion		5000: Multi-contact
*		

E

5000

No.

N.

j.

C)

CONNECTOR CLASSIFICATION

RM

Shell	Neoprene or S.S.	· · · · · · · · · · · · · · · · · · ·
Buot/Jacket		
Contacts & Plating	Brass, Bronze - Guld r	plating, MIL-G-45204, Type-2, Class,
Insulator	Electrical rubber and	glass enory
Coupling Ping/Nut		Eruss choxy
ONNECTOR SIZE	*	POLARIZING METHOD
Max. Length (Assembled)	3-11/16" to 5-5/8"	Pins: external visuals to: nro
Maximum Diameter*	3/16" to 1-1/16"	cross-mating
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder; crimp	Between Cable & Assembly:
Size Range	20, 16, 14, 10, 8, 6, 4, 6	
Number Range	1-12	Between Contacts & Wire:
EALING DESIGNS		Loops
Plug to Recontacle	Holded O-rings	SPECIAL DESIGN FEATURES
Cable to Plug	Bonded	Locking Sleeve
Contact Seal	Bonded	
Receptucle to Bulkhead	O-ring	
LECTRICAL CHARACTERISTICS		
Max. Current Capacity	7 to 200 amps	SPECIAL OPTIONS
Working Voltage	300-600 V dc	Single pigtails; right angle;
Withstanding Voltage	Various	dummies
Contact Resistance	Various	
VIRONMENTAL CHARACTERIST		•
Hydrostatic Pressure		l
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	0-20,000'	
Unmated		
Temperature Range	-20°F to 200°F	1
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$16.00 to \$60.00
Expected Life	1-10 yr	MANUFACTURER:
Vibration		Brantner/Rochester
Physical Shock		SERIES:
Corrosion		V/M BM+

i N

880

535 1

Ŕ

8¥

r		
	RM	

Shell	Molded Neoprene	× ·	
Boot/Jacket	Neoprene		
Contacts & Plating	Copper Alloy - Gold		
Insulator	Neoprene		
Coupling Ring/Nut	Locking Delrin Sleeves		
ONNECTOR SIZE		POLARIZING METHOD	
Max. Length (Assembled)	6"		
Maximum Diameter*	1-3/8"	Pins	
ONTACTS		STRATN RELIEF METHODS	
Termination (Cable to Contact)	Crimp	Between Cable & Assembly: Molded Neoprene taper joint	
Size Range	16, 12, 8, 4, 0		
Number Range	1-8	between contacts & Wire:	
EALING DESIGNS			
Plug to Receptacle	0-ring or inertia seal	SPECIAL DESIGN FEATURES	
Cable to Plug	Vulcanized neoprene	Locking sleeve; fine stranded	
Contact Seal	Neoprene molding	conductor with Terlon insulatio	
Receptacle to Bulkhead	O-ring		
LECTRICAL CHARACTERISTIC			
Max. Current Capacity	6 to 200 amps	SPECIAL OPTIONS	
Working Voltage	300 V ac	Materials options: buna,	
Withstanding Voltage	600 V dc	molding compounds: also brass.	
Contact Resistance	50 milliohms	stainless and aluminum	
VVIRONMENTAL CHARACTERIS	STICS	locking sleeves	
Hydrostatic Pressure			
Range:		RECOMMENDED ZONES OF APPLICATION	
Mated	10,000 psi	Electrical power and/or strong	
Unmated	2,500 psi	signal transmission	
Temperature Range	-40 ⁰ F to 250 ⁰ F		
Durability:		APPROXIMATE PRICE RANGE	
Number of Cycles	250	\$20.00 to \$30.00	
Expected Life	5 yr	MANIFACTIRER	
Vibration		Glenair. Inc.	
Physical Shock		SERIES:	
Corrosion		GL20-in-line	

Ę.

80 -

 $\mathbb{S}_{\mathbb{S}}$

R

3

CONNECTOR CLASSIFICATION

RM

Shell		
Boot/Jacket	Neoprene Molding Compound; Glass Epoxy	
Contacts & Plating	Brass - Silver	
Insulator	Kintec, Inc. K-500	
Coupling Ring/Nut	Locking Sleeve in Nylor	n, S.S., Bras
ONNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)	1-1/2" to 3-1/2"	Pins; keys; visual keys
Maximum Diameter*	.38" to 1.58"	
ONTACTS	<u> </u>	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 14, 10, 8, 6, 0, 00	Haru Encapsulation Batwaen Contacto & Wimon
Number Range	1 to 8	Hard Encapsulation
EALING DESIGNS		SDECTAL DECICI DEATURE
Plug to Receptacle	Redundant O-rings	SPECIAL DESIGN PEATURES
Cable to Plug	Neopre., Plyuret.Mold	Locking sleeves; removable
Contact Seal	Molding	contact inserts; right angle
Receptacle to Bulkhead	0-ring	plugs.
LECTRICAL CHARACTERISTIC	S /	
Max. Current Capacity	0 to 600 amps	SPECIAL OPTIONS
Working Voltage	to 15,000 V	Receptacle available in glass
Withstanding Voltage	2 x wkg. v1tg. + 1000	epoxy; field-installable
Contact Resistance	.5 to .25 milliohms	field-moldable assemblies: larg
NVIRONMENTAL CHARACTERIS	TICS	0-ring; multi-wire termination;
Hydrostatic Pressure		nigh voltage designs.
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	Down-hole logging, deep ocean
Unmated	10,000 psi	applications.
Temperature Range	to 400 [°] F	L
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$50.00 to \$200.00
Expected Life	to 20 yr	MANUFACTURER :
Vibration	as required	Kintec, Inc.
Physical Shock	as required	SERIES:
Corrosion	as required	HS: HS1, HS2, HS4, HS6

<u>ار</u> ،

S.

8

014) 3 - 1 7 k

8

<u>У</u>

Ľ

N N

Ł

ß

Y

RM

Shell	(P) Molded Elastomer; (R) Elastomer, S.S. or Brass	
Boot/Jacket	Molded Neoprene	
Contacts & Plating	Brass - Gold	
Insulator	Electrical Grade Elas	tomers
Coupling Ring/Nut	Plastic, Brass, S.S.	
ONNECTOR SIZE	· · · · · · · · · · · · · · · · · · ·	POLARIZING METHOD
Max. Length (Assembled)		
Maximum Diameter*		Pins; Keys
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Molded taper
Size Range	20, 16, 12, 8, 4, 0	Between Contacts & Wire
Number Range	1-8	Molding
ALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	CILCURE DESIGN FERIORES
Cable to Plug	Molded	Locking sleeve
Contact Seal	Integrally molded	
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTIC	s	
Max. Current Capacity	5 to 200 amps	SPECIAL OPTIONS
Working Voltage	600 V	Coax available; various contact arrangements on special order.
Withstanding Voltage	1000 V	right angle; pigtails
Contact Resistance	various	
VIRONMENTAL CHARACTERIS	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated		
Temperature Range	-20 [°] F to 200 [°] F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		Variable - relatively inernensiy
Expected Life		MANIFACTIDEE .
Vibration		Vector Cable Co
Physical Shock		SERIES:
Corrosion		RM

8

2331

i i i

STANDARD MATERIALS

Contacts & Plating

Coupling Ring/Nut

Maximum Diameter*

Max. Length (Assembled)

Termination (Cable to

Boot/Jacket

Insulator

CONNECTOR SIZE

CONTACTS (

Contact)

Size Range

Number Range

SEALING DESIGNS/

Cable to Plug

Contact Seal

Plug to Receptacle

Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS

Max. Current Capacity

Withstanding Voltage

Hydrostatic Pressure

Range:

Mated

Unmated

Durability:

Vibration

Corrosion

Temperature Range

Expected Life

Physical Shock

Number of Cycles

ENVIRONMENTAL CHARACTERISTICS

Contact Resistance

Working Voltage

She11

Delrin

Copper Alloy - Silver
Delrin
Delrin

6-1/8"

1-5/8"

Solder

1-7

0-ring

Delrin 0-ring

Grommet Seals

7 to 15 amps

300 V dc

1000 V dc various

2500 psi

 $0^{\circ}F$ to $150^{\circ}F$

16, 10, 14

POLARIZING METHOD

Pins; Keys

STRAIN RELIEF METHODS

Between Cable & Assembly:

Between Contacts & Wire: Slack

SPECIAL DESIGN FEATURES

Field Installable; removable contact inserts

SPECIAL OPTIONS

RECOMMENDED ZONES OF APPLICATION

APPROXIMATE PRICE RANGE

\$30.00 to \$40.00

MANUFACTURER :

Brantner/Rochester

SERIES:

Hydrocon

Including Hex Nut or Coupling Ring

CATALOGUE iv PAGE

and and the second second

Ë

SI

N.S.

8

5

S.

3

Ň

Ŋ

Ϋ́,

STANDARD MATERIALS	·····	
Shell	Glass Epoxy	
Boot/Jacket	Neoprene or Polyure	thane
Contacts & Plating	Brass or Bronze	
Insulator	Glass Epoxy	
Coupling Ring/Nut	Nylon or S.S.	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	3-1/2" to 11-1/2"	Pins; Keys
Maximum Diameter*	.93" to 2.2"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 14, 10, 8, 6	Between Contacts & Wire.
Number Range	1-24	Loops and Epoxy
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Bonded Neoprene or	Shielding device on XSJ only
Contact Seal	Bonded Epoxy/Glass	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	3 to 45 amps	SPECIAL OPTIONS
Working Voltage	300-600 V dc	Right angles; single pigtails;
Withstanding Voltage	Various	field-installable; pressure-
Contact Resistance	Various	balanced oil-filled.
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure		
Mated	0 - 20 0001	RECOMPLIDED ZONES OF AFFEICATION
linmated	13.500!(BCR on 1x)	
Temperature Range	$-20^{\circ}F$ to $200^{\circ}F$	
Durability:		APPROXIMATE PRICE PANCE
Number of Cycles		\$55.00 to \$220.00
Expected Life	1-10 yr	\$33.00 10 \$220.00
Vibration	*	MANUFACTURER:
Physical Shock		Brantner/ Kocnester
Corrosion		SERTES: VS, XS: XSJ, XSL, XSM
)	· ·

^{*}Including Hex Nut or Coupling Ring

CATALOGUE PAGE

ß

N.

<u>N</u>

1. 1. 1.1

日

<u>%</u>

a

2211122

STANDARD MATERIALS	T	
Shell	Glass Epoxy	
Boot/Jacket	Molded Neoprene	
Contacts & Plating	Copper Alloy - Gold	
Insulator	Glass Epoxy	
Coupling Ring/Nut	Delrin, Jam Nut: S.S.	
CONNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)	3-1/4"	
Maximum Diameter*	1-1/2"	Key
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	16	Between Contacts & Wire
Number Range	6 and 8	between concacts q wife.
SEALING DESIGNS	······	SDECTAL DESIGN FEATURES
Plug to Receptacle	2 O-rings	SPECIAL DESIGN PERIORES
Cable to Plug	Molded Neoprene	Gold plated contacts with integral solder pots
Contact Seal	Glass Epoxy	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	5,	
Max. Current Capacity	6 to 7.5 amps	SPECIAL OPTIONS
Working Voltage	600 V dc	-
Withstanding Voltage	1000 V dc	
Contact Resistance	50 milliohms	
ENVIRONMENTAL CHARACTERIS		
Hydrostatic Pressure Range:	\top	RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	10,000 psi	
Temperature Range	-67°F to 350°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	250	\$50.00
Expected Life	10 yr	
Vibration		Glenair. Inc
Physical Shock		SEDIES.
Corrosion	· ·	GL30L - Bulkhead

*Including Hex Nut or Coupling Ring

CATALOGUE PAGE

۷

РМ
ίΩ.

CONNECTOR CLASSIFICATION

PM

She11	Glass Epoxy	
Boot/Jacket		
Contacts & Plating	Copper Alloy - Gold	
Insulator	Glass Epoxy	
Coupling Ring/Nut	Jam Nut: S.S.	
CONNECTOR SIZE	<u> </u>	POLARIZING METHOD
Max. Length (Assembled)	1-3/4"	Pins
Maximum Diameter*	2"	
CONTACTS	·····	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	16, 12, 8, 4, 0	Between Contacts & Wire:
Number Range	1-8	
EALING DESIGNS	·····	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring or inertia	
Cable to Plug		Large 0-ring wall
Contact Seal	Glass epoxy	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·	
Max. Current Capacity	6 to 200 amps	SPECIAL OPTIONS
Working Voltage	300 V ac	Shell material may be stainle
Withstanding Voltage	1000 V dc	molded-in neoprene insert
Contact Resistance	50 milliohms	•
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	10,000 psi	
Temperature Range	-67°F to 350°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	\$25.00 to \$40.00
Expected Life	10 yr	MANUFACTURER :
Vibration		Glenair, Inc.
Physical Shock		SER IES:
Corrosion		GL30-Bulkhead

CONNECTOR CLASSIFICATION

РМ

-

She11	Glass Epoxy	
Boot/Jacket	Vulcanized Neoprene	
Contacts & Plating	Copper - Gold	
Insulator	Glass Epoxy	
Coupling Ring/Nut	Nylon	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 3.750"	Key
Maximum Diameter*	1.55"	Key
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	16	Between Contacts & Wire:
Number Range	6-10	
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Vulcanized Neoprene	
Contact Seal	Molded Epoxy	
Receptacle to Bulkhead	1-2 O-rings	
LECTRICAL CHARACTERISTICS	·	
Max. Current Capacity	6 amps	SPECIAL OPTIONS
Working Voltage	500 V dc	
Withstanding Voltage	1000 V ac	
Contact Resistance		
NVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATIO
Mated	20,000 psi	
Unmated	20,000 psi	
Temperature Range		L
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$80.00 to \$90.00
Expected Life		MANUFACTURER:
Vibration		Gould, Inc.
Physical Shock		SERIES:
Corrosion		CX-106B, CX-108B; CX-106P,C

PRODUCT 1	MATRIX	CONNECTOR CLASSIFICATION
TANDARD MATERIALS	· · · · · · · · · · · · · · · · · · ·	
Shell		
Boot/Jacket	Glass Epoxy or Neoprene	Molding Compound
Contacts & Plating	Brass - Silver	
Insulator	Kintec, Inc. K-500	
Coupling Ring/Nut	Nylon	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	2.58" to 11.50"	Keys
Maximum Diameter*	1.5"	
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Hard Encapsulation
Size Range	16	Between Contacts & Wire:
Number Range	6, 8, 10	Hard Encapsulation
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Redundant O-ring	
Cable to Plug	Neopre., Plyuret.Mold	Locking Sleeve
Contact Seal	Molding	
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS		
Max. Current Capacity	0 to 600 amps	SPECIAL OPTIONS
Working Voltage	to 15,000 V	Multi-wire termination;
Withstanding Voltage	2 x wkg. v1tg. + 1000	field-installable assemblies
Contact Resistance	.5 to .25 milliohms	
ENVIRONMENTAL CHARACTERIST	rics	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	1C,000 psi	deep ocean applications
Temperature Range	to 400 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$100 00 to \$700 00
Expected Life	to 20 yr	4130.00 CO \$300.00
Vibration	as required	RATURACIONER:
Physical Shock	as required	KINUGG, INC. SERTES:
	· · · ·	

PAGE

「家族」、「南京山山山山山」、 かちしてきちちい のいたまちのなちに

いていていたいない ちちちちちちち

<u>(21)</u>

CONNECTOR CLASSIFICATION

PM

She11		~
Boot/Jacket		
Contacts & Plating		
Insulator	· · ·	
Coupling Ring/Nut		
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		Key
Maximum Diameter*		
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to	a	Between Cable & Assembly:
Contact)	Solder	Cable Collet
Size Range		Between Contacts & Wire:
Number Range	3	
EALING DESIGNS	·····	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Grommet	Field Repairable
Contact Seal		
Receptacle to Bulkhead		
LECTRICAL CHARACTERISTICS		
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		
Withstanding Voltage		
Contact Resistance	J	
NVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure		PECOMENDED ZONES OF ADDITCATION
Kange:	500 psi	RECOMMENDED ZONED OF AFFEICATION
Mated	200 hzt	
DunchiliAus		
Durability:		AFFROATMATE FRICE RANGE
Funder of Life		L
Expected LITE		MANUFACTURER :
Physical Sheet		Mark Products, Inc.
PHYSICAL SHOCK		SERIES:

NON STORES

PAGE VI

8

57

3

B

Ň

80

PM

Shell	Molded Plastic	
Boor/Jacket	Various, depending on cable Brass - Gold	
Contacts & Plating		
Insulator	Molded Glass Epoxy	
Coupling Ring/Nut	Plastic, Brass, S.S.	•
NNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		Pins; Keys
Maximum Diameter*		
NTACTS	· · · · · · · · · · · · · · · · · · ·	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 12, 8, 4, 0	Between Contacts & Wire:
Number Range	1-36	
ALING DESIGNS	T	SPECIAL DESIGN FEATURES
Plug to Receptacle	1-2 0-rings	
Cable to Plug	Molded	Locking Sjeeve; nermetic pin Sea
Contact Seal	Glass Epoxy	
Receptacle to Bulkhead	1-2 0-rings	
ECTRICAL CHARACTERISTICS		
Max. Current Capacity	5 to 200 amps	SPECIAL OPTIONS
Working Voltage	300-600 V (rms)	Special contact patterns; Special keying arrangements
Withstanding Voltage	1500 V	opecial keying allangements
Contact Resistance	Various	
VIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,0 00 psi	
Unmated	20,000 psi	
Temperature Range	up to 250 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		Variable - relatively inexpensiv
Expected Life		NANUFACTURER :
Vibration		Vector Cable Co.
Physical Shock		SERIES:
Corrosion		xs

陸區

and the second

CONNECTOR MS CLASSIFICATION

Shell	(P) Aluminum - Anodic Coating; (R)S.S. Recep.	
Boot/Jacket	S.S. Sleevo	
Contacts & Plating	Copper Alloy - Gold (Hermetic; Ni-iron/gold)	
Insulator	Neoprene	
Coupling Ring/Nut	Aluminum Bronze	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 2.5"	Keys; alternate keying position
Maximum Diameter*	Approx. 2.26"	3vailable
ONTACT'S		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)	Solder; crimp	Molding
Size Range	20, 16, 12	Between Contacts & Wire:
Number Range	2#20 to 61#20	Hard epoxy potting (recommended)
EALING DESIGNS	-	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	5 key nolarization: threaded
Cable to Plug	Molding	coupling; MS arrangements and
Contact Seal	Glass (hermetic only)	contacts; MS crimping tools
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTIC	S	
Max. Current Capacity	7.5 to 22 amps	Pressure-proof caps, accessory
Working Voltage	500 V ac (rms)	threads on plug and receptacle,
Withstanding Voltage	1,500 V ac (rms)	boot and ring. Nonmagnetic
Contact Resistance	Max. 55 millivolt drop	nermetic contacts.
NVIRONMENTAL CHARACTERIS	STICS	
Hydrostatic Pressure		
Kange:	0 1500	RECOMMENDED ZUNES OF APPLICATION
Mated	0-1500 ps1	0.1500 -
Unmated	u-plug, 400-herm recp.	0-1500 psa
Temperature Range	-25°C to 100°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	Widely variable
Expected Life	5 yr	MANUFACTURER :
Vibration	MIL-C-26482	Bendix Electrical Components Division
Physical Shock	MIL-C-26482	SERIES:
Corrosion	MIL-C-26482	AP Aquacon Series

Including Hex Nut or Coupling Ring

CATALOGUE iv PAGE

8

E A

53

Shell	(P) Aluminum - Anodic	Costing; (R) S.S.
Boot/Jacket	S.S. Sleeve	
Contacts & Plating	Copper Alloy - Gold;	(Hermetic: Ni-Iron/Gold)
Insulator	Glass-filled epoxy; (Hermetic: Glass)
Coupling Ring/Nut	Aluminum Bronze	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 2.0"	Keys; alternate keying positions
Maximum Diameter*	Approx. 2.25"	available
ONTACTS	· · · · · · · · · · · · · · · · · · ·	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder; Crimp	Between Cable & Assembly: Molding
Size Range	22D, 20, 16, 12	Between Contacts & Wire:
Number Range	3#20 to 128#22	Hard epoxy, potting (recommended)
EALING DESIGNS		SPECTAL DESTGN FRATURES
Plug to Receptacle	0-ring	Removable Contacts: 5 key nolari-
Cable to Plug	Molding	zation; threaded coupling;
Contact Seal	Glass (Hermetic only)	MIL-C-38999 Insert Arrangements
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS	<u></u>	
Max. Current Capacity	3 to 23 amps	SPECIAL OPTIONS
Working Voltage	400-900 V ac (rms)	threads on plug and receptacie; use
Withstanding Voltage	1300 V ac (rms)	and ring nonmagnetic hermetic
Contact Resistance	85 millivolt drop	pressure for hermetic receptacle.
NVIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	0-1500 psi	0-1500 psi
Unmated	0-plug; 400 herm, receptacie	
Temperature Range	-25°C to 100°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	Widely variable
Expected Life	5 yr	MANUFACTURER :
Vibration	MIL-C-38999	Bendix Electrical Components
Physical Shock	MIL-C-38999	SERIES:
Corrosion	MIL-C-38999	AJ Aquacon Series

Including Hex Nut or Coupling Ring

CATALOGUE PAGE

CONNECTOR PRODUCT MATRIX MŚ CLASSIFICATION: STANDARD MATERIALS She!1 (P) Aluminum-Anodic Costing; (R) S.S. Boot/Jacket S.S. Sleeve Contacts & Plating Copper Alloy - Gold; (Hermetic: Ni-Iron/Gold) Insulator Glass filled epoxy; (Hermetic: glass) Coupling Ring/Nut CONNECTOR SIZE (POLARIZING METHOD Max. Length (Assembled) Keys; alternate keying positions Approx. 3.25" available Maximum Diameter* Approx. 2.25" STRAIN RELIEF METHODS CONTACTS (Termination (Cable to Between Cable & Assembly: Solder; Crimp Contact) Molding 22D, 20, 16, 12 Size Range Between Contacts & Wire: Hard epoxy potting (recommended) Number Range 3#20 to 128#22 SEALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle 0-ring 5 key polarization; scoop-proof; Cable to Plug Molding threaded coupling; MIL-C-58999 inset arrangements and contacts; Contact Seal Glass (Hermetic only) MS crimping tools Receptacle to Bulkhead 0-ring ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity 3 to 23 amps Pressure-proof caps; accessory Working Voltage 400-900 V ac (rms) threads on plug and receptacle; use with MS-EMR hardware; potting boot Withstanding Voltage 1300 V ac (rms) and ring; nonmagnetic hermetic Contact Resistance 60-85 mV drop, max. contacts; 5000 psi openface pressure Q X (hermetic) ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION Range: Mated 0-1500 psi Unmated (P) Opsi; (R) 400 psi 0-1500 psi -25°C to 100°C Temperature Range APPROXIMATE PRICE RANGE Durability: ß 500 Number of Cycles Widely variable Expected Life 5 yr

MANUFACTURER:

Bendix Electrical Components Division SERIES:

AS Aquacon Series

Including Hex Nut or Coupling Ring

MIL-C-38999

MIL-C-38999

MIL-C-38999

() E

Vibration

Corrosion

Physical Shock

CATALOGUE (iv PAGE

١. PRODUCT MATRIX CLASSIFICATION STANDARD MATERIALS

Boot/Jacket	S.S. Sleeve Copper Alloy/Gold; (Hermetic: Ni-Iron/Gold) Glass filled epoxy; (Hermetic: Glass)		
Contacts & Plating			
Insulator			
Coupling Ring/Nut	Aluminum Bronze		
CONNECTOR SIZE	1	POLARIZING METHOD	
Max. Length (Assembled)	Approx. 3.0" Approx. 2.25"	Keys; alternate keying positions available	
CONTACTS		STRAIN RELIEF METHODS	
Termination (Cable to Contact)	Solder; Crimp	Between Cable & Assembly: Molding	
Size Range Number Range	22D, 20, 16, 12 3#20 to 128#22	Between Contacts & Wire: Hard epoxy potting (recommended)	
SEALING DESIGNS	T	SPECTAL DESIGN FRATURES	
Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead	O-ring Molding Glass (hermetic only C-ring	5 key polarization; scoop-proof; threaded coupling; MIL-C-38999 insert arrangements and contacts; MS crimping tools	
ELECTRICAL CHARACTERISTIC	s		
Max. Current Capacity Working Voltage Withstanding Voltage	3 to 23 amps 400-900 V ac (rms) 1300 V ac (rms)	Pressure-proof caps; accessory threads on plug and receptacle, use with MS-EMR bardware rotting	

(P) Aluminum-Anodic Coating; (R) S.S.

ENVIRONMENTAL CHARACTERISTICS

Contact Resistance

She11

15

N X

Hydrostatic Pressure Range:	
Mated	0-1500 psi
Unmated	(P) 0 psi, (R-herm)400
Temperature Range	-25°C to 100°C
Durability:	
Number of Cycles	500
Expected Life	5 yr
Vibration	MIL-C-38999
Physical Shock	MIL-C-38999
Corrosion	MIL-C-38999

60-85 mV drop

APPROXIMATE PRICE RANGE

Widely variable

boot and ring, nonmagnetic

RECOMMENDED ZONES OF APPLICATION,

face pressure (hermetic)

hermetic contacts, 5000 psi open-

MANUFACTURER:

0-1500 psi

Bendix Electrical Components Division

SERIES:

AL Series Aquacon

Including Hex Nut or Coupling Ring

CATALOGUE iv PAGE

MS

CONNECTOR

9

118 | | | |

Š.

网络

b

 \sim

8

Ň

ĵ,

STANDARD MATERIALS	1	······································
She11	S.S.	
Boot/Jacket	Neoprene	
Contacts & Plating	Copper Alloy	
Insulator	Neoprene	
Coupling Ring/Nut	S.S.	
CONNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)		Pins; Keys
Maximum Diameter*	3.81"	
CONTACTS	T	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Crimp	Between Cable & Assembly: Armor for High Strength; molding
Size Range	12,16	Between Contacts & Wire:
Number Range	1-60	Molding and Potting
SEALING DESIGNS	1	SPECIAL DESIGN FEATURES
Plug to Receptacle	Peripheral Seal	
Cable to Plug	Integrally Molded	Shielding device; Acme threads;
Contact Seal	Molded Insulator	individual contact seals
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·	٦
Max. Current Capacity	5 to 150 amps	SPECIAL OPTIONS
Working Voltage	625 V ac	
Withstanding Voltage	1250 V ac	
Contact Resistance	Typ. 50 milliohms	
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	10,000 psi	General Undersea
Temperature Range	-65°F to 165°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	\$35.00 to \$200.00
Expected Life		MANUFACTURER
Vibration	MIL-STD-202(202-A)	Boston Insulated Wire and
Physical Shock	MIL-STD-202(207)	SERIES:
Corrosion		Type EB Underwater Connector Series

Including Hex Nut or Coupling Ring

CATALOGUE PAGE

STANDARD MATERIALS	1	
Shell	S.S. '	
Boot/Jacket	Neoprene	
Contacts & Plating	Copper Alloy	
Insulator	Neoprene	
Coupling Ring/Nut	S.S.	
CONNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)	12"	Pins; Keys
Maximum Diameter*	3"	
CONTACTS	1	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Armor for high strength; mold
Size Range	16, 14, 12, 1, 00	for low strength Between Contacts & Wire:
Number Range	3-28	Molding and potting
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Peripheral seal	Shielding device: removable
Cable to Plug	Integrally molded	contact inserts; stub Acme th
Contact Seal	Interlocking comes	individual contact seals
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTIC	5	
Max. Current Capacity	5 to 150 amps	SPECIAE OFTIONS
Working Voltage	600 to 3,000 V ac	
Withstanding Voltage	2,200 to 10,000 V ac	
Contact Resistance	Typ. 50 milliohms	
ENVIRONMENTAL CHARACTERIS	TICS	·
Hydrostatic Pressure		RECOMMENDED ZONES OF ADDITCATION
Mated	10,000	
Unmated	10,000 psi	General Undersea
Temperature Range	10,000 ps1	
Durahility:	-33°F CO 103°F	APPROXIMATE PRICE RANGE
Number of Cycles	500	
Expected Life	300	\$35.00 to \$200.00
Vibration	MTL-STD-202(202 A)	MANUFACTURER:
Physical Shock	MIL_STD. 202(202-A)	BUSION INSULATED Wire and Cal
Corrosion	MTD-31D-202(207)	SEKIES: Type ER Underwater Connector
	/	

STANDARD MATERIALS		
She11	316 S.S QQS-763	
Boot/Jacket	Neoprene, Polyurethane, Polyethylene	
Contacts & Plating	Brass, Bronze & Copper Alloy - Gold Plating, MIL-G-45204,	
Insulator	Epoxy Glass Type 2, Class 2	
Coupling Ring/Nut	NIALBRO-QQB-679	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	7" to 33"	Pins; Keys
Maximum Diameter*	1.37" to 3.87"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 14, 10, 8, 6, 4, 0	Between Contacts & Wire:
Number Range	Coax-108	Loops & Froxy
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Neoprene & Polyur- ethane bonding	Shielding device; removable
Contact Seal	Epoxy/Glass bonding	contact inserts
Receptacle to Bulkhead	0-rings/welding	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	3 to 200 amps	SPECIAL OPTIONS
Working Voltage	300 V dc	Single pigtails; right angle; flange mounts: double armored
Withstanding Voltage	5000 V dc	cable termination; pressure-
Contact Resistance	various	balanced oil-filled; dummies;
ENVIRONMENTAL CHARACTERIST	ICS	Kelvar termination
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	0-20,000'	
Unmated	13,500'	
Temperature Range	-20° F to 350° F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$200.00 to \$655.00
Expected Life	1-20 yr	MANUFACTURER :
Vibration		Brantner/Rochester
Physical Shock		SERIES:
Corrosion		MS, MSS
* Including Ver Nut on Coun	ling Ding	

Ľ

5

Ľ

CATALOGUE PAGE iv

ä

Ê

S

E: ij

2

Ŋ

Ľ

С) 3)

ۍ دی

ß

ß

Shell	S.S., Passivated	
Boot/Jacket		
Contacts & Plating		
Insulator	Molded Neoprene & The	rmosetting Plastic
Coupling Ring/Nut	S.S.	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		
Maximum Diameter*	1.125" to 2.750"] [
ONTACTS	 	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Crimp	Between Cable & Assembly:
Size Range	16, 12, 8, 4, 0, 0000	Between Contacts & Wire:
Number Range	1-52	
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug		Pigtails (MIL-W-16878)
Contact Seal		
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTIC	CS /	
Max. Current Capacity	4-300 amps	SPECIAL OPTIONS
Working Voltage	600 volts	
Withstanding Voltage		
Contact Resistance		
INVIRONMENTAL CHARACTERIS	STICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER ·
Vibration		Burton Electrical Engineering
Physical Shock		SERIES:
1	· ·	E400; Foodthmy Accombling

H

1 | |

X

ХX Х

2

Ř

3) 30

Shell	S.S. Passivated	
Boot/Jacket	Nolded Neerrone	
Contacts & Plating	Brass	
Insulator	Molded Neonrene and	Theymosofting Diastic
Coupling Ring/Nut	S.S.	mermosetting Plastic
ONNECTOR SIZE	0.0.	
Max Length (Assembled)		FOLKATZING METROD
Maximum Diamotort	1 10" +0 2 25"	Keys
	1.10 00 2.25	
		STRAIN RELIEF METHODS
Contact)	Crimp	Between Cable & Assembly:
Size Range	18, 16, 14, 12, 8	Gable Hexing. MIL-0-2421/ (4.7.:
Number Range	2-24	Between Contacts & Wire:
EALING DESIGNS		
Plug to Receptacle	Peripheral, inter-	SPECIAL DESIGN FEATURES
Cable to Plug	facial Molded Boot	1
Contact Seal	Moraca Door	Pigtails
Recentacle to Bulkhead	Q-ring	
LECTRICAL CHARACTERISTIC		
Max Current Canacity		SPECIAL OPTIONS
Working Voltage	4-50 amps 600 volts	
Withstanding Voltage	MIL-C-24217(4 7 3)	Panel Mounting Receptacle
Contact Desistance	MIL_C_22857	
Wironmental Characterio		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	MIL-C-24217(4.7.6)	
Unmated	MIL-C-24217(4.7.6)	
Temperature Range	MIL-C-24217(4.7.7)	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	MIL-C-24217(4.7.4)	
Expected Life		L
Vibration		MANUFACTURER :
Physical Shock		Burton Electrical Engineering
	· •	SERIES:

Including Hex Nut or Coupling Ring

CATALOGUE PAGE iv

Ř

223

<u>R</u>

ŝ

N

GÙ

533

R.

 \hat{X}

のないのでは、「ない」のないので

and the second of the second o

and the second of the second of the

. - 25

STANDARD MATERIALS		
She11	316 S.S., Passivated	
Boot/Jacket	Neoprene	-
Contacts & Plating	Steel Alloy - Gold Plating Compression Glass Integral with Shell	
Insulator		
Coupling Ring/Nut	S.S.	-
CONNECTOR SIZE		POLARIZING METHOD
Max, Length (Assembled)		
Maximum Diameter*	1.900" to 3.125"	xeys
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Crimp	Between Cable & Assembly: Cable Flexing; MIL-C-24217 (4.7.
Size Range	16, 12, 8, 4, 0, 0000	Between Contacts & Wire:
Number Range	1-48	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring, Interfacial	
Cable to Plug	Molded Boot	
Contact Seal	Compression Glass	Field Installable
Receptacle to Bulkhead	0-rings (2)	
ELECTRICAL CHARACTERISTICS	()	
Max. Current Capacity	13 amps @ 625 V rms	SPECIAL OPTIONS
Working Voltage	625 V rms	Right angle plug, pressure proof
Withstanding Voltage	MIL-C-24217	caps, nermetic feedthru receptac.
Contact Resistance		
ENVIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated		
Unmated	Meets all	
Temperature Range	MIL-C-24217	
Durability:	performance requirements.	APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER:
Vibration		Burton Electrical Engineering
Physical Shock		SERIES:
Corrosion		5800: Hermetic Feedthru

*Including Hex Nut or Coupling Ring

CATALOGUE PAGE

PRODUCT N	MATRIX	CONNECTOR CLASSIFICATION
STANDARD MATERIALS	·····	
She11	S.S.	
Boot/Jacket	Neoprene or Silicone	Steel
Contacts & Plating	Copper - Gold	
Insulator	Silicone Rubber	·
Coupling Ring/Nut	Bronze or S.S.	
CONNECTOR SIZE	[]	POLARIZI.'S METHOD
Max. Length (Assembled)	2.923"	Keys; alternate keying availa
Maximum Diameter*	2.087"	, , , , , , , , , , , , , , , , , , , ,
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to	Cruitman	Between Cable & Assembly:
Contact)	CLIMD	Cable to connector armor or molding and potting
Size Range	22, 20, 16, 12, 8, 4, 0	Between Contacts & Wire:
Number Range	1-35	Potting
SEALING DESIGNS	<u> </u>	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	Shielding device; removable
Cable to Plug	Slæve or molding	contact inserts; towing connec
Contact Seal	0-ring	with electrical and mechanical connection
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	·	
Max. Current Capacity	3-400 amps	SPECIAL OPTIONS
Working Voltage	500 V	Underwater snatch connector fo
Withstanding Voltage	2000 V	undersea vessels; hermetic sea
Contact Resistance	2 milliohms	
ENVIRONMENTAL CHARACTERIST	ICS Environmental	
Hydrostatic Pressure Range:	charac. follow MIL-STD-202	RECOMMENDED ZONES OF APPLICATION
Mated	8,700 psi	
Unmated	8,700 psi (recep)	General Undersea
Temperature Range	-50° C to 100° C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	300	\$50.00 to \$200.00
Expected Life	3 yr	MANUFACTURER
Vibration	20-5000 Hz at 20 g	Compagnie Deutsch France
Physical Shock	11 ms at 150 g	SERIES:
Connecton	6 avalos salt smax	DCI: Subminiatures and Submar

including Hex Nut or Coupling King

· : :-

:

22

4359 8 B

ß

đi ,

E

6j

ないないで、「ない」というできた。

Shell	6061 - T6 Aluminum	Alloy
Boot/Jacket	PVC Tubing	
Contacts & Plating	Terillium Copper -	Gold
Insulator		
Coupling Ring/Nut	6061 - T6 Alluminum	Alloy
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	8.25"	Key
Maximum Diameter*	3.75"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Pins	Between Cable & Assembly:
Size Range		Between Contacts & Wire
Number Range	130 Coaxials	Section Contacts 4 will.
SEALING DESIGNS		SPECIAL DESTGN FEATURES
Plug to Receptacle	0-ring	CLEATER DESIGN PERIORES
Cable to Plug	PVC Tut	2 accompanying patch boards with
Contact Seal		longitudinal load capability of
Receptacle to Bulkhead		4000 lb.
LECTRICAL CHARACTERISTICS		
Max. Current Capacity	5 amps	SPECIAL OPTIONS
Working Voltage	500 V (rms)	See catalogue for additional
Withstanding Voltage		special cable assemblies
Contact Resistance	0.72 milliohms	
NVIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	Approx 750 psi	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANIFACTIDED .
Vibration		ExCon, Inc.
Physical Shock		SERIES
1 1		

STANDARD MATERIALS	·	
She11	Aluminum Alloy Hard A	nodized
Boot/Jacket	Molded Neoprene Copper Alloy - Gold Glass Epoxy	
Contacts & Plating		
Insulator		
Coupling Ring/Nut	Aluminum Alloy Hard A	nodized
CONNECTOR SIZE		POLARIZING METHOD
l'ax. Length (Assembled)	2.5"	Keys: alternate keying available
Maximum Diameter*	1.875"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder; Crimp	Between Cable & Assembly: Molded Neoprene
Size Range	22, 20, 16	Between Contacts & Wire:
Number Range	4-100 ·	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Molded Neoprene	Shielded Crimp removable contacts;
Contact Seal	Potting	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	<u> </u>	
Max. Current Capacity	3 to 7.5 amps	SPECIAL OPTIONS
Working Voltage	600 V dc	Materials and compounds for
Withstanding Voltage	1000 V dc	polyurethane, PVC, etc.
Contact Resistance	50 milliohms	
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	5000 psi	Power and instrumentation, electrical
Unmated	0	connectors for severe underwater
Temperature Range	-67 ⁰ F to 350 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	250	\$150.00 to \$180.00 sm. lots
Expected Life		MANTIFACTITIRER
Vibration		Glenair, Inc.
Physical Shock		SERIES:
Corrosion	96 hr. Salt Spray 5%	GL 41, GL 43 - High Density
*	14	

PAGE

년 역

Shell	S.S.	
Boot/Jacket	Molded Neoprene	
Contacts & Plating	(P)Coppor Alloy - Gold	; (R) Alloy 52 - Gold
Insulator	(P)Glass Epoxy; (R) G1	ass Hermetic
Coupling Ring/Nut	Ring: Ni-Al-Bro; Jam N	ut: S.S
NNECTOR SIZE	· · · · · · · · · · · · · · · · · · ·	POLARIZING METHOD
Max. Length (Assembled)	2.5"	Keys; alternate keying available
Maximum Diameter*	1.875"	
NTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Molded Neoprene
Size Range	22,20,16	Between Contacts & Wire:
Number Range	4-100	
ALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	2 O-rings	SPECIAL DESIGN FERTURES
Cable to Plug	Molded Neoprene	High density contact arrangement
Contact Seal	Potting and Glass	receptacle, front mount receptac
Receptacle to Bulkhead	0-ring	rear mount receptacle
ECTRICAL CHARACTERISTICS	5 /	
Max. Current Capacity	3 to 10 amps	SPECIAL OPTIONS
Working Voltage	600 V dc	Body configurations to customer
Withstanding Voltage	2300 V dc	receptacles for less severe
Contact Resistance	"^ milliohms	requirements.
VIRONMENTAL CHARACTERIS		
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	5000 psi	
Unmated	(R-herm.) 5000 psi	
Temperature Range	-67 ⁰ F to 350 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	250	Approx. \$200.00 sm. lots
Expected Life	10 yr	NANUFACTURER :
Vibration		Glenair, Inc.
Physical Shock	50 g	SER IES:
Corrosion	60-day immersion	GL4000 - High Density

Including Hex Nut or Coupling Ring

2

R.Z

E

3

E

613) 1

10 10 10

and the second second second

STANDARD MATERIALS	·	
She11	316 S.S. Passivated Polyurethane, Neoprene or other	
Boot/Jacket		
Contacts & Plating	(P) Copper Alloy - Ge	old; (R) Mild Steel - Gold
Insulator	(P) Diallyl Phthalate	e: (R) Compression Glass
Coupling Ring/Nut	Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 6"	2 Keys: alternate keying
Maximum Diameter*	4.625"	available
CONTACTS	·····	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Plugs/Receptacles	Between Cable & Assembly: Molding
Size Range	22, 16, 12, 8, 4, 0	Retween Contacts & Wire
Number Range	3-48	molding or cast epoxy
EALING DESIGNS	T	SPECIAL DESIGN REATURES
Plug to Receptacle	2 O-rings	
Cable to Plug	Molding	Removable plug contact inserts
Contact Seal	Compression Glass	
Receptacle to Bulkhead	2 O-rings; weld	
LECTRICAL CHARACTERISTICS	·	
Max. Current Capacity	10 to 100 amps	SPECIAL OPTIONS
Working Voltage	625 V ac	
Withstanding Voltage	(Dielectric):1800 V ac	
Contact Resistance	4.5 (#16) milliohms	
NVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	High pressure, including submarines.
Unmated	(R) 10,000 psi	offshore well applications.
Temperature Range	-65 ⁰ F to 165 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life	50 yr	MANIFACTURED
Vibration	MIL-STD-202 (204-A)	ITT Cannon Electric, Phoenix
Physical Shock	MIL-STD-202 (207)	SERTES:
Corrosion	Inherently High	MIL-C-24217

^{*}Including Hex Nut or Coupling Ring

CATALOGUE PAGE Vi

51.0

N.

ß

QX.

ίX X

光音

X

CONNECTOR MS CLASSIFICATION

Shell	316 S.S.	
Boot/Jacket	Polyurethane, Neopren	e or other
Contacts & Plating	(P) Copper Alloy - Gold; (R) Molybdenum - Gold	
Insulator	(P) Diallyl Phthalate	;(R) Compression Glass
Coupling Ring/Nut	Bronze	
NNECTOR SIZE	<u> </u>	POLARIZING METHOD
Max. Length (Assembled)	Approx. 12"	2 4-11-
Maximum Diameter*	11.75"	2 Keys
NTACTS	· · · · · · · · · · · · · · · · · · ·	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder, Crimp, Taper	Between Cable & Assembly: Optional cable clamps
Size Range	22, 20, 16, 12, 4	Kellems Grip; molding Berween Contacts & Wire:
Number Range	3-208	Shrink sleeve on terminations
ALING DESIGNS		Special Design Framilies
Plug to Receptacle	2 O-rings	
Cable to Plug	Potting and/or Mold-	Feed thru with mating plugs on
Contact Seal	Compression Glass	each end
Receptacle to Bulkhead	2 O-rings	
ECTRICAL CHARACTERISTICS		
Max. Current Capacity	5 to 110 amps	SPECIAL OPTIONS
Working Voltage	440 V ac	
Withstanding Voltage	600 V ac	
Contact Resistance	0.4 to 8 milliohms	
VIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	MIL-C-22249	
Unmated	MIL-C-22249	
Temperature Range	-65°F to 160°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	200 Estim. Min.	
Expected Life	40 yr	MANIFACTIREP -
Vibration	MIL-STD-167 (I)	ITT Cannon Electric. Phoenix
Physical Shock	MIL-S-901 (B,2)	SERIES.
Corrector	Inhoron+ly Wigh	MTLC 20040

^{*}Including Hex Nut or Coupling Ring

CATALOGUE PAGE vi كردية الالالان وتكليه محتكم لمراضعك المتعلا ومستعد للسرا يعمر مستكري سليفية

Q

۶Ĩ

े दु

8

民内に

K.

TANDARD MATERIALS	T	
Shell	S.S., Passivated	
Boot/Jacket	Polyurethane, Neoprene or other	
Contacts & Plating	(P) Copper Alloy - Gold; (R) Molybdenum	
Insulator	(P) Diallyl Phthalate; (R) Compression Glass	
Coupling Ring/Nut	Bronze	1
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		2 Keys
Maximum Diameter*	11.750"	
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)	Crimp	Molding; Cable Clamp
Size Range	20, 16, 10, 4, 0	Between Contacts & Wire:
Number Range	3-208	
EALING DESIGNS	<u>ار - ا</u>	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Molding	assy.; Feed thru pin-pin contact
Contact Seal	Grommet	
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS	·	L
Max. Current Capacity	5 to 110	SPECIAL OPTIONS
Working Voltage		Right angle plug
Withstanding Voltage	MIL-STD-202 (301)	
Contact Resistance		
NVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	10,000 psi	
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		
Vibration	MIL-STD-167 (1)	TTT Cannon Electric Decerit
Physical Shock	MIL-S-901 (B-2)	SEDIEC.
	+	JERIEJ:

Including Hex Nut or Coupling Ring

CATALOGUE Vi

-24-242-26424244244

K

83

(14) (4) (4)

88

and the Average States

the state of the s

MS

Shell	Brass-Nickel Plate	
Boot/Jacket		
Contacts & Plating	Copper Alloy, Silver Pl	late
Insulator	Melamine	
Coupling Ring/Nut	· ·	
INNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		Key
Maximum Diameter*	1.625" to 4.250"	
NTACTS		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)	Solder pot	Optional Kellems grips;
Size Range	16, 12, 3, 4, 0	Between Contacts & Wire:
Number kange	1-56	
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Compressible bushing	Acme threads for coupling
Contact Seal		
Receptacle to Buikhead		
LECTRICAL CHARACTERISTICS	5,	
Max. Current Capacity	22 to 245 amps	SPECIAL OPTIONS
Working Voltage	various	Cable clamps, Kellems grips.
Withstanding Voltage	1000 to 7000 V (rms)	caps plug and receptacle
Contact Resistance		
NVIRONMENTAL CHARACTERIS		
Hydrostatic Pressure	\top	
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	4,500 psi	
Unmated		
Temperature Range	-55°C to 85°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		
Vibration		ITT Cannon Electric. Ontario
Physical Shock		SED TES.
Corrosion		W: plug: Receptacle: wall
And a set of the first of the set		mountin

N

6352 • • •

MS

Sherr	S.S.	
Boot/Jacket		
Contacts & Plating	S.S. or Silver Pla	ated Brass
Insulator		
Coupling Ring/Nut	L	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		
Maximum Diameter*	5/16"	J [
CONTACTS	l	STRAIN RELIEF METHODS
Termination (Cable to Contact)		Between Cable & Assembly:
Size Range	18, 16	Between Contacts & Wire:
Number Range	1	
SEALING DESIGNS	[SPECIAL DESIGN FEATURES
Plug to Receptacle	Interference	
Cable to Plug	Molded	
Contact Seal		
Receptacle to Bulkhead		
ELECTRICAL CHARACTERISTICS	<u></u>	
Max. Current Capacity	7 to 10 amps	SPECIAL OPTIONS
Working Voltage	600 V	
Withstanding Voltage		
Contact Resistance		
ENVIRONMENTAL CHARACTERIST	TICS	$\overline{}$
Hydrostatic Pressure	-	
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration		Joy Manufacturing Co.
Physical Shock		SERIES:
-	1	l vorze

Shell	(R) 416 S.S.; (P) 🏷	correne
Boot/Jacket	Neoprene	
Contacts & Plating	- Beryllium Copper - S	Silver
	(R) Hi-temp Epoxy: (H	?) Glass Laminate
Coupling Ring/Nut		,
CONNECTOR SIZE	······································	POLARIZING METHOD
Max, Length (Assembled)	Approx. 3"	
Maximum Diameter*	••	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to	Dina	Between Cable & Assembly:
Contact)	PINS	Nolded Naoprene
Size Range		Between Contacte & Wire
Number Range	2-6	J Detween contacts y write.
SEALING DESIGNS		SPECIAL DESIGN FEATIBLES
Plug to Receptacle	Interference	SPECIAL DESIGN FEATURES
Cable to Plug	Neoprene Mold	
Contact Seal	Ероху	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	15 amps	SPECIAL OPTIONS
Working Voltage	1000 to 3000 V	See catalogue for additional
Withstanding Voltage		angles, multiple feedthrus,
Contact Resistance		coramic and glass sealed con
ENVIRONMENTAL CHARACTERIST	ICS (
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATIO
Mated	20,000 psi	
Unmated		
Temperature Range	max 300 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration		Kemlon Products, Inc.
Physical Shock		SERIES:
•	1	

ß

У. Х

K.

N.

С С

NY XY

Shell	(R) 416 S.S.; (P) Neoprene	
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper - Silver	
Insulator	(R) Hi-temp Epoxy; (P) Teflon or Neoprene	
Coupling Ring/Nut	416 S.S.	
NNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 6"	
Maximum Diameter*	1/2"	
NTACTS	I	STRAIN RELIEF METHODS
Termination (Cable to	Din	Between Cable & Assemb
Contact)	· · ·	Molded Neoprene
Size Range		Between Contacts & Wir
Number Range] 1	
ALING DESIGNS	Ī	SPECIAL DESIGN FEATURES
Plug to Receptacle	Interference	
Cable to Plug	Neoprene Mold	
Contact Seal	Ероху	
Receptacle to Bulkhead	0-ring	J
LECTRICAL CHARACTERISTICS	<pre></pre>	
Max. Current Capacity	15 amps	SPECIAL OPTIONS
Working Voltage	500 to 3000 V	
Withstanding Voltage		
Contact Resistance		
VIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPI
Mated	20,000 psi	
Unmated		
Temperature Range	Max. 300°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration		Kemlon Products. Inc
Physical Shock		SERIES:
0	1	K. MS Single Contact

She11	316 S.S.; Anodized A1; Navy Brass (special)	
Boot/Jacket	Neoprene Molding Compound	
Contacts & Plating	Brass Gold or Silver	
Insulator	Kintec, Inc. K-500	
Coupling Ring/Nut	Anodized A1, Ni-Al-Bras	S
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	6.8" to 12.0"	Key; alternate keying positions
Maximum Diameter*	1.38" to 4.38"	available
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to	Solder	Between Cable & Assembly:
Contact)		Hard Encapsulation
Size Range	20, 16, 14, 10, 8, 0 Coax	Between Contacts & Wire:
Number Range	1 - 82; Coax	Hard Encapsulation
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Redundant O-ring	Field-installable assy.; shieldi
Cable to Plug	Neopr.,Plyuret., Mold	device; removable contact insert
Contact Seal	Molding	flanged bulkhead receptacle; angle mold
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTIC	<u>cs</u>	
Max. Current Capacity	0 to 600 amps	SPECIAL UPTIONS
Working Voltage	to 18,000 V	Pressure-balanced oil-filled
Withstanding Voltage	2 x wkg. vltg. + 1000	multi-wire termination, protecti
Contact Resistance	.5 to .25 milliohms	cap
WIRONMENTAL CHARACTERIS	STICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated	10,000 psi	Down-hole logging; deep ocean
Temperature Range	to 450°F	applications
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$400 to \$1500.00
Expected Life	to 20 yr	MANTIEACTIDED
Vibration	as required	Kintec, Inc.
Physical Shock	as required	SEDIEC.

the constants, according or provident

P

3

5

8

17 13

20

K

3

15

STANDARD MATERIALS	•	
Shell	316 5 5	
Boot/Jacket	Neoprene Molding Comm	ound
Contacts & Plating	Brass - Gold	
Insulator	Kintec, Inc. K-500	
Coupling Ring/Nut	Ni-Al-Brass	
CONNECTOR SIZE	1	POLARIZING METHOD
Max. Length (Assembled)	6.5" to 8.2"	
Maximum Diameter*	1.58" to 2.75"	Keys
CONTACTS	T	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 14, 8, 4, 0	Hard Encapsulation
Number Range	1-33	Hard Encapsulation
SEALING DESIGNS	T	SPECTAL DESTON FEATURES
Plug to Receptacle	Redundant O-ring	
Cable to Plug	Neopre.Plyuret. Mold	Shielding device, removable
Contact Seal	Molding	assy.; flanged bulkhead receptacle;
Receptacle to Bulkhead	0-ring	right angle plug
ELECTRICAL CHARACTERISTICS	·	
Max. Current Capacity	0 to 600 amps	SPECIAL OPTIONS
Working Voltage	to 18,000 V	
Withstanding Voltage	2 x wkg. vltg. + 1000	
Contact Resistance	.525 milliohms	
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated	10,000 psi	
Temperature Range	to 450 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life	to 20 yr	MANUFACTURER :
Vibration	as required	Kinter Inc
Physical Shock	as required	SERIES:
Corrosion	as required	MS09, MS14, MS24 MIL-C-24217 interface

Including Hex Nut or Coupling Ring

CATALOGUE PAGE

50

Shell	(P) 316 S.S.; (R) 316L S.S.	
Boot/Jacket	Various	
Contacts & Plating	(P) Copper Alloy - Gold; (R) Steel - Gold	
Insulator	(P) Diallyl Phthalate; (R) Compression Glass	
Coupling Ring/Nut	Ni-Al-Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		Key; alternate keying positio
Maximum Diameter*	1.626" to 5.500"	available
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	16, 12, Coax	Between Contacts & Wire:
Number Range	3-68	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	2 O-rings	
Cable to Plug		Available Mountings:
Contact Seal	Glass	End Flange Bolted
Receptacle to Bulkhead	Weld, Flange Bolt	
LECTRICAL CHARACTERISTICS		
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		Pressure proof caps
Withstanding Voltage	1,000 V (rms)	
Contact Resistance	55-70 mV drop	
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	2000 psig	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	(
Expected Life		MANUFACTURER :
Vibration		D.G. O'Brien, Inc.
Physical Shock	1	SERIES:
Corrosion		101: MIL-C-22539
*Including Hex Nut or Coup	ling Ring	

CONNECTOR PRODUCT MATRIX MS CLASSIFICATION STANDARD MATERIALS (P) 316 S.S; (R) 316L S.S She11 Various Boot/Jacket k. (P) Copper Alloy - Gold; (R) Steel-Gold Contacts & Plating Insulator (P) Diallyl Phthalate: (R) Compression Glass S. Ni-Al-Bronze Coupling Ring/Nut POLARIZING METHOD CONNECTOR SIZE Max. Length (Assembled) Key; alternate keying positions available 1.125" to 2.510" Maximum Diameter* CONTACTS STRAIN RELIEF METHODS Termination (Cable to Between Cable & Assembly: Crimp Contact) 16, Coax Size Range Between Contacts & Wire: 5-8 Number Range SEALING DESIGNS/ Ŕ SPECIAL DESIGN FEATURES 2 O-rings Plug to Receptacle Right angle plugs available; Cable to Plug receptacles in weld, lock-nut Glass Contact Seal flange, flange bolted and AN port Receptacle to Bulkhead mountings ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity Working Voltage (P) Insulator available in Delrin Ċ, L-P-392; pressure proof caps 1000 V (rms) Withstanding Voltage Contact Resistance 40 mV drop ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure R. RECOMMENDED ZONES OF APPLICATION Range: Mated 2000 psig Unmated Temperature Range APPROXIMATE PRICE RANGE, Durability: 込む Number of Cycles Expected Life **MANUFACTURER:** è Vibration D.G. O'Brien, Inc. Physical Shock SERIES: Corrosion 101, 104

Including Hex Nut or Coupling Ring

CATALOGUE Vi

.

ЦŲ.

Ċ

6×6 0

Ø

8

£1

بر بربا

的問題

ß

1015

 $(a^{\dagger}, b^{\dagger}, b^{\dagger})$

CONNECTOR CLASSIFICATION MS

Shell	(P) 316 S.S.; (R) 316L S.S.	
Boot/Jacket	Various	
Contacts & Plating	(P) Copper Alloy - Gold; (R) Steel - Gold	
Insulator	(P) Diallyl Phthalate	or Delrin; (R) Compression Glass
Coupling Ring/Nut	Ni-Al-Bronze	
NNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)		Key; alternate keying positions
Maximum Diameter*	1.061" to 5.500"	available
NTACTS		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)	Crimp Socket	
Size Range	16, 12, 8, 4, 0	Between Contacts & Wire:
Number Range	Coax-48	
ALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug		see catalogue
Contact Seal		-
Receptacle to Bulkhead	2 O-rings	
ECTRICAL CHARACTERISTIC	s	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		Right angle plugs;
Withstanding Voltage	1900 V (rms)	pressure proof caps
Contact Resistance	55 mV drop	
WIRONMENTAL CHARACTERIS	TICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psig	
Unmated		
Temperature Range	-65°F to 165°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration	10-2000 Hz at 10 g	D.G. O'Brien, Inc.
Physical Shock	MIL-STD-202(207)	SERIES:
Corrosion		107: MIL-C-24217

WINTOOD PAGE

· ··· ··.

MS

She11	316 S.S.	
Boot/Jacket	Various	
Contacts & Plating	(P) Copper Alloy - G	old; (R) Steel - Gold
Insulator	(P) Nylon: (R) Compr	ession Glass
Coupling Ring/Nut	316 S.S.	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)		
Maximum Diameter*	0.750"	
NTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)		Between Cable & Assembly:
Size Range	22, 16, RG58C/U	Between Contracts & Winey
Number Range	1-2	between contacts q wire:
EALING DESIGNS		SDECTAL DESIGN FRATIDES
Plug to Receptacle	0-ring	SPECIAL DESIGN PERIORES
Cable to Plug		
Contact Seal		
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTIC	CS /	
Max. Current Capacity	Τ	SPECIAL OPTIONS
Working Voltage		Pressure proof conc
Withstanding Voltage		rissure proor caps
Contact Resistance		
NVIRONMENTAL CHARACTERIS	STICS	
Hydrostatic Pressure		PECOMMENDED ZONES OF ADDITICATION
Matad	10.000 paig	ADOUBLINDED DURED OF AFFEICATION
Matcu Domotod	TO'DOO DETR	
Tomponeture Barge	-670E +0 18C0E	
Tomborarnia vanka		
Number of Cuolog		
Rynapted Life		
Syberien Pile		MANUFACTURER:
Dhyciaal Shaak		b.c. O'Brien, Inc.
rnysteat Shock		SERIES:
COPTOSION		J 110 - Coaxial

STANDARD MATERIALS	(D) 716 6 6 · (D) 71	
Shell	(P) 516 5.5., (K) 51	
Boot/Jacket	(D) Connon Allow	Cold: (D) Stepl - Cold
Contacts & Plating	(P) Class Energy (E	$(\mathbf{x}) \text{Steel} = 0.014$
Insulator	(P) Glass Epoxy, (r	() 01455
Coupling Ring/Nut	N1-A1-Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	0 625 ¹¹ to 1 062 ¹¹	Key: alternate keying positions available
Maximum Diameter*	0.025 00 1.002	
CONTACTS		SIRAIN RELIEF METHODS
Contact)	Crimp Socket	Between Lable G Assembly:
Size Range	24, 20	Between Contacts & Wire:
Number Range	5-12	
SEALING DESIGNS	·····	SPECIAL DESIGN FEATURES
Plug to Receptacle		Several receptacle mountings
Cable to Plug		available
Contact Seal		
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		SPECIAL OPTIONS
Max. Current Capacity	5 amps	
Working Voltage	(25 V (mmn)	Pressure proof caps
Withstanding Voltage	625 V (rms)	
Contact Resistance		
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	1000 psig	
Unmated		
Temperature Range	-65 ⁰ F to 160 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURED -
Vibration		PAINUFAU SURGA ;
Physical Shock		D.G. O'Brien, Inc. SERIES:
Corrosion		124
	ألاميين والمستقلين ويستوجب والمتحد ومستوجه ومست	-

PRODUCT N	MATRIX	
CANDARD MATERIALS	T	
Shell	316L S.S.	
Boot/Jacket	Various	
Contacts & Plating	(P) Steel - Copper A	lloy - Gold; (R) Steel - Gold
Insulator	(P) Delrin per L-P-3	92 and Glass; (R) Glass
Coupling Ring/Nut	Ni-Al-Bronze	
NNECTOR SIZE	······································	POLARIZING METHOD
Max. Length (Assembled)		Key; alternate keying positions
Maximum Dismeter*	1.565 to 7.010"	available
INTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)		Between Cable & Assembly:
Size Range	16, 4	Between Contacts & Wire:
Number Range	Coax-48	
ALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug		Right angle plug available;
Contact Seal	Glass	convent. cables.
Receptacle to Bulkhead	2 O-rings	
LECTRICAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		Pressure proof caps
Withstanding Voltage	1500 V (rms)	
Contact Resistance	110 mV drop	
WIRONMENTAL CHARACTERIST	rics	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	15.000 psig	
Unma ; ed		
Temperature Range	$-67^{\circ}F$ to $185^{\circ}F$	L
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration	MIL-STD-202 (204)	D.G. O'Brien, Inc.
Physical Shock	MIL-STD-202 (207)	SERIES:
Corrosion	ļ J	126

^{*}Including Hex Nut or Coupling Ring

È

CATALOGUE (PAGE (

vi

STANDARD MATERIALS		
Shell	316L S.S. Passivated of	r Ni-Al-Bronze
Boot/Jacket	Neoprene	
Contacts & Plating	Copper Alloy - Gold	
Insulator	Molded Neoprene	
Coupling Ring/Nut	Ni-Al-Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	8.75" (size 4)	Keys; alternate keying posit
Maximum Diameter*	1.713" (size 4)	available
CONTACTS	· · · · · · · · · · · · · · · · · · ·	STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)		2 half clamps in end bell
Size Range	20, 16, 8, 2	Between Contacts & Wire:
Number Range	4-68	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug	Gland, O-ring, & Boot	Shielding Device
Contact Seal	Molding	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	7.5 to 400 amps	SPECIAL OPTIONS
Working Voltage	500 V (rms)	Special layout; shell mater:
Withstanding Voltage	2,500 V (rms)	automatic disconnection; his
Contact Resistance	10 milliohms	working vortage
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATIO
Mated	5000 psi	
Unmated	5000 psi	
Temperature Range	-20 ^o F to 160 ^o F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	200	\$140.00 to \$280.00
Expected Life		MANUFACTURER :
Vibration		Souriau & Cie. (Dist. Inter
Physical Shock		Systems, Inc., San Diego) SERIES:
Corrosion		8810; see catalogue for Series 8804 8805
*		001100 000%, 0000

8

Ŝ

E C C

6

k) no

R.C.

N.

MS

STANDARD MATERIALS		
Shell	S.S. Type 316	
Boot/Jacket	Various, depending on cable	
Contacts & Plating	Brass - Gold	
Insulator	Glass Epoxy	
Coupling Ring/Nut	Ni-Al-Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	Approx. 11"	Keys; alternate keying positions
Maximum Diameter*	3.875"	available
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Molded taper junctions, springs
Size Range	16, 14, 10, 8, 6, 4, 0	compatible with cable jackets Between Contacts & Wire:
Number Range	1-75	Back shell fill
SEALING DESIGNS	ſ	SPECIAL DESIGN FEATURES
Plug to Receptacle	2 O-rings	
Cable to Plug	Potting and Bond	Locking sleeve; shielding device; removable contact inserts: metal
Contact Seal	Hermetic Bond	to metal faying of receptacle to
Receptacle to Bulkhead	2 O-rings	blkhd to prevent face 0-ring extrusion
ELECTRICAL CHARACTERISTICS	<u></u>	
Max. Current Capacity	5 to 200 amps	SPECIAL OPTIONS
Working Voltage	600 V	Many other materials on special order: wire by wire integrity
Withstanding Voltage	1500 V	through filling conductor strands
Contact Resistance	Various	and completely waterblocking cable to connector junction
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	15,000 psi	
Unmated	5,000 psi	High stress undersea environments
Temperature Range	Up to 250 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		Variable
Expected Life		MANUFACTURER :
Vibration	MIL-C-24217	Vector Cable Co.
Physical Shock	MIL-C-24217	SERIES:
Corrosion	MIL-C-24217	MS (2)

*Including Hex Nut or Coupling Ring

CATALOGUE PAGE
STANDARD MATERIALS		
Shell	ARMCO 22-13-5	
Boot/Jacket		
Contacts & Plating	(P) Copper Alloy - Go	old; (R) Steel - Gold
Insulator	(P) Diallyl Phthalate	e; (R) Compression Glass
Coupling Ring/Nut	Ni-Al-Bronze	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	3.0"	Keys; alternate keying posit
Maximum Diameter*	1.4"	available
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to	Solder: Crimp	Between Cable & Assembly:
LONTACT)	-,	Molding
Size Kange	20, 16, 12	Between Contacts & Wire:
Number Range	3-19	Heat shrink tubing or moldin
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	Removable contact plug inser
Cable to Plug	Molded	Removable contact plug inser
Contact Seal	(R) Glass Hermetic	
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS	{	
Max. Current Capacity	30 to 70 amps	
Working Voltage	625 V ac (rms)	
Withstanding Voltage	1000 or 1872 V ac	
Contact Resistance		
ENVIRONMENTAL CHARACTERIST		
Hydrostatic Pressure		
Kange:	10.000	ACCUMPTENDED ZUNED UP APPLICATIO
	10,000 psi	
Unmated	(R) 10,000 psi	
lemperature kange	-54°C to 73°C	
Durability:	100	APPROXIMATE PRICE RANGE
Number of Cycles	100	\$200.00 to \$400.00
Expected Life		MANUFACTURER :
Vibration		Viking Industries
Physical Shock		SERIES:
		13. MTL_C_2/217 Ministure

202

网络

E

12.2

変わる

2

2

į,

E

STANDARD MATERIALS	í	
Shell	(P) 316 S.S Passivated	d; (R) 316L S.S Passivated
Boot/Jacket	Various Molded	
Contacts & Plating	(P) Copper Alloy - Gold; (R) Steel or Molybdenum - Gold	
Insulator	(P) Diallyl Phthalate: (R) Compression Glass	
Coupling Ring/Nut	Ni-Al-Bronze	
CONNECTOR SIZE	·	POLARIZING METHOD
Max. Length (Assembled)	7.5"	Keys: alternate keying positions
Maximum Diameter*	5.0"	available
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder; Crimp	Between Cable & Assembly: Molding
Size Range	16, 12, 8, 4, 0	Retween Contacts & Wire:
Number Range	3-37	Heat shrink tubing or molding
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Molded	Removable contact plug inserts
Contact Seal	(R) - glass hermetic	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	<u></u>	
Max. Current Capacity	13 to 200 amps	SPECIAL OPTIONS
Working Voltage	625 V ac (rms)	MIL-C-22249 and MIL-C-22539
Withstanding Voltage	1000 or 1872 V ac	Connectors available
Contact Resistance		1
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	(R) 10,000 psi	
Temperature Range	-54°C to 73°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	100	\$200.00 to \$600.00
Expected Life		MANUFACTURER :
Vibration	MIL-STD-202(202-A)	Viking Industries. Inc.
Physical Shock	MIL-STD-202(207)	SERIES:
Corrosion		14. MIL (2 24217

Including Hex Nut or Coupling Ring

CATALOGUE PAGE

NINA

ND) I

, . .

Constant of

ŗ.

• 35

х Х

5.52

541 - To to 1

Shell	S.S. or Glass Epoxy	
Boot/Jacket	Neoprene or Polyurethane	
Contacts & Plating	Brass, Bronze, Copper Alloy, Gold Plating, MIL-645204 - Typ	
Insulator	Glass Epoxy	Class
Coupling Ring/Nut	Nylon, S.S. or Ni-Al	-Bronze ·
NNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	4" to 23"	Pins: keys
Maximum Diameter*	3.87"	
NTACTS	Ţ	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 14, 10, 8, 6, 4, 0	Between Contacts & Wire:
Number Range	1 to 85	Slack in Conductory
ALING DESIGNS	T)	SPECIAL DESIGN FEATURES
Plug to Receptacle	0-ring	
Cable to Plug	Band or lies	locking sleeve; shielding devic removable contact inserts;
Contact Seal	Glass Epoxy	pressure balanced
Receptacle to Bulkhead	0-ring	
ECTRICAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·	
Max. Current Capacity	3 to 200 amps	SPECIAL OPTIONS
Working Voltage	300-600 V dc	Right angles; flange mounts;
Withstanding Voltage	1500 V dc	dummies; field installable
Contact Resistance	Various	
WIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	13,500 psi	
Unmated	13,500 psi	
Temperature Range	20 ⁰ F to 200 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$85.00 to \$1200.00
Expected Life	1-20 yr	MANUFACTURER :
Vibration		Brantner/Kochester
Physical Shock		SERIES:
Corrosion		XSL, XSQ, MSS, MNM, etc.

E

۲Y ۱

ter l

5

1.4.4

Î

1. 1

6

.

Ľ

3

Shell Boot/Jacket	For Standard Characteristics See Kintec MS Connectors Series LP
Contacts & Plating	
Inculation	
Insulator Coupling Ding/Nut	
Coupling Ring/Nut	
INNECTOR SIZE	POLAKIZING METROD
Max. Length (Assembled)	
Maximum Diameter*	
INTACTS	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Between Cable & Assembly:
Size Range	Between Contacts & Wire:
Number Range	
EALING DESIGNS	SPECIAL DESIGN FEATURES
Plug to Receptacle	
Cable to Plug	
Contact Seal	
Receptacle to Bulkhead	
LECTRICAL CHARACTERISTIC	s
Max. Current Capacity	SPECIAL OPTIONS
Working Voltage	
Withstanding Voltage	
Contact Resistance	
NVIRONMENTAL CHARACTERIS	
Hydrostatic Pressure	
Range:	RECOMMENDED ZONES OF APPLICATION
Mated	
Unmated	
Temperature Range	
Durability:	APPROXIMATE PRICE RANGE
Number of Cycles	
Expected Life	NANUFACTURER :
Vibration	Kintec, Inc.
Physical Shock	SERIES:
Corrosion	IP - Dressume Relanged Oil Pilt

ABRAR BRAR BRAR BRAR STAT

Ø

1 |-|-

N) N)

133J

32

ľ.

NI

A...

1

È

2

Shell	Various Adapters, Clamps, Tubing	
Boot/Jacket	Breakouts Available for Use with O'Brien C117, C126, C127	
Contacts & Flating	Connectors	
Insulator	Son Catalogue	
Coupling Ring/Nut		
DNNECTOR TIZE	POLARIZING METHOD	
Max. Length (Assembled)		
Maximum Diameter*		
DNTACTS	STRAIN RELIEF METHODS	
Termination (Cable to Contact)	Between Cable & Assembly:	
Size Range	Between Contacts & Wire:	
Number Range		
EALING DESIGNS	SPECIAL DESIGN FEA DIRES	
Plug to Receptacle		
Cable to Plug		
Contact Seal		
Receptacle to Bulkhead		
ECTRICAL CHARACTERISTICS		
Max. Current Capacity	SPECIAL OPTIONS	
Working Voltage		
Withstanding Voltage		
Contact Resistance		
WIRONMENTAL CHARACTERIST		
Hydrostatic Pressure		
Range:	RECOMMENDED ZONES OF APPLICATION	
Mated		
Unmated		
Temperature Range		
Durability:	APPROXIMATE PRICE RANGE	
Number of Cycles		
Expected Life	MANUFACTURER :	
Vibration	D.G. O'Brien, Inc.	
Physical Shock	SERIES:	
Corrosion	C40 Fluid-filled Cable Assemblies	

減く

Ň

[}

X

5

53

() }

8

STANDARD MATERIALS		
Shell		
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper - Plating Optional	
Insulator		
Coupling Ring/Nut	S.S. or Delrin	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	3-3/4"	Pins; alternate pin arrangements
Maximum Diameter*	3-1/2"	available
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	20, 16, 12, 8, 4, 0, 0000	Petween Contacts & Wive:
Number Range	1-8	Service Loop on 51E, F
SEALING DESIGNS		SDECTAL DESIGN FEATURES
Plug to Receptacle	Interference	SPECIAL DESIGN FEATORES
Cable to Plug	Injection Molding	connector; pressure balanced
Contact Seal	Interference	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	7-1/2 to 175 amps	SPECIAL OPTIONS
Working Voltage	115 to 440 V dc	Various shell materials and designs, contact materials, formulation
Withstanding Voltage	1200 V dc	(e.g., silicon hypalon); wires can
Contact Resistance	5 milliohms	be combined in connectors using various sized contacts
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated	(P) 20,000; (R) 3,000	
Temperature Range	-40° F to 165° F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	\$18.00 to \$240.00
Expected Life	3 yr	MANUFACTURER :
Vibration		Electro
Physical Shock		SERIES:
Corrosion		51 E, F, H, L
*		

Including liex Nut or Coupling Ring

UNITE SEAS OF ABLE ALLER.

CATALOGUE PAGE

(63) |\ |[_3

Ļ

•

З L

ß

N.

Shell	S.S.	
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper - Pla	ting Optional
Insulator	Various	
Coupling Ring/Nut	S.S. or Delrin	
ONNECTOR SIZE	Ţ	POLARIZING METHOD
Max. Length (Assembled)	2-7/16" to 6 1/4"	Pins; alternate pin arrangements
Maximum Diameter*	3-1/2"	available
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	18, 16, 8, 4, 1	Between Contacts & Wire:
Number Range	1-8	None
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Interference	
Cable to Plug	Injection Molding	"Watermate" underwater mateable
Contact Seal	Interference	connector; pressure balanced
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS	5	
Max. Current Capacity	7-1/2 to 175 amps	SPECIAL OPTIONS
Working Voltage	135 to 440 V de	Locking Sleeves
Withstanding Voltage	230 to 880 V dc	
Contact Resistance	5 milliohms	
INVIRONMENTAL CHARACTERIS	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	(P) 10,000;(R) 3,000	
Temperature Range	-40°F to 165°F	l
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	500	\$40.00 to \$240.00
Expected Life	3 yr	NANUFACTURER :
Vibration		Electro
Physical Shock		SERIES:
Corrosion		53 E, F, H, L: Male and Female Bulkhead Receptac
Including Hex Nut or Cou	pling Ring	CATALOGUE

С,

5

Ţ,

555

Y.H

 \mathcal{G}

STANDARD MATERIALS	1	
Shell	Brass	
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper	
Insulator	Various	
Coupling Ring/Nut	None	
CONNECTOR SIZE	·····	POLARIZING METHOD
Max. Length (Assembled)	1-13/16"	
Maximum Diameter*	3/4"	None
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contect)	Solder	Between Cable & Assembly:
Size Range	18, 16	Retween Contacts & Wire
Number Range	1-2	between contacts 4 wile.
SEALING DESIGNS	T	
Plug to Receptacle	Interference	SPECIAL DESIGN FEATURES
Cable to Plug	Injection Molding	"Watermate" underwater mateable
Contact Seal	Interference	pressure balanced
Receptacle to Bulkhead	Skirt Seal	
ELECTRICAL CHARACTERISTICS	۵/	
Max. Current Capacity	7-1/2 to 15 amps	SPECIAL OPTIONS
Working Voltage	110-230 V dc	
Withstanding Voltage		
Contact Resistance	5 milliohms	
ENVIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated	(P)10,000; (R)3,000	
Temperature Range	-40° F to 165° F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$36.00 to \$38.00
Expected Life		MANUFACTURER :
Vibration		Electro
Physical Shock		SERIES:
Corrosion		59 E, F

Including Hex Nut or Coupling Ring

CATALOGUE PAGE

v

UM

Shell	S.S.	
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper	
Insulator	Various	
Coupling Ring/Nut	None	
NNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	4-7/8"	None
Maximum Diameter*	1-3/4"	None
NTACTS		STRAIN RELIEF METHODS
Termination (Cable to	Solder	Between Cable & Assembly:
Size Pange	8.1	None
Number Bange		Between Contacts & Wire:
		None
RLING DESIGNS	Interformer	SPECIAL DESIGN FEATURES
Cable to Receptatie	Incerterence	"Watermate" underwater mateable
Cable to Plug	Injection Molding	connector; right angle connecto
Contact Seal	Incerterence	pressure balanced
Receptacie to buikneau	Skirt Seal	
New Current Conneity	60 to 175 amos	SPECIAL OPTIONS
Max. Current Capacity	115 440 V do	
Working voltage	115 - 440 V dC	
withstanding voltage	5 milliohms	
LONTACT KESISTANCE		
VIRUNMENTAL CHARACTERIS		
Range:		RECOMMENDED ZONES OF APPLICATION
Nated	10,000 psi	
Unmated	(P) 10,000;(R) 3,000	
Temperature Range	-40 ⁰ F to 165 ⁰ F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$110.00 to \$140.00
Expected Life		MANIFACTINED.
Vibration		MANUTALIUKCK:
Physical Shock		Electro CEDTEC.
Cumpeion		50 H 1

Including Hex Nut or Coupling Ring

very reservery transmission and the second second restance and the second second second second second second se

E S

100 1

4.1 4.1

1955

1

Ŕ

Ě

633

È

Ĺ

UM

Shell	Brass	
Boot/Jacket	Neoprene	
Contacts & Plating	Beryllium Copper	
Insulator	Various	
Coupling Ring/Nut	None	
INNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	2-1/4"	Offset Molded in Connector
Maximum Diameter*	2-1/4"	
INTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	18, 16	Between Contacts & Wire:
Number Range	1-2	Service Loop
ALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Interference	
Cable to Plug	Injection Molding	"Watermate" underwater mateable
Contact Seal	Interference	angle connector; pressure
Receptacle to Bulkhead	Skirt Seal	balanced
ECTRICAL CHARACTERISTICS		
Max. Current Capacity	7-1/2 to 15 amps	SPECIAL OPTIONS
Working Voltage	115 - 230 Volts	20,000 psi rating; pigtails
Withstanding Voltage		
Contact Resistance	5 milliohms	
WIRONMENTAL CHARACTERIST		
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	5,000 psi	
Unmated	2 1	
Temperature Range	-40° F to 165° F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$60.00
Expected Life		MANIFACTIREP ·
Vibration		Flaction
Physical Shock		SERIES:
Corrosion]]	510 E, F

a the is a factor of the

ß

民國

Сì Ч

13

3

「日本」の人を言言之意、「日子」を書きる

CONNECTOR CLASSIFICATION

~^

Boot/Jacket	For Basic Characterist	ics, see Kintec RM Connectors
Contacts & Plating	Series HS6	
Insulator		:
Coupling Ring/Nut		
NNECTOP SIZE		POLARIZING METHOD
Max. Length (Assembled)		
Maximum Diameter*		
NTACTS	7	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly:
Size Range	2	Retween Contacts & Wire:
Number Range	1 - #10 and 1 - #14	
ALING DESIG"S		SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug		
Contact Seal		
Receptacle to Bulkhead		
ECTRICAL CHARACTERISTIC	s	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		
Withstanding Voltage		
Contact Resistance		
WIRONMENTAL CHARACTERIS	TICS	
Hydrostatic Pressure		DECOMMENDER ZONES DE ADDI LOATION
Nange .		RECOMMENDED ZONES OF AFFEICATION
linmated		
Tomperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		
Vibration		MANUFACTURER:
Physical Shock		NINTEC CEDIEC.
Corrosion		JERIEJ:
	/	HSG-2BP-UM

· r. -

8

8

()]

88

A MARKE

- - ·

CONNECTOR CLASSIFICATION

UM

Shell	Nickel Plated Naval	Brass
Boot/Jacket	Neoprene	
Contacts & Plating	None	
Insulator		
Coupling Ring/Nut	Delrin, S.S.	
CONNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)	9.02"	Denidirectional
Maximum Diameter*	1.49"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)		Between Cable & Assembly:
Size Range		Neoprene Boot
Number Range		Between Contacts & Wire:
SEALING DESIGNS	· · · · · · · · · · · · · · · · · · ·	
Plug to Receptacle	None	SPECIAL DESIGN FEATURES
Cable to Plug	Neoprene Boot	Designed for audio frequency
Contact Seal	None	or 600 ohm source and load
Receptacle to Bulkhead	2 O-rings	impedances; magnetic shielding
LECTRICAL CHARACTERISTICS	\$\$	
Max. Current Capacity	Power 10 watts	SPECIAL OPTIONS
Working Voltage	9 to 75 V (rms)	
Withstanding Voltage	,	
Contact Resistance		
ENVIRONMENTAL CHARACTERIS		
Hydrostatic Pressure		PECOMMENDED ZONES OF ADDITION
Mated	$150 h \sigma/cm^2$	RECOMPLIADED ZONES OF APPEICATION
Immated	150 kg/cm^2	Data transmission, telephone
Tampersture Range	$-2^{\circ}C$ to $55^{\circ}C$	computer intertacing
Durahili + 1	-2 0 00 55 0	
Numinan of Cyclor		AFFROATMATE FRICE KANGE
Expected Life		
Vibration		MANUFACTURER:
Dhusion) Check		Pelcon Limited (Stewart & Steven Oiltools, Inc., Houston)
rnysical snock		SERIES:
COTTOSION	l	ACC 150 Inductive Courters

CONNECTOR (PRODUCT MATRIX UM CLASSIFICATION STANDARD MATERIALS Shell Epoxy Coated S.S., 316 Boot/Jacket Neoprene or Polyurethane Contacts & Plating None Insulator Coupling Ring/Nut Delrin, S.S. POLARIZING Y THOD CONNECTOR SIZE 7.480" Max. Length (Assembled) **Omnidirectional** 1.967" Maximum Diameter* CONTACTS (STRAIN RELIEF METHODS Termination (Cable to Between Cable & Assembly: Contact) Neoprene Boot Size Range Between Contacts & Wire: Number Range SEALING DESIGNS/ SPECIAL DESIGN FEATURES Plug to Receptacle Applications with matched 50 or Cable to Plug Potting, Boot 150 ohm source and load Contact Seal impedances; magnetic shielding Receptacle to Bulkhead 2 O-rings ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS, Max. Current Capacity Power: 25, 100 watts 35 to 150 V (rms) Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION Range: 350 kg/cm^2 Matel Low and medium level power and Unmated 350 kg/cm^2 instrumentation applications -2°C to 55°C Temperature Range Durability: APPROXIMATE PRICE RANGE Number of Cycles Expected Life MANUFACTURER : Vibration Pelcon Limited (Stewart and Stevenson Oiltools, Inc., Houston) Physical Shock SERIES: Corrosion FMEP 350 Inductive Couplers Including Hex Nut or Coupling Ring CATALOGUE

vii

PAGE

Ň

R

R

22.23 22.23

L. J

<u>R</u>

S.

5 () S

Shell	S.S. (AiSi 316L)	
Boot/Jacket		
Contacts & Plating	Brass - Gold	
Insulator	Neoprene	
Coupling Ring/Nut	Glass-filled Thermo	plastic
INNECTOR SIZE	T	POLARIZING METHOD
Max. Length (Assembled)	Crimp	
Maximum Diameter*		
INTALTS	Т	STRAIN RELIEF METHODS
Tern'nation (Cable to Contact)	Crimp	Between Cable & Assembly:
Size Range	2.5 mm dia.	Between Contacts & Wire
Number Range	1	
EALING DESIGNS	T	SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug		
Contact Seal		
Receptacle to Bulkhead		
LECTRICAL CHARACTERISTIC	5 <i>,</i>	
Max. Current Capacity	23 amps	SPECIAL OPTIONS
Working Voltage	250 V (rms)	
Withstanding Voltage	1500 V (rms)	
Contact Resistance	<10 milliohms	
WIRONMENTAL CHARACTERIS	rics	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	300 bars	
Unmated		
Temperature Range	-30°C to 70°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		
Vibration		Souriau, San Diego
Physical Shock		SERIES:
Corrosion		Souriau 880E

Including Hex Nut or Coupling Ring

CATALOGUE PAGE Vii

Ņ

6243

R7

) 12

ES

88

, o , o

UM

STANDARD MATERIALS	· · · · · · · · · · · · · · · · · · ·	
(She11	Thermoplastic	
Boot/Jacket		
Contacts & Plating	Copper Alloy - Gold	
Insulator	Polychloroprene	
Coupling Ring/Nut	Thermoplastic or S.S.	
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	4.65"	
Maximum Diameter*	3.0"	Keys
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Molding
Size Range	14	Between Contacts & Wire:
Number Range	1-9	Molding
SEALING DESIGNS	[]	SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug	Molded	Underwater mateable; pressure compensating diaphragm
Contact Seal	Fluorosilicone	
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS	<u></u>	
Max. Current Capacity	20 amps	SPECIAL OPTIONS
Working Voltage	600 V ac (rms)	S.S. or titanium shells optional;
Withstanding Voltage		Bulkhead or in-line receptacles;
Contact Resistance		scrarghe of fight angle plugs
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated	20,000 psi	
Temperature Range	-40°C to 125°C	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles	Approx. 100	\$100.00
Expected Life	Approx. 5 yr	MANUFACTURER
Vibration		Viking Industries, Inc.
Physical Shock		SERIES:
Corrosion		Pisces - Underwater Mateable

*Including Hex Nut or Coupling Ring

CATALOGUE PAGE vii Descented and the second s

N N JEL

S

R

È.

É

602

TANDARD MATERIALS	
Shell	See Catalogue for Information on CEL 1, 2, and 3 Wet Connectors
Boot/Jacket	
Contacts & Plating	
Insulator	
Coupling Ring/Nut	
CONNECTOR SIZE	POLARIZING METHOD
Max. Length (Assembled)	
Maximum Diameter*	
ONTACTS	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Between Cable & Assembly:
Size Range	Between Contacts & Wire:
Number Range	
EALING DESIGNS	SPECIAL DESIGN FEATURES
Plug to Receptacle	
Cable to Plug	_
Contact Seal	
Receptacle to Bulkhead	
LECTRICAL CHARACTERISTICS	<u></u>
Max. Current Capacity	SPECIAL OPTIONS
Working Voltage	
Withstanding Voltage	
Contact Resistance	
INVIRONMENTAL CHARACTERISTICS	
Hydrostatic Pressure Range:	RECOMMENDED ZONES OF APPLICATION
Mated	
Unmated	
Temperature Range	
Durability:	APPROXIMATE PRICE RANGE
Number of Cycles	
Expected Life	
Vibration	MANUFACTURER:
Physical Shock	CED TEC
Corrosion	DEKIES:
	NCEL 1, 2, 3 Wet Connectors

Including Hex Nut or Coupling Ring

CATALOGUE PAGE Vii

CONNECTOR CLASSIFICATION MISC

STANDARD MATERIALS	1	
Shell	S.S.	
Boot/Jacket		
Contacts & Plating		
Insulator	Insulator-Seals: Lav	a; Teflon; Neoprene or Viton
Coupling Ring/Nut	s.s.	
CONNECTOR SIZE	T	POLARIZING METHC.
Max. Length (Assembled)	3-5/8"	
Maximum Diameter*	1-1/8"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)		Between Cable & Assembly:
Size Range	24, 20, 14, 8	Between Contacts & Wire
Number Range	1-16	Netwoon Contacts 4 MILE.
SEALING DESIGNS		SPECIAL DESIGN REATURES
Plug to Receptacle		STECRE DESIGN TEATORES
Cable to Plug	Torque Compression	Low voltage multiple bare wire
Contact Seal	Torque Compression	sealing; reusable fitting
Receptacle to Bulkhead	Torque Compression	
ELECTRICAL CHARAC FERISTICS	······	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage	Millivolt range	See catalogue for additional
Withstanding Voltage		glands and sealing materials
Contact Resistance		
ENVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated		applications
Temperature Range	-300°F to 1850°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		
Vibration		Conax Corporation
Physical Shock		SERTES.
Corrosion		TC1 Trongluger Clard

Including Hex Nut or Coupling Ring

1970) 1970) 1970)

R.

E.

Ŋ

CATALOGUE PAGE

iv

23

SQ.

S

. 23

573 173

83

ų S

CONNECTOR CLASSIFICATION MISC

STANDARD MATERIALS		
Shell	S.S.	
Boot/Jacket	Neoprene	
Contacts & Plating	Brass	
Insulator	Various	
Coupling Ring/Nut	None	·
CONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	3-1/8"	
Maximum Diameter*	1-1/4"	
CONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Solder	Between Cable & Assembly: Molding
Size Range	18 (others optional)	Between Contacts & Wire:
Number Range	1-12	
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle		
Cable to Plug	Injection Molding	See catalogue for additional switches and junction boxes.
Contact Seal		
Receptacle to Bulkhead	0-ring	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	7-1/2 amps	SPECIAL OPTIONS
Working Voltage	115 V dc	Additional pins and pin sizes;
Withstanding Voltage		additional shell materials.
Contact Resistance		
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	20,000 psi	
Unmated		
Temperature Range		
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$32.00 to \$60.00
Expected Life		MANUFACTURER :
Vibration		Electro.
Physical Shock		SERIES: 41-Penetrator
Corrosion		

^{*}Including Hex Nut or Coupling Ring

CATALOGUE PAGE

v

`	· · · · · ·	
PRODUCT]	MATRIX	CONNECTOR CLASSIFICATION
TANDARD MATERIALS	T	······································
Shell	S.S.	
Boot/Jacket	Molded Neoprene	•
Contacts & Plating	Feedthru Alloy 52 or	Copper - Gold
Insulator	Glass Epoxy or Glass	Header
Coupling Ring/Nut	S.S. Jam Nuts	
ONNECTOR SIZE		POLARIZING METHOD
Max. Length (Assembled)	6''	
Maximum Diameter*	3"	
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to		Between Cable & Assembly:
Contact)		Molded Boot
Size Range	22, 20, 16, 12, 8, 4, 0	Between Contacts & Wire:
Number Range	1-36	
EALING DESIGNS	<u> </u>	SPECIAL DESIGN FEATURES
Plug to Receptacle	2 O-rings	
Cable to Flug	Molded Neoprene	
Contact Seal	Header Assemblies	
Receptacle to Bulkhead	0-ring	
LECTRICAL CHARACTERISTICS		
Max. Current Capacity	3 to 200 amps	SPECIAL OPTIONS
Working Voltage	600 V dc	Shells of brass, aluminum, monel
Withstanding Voltage	1000 V dc	moldings of buna, viton, poly-
Contact Resistance		urethane
NVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure		
kange:		RECOMMENDED ZONES OF APPLICATION
Mated	10,000 psi	
Unmated	400E to 2500E	
Tomperature Range	-40°r to 250°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life	5 yr	MANUFACTURER:
Vibration		Gienair, Inc.
Physical Shock		SERIES:
Corrosion		GLW70-Penetrators

Including Hex Nut or Coupling Ring

8.6 } .641

X

N.

8

22

L.S.

CATALOGUE PAGE

v

·.`

2

Shell	Steel Allow on S.S.	
Boot / Jacket	00001 A1109 01 3.3.	
Contacte & Plating		· ·
Inculator	Teflon: Grease	
Coupling Bing/Nut	Terron, Grease	
ONNECTOR SIZE		
Max Length (Assembled)	1011 +0 1711	FOLARIZING METIND
Maximum Diamatont		
	1//8" to 3-1/2"	STRATH DELTER METHOD C
Termination (Cable to		Rath Relief Methods
Contact)		between Cable & Assembly:
Size Range		Coiled Spring
Number Range	1-7	between Contacts & Mire:
EALING DESIGNS		SPECTAL DECTON FRAMINES
Plug to Receptacle		SPECIAL DESIGN FEATORES
Cable to Plug		See Catalogue
Contact Seal		occ Gatalogue
Receptacle to Bulkhead		
LECTRICAL CHARACTERISTICS		
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		
Withstanding Voltage		
Contact Resistance		
NVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	15,000 psi	
Unmated	0	Down-hole logging
Temperature Range	to 300°F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life		MANUFACTURER :
Vibration		Gearhart-Owen Ind., Inc.
Physical Shock		SERIES:

PRODUCT N	IATRIX CLASSIFICATION
TANDARD MATERIALS	
Shell	For Hexcel Cable Splicing Systems see catalogue
Boot/Jacket	for monoor cubic opricing bystoms, see catalogue.
Contacts & Plating	
Insulator	
Coupling Ring/Nut	
ONNECTOR SIZE	POLARIZING METHOD
Max. Length (Assembled)	
Maximum Diameter*	
ONTACTS	STRAIN RELIEF METHODS
Termination (Cable to Contact)	Between Cable & Assembly:
Size Range	Between Contacts & Wire:
Number Range	
EALING DESIGNS	SPECIAL DESIGN FEATURES
Plug to Receptacle	
Cable to Plug	
Contact Seal	
Receptacle to Bulkhead	
LECTRICAL CHARACTERISTICS	
Max. Current Capacity	SPECIAL OPTIONS
Working Voltage	
Withstanding Voltage	
Contact Resistance	
INVIRONMENTAL CHARACTERISTI	
Hydrostatic Pressure	
Range:	RECOMMENDED ZONES OF APPLICATION
Mated	
Unmated	
Temperature Range	
Durability:	APPROXIMATE PRICE RANGE
Number of Cycles	
Expected Life	MANUFACTURER :
Vibration	Hexcel, Inc.
Physical Shock	SERIES:

.

CONNECTOR PRODUCT MATRIX MISC CLASSIFICATION STANDARD MATERIALS She11 K-Mone1 Boot/Jacket (P) Polyethylene; (R) Polyurethane (P) Molybdenum: Au over Cu over Ag; (R) Au over Ag Contacts & Plating (P) Glass (R) Glass Reinforced Epoxy, Silicone Insulator Coupling Ring/Nut Aluminum Bronze POLARIZING METHOD CONNECTOR SIZE Max. Length (Assembled) 27.75" Keys 5.88" Maximum Diameter* STRAIN RELIEF METHODS CONTACTS (Termination (Cable to Between Cable & Assembly: Crimp Contact) Clamp; Bonded Polyurethane 20 Size Range Between Contacts & Wire: 36. Number Range Plotting SEALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle 0-ring, radial Intermelted seal between outboard Bonded Polyurethane Cable to Plug polyethylene cable jackets and outboard side of penetrator Contact Seal Glass Receptacle to Bulkhead O-ring ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity 7.5 amps Other contact sizes and complements Working Voltage 300 Volts available on special order 100 Volts Withstanding Voltage 70 milliohms Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: RECOMMENDED ZONES OF APPLICATION Mated 2,000 psi Carrying signals through pressure walls at depths less than 2,000 psi Unmated 4,000 feet -22°F to 140°F **Temperature** Range APPROXIMATE PRICE RANGE Durability: 100 Number of Cycles \$5000 in production quantities 20 yr Expected Life MANUFACTURER : Vibration MIL-STD-167 (I) ITT Cannon Electric, Phoenix MIL-S-901 (A-1-A)

SERIES:

H 104286-2: Penetrator

Including Hex Nut or Coupling Ring

Resistant

Physical Shock

Corrosion

Ě

N

N

N

State States

CATALOGUE vi PAGE

• • •

CONNECTOR CLASSIFICATION MISC

4.

.

STANDARD MATERIALS		·····
She11	Receptacle: Aluminum	A11oy 7075T6
Boot/Jacket		•
Contacts & Plating	Leaded Brass - Gold (termination end); Butt-type - Gold
Insulator	Front: KEL-F81 Mat1:	(engaging end) Rear: Glass Hermetic with B) 113 Stool
Coupling Ring/Nut	,	
CONNECTOR SIZE	······································	POLARIZING METHOD
Max. Length (Assembled)	1.900"	
Maximum Diameter*	3.860"	LOCK Ring & Pins
CONTACTS		STRAIN RELIEF METHONS
Termination (Cable to Contact)	Crimp	Between Cable & Assembly:
Size Range	20	Retween Contacts & Wino.
Number Range	65	None
SEALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	Interfacial Butt	SPECIAL DESIGN FEATURES
Cable to Plug		Removable contact inserts;
Contact Seal	0-rings	at engaging face
Receptacle to Bulkhead	0-rings	
ELECTRICAL CHARACTERISTICS		
Max. Current Capacity	5.5 to 9.2 amps	SPECIAL OPTIONS
Working Voltage	28 - 115 Volts	Special butt type termination
Withstanding Voltage	700 - 750 Volts	for contacts
Contact Resistance	500 milliohms	
ENVIRONMENTAL CHARACTERIST	ICS	
Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Mated	2000 psi	Undersee Bulkherd There
Unmated	2000 psi	ondersea burknead Type
Temperature Range	-20° F to 130° F	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		\$450.00 in 500 piece lots
Expected Life	5 to 10 yr	MANIFACTURER
Vibration	MIL-STD-167 (1)	ITT Cannon Electric Discrite
Physical Shock	6g + 0.6g, 8 + 1 msec	SERIES:
Corrosion		Torpedo Receptacle: Navy P/N 758008
*		(111 P/N GM100222-105)

Including Hex Nut or Coupling Ring

823

CATALOGUE N/A PAGE N/A

CONNECTOR PRODUCT MATRIX CLASSIFICATION MISC STANDARD MATERIALS She11 Monel K-500 Boot/Jacket Contacts & Plating Molybdenum ~ Gold (one end), Leaded NiCu - Gold (other end) MIL-R-6855 Molded Rubber (one end); Polyurethane 059333, CL.A (other end) Insulator Coupling Ring/Nut CONNECTOR SIZE POLARIZING METHOD Max. Length (Assembled) 4.598" Keys Maximum Diameter* 5.00" CONTACTS / STRAIN RELIEF METHODS Termination (Cable to Between Cable & Assembiy: Contact) 16 Size Range Between Contacts & Wire: Number Range 65 SEALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle Peripheral O-ring Cable to Plug Removable Contact Inserts Glass Contact Seal Receptacle to Bulkhead 0-ring ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS, 5.5 to 9.2 amps Max. Current Capacity Similar receptacles for SUBROC Working Voltage 28-115 V Harpoon Missiles 700-750 V Withstanding Voltage Contact Resistance 500 milliohms ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION Range: Mated 3,000 psi Undersea Bulkhead 3,000 psi Unmated -20°F to 130°F **Temperature Range** APPROXIMATE PRICE RANGE Durability: Number of Cycles \$1,100.00 in 500 piece lots Expected Life 20 yr **MANUFACTURER:** MIL-STD-167 (I) Vibration ITT Cannon Electric, Phoenix Physical Shock MIL-S-901 SERIES: Tube Door Receptacle: Navy P/N 2865440 (ITT Cannon P/N 6M102405-4) Corresion

Including Hex Nut or Coupling Ring

R

R

k

Ę.

CATALOGUE N/A

Shell See ITT Cannon Catalogue for Information on Fiber Optics Boct/Jacket Cable and Connectors. Contacts & Plating Insulator Coupling Ring/Nut POLARIZING METHOD Max. Length (Assembled) Maximum Diameter* DNNACTS POLARIZING METHOD Termination (Cable to Contact) STRAIN RELIEF METHODS DELING DESIGNS Between Cable & Assembly: Plug to Receptacle SPECIAL DESIGN FEATURES Contact Seal SPECIAL DESIGN FEATURES Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Contact Resistance RECOMMENTAL CHARACTERISTICS Hydrostatic Pressure Rage: Maxted Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Exported Life Wibration Vibration ITT Canhon	PRODUCT N	IATRIX	CONNECTOR MI CLASSIFICATION
Shell See ITT Cannon Catalogue for Information on Fiber Optics Cable and Connectors. Contacts & Plating Insulator Connectors. Contacts & Plating Insulator POLARIZING METHOD Coupling Ring/Nut STRAIN RELIEF METHODS Max. Length (Assembled) Strain Relief METHODS Maximum Diameter* Strain Relief METHODS Number Range Strain Relief METHODS Setween Cable & Assembly: Between Contacts & Wire: Number Range SPECIAL DESIGN FEATURES Flug to Receptacle SPECIAL DESIGN FEATURES Contact Seal SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Contact Resistance SPECIAL OPTIONS Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Vibration Vibration ITT Cannon	TANDARD MATERIALS		
Boct/Jacket Cable and Connectors. Contacts & Plating Cable and Connectors. Contacts & Plating Insulation of Fiber Optics Contacts & Plating PolARIZING METHOD Insulator Coupling Ring/Nut ONNECTOR SIZE PolARIZING METHOD Max. Length (Assembled) STRAIN RELIEF METHODS Maximum Diameter* STRAIN RELIEF METHODS Stream Between Cable & Assembly: Contact) Between Contacts & Wire: Number Range Between Contacts & Wire: Number Range SPECIAL DESIGN FEATURES Plug to Receptacle Cable and Connectors. Cable to Plug Contact Seal Receptacle to Bulkhead SPECIAL DESIGN FEATURES LECTRICAL CHARACTERISTICS SPECIAL OPTIONS Withstanding Voltage SPECIAL OPTIONS Withortal CHARACTERISTICS RECOMMENDED ZONES OF APPLICATION Mated Ummated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Wibration Vibration ITT Cannon	She11	See ITT Cannon Catal	logue for Information on Fibon Ontion
Contacts & Plating Insulator Coupling Ring/Nut DNNECTOR SIZE Max. Length (Assembled) Maximum Diameter* CONTACTS Termination (Cable to Contact) Size Range Number Range Between Cable & Assembly: Between Contacts & Wire: Number Range SHALING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead LIECTRICAL CHARACTERISTICS Marked Withstanding Voltage Contact Resistance INVIRONMENTAL CHARACTERISTICS Marked Ummated Temperature Range Durability: Number of Cycles Expected Life Vibration Vibration	Bost/Jacket	Cable and Connectors	s.
Insulator Coupling Ring/Nut DONNECTOR SIZE Max. Length (Assembled) Maximum Diameter* DONTACTS Termination (Cable to Contact) Size Range Number Range SELLING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Pressure Range: NWIROMENTAL CHARACTERISTICS Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration NURCOMENTAL CHARACTERISTICS Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Mated Vibration Mated Vibration Maxed Vibration Maxed Vibration Mated Vibration	Contacts & Plating		
Coupling Ring/Nut CONNECTOR SIZE Max. Length (Assembled) Maximum Diameter* CONTACTS Contact) Size Range Number Range EALING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Contact CHARACTERISTICS SPECIAL OPTIONS SPECIAL OPTIONS SPECIAL OPTIONS SPECIAL OPTIONS SPECIAL OPTIONS Max. Current Capacity Working Voltage Contact Resistance SNVIROMENTAL CHARACTERISTICS Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Vibration	Insulator		
ONNECTOR SIZE POLARIZING METHOD Max. Length (Assembled) Maximum Diameter* ONTACTS STRAIN RELIEF METHODS Termination (Cable to Contact) STRAIN RELIEF METHODS Size Range Between Cable & Assembly: Number Range Between Contacts & Wire: Number Range SPECIAL DESIGN FEATURES Plug to Receptacle SPECIAL DESIGN FEATURES Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS NURDOMENTAL CHARACTERISTICS RECOMMENDED ZONES OF APPLICATION Mated Ummated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Wibration	Coupling Ring/Nut		
Max. Length (Assembled) Maximum Diameter* ONTACTS Termination (Cable to Contact) Size Range Number Range EALING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead LLECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Contact Resistance NVIROMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	ONNECTOR SIZE		POLARIZING METHOD
Maximum Diameter* ONTACTS Termination (Cable to Contact) Size Range Number Range EALING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead LLECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	Max. Length (Assembled)	•	
ONTACTS STRAIN RELIEF METHODS Termination (Cable to Contact) Strain Relief METHODS Size Range Between Cable & Assembly: Number Range Between Contacts & Wire: EALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle Contact Seal Receptacle to Bulkhead SPECIAL OPTIONS LECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Withstanding Voltage SPECIAL OPTIONS Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Wibration Vibration ITT Cannon	Maximum Diameter*		
Termination (Cable to Contact) Between Cable & Assembly: Size Range Number Range EALING DESIGNS Between Contacts & Wire: Flug to Receptacle SPECIAL DESIGN FEATURES Contact Seal SPECIAL DESIGN FEATURES Receptacle to Bulkhead SPECIAL OPTIONS LECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Contact Resistance SPECIAL OPTIONS ENVIRONMENTAL CHARACTERISTICS RECOMMENDED ZONES OF APPLICATION Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Wibration	ONTACTS		STRAIN RELIEF METHODS
Size Range Between Contacts & Wire: Number Range SPECIAL DESIGNS EALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle SPECIAL DESIGN FEATURES Cable to Plug SPECIAL DESIGN FEATURES Contact Seal SPECIAL OPTIONS Receptacle to Bulkhead SPECIAL OPTIONS LECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Withstanding Voltage SPECIAL OPTIONS NURONMENTAL CHARACTERISTICS SPECIAL OPTIONS Hydrostatic Pressure Range: Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life MANUFACTURER: Vibration ITT Cannon	Termination (Cable to Contact)		Between Cable & Assembly:
Number Range EALING DESIGNS Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	Size Range		Between Contacts & Wire:
EALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle SPECIAL DESIGN FEATURES Cable to Plug SPECIAL DESIGN FEATURES Contact Seal Receptacle to Bulkhead LECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Withstanding Voltage SPECIAL OPTIONS Contact Resistance SPECIAL OPTIONS ENVIRONMENTAL CHARACTERISTICS RECOMMENDED ZONES OF APPLICATION Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life Wibration	Number Range	J	
Plug to Receptacle Cable to Plug Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	EALING DESIGNS	7	SPECIAL DESIGN FEATURES
Cable to Plug Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance INVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	Plug to Receptacle		
Contact Seal Receptacle to Bulkhead ELECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Kecommended Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Kecommended ManufactureR: ITT Cannon	Cable to Plug		
Receptacle to Bulkhead LLECTRICAL CHARACTERISTICS Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration	Contact Seal		
ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS Max. Current Capacity SPECIAL OPTIONS Working Voltage SPECIAL OPTIONS Withstanding Voltage SPECIAL OPTIONS Contact Resistance SPECIAL OPTIONS ENVIRONMENTAL CHARACTERISTICS Recommended Hydrostatic Pressure Range: Mated Unmated Temperature Range APPROXIMATE PRICE RANGE Durability: Number of Cycles Expected Life MANUFACTURER: Vibration ITT Cannon	Receptacle to Bulkhead	J	
Max. Current Capacity Working Voltage Withstanding Voltage Contact Resistance INVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Mated ITT Cannon	LECTRICAL CHARACTERISTICS		SPECIAL OPTIONS
Working Voltage Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION APPROXIMATE PRICE RANGE MANUFACTURER: ITT Cannon	Max. Current Capacity		
Withstanding Voltage Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION APPROXIMATE PRICE RANGE MANUFACTURER: ITT Cannon	Working Voltage		
Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration RECOMMENDED ZONES OF APPLICATION RECOMMENDED ZONES OF APPLICATION RECOMMENDED ZONES OF APPLICATION RECOMMENDED ZONES OF APPLICATION RECOMMENDED ZONES OF APPLICATION ITT Cannon	Withstanding Voltage		
INVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration ITT Cannon	Contact Resistance		•
Hydrostatic Pressure Range: Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration ITT Cannon	NVIRONMENTAL CHARACTERISTI	.cs	
Mated Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration ITT Cannon	Hydrostatic Pressure Range:		RECOMMENDED ZONES OF APPLICATION
Unmated Temperature Range Durability: Number of Cycles Expected Life Vibration ITT Cannon	Mated		
Temperature Range Durability: Number of Cycles Expected Life Vibration ITT Cannon	Unmated		
Durability: Number of Cycles Expected Life Vibration ITT Cannon	Temperature Range		
Number of Cycles Expected Life Vibration ITT Cannon	Durability:		APPROXIMATE PRICE RANGE
Expected Life MANUFACTURER: Vibration ITT Cannon	Number of Cycles		
Vibration ITT Cannon	Expected Life		
ITT Cannon	Vibration		INTUCAULUNEN;
Physical Shock SERTES.	Physical Shock		SERTES:
Corresion Fiber Optics Undersea Data	Corresion		Fiber Optics Undersea Data

ALLE LONISLICS A NUMBER ADDRESS

CONNECTOR PRODUCT MATRIX MISC CLASSIFICATION STANDARD MATERIALS 316 S.S.; Anodized A1; Brass (special) She11 Boot/Jacket Neoprene Molding Compound Contacts & Plating Brass - Gold Kintec, Inc. K-500 Insulator Coupling Ring/Nut -POLARIZING METHOD CONNECTOR SIZE 2.0" to 8.0" Max. Length (Assembled) .75" to 2.50" Maximum Diameter* STRAIN RELIEF METHODS CONTACTS (* Termination (Cable to Between Cable & Assembly: Solder Contact) Hard Encapsulation Size Range 16, 14, 12, 10, 8, 4, 2, 0, Between Contacts & Wire: 00 1-40 Number Range Hard Encapsulation SEALING DESIGNS SPECIAL DESIGN FEATURES Plug to Receptacle Neopr., Plyuret. mold Cable to Plug Shielding device; removable contact inserts; field-inst. Molding Contact Seal assy.; pipe plug shell design; O-ring, Pipe Plug thd Receptacle to Bulkhead secondary seal ELECTRICAL CHARACTERISTICS SPECIAL OPTIONS 0-600 amps Max. Current Capacity Working Voltage to 18,000 V High voltage; virtually any cable $2 \times wkg. vltg. + 1000$ Withstanding Voltage construction .5 to .25 milliohms Contact Resistance ENVIRONMENTAL CHARACTERISTICS Hydrostatic Pressure RECOMMENDED ZONES OF APPLICATION Range: Mated 20,000 psi Unmated 10,000 psi to 450°F Temperature Range Durability: APPROXIMATE PRICE RANGE Number of Cycles \$200.00 to \$6,000.00 Expected Life to 20 yr MANUFACTURER: Vibration as required Kintec, Inc. Physical Shock as required SERIES: Corrosion as required MP -- Metal Penetrator

Including Hex Nut or Coupling Ring

N

R

R

CATALOGUE Vi

P

р. ...е.

6¥6

X

83

525

A STATES AND A STATES

300

CONNECTOR MISC

ANDARD MATERIALS		
Shell		
Boot/Jacket	Tygon Tubing	
Contacts & Plating		
Insulator	Dow Corning 3140 RTV	
Coupling Ring/Nut		
ONNECTOR SIZE	· · · · · · · · · · · · · · · · · · ·	POLARIZING METHOD
Max. Length (Assembled)	Approx. 4"	
Maximum Diameter*	#4/0 to #22 Cable	
ONTACTS		STRAIN RELIEF METHODS
Termination (Cable to Contact)	Crimp	Between Cable & Assembly:
Size Range		Between Contacts & Wire:
Number Range		
EALING DESIGNS		SPECIAL DESIGN FEATURES
Plug to Receptacle	DC-3140 RTV	
Cable to Plug		Underwater cable splicing
Contact Seal	DC-3140 RTV	method see Master Catalogue
Receptacle to Bulkhead		
LECTRICAL CHARACTERISTICS	5	
Max. Current Capacity		SPECIAL OPTIONS
Working Voltage		
Withstanding Voltage		
Contact Resistance		
VVIRONMENTAL CHARACTERIST	TICS	
Hydrostatic Pressure		
Range:		RECOMMENDED ZONES OF APPLICATION
Mated	0-5000 psi	
Unmated		UII OF water environment
Temperature Range	$0^{\circ}C$ to $20^{\circ}C$	
Durability:		APPROXIMATE PRICE RANGE
Number of Cycles		
Expected Life	1 - 2 yr	MANUFACTURER :
Vibration		NCEL Port Hueneme California
Physical Shock		SERIES:

CATALOGUE PAGE

	STANDARD MATERIALS	
	Shell	See Catalogue for Mechanical Cable Terminations and
ه	Boot/Jacket	incommention on Excensive Facilities for Contract lesting.
<u>Ş</u>	Contacts & Plating	
ð	Insulator	
3	Coupling Ring/Nut	
Ľ	CONNECTOR SIZE	POLARIZING METHOD
R	Max. Length (Assembled)	
XI.	Maximum Diameter*	
נד	CONTACTS	STRAIN RELIEF METHODS
N N	Termination (Cable to Contact)	Between Cable & Assembly:
Q	Size Range	Between Contacts & Wire:
	Number Range	
T	SEALING DESIGNS	SPECIAL DESIGN FEATURES
Ś	Plug to Receptacle	
	Cable to Plug	
Ŵ	Contact Seal	
	Receptacle to Bulkhead	
8	ELECTRICAL CHARACTERISTICS	SPECIAL OPTIONS
110	Max. Current Capacity	
F	Working Voltage	
N.	Withstanding Voltage	
(HI	Contact Resistance	
R3	ENVIRONMENTAL CHARACTERISTICS	
_	Hydrostatic Pressure	RECOMMENDED ZONES OF APPLICATION
<u> </u>	Mated	
HCV	linnated	
8	Temperature Range	
80	Durability:	APPROXIMATE PRICE RANGE
(X)	Number of Cycles	
B H	Expected Life	
60	Vibration	MANUFACTURER:
	Physical Shock	control
n:=	Corrosion	SEKIES:
RR	0011002011	Dyna-Grip Electromechanical Terminations

በት የሚያስት እንዲ የሚያስት እንዲ የሚያስት እንዲ እንዲ እንዲ እንዲ የሚያስት የሚያስት የሚያ
A WARAAN AN

Section 5

したないないないない。 一部になるのであるので、 ためのないないので

1.5⁰

8

56) (

223

38⁵

TABLE OF CONTENTS

i

Section	Tile	Page
5.1	Introduction	5-1
5.1.1	Scope	5-1
5.2	Combined Custom and Standard Line Manufacturers	5-2
5.3	Custom Underwater Connector Manufacturers	5-20

Section 5

GUIDE TO UNDERWATER ELECTRICAL CONNECTOR MANUFACTURERS-STANDARD AND CUSTOM DESIGNS

5.1 Introduction

b)

Ň

S

(

8

X

8

Approximately forty organizations are involved in the commercial production of underwater electrical connectors. Several firms manufacture both standard and custom lines of connectors, while other organizations concentrate exclusively on supplying custom manufactured assemblies which meet either standard or special requirements. Lack of standardization, a high degree of specialization required for specific underwater connector applications, and exotic environments, all contribute to the fact that the connector industry is essentially still a custom design industry. Even the best known manufacturers of standard lines of underwater connectors do the bulk of their business in custom connector systems.

5.1.1 Scope

The following section includes a current compilation of companies involved in the manufacture of underwater electrical connectors. Information on the various companies--their connector lines, clientele, and research--was accumulated through the mailing of questionnaires to as many organizations as could be identified as connector manufacturers. Inevitably, some organizations will have been missed; subsequent updates of this manual should remedy any significant omissions. The first part of this section includes companies that market standard lines of connectors and that do substantial custom design in connector systems. The second part lists firms and organizations that manufacture custom underwater connector systems exclusively. The catalogues of all companies listed in the first part are contained in the Master Catalogue which is organized alphabetically. Product matrices are contained in the preceding section of this manual.

1

ан , 9,

5.2 Combined Custom and Standard Line Manufacturers

 1. BENDIX CORPORATION
 See SECTION 1 of

 Electrical Components Division
 Master Catalogue

 Sherman Avenue
 Sidney, NY 13838

 (607)-563-9511 (for information and bids)

BENDIX CORPORATION Electrodynamics Division 15825 Roxford Street Sylmar, CA 91342 (213)-367-0111

<u>Products</u>: Bendix produces a standard Aquacon line of metal shell underwater electrical connectors. The Aquacon series has a 316 stainless steel shell and offers a good selection of contact arrangements for bulkhead or in-line applications. In addition, Bendix has an extensive and ongoing research program on underwater connector theory and design; its staff has published numerous papers on problems related to the field.

Users include: EDO Corp., 13-10 111th St., College Point, NY 11356; (212)-445-6000: Bendix AP Aquacon connector series for magnetic minesweeping gear (Sea Sled Project), from mid-1974 to present.

Gen. Electric Co., 3198 Chestnut St., Philadelphia, PA 19101; (215)-823-1000: Bendix AP Aquacon connector series for diving gear (Mark 10 Rebreather Project), from 1971 to 1975. G.C. Marshall Space Flight Ctr., Huntsville, AL; (205)-453-4560: Bendix AS and AJ Aquacon connector series for Space Shuttle Recoverable Booster, from 1975 through program life.

Bendix Corporation, Electrodynamics Division, Sylmar, CA; (213)-367-0111: Bendix AL Aquacon connector series for Captor Program, from 1973 to present.

Present connector research: Since weight vs strength is becoming an important factor in deep submergence applications, the use of titanium in hermetic connectors has been undertaken with excellent results. The use of pure molybdenum contacts in hermetic connectors has provided distinct advantages over the standard 52 alloy. These include better corrosion resistance, greater rigidity and less contact resistance. A compensated, mateable underwater connector has been designed, built and tested. It will be marketed at a later date.

Information contributed by: Frank M. Hillis, Sr. Engineering Designer, Bendix (3-23-76).

 BOSTON INSULATED WIRE AND CABLE CO.
 65 Bay Street Boston, MA 02125 (617)-265-2104 (for information and bids)

States and the second second

S

Ň

、「ころうちをなるとう」、

See SECTION 2 of Master Catalogue

(West Coast) 12902 South Spring Street Los Angeles, CA 90061 (213)-532-9064 (for information and bids)

Products: BIW is an integrated cable and connector company and produces both standard and custom underwater cable terminations. BIW supplies both complete cable systems and separate cable or connector assemblies. It has a quality control system that meets MIL-Q-9858 requirements to monitor termination processes. It has a standard line of metal shell connectors, the ER and EB series, which are available with braided and laced harnass work and breakouts, and come in a variety of pin configurations and mounting arrangements. BRANTNER AND ASSOCIATES, INC. 3462 Hancock Street San Diego, CA 92110 (714)-297-2828 (for information and bids)

3.

See SECTION 3 of Master Catalogue

THE ROCHESTER CORPORATION Electro-Mechanical Division P.O. Box 312 Culpeper, VA 22701 (703)-825-2111 (for information and bids)

THE ROCHESTER CORPORATION EnviroCon Division 5725 Hartsdale Drive Houston, TX 77036 (713)-782-5350 (for information and bids)

Products: Brantner/Rochester have a combined cable and connector capability and specialize in standard and custom underwater cable and connector applications. They have one of the most extensive standard connector selections available, with metal shell, glass epoxy and rubber molded connectors; bulkhead penetrators; glass hermetics; electro-mechanical armor cable terminations; field-installable connectors; cable splices and breakouts; as well as a full range of connector accessories. They have, in addition, a selection of pressure-balanced oil-filled connector assemblies, and a new co-radial underwater mateable connector series which has not yet been catalogued.

Users include: Hydro Products, Inc., 11777 Sorrento Valley Rd., San Diego, CA 92121; (714)-453-2345: EnviroCon connectors used for underwater TV and instrumentation, from 1969 to present.

U.S. Navy, NUC, San Diego, CA; NWC, China Lake, CA; NCEL, Port Hueneme, CA; NUS, Fort Lauderdale, FL; U.S.A. Amphib. Base, San Diego, CA: EnviroCon pressurebalanced oil-filled connector series used on various projects, including CURV II and III, Swimmer Vehicles, from 1969 to present.

Ametek-Straza, 790 Greenfield Dr., El Cajon, CA; (714)-442-3451: EnviroCon pressure-balanced oilfilled connector series used on underwater vehicles and instruments.

Bunker-Ramo, Westlake Village, CA; (213)-889-2211: EnviroCon connectors used in VLAM Program. General Dynamics, San Diego, CA: EnviroCon connectors used on Monster Buoy Project.

Gould Ind., Columbus, OH; (216)-486-8300: EnviroCon connectors used on Mk 48 torpedo.

Hughes Aircraft, 1901 W. Malvern, Fullerton, CA 92634: EnviroCon connectors used on Towed Arrays 639, BQQ5.

Lockheed Missiles and Space Co., 3380 N. Harbor, San Diego, CA; (714)-298-8240: EnviroCon connectors used on Deep Quest and DSRV Projects.

Mare Is. Naval Shipyd., Vallejo, CA; Naval Coastal System Lab., Panama City, FL; Naval Torpedo Station, Keyport, WA: EnviroCon connectors for various uses.

Present connector research: Brantner and Associates are working on underwater make and break connectors which have been designed, built and tested and are now being marketed. Research and development continues on high temperature connectors and low cost metal shell connectors.

Information contributed by: L.L. (Bud) Seilhan, President, Brantner (2-27-76).

4. BURTON ELECTRICAL ENGINEERING, A Wyle Company
111 Maryland Street
El Segundo, CA 90245
(213)-322-0615 (for information and bids)

> Products: Burton manufactures underwater cable systems and connectors in both standard lines and custom designs. It markets a number of standard series of rubber molded, metal shell, hermetic and bulkhead penetrator assemblies. Some of these have been tested in accordance with test sections of MIL-C-24217 connector specifications.

5. CONAX CORPORATION S 2300 Walden Avenue M Buffalo, NY 14225 (716)-684-4500 (for information and bids)

KS .

See SECTION 5 of Master Catalogue

See SECTION 4 of

Master Catalogue

5-5

- <u>Products:</u> Markets transducer glands, powerlead pressure seals, packing glands and fittings, utilizing sealing materials which include lava, Teflon, neoprene and viton.
- 6. COMPAGNIE DEUTSCH 8 rue Henri Regnault 92-Saint Cloud France 771-64-76 (for information and bids); Telex: 260787
 - <u>Products:</u> Deutsch markets a DCI underwater connector series which comes in a wide variety of contact arrangements and mountings. It is a metal shell series and may be obtained with hermetic contact seals. Various accessories are available, including contact crimping, insertion and extraction tools.

20

Users include: French M.O.D., Atomic Submarine: Deutsch Hull Penetrator used for connection between outside antenna and inside instrumentation, from 1968 to present.

Underwater Sonar (KORMORAN Project): Deutsch connectors used at 6,000 meters depth for electrical connection between various parts of sonar equipment, from 1975 to present.

CNEXO, Route du Conquet, P.O. Box 337, Plouza NE, 29 N, Brest, France: Deutsch connectors used in Buoys Eole Program, from 1972 to 1973.

Kockums Mekaniska Verkstads Ab., 201-10 Malmo, Sweden: Deutsch connectors used in U.R.F. Rescue Submarine Project now in building stage.

Present connector research: Deutsch is working on an underwater mateable connector which may be connected and disconnected at depths of up to 1,400 meters. The UM connector will be identified as Series 934 and will be available in contact arrangements of 3-37 pins.

Information contributed by: A. Room, Deutsch (3-24-76).

See SECTION 7 of Master Catalogue

ELECTRO CORPORATION 15146 Downey Avenue Paramount, CA 90723 (213)-630-4252 (for information and bids)

Products: Electro markets the "Watermate" underwater mateable rubber molded connectors which come in several contact sizes and configurations. It also manufactures a standard series of underwater rubber molded connectors, a bulkhead penetrator series, underwater junction boxes and switches, and a field splicing kit.

Users include: Trieste II Project, Mare Island, CA: Electro connectors used for electrical power and distribution systems, from 1969 to present.

Taylor Diving and Salvage, Belle Chasse, LA: Electro connectors used in SPAR and UWH Projects for power. heaters and lights, from 1972 to present.

Present connector research: Development at Electro initiated on customer request only.

Information contributed by: Bruce Marshall, Operations, Electro (2-17-76).

EXCON, INC., 8.

7.

a in the state of the second

3

R X

8

ß

Ø.

See SECTION 8 of A Subsidiary of B-K Dynamics, Inc. Master Catalogue 215 Jupiter Street Jupiter, FL 33458 (305)-746-9619 (for information and bids)

Products: ExCon is a product specialty company which produces a number of items utilizing plastics and elastomers for encapsulation, molding and potting operations. Products such as ExCon's seismic hydrophone transducer assembly, salinity cells, and towed instrumentation are designed to withstand environmental extremes. ExCon manufactures bulkhead penetrators, underwater cable harnesses and a number of high density underwater connectors, including a 180-HD Quick Disconnect aluminum connector with 130 coaxial pins and an accompanying patchboard connector. This assembly is designed for long seismic streamer systems.
FKC ENGINEERING CO. 185 York Avenue Pawtucket, RI 02861 (401)-724-1760 (for information and bids)

9.

Products: FKC produces a wide variety of connectors and cable assemblies for underwater applications. It has the tooling to produce all Mil-Spec underwater connectors, and has produced various connector items to customer requirements for several years. FKC does not market a standard line of connectors, as such; however, it has a broad connector capability and can manufacture a full range of connector accessories. No catalogue is printed by FKC.

Users include: U.S. Navy, unspecified divisions: have used FKC underwater electrical connectors for submarine and transducer systems, from 1962 to present.

Gems--Sensors Division, Spring Lane, Farmington, CT 06032; (203)-677-1311: FKC connectors used for electrical connections on liquid level monitors, underwater, 1968 to present.

General Electric Co., HMED Division, Syracuse, NY 13201: FKC connectors used for sonar, hydrophone and transducer applications, from 1970 to present.

General Instrument, Harris ASW Division, 33 S.W. Industrial Park, Westwood, MA 02090; (617)-326-7815: FKC connectors used for sonar, hydrophone and transducer applications, 1969 to present.

Raytheon Co., Submarine Signal Division, P.O. Box 360, Portsmouth, RI 02871; (401)-847-8000: FKC connectors used for sonar, hydrophone and transducer applications, from 1972 to present.

Westinghouse Electric Corp., Aerospace and Electronic Div., Friendship International Airport, Baltimore, MD 21203; (301)-765-1000: FKC connectors used for torpedo and bulkhead interfaces, from 1968 to 1972.

Present connector research: FKC is working on a new connector for NUSC, RI, which is to replace existing field connectors. The new FKC connector will be used as a "field change kit." It will be used by the U.S. Navy for various transducer applications. Information contributed by: F.J. Coppell, General Manager, FKC (3-10-76).

10. GEARHART-OWEN INDUSTRIES, INC. P.O. Box 1936 Fort Worth, TX 76101 (817)-293-1300 (for information and bids) See SECTION 9 of Master Catalogue

<u>Products</u>: Among Gearhart-Owen's products are a new generation of downhole connectors or cablehead assemblies which are less than 2 in. O.D. These are designed primarily for oil industry use; however, their unique size, rugged design and strength, as well as their numerous accessories, would qualify them for other applications.

11. GLENAIR, INC. 1211 Air Way Glendale, CA 91201 (213)-247-6000

2.25

See SECTION 10 of Master Catalogue

Products: Glenair, established in 1956, has both underwater cable and connector capability, and manufactures a range of standard and custom cables and connectors. It produces metal shell, high density and hermetic, plastic and rubber molded connectors. It also markets a line of bulkhead penetrators, and a variety of accompanying accessories.

Users include: Westinghouse Oceanic Division, Annapolis, MD 21404.

Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20810.

EDO Western, Raytheon, Gould Chesapeake, Naval Ship R&D Center.

Present connector research: Glenair is developing high pressure (10,000 psi) hermetic connectors with high density contact arrangements (i.e., 128 contacts in size 24 connector). They are also developing a plastic high density 2,500 psi connector which will reduce connector costs on underwater instrument packages. Information contributed by: Allan R. Froome, Division Mgr., Glenair (3-23-76).

12. GOULD, INC. Advanced Development Division 18901 Euclid Avenue Cleveland, OH 44117 (216)-486-8300 (for information and bids) See SECTION 11 of Master Catalogue 9

ß

<u>Products</u>: Gould produces a variety of underwater products, including hydrophones, markers, sonar and transponders. It markets a standard CX line of metal shell bulkhead and in-line connectors and cable assemblies.

Users include: Naval Underwater Systems Center, Newport, RI 02840: Gould connectors used for hydrophone systems, from 1970 to 1976.

Naval Surface Weapons Center, White Oak, Silver Spring, MD 20910: Gould connectors used for hydrophone systems, from 1971 to 1976.

Information contributed by: Kenneth S. West, Sr. Transducer Engineer, Gould (3-12-76).

13. HEXCEL CORPORATION Se 20701 Nordhoff Street Ma Chatsworth, CA 91311 (213)-882-3022 (for information and bids)

See SECTION 12 of Master Catalogue

Products: Incorporated in 1948, Hexcel has a variety of products, including specialty resins and its wellknown Hotsplicer field-molding splicing system for electrical transmission and distribution cable. Hexcel markets a wide selection of field cable splicing units and potting compounds.

See SECTION 13 of Master Catalogue

14. ITT CANNON ELECTRIC 2801 Airlane Phoenix, AZ 85034 (602)-275-4792 (for information and bids)

X

8

۵۵ (

8

のなからのである

ITT CANNON ELECTRIC 4 Cannon Court Whitby, Ontairo Canada (416)-668-8881 (for information and bids)

ITT CABLE-HYDROSPACE P.O. Box 81446 San Diego, CA 92138 (714)-474-6341 (for information and bids)

ITT CANNON ELECTRIC 666 E. Dyer Road Santa Ana, CA 92702 (714)-557-4700 (for information and bids)

Products: ITT Cannon produces interconnection devices, both surface and subsurface, and has developed an extensive variety of metal shell underwater connectors and a full range of accessories. It manufactures cable, as well, and has the capability to supply both standard and custom cable and connector assemblies. Among its numerous underwater connector lines are the metal shell MIL-C-24217, MIL-C-22249, and MIL-C-22539 assemblies (ITT Cannon, CA, AZ). ITT (Canada) markets a line of brass shelled underwater connectors; ITT Cannon (CA, AZ) produces standard lines of metal shell hermetic connectors, downhole connectors, blowout preventers, electro-hydraulic connectors, high density geophysical connectors and seismic streamer connectors, and bulkhead penetrators. ITT Cable-Hydrospace produces integrated cable and connector systems, Kelvar terminations, and fiber-optic underwater data transmission systems.

Users include: Supply Officer, Naval Underwater Systems; (401)-341-3684: ITT Cannon connectors used for underwater instrumentation, from 1973 to 1975.

Present connector research: Off shore drilling applications, fiber optics.

Information contributed by: B.M. Vandermark, ITT Cannon at Phoenix (2-26-76).

15. JOY MANUFACTURING CO. Electrical Products Department 338 So. Broadway New Philadelphia, OH 44663 (216)-343-3351 (for information and bids) See SECTION 14 of Master Catalogue

Products: Joy markets a line of rubber molded in-line single conductor connectors (X8372 series) which is available in a metal bulkhead feedthru. The same series comes in a field attachable application.

16. KEMLON PRODUCTS AND DEVELOPMENT CO., An Affiliate of Keystone Engineering Co. P.O. Box 14666 Houston, TX 77021 (713)-747-5020 (for information and bids)

Products: Kemlon produces a variety of metal shell, epoxy sealed, bulkhead and in-line connectors. It also markets rubber molded assemblies. It specializes in glass-sealed single contact arrangements, but produces a number of multiple contact hermetic connectors as well. It also markets Teflon connectors, splicing boots, triaxial connectors and a number of unusual button connectors and multiple feedthrus.

- Users include: Several major oil well service companies, Lawrence Radiation, and unspecified departments of the U.S. Navy. Kemlon will supply names of individuals on specific letter request only.
- Present connector research: Continuing research is aimed at increasing life and servicability of underwater connectors.

Information contributed by: Richard Neese, Marketing Manager, Keystone Engineering Co. (3-15-76).

17. KINTEC, INC. 9547 Cozycroft Avenue Chatsworth, CA 91311 (213)-998-8822 (for information and bids)

See SECTION 16 of Master Catalogue Products: Kintec, established in 1963, markets a broad range of underwater connectors, penetrators and connector accessories. It manufactures both standard and custom connector assemblies, in metals, plastics and rubber compounds. Among its standard lines are two metal shell series, one of them (MS Series) conforming in interface design to the MIL-C-24217 design. Additional standard lines are offered in both plastics and rubbers, with a wide variety of contact arrangements. Kintec markets its HS4 series in an underwater mateable and offers a pressure-balanced oil-filled assembly in its LP series. One of Kintec's specialties is the field-installable assembly and most of its standard series come with this option.

Users include: Naval Coastal Systems Laboratory, Panama City, FL 32401; (904)-234-4011: Kintec underwater electrical connectors used on LOSS Program (Large Objects Salvage System) for all pontoon and vehicle terminations required, from 1972 through 1976. No failures to date.

K

X

à

E.

Kennecott Explorations, Inc., Ocean Operations Div., 10306 Roselle St., San Diego, CA 92121; (714)-453-3751: Kintec connectors used on Prototype Mining Vehicle to total of 400 connectors and assemblies (\$300,000.00 contract) for 3 months, from July 1974 to October 1974. No failures.

Naval Civil Engineering Lab., Port Hueneme, CA 93043; (805)-982-4711: Kintec connectors used on DSRV battery terminations.

International Hydrodynamics Co., Ltd., P.O. Box 1059 Station A, Vancouver, B.C., Canada V6C 2P1; (604)-929-2391: Kintec connectors used on underwater vehicles, from 1970 to 1976.

Naval Undersea Center, So. Rosecrans Pt. Loma, San Diego, CA 92132; (714)-225-7201: Various Kintec connectors used.

Naval Weapons Center, China Lake, CA 93555; (714)-939-2088: Kintec connectors used on swimmer delivery vehicles.

Taylor Diving and Salvage Co., 795 Engineer Rd., Belle Chasse, LA 70037; (504)-394-6000: Kintec connectors used for dive systems. Naval Research Lab., P.O. Box 8337, Orlando FL 32806: Kintec connectors used for transducer terminations. N.

ß

Ŕ

E Se

KAX I

í.

E

R B

Ł

5

1220

Northrop-Ventura, 1515 Rancho Conejo Blvd., Newbury Park, CA 91320; (805)-498-3131: Kintec connectors used for torpedo targets.

Perry Submarine Builders, 100 E. 17th St., Riviera Beach, FL 33404; (305)-842-5261: Kintec connectors used on submarines, dive chambers and instruments.

Naval Underwater Systems Center, New London, CT 06320: Kintec connectors used on towed arrays.

Present connector research: Prototypes of each of the following are currently in field service: (1) continuing efforts to expand line of field installable connectors allowing field installation without molding or encapsulation; (2) continuing efforts to modify and improve MIL-C-24217 connector design, including the adaptation of Kintec water blocked contact inserts and modifications allowing field installation without molding; (3) sub-sea remotely controlled underwater make and break for offshore platform electro-hydraulic control systems; (4) electro-mechanical underwater connectors with built-in test chamber for field test and evaluation; (5) sub-sea connectors with helium block capability.

Information contributed by: Neil B. Karlskind, Kintec (6-17-76)

 MARK PRODUCTS, INC.
 10507 Kinghurst Drive Houston, TX 77072 (713)-498-0600 (for information and bids)
 See SECTION 17 of Master Catalogue

and 500 psi.

Products: Mark Products produces an Amphib series of plastic three and four contact connectors which are field repairable and designed for underwater pressures of 50 MASSA DIVISION, DYNAMICS CORP. OF AMERICA 280 Lincoln Street Hingham, MA 02043 (617)-749-4800 (for information and bids)

X

R

ß

8

K

3

S

<u>к</u>

<u>Products:</u> Underwater connectors and cable assemblies--no catalogue or background information available at time of survey.

20. MECCA TELEDYNE P.O. Box 36393 Houston, TX 77081 (713)-772-2811 (for information and bids)

> Products: Underwater connectors and cable assemblies--no catalogue or background information available at time of survey.

21. D.G. O'BRIEN, INC. 498 Cochituate Road Framingham, MA 01701 (617)-872-6596 (for information and bids)

See SECTION 18 of Master Catalogue

Products: D.G. O'Brien markets an extensive line of standard and custom metal shell connectors and cable assemblies for underwater applications. It manufactures MIL-C-24217 and MIL-C-22539 connectors, a line of miniature metal shell connectors (103, 104 series), a series of miniature coaxial bulkhead and in-line connectors (110 series), a low cost compression-glass-sealed series (124 series), and bulkhead penetrators. D.G. O'Brien connectors come in a wide variety of in-line and bulkhead mounting applications. Pin contacts molding materials, crimping, insertion and extraction tools all follow MIL-specifications. In addition, a 117, 126, 127 series of glass sealed connectors are designed for use with D.G. O'Brien fluid-filled underwater cable assemblies, which allow for termination and assembly modification in the field.

See SECTION 19 of Master Catalogue

Ŋ

ß

13 7

X

X

22. PELCON, LIMITED P.O. Box 8143, Station A St. John's, Newfoundland AlB 3M9 Canada (709)-386-2136 (for information and bids)

> Marketed in USA by: STEWART AND STEVENSON OILTOOLS, INC. P.O. Box 1473 Houston, TX 77001 (713)-861-2101 (for information and bids)

Products: Pelcon specializes in inductive coupler applications, furnishing underwater make and break capability for electrical applications. It markets several series of inductive couplers of varying sizes and capabilities which terminate in a conventional manner but interface without contacts. These are available in a number of different mounting and mating arrangements and may be used for intercom systems, data transmission, low underwater d.c. power for transducers and electronics packages.

23. PREFORMED LINE PRODUCTS CO. Marine Systems Division P.O. Box 91129 Cleveland, OH 44101 (216)-461-5200 (for information and bids)

Products: Standard cable hardware designed to mechanically terminate electro-mechanical cables and wire rope. The products grip the cable by use of helical wire rods which distribute the radial holding force over a large area thus avoiding stress concentrations. The conductor elements of the cable can then be terminated with a variety of underwater electrical connectors in a pigtail fashion.

Preformed Line also fabricates special cable assemblies to customer requirements, using a variety of cables and electrical connectors supplied by cable and connector manufacturers, and its own special designs for mechanical termination, sealing, and bending strain relief. Assemblies are tested before shipment, including tensile proof loading, hydrostatic pressure testing, and electrical measurements. Preformed Line also maintains a cable and termination test facility which is used for testing its own products before shipment (acceptance testing), new product development, and contract testing. They have conducted test programs under contract to the U.S. government as well as numerous cable and hardware manufacturers.

Users include: Naval Underwater Systems Center, New London, CT; (203)-442-0771: Preformed Line Termination used for AN/BQQ-5 fixed tow system; for submarine sonar system; for sub-to-tow cable; for two cable to sonar array, 1973 to present.

Gould, Inc., Chesapeake Inst. Div., Shadyside, MD; (301)-867-2151: Preformed Line terminations used for Stass submarine sonar system; for tow cable to sonar array, 1974 to present.

- Present connector research: Preformed Line is now in the development testing stage for a concentric electromechanical connector which utilizes a MIL-C-24217 connector and allows mechanical and electrical connections to be made together at the same time. This assembly will also be intermateable with a standard MIL-C-24217 assembly. Preformed Line is also developing a slipon bending strain relief device for the same assembly.
- Information contributed by: Robert A. Patterson, Marketing Manager, Preformed Line Products (6-1-76).

24. SOURIAU ET CIE 9/13 rue Gallieni 92103-Boulogne Billancourt France 604-20-00

8

N.

S

R

N

۱Ľ.

and the second of the second o

See SECTION 21 of Master Catalogue

Marketed in USA by INTEROCEAN SYSTEMS, INC. 3510 Kurtz Street San Diego, CA 92110 (714)-299-4500 (for information and bids) <u>Products</u>: Souriau is a large French connector company with its main plant situated in Boulogne. It markets in the USA through InterOcean Systems, Inc. of San Diego. Its connector products include a variety of underwater metal shell connectors, underwater mateable connectors, and an extensive selection of pin configurations, mountings, pottings and accessories.

Users include: Compagnie Francaise Des Petrols, 39 Auai A. Citroen, 75015 Paris, France; (1)-578-33-33: Souriau underwater connectors used for various ships, including Le Pelican, Le Petrel, Le Pelerin, from 1973 to present.

Comex, Traverse de la Jarre, 13009 Marseille, France; (91)-40-11-70: Souriau connectors used for the Comex Rescue Submarine, from 1969 to present.

Present Connector Research: Souriau is in final stages of developing its 8810 connector, an underwater mateable coaxial type connector, which it expects to market in 1977. It is also completing the development of a special connector endbell which will ensure watertightness in the event that the outside sleeve of a given connector is damaged. This will be marketed in late 1976.

Information contributed by: M. Guilloteau, Technical Manager, Souriau (3-16-76).

 25. VECTOR CABLE COMPANY, A Division of Schlumberger Technology Corp.
 555 Industrial Road Sugar Land, TX 77478 (713)-494-9196 (for information and bids)

Products: Vector is an integrated cable and connector company, specializing in both standard and custom underwater electro-mechanical applications. It has one of the more extensive off-the-shelf connector selections and maintains a field crew to assist in difficult fiel applications and to trouble-shoot. Vector's connector producst include a variety of metal shell, glass epoxy and rubber molded underwater connectors, marketed under the trade name of "Marsh and Marine." It also markets bulkhead penetrators, hermetic connectors, combined electro-mechanical terminations, field-installable connectors, cable splices and takeouts, and a full range of connector accessories, mounting and potting options. It has an extensive and highly innovative R&D program and has recently developed a number of new bonding techniques.

8

8

a. f

X

N

Users include: Brown and Root, Houston, TX: Marsh and Marine underwater connectors used on B.P. 40's Project for instrumentation of a large offshore oil production platform with more than 3,000 separate cable and connector assemblies, from 1974 to present.

Lockheed Missiles and Space Co., Sunnyvale, CA: Marsh and Marine underwater pressure hull penetrators and cable assemblies used on Deep Quest Manned Submersible Project, from 1968 to present.

Present connector research: (1) Development of underwater mateable connector systems for power circuits and multiple signal circuits for diver, manipulator, and remote makeup; (2) Fluid-filled pressure-compensated field-installable connectors for power and signal circuitry, including underwater television; (3) Tether cables and connector-cable harnesses for free swimming underwater vehicles; (4) Procedures and techniques for installing all types of connectors on different types of cables to preserve the electrical integrit; of all circuits in the system on jacketed or free flooded cables.

Information contributed by: R.E. Tyler, Manager, Connector Product Engineering, Vector (3-31-76).

 26. VIKING INDUSTRIES, INC. See SECTION 23 of Special Products Division Master Catalogue
 9324 Topanga Canyon Blvd. Chatsworth, CA 91311 (213)-882-6275 (for information and bids)

Products: Viking produces both standard and custom underwater electro-mechanical cable terminations. It has complete in-house capability for tooling, manufacturing, testing and cabling of its connectors. Although Viking produces a variety of special custom connector assemblies, it specializes in the production of standard connectors to MIL-C-24217, MIL-C-22249 and MIL-C-22539 specifications. In addition, it markets a standard line of Pisces underwater mateable, and will perform electrical and environmental testing to customer and/or military specifications. Viking also markets a line of pressure-balance oil-filled assemblies.

Users include: U.S. Navy, NSC, San Diego, CA; Mare Island Naval Shipyard, CA; Naval Undersea Center, Hawaii: for various applications.

Ametek-Straza, 790 Greenfield Dr., El Cajon, CA; (714)-442-3451: Viking connectors used for sonar cable assemblies, from 1970 to present.

- Present connector research: (1) Viking is developing a number of expanded arrangements for its Pisces underwater mateable connectors; (2) Continued emphasis is being placed on developing capabilities and techniques to meet special customer requirements: (3) Viking is also developing a geophysical streamer connector with up to 260 contacts.
- Information contributed by: Dick Skelton, Product Manager, Viking (4-30-76).

5.3 Custom Underwater Connector Manufacturers

Although many of the following organizations do not market standard lines of underwater connectors and, hence, do not have catalogues, they represent a group with substantial research experience in underwater connector and penetrator design. Many of them have expertise and technologies which have applications in connector design; others are nonprofit organizations which are making contributions to connector technology. AMPHENOL SAMS DIVISION, Bunker-Ramo Corp.
9201 Independence Avenue Chatsworth, California 91311 (213)-341-0710 (for information and bids)

- 1.

an and the second se

8

ίs.

Manuel Care and

* - 3 Th

「「「「「「」」」」

<u>Products:</u> Amphenol markets a range of standard surface connectors. It produces special underwater electrical connectors for highly engineered cable systems and accepts special connector design orders.

 APPLIED PHYSICS LABORATORY, University of Washington
 1013 N.E. 40th Street
 Seattle, WA 98195
 (206)-543-1363 (for information and bids)

> Applications: Design and install cable sealing systems for general underwater structures and electronics housings. Specialize in use of interference seals and seal assemblies for various deep ocean applications, as well as for cable splicing.

3. THE BENDIX CORPORATION Environmental Science Division 1400 Taylor Avenue Baltimore, MD 21204 (301)-825-5200 (for information and bids)

<u>Products:</u> Bendix (MD) markets environmental equipment, offering a complete line of meteorological, health and safety equipment, as well as oceanographic equipment. Normally, Bendix will only produce support equipment for their own oceanographic lines; however, technology is available to consider special connector order work.

Information contributed by: T.E. Lassiter, Jr., Service-Sales Manager, Bendix (2-18-76). CELMARK ENGINEERING, INC. 9822 Independence Avenue Chatsworth, CA 91311 (213)-998-0244 (for information and bids)

4.

- Products: Celmark specializes in custom development and design of underwater electrical connectors, penetrators and cable assemblies. They manufacturε connectors from numerous available metals, plastics and rubber compounds, and have supplied MIL-C-24217 and MIL-C-22539 connectors to various customers.
- Users include: Lockheed Petrolium, Vancouver; Lockheed, Sunnyvale, CA; Lockheed, San Diego: Celmark penetrators and plugs used for various underwater applications, 1975 to present.

NAVSEC, Prince George Center, Washington, D.C.: Celmark connectors used, from 1975 to present.

USN, NUC, Hawaii: Celmark participating in development of 13,500-psi capability, high voltage coaxial connector to be used in ROUS program.

NCEL, Port Hueneme, CA: Celmark participating in development of battery plugs and harnesses for DSRV.

Present connector research: Celmark is working on the development of an underwater mateable connector and on a number of new coupling techniques for connectors, including a quick disconnect design. Celmark has also been working on the development of a new technique for bonding polyethylene to stainless steel and aluminum and is now in the testing stage for this technique.

Information contributed by: Tony Gloacz, Celmark (6-22-76).

5. CERAMASEAL, INC. P.O. Box 25 New Levanon Center, NY 12126 (518)-794-7800 (for information and bids)

Products: Ceramaseal is a manufacturer of high alumina ceramic terminals, bushings and connectors of all types for both vacuum and high pressure requirements. Ceramaseal has not designed or supplied underwater electrical connectors to date, but it has supplied ceramic-metal assemblies which have been used in final assemblies of some customers for underwater applications.

Information contributed by: Gene D. Sawin, Sales Manager, Ceramaseal (3-22-76).

 CIVIL ENGINEERING LABORATORY, U.S.N. Construction Systems Division Ocean Engineering Department Port Hueneme, CA 93403 (805)-982-5423 (for information and bids)

R

 \hat{V}

5.5

83

х У

Applications: CEL has developed several special cable termination systems, among them a series of underwater mateable cable terminations for such applications as power distribution to seafloor production systems, power and signal unbilicals, downhole electrical connections and emergency quick-release systems. See final entry of Master Catalogue for details of CEL underwater mateable. CEL has also developed a method for splicing cable underwater and is presently working on developing a longer life for such underwater splices and on developing the capability for splicing SD cable remotely in deep ocean environments.

Information contributed by: Jeffrey V. Wilson, Mechanical Engineer, CEL (5-7-76).

DEEP OIL TECHNOLOGY, INC.
 1280 Windham Avenue
 Long Beach, CA 90802
 (213)-436-7208 (for information and bids)

Products: DOT manufactures a number of underwater mateable connectors with high voltage and current capacities, and which are used both for underwater instrumentation packages and for subsurface hydro pumps. It is pressently developing a new high-density series of underwater mateables.

8. GENERAL OCEANICS, INC. 5535 N.W. 7th Avenue Miami, FL 33127 (305)-754-6658 (for information and bids)

> Products: Various instrumentation and oceanographic equipment. Will supply connectors for certain applications.

Ø

No.

Ň

124 55

8

Q Q

9. GULTON INDUSTRIES, INC. Connector Division 1644 Whittier Avenue Costa Mesa, CA 92627 (714)-642-2400 (for information and bids)

> Products: Underwater connectors and cable assemblies--no catalogue or background information available at time of survey.

10. JETTRON PRODUCTS, INC. P.O. Box 337 East Hanover, NJ 07936 (201)-887-0571 (for information and bids)

Products: Manufactures custom connectors and cable assemblies.

11. NAVAL TORPEDO STATION Research and Engineering Department Keyport, WA 98345 (206)-396-4543 (for information and bids) Applications: NTS has broad experience in the installation of underwater cable termination devices. It also has experience in the use of interference cable seal assemblies for various applications.

 NAVAL UNDERWATER SYSTEMS CENTER New London, CT 06320 (203)-442-0771 (for information and bids)

なるのないで、「ないないのないない」、などのないないで

N

B

M

Applications: NUSC has varied and extensive experience in the use of both commercial and special design connectors, cable assemblies and penetrators. They have recently done their own special design work on small diameter electro-mechanical coupling devices, and on Kelvar type cable terminations.

 ARTHUR L. NELSON AND CO. P.O. Eox 9745 San Diego, CA 92109 (714)-274-2115 (for information and bids)

> Products: Arthur Nelson pioneered work on underwater mateable connectors and did much of the original work on field termination techniques which led to the development of the Hotsplicer process. His present company specializes in design and development of special underwater cable termination processes, and in custom manufacture of connectors.

Users include: Scripps Inst. of Oceanography, La Jolla, CA: Nelson connectors used for unspecified applications.

Hexcel Corp., 20701 Nordhoff St., Chatsworth, CA 91311: Nelson connectors used for unspecified applications.

Present connector research: Working on a high-voltage, highcurrent underwater mateable line of connectors.

Information contributed by: Arthur Nelson, Owner (4-1-76).

14. ROWE INDUSTRIES
6225 Benore Road
Toledo, OH 43612
(419)-729-9761 (for information and bids)

Products: Rowe is actively engaged in design, development and manufacture of connectors and interconnection systems used in underwater and geophysical applications. Rowe has supplied numerous major companies, including the U.S. Government, with connectors of all types used in underwater and other severe environments.

Rowe employs 90 people, including an engineering staff, a quality-control department with a system conforming to MIL-Q-9858A, and complete in-house tool and die and machining operations. Rowe has a tape controlled random access circuit analyzer permitting rapid testing of electrical parameters during or following hydrostatic testing. Available floor space is 55,000 feet, and sales are \$3 million per year.

Users include: Borg-Warner: Rowe connectors used for underwater equipment associated with offshore oil well drilling industry, 1975 to present.

U.S. Navy: Rowe connectors used on various torpedo programs, including the Mk 48, as well as with the cruise missile program and other classified projects related to the Trident system, from 1970 to present.

Present connector research: Rowe is currently designing and developing umbilical connectors and cable assemblies involving the termination of high tensile strength members used in underwater applications: They are also working on a number of classified projects involving high pressure and temperature hermetically sealed connectors for underwater applications.

Information contributed by: David. L. Mang, Western Regional Sales Manager, Rowe (2-17-76).

15. SIMPLEX WIRE AND CABLE CO. P.O. Box 479 Portsmouth, NH 03801 (603)-436-6100 (for information and bids) Products: Simplex is a manufacturer of undersea cables for power and communication, and of armored flexible polyethylene pipe. They have a staff with engineers who have specific experience in the design and production of undersea connectors and who undertake custom connector design and production. Annual sales are \$18 to \$20 million, with approximately 300 employees.

Users include: NUSC, New London, CT: Simplex connectors used to connect hydrophones to cables and arrays, from 1965 to present.

G.E. Project, G.E. Co. HMES, Syracuse, NY: Simplex breakouts used for instrumentation, currently.

Information contributed by: H.H. Hauser, Manager, Marketing Administration, Simplex (2-10-76).

16. SOUTHWEST RESEARCH INSTITUTE 8500 Culebra Road
P.O. Box 28510
San Antonio, TX 78284
(512)-684-5111 (for information and bids)

ىكە ئىرىكىرىچەرىچەرلىكى تەركىيەتىكى تەركىيەتىكى تەركىيەتىكى تەركىيەتىكى تەركىيەتىكى تەركىيەتىكى تەركىيەتىكى تەر

74

Applications: The Southwest Research Institute is a notfor-profit research and development organization with extensive design experience in underwater electrical applications. SWRI designs and fabricates only special electrical connectors. It has patents on a high power underwater connector and on an underwater mateable connector, and has an ongoing program on subsea power and connector development.

Users include: NCEL, Port Hueneme, CA: Development of connectors to provide power for Sea Con and to provide developmental data.

Exxon, USA: development of a special connector application to provide 5,000 hp at 3,000 feet.

Information contributed by: Edward M. Briggs, Manager, Ocean Engineering, SWRI (2-11-76).

17. SUPERIOR SWITCHBOARD AND DEVICES P.O. Box 590 Canton, OH 44706 (216)-452-4681 (for information and bids)

いたなななない

ť.

Products: Primarily a manufacturer of wire rope fittings under tradename of Electroline. Supply special swivels and connectors for deep ocean applications, on special order. Information contributed by: Ray W. Muse, Supervisor of Sales and Service, Superior (3-1-76).

18. TIMES WIRE AND CABLE CO. 358 Hall Avenue Wallingford, CT 06492 (203)-265-2361 (for information and bids)

> Products: Primarily a cable manufacturer. However, Times has some manufacturing experience in special cable assemblies.

Section 6

ļ

St

Ę

63

ŝ

Ë

82

Ŋ

Ŭ,

Alexandre .

TABLE OF CONTENTS

Section	Title	Page
6.1	Failure Analysis and Prevention	6-1
6.1.1	Introduction	6-1
6.1.2	Performance/Failure Analyses: Some Results and Recommendations	6-3
6.1.3	Failure Mode Analysis	6-8
6.1.4	Quality Assurance: Quality Control and Certification Guidelines	6-24
6.1.5	Performance/railure Analysis Plan	6-39
6.1.6	Directions for Future Research	6-43
6.1.7	References	6-44
6.2	Pertinent Military Specifications	6-45
6.2.1	For Electrical Connectors	6-45
6.2.2	For Electrical Cables	6-46
6.2.3	For Connector Materials	6-46
6.2.4	U.S. Government Plating Specifications	6-47
6.2.5	Connector Test Specifications	6-48
6.3	Bibliographies on Connector Technology and Related Subjects	6-49
6.3.1	· Connector Design	6-49
6.3.2	Seal Design	6-54
6.3.3	Corrosion and Environment	6-56
6.3.4	Potting Compounds	6-58
6.3.5	Insulation Materials	6-60
6.3.6	Adhesives	6-61
6.3.7	Quality Control	6-62

Section 6

3-1

3

55

25

i and

2

6 (S)

252

A. W

LIST OF FIGURES

Figure	Title	Fage
6-1	Organization of Connector Development Plan	6-2
6-2	Evidence of Connector Failure by Leaking. Five out of six connector/penetrators produced leak deposits on the inside face of the junction box bulkhead.	6-7.
6-3	Possible Leak Paths into a Morrison-Type Sealed Connector	6-23
6-4	Components of a Commercial Connector	6-25
6-5	Possible Leak Paths of a Commercial Connector	6-26
6-6	Mated Connector Test Circuit	6-32

LIST OF TABLES

100 Se .

Table	Title	Page
6-1	Documented Failures	6-5
6-2	Failure Modes	6-10
6-3	Possible Failure Modes and EffectsElectrical Connector Plug	6-17
6-4	Possible Failure Modes and EffectsElectrical Connector Receptacle	6-18
6-5	Possible Failure Modes and EffectsReceptacle in Hull	6-19
6-6	Possible Failure Modes and EffectsJunction Box Hull	6-20
6-7	Design Verification Test Sequence for Connectors	6-29
6-8	Hydrostatic Pressure Test Schedule	6-32

LIST OF TABLES, CONT.

Ð

8

Ň

122

ł.

ľ,

Ŕ

No.

Table	Title	Page
6-9	Preproduction Qualification Test Sequence for Connectors	6-35
6-10	Quality Conformance Test Sequence for Connectors and Accessories	6-36

iii

Section 6

REFERENCE SECTION

6.1 Failure Analysis and Prevention

6.1.1 INTRODUCTION

X

5

5

3

This section addresses the problem of underwater electrical connector failure and how to prevent it. The term "failure" as used here means the cessation of function, or usefulness, of a submerged conductor because of electrical, chemical, metallurgical, or mechanical problems. The primary method of documenting success or failure in a system is called performance/failure analysis. One function of failure analysis is to investigate failures to determine their causes and to identify design features or production processes that should be improved. Common electrical failures include shorts and discontinuities. Metallurgical and electrochemical problems include faulty material composition and corrosion damage to connectors and supporting structures. Mechanical problems refer to excessive strains or fracture during assembly, maintenance or service operation. Leakage may result from deficiencies in design, errors in selection of materials, imperfections in the materials themselves, errors in manufacture and installation that are not detected or corrected by quality control, and from unexpected service conditions.

The term "prevention" refers to systematic procedures that must be followed in the design, production, installation and service of a connector or connector system to ensure reliability and thus avoid failures. Figure 6-1 shows four common stages of connector development and important failure prevention systems. Design review, Failure Mode Analysis (FMA) (also known as Failure Mode Effect and Analysis, FMEA), and preliminary testing are performed early in the development of a connector or connector system to detect inadequacies in the design. Once a design is approved, quality control is exercised over the procurement of parts and materials and over subsequent processing to detect and prevent deficiences in manufacturing,

assembly, installation and maintenance. After a connector has been in operation for a period of time, a performance/failure analysis is conducted in order to document successes and failures in the system. Whenever a breakdown occurs, the cause or causes are determined and eliminated through redesign, engineering modifications, alterations in material selection, or changes in quality control procedures. In effect, then, failure prevention activities are not separate and isolated, but rather integrated throughout the course of connector design, production and development.

Ideally, if the procedures described above are used over an extended period of time, quantitative data on the strengths and weaknesses of connectors and connector systems will be collected. This information can then be applied in logic network methods such as FMEA (see Reference 1), system safety analysis (see Reference 2), or fault tree analysis (see References 3 and 4) to provide quantitative predictions of connector reliability. Moreover, "weak links" in a connector design can be isolated precisely and strengthened in future designs. Ultimately, failure prevention methods should lead to optimum design and meaningful certification requirements that maximize the reliability of connectors and connector systems for minimum cost.

6.1.2 PERFORMANCE/FAILURE ANALYSES: SOME RESULTS AND RECOMMENDATIONS

. 19

Ň

A large part of the following information was extracted from failure analyses performed by the Department of Research and Engineering and the Department of Quality Engineering and Evaluation at the Naval Torpedo Station (NTS), Keyport, Washington.* Additional information in this section comes from the experience of scientists and engineers at the Applied Physics Laboratory.

6.1.2.1 <u>Failure Analyses of Commercial Connectors with Molded Boots</u>. Since mid-1974 Performance/Failure Analyses have been made on several 3-D acoustic arrays which were recovered after service at either the Nanoose range off Vancouver Island, B.C., or the Dabob Bay range in Washington State. The results may be summarized as follows:

1. The main failure mode appeared to be short circuits caused by seawater leaking through corrosion paths around O-ring seals although some array failures resulted from corrosion of connectors and machined components composed of AISI 1213 steel (a free-machining steel with small quantities of sulphur and phosphorous); AISI 1213 steel exhibits poor corrosion resistance in seawater due to the presence of manganese sulfide particles.

These analyses were collected and summarized in a report entitled "Failure of Underwater Connectors" by Mr. Ted Austin of NTS as part of a course in mechanical engineering at the University of Washington on marine corrosion in 1976.

- 2. According to the manufacturer, the connectors were not designed to operate in the manner in which they were used; that is, the connectors were designed to resist pressure not from the end that was exposed to pressure, but from the opposite end.
- 3. The clearances for some 0-ring piston seals were out of tolerance; that is, allowable clearance on the diameter was 0.006 inch whereas the actual clearance was as much as 0.014 inch. Therefore, the sealing capacity and resistance of the seal were reduced.
- 4. The time it takes for leaks to develop past O-ring seals due to corrosion apparently increases linearly with increasing contact area between the O-ring and the groove or metal surface.
- 5. O-ring surfaces that were heavily lubricated apparently were more resistant to corrosion damage.
- 6. No leakage occurred around properly installed Morrison seal elements. The weak link in the connectors utilizing Morrison seals apparently was the piston-type O-ring seal.
- 7. Certain lots of Morrison seal material were found to be conductive when compressed. It is postulated that compression stresses force carbon particles closer so that low electrical resistance paths are created across the seal.
- The polyethylene-jacketed cables that were recovered and examined on or about March 1975 had performed satisfactorily for more than 9 years.
- 9. Apparently seawater permeated a neoprene cable jacket.
- 10. Cathodic protection with sacrificial zinc anodes apparently
 was effective in reducing connector failure by corrosion.
- Zinc anodes chat are contaminated with iron do not perform satisfactorily. Zinc anodes that meet Mil-A-18001 are recommended.

12. The primer paint coating on some connectors did not perform satisfactorily. Nonuniform primer color indicated that improper mixing procedures were used and lack of complete coverage indicated improper application. Some connector housings were not thoroughly sandblasted prior to primer application.

5

-41 -41

N.

3

ß

「「「「「「「」」」」

うななななない。

- 13. Some connector failure occurred because of leakage of seawater through the interface between the boot and the cable jacket.
- 14. Out-dated, two-part urethane encapsulating material apparently has inadequate strength and bonding properties.

Table 6-1 shows the most common failures, their frequency of occurrence and the age at which failure occurred. Failure of the bond between the the boot and the connector sleeves occurred the most frequently. The second most frequent cause of failure was leakage past corroded O-ring seal surfaces.

CAUSE OF FAILURE	FREQUENCY OF OCCURRENCE	AGE AT RECOVERY (months)
Bond failure of polyurethane boot-to connector sleeves	6	2, 8, 13, 28, 36, 39
Failure caused by seawater leakage past corroded sealing surfaces of the connector-to-bulkhead O-ring	.5	28, 36, 36, 39, 69
Zinc anodes did not function	4	2, 8, 13, 28
Bond failure of polyurethane boot-to cable jacket	3	2, 8, 13
Zinc anodes did not function due to high iron content	2	36, 69

Table 6-1. Documented Failures

6.1.2.2 <u>Visual Evidence of Leaking</u>. The presence of corrosion products can identify leaking connectors. In some cases, the leak path can be traced by following the trail of corrosion products. Figure 6-2 shows the inside face of a junction box bulkhead recovered in 1976. The location of corrosion products indicates that leakage occurred in five out of six connectors that were mated to the outside of the bulkhead. (One of the seven connector holes was filled with a dummy insert.) Inspection of the bulkhead in Figure 6-2 and the connectors and connector assemblies revealed that the cause of failure was leakage due to corrosion.

A brief description and history of the array are shown below:

Type:	3-D acoustic array
Location:	Nanoose Range, Vancouver Island, British
	Columbia
Depth:	1300 ft (approximately)
Duration:	4 years (March 1972 to May 1976)
Indications of Failure:	C-phone output decreased in April 1972
	C-phone output failed in February 1976
	After recovery C-phone resistance between
	center and shield equaled 500 ohms
Design:	Commercial connectors with O-ring seals
	and molded boots

Investigation of the recovered junction box revealed the following:

- 1. Approximately 1/2 inch of water was standing in the housing.
- 2. The external joint between the receptacles and the bulkhead was not potted over.
- 3. Leaks occurred under receptacle-to-bulkhead O-rings in five of the connectors.
- 4. The bulkhead-to-housing O-rings showed no evidence of leaking.
- 5. In a few connectors the molded polyurethane boot between the cable and the connector shell exhibited poor adhesion to the metal connector shell, as evidenced by corrosion products and water at the interface between the connector shell and the boot.

Figure 6-2.

N

X

役か

K

8

Evidence of Connector Failure by Leaking. Five out of six connector/penetrators produced leak deposits on the inside face of the junction box bulkhead.

6.1.2.3 <u>Recommendations for Improving Connector and Seal Performance</u>. The foregoing investigations indicate that failures of connectors and connector systems can result from single or multiple errors at any or all phases of connector development from initial design to final installation. Therefore, to improve connector performance and reliability, proper quality control procedures must be adhered to from the early design stage through fabrication and installation. Specific actions that hold promise of improving connector performance are listed below. Some of these items are currently being tested, and some are hypotheses based on performance analysis results.

- Use Morrison seals instead of O-rings, and carefully test seal materials.
- Where O-rings are necessary, use primary and secondary (backup) O-rings.

- 3. Pack the O-ring grooves and clearance volumes with O-ring lubricant or other heavy corrosion-resistant grease.
- 4. Use special care when preparing and painting all metal surfaces exposed to seawater.
- 5. Locate sacrificial anodes to protect seal-to-water interfaces. (Tests should be performed to determine if hydrogen production on cathode areas (unpainted seal surfaces) can displace O-ring lubricant.)
- 6. Locate Morrison sealing elements around cables and conductors to isolate each possible leak path (hosing) along the cable. In the case of D.G. O'Brien connectors, the Morrison sealing elements can be located around the cable inside the potting material for the boot.
- 7. Use only new potting material for the potted boots and prepare the connector sleeve for good adhesion by the best mechanical and chemical cleaning methods.
- Use corrosion-resistant connector materials such as plastic, copper-nickel alloys, or painted Cl010, Cl030, Cl018 or Cl026 steel.

認い

Ň

- Accurately control dimensions of all O-ring grooves and joints.
- 10. Use strict material control procedures.

6.1.3 FAILURE MODE ANALYSIS

Failure Mode Analysis (FMA) takes place primarily in the early stages of connector design and development. The major objectives of the FMA are to identify potential failure modes in a connector or connector system design, and to predict the effect of each potential failure on the system. As a result, latent design and production deficiencies can be corrected comparatively easily and inexpensively before the manufacture of actual production models. Although FMA is considered to be a design evaluation technique, it does interrelate with activities mainly concerned with hardware evaluation. This section outlines two FMA procedures, one qualitative and the other quantitative. In addition, the section provides the following: 1) a table listing failure modes and possible causes for connector parts; 2) four tables listing failure modes and possible effects organized around function of connector parts; and 3) figures illustrating possible leak paths in selected connectors.

R

Ň

NS:

R

ß

ß

2

X

ß

6.1.3.1 <u>FMA Procedures</u>. At the present time, the potential effectiveness of the FMA is seriously hampered by a lack of quantitative data on the probability of failure by any specific failure mode. Although underwater connector failures have occurred in deep water, sufficient information on the active failure modes is not available. Because of the lack of sufficient quantitative data at this time, a qualitative method must be employed. The procedure for a qualitative method is outlined below.

Qualitative FMA Procedure Outline

- 1. Make a logic block diagram of the connector system.
- 2. Perform a functional boundary analysis to indicate the function and the functional boundary of each component part and operation.
- 3. Identify the possible failure modes of each part, process and operation. (See Table 6-2, "Failure Modes," on p. 6-10 to reference types of failure modes and their sources.)
- 4. Identify the possible effects of the failure modes and backup features in the design. (For this purpose, reference Tables 6-3 through 6-6, "Possible Failure Modes and Effects," on pp. 6-17 through 6-20.)
- Identify possible leak paths of water into the connector assembly. (Figures 6-3 through 6-5 in section 6.1.3.2 show possible leak paths for two types of connector systems.)
- 6. Summarize qualitative results by determining critical paths or modes of system failure (that is, those combinations of component failures causing system failure) and the number or percentage of critical paths containing a particular component failure.

Table 6-2. Failure Modes

3

2

S

į,

(acc)

(1) (1)

5

E S

ĥ

					<u> </u>		
		FAILURE CAUSE					
		INHERENT		INDUCED			
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenance Deficiency	Excessive Oper- ational Demands	Rough Handling
Seal	s and Gaskets						
1.	Improper or poor bond of plug boot to plug shell	x		x	x		
2.	Improper or poor bond of plug boot to cable	x		x			
3.	Puncture leaks developing in plug boot due to voids	x	x	x	x		
4.	Leakage due to corrosion damage to O-ring seat or groove	x	x	x	x		x
5.	Improper O-ring groove design	x					
6.	Water leakage into hull or receptacle due to loss or damage to receptacle-to-hull seals	x	x	x	x		x
7.	Loss of receptacle-to-hull seal due to damaged O-ring seal surfaces and grooves			x	x		x
8.	Degradation of physical properties of plug boot material due to seawater exposure	x	x				
9.	Improper O-ring materials	x		x	x		
10.	Loss of plug-to-receptrcle seal due to contamination of O-ring sealing surfaces by foreign particles			x	x		
11.	Plug-to-receptacle seal failure due to use of improperly sized O-rings	x		x			
12.	Damaged plug shell gasket (seal; e.g., washer, O-ring)			x	x		x
13.	Missing plug shell gasket			x	x		

		FAILURE CAUSE					
		INHERENT INDUCED					
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenance Deficioncy	Excessive Oper- ational Demands	Rough Handling
14.	Improper gasket material	x	x	x	x		
15. 16.	Short circuit due to contamination of pin contact gasket Improperly bonded pin contact gasket	x x		x	x		
17.	<pre>improper mating due to over-tolerance pin contact gasket thickness</pre>	x					
18.	Damaged receptacle seal surfaces						x
19.	Seal ring or washer fracture	x	x				
20.	Material imperfections or impurities in plug boot	x		x			
21.	Damage to plug thrust washer			x	x		
22.	Missing receptacle-to-hull O-rings			x	x		
23.	Damaged receptacle-to-hull O-rings			x	x		x
24.	Seawater entry into hull interior due to improper seal of pin contacts to shell (following failure of plug-to-receptacle seals)	x		×	x		x
25.	Seawater entry into junction box due to improper seal of pin contacts to web sec- tion (following failure of primary conductor seals)	x					
26.	Seal failure of all molded rubber connec- tors following mating and unmating in arctic conditions	x	x	x	x		x
27.	Voids in the mold boot of the connector	x	x				
28 .	Variation in durometer hardness and/or fit between molded rubber plug and receptacles resulting in seal failure		x				

.							
		FAILURE CAUSE					
		INHE	ERENT	INDUCED			
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenance Deficiency	Excessive Oper- ational Demands	Rough Handling
29.	Inadequate bond between molded connector boot and connector shell	x	x				
30.	Excessive molding flash in rubber connec- tors in the plug-to-receptacle seal areas	x		x	x		
31.	Detachment of plug from receptacle due to explosion at plug-to-receptacle interface as a result of water entry past plug seal (short circuit fault current)	x		x	x		
32.	Loss of electrical resistance of in- sulation due to hydrostatic pressure (pressure increases conductivity)	x	x				
Rece	ptacle or Plug						
1.	Coupling ring or receptacle threads improperly machined	x		x			x
2.	Improperly located or sized plug shell key or receptacle shell keyway	x					
3.	Corrosion of interface between plug shell and coupling ring or between coupling ring and receptacle shell	x	x		x		
4.	Insulation breakdown due to moisture accumulation within receptacle	x	x	x	x		
5.	Damaged or out-of-tolerance receptacle keyways	×		x	x		
6.	Out-of-tolerance receptacle or plug shell dimensions	x					
7.	Corrosion of hull or receptacle shell due to material incompatability	x	x			<u>,</u> X	
8.	Corrosion due to material incompatability of receptacle screws with hull	x					

Table 6-2, cont. Failure Modes

Ц

EXX1 2 19 s. R. . . N.2.2

. 1933

8

H. W

Ś
Table 6-2, cont. Failure Modes

				FAILUR	e caus	E	
		INHE	RENT		IN	DUCED	
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenance Deficiency	Excessive Oper- ational Demands	Rough Handling
9.	Corrosion due to material incompatability of cover, receptacle, and junction box shell	x					
10.	Corrosion due to material incompatability of receptacle and hull	x					
11.	Out-of-tolerance dimension on plug or receptacle shell and polarizing ring	x					
12.	Lack of adequate plug-to-receptacle polar- ization in basic connector design	x					
13.	Collapse of receptacle and connector shells due to hydrostatic pressure on web section	x	x			x	
14.	Inadequate spacing between conductor ter- minations (movement during molding oper- ation) in plug or receptacle that leads to electrical failure when cable seal is flexed or subjected to seawater pressure	x					
15.	Out-of-specification plug or receptacle materials	x .		x	x		
Join	<u>t</u>						
1.	Improper electrical or mechanical crimp joint	x		×	x		
2.	Open circuit between socket contact and conductor						x
3.	Insulation breakdown due to water or moisture entry into plug interior		x	x			x
4.	Loosening of coupling ring due to shock or vibration	x		x		x	
5.	Detachment of receptacle from hull due to impact forces on connector assembly	x				x	

				FAILURE	CAUSE	 :	
		INHERENT INDUCED					
		<u> </u>	T			T	<u> </u>
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenznce Deficiency	Excessive Oper- ational Demands	Rough Handling
6.	Damage of receptacle-to-hull fastening mechanism due to external shock or vibration	x	x	x	x		
7.	Damaged cable jackets in the mold cable clamp area, especially in neoprene molded boots			x	x		x
8.	Improper termination of braided shields resulting in braid ends piercing conductor insulation	x		x			
9.	Cold soldered joints (conductor-to-socket connection)	x		x	x	x	
10.	Plastic plug coupling ring failure due to impact forces	x			x		x
11.	Failure of threads in plastic-bodied connectors	x			x	x	x
12.	Improper termination of braided shields resulting in inadequate cable-to-connector tension strength	x	x	x			
Insu	lators						
1.	Conductor insulation breakdown due to circuit overloading			x	x	x	
2.	Insulation breakdown due to contamination (including foreign particles) of insulator materials	x		x	x		
3.	Cracked or defective pin contact insulator	x	x	x	x	x	x
4.	Socket contact not properly inserted in insulator			x	x		
5.	Pin contact insulation breakdown due to contaminated material	x					

Table 6-2, cont. Failure Modes

1053

3

Pred In

2.22 J

1

ß

N

1.22

		FAILURE CAUSE					
		INHE	RENT		IN	DUCED	
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Assy Deficiency	Maintenance Deficiency	Excessive Oper- ational Demands	Rough Handling
6.	Pin contact gasket insulation breakdown due to use of improper cleaning solvents			x	x		
7.	Insulation breakdown due to contaminated pin contact face gasket	x		x	x	·	x
8.	Withstanding voltage breakdown of pin contact insulation due to circuit over- loading					x	
9.	Insulation breakdown due to seawater pressure	x	x				
Sock	ets						
1.	Open circuit due to damaged or missing socket contact spring	x	x	x	x		x
2.	Socket contacts not located in proper center lines	x					x
3.	Socket contacts not properly inserted in insulator	x		×	x		
4.	Open circuit due to oversize socket con- tacts	x		x			
5.	Open circuit due to contamnants in socket contact cavity			x			
6.	Relaxation of the springs on the socket contacts	x	x				
Pins	_						
1.	Open circuit due to undersize pin contacts			x			
2.	Overloaded circuit leading to insulation breakdown of pin contact					x	

Ď

Ľ

6253

Y CARANTARA CARANTARA

Table 6-2, cont. Failure Modes

1

k

B

3

X

		FAILURE CAUSE					
		inherent induced					
	POSSIBLE FAILURE MODES	Mfg/Design Deficiency	Material Deficiency	Instl/Ass [,] Deficiency	Maintenance Deficiency	Excessive Oper- ational Demands	Rough Handling
3. Contan ing	ninated or corroded pin contact plat-	x	x	x	x	x	
4. Bent o proper	or mislocated pin contacts preventing mating with plugs	x		x	x		x
Conductors							
1. Open o tact i conduc	circuit in conductors at socket con- interface due to fracture of nicked ctor strands			x			
2. Wearin improp	ng through of the caple jacket due to per support					x	
3. Conduc loads	tor breakage due to axial tensile on the harness					x	r
4. Conduc on the	tor breakage due to high impact loads cable or a sharp cable bend radius					x	x
5. Conduc cable	tor kinking and breaking in the harness					x	x
Potting							
l. Insula pottir	ntion breakdown due to contaminated ng materials	x					
2. Pottin breakd	ng material or pin contact insulation lown due to moisture accumulation	x		x	x		
3. Open c socket	ircuit due to potting compound in contact	x		x	x		
Interface							
1. Loss o foreig	of plug-to-receptacle seal due to n particles at interface			x	x		
2. Loss d due to	of boot-to-plug (also cable) seal contamination at the interface	x	x	x			

Table 6-3. Possible Failure Modes and Effects--Electrical Connector Plug

ł

R

Ň

X

8

FUNCTION	ASSUMED TYPE OF FAILURE	POSSIBLE FAILURE CAUSE	EFFECT ON SYSTEM	BACKUP
Provide a rigid frame to withstand hydrostatic pressures and permit establishment of a water-	Warpage, fracture or collapse	Naterial imperfections or poor quality control	Loss of watertight envelope protection and eventual loss of electrical signal	None
cable and connector plug	Noisture Seepage	Marred or scratched surface area that mates with recep- tacle O-ring	Electrolysis causes buildup of H ₂ and O ₂ gas pressure eventually blowing O-rings and loss of watertight envelop	None
Provide for positive mating of connector plug and receptacle	Loose or in- sufficient connection	Plug not completely inserted into receptacle	None - Proper tightening of coup- ling ring ensures depth of insertion	Coupling Ring
Provide proper align- ment of sockets and pins during mating of plug and receptacle	Sockets do not mate properly with receptacle pins	Plug shell not properly aligned with the sockst con- tact arrangement; align- ment key out of position; receptacle shell not properly aligned with the pin contact.	Disruption of involved current flow	None
Provide primary pres- sureproof seal for plug	e primary pres- pof seal for plug leakage fatigue; material surface		None, redundant O-ring	Secondary O-ring
and receptacle union (electronics housing)		interface marred or scratched; poor maintenance procedures.	Failure of both O-rings, loss of electrical signal	None
	Moisture seepage	Electrolysis action develop- ing excessive gas pressures	Loss of watertight envelope and de- velopment of elec- trical short	None
Isolate conductor from plug shell	Morrison seal or insulator break- down and ulti- mate electrical short	Material impurities; mate- rial fatigue/age; fatigue inducod by external cable vibration; moisture seepuge/corrosion; resis- tance decreases as pres- sure increases.	Ultimate loss of electrical signal	None
Provide positive elec- trical path between external cable con- ductor and the receptacle contact pin	Open circuit	Defective alignment; rough handling; poor maintenance procedures; improper con- tact crimping; improper insertion of retainer ring	Intermittent and/ or disruption of current flow	None
Provide a watertight envelope for interface of plug shell and ex- ternal cabling con- ductors	Leakage or rupture	Material imperfection; im- proper/poor bonding; fatigue induced by external cable vibration; interface con- tamination; improper main- tenance/handling; corrosion	Loss of watertight envelope and de- velopment of elec- trical shorts	None
Retain the mated connection of connector plug and receptacle	Wear, fracture, warpage or broken coupling ring lip	Material imperfections or poor quality control; fatigue induced by external cable vibration and improper tightening	Loss of connection resulting in develop- ment of an electrical short.	None

Table 6-4. Possible Failure Modes and Effects--Electrical Connector Receptacle

Ś

FUNCTION	ASSUMED TYPE OF FAILURE	POSSIBLE FAILURE CAUSE	EFFECT ON SYSTEM	BACKUP
Provide a rigid frame to withstand hydrostatic pressurus and permit establishment of water- tight mating	Warpage, frac- ture or collapse	Material imperfections or poor quality control	Loss of watertight envelope protection and eventual loss of electrical signal	None
Provide for positive mating of connector receptacle and plug	Loose or insufficient connection	Plug not completely inserted into receptacle; worn or stripped threads for coupling ring union	FoneProper tightening of coupling-ring ensures length of engagement	Coupling Ring
Provide a proper align- ment of pins and sockets during mating of recep- tacle and plug.	Pin contacts do not mate prop- erly with re- ceptacle pins	Receptacle shell not properly aligned with pin contact ar- rangement; alignment key out of position; plug shell not properly aligned with the socket contact arrangement.	Disruption of involved current flow	None
Backup watertight seal for plug-to-receptacle union	Moisture or water seepage, leakage/ rupture	Material imperfections or fa- tigue; O-ring surface marred or scratched; maintenance-induced failure; excessive buildup of H2 and O2 gases caused by electrol- ysis action; foreign materials	Increasing current loss; eventual loss of involved signals	None
Insulate pin contacts from receptacle shell	Electrical short	Insulation breakdown due to impurities within the insu- lator; material fatigue/age.	Increasing loss of transmitted signals	None
Provide support and in- sulation of pin contacts	Electrical short	Improper installation; mater- ial fatigue/age; deficient maintenance procedures; resis- tance decreases as pressure in- creases (material deficiency)	Eventual loss of involved electrical signals	None
Provide positive elec- trical connection be- tween conductor and the socket contact	Open electrical cirçuit	Improper or cold solder con- nection; defective alignment key, use of excessive force for inserting plug into receptacle; deficient main- tenance procedures	Intermittent or complete loss of involved electrical signal	None
Provide a watertight seal for receptacle to component at interface	Moisture or water seepage; leakage or rupture	Material imperfection or fatigue; interface surfaces marred or scratched; poor maintenance procedures; improper torquing of coupling ring; foreign materials	None, redundant O-ring	Secondary O-ring
				1

Possible Failure Modes and Effects--Receptacle in Hull Table 6-5.

ß

B

ß

N.Å

S

R

Ę

	FUNCTION	ASSUMED TYPE OF FAILURE	POSSIBLE FAILURE CAUSE	EFFECT ON System	BACKUP
	Provide pressureproof penetration of hull	Water leakage past primary seal	Seal surfaces damaged; faulty seal; foreign materials in interface	None	Secondary O-ring
		Water leakage past secondary seal	(same as above)	Water leakage into pressure hull	Noлe
	Provide pressureproof seal for plug or junction box	Water leakage past primary seal	(same as above)	None	Secondary O-ring
•		Water leakage past secondary seal	(same as above)	Water contamination of enclosed contacts: short circuiting	Primery O-ring on outboard header
	Provide positive mating and support for out- board component	Loose or insuffi- cient retention	Improper torquing of coupling ring	None	Secondary O-ring
	Provide proper align- ment of contacts with mating component	Contacts do not mato properly due to damage	Defective key and/or keyways in components	Loss of damaged circuits	Double keys intended to prevent "scoop-type" contact damage
	Provide a pressureproof envelope for enclosed electrical wiring	Fracture or cracking	Defective material or dam- aged material	Loss of all com- ponents serviced by connector due to flooding	Inboard hull waterdam

Table 6-6. Possible Failure Modes and Effects--Junction Box Hull

FUNCTION	ASSUMED TYPE OF FAILURE	"OSSIBLE FAILURE CAUSE	EFFECT ON SYSTEM	BACKUP
Provide rigid, pressure- proof foundation for elec- trical connectors	Water leakage past receptacle/ junction box primary seal	Seal surfaces damaged; faulty seal; improper tightening of receptacle mounting screws	None	Receptacle junction box secondary seal
	Water leakage past receptacle/ junction box secondary seal	(same as above)	Flooding of internal wiring	None
	Water leakage past contact insulator seal	Faulty glass	Degraded and possible loss of receptacle circuit	None
Provide a pressureproof envelope for enclosed electrical wiring	Cracking or collaps c	Defective material	Flooding of internal wiring	None .
Provide access to internal wiring of junction box (pressure- proof cover)	Water leakage past cover/ junction vox primary seal	Seals or seal surfaces damaged	None	Secondary seal
	Water leakage past cover/ junction box secondary seal	(same as above) plus improper fitting of cover	Flooding of internal wiring	None
	Distortion or collapse of cover	Defective material; collision	Flooding of internal wiring	None

525

K

7. Implement results; i.e., recommend to design engineers redesigning options that will rectify the possible failure modes.

As quancitative data on failures and their causes become available, the FMA can be made increasingly quantitative. The procedure for a quantitative method is outlined below.

Quantitative FMA Procedure Outline

1. Determine Component Characteristics

a. Basic data:

こうち こうちちちちちちちちちちちちちちちちちちちち しんちょう しんちょ しんちょう しんちょ しんちょ しんちょ しんちょ しんちょう しんちょ しんちょ しんちょ しんちょ しんちょ しんちょ しんちょう しんちょう しんちょう しんちょう しんちょう しんちょう しんちょう し

N

R

23

S

223

failure rate, λ , and repair time, τ , if applicable

b. Basic component probabilities:

p = probability of failure

- $p = \lambda t$, where t = operating time
- q = probability of being inoperable due to repairable
 failure
- $q = \lambda \tau$
- 2. Determine Critical Path and System Characteristics

a. All components, nonrepairable:

- P_i = probability of system failing by a particular critical path (critical path probability)
- $P_i = p_1 p_2 \dots p_m$ (product of component probabilities)
- P_{S} = probability of system failure (system probability)
- $P_s = \sum_{i=1}^{\infty} Q_i$ (sum of critical path probabilities) i=1
- c. Mixture of repairable and nonrepairable component failures:

Apply the general rule, i.e., multiply appropriate component probabilities to obtain critical path probability; sum critical path probabilities to obtain system probability.

- 3. Determine Quantitative Importance
 - a. Critical path importance
 - I = fraction of time system failure caused by a
 particular critical path

I_i = critical path probability system probability

b. Component importance

- - system probability

国に

200

N NN

の渡い

5

4. Evaluate Sensitivity

Perform a sequence of calculations in which different values are used for λ and/or τ to determine the effect of changes in system characteristics. Changes can also be made in the fault tree to determine the impact of design modifications.

5. Perform Error Analyses

A statistical analysis to determine the possible error in any final result due to possible errors in the data used. One applicable technique is Monte Carlo simulation.

6. Implement the Results

Communicate the results to engineering for incorporation in design reviews, redesign, quality control and procedures, and performance/failure analyses.

6.1.3.2 Possible Leak Paths. This section presents illustrations of possible leak paths of water into two models of underwater connectors. The first illustration, Figure 6-3, shows seven leak paths into a Morrisontype sealed connector. Numbered components of the Morrison seal may be identified by referring to the table on pp. 3-12 and 3-13. Leak path 1 produces a short between the center conductor and the ground shield, and shorts in electronic packages. Leak paths 2 and 3 proceed past the nut and follow cable jackets on the inside of the Morrison seals to produce shorts at the points indicated. Leak path 4 proceeds past the nut and follows the housing wall on the outside of the Morrison seals to produce shorts at the points indicated. Leak paths 5 and 6 are examples of seawater hosing into the connector from a leak in the cable. Leak path 1 is the most likely to occur.

网络

ŝ

88

ß

S

ri Ri

The second s

Figure 6-3. Possible Leak Paths into a Morrison-Type Sealed Connector

The second type of commercial connector is illustrated in Figures 6-4 and 6-5. Figure 6-4 identifies the individual components of the connector, and Figure 6-5 shows the possible leak paths. Leak paths 1 through 6 lead to shorts between the ground shield and the center conductur. Leak paths 2, 3, 4, 5 and 6 initially produce a shield-to-seawater short but because of the lack of internal connector seals lead to shorts between the the shield and the center conductor. Leak paths 7 and 8 allow seawater to enter the interior of the hull and produce shorts in electronic packages. Leak path 2 is the most likely to occur and leak path 7 is the next most likely to occur.

6.1.4 QUALITY ASSURANCE: QUALITY CONTROL AND CERTIFICATION GUIDELINES

One of the most urgent problems associated with electrical components subjected to deep submergence is quality assurance in their design, manufacture and installation. A complete quality assurance program includes both quality control and certification. However, quality assurance programs can be limited to setting up and maintaining a comprehensive set of procedures for quality control. Quality control, as defined here, is the set of procedures and techniques that ensures that a manufactured item conforms to the design specifications.

This section presents some quality control and certification procedures that should increase the reliability of connectors and connector assemblies; i.e., the probability that they will operate satisfactorily for a given time when used under specified operating conditions and with specified maintenance programs.

6.1.4.1 <u>Quality Control</u>. A quality control program would include the following:

- Composing design and procedures manuals and ensuring that the manuals are available to the proper people for reference.
- 2. Labeling all procured materials, verifying their suitability and controlling all materials issued for production.

and the second sec

ш. ГШ

E

523

8

ŝ.

200

8

R

W N

(); ();

- 3. Maintaining inspections during the manufacturing process.
- 4. Maintaining a system for identifying, serializing and certifying completed components.
- 5. Inspecting, testing and certifying completed components.
- 6. Assuring that the latest applicable drawings and information are available at the time of inspection.
- 7. Maintaining a performance/failure analysis feedback program.
- 8. Establishing procedures for installation and maintenance of components.
- 9. Maintaining records of all quality control inspections and tests.
- 10. Maintaining gauges and testing devices necessary to ensure that components conform to specifications.
- Providing procedures and instructions for control of stored supplies and finished components.
- 12. Utilizing packaging devices to protect components during handling.

In the case of deep submergence connectors and connector assemblies, the above quality control requirements should be written into or referenced in the following documents:

1. The cable specifications

ß

E3

ŝ

63

53 53

8

8

17. 17.

E

<u>N</u>.

Ľ,

- 2. The plug specifications
- 3. The receptacle specifications
- 4. The hull specifications
- 5. The harness specifications
- The connector assembly, installation and maintenance manuals.

6.1.4.2 <u>Certification</u>. While a quality assurance program may be limited to quality control, a complete program also includes certification. Certification of electrical connectors requires that all operations be conducted in accordance with an established set of standards. These standards normally cover the following items:

- 1. Design requirements and guidelines
- 2. Design calculations
- 3. Design verification
- 4. Material selection evaluation
- 5. Material verification
- 6. Seal material verification
- 7. Assembly and detail drawings
- 8. Failure mode analyses
- 9. Preproduction qualification test procedures
- 10. Production quality conformance procedures
- 11. Handling procedures
- 12. Installation procedures
- 13. Maintenance procedures
- 14. Periodic performance/failure analyses

The following sections discuss these certification areas in more detail.

6.1.4.1.1 Design requirements and guidelines. Design certification requirements for submerged electrical connectors include:

- 1. Operating depth
- 2. Test pressure
- 3. Vibration
- 4. Physical shock
- 5. Amperage
- 6. Voltage
- 7. Frequency
- 8. Temperature
- 9. Hull and structural support materials

The following are suggested design certification guidelines:

- 1. Through-the-hull receptacles should have primary and secondary seals.
- 2. Connectors must be fabricated from acceptable corrosionresistant materials that are galvanically compatible with

the hull. All galvanically incompatible materials must be electrically isolated by a resistance of at least 100,000 ohms.

- 3. Materials and processes for preventing corrosion of connectors and seals, such as paints and sealants and their application, must be specified.
- 4. All connectors must be capable of withstanding all potential hydrostatic pressures.

Ĥ

H

 \mathbb{S}

ß

C

Ŷ

R

ß

Statistics - Statistics

6.1.4.1.2 Design calculations. The design calculations should ensure that the connector components are properly sized to prevent collapse or fracture due to the operating environment, and that all seals are properly sized.

6.1.4.1.3 Design verification. Design verification consists of tests to prove that the design is adequate to meet the physical and mechanical requirements imposed by the expected service conditions. Design verification testing of the connector components should follow the basic test sequence outlined in Table 6-7. Some of these tests will be repeated in the preproduction qualification test sequence and in the production quality conformance test sequence. The following performance requirements apply to all three test sequences:

Table 6-7. Design Verification Test Sequence for Connectors

TEST NO.	DESCRIPTION	PLUG	RECEPTACLE	MATED WIRED CONNECTORS
1	Examination of Product	x	x	x
2	Insulation Resistance Test	х	Х	x
3	Continuity Test			x
4	Contact Resistance Test	x	х	
5	Withstanding Voltage Test	x	x	x
6	Durability Test			x
7	Hydrostatic Pressure Test	x	x	x
8	Thermal Shock Test	x	x	x
9	Vibration Test			x
10	Shock Test			x
11	Withstanding Voltage Test			x
12	Insulation Resistance Test	х	x	x
13	Examination of Product	х	x	x

and the second of the

Insulation Resistance: Connectors should be insulation-resistance tested in accordance with Method 3003 of MIL-STD-1344. The resistance should be measured between all adjacent pairs of contacts and between the metal shell and each contact. The test voltage must not exceed the rated voltage of the test connector or connector system. The insulation resistance should be greater than 5000 megohms.

Continuity: All mated connectors and wired contacts should be checked for continuity with a standard circuit tester. There should be no evidence of open circuits.

Contact Resistance: The contact resistance should be measured in accordance with the contact resistance test of MIL-STD-1344. The potential drop should not be greater than that determined during the design program.

Dielectric Withstanding Voltage: Mated and unmated connectors should be tested in accordance with Method 3001 of MIL-STD-1344. The applicable test voltage (1000 volts for size 20 and 16 contacts, and 1900 volts for size 12, 8, 4, 0 and 0000 contacts) should be applied between all adjacent contacts and between all contacts and the metal shell.

Durability: Sample connectors should be mated and unmated 150 times at a rate of 50 \pm 25 cyles per hour; the plug coupling rings should be operated in a manner to simulate actual service. One third of the unmatings should be performed by pulling on the plug and the receptacle. One third of the unmatings should be performed by pulling on the cables. The pull should be twice that required for normal unmating. The force can be controlled by attaching the plug and receptacle to a dash pot system. Onethird of the unmatings should be performed by jerking the cables. The jerk may be accomplished by producing within a few milliseconds a cable velocity of 10 ft/sec \pm 5 ft/sec in the cable no more than 2 feet from the connector. This can be accomplished by using a rotating arm that contacts a catch attached to the cable. Sample connectors should show no damage detrimental to the operation of the connector as a result of the test.

Continuity should be continuously monitored during the test. There should be no interruption of electrical continuity longer than 10 msec in the mated condition. During mating and unmating the continuity of all conductors should change simultaneously. No conductor should change continuity more than 10 msec before any other conductor.

2) Z

のないで、「「したない」のであるとない。

「秋天」「「「「

いたであるというのないでないたという

図認

1989) --

20

R

C, î

ß

3

B

ß

12

Hydrostatic Pressure: The unmated plugs and receptacles and the mated connector assemblies should be subjected to a hydrostatic pressure test. The connector assemblies should be mounted on the internal side of a pressure vessel cover using the mounting method to be used in the field. All standard precautions must be complied with. For the unmated connector tests, the face of the web section should be exposed to a test pressure equivalent to 1-1/2 times the connector operating pressure. The connectors may be tested in clean tap water. For the mated connector and pressureproof cover tests, the connectors should be mated with the tools that will be used in the actual installation and held with the normal locking device. The connector should be wired as it will be in service. See Figure 6-6 for an example of a mated connector test circuit. The cable should be end-sealed using the same techniques used to mold the cable to the plug.

The assembly should be tested at 1-1/2 times the operating pressure of the connector on a test schedule similar to that shown in Table 6-8 except that the depth classification should be 1-1/2 times the connector operating pressure. The connectors should be subjected to 10 cycles of the hydrostatic pressure test sequence. Insulation resistance readings should be measured before, during and following every pressure cycle. There should be no evidence of mechanical damage, water leakage or impaired electrical properties in the plugs, receptacles or mated connectors as a result of these tests.

Vibration: Mated connectors and mated pressureproof covers should be vibrated in accordance with Method 2005 of MIL-STD-1344. Mated

8

Sec. 3

変変

See. west

i L

X

S.

S

K.

12.13

Table 6-8. Hy	ydrostatic	Pressure	Test	Schedule
---------------	------------	----------	------	----------

STEP	PRES (ps Low	SURE ig) High	HOLD TIME (Min)	DEPTH CLASSIFICATION (ft)
1	0	20	5	
2	0	20	5	
3	0	20	5	
4	0	150	5	
5	0	1,000	5	
6	0	2,000	5	
7	2,000	3,000	5	
8	3,000	5,000	5	
9	5,000	6,000	5	
10	5,000	8,000	5	
11	8,000	10,000	5	
12	10,000	12,000	5	
13	12,000	13,600	24 hours	20,000

contacts should be wired in series as noted in Figure 6-6, and be connected with a suitable testing circuit. Any voltage or current within the connector rating should be applied throughout the vibration test. The mated connector or mated pressureproof cover should be held together by the normal locking device. Cables should be supported on a stationary frame not closer than 8 inches from the connector. Mated connectors should not be damaged as a result of this test, and there should be no loosening of parts. Sample connectors should remain in full engagement, and there should be no interruption of electrical continuity longer than 10 msec.

entr C

Shock: Mated connectors and mated pressureproof covers should be tested in accordance with Method 2004 of MIL-STD-1344. Three blows should be applied in each direction of the three major axes of the connectors. Receptacles should be mounted on the device or carriage. For the mated connector tests, molded plugs should be engaged to the receptacles and held only by normal locking means. All contacts should be wired in series as shown in Figure 6-6, and the cables or wire bundles should be clamped to the structures that move with the connectors. A minimum of 8 inches of cable should be unsupported behind the rear of each connector. For the mated pressureproof cover tests, the covers should be mated to their respective plugs or receptacles and mounted to the shock device or carriage. The covers should be held by the normal locking device. Mated connectors should not be damaged as a result of these tests, and there should be no loosening of parts. Sample connectors should be retained in full engagement and there should be no interruption of electrical continuity longer than 10 msec.

6.1.4.1.4 Material selection evaluation. Selection criteria and test procedures to determine the suitability of the selected materials should be part of a design certification package. Standard material specifications such as military specifications or ASTM, NAS, AISI or SAE standards should be used whenever possible. Design criteria for material selection should preclude the use of noncorrosion-resistant materials. (For seawater applications, a corrosion rate of 5 mils per year is usually

considered the dividing line between corrosion-resistant and noncorrosionresistant materials.) All electrically connected metals should be galvanically compatible (i.e., close on the galvanic series). Corrosion prevention begins with proper material selection and by specifying procedures such as painting, sealing and a cathodic protection system to reduce corrosion. The MIL-STD-202 test method is applicable, but it is strictly a comparative test of materials and coatings. The initial design decisions on materials and processes should be verified by laboratory and field tests. The effectiveness of the material selection process will, of course, ultimately be - termined by the results of the performance/failure analyses on hardware recovered from field service.

6.1.4.1.5 Material verification. Acceptance/rejection criteria for material verification should be presented so that materials can be accepted or rejected on the basis of the results from standard or specified laboratory or field tests. All such test results should be kepc available for the life of the product. Depending on the procurement specifications, the tests — be conducted by the supplier, the receiver or both.

6.1.4.1.6 Seal material verification. Seal material verification, especially for Morrison seals, requires checking for durometer hardness and bulk resistivity. The bulk resistivity should be measured at pressures greater than the expected service pressure, and the measurements should be repeated after the pressure has been maintained for at least 24 hours. The resistivity should not decrease with increased pressure below the design value. The results of these tests should be saved for comparison with the results of performance/failure analyses conducted at a later date.

6.1.4.'.7 Assembly and detail drawings. The assembly and detail drawings should be sufficiently complete to allow the manufacturer to fabricate a complete connector or connector assembly.

6.1.4.1.8 Failure mode analyses. For a complete description of Failure Mode Analysis, refer to Section 6.1.2.

6.1.4.1.9 Preproduction qualification tests. Once a connector design is verified, the user must ascertain whether the fabricator can produce a satisfactory product using the specified material. The preproduction qualification tests verify the manufacturer's ability to fabricate the connector components. Passing these tests allows the manufacturer's products to be place on the Qualified Products List (QPL) of the applicable connector specification. The preproduction qualification tests should follow the basic test program outlined in Table 6-9. For a more detailed explanation of what the tests entail, see the discussion on the design verification tests in section 6.1.4.1.3.

Table 6-9. Preproduction Qualification Test Sequence for Connectors

Ŕ

8

医

222

TEST NO.	DESCRIPTION	PLUG	RECEPTACLE	MATED WIRED CONNECTORS
1	Examination of Product	x	x	x
2	Insulation Resistance Test	х	х	x
3	Continuity Test			х
4	Contact Resistance Test	х	х	~-
5	Withstanding Voltage Test	х	х	x
6	Hydrostatic Pressure Test	х	х	x
7	Thermal Shock Test	х	х	х
8	Withstanding Voltage Test			x
9	Insulation Resistance Test	х	x	х
10	Examination of Product	х	х	x

6.1.4.1.10 Production quality conformance tests. The production quality conformance tests should be conducted as outlined in Table 6-10. (Again, refer to the explanation given for the design verification cests.) These tests should be run on each completed connector assembly prior to shipment to the customer. All test data should be recorded and preserved.

TEST NO.	DESCRIPTION	PLUG	RECEPTACLE	PRESSURE - PROOF COVERS
1 2 3 4 5 6	Examination of Product Insulation Resistance Test Withstanding Voltage Test Hydrostatic Pressure Test Insulation Resistance Test Examination of Product	x x x x x x x x	x x x x x x x x	x x x

Table 6-10. Quality Conformance Test Sequence for Connectors and Accessories

6.1.4.1.11 Handling. Handling procedures should specify that electrical connectors and accessories should be protected with end caps and sleeves at all times when they are not being inspected, tested or otherwise used from the time of manufacture to installation. The caps are to protect the contacts, pins, threads and conductors from mechanical and corrosion damage and contamination; the sleeves are to protect the housings, rings and coatings from mechanical damage. It should also be specified that the relative humidity in storage areas should not exceed 65%.

Some special precautions that should be specified when examining connectors include the following:

- Capping plugs and Receptacles. Whenever a cable harness is disconnected, metal caps should immediately be placed on the plug and receptacle to prevent the entry of foreign material or possible damage.
- 2. Testing precautions. Before measuring current leaks in connected cable harnesses with a megger (megaohm meter), be sure that the connectors and connected equipment can withstand the applied voltage.
- 3. Cleaning contaminated plugs and receptacles. In the event that the receptacle or plug faces become contaminated by salt

water or other foreign material, the receptacle or plug should be swabbed out with distilled water and dried with dry nitrogen. The operation should be repeated as necessary until adequate insulation resistance values are obtained.

4. Connector remating precautions. Caution should be specified when mating plug-to-receptacle connectors to ensure that the proper plug is mated to the proper receptacle. If they are physically matched, but are electrically mismatched, damage to the equipment can result. If attempts are made to mate the plugs to receptacles with mismatching key orientations, physical damage to the plug or receptacle can result. These keyway deviations may not be readily discernible to the eye.

心思

X

3

22

5

 \bigotimes

 k_{I}

(\ [`\ { ...

6.1.4.1.12 Connector system installation guidelines. The connector systems must be installed according to strict quality control requirements even though the installation may be performed on board a ship at sea. Proper quality control can be achieved by observing the following rules:

- 1. The work must be accomplished according to specific procedures.
- 2. The personnel installing the connectors must be familiar with the procedures and have the manuals available.

The procedures should specify the inspections and checks that are to be conducted in the shop and at the installation site. Some of these checks include the following:

- Check the harness assembly in the shop to determine if the connectors and assembly have passed the electrical and mechanical tests prescribed.
- 2. Remove the protective caps from the plugs (or receptacle) on each end of the cable and check the O-rings and O-ring seal surfaces for dirt, nicks and scratches. All O-rings should be coaced with a thick film of lubricant. The O-ring

6-37

groove and all clearance volumes on the water side of the O-rings should be completely filled with O-ring lubricant or grease. NY N

Ŷ

5

Ņ

Special precautions should be specified when installing O-rings. O-rings should be packaged until ready for assembly and handled with care to prevent damage. They should be installed or removed with an O-ring tool made from semirigid plastic; knives, picks and other sharp objects should not be used as they may damage the O-ring or groove surfaces. The connector O-rings should not be installed until the connector is to be put into service. The O-rings should be lubricated with a theck film of MIL-L-4343 lubricant prior to installation. To obtain the desired seal, the ring grooves must be free of dirt and other foreign particles, and the O-ring must be free of nicks, dents or flats. MIL-STD-413, "Visual Inspection Guide for Rubber O-rings," should be followed to determine the adequacy of the O-rings for installation.

Barring damage, the O-rings should last at least 5 years. After that time, they should be replaced because the O-ring material may take on a permanent set and flatten out in the seal area.

If an O-ring is to be replaced, the replacement O-ring drawn from stock should be carefully handled and visually inspected for defects. MIL-STD-413 aptly shows the major defects that can occur during O-ring manufacture. The procedure should specify that MIL-STD-413 should be referred to when inspecting O-rings. A helpful reference when reporting defects is MIL-STD-177, "Terms for Visible Defects of Rubber Products." Basically, the O-ring should be sized in accordance with the specifications, and excessive flash, back rind, dents, depressions, flow lines, bad fillings that cause dents and depressions, foreign materials and splits. The O-ring thickness can be checked with a micrometer.

O-rings are packaged in dated containers. O-rings with a cure date older than 24 months should not be used.

The identification on the O-ring package should include the dimensions and material. Size is usually designated by referencing the ARMY-NAVY (AN) standard or Military Standard (MS) drawing number that shows

the dimensions to which the O-ring must conform. A commonly used O-ring material for salt water applications is a BUNA-N compound that conforms to MIL-P-5516, Class B, and MIL-P-25732.

6.1.4.1.13 *Maintenance*. The maintenance procedures will vary according to the application and will not be discussed here.

6.1.4.1.14 *Performance/failure analyses*. For a complete description of Performance/Failure Analysis, refer to Section 6.1.5.

6.1.5 PERFORMANCE/FAILURE ANALYSIS PLAN

X

X

R

2

E.C.

1 1

ß

6.1.5.1 <u>Introduction</u>. Underwater connector systems are normally recovered and replaced after several years of service, either because of component failure or because of probable impending failure. Regardless of the reason for retrieving the system, it is advisable that a performance/failure analysis be made to identify which components have failed (if any), determine the cause(s) of failure, and document the performance of the connector system and its parts. In the short term, the results of performance/failure analyses help improve the soundness of connectors and connector assembly designs, material selections, and processing. In the long term, such information helps quantify the reliability of both inhouse components and individual parts purchased from different manufacturers. The following section presents a plan for a performance/failure analysis of an underwater electrical connector system (acoustic array).

6.1.5.2 <u>Preparation</u>. The first step is to obtain background information on the underwater connector arrays to be recovered. Pertinent information includes the array number, type of array, date planted, operating depth, corrosion protection system (description of paint system and cathodic protection systems), array performance, individual connector performance characteristics, reason for array recovery, and suspected component failures.

6.1.5.3 <u>Recovery Procedure</u>. The next step is to inspect the array and harness at the time of recovery and dismantling and record all observations of connector system condition.

 Preparation data should be confirmed as possible by inspecting the array. Anode size, location and percent weight change should be recorded. The type of paint system and its condition should be noted. The array structural materials should be determined as possible by inspection.

g

- 2. Color slides or photographs will be taken to show the condition (degree of corrosion, extent of fouling and mechanical damage) of the array at the time of recovery. The photographs should include closeups (from 1 to 2 ft, with a 55-mm macrolens or equivalent) of fasteners, connectors, anodes, representative painted surface areas and the corroded areas with the worst damage. In addition, overall photographs of the array will be taken. High-quality photographic equipment and professional techniques will be used to assure the quality of the photographic information. All photographs will be identified with the array number and the specific location of the part depicted.
- 3. The complete connector assembly (or harness), including the junction box, plus 3 ft of shoreside cable will be carefully dismantled intact. The intact harness will then be gently washed down with fresh water. Protective caps (aluminum) will be attached over acoustic hydrophones. The electrical cable will be cut about 3 ft to the shore side of the junction box. To ensure that no water enters the open cable end, a hose clamp will be clamped around the cable 2 to 3 in. toward the junction box from the cut location before the cut is made. Immediately after parting the cable, a heavy duty (10-mil thick) plastic bag will be fixed over the salvaged end with a second hose clamp.
- The harness will be identified with the array number and the position of each hydrophone on the array will be indicated.
- 5. The complete harness will be placed on a wooden board or pallet, and the junction box bolted to the board. This

assembly will be set in a heavy duty plastic bag inside a wooden box or other sturdy container. The entire harness shall remain on top of the board and no part shall be allowed to sit in water in the bottom of the bag. Approximately five pounds of desiccant (silica gel) will be placed in the bag. A vacuum will be pulled on the bag to pull it tightly around the assembly and extract as much air as possible. The bag will be back-purged with nitrogen or argon, and then sealed under vacuum. The box will be covered and kept out of the sun (preferably in cold storage, but above freezing). water-displacing compounds and solutions must not be used because their effect on leak sites and corrosion damage is not well known.

K

(

23

R

R

223

۲.۲ ۲.۹ ۲.۹

6. Shipment to an examination site will be made as soon as possible by air freight or rapid surface transport. The top of the box will be plainly marked "THIS SIDE UP."

6.1.5.4 <u>Examination, Test and Analysis</u>. Visual inspection: will be made of all connector assemblies for evidence of damage during shipment. Observations will be recorded.

- 1. Before disconnecting the connectors, a complete acoustic/ electronic test will be performed on each harness (connector/ hydrophone assembly). The continuity of all input and output circuits will be checked for open circuits. The sensitivity and beam pattern of each hydrophone will be recorded individually and compared with preservice test records. These comparisons will be analyzed to evaluate the deterior:tion of each connector/hydrophone assembly. It shall be kept in mind that the primary objective of this analysis is to identify any parts (connectors, seals, cables, housings or electronics) that have been damaged by corrosion, leaks, dampness, deformation, fault currents or shorts.
- 2. All mated connectors and wired contacts will be checked for continuity with a standard circuit tester. The electrical

resistance across all connector pins and between pins and housings will be measured in accordance with Method 3033 of Mil-Std 1344. The objective of these measurements is to detect low-resistance paths in the connectors or harness due to seal material breakdown, leaked water or corrosion products.

M

X

K

- 3. Mated and unmated connectors should be tested in accordance with Method 3001 of Mil-Std 1344 to determine connector and connector system dielectric withstanding voltage.
- 4. The contact resistance will be measured in accordance with the contact resistance test of Mil-Std 1344 and recorded.
- 5. A failure analysis will be performed on all connectors, junction boxes, spheres and cables that show evidence of failure (low resistance, low sensitivity, leakage or corrosion damage), with the objective of identifying the failure mode and the cause of failure. Disassemble connectors carefully to preserve all parts (seals, O-rings, O-ring surfaces, grooves, keys, spacers, pins, retainers, housing, etc.). Visually examine parts for damage (corrosion and handling). Note the condition of surfaces, grooves, sealants and coatings (lubricants, paints and anodizing). Identify leak paths and probable weakest link in connector. Corrosion damage and corrosion products often indicate the leak path. Select parts and areas for examination with an optical microscope and/or scanning electron microscope (SEM) as necessary. Examination with a SEM can verify material quality, identify corrosion products, quantify corrosion damage and indicate crack nucleation sites; i.e., provide substantial information on the cause of failure. Verify that all connector materials are the same as those specified by design. Wet chemistry and dry chemistry (spectographic or X-ray) methods will be used as necessary. Section and mount specimens for metallographic examination as necessary to evaluate corrosion damage or inherent defects. Record and summarize observations. Connectors that do not exhibit evidence of failure will be examined to a lesser degree using

the same technique. Evidence of no failure as well as of failure will be recorded.

6. The service performance of the selected connector seal materials will be evaluated by determining hardness, dimensional changes (creep), and changes in bulk resistivities at various pressures. Present hardness, dimensions and bulk resistivities will be measured and compared with preservice dimensions and resistivities.

6.1.5.5 <u>Report</u>. Observations, test results, analysis results and conclusions will be documented. Conclusions will emphasize evidence of successful operation as well as probable failure modes and cause(s) of failure(s). Recommendations to prevent the failures and comments on the apparent best design(s) (geometry, materials and assembly procedures) will be included in the report.

6.1.5.6 <u>Application of Results</u>. The results and conclusions of performance/failure analyses should be communicated to design and quality control engineers for use in design, design reviews and redesign.

6.1.6 DIRECTIONS FOR FUTURE RESEARCH

÷.

5

R

55

R

ういたいない

シューション かいてき しん いち いちょう ディー・ション

In the process of writing the manual, it became evident that specific research and development programs on submerged connectors are needed. Among these programs are the following:

- 1. Tests should be performed to determine the pressure limits on connectors with Morrison seals over a reasonable range of design parameters such as cable crush strength, washer stiffness, housing-to-washer clearance, and seal material creep strength.
- 2. A Morrison seal material study should be conducted to evaluate material properties and behavior, and to develop material specifications and tests for candidate seal materials.

3. A study of boot potting compounds should be performed to evaluate adhesion properties and behavior, and to determine mixing, storing, preparation, and application procedures for candidate potting compounds. í.

Ô

- 4. Corrosion research should be undertaken to provide engineering background for the understanding and prevention of several different corrosion mechanisms:
 (1) corrosion mechanism under O-rings, (2) corrosion mechanism under Morrison seals, (3) effects of cathodic protection on seal corrosion, and (4) effects of greases and paint systems on seal corrosion, to name a few.
- A compact connector tester with the facilities to perform all or most of the design verification tests (refer to Section 6.1.4) should be developed.
- 6. A procedure for performing a performance/failure analysis on all recovered submerged connector systems should be written and adopted; the results should be periodically incorporated into the reference manual.
- A Failure Mode Analysis or Fault Tree Analysis should be performed on selected connectors and connector assemblies that are presently in service.

6.1.7 REFERENCES

- Arnzen, H.E. "Failure Mode and Effect Analysis: A Powerful Engineering Tool for Component and System Optimization," Fifth Reliability and Maintainability Conference, N.Y., N.Y., sponsored by American Institute of Aeronautics and Astronautics, July 18-20, 1966.
- Haasl, D.F., W.E. Vesely and N.H. Roberts, "System Safety and Reliability Analysis," University of Washington course material, June 1976.

6 - 44

- E R N N R 1) and the second of the second s ß È
- 3. "Fault Tree Analysis: A Technique for Product Safety Evaluation," F.A. Scerbo and J.J. Pritchard, ASME 75-SAF-3, presented at the Engineering Applications Conference, Baltimore, Maryland, May 18-21, 1975, The American Society of Mechanical Engineers, Technical Division.
- Hassl, D.F., W.E. Vesely and N.H. Roberts, "Fault Treε Analysis," Nuclear Regulatory Commission Technical Report; in preparation.

6.2 Pertinent Military Specifications

6.2.1 FOR ELECTRICAL CONNECTORS

MIL-C-5015Connector, electrical, AN type
MIL-C-26482Connector, electrical, circular miniature, quick disconnect
MIL-C-26500Connectors, general purpose, electrical miniature, circular environmental re- sisting 200°C ambient temperature
MIL-C-27599Connector, electrical, miniature, quick disconnect (for weapons systems) estab- lished reliability
MIL-C-38999Connectors, electrical, miniature, quick disconnect, removable crimp type contacts, established reliability
MIL-C-81511Connector, electric, circular, high density, quick disconnect, environment resisting
MIL-C-22992Connectors, electrical, waterproof, quick disconnect, heavy duty type
MIL-C-83723Connector, electric, circular, environment resisting, general specification for
MIL-C-39012Connectors, coaxial, radio frequency, general specification for
MIL-C-24231Plugs, receptacle, cable assemblies, and hull penetrations, pressure proof, 4000 SBM general specification for

MIL-C-22249.....Connector sets, electrical, hermetically sealed, submarine

MIL-C-22539.....Connector sets, electrical, hermetically sealed, submarine

MIL-C-24217.....Connector sets, electrical, deep submergence, submarine

6.2.2 FOR ELECTRICAL CABLES

MIL-C-915.....Cable, cord, and wire, electrical shipboard use
MIL-C-23020....Cable, coaxial, for submarine use
MIL-C-22929....Cable, electrical, underwater, seadrone lighting
MIL-C-23812....Cable, electronic, tow, for submarine application
MIL-C-2194....Cables, power, electrical, reduced diameter type, Naval Shipboard
MIL-C-17....Cables, radio frequency, coaxial, dual coaxial, twin conductor, and twin lead
MIL-C-24145....Cable, electrical, special purpose, for shipboard useMIL-C-13777....Cable, special purpose, electrical; general specifications for

6.2.3 FOR CONNECTOR MATERIALS

MIL-M-14Molding, plastics, and molded plastic parts thermosetting
QQ-A-591Aluminum alloy die castings
QQ-A-225 aluminum alloy bar, rod and wire
QQ-A-367Aluminum alloy forging
QQ-S-571solder, tin alloy; lead-tin alloy; and lead alloy
QQ-S-763Steel bars, shapes and forgingscorrosion resisting

·	MIL-P-19833Plastic molding material and plastic molded parts, gloss fiber filled diallyl phthalate resin
	QQ-C-530 copper-beryllium alloy bar, rod, and wire (copper alloy No. 172)
	QQ-P-330Phosphor bronze bar, plates, rods, sheets, etc.
	ZZ-R-765Rubber, silicone: low and high temperature and tear resistant
	QQ-N-286 Nickel-copper-aluminum alloy, wrought (K-Monel)
	MIL-R-6855Rubber; synthetic, sheet molded, and extruded, for aircraft applications
	QQ-B-679Bronze, aluminum, rod, flat products with finished edges (flat wire, strip, and bar) shapes and forgings
	QQ-N-281Nickel-copper-alloy, bar, plate, rod, sheet, strip wire, forgings, and structural and special shaped sections
	MIL-M-24041Molding and potting compound, chemically cured, polyurethane (polyethes-based)
	QQ-B-637Brass, Monel, rod, wire, shapes, etc.
	MIL-P-17091Polyamide (nylon) plastic rigid: molded parts, rods and flats
	MIL-T-9047Titanium and titanium alloy bars, forgings, and forging stock
	MIL-B-24059Bronze, nickel aluminum, rod, flat products with finished edges, shapes and forgings
6.2.4	U.S. GOVERNMENT PLATING SPECIFICATIONS
	MIL-G-45204Gold
	MIL-C-14550Copper
	QQ-S-365Silver
	MIL-T-10727Tin
	QQ-Z-325Zinc

JA^S

8

5

5

1.13

MIL-R-46085.....Rhodium
QQ-C-320....Chromium
MIL-A-8625....Aluminum (anodized)
QQ-P-416....Cadmium
QQ-N-290....Nickel
MIL-C-26074....Nickel (electroless)
QQ-P-35 and
MIL-S-5002Stainless steel (passivated)
MIL-T-10727....Tin-lead
MIL-C-13924....Stainless steel (oxidized)
MIL-F-495....Copper (black oxidized)

6.2.5 CONNECTOR TEST SPECIFICATIONS

MIL-STD-202.....Test methods for electronic and electrical component parts MIL-STD-1344.....Test methods for electrical connectors MIL-STD-454......Standard general requirements for electronic equipment FED-STD-406.....Methods of testing plastics FED TEST METHOD 151....Metal test method MIL-C-45662.....Calibration: system requirement MIL-STD-10.....Surface roughness, waviness, and lay L-P-406.....Plastics, organic, general specification, test methods FED TEST METHOD 601....Rubber, sampling and testing MIL-STD-167......Mechanical vibrations of shipboard equipment MIL-S-901...... Shock tests, H.I. (high impact) shipboard machinery equipment and systems, requirements for MIL-STD-271......Nondestructive testing requirements for metals

MIL-STD-810.....Environmental test methods
6.3 Bibliographies on Connector Technology and Related Subjects

6.3.1 CONNECTOR DESIGN

N.

X

R

R.

ß

- Aamodt, T., <u>Seals for Electrical Equipment Under Water Pressure and Fusion</u> of Marlex to Polyethylene by a Molding Process, Bell Telephone Laboratories, Report No. 56-131-41, August 16, 1956.
- Aamodt, T., Seals for Ocean Bottom Equipment Containers, Bell Telephone Laboratories, Report No. MM-61-213-26, February 28, 1961.
- Abo, J.M., <u>Splicing Caged Armor Coaxial Cable</u>, Report No. 973, Naval Torpedo Station, Keyport, Washington, April 1969.
- Austin, R.S., Exploring Autec Depths with Alvin, Technical Report, Naval Underwater Weapons Research and Engineering Station, Newport, Rhode Island, March 1968, DDS No. AD-389-101L.
- Bridges, R.M., "Structural Requirements of Undersea Electrical Cable Terminations," presented at Marine Technology Society Conference, 1971.
- Bridges, R.M., "Undersea Cable System Design for the Eniwetok BMILS Installation," presented at Marine Technology Society Conference, Washington, D.C., June 29 to July 1, 1970.
- Briggs, E.M. et al., A Wet and Dry Deep Submergence Electrical Power Transmission System, Final Report, Southwest Research Institute, Project No. 03-25707-01, July 25, 1969.
- Briggs, E.M., "The Design of a 4160 Volt Deep Sea Wet and Drv Connector System," presented at Marine Technology Society Conference, Washington, D.C., June 29 to July 1, 1970.
- Czul, E.C. et al., "Load-Carrying Terminals for Armored Electric Cables," Naval Research Laboratory, Washington, D.C., Report No. NRL-6261, August 31, 1965, NTIS No. AD-621-564.
- Dowd, J.K., Design Report--Cable Seal for PQM Hydrophone, General Dynamics, Electric Boat Division, Report No. U411-61-091, July 1, 1961.
- Dowd, J.K., Design Study Report--Pressure Proof Hermetically Sealed Coaxial Radio Frequency Hull Fittings for Submarines, General Dynamics, Electric Boat Division, Report No. U413-62-095, Contract NObs 86068, June 1962.
- Dowd, J.K. and H.C. Miner, Design Study Report--Watertight Deep Submergence Cable Hull Penetrations Fittings for Submarines, General Dynamics, Electric Boat Division, Report No. U413-62-097, Contract NObs 86-68, June 1962.

- Dowd, J.K., Pressure Proof Electrical Cable Hull Penetration Fittings for Submarines, General Dyanmics, Electric Boat Division, Report No. SPD-60-101, pp. 60-192, Contract NObs 77007, October 31, 1960.
- Edwards, F.L. and R.A. Patterson, "Pressure Balanced Electrical Hull Penetrators and External Cabling for Deepstar 20,000," presented at Marine Technology Society Conference, Washington, D.C., June 29 to July 1, 1970.
- Eller, S.A. et al., "Protective Ring for Electronic Cable," Progress Report, Naval Applied Science Laboratory, Brooklyn, New York, DDS No. AD-862-011L.
- Field, N.H., "A Reliable Gland for Rubber Cables," Admiralty Research Laboratory, Teddington, England, April 1969, DDC No. AD-857-371.
- Forbes, R.J. and N.A. DeLucia, <u>Handbook of Electric Cable Technology</u> for Deep Ocean Applications, Naval Ship Research and Development Center (A), 6-54, November 1970, NTIS No. AD-877-774.
- Funk, C.J. et al., Handbook of Underwater Imaging Systems Design, NUC TP 303, July 1972, NITS No. AD-904-472 (L).
- Glowacz, A. and J. Louzader, "Thru Hull Electrical Penetrators," presented at Marine Technology Society Conference, 1970.
- Hackman, D.J. and B.R. Lower, Summary Report on a Study to Decrease Wire Breakage in Underwater Electrical Connectors, Battelle Memorial Institute, Columbus Laboratories, April 30, 1968.
- Haigh, K.R., "Deep-Sea Cable-Gland System for Underwater Vehicles and Oceanographic Equipment," <u>Proceedings</u>, IEEE, Volume 115, No. 1, January 1968.
- Handbook f Electrical and Electronic Circuit--Interrupting and Protective Devices for Deep Ocean Applications, Naval Ship Research and Development Center (A), 6-167, November 1971, NTIS No. AD-889-929.
- Handbook of Fluid-Filled, Depth/Pressure Compensating Systems for Deep Ocean Applications, Naval Ship Research and Development Center (A), 27-8, April 1972, NTIS No. AD-894-795.
- Handbook of Fluids and Lubricants for Deep Ocean Applications, Naval Ship Research and Development Center (A), MATLAB 360, Revised 1972, NTIS No. AD-893-990.
- Handbook of Pressure-Proof Electrical Harness and Termination Technology for Deep Ocean Applications, October 1974, NTIS No. Not Assigned.
- Haworth, R.F., Aluminaut Electrical Hull Fittings and Outboard Cable Connectors, January 1966.

- Haworth, R.F., <u>Design Study Report:</u> Hermetically Sealed Polaris <u>Umbilical Cable Connectors</u>, General Dynamics, Electric Boat Division, <u>Report No. SPD-60-107</u>, pp. 60-182, Contract NObs 77007 and 4204, November 1960.
- Haworth, R.F., Design Study Report: Watertight Hermetically Sealed Electrical Connectors for Submarines, General Dynamics, Electric Boat Division, Report No. SPD 60-101, pp. 60-194, Contract NObs 77007, October 31, 1960.
- Haworth, R.F., "Electrical Cabling System for the STAR III Vehicle," ASME Paper No. 66-WA/UNT-11, ASME Conference, November 27 to December 1, 1966.
- Haworth, R.F. and J.J. Redding, Design Study Report: Pressure Proof Hull Fitting and DSS-3 Type Cables on AN/BQQ-1 Sonar Array, SSN597, General Dynamics, Electric Boat Division, pp. 59-134, Contract NObs 77007, October 23, 1959.

R

Ŋ

M

M

8

R

-

- Haworth, R.F. et al., Final Report--Phase 1 Review, Design, Fabrication and Test Program for Deep Submergence Electrical Connectors and Penetrators, General Dynamics, Electric Boat Division, Report No. C413-70-016, 3 volumes, May 1970 (Confidential).
- Haworth, R.F. et al., Handbook of Vehicle Electrical Penetrators, Connectors, and Harnesses for Deep Ocean Applications, July 1971, NTIS No. AD-888-281.
- Haworth, R.F. "Packaging Underwater Electrical/Electronic Components on Deep Submergence Vehicles," Insulation/Circuits, December 1970.
- Haworth, R.F. and J.E. Regan, "Watertight Electrical Cable Penetrations for Submersibles--Past and Present", ASME Paper No. 65-WA/UNT-12, ASME Conference, November 7-11, 1965.
- Haworth, R.F. and J.E. Regan, "Watertight Electricial Connectors for Undersea Vehicles and Components," ASME Paper No. 64-WA/UNT-10, ASME Conference, November 29 to December 4, 1964.
- Johnson, E., "Hermetic Seals in Plastic Bodied Connectors," presented at 16th Annual Wire and Cable Symposium, Atlantic City, New Jersey, November 29 to December 1, 1967.
- Kitchin, D.W. and O.S. Pratt, "Jointing Polysthylene-insulated Submarine Cables," IEEE Transactions, Volume 78, Pt. IIIA, 1959.
- Klonaris, O., "Underwater Connectors," <u>Underwater Science and Technology</u> Journal, June 1970.
- Lenk, J.D. and H.B. Sams, Applications Handbook for Electrical Connectors, Bobbs-Merrill Company, Indianapolis, Indiana, 1966.

Lenkey, J., III and W.W. Wyatt, "Polyethylene Bonding to Metal for Cable Penetration of Pressure Hulls and Communications Applications," presented at 17th Annual Wire and Cable Symposium, Atlantic City, New Jersey, December 4-6, 1968. Ŋ.

X

1

8

X

- McCartney, J.F. and J.V. Wilson, "Development of an Underwater Mateable High-Power Cable Connector," Offshore Technology Conference, Paper No. OTC 1976, June 1974.
- McCartney, J.F. and J.V. Wilson, "High Power Transmission Cables and Connectors for Undersea Vehicles," presented at Marine Technology Society Conference, 1971.
- Miaschi, B., "A Cable Gland for Deep-Sea Operation," Saclant ASW Research Centre, La Spezia, Italy, January 1975, AD-A004-842.
- Miner, H.C., <u>Design Study Report--Ballast Tank Bulkhead Cable Seals</u>, General Dynamics, Electric Boat Division, Report No. SPD 60-105, pp. 60-195, Contract NObs 77007, October 31, 1960.
- Miner, H.C., Final Report--Investigation, Design Development, and Testing of Shore Power Connector Fittings for Permanent Installation in Submarine Hulls, General Dynamics, Electric Boat Division, Report No. U413-66-049, Contract NObs 90521, March 31, 1966.
- Morrison, J.B., "An Investigation of Cable Seals," Applied Physics Laboratory, University of Washington, March 1, 1954.
- Morrison, J.B., "O-rings and Interference Seals for Static Applications," Machine Design, February 7, 1957.
- Nation, R.D., <u>Deep Submergence Cables, Connectors and Penetrators</u>, Nortronics Division of Northrup Corporation (DSSP Contract N00024-68-C-0217), February 21, 1967.
- Nelson, A.L., "Deep Sea Electrical Connectors and Feed-Through Insulators for Packaging Electronics," presented at Material Electronic Packaging and Production Conference, Long Beach, California, June 9, 1965.
- O'Brien, D.G., "Application of Glass-Hermetic-Sealed Watertight Electrical Connectors," presented at Marine Technology Society Conference, June 1967.
- Okleshen, E.J., "Underwater Electronic Packaging," <u>Electrical Design</u> <u>News</u>, Electronic Circuit Packaging Symposium, Fort Wayne, Indiana, August 1960.
- Rotary Shaft-Seal Handbook for Pressure Equalized, Deep Ocean Equipment, Naval Ship Research and Development Center (A), 7-573, October 1971, NTIS No. AD-889-330 (L).

Sanford, H.L., Design Study Report--Phase Two--Electrical Bulkhead Connectors for Submarine Holding Bulkheads, General Dynamics, Electric Boat Division, Report No. U413-67-202, December 29, 1967.

- Sanford, H.L., Phase I Design Study Report--Electrical Bulkhead Connectors for Submarine Holding Bulkheads, General Dynamics, Electric Boat Division, Report No. U413-66-056, Contract NObs 92442, March 31, 1966.
- Sanford, H.L., Design Study Report--Watertight Electrical Plugs for Polaris Missile Harnesses on Submarines, General Dynamics, Electric Boat Division, Report No. 413-62-096.

N

8

R

Ł

- Sanford, H.L. and R.A. Cameron, Design Study Report--Molded DSS-3 Cable Splices for External Use on Submarines, General Dynamics, Electric Boat Division, Report No. 413-62-211, December 12, 1962.
- Sanford, H.L., et al., Final Report--Watertight Deep Submergence Electrical Connectors and Hull Fitting for Submarines, General Dynamics, Electric Boat Division, Report No. 413-65-185, Contract NObs 88518, October 1965.
- Saunders, W., "Pressure-Compensated Cables," presented at Marine Technology Society Conference, 1972.
- Small, F.B. and R.T. Weaver, "Underwater Disconnectable Connector," presented at Marine Technology Society Conference, 1971.
- Smith, O.D., "Connector Design Considerations for Hydrospace Environments," Oceanology International, November 1970.

Spadone, D.M., <u>Meeting on Cables, Connectors and Penetrators for Deep Sea</u> <u>Vehicles, Deep Submergence Systems Project Office, Bethesda, Maryland,</u> <u>January 15-16, 1969.</u>

Spadone, D., et al., "Three Hull Electrical Penetrators for the Deep Submergence Rescue Vehicle," presented at 5th Annual Marine Technology Society Conference, Miami Beach, Florida, June 15-18, 1969.

Thym, G.C. and R.A. Swan, "Underwater Cable Connectors and Terminators for the Hydrostatic Pressures to 10,000 psi," presented at Tenth Annual Wire and Cable Symposium, Asbury Park, New Jersey, November 1961.

Tuttle, J.D., "Underwater Electrical Integrity," presented at Marine Technology Society Conference, 1971.

Walsh, D.K., "Underwater Electrical Cables and Connectors Engineered as a Single Component," presented at Marine Technology Society Conference, June 1966.

White, C.M. and D.F. Denny, The Sealing Mechanism of Flexible Packings, Ministry of Supply, Scientific and Technical Memorandum No. 3/47, H.M. Stationery Office, London, 1948.

- White, J.F., <u>Cables and Cable Connectors</u>, NUSL Report No. 1060, Navy Underwater Sound Laboratory, New London, Connecticut, May 13-14, 1969 (Confidential).
- Wilson, J.V., "General Technology Review of Electrical/Electromechanical Cable Connections in Ocean Systems," USN Civil Engineering Laboratory, Port Hueneme, California, December 1973.
- Wilson, J.V., "Recommended Revision of the 'Handbook of Vehicle Electrical Penetrators, Connectors and Harnesses for Deep Ocean Applications,'" USN Civil Engineering Laboratory, Port Hueneme, California, September 1973.
- Wilson, J.V., "Underwater Mateable Electromechanical Connectors for Power and Signal Cables," Offshore Technology Conference, Paper No. OTC 2581, June 1976.
- Wilson, J.V., "Wet Connectors at CEL," USN Civil Engineering Laboratory, Port Hueneme, California, July 1975.
- Wolski, B., NR-1 Special Test for Effect of Short Circuit Fault Current on Hull Fittings, General Dynamics, Electric Boat Division, Report No. 418-69-001, January 15, 1969.
- Wolski, B., <u>NR-1 Special Test for Outboard Electrical Plug/Cable Assemblies and Junction Boxes</u>, Two Volumes, General Dynamics, Electric Boat Division, Report No. 418-69-002, April 25, 1969.
- Wolski, B., <u>NR-1 Special Test for Electrical Hull Fittings</u>, Junction Boxes and Associated Cable Assemblies, Two Volumes, General Dynamics, Electric Boat Division, Report No. 418-68-010, October 22, 1968.

6.3.2 SEAL DESIGN

Adiletta, J.D., "How to Apply O-rings," Product Engineering, August 1957.

Bridgman, P.E., The Physics of High Pressure, McMillan Company, New York, 1931.

Carlotta, E.L., "Materials for O-ring Seals--Their Properties and Selection," Materials and Methods, December 1953.

Brown, W., "Environmental Protection With Hermetic Sealing," <u>Electrical</u> Manufacturing, November 1957.

Comer, J., "Glass-to-Metal Seals," Electrical Manufacturing, March 1958.

Dalton, R.H., "How to Design Glass-to-Metal Joints," Product Engineering, April 26, 1965. Debbi, H., "How to Make Glass-to-Metal Seals. Part I--Matched Seals," Insulation, June 1968.

N

2

M

家 多

ß

- Debbi, H., "How to Make Glass-to-Metal Seals. Part II--Mismatched Seals," Insulation, July 1968.
- Forster, G.A., Hermetic Sealing Terminals, Technical Report 56-251, April 1956, DDC AD-107-274.
- Freeman, A.R., "Gaskets for High Pressure Vessels," ASME Paper No. 52-11RD-5, Seventh National Instrument Conference, Cleveland, Ohio, September 9-10, 1952; also printed in Mechanical Engineering, December 1952.
- Gasket Design Manual, Armstrong Cork Company, Lancaster, Pennsylvania, 1956.
- "Glass and Ceramic Sealing Alloy Tubing," <u>Electromechanical Design</u>, November 1965.
- Haworth, R.F., Gasket Study for Outboard Electrical System Enclosures, General Dynamics, Electric Boat Division, Report SPD-57-002, February 14, 1957.
- Kutzer, L.G., "Joining Ceramics and Glass to Metals," <u>Material in Design</u> Engineering, January 1965.
- McCuiston, T.J. and R.E. Allen, "Factors Influencing O-ring Operation," Applied Hydraulics, June 1950.
- MIL-HDBK-212, "Gasket Materials (Nonmetallic)," September 26, 1958.

NAVSHIPS 250-248, "O-ring Service Manual," September 1951.

"Seals Reference Issue," Machine Design, June 11, 1964.

- Smoley, E.M., "Design Criteria for Sealing Gasketed Joints," Machine Design, November 21, 1963.
- Stasch, A., Handbook on Hermetic Sealing, Amphenol Connector Division, Amphenol-Borg Electronics Corporation, Report No. 5-4, December 5, 1959.

Stasch, A., "The Hermetically Sealed Connector and Its Capabilities," Electronic Industries, May 1964.

- Thomson, J.L., "Packed Glands for High Pressure," Product Engineering, November 20, 1958.
- Todd, G.F., "Cable Jackets and Water Permeability," AIEE Transactions, Paper No. 61-240, February 17, 1961.
- Vroom, W.J. and R.F. Westover, "Classification of Polymers by Their Response to Hydrostatic Pressures," presented at 27th Annual Technical Conference, Society of Plastics Engineers, 1969.

- Warring, R.H., <u>Seals and Packings</u>, Trade and Technical Press, Ltd., Norden, Surrey, England, 1967.
- Warfield, R.W., "Compressibility of Linear Polymers," Journal of Applied Chemistry, Volume 17, September 1967.

8

XX

₹. \$

5

S

9

0

- Warfield, R.W., "Compressibility of Bulk Polymers," Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, Polymer Engineering and Science, pp. 176-180, April 1966.
- Warfield, R.W., The Compressibility of Crosslinked Polymers, Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, NOL TR 64-243, April 1965.
- Warfield, R.W., "The Compressibility of Polymers to 20,000 Atmospheres," Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, ASTIA AD 635-121, June 1, 1966.
- Warfield, R.W., J.E. Cuevas and R. Barnat, "Single Specimen Determination of Young's and Bulk Moduli," Journal of Applied Polymer Science, Volume 12, pp. 1147-1149 (1968).
- Whalen, J.J. "How to Select the Right Gasket Materials," Product Engineering, October 3, 1960.
- Zeitlin, A., "Equipment for Ultrahigh Pressures," <u>Mechanical Engineering</u>, October 1961.

6.3.3 CORROSION AND ENVIRONMENT

- Brown, B.F., "Corrosion" in Handbook of Ocean and Underwater Engineering, ed., J.J. Meyers, McGraw-Hill, New York, 1969.
- Brown, B.F., Corrosion in the Marine Environment, Publications of the Marine Technology Society, MTS 6th Annual Conference, pp. 1225-1231, June 24-July 1, 1970.
- Brown, B.F. and R.J. Goode, "Evaluating Mechanical and Corrosion Suitability of Materials," ASME Paper No. 67-DE-7, ASME Conference, May 15-18, 1967.
- "Corrosion and Corrosion Protection of Metals," MIL-HDBK-721 (MR) Military Standardization Handbook, November 1, 1965.
- Crouch, W.P., Structural Response of Identical Glass-Reinforced Plastic Pressure Hull Models to External Hydrostatic and Short-Term and Long Term Cyclic Pressure Loadings (An Interim Report), Structural Mechanics Laboratory, December 1967, Report 2560, Naval Ship Engineering Center, ASTIA AD 829-435.

6-56

Dehart, R.C., "Materials for Marine Use," in Handbook of Ocean and Undersea Engineering, ed., J.J. Meyers, McGraw-Hill, New York, 1969.

- DSSP Instruction 9020.2, <u>Guidelines for Corrosion Control</u>, U.S. Navy Deep Submergence Systems Project Office, PMS-11/201/SH; PM of December 31, 1968.
- Glowacki, A.S., Protective Coatings for Filament-Wound Deep Submergence Vessels, Final Report, U.S. Rubber Company Research Center, Wayne, New Jersey, September 1966.

Harper Corrosion Guide, The H.M. Harper Company, Molton Grove, Illinois.

Hunt, J.R. and M.D. Bellware, Ocean Engineering Hardware Requires Copper-Nickel Alloys, International Nickel Company.

Jerome, R. and J.L. March, <u>Designers Guidelines for Selection and Use</u> of Metallic Materials in <u>Sea Water Applications</u>, <u>General Dynamics</u>, <u>Electric Boat Division</u>, <u>December 8</u>, 1966.

Ň

2

 \mathbb{R}

ß

ß

- Laminates and Elastomers Under Deep Submergence Exposure, USN Applied Science Laboratory, Brooklyn, New York, ASTIA AD 412-980.
- LaQue, F.L., Marine Corrosion Causes and Prevention, Wiley and Sons, New York, 1975.
- LaQue, F.L. and H.H. Capson, Corrosion Resistance of Metals and Alloys, Reinhold Publishing Corporation, New York, 1963.
- Leboritz, A., "The Permeability and Swelling Elastomers and Plastics at High Hydrostatic Pressures," Ocean Engineering, Volume 1, Pergamon Press, 1968.
- "Marine Materials," <u>Nickel Topics</u>, Volume 23, No. 3, International Nickel Company.
- Muraoka, J.S., <u>Deep-Ocean Biodeterioration of Materials</u>: Part III, Three Years at 5300 Ft.; Part V, Two Years at 5640 Ft.; Part VI, One Year at 2370 Ft., USN Civil Engineering Laboratory, Port Heuneme, California, 1966-1967, ASTIA AD 631-078, 642-838, and 651-124.

Muraoka, J.S., "The Effects of Fouling by Deep-Ocean Marine Organisms," Undersea Technology, May 1963.

Muraoka, J.S., "Effects of Marine Organisms," <u>Machine Design</u>, January 18, 1968.

Reinhart, F.M., "Corrosion of Materials in Hydrospace: Part I, Irons, Steels, Cast Irons, and Steel Products," USN Civil Engineering Laboratory, Port Hueneme, California, Technical Note N-900, July 1967.

- Reinhart, F.M., "Corrosion of Materials in Hydrospace: Part II, Nickel Alloys," USN Civil Engineering Laboratory, Port Hueneme, California, Technical Note N-915, August 1967.
- Reinhart, F.M., "Corrosion of Materials in Hydrospace: Part III, Titanium and Titanium Alloys," USN Civil Engineering Laboratory, Port Hueneme, California, Technical Memorandum N-921, September 1967.
- Reinhart, F.M., "Corrosion of Materials in Hydrospace: Part IV, Copper and Copper Alloys," USN Civil Engineering Laboratory, Port Hueneme, California, Technical Note N-961, April 1968.
- Reinhart, F.M., "Deep Ocean Corrosion," <u>Geo-Marine Technology</u>, September 1965.
- A Sample Test Exposure in Shallow Water to Examine Effects of Ocean Environments on Underwater Equipment, TM No. 333, USN Underwater Ordnance Station, Newport, Rhode Island, October 1964, ASTIA AD 450-220.
- Sample Test Exposures to Examine Corrosion and Fouling Effects on Materials in the Deep Ocean, TN No. 359, USN Underwater Ordnance Station, Newport, Rhode Island, ASTIA AD 477273.

Saroyan, J.R., "Protective Coatings," Machine Design, January 18, 1968.

- Tuthill, A.H. and C.M. Schillmuller, Guidelines for Selection of Marine Materials, The International Nickel Company, New York, 1966.
- Uhlig, H.H., The Corrosion Handbook, John Wiley and Sons, New York, 1948.
- Webber, A., "Mini-Connector Evaluation," Massachusetts Institute of Technology, June 1967, AD-827-249L.
- Woodland, B.T., "Deep Submergence Metal Structures," <u>Machine Design</u>, January 18, 1968.
- 6.3.4 POTTING COMPOUNDS
- Athey, R.J., "Water Resistance of Liquid Urethane Vulcanizates," E.I. DuPont, Elastomer Chemicals Department, Bulletin No. 5, April 1965.
- Bandel, D., "Potting and Encapsulating Materials and Methods," <u>Circuits</u> Manufacturing, March, April, June, and July 1969.
- Bolger, J.C., "Selection of Connector Potting Compounds," presented at 2nd Annual Connector Symposium, Cherry Hill, New Jersey, October 21-22, 1969.
- Ehrilich, A. and J.W. Hayes, "Thermal and Hydrolytic Stability of Urethane Resins," presented at 9th Electrical Insulation Conference (EIC), Boston, Massachusetts, September 8-11, 1969.

Gahimer, F.H. and F.W. Nieske, "Navy Investigates Reversion Phenomena of Two Elastomers," Insulation, August 1968.

. . . .

K

Š.

ій Ч

53

- Gahimer, F.H. and F.W. Nieske, Hydrolytic Stability of Polyurethane and Polyacrylate Elastomers in Humid Environments, Naval Avionics Facility, Report No. TR-1372, February 27, 1969.
- Gahimer, F.H. and F.W. Nieske, Properties of Commercial Polyurethane Rubber Encapsulating Compounds, Naval Avionics Facility, Report No. TR-1032, October 15, 1967.
- Gahimer, F.H. and F.W. Nieske, <u>Reversion of Polyurethane and Polyacrylate</u> <u>Rubber Encapsulating Compounds in Humid Environments and Development</u> <u>of a Standard Reversion Test</u>, Naval Avionics Facility, Report No. TR-1207 <u>April 15, 1968</u>.
- Griffin, W.R., Reconstitution of Reverted Polyurethane Potting Compounds, Air Force Materials Laboratory, Report No. TR-68-398, April 1969.
- Keith, R.E., Potting Electronic Modules, National Aeronautics Space Administration, Report No. SP-5077, 1969.
- Koved, F.L. "Encapsulating to Military Specifications," <u>Electronic</u> Industries, July 1963.
- Lebovits, A., "The permeability and Swelling of Elastomers and Plastics at High Hydrostatic Pressures," <u>Ocean Engineering</u>, Volume 1, Pergamon Press, 1968.
- Leute, F.A., "Urethanes Made Stable at Elevated Temperature and Humidity," Insulation, August 1968.
- Redding, J.J., Utilization of Heat Shrinkable Back-shells Over Hydrolytically Unstable Polyurethane Potted Connectors, SSBN634, General Dynamics, Electric Boat Division, Report No. U413-70-019, March 1970.
- Rosato, D.V. and R.T. Schwartz, Environmental Effects on Polymeric Materials, Volume I, pp. 1167-1177, Interscience Publishers, 1968.

Schollenberger, C.S., "Polyurethane Chemistry and Environmental Resistance," B.F Goodrich Company Research Center, Brecksville, Ohio, January 14, 1970.

Turner, J.F., <u>Restoration of Ships Inertial Navigation System Cable</u>, Naval Air Development Center, Report No. NADC-MA-6952, November 14, 1969.

Welch, B.L., "Estimating Service Life of Potting Compound EC2273 Using Accelerated Hydrolytic Reversion at High Temperature and High Humidity," Weber State College, Ogden, Utah, January 30, 1970.

6.3.5 INSULATION MATERIALS

Athey, R.J., "Water Resistance of Liquid Urethane Vulcanizates," Adiprene Bulletin No. 5, E.I. DuPont de Nemours and Company, Inc., Wilmington, Delaware. 10.00

2223

8 × 1

やない

- Barnett, R.L. and A. Humpreys, "Design for Minimum Weight," <u>Materials</u> in Design Engineering, January 1962.
- Beach, N.E., "Government Specifications and Standards for Plastics, Covering Defense Engineering Materials and Applications" (Revised), Picatinny Arsenal, Dover, New Jersey, AD-640-377.
- Couzens, E.G. and V.E. Yarsley, Plastics in the Modern World, Penguin Books, Baltimore, Maryland, 1968.
- Craig, C.L., "Electrical Properties of Plastics--What They Mean to the Designer," Plastics Design and Processing, February 1962.
- Davis, J.W. et al., "The Fatigue Resistance of Reinforced Plastics," Materials in Design Engineering, December 1964.
- "Development of Specification for Polyurethane Rubber Used to Encapsulate Submarine Antennas," Mare Island Naval Shipyard, Identification No. 2269-1, August 11, 1964.
- DOT Electrical Insulation Material Handbook, U.S. Naval Research and Development Laboratory, Annapolis, Maryland, Report No. 6-166.
- Harper, C.A., "Electrical Insulating Materials," <u>Machine Design</u>, September 28, 1957.
- Harper, C.A., <u>Handbook of Materials and Processes for Electronics</u>, McGraw-Hill, New York, 1970.
- Harper, C.A., "Insulating Materials," Electronic Design, June 7, 1969.
- Harper, C.A., <u>Plastics for Electronics</u>, Kiver Publications, Inc., West Adams Street, Chicago, Illinois.
- Hauck, J.E., "Engineer's Guide to Plastics," <u>Materials in Design</u> Engineering, February 1967.
- Hauck, J.E., "How Water Affects Plastics," <u>Materials in Design Engineering</u>, November 1966.
- Insulation Directory/Encyclopedia, Lake Publishing Company, Libertyville, Illinois, June/July 1970.
- King, S.B., <u>Materials Bonding</u>, Debell and Richardson, Inc., Enfield, Connecticut, April 1975, AD-A009-098.

- Lee, H.J., Oceanographic Effects on Plastic Engineering Materials, US Naval Air Engineering Center, Philadelphia, Pennsylvania, Report NAEC-AML-2536, 1966, ASTIA AD-647-054.
- MIL-HDBK-149, "Rubber and Rubber-Like Materials," June 30, 1965.

MIL-HDBK-700 (MR), "Plastics," November 1, 1965.

Morris, L., "Organic Materials in Hydrospace Applications," Products Research Company, February 26, 1964.

Moses, G.L., Electrical Insulation--Its Application to Shipboard Electrical Equipment, McGraw-Hill, New York, 1951.

6.3.6. ADHESIVES

. .

R

Ŕ

S.

R

 $\bar{\mathcal{G}}$

E

Q

3

- Burtzlaf, H.R. and K.F. Charter, "Factors in Joint Design Using Adhesives for Metal Bonding."
- Delay, L.J. "Testing Methods to Evaluate Adhesive Performance," ASME Publication No. 66-MD-46.
- Halsey, G.H., "A Status Report of Ultrasonic Inspection Methods for Rubber Bond Condition," ASME Publication No. 68-WA/RP-5.
- LaFlamme, P.M., Adhesive Manual and Glossary of Adhesive Terms, Quantum, Inc., Wallingford, Connecticut, 1959.
- Malootian, M.H., The Effect of Water Immersion of Some Tensile-Sheer Bonds, Naval Underwater Sound Laboratory, Technical Memorandum No. 2/20-124-67, June 1967.
- Marriott, J.A., <u>Development of Adhesives for Salt Water Use</u>, General Dynamics, Electric Boat Division, Report No. U413-63-168, December 31, 1963.
- MIL-STD-454, Requirement 23, "Adhesives," January 5, 1965.
- MIL-HDBK-691 "Adhesives."
- Patrick, R.L., "Factors Determining the Strength of Adhesive Bonds," ASME Publication No. 70-DE-33.
- Pattee, H.E., "Adhesive Bonding of Titanium," <u>Materials in Design</u> Engineering, February 1959.
- Peters, H., "Bonding Polyethylene to Rubbers, Brass, and Brass Plated Metals," Bell Telephone Laboratories, October 15, 1957.

Rider, D.K., "Which Adhesive for Bonded Metal Assembly," Product Engineering, May 25, 1964.

Rider, D.K., "Surface Preparation for Bonded Metal Assembly," Product Engineering, June 8, 1964.

Rauhut, H.W., "Pretreating Polyethylene for Optimum Structural-Adhesive Joints -Theoretical Concepts, and Surface Pretreatments," <u>Adhesive Age</u>, December 1969 and January 1970.

Sharpe, L.H., H. Schonhorn and C.L. Lynch, "Adhesives," International Science and Technology, April 1964.

Snogren, R.C., "Optimal Selection of Adhesives Related to Performance Needs," ASME Publication No. 70-DE-69.

Snogren, R.C., "Surface Treatment of Joints for Structural Adhesive Bonding," ASME Publication No. 66-MD-39.

Stokes, E.P., "Adhesives for the Electrical/Electronic Industry," Insulation/Circuits, September 1970.

6.3.7 QUALITY CONTROL

Arnzen, H.E., "Failure Mode and Effect Analysis: A Powerful Engineering Tool for Component and System Optimization," presented at Fifth Reliability and Maintainability Conference, New York, Sponsored by American Institute of Aeronautics and Astronautics, July 18-20, 1966.

Development of Specification for Polyurethane Rubber Used to Encapsulate Submarine Antennas, USN, Mare Island Rubber Laboratory, Vallejo, California, Report No. 11-8, August 11, 1964, ASTIA AD-441-158.

- Material Certification Procedures and Criteria Manual for Manned Noncombatant Submersibles, NAVSHIPS Manual 0900-028-2010, Naval Ship Systems Command, Department of the Navy, Washington, D.C., September 1, 1968.
- Molding and Inspection Procedures for Fabricating Connector Plugs for Submarine Outboard Cables, NAVSHIPS 0962-022-2010, Naval Ship Engineering Center, Hyattsville, Maryland.

Oberg, E. and F.D. Jones, <u>Machinery's Handbook</u>, 18th Edition, Industrial Press, New York, 1959.

Reliability and Maintainability Handbook, NAVSHIPS 0900-002-3000, Chapter 12: "Failure Modes and Effects Analysis."

Roark, R.J., Formulas for Stress and Strain, 3rd Edition, McGraw-Hill, New York, 1954.

Safety and Operational Guidelines for Undersea Vehicles, Marine Technology Society, Undersea Vehicle Committee, Washington, D.C., 1968.

- "Seals and Seal Testing Procedure (for Electronic Enclosures)," US Air Force, MiL-S-8484, June 25, 1964.
- Seely, F.B., Resistance of Materials, 3rd Edition, John Wiley and Sons, London, 1954.
- Shigley, J.E., Machine Design, McGraw-Hill, New York, 1956.

. 8 92

Ŕ

5

- Spadone, D.M., <u>Meeting on Cables, Connectors, and Penetrators for Deep</u> <u>Sea Vehicles, U.S. Navy Deep Submergence Systems Project Office (DSSP),</u> <u>Bethesda, Maryland, January 15-16, 1969.</u>
- Technical Manual--Installation Practices for Aircraft Electric and Electronic Wiring, NAVWEPS 01-1A-505, July 1, 1965.
- Wiring, Molding, Testing Installation, Maintenance and Repair Procedures for Watertight Electrical Submarine Connectors and Penetrators, NAVSHIPS Dwg NR-1-302-2663185, Naval Ship Engineering Center, Hyattsville, Maryland.