
AD-ft63 8437 DESIGN AND INPLENENTATION OF A CENTRALIZED DATA V
DIRECTORY FOR A DISTRIBUT.. CU) AIR FORCE INST OF TECH
MRIOHT-PATTERSON RFD ON SCHOOL OF ENGI.. J A NEDERTZ

rSI FE DEC 85 AFIT/GCS/ENG/85D-24 F/O 9/2 N

IJj,2

-pj.

L4 0

MICROCOPY RESOLUTION TEST CHART"'

*.A

%~',% . ~'.~j~~ '.Wf.t "

~

00

(V)

~DTI.C

0 4PLDC
M

0D

DESIGN AND IMPLEMENTATION OF A
CENTRALIZED DATA DIRECTORY FOR A

DISTRI3UTED DATABASE MANACEMENT SYSTEM

THES IS

James A. Wedertz
Captain, USAF

AFIT/GCS/ENG/85D-24

1mm 1 ALAJ~!P~O SIpATo'IEN Ao Pulcrka
-iDituibution Unlimiod

LA.J plldlspbi ~wI

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY "I

Wright-Patterson Air Force Base, Ohio

86 2 10 ,021

j
"-.-- °o"%. ' "o. o", . .o.°." ,. - -. -°., " °.° % - -. - - . -. % %

A FIT/ GC.S/rNG/ 8 5

DTIC

FEB IveISO 1

DESIGN AND IjMPL EMENTATION OF A
CENTRALIZED DATA DIRECTORY FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

James A. Wedertz
Captain, USAF

AF LT/GCS/ENG/8 5D-2 4

Approved for public release; distribution unlimited

-7 7.

AF IT/GCS,/ENG/S 5D- 24

DESIGN AND IM.PLEMENTATION OF A .

CENTRALIZED DATA DIRECTORY FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

T HES I S

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

4do ~Requirements for the Degree of S

Master of ScienceAce oFr

IVTIS CRAMj
DTIC TAB
Unannowjrced0
Justiiicatiofl

James A. Wedertz, B. S. 13y

Captain, USAF Dit IbtLtion/
Avlability Codes

A10aladlor

December 1985 A-1

Approved for public release; distribution unlimitedr

,..

Pre face

The purpose of this study was to design and implement a

centralized data directory for a distributed database manage-

ment system being developed at the AFIT Digital Engineering

Laboratory. The first phase of this project included a re-

quirements analysis documented in Structured Analysis Design

Technique (SADT) diagrams. In the next step, structure

charts showed the detailed design of the software mod-le

hierarchy. During the following phase, part of the design

involving the central directory was implemented on two micro-

computers in the laboratory. Finally, this study discussed

the project results and recommendations for future studies.

During the entire process of this study, I received a

lot of help from many people. I am very grateful to my -

thesis adviser, Dr. Thomas C. Hartrum, for his suggestions

and analytical skill in resolving many computer interface

problems. Also, I am thankful to Major Walter Seward, an-

other member of my thesis committee, for reviewing this work.

My thanks also to Mr. Charlie Powers and Mr. Dan Zambon for

their invaluable technical support in the laboratory. Finally,

I am extremely grateful to my dear wife, Bettylou, for typing

the many drafts of this thesis and assuming many of my house-

hold responsibilities during this project. Without her loving

support, I never would have completed this thesis.

James A. Wedertz

ii"" i

* . a-4 *.---.

Table of Contents

Page

Preface.....................

List of Figures.....................v

Abstract........................vii

I. Introduction....................1

Background...................1
Summary of Current Knowledge 5
Problem....................10 .-

Scope.....................10
Assumptions..................11
Approach.....................12
overview of the Thesis*..... 14

II. Analysis of Requirements 15

Introduction 15
General Functional Requirements........15
Detailed Requirements... 1
General Content of Data Directories . 25

Summary...................28L

iii. Detailed Design..................29

Introduction 29
Further Decomposition of Requirements 29
Structure Chart Design............33
Service CNDD Site Requests..........33
Update the LNDDs...............46
Summary...................49

IV. Partial Implementatin.. 5

Introduction 50
Implemented Architectue...........51
Implementation of CNDD............53
Partial Implementation of DDB S 57
Summary 68

V. System Integration Testing 69

Introduction.............. 69
CNDD Test Data 69
Remote Site Processing.............73
CNDD Site Processing 75
Summary 76

-k t -7'I_. -7 t . T1. -. T W.V Iz O . W

Page

VI. Conclusions and Recommendations..........77

Introduction.................77
Conclusions on Results............77
Follow-on Research.............78
Final Comments................81

Appendix A: CNDD Data Definitions 3

Appendix B: CNDD User's Guide.............86

kppendix C: CNDD Test Database.............92

Appendix D: LNDD Data Definitions 96

* Appendix E: Message Formats...... 0

Appendix F: Publication Article.............115

Appendix G: Structured Analysis Design Technique
(SADT) Diagrams

Appendix Hi: Data Dictionary of Design*

;,.,)?endix I: Structure Charts of Implemented
'-9 rModules*

Appendix J: Data Dictionary of Implemented
modules*

Appendix K: Program Listings*

Appendix L: Configuration Guide*

Bibliography.......................136

Vita..........................138

*These appendices are in an additional thesis volume main-

tained at AFIT/ENG;: Volume II: DDBMS Current Implementationr

I v

-7..

(I:List of Figures

Figure Page

1. DDBMS Architectures.................4

Software Components of a DDB14S 6

3. initialize DDBMS...................19

4. Data Directories Data Definitions 31

5. Service Requests at CNDD Site 34

6. Service CNDD Data Location Requests.........38

7. Extract Data Locations from CNDD. 40

8. Service CNDD Updates 44

9. Update and Maintain LNDD..............47

* ~10. DDBr1Patl Imnplementation Architecture .. 5

*11. CNDD Relations...................54

12. Main Executive...................58

*13. New Process....................60

*14. Service Requests...................61

15. Service Local Queries...............63

*16. Parse Query....................64

17. Service Netwcrk Queries............ 67

18. Test Global Relations...............71 1
19. Test DDBf4S Databases Relations 72

20. Test Queries.................. 74

F-1. Service Requests at CNDD Site 122

F-2. Service CNDD Data Location Requests 124

F-3. Service CNDD Updates 126

F-4. Implemented Architecture 129

V

Page

F-5. CNDD Relations..................131

F-6. T'est Queries...................132

v i.

CK!

AFIT/GCS/ENG/ 8 5D- 24

Abstract

This study refined and implemented a design of a cen-

tralized data directory for a distributed database management

system (DDB1S) begun in a previous study for use in the AFIT

Digital Engineering Laboratory. This directory contains

information about all the data stored in the distributed

databases. By following the life cycle programming method to

develop the system, this project completed a requirements

analysis, detailed design and implementation of the data

directory as well as a partial implementation of the DDBMS to

test the operation of the centralized data directory..

The requirements analysis outlined the functions of the 6..

central site, which contained the centralized directory. This

project used Structured Analysis Design Technique (SADT) dia-

grams to document the central site's functions. These in-

cluded initializing the DDBMS, updating the central directory,

sending changes to other local directories at the remote sites,

reconfiguring the DDBMS and servicing requests for informa-

tion in the directory.

Next, the project refined the detailed design of the

CN'IDD processing and depicted the functional decomposition in

structure charts. The following step implemented on two

microcomputers only those modules necessary to show the cen-

r
tralized directory worked. Tests verified that one DDBMS

vii

node which received a query could request and receive loca-

j tion information from the other node.

Mvii

DESIGN AND IMPLEMENTATION OF A

CENTRALIZED DATA DIRECTORY SYSTE4 FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

I. INTRODUCTION

Background

Many organizations store the data used in their various

computer programs in a database. This allows them to cen-

tralize the information so that it is easier to retrieve and

change the data. A centralized database management system -_

(DBMS) consists of software residing on one computer which

structures the data and manipulates it so that many applica-

tion programs can access it. On the other hand, a distri-

buted database management system (DDBMS) manipulates separate

databases stored in host computers which are linked in a

network. The network connects host computers either dis-

persed over a short distance (usually less than 1 km) as in a

local area network (LAN) or geographically distributed over a

large area as in a long haul network (Tanenbaum, 1981:4-5).

However, distribution is transparent to the user so he can

access any data in the system without having to know where it

is stored.

Organizations develop distributed databases for several

reasons as Ceri & Pelagatti pointed out (Ceri, 1984:11-12).

First, they may use such a system for organizational and

. . °.

*- .

economic reasons. If the organization has decentralized

onerations, the DDBMS may fit the structure more naturally.

Also, larg mainframe computers installed at a central loca-

tion ma,' not be as economical as dispersed smaller compaters.

3 _-cond, organizations may want to connect existing data- %

:asez rather than create a new one to support new applica-

tions. Third, distributed databases allow for incremental

growth. Adding a new database on the system should have

limite3 impact on the existing databases.

Fourth, distributed databases can increase performance.

The load can be shared among processors to allow parallel op-

erations. Also, if each processor can do its operations

alone without interfering with another processor, there will

be less communications congestion.

The fifth and final reason Ceri and Pelagatti mentioned

for using a distributed database is to increase system re-

liability. If one system goes down, this only affects the

applications at that site and those that use the data stored

there. In other words, one system failure should not cause

the entire system to crash.

Besides these advantages for developing a distributed

database, Capt. John G. Boeckman explained in his thesis

some disadvant3ges (Boeckman, 1984:2). The DDBMS is more

complex than a centralized DBMS. It must interface with a

network in order to reliably send and receive data. Also,

sjueries--reiuests for information--must be decomposed effi-

2
- ...

. .~~~~~~~~~~~~~~~~~~~~~ ..

ciently because the data may be stored in many places. In

addition, deadlock may occur when two or more systems are

waiting to update data held by the other system.

Data concurrency--or keeping several copies of the same

data current--is another problem with distributed databases.

The DDBMS must use complex algorithms to synchronize these

data updates. In addition, a DDB.4S must maintain a concep-

tual--or overall--view of all the data in the system. This

reuJires a data dictionary/directory to keep track of data

locations, among other things.

According to Peebles and Manning, there are three ap-

proaches to designing a DDBMS architecture (Peebles,

1979:351-357): integrated, homogeneous, and heterogeneous.

ILO The following summarizes the differences between them.

In the integrated model (Figure la), each DBMS connects

directly to the network and can access information in another

DBMS without translating data. Reducing the useful CPU time

and the amount of memory needed for the data exchange process

are two advantages of this architecture.

In the homogeneous model (Figure lb), each computer in

the network supports the same DBMS (e.g. INGRES). Each

computer, however, has separate DBMS and communication soft-

ware modules. The latter module performs the data exchange

functions.

In the heterogeneous model (Figure 1c), the computers

can support different types of DBMS. For example, both "

3
-'. 3 *..°

• -°• . . . -. - ° . ..

cam I -a~ 2Dm

-7 - -7

COMMUNICATION CHNE

COMMUNICATION CHANNEL

(a) HOMEOGENEOUS ARCHITECTURE

Figue 1. DD~rS Arhiteture

DBMS 09n2 * . 0t1S4

INGRES, a relational-type DBMS, and Total, a network-type

DBMS, may be in the same network. In addition to the separate

DB'S and communication modules, a translator software module

exists to translate between the incompatible DBMSs.

This thesis used the approach for the heterogeneous
'

architecture and the design Capt John G. Boeckman developed

in his thesis (Boeckman, 1984:20-56). It also incorporated

some of the data items for a data dictionary that 2Lt Anthony

J. Jones specified in his design of a global language for a

DDB:IS (Jones, 1984:149-153). With a global database model,

all query and update functions passed over the network were

written in one common language. When queries arrived at a

host computer or when the results returned to the network,

0 software modules translated the request from the global lan-

guage to the host DBMS language and vice versa. As summa-

rized in the following section, Boeckman's and Jones' theses

and other studies outlined specific elements included in such

a DDB-S.

Summary of Current Knowledge

Ceri and Pelagatti (Ceri, 1984:13-14) explained the

basic software components of a DDBMS as the (Figure 2):

1) Database management component (DB),
2) Data communication component (DC),
3) Data dictionary component (DD), and
4) Distributed database component (DDB).

They explained the services of these components included:

1) Remote database access by an application '
program; this feature is the most important

5

,....-.. ..-.. ..-.. .. ., . . • . . ,...-.-.........-....-....... ,"

DBO

SITE I

LEZEL
Da

LOCAL COFMUSMICAT2ON

DOD - VISTIDUTED

___________aat"ASE

T T T

Figure 2.Software Components of a DDBMS (Ceri, 1984:13) L

6

one and is provided by all systems which have* a distributed database component.

2) Some degree of distribution transparency;
this feature is supported to a different
extent by different systems, because there is '. .

a strong trade-off between distribution trans-
parency and performance.

3) Support for database administration and
control; this feature incl-ides tools for
monitoring the database, gathering informa-
tion about database utilization, and provi-
ding a global view of data files existing at
the various sites.

4) Some support for concurrency control and
recovery of distributed transactions.

Imker's high level design of a DDBf1S was similar to the

outline just described (Imker, 1982:63-79). He divided the

DDB:IS software into three parts: the Network Access Process

(NAP), Network Database Management System and Network Data

Directory.

The NAP is the data communications component which links

the computers in a network. In the AFIT Dij.til Engineering

Laboratory, a network operating system (NETOS) fulfills this

role. NETOS follows the seven-layer protocol described in

the Reference Model of Open Systems Interconnections (OSI)

which the International Standards Organization (ISO) de-

veloped. Each layer has specific functions (Tanenbaum,

1981:453-487) and only communicates with its adjacent layers

by calling loosely coupled modules.

The DDBMS application software performs the functions of

the Application Layer, ISO layer seven. The DDBMS software

also does the functions of the Presentation Layer, layer six.

7

- -

* . .- °

That is, it prepares the DDBMS inputs in standard NETOS

formats. Finally, the DDBIS interfaces with NETOS at layer

six.

Another component of Imker's design was a network data-

base management system (NDBMS). This is equivalent to the

distributed database component Ceri and Pelagatti described.

It is the main software module at each site and interfaces

between the local DBMS and the DDBWIS. This component pro-

vides links with the user, the local DBMS, the directory of

data stored in the local DBMS, and the network.

The next part of Imker's design was the Network Data

Directory, which this thesis designed in detail and imple-

mented. According to Allen (Allen, 1982:246), this software

component has two functions:

1) Provide the relationships between the applica-

tion programs and system data usage.

2) Achieve data independence--the users can get

data without knowing its location or characteristics.

Durrell (Durrell, 1983:12-19) points out several bene-

fits of a data directory. It can be used as a communication

tool, as a safequard against data redundancy, and as a glos-

sary of definitions. Also, it helps in .ystem development,

maintenance and documentation.

Allen also listed the following components of a data

dictionary/directory (D/D) system (Allen, 1932:268):

1) Database used in D/D to describe metadata, i.e.

8

* . -... . ""-,> X-..

5. data about data entities, processes, and users.

2) Retrieval and analysis capabilities to help

develop application programs.

3) Management tools for security, validity, reco-

verability, integrity and shared access of the D/D.

4) Function interfaces to permit other software to

access the D/D and to convert metadata to the format required

by the D/D.

There are several ways to organize a directory system.

lInker, in his design, used the first three of the following

types of directories. A centralized directory, which lInker

called a centralized network data directory CCNDD) , is stored

only on one system. It has a conceptual view of the data

entities in all the DBN1Ss. An extended directory, called an

extended centralized network data directory (ECNDD) in

lImker's design, is a small version of the CNDD. That is,

whenever a site requests the location of data from the CNDD,

the local site copies the information into its own ECNDD so

it does not have to ask the CNDD for the location again.

lImker called the third type of directory a local network data

directory (LN~DD) . This is a directory of only the data in

the site's DBMS. The last kind, called a distributed direc-

tory, was not included in linker's design. In this system,

each computer has a complete copy of the C'N1DD.

Chu did cost performance tradeoffs between these dif-

ferent types of data directories (Chu, 1976:577-587). lie

9

. . ..

• • %.

I'
- .*- suggested a different type of directory based on the ratio

between the number of directory updates to the number of :

" directory queries. le preferred the distributed directory if

" the ratio was less than 10%. If the ratio was between 10%

and 50%, the extended directory was best. Finally, he pre-

ferred the local directory if the ratio was greater than 50%.

In conclusion, although Boeckman did not use Imker's

complete high-level design, he did incorporate in his de- -

_*" tailed design all three directories Imker proposed. Because

Boeckman did not implement the data directory system, this

thesis designed and implemented this software for the DDBMS

*" in the AFIT Digital Engineering Laboratory (DEL).

Problem

*I This project further refined Boeckman's DDBMS design of

the central site's functions. The objectives of this

research were to:

a) Design, implement, and initialize the CNDD.

b) Implement the software to request data locations

stored in the CNDD, and

c) Implement the processing to retrieve data loca-

tions stored in the CNDD.

The detailed design of this project complied with

*. Boeckman's overall system design requirements so the central

site software will integrate with other parts that others

10r

* °**......*'* % . * **. --

will implement later. This thesis only designed and imple-

mented those modules necessary to service the requests for

data locations.

Since there was no global translator implemented yet

which would allow heterogeneous (incompatible) DBMSs to com-

municate, this project's implementation used the translators

Boeckman used. However, this system was compatible with

Jones' requirements for a DDBMS global language (Jones,

1984:149-153). By doing this, the translator modules used in

this thesis can be replaced by global language modules in a

follow-on thesis after the global language is implemented.

Also, because these translators cannot make updates to the

databases, this implementation did not maintain files to

store pending updates to data for inactive sites. As a re-

sult, the tests only made queries for information stored in

. the DBMSs and therefore, did not update the data.

Finally, this thesis did not implement other functions

Boeckman included in his design for the central system. For

example, this thesis did not design nor develop the modules

required to automatically reconfigure the CNDD in case it was

destroyed. Nor did the thesis plan to develop a commercial-

type data dictionary. This would include database management

tools like statistical reports.

Assumptions

One of the assumptions of this thesis was that the

- . design of the DDBMS that Boeckman developed was acceptable to

11o

the user. This thesis then provided more design details on

the directory system without changing Boeckman's basic design

of using three types of directories.

This thesis also assumed the partial DDBWS Boeckman

implemented worked correctly. That is, a person should have

been able to make a query from one terminal and receive a

result from either of the databases in the system. This also

implied the network communication software worked correctly.

Approach

This project followed the life cycle procedures ad-

vocated in software engineering to solve the problem, namely:

a) Requirements analysis,

1 40 b) Detailed design,

c) Implementation, and

J) Integration testing.

During the requirements analysis, the first step involved

learning how to operate the system Boeckman implemented and

analyzing his design. At the same time, the analysis phase

included a background literature search of the general data

contents of a CNDD, alternative ways to build a CNDD, and

Jones' requirements for the global language. Also, this

analysis described the general functions of the software

modules needed for this project. Finally, structured analy-

sis and design technique (SADT) diagrams graphically showed ."-""

all of these requirements (See Appendix G).

12

I L

Once the requirements were defined, the detailed design

described the data structures (formats) of the CrIDD, the data

passed to and from and software modules, and the algorithms

(procedures) required to do each of the modules' functions.

Structure charts graphically showed this detailed design (See

Appendix I). They also identifieJ information passed over

the network which should be monitored during the testing

phase. These reqairements for monitoring messages were

passed to Capt Janice Rowe, who was concurrently working on a

network performance monitor, so the monitor can also test

this project (Rowe, 1985). Finally, verification testing

checked that this design fulfilled the requirements defined

in the previous phase and those Boeckman defined for the

* O %uoverall DDBrIS. 1
Next, the implementation phase produced software modules

in the programming language C. The CNDD used abstract data

types so that its implementation method did not affect the

way high-level modules requested information in the CNDD.

For example, a call for an abstract data entity would not

change whether the CNDD was implemented in C data structures

or in a DBMS. Only the lowest level module that communicated

directly with the CNDD would change if the CNDD was implemen-

ted a different way. Coding adhered to the detailed design

and executed on one of the computers connected to the DDBMS.

Boeckman's software also changed in order to link the direc-

tories into the system. During this phase a test plan

13
..-..-

described the procedures to check each module separately.

Tests verified the accuracy of passing the locations of data L

stored in the CNDD to sites.

In the last phase, the integration tests also used the

test plan. This phase integrated all modules to perform a

full system test. The tests verified if all software modules

of the central site worked together correctly and complied

with system requirements.

Overview of the Thesis

The thesis format follows the approach just explained.

Chapter II describes the requirements analysis of the data

directory system. Chapter III then explains the detailed

design of the directory used in the DDBMS. From this design

Chapter IV describes the coding completed to implement the

directory system. Chapter V presents the testing methods

used to integrate all the modules and check the effectiveness

of the system's requirements analysis, design, and coding. -

phases. Finally, Chapter VI summarizes the results of the

thesis and presents recommendations for follow-on research.

r r

14

rr

.-

II. ANALYSIS OF REQUIREtlE.NTS b;0

Introduction

The requirements for this thesis were based on those

already established in Boeckman's overall design of a DDBMS

(Boeckman, 1984:20-36 & Vol II) and in Jones' design of a

global language for a DDBMS (Jones, 1984:149-153). Since

this thesis covered the portion of a DDBMS which dealt with "

the data directory system, this chapter only describes the

requirements for implementing the directory system. The

Structured Analysis and Design Technique (SADT) (Peters,

1981:62-64) was used to describe the requirements. Appendix

G shows the SADT diagrams Boeckman wrote to describe the func-

tions of the directories and the additional SADT diagrams

developed in this thesis to further break down some of the

functions. The next section explains the general software

functional requirements of the data directory system and the

Collowing sections describe each general area in more detail.

General Functional Requirements

The central site which controls the directory system has L

the following functions (Boeckman, 1984:20-21):

1. Initialize the DDBMS

2. Update the CNDD with changes made in the LNDD

3. Send updates to Extended Centralized Network

Data Directories (ECNDD) which contain copies of data changed

in the CNDD

15

....

4. Service the Centralized Network Data Directory

(CNDD) site requests

5. Reconfigure the DDBT1S

Initialization of the DDBLMS occurs when the system

starts up. Different procedures occur depending on whether

.i. -the site is the central site or not. If it is the central

site, the software initializes the CNDD, queries the other

sites, evaluates their responses, and sends a startup message

to all the sites participating in the DDBMS. If the site is N71

not the central site, software initializes the site's data-

base and responds to the central site's query.

In order to send queries to the correct database, the

three types of network data directories must be kept up-to-

date. First, the CNDD, which is only kept at the central

site, has a complete view of all the data in the DDBMS. It

stores the locations of all data entities. Second, the LNDD

at each site maintains information on only the data in its

DBMS. Third, the ECNDD at each site keeps the locations of

data that the site requested from the CNDD. This last direc-

tory makes other queries and updates to data previously

retrieved from other sites faster. In conclusion, any

changes to data locations in an LNDD must be reflected in the

CNDD and in all ECNDDs which stored the location of the data

that changed.

As a result, the central site is involved with all data

queries and updates and performs three functions to service

16

. . .o. .0.

-'';i.i~2 _ -.L.' _,? ".?_'-'.. 2. /.. ".".- °''.° ,..-" .'-'.---.-.. -..- j'- L .j .

requests. Whenever a site cannot find a data lucation in

either its LNDD or ECNDD, it requests the location from the

CNDO. Therefore, as its first function, the central site

must retrieve locations from the CNDD. Secondly, if data

moves from one DBMS to another, the central site must update

the CNDD and notify the affected ECNDDs. Finally, the cen-

tral site must manage a pending update file for each site

that is inactive. This file stores all changes users make to

data stored in sites that are temporarily disconnected from

the DDBMS.

Not only does data change, but also the system config-

uration changes. In this case the central site must control

the reconfiguration of either adding a site or deleting a

site. If a new site is added, the new site must notify the

central site and all others. The central site, in turn,

sends all data updates to the new site if the central site

had a pending update file with information for the new site.

Then the central site notifies all sites that a new site is

added to the DDBMS. On the other hand, if a site is deleted,

the site must notify all other sites. At other times, if

there is a malfunction and a site abnormally disconnects from

the DDBMS, another site must notify all other sites of the

site deletion. Also, the central site begins a pending _

update file for the deleted site.

Unlike other sites, if the central site is deleted,

there are additional steps in the reconfiguration process. r

17

• °- . ° °- -*. -*. • . . .°.... ". "

If the central site is deleted, the central database admini-

strator in charge of the DDBMS must choose another site as
I

the new central site. Then the new central site copies the

CNDD and pending update files from the old central site.

However, if the central site malfunctions before it can copy

its data to another designated central site, the new central

site must read each site's LNDD to recreate the CNTDD. j
Detailed Rejuirements

Figure 3 (Boeckman, 1984:Vol II) shows the SADT design

for initializing the DDBMS. It consists of initializing the

central site and other sites. Other SADT diagrams contained

in Appendix G of this thesis show the design for reconfig-

uring the DDBMS, updating and maintaining the ECNDD and LNDD,

and servicing requests for the CNDD and other sites. The

following sections will explain these requirements in more

detail.
%. -

Initialize DDBMS. These software modules prepare the

DDBM4S for execution (Appendix G, SADT #C4). After the central

site is chosen, the software at that site activates the CNDD

and asks the operator which sites will be in the DDMBS. From

that information, the central site sends query messages to

all sites. After the sites respond to the central site, the

central site updates the status information and issues a

ready command to the sites to begin execution.

Other sites initialize their status information and

prepare for a contact message from the central site (Appendix -

18

* -.- * .o.

. S

a -

.9--S-

4 -4

" 6-- -k

FAU

9 cn
c r0

w us

UAW

Lai

11

G, SADT #C5). When they receive it, they update their

status information with the CNDD's location and return the

information that the central site requested. Finally, when

they receive the startup message, they begin executing the

DDBMS.

Reconfigure DDBMS. The DDBMS may reconfigure or change

its configuration whenever a site is added to or deleted from

the network (Appendix G, SADT #C6). Either an operator can

enter a command to reconfigure the system, or else malfunc-

tions will cause the system to automatically reconfigure.

When an operator wants to add a non-CNDD site (one that

does not contain the CNDD) (Appendix G, SADT #C7), he first

sends a contact message to the central site. The central

site, in turn, updates its status information and sends an

acknowledgement message to the added site. Then the added

site updates its status information and its local data from

information that the central site stored in a pending update

file for the site. After the central site finishes sending

the pending update file, it notifies all the other sites that

a new site is added. L
If a non-CNDD site is to be deleted (Appendix G, SADT #

C7a), the operator sends a message to all sites explaining

that the site is dropping off the network. Then the central

site and all other active sites mark their status information

accordingly. Also, the central site starts a pending update

file for the deleted site.

"" 20 "'

-----------.-.-- ,. "*... .".....

1 *".

ppis

Moving a CNDD site to another site (Appendix G, SADT #C8)

requires copying the CNDD and the pending update files. When

the transfer is complete, both sites adjust their status

information and also notify all sites of the new CNDD loca-

tion. During this reconfiguration process the central site

cannot respond to any data location requests nor change its

pending update files.

In case of system malfunctions (Appendix G, SADT #C9), an

operator does not have to initiate the reconfiguration as in

the previous three examples. Through malfunction messages

the DDBMS will recover from a site crash by changing the

status information and beginning a pending update file for "

the site. If the CNDD site fails, another site, chosen by

L some predetermined method, automatically recreatez the CNDD

by consolidating the data from all the LNDDs. When there are .

communication line failures, the network must reroute mes-

sages so the sites can communicate between each other.

Finally, after the central site makes all the necessary

changes to its status tables, it sends to all the sites

information on the new DDBMS configuration. L
Updating. and Maintaining the ECNDD and LNDD. Two of the

functions of executing the DDBMS at the sites is to update

the ECNDD from CNDD updates and to update and maintain the

LNDD (Appendix G, SADT #C13). When there are updates to the

CNDD, the central site must determine what sites had reques-

ted the locations of the data that changed. Then the central

.o ,..-

'?" 21 '[
-e°W -

site sends changes to these sites so they can change their

ECNDD. After a s.te receives the ECNDD update (Appendix G,

SADT #213a), it must make the changes to its ECNDD. Finally,

after making the changes, it sends an ECNDD update acknow-

ledgement message to the central site.

The second function to update and maintain the LNDD is

necessary to keep the LNDD current with the local DBMS (Ap-

pendix G, SADT #Cl3b). When external user inputs change the

database which require changes in the LNDD, the site must

notify the CNDD of the changes. However, the site software

does not change the LNDD until it receives an acknowledgement

message that the CNDD made the changes.

Service Request at Sites Other than the Central Site.

Another site function while executing the DDBMS is to service

requests from this site and other sites in the DDBMS. If the

query originates at the local site, it is called a local

query. Otherwise, if the query at the site comes from ano-

ther site, it is a remote query.

To service local queries (Appendix G, SADT #C16), software

first determines the query type by searching for the data's

location in the site's LNDD. If the site has all of the data

in its host--or local--computer, it is a host query. In this

case, the site can process the query without checking any

other directories. On the other hand, if other computers in

the DDB3'!S have the data, it is a network query.

22

7..............

To service a network local query (Appendix G, SADT #C18),

the system first translates the query from the local language

into a global data model language. Then software services

the translated network query (Appendix G, SADT #C19). If the

data location is not in the site's ECNDD (Appendix G, SADT #

Cl9a), the site must ask the CNDD for the location. Once

the data locations are known, the system continues to process

the query. After the query results are completed, the site

uodates its ECNDD with data that was not in its EClDD.

Besides servicing the local queries, a site may service

a remote query (Appendix G, SADT #C25). For this query the

site only has to check its LNDD to verify its host DBMS

contains the data. If it does not have the data, the site

mast notify the CNDD site of the data location error in the .-

CNDD. In this case, the site must also notify the site which

originated the query.

Service Requests at Central site. Just as with the other

sites, the central site must first determine the CNDD request

type (Appendix G, SADT #C28). They may be either CNDD data

location requests, CNDD updates, or pending update requests.

To service CNDD data location requests (Appendix G, SADT

C28a), the CNDD site receives the site requests, which in-

clude a global relation name with its global attribute names.

A global name is a common name used for possibly several

alternate names used in different DBMSs. Then the CNDD

determines the data locations. The CNDD site will send all

23

.. ..

the locations of the data if it is redundant, horizontally

partitioned or vertically partitioned. Redundant relations

are those that have identical structures (i.e. they have the

same attributes) and duplicate data. According to Ullman

(Ullman, 1982:411), f relations are horizontally split, two

or more relations contain the same attributes but the rela-

tions contain different information. On the other hand,

Ullman states a vertically partitioned relation has attri-

butes which are physically located at different sites. For

example, a global relation may contain three attributes A, B,

and C. One DBMS may contain the relation with attributes A e

and B, whereas another may contain the relation with attri-

butes B and C.

To service CNDD updates due to LNDD updates (Appendix G,

SADT #C29a), the CNDD site receives the CNDD updates from

another site and matches the received data against the data

in the CNDD. Next it updates the CNDD and sends an update

acknowledgement message to the sending site. Then it sends

updates to the ECNDDs which also have the data (Appendix G,

SADT #C29). Finally, the central site receives an ECNDD

update acknowledgement message from the other sites which

received ECNDD updates.

The last CNDD request type is servicing pending update

requests (Appendix G, SADT #C28). For this request, the cen-

tral site adds information to the pending update file of a

site that dropped from the network while the DD!MS was opera-

24

tiny. Also, the central site sends the results of the update

back to the site which originated the pending update request. .

General Content of Data Directories

in his thesis Jones (Jones, 1984:149-153) presented what

a data dictionary should contain when using a global relational

data model. It included information about the databases in

the system, what relations were stored in each database, the

attributes of each relation and other information needed to .

mao--or translate--from the global relational language to a

local database definition language.

Since no global relational language has been implemented

yet, this thesis did not include all the data requirements

Jones presented. Instead, this thesis only used those items

Jones described which were necessary to locate an entity

within a database. Other information needed for completely

mapping a global to local data definition language, and vice

versa, may be added as a follow-on effort to this thesis.

In the list of items in the directories "identification"

and "name" are used several times. An identification code is

a unique number or unique character string, which is used as

a key in several of the relations in the CNDD implementation.

In contrast, a name is a descriptive, nonunique character

string used in one of the databases. Since the same name

could be used for different items, the unique identification

code, rather than the name, was used in several places to

establish links between different CNDD relations.

25
V [i

Based on Jones' research, the following information was

included in the CNDD and ECNIIDD:

a. Site identification of source (identifies the

network address of the site)

I b. Host computer (e.g. UNIX VAX)

c. DB name (e.g. AFIT, Demo, etc.)

d. Global relation name ("Global" name is a common

name for possibly several local relations with different

names stored in separate databases. A global relation iden-

tification was not needed because the global relation name

must uniquely identify the relation.)

e. Relation replication code (specifies whether

data is duplicated in several databases and how the data is

partitioned)

f. Global attribute identification

g. Global attribute name

h. Local relation identification ("Local" relation

is a relation stored at a local database. If the local DBMS

was a network or hierarchical type DBIS, the entity was

translated to a relational type before storing it in the

directory. In a concurrent effort with this thesis, Capt

Kevin Mahoney (Mahoney 1985) stored the mapping information

needed for this translation elsewhere.)

i. Local relation name

j. Local attribute identification

k. Local attribute name

26

S"

.

- • - . ., - .-. - -•.. - . - 7%- V- -

4-.. w.-rr ~ --

1.-.

In addition to Jones' requirements, this thesis added

the following items which were necessary to implement the

directory system:

a. Access code (prevents CNDD from releasing data

that is being updated)

b. DBMS name (e.g. DBTG, INGRES, dBASE II, Total)

C. DBMS type (e.g. hierarchical, relational or

network)

d. Local relation index code (soecifies whether

the relation is indexed on a particilar attribute)

As for the LZIDDs, they do not need to store their own .--

site identification and site name. However, besides this

information listed, other information needed to map data

.de.initions from one type of DBMS to another should be stored

in the LNDD. The LNDD should store it because the processing

should not have to convert from the global relational data

descriptions to that used in a host database until just be-

fore sending a query to the host database. Therefore, when a

site receives a query to send to its host DBMS, the proces-

sing should extract the mapping information from the site's

LNDD to make the data definition translations. Since it was

not in the scope of this thesis to design and implement the

global language translator, this thesis did not list all the I

mapping information.

.27 .-

27'""

*- - - - - - 4.. -. ,

-... - -~ L2 fli 1::~ K.:K :. °

-. -~ -. -*~7. '.-W--,- . 1

u mm ar y

This requirements analysis discussed the four general

fanctions of the data directory system and graphically decom-

posed the requirements using SADT diagrams. The software

modules consist of those to initialize the DDBMS, reconfigure

the DDB !S, update and maintain the ECNDD and LNDD, and ser-

vice C:,D site requests. Also, the analysis described the

general data elements of the data directories. The following

chapter explains the detailed design for these requirements.

28

III. DETAILED DESIGN

Introduction

This chapter adds to the detailed design Boeckman pre-

sented (Boeckman, 1984:37-56), where necessary, to be able to

implement the centralized data directory system. In particu-

lar, the following sections will describe the software proces-

ses to service the CNDD site requests and update the LNDDs,

two of the central site's functions. The other central site L -

Lunctions of initializing the DDBMS, updating the ECNDDs and

reconfiguring the DDBMS will not be discussed because the

detailed design did not change from what Boeckman presented.

The detailed design used structure charts and process

and parameter data dictionary entries that are located in

Appendices I and J. The structure charts described the

hierarchy of software modules and the data passed between

modules. The process data dictionary entries explained the

purpose of the modules, the relationships between the mod-

ules, and the modules' input and output data. The parameter

data dictionary entries described the parameters' use and "-,

characteristics of these input and output data.

Further Decomoosition of Requirements

As the requirements were further decomposed and imple-

mentation decisions made, there were limitations placed on

the requirements. For instance, there were restrictions on

the form of the CNDD data definitions and the ability to move .K.

the CNDD from site to site. This implementation first re-

29

* "- stricted the CNDD to use relational data definitions. In

other words, a data definition in a network DBMS had to be

converted via some algorithm to a relational form to be

stored in the CNDD. For example, Jones described how to map

from the network and hierarchical data definition languages

to a relational data definition, and vice versa (Jones, 1984:

115-137)• The main reason the CNDD listed relations and

attributes was because the queries were written in the Roth

relational data manipulation language (Roth, 1979:122-124)

developed at AFIT.

Figure 4 shows the CNDD has a global view of all the

DDBLMS data stored in a relational data definition language.

That is, the data schema is described as attributes within

relations. Since the LUIDDs nust be used to build a new CNDD

when the original CNDD site fails, they also must describe

the schema in terms of a relational data definition language.

However, the LNDDs must contain extra information not needed

in the CNDD in order to map--or translate--from the relation-

al data definitions to the actual data definitions used in

the host DBMS, which may be a network, hierarchical or rela-

tional type of DBMS. Appendix A shows the definitions of the

data in the CNDD, and Appendix D shows those in the LNDD. A

separate description of the ECNDD was not included because it

contains the same type of information as the CNDD.

The requirement to be able to move the CNDD from one

site to another was also restricted because of implementation "

30
• .".:: .-. .

* . .'*..- .- .*. ~'-~* ~ ~ ~ -*'*'U *

A CENTRAL SITE

GLBA

6AATA
OEFIINITZOS

Figur 4. DtDietreDaaDinioSIT B

LNOO 3'.

L...

decisions. The general DDBMS design specifies that the CNDD

should be able to move from one site to another in case of

failure at the central site. However, the CNDD was imple-

mented on a host computer DBMS because the DBMS already

provided data manipulation routines. Therefore, the DDBMS

cannot move the CNDD to a secondary site unless the lowest

level modules which interact with the CNDD at the secondary

site are also implemented. In other words, if the secondary

site stores the CNDD in another type of DBMS, the modules

which extract data from the CNDD must interface with the

specific host DBMS. As a result, all sites are designed to -

have the same software for the upper level modules necessary

to act as the CNDD site, but the code of the lower level

modules will differ based on how the CNDD is implemented at

the particular site.

This restriction would not be necesary, though, if the

CNDD were implemented the same way at all sites. Each site

could have the same software to process CNDD requests and

therefore, could be interchangable. For example, every site

could define the same data structures for the CNDD in the

common software modules executed at all sites. Then the

routines to manipulate the CNDD would be the same at all the

sites. However, this method requires that the developer

design and code all the data manipulation routines already

found in a DBMS. For example, a DBMS has software to define

data characteristics, update and access the data and maintain

32

.. "

.-----------

.-..

S [
. [data integrity. Therefore, it is faster to implement a CNDD

by using a DB14S.

Structure Chart De s ign

The following sections in this chapter describe the

structure chart design and data passed between those modules

which support the central site's functions. According to the

system requirements, all the software to implement this de-

sign should be on all sites in the DDBMS. However, if the

site is not the CNDD site, the modules to process the CNDD

site requests will be turned off. The next sections describe

the detailed design in this thesis that was expanded beyond

Boeckman's design to support the following functions:

1) Service Centralized Network Data Directory

400 (CNDD) site requests

2) Update the Local Network Data Directories

(L!DD)

Service CNDD Site Requests

The structure chart in Figure 5 shows three different

kinds of requests the CNDD site processes: data location re- --L
quests, CNDD updates and pending update requests. Since the

central site software is part of every site's software, the

site first checks if it is the operating CNDD site. If it

is, it continues to process one of the three kinds of re-

quests. Otherwise, the site sends an error message back to

the requesting site explaining it cannot process the request.

33

- . p.•." ." V, * .*- ** .. - • • ° ," -, •

, kFt. .,

l~fl

acc

LI-I

0 UU

fLA

gem -

34

." . The following section explains in detail how the CNDD site

services data location requests. After this explanation the

chapter explains the conceptual procedures for updating

the CNDD. This is not as detailed as that explained for

servicing data location requests because it was not the

intent of this thesis to implement CNDD updates. Also, this

chapter does not discuss the design of processing pending

update requests since it was out of the scope of the thesis.

Data Location Requests. For data location requests, the

central site first verifies whether the CNDD Data Location

Request message (see Appendix 2) contains the correct pass-

word in order to access the CNDD. There is only one password

for general access to the CNDD. The CNDD itself does not

check whether the user has access privileges to a specific

database or to data within a database. The individual DBMS

has the responsibility to control access to its database when

it receives a query message, which also contains a password.

After checking the password, the software then extracts

information from the request message in order to build a

standard header for the results message, which will contain L
all of the data location information retrieved from the CNDD.

The information extracted from the request message includes

the requesting site's identification code and the query iden-

tification code. The CNDD site uses the requesting site's

identification as the destination for the results message it

will send back at the end of the processing. The query r

35

* ' . . * * .*-. . . * * . *.. .

= K.

identification code has another purpose. The network optimi-

zing software assigns a unique query identification code to

each user's query. Then the optimizer divides the query into

subqueries to send to different sites to get results for a

user's original query. Each subquery will carry the same

query identification code. In this way the DDBMS optimnizing -

modules can combine all the results from several host DBP1Ss

into a final response.

Since the user's query is written in a relational data

manipulation language, the query includes names of relations

4 and attributes. From the user's viewpoint these relation and

attribute names are global names. In other words, they are

names used at the highest conceptual level with which the

user is familiar. Hlence, the goal of the CNDD data location

software is to specify which DBflS in the network contains

local relations which are components of the global relation.

The local relation and local attribute names are those

names used in a specific host database. The local names may

be different from the global names or the same as the global

names. Even if the same, though, they may not match con-

ceptually with the global data. In other words, a central

database administrator has to decide which local relations

contain data that are defined as part of each global rela-

tion. Then he includes these mappings in the CNDD.

The CTIDD software was designed so that the modules

retrieve the data locations in two different ways. It can

36

search for either the locations of specific global attributes

within a global relation or the locations of all global

attributes defined to be part of a global relation. There-

tfore, the CNDD Data Location Request message includes a

request type designator before each global relation name.

Type 1 informs the CNDD to extract the locations of all the

global attributes within the specified global relation. Type

2, on the other hand, signifies to get the locations of only L

the global attributes listed after the global relation name.

For each relation listed in the request message, the CNDD

software finds out what the request type is and the name of L.a

the relation.

Because of the overhead required in the message header

finformation, this design allowed several data location re-

quests to be combined into one message. If there were only

one request per message for a global relation's data loca-

tions, each message would have more header information than

the name of the relation. Therefore, it was more efficient to

combine the requests.

As a result, Figure 6 shows four high-level steps of

servicing a CNDD data location request. First a module gets

the request type and a global relation name from the request

message. This step was added to Boeckman's design because of

the decision to combine several requests into one message.

Next, the CNDD processing extracts the data locations of one

relation at a time. Then it reformats the information re-

37

. .~ .. .

IL.

-i-

090

0 4

0,0

~j.

isi

38

211

tured romn the CUDD inoteCNDD Data Location Results

message (see Appendix E). These first three steps continue

until the CNDD finds the locations of all the relations and

attributes in the request message. Finally, the CNDD site

N sends the results message to the requesting site.

In order to extract the data locations requested, a

software module first checks if the CNDD contains the global

5relation in its directory, as depicted in Figure 7. if it

does not exist in the CNDD, the software notes it in the

results message and then continues the processing for the

next relation in the request message. If the CNDD does

contain information on the relation, it next checks whether

access to the data locations is locked or not. The CNDD

prevents access to the information for a global relationL

while the C-NDD is -updating any data on the relation. This

prevents the CNDD from sending back inaccurate information to

the requesting site.

Finally, the lowest level modules retrieve the data

locations of the global relations depending on the type of

request. For example, a type 1 data location request would

probably be used for SELECT relational query. In relation-

al algebra, relations are represented as tables (with rows

and columns) of data. As C. J. Date explained, "The SELECT

operator constructs a new table by taking a horizontal subset

of an existing table, that is, all rows of an existing table

that satisfy some condition" (Date, 1982:75). Since a SELECTr

39

S-S

4u4J

864.1

do.. de -C c

(a1

-A &L

C~gn
.Kg4

.Jkmd

40

operation returns entire rows of a table--or tuples--which

include all attributes within the global relation, the DDBMS

optimizing software must know the locations of all the rela-

tion's attributes. In contrast, a PROJECT relational query

would probably require a type 2 data location request. TheoI
PROJ2ECT operator in relational algebra "forms a vertical

subset of an existing table by extracting specified columns"

(Date, 1982:75). Therefore, since only specified columns--or

attributes--are returned, the optimizing modules need the

locations of only some of the attributes.

In the case of the type 1 request, the CNDD software

retrieves the locations of all global attributes within the

specified relation. Before retrieving any data from the

CNDD, a software module checks if there are any global attri-

butes stored in the directory that are associated with the

global relation. There should always be attributes defined

for each relation in the CUDD unless the directory was not

built correctly. If there are no attributes defined in the

CNIDD, t:ie software notes it in the results message and con-

tinues to process the next relation. In the normal case when

there are attributes in the directory, the software retrieves

the data locations of all the attributes at one time. All of

the information is compiled into one file and then reformat-

ted into the results message.

In contrast, the type 2 request finds the locations of

each attribute listed after the relation, one at a time. r

41

%.---

* -. -- . -.*.-. ...

First, a module gets a global attribute name from the request

message. Then the software checks if the attribute is stored

in the directory. It may not be in the CNDD if none of the

sites has data for the global attribute. If it is not in the

CNDD, the software processing marks it accordingly in the

results message. Then it begins the cycle again to get the

next attribute name in the request message. If the global

attribute name is in the CNDD, the program extracts the data

location information from the CNDD. After the CNDD returns

the data for each global attribute, the software reformats

the data to add it to the results message. This type 2

-process repeats until there is another request type in the

request message or else the request message ends.

a * When there is another request type in the message, the

software reevaluates which of the above processes to follow.

This entire process continues until the CNDD has searched for

all the data requested. Finally, the CNDD site sends the L

CNDD Data Location Results message to the requesting site.

CrNDD Update Requests. Another function of the CNDD is

to service CNDD update requests. The following is a concep-

tual idea of how to process the update semi-automatically

until the entire process can be automated. Part of the

process must be manual because the central database adminis-

trator (DBA) responsible for controlling the update may have

to make some decisions before the update can proceed. For

example, if a new relation was added at a site, someone has "

42

** . ~ .:- * - * * * .. *'. K .- ~* .- . *.-

71 7: - -- W-

to decide to which global relationCs) the local relation

belongs. He also has to match the local attributes within

the new local relation with the global attributes within the

global relation. To explain this process, Figure 8 shows the

upper-level modules required to service this request.

First, when the CNDD receives an update message from a

site, it locks the access to the global relation's data.

This prevents the CNDD from sending to a requesting site any

data location information on the global relation that is not

current. Besides changing the global relation's access code,

the software also changes the access codes of the specific

local relation and local attribute whose data is changing.

These access codes remain locked until the update is com-

LO pleted. Until then, the CNDD site sends a flag meaning the

data is being updated, rather than the data location informa-

tion, to each site that requests information on the affected

relation. L
Second, the .DD site services the updates to the CNDD

sent from sites that intend to update their LNDDs. The CNDD

site software displays a message on the central site's termi-

nal explaining the changes to be made and writes the same

information in a file. This allows the central DBA to review

the information while the central site is off-line. After

making the necessary decisions, like global relation-local

r2lation mappings, the central DBA manually changes the CNDD

_ when the system is off-line. He also marks that the update

43 . .

~~~~~~~~~~~... . . . . . . . . . . . . . .. . . . . . . . . .

o - *



ION;

U4U

~~ 0

444

- - -. -: *~-V''-- T5§



was completed in the file that contained the information on

the update.

When the DDB4S comes back on-line, part of the CNDD

initialization processing checks this file. If there are

CNDD updates marked as completed in the file, the CNDD site

finishes servicing the CNDD updates before servicing new CNDD

requests. The software checks which ECNDDs and LNDDs must be

changed also because they have duplicate data just changed in

the CN'DD. The site which originated the update is included

in this list because it does not change its LNDD until after

receiving an acknowledgement from the CNDD site. Also, it

may need some information from the CNDD, like the global

relation-local relation mapping, to store in the LNDD. The

processing writes which directories and what changes are

necessary in each in a file containing CNDD acknowledgements

and replication data.

In the third major step to service CNDD updates shown in

Figure 8, the processing sends updates to ECNIDDs and LNDDs

which must be changed. The software checks the file contain-

ing the CNDD acknowledgements and replication data. For each 7

ECNDD and LNDD update in the file, it builds an ECNDD or LNDD

update message and sends it to the site. When the site which
I..

originally sent the update to the CNDD receives the LNDD

update message from the CNDD site, it can finally update its

LNDD.

45
<; .-. .-



Next, the CNDD site waits for an acknowledgment message

from the ECNDDs in the fourth step. After each site which

received an ECNDD update message makes the directory changes,

it sends an acknowledgement message to the CNDD site. When

the CNDD site receives all the ECNDD acknowledgement messages

it expects, it unlocks the CNDD in tuie fifth and final step.

In other words, all access codes associated with the updated A
global relation, local relation and local attributes are set

so any site can receive the CNDD data stored for these items.

Undate the LNDDs

Since the last section just explained that the processes

to update the CNDD and LNDDs are correlated, this section

explains the conceptual procedures to update an LNDD. When a

database administrator (DBA) wants to change data in a local

DBMS, which also affects the LNDD, he must interrupt the site

to notify the DDBMS of the pending LN'DD update. This inter-

rupt causes the site to receive an External LNDD Update

message. This message and an LNDD Update message from the

CNDD both cause the modules shown in Figure 9 to begin execu-

ting. -

When the update messages arrive, the software prints a

message on the site's console explaining the pending LNDD

update and stores it in a file for off-line review. Because

the LNDD data will be changed, the software locks the access

to the affected data. Until the data is updated, the LNDD
r

will not release any of the currently inaccurate data.

46

li ,•.° 7



.. ~- 7L...

I--.

4C

IA-

x us

~4VA

fa

II

47



I IT V- V* -.-

Next, a software module prepares a CNDD update message.

This message contains local data that must be changed. For

example, the DBA may want to add another field to the DBMS.

If the host DBMS is not a relational DBMS, the DBA must

translate the data definition of the field to a relational

data definition. Perhaps the field equates to an attribute

within a relation. The DBA responsible for this DBIS can

only supply the local information like the local attribute

name, local relation name, etc. In order to insert the

global relation name and global attribute name in the LiNDD,

the local DBA must wait until the central DBA responsible for

the entire DDBMS supplies this global information.

So the site sends the CNDD Update message to the CNDD

site and then waits until it receives the CNDD Update Acknow-

ledgement message. This message will contain the additional

information the LNDD needs. When the acknowledgement message

arrives, a message appears on the site console. L
The next step is to transact the LNDD update. Boeckman

designed this as an automatic procedure of finding the LNDD

entry to be updated, changing it, and preparing a message L

with the update results. The system then sends the LNDD

Update Results message to the host computer.

At this point the automatic procedures will probably

stop. Most likely the DBA will have to take the site off-

line to make the changes to the data in the host DBMS. After

the changes are done, the last step is to unlock the LNDD.

48

CC :- . - * 8 - .--. ..

~ ~ C.. -. *' CC~ C C ~ C * C C . 'C.
C C -.. C



This means changing the access codes of the affected global I
relation, local relation and local attributes in the LNDD.

Finally, the LNDD is back in normal operation to determine if

data is stored in the host DBMS.

Summary

This chapter described with the graphical aid of struc-

ture charts two of the central site's functions. Several

sections explained these functions by detailing the process

of servicing CNDD site requests and updating LNDDs. The CNDD

site requests discussed included the data location requests

and the CNDD update requests. In addition to explaining the

software process, this chapter showed the detailed format of

the messages necessary to implement these functions and the

definitions of data stored in the CNDD, ECNDDs and LNDDs.

The next chapter shows how the DDBMS was partially imple-

mented based on this design.

49 .

S. . .

. -.. ~ . . . . .. . . . .



IV. Partial Implementation

* Introduction

Rather than develop another design for a partial imple-

mentation of the DDBMS as Boeckman did (Boeckman, 1984:37-

56), this thesis implemented the same DDBMS detailed design

described in Chapter 3 of Boeckman's thesis and this thesis.

The implementation followed a top-down programming approach.

In other words, the top or highest level modules shown in the

s tructure charts were coded and tested before the rest of the

system was finished. However, because of the time constraint

and scope of this thesis, not all the DDBMS was implemented.

Some of the modules, written as dummy stubs, can be imple-

mented later on. Since the centralized network data direc-

tory system (CNDD) was the main thrust of this thesis, this

phase of the work completed all of the processing to make a

request for data from the CNDD and to get the data locations

from the CNDD. Appendices I and J show the structure charts

and data dictionary entries used in the implementation.

The DDBMS hardware consisted of two LSI-II microcompu-

ters and one Z-80-based S-100 bus microcomputer. The S-100

computer executed a dBASE II DBMS, which is a relational type

DBMS, and supported the CNDD.
p

This chapter first discusses the computer architecture

used to test the DDBMS software implemented. Next, it ex-

plains how the CNDD was implemented using the dBASE II DBMS.

* -> After explaining this background, the chapter outlines the

50

. .-.-- :-.

* . .. . . . . . . .



, 1P

software modules written in this implementation of the DDBMS

and a summary of all the activities in this phase of the

project.

Implemented Architecture

Figure 10 shows the architectural topology of the hard-

ware used in this implementation. The DDBMS system consisted

of two LSI-11 microcomputers and one Z-80-based S-l00 bus

microcomputer. The LSI-11 computers were identified as L

System L and System S in the AFIT Digital Engineering Labora-

tory (Hartrum, 1985:1).

One of the LSI-11 computers, System L, acted as the CNDD

site in the DDBMS. Because of memory limitations, System L

only contained the DDBMS software necessary to process CNDD

! site requests. It did not process queries or updates to the

distributed databases. System L connected to an S-100 micro-

computer which acted as a host computer. This S-10 executed

the dBASE II DBMS to load, update and access data in the

CNDD. The other LSI-11 computer, System S, was a remote

DDBMS site which executed the software to handle the DDBMS

queries and create data location requests for the CNDD site.

Although the hosts were nodes on LSINET, because of

memory sizing problems, these LSI-11 computers were unable to

contain the network operating system (NETOS) used for the

LSI-11 computers to communicate between each other (1Uartrum,

* 1985:1). The NETOS software required 34K, the DDBMS remote

site software required 40K, and the CNDD site required 36K.

51

%m .



MUM,

LSINET~

* . igue lD.DBSPata mlmettoMrcietr

CNDO ITE EMOT SI2

LSX-~- I* - I -



* V
i %1

Since neither the DDBMS or CNDD software is completed, the

memory requirements will grow as more software is imple-

mented. Therefore, the programs should be partitioned among .4

the computers. For example, the LSI-11 computers could only

contain the NETOS software while the host computers with

larger memory capacities could run the DDBMS remote site and

CNDD site software.

Implementation of CNDD

The CNDD was implemented using a DBMS just like any

other database in the system. However, this site only ac-

cessed the CNDD information and did not access any of the

distributed databases in the DDMBS that a user could query

and update. It was decided that this site would only handle

a-, C' DD site requests because of sizing problems. In fact, the

LSI-11 computer memory was not large enough to process all

the CNDD site requests. Therefore, due to the memory re-

strictions and the scope of the thesis, only the data loca-

tion requests were processed at the CNDD site.

The CNDD data shown in Appendix A was originally organ-

ized into the relations shown in Figure lla. These original

relations were all normalized to the third normal form. How-

ever, many of these relations were combined to make the CNDD

processing more efficient. Figure llb shows the final six

CNDD relations formed from those in Figure lla and loaded into

a database with the dBASE II relational DBMS. In addition,

Appendix B contains a User's Guide on the update procedures

53

. a.- .*-~ ***~**** ** * *** -- ...-. - - -

.a . .*.P - . . . . . . . . . . . . . . . .
* a .. ap . * . . . . . . . . . . . . . . . . .



GREL-LREL OREL -GATT

IGREL-NAME LREL-10 GREL-ACCESS fGELNAME I ATT? ID

GATT-LIST SITE-DO SITE-LIST

~IGATT AEG ~ II IO
09-DBMS DBMS-LIST 09-LIST

10-D BS)BMS-NAMNA E DBMS-TYPE J9NM

DB-LREL LREL-LIST

IC L-ID LREL-IO0 LREL-NAME IREL-INOEX LREL-ACCESS LREL- REP

LREL-LATT LAYT-LIST

[LRL-DATJ LA IAT-ID ILATT-NAMEJ LATT-ACCESS

GATT-L AT?

IGT0 ATT-ID

A. ORIGINALLY DESIGNED CNOD RELATIONS

GREL-LREL OREL-GATT

GREL-NAME I REL-ID JGREL -ACCESS IGREL-NAME GATT-NAME GAT-ID -

SID-LREL

I 10D HOS? IDBms-NAME DBMS-rYPE 09-N4AME LREL-ID]

LREL-LIST

LREL-101 LREL-NAME ILREL-INOEXI LREL-ACCESS jLREL-REPJ

LREL-LATT GATT-LATT

ILREL-ID ILATT-ID LATT-NAME ILATT-ACCE9 ~ IGTIID ILAT-10

I. IMPLEMENTED CNOD RELATIONS

Figure 11. CNDD Relations

54



to maintain the CNDD, and Appendix C shows the CNDD test

database constructed.

For example, the following relational algebra opera-

tions on the relations in Figure llb retrieved the data loca-

tions of all global attributes within a global relation:

SELECT GREL GATT WHERE GREL NAME = 'RELATION'
GIVING TEMPI

JOIN TEMP1 AND GATT LATT ON GATT ID GIVING TEMP2

JOIN TEMP2 AND LREL LATT ON LATT ID GIVING TEMP3

JOIN TEMP3 AND LREL LIST ON LREL ID GIVING TE[1P4

JOIN TEMP4 AND SIDLREL ON LREL-ID GIVING TEMP4

PROJECT TEMP5 Oi GATT NAME, SID, DBMS NAME,
DBMS TYPE, DB NAME, LREL NAME, LATT NAME,
LREL-INDEX, LREL REP GIVING DB RESULT

The SELECT operation created a relation TEMPI, con-

taining all the identification codes of the global attributes

within the global relation. Next, the first JOIN operation

added the unique identification codes (unique keys) of the

local attributes which associated with the global attributes

to the relation TEMP2. That is, the local attributes were

those attributes actually stored in the distributed data-

bases. The following second JOIN operation included the

local attribute names that were used in the local databases.

The third JOIN operation created a relation TEMP4 which added

the information for each local relation in which the local

attributes were found. The next JOIN stored the information

on the site location of each local relation in the relation

TEMPS. Finally, the last PROJECT operation arranged the

55

. . . . .



-. %

attributes in the order that was sent back in the CNDD Data

Location Results message.

Whenever a site requested only the data locations of

specific global attributes, all the same relational opera-

tions, except the SELECT operation, were executed. The

SELECT operation was modified to include the name of the --- '

global attribute as follows:

SELECT GREL GATT 1QUERE GREL NAME = 'RELATION'

AND GATT NAIME = 'ATTRIBUTE'-GIVING TEMPI

This operation created a relation with the global relation

name, global attribute name and identification code of the

single attribute requested. After this relational operation,

the other operations formed a final relation with all the

data locations of only a single global attribute. All of

Bthese operations were repeated to find the data locations of

each specific global attribute requested.

Normally, the processing which handles a user's query

would need the locations of all attributes within a relation

so it could optimize how to partition a query. Partitioning

a query is deciding how to break up a query into subqueries

that are sent to different sites. However, as already ex-

plained in Chapter 3, the optimization processing for a

PROJECT relational query only needs the locations of those

attributes mentioned in the query. It would be unnecessary to

know where all the attributes within the global relation were

located since the PROJECT operation extracts only the speci-

fied attributes from the relation.

56



* . - . -° 1- -V 7-..C- V

In summary, the low level software modules called dBASE

II to execute command files which accessed data in the CNDD.

These command files were created with a text editor and

contained the d3ASE II commands necessary to perform the type

of relational operations just explained. The next section

will describe the software modules implemented to test the

ability to request data locations from the CNDD and then

retrieve the information from the CNDD.

Partial Implementation of DDB21S

This partial implementation of the DDMBS followed the

detailed design described in this thesis and Boeckman's

thesis. Because of the magnitude of the DDBMS design, many

of the modules mentioned in this section were written as

stubs. Later as the DDBMS implementation continues using L

this top-down programming method, the stubs can be replaced

with operational code. In the following structure charts, a

circle in the left corner of a module box means the module is

a stub, and an asterisk means it was implemented.

Main Executive. The main executive module shown in

Figure 12 calls three modules to: initialize the DDBMS, get I

the next message that has arrived at the site, and start a

new process. All of the initialization processing modules

were stubs. The "GET NEXT MESSAGE" module first gets a local

message, one that originated at the same site, if one exists.

Local messages were simulated by storing them in a file

"LOCAL.TST." If the processing can open the file, it reads

57



MAIN
0.0

C-.-

00

INITOOSMS 3Er-NEXT-ESG NEV-PROCESS

1.0 203.0

Figure 12. Main Executive

58



*~~.1; n' . .. . . . l r -r -

the file and stores the contents into a buffer that is

passed to the next dummy module "NEWPROCCSS". If there is

no local message, the "GET NEXT MESSAGE" module calls "NXT

NETWORK MESSAGE". This module gets the next network message

sent from another site by calling "RECVFILE", an ISO Layer 6

module in NETOS (Hartrum, 1985:14). However, because of

memory limitations, the NETOS software was not loaded on the

LSI-11 computer used for the CNDD site. Therefore, network

messages were not passed over the LSINET to the CNDD site,

but were simulated by reading from the file "REMOTE.TST".

New Process. When "NEW PROC.ESS" is implemented with a

multi-processing operating system, it will create a process

for the message and store it in the process queue. However,

IlJ_ in this implementation, the module just calls "DO-PROCESS" as

shown in Figure 13. "DOPROCESS", in turn, calls "INTERPRET"

which determines the type of message to process. If it is a

reconfiguration type message, the module calls the dummy "-

* module "RECONFIGURATION". For all other kinds of messages,

* it calls the module "REQUESTS". The only module "REQUESTS"

calls, which is not a stub module, is "SVC REQUESTS".

Service Requests. Figure 14 shows that "SVC REQUESTS"

services local requests, remote requests and CNDD requests.

The local requests module was implemented because the proces-

sing for local requests interrogates the CNDD for data loca-

tions. On the contrary, the remote request processing was

not implemented because it did not have to access the CNDD.

59

............................................... .;.i



OIL

HE-PESS

NEXT?
MESSAGE

00-PROCESS

NEXT
MESSABE

NEX RtECDNI9WATl
N~xr MESSAGE

MESSAGE MESSAGE TYPE
MESSAGE FLAB OTHER
TYPE MESSAGE

FLAG TYPES
FLAG

INTERPRET RECONFIUATO REQUESTS
33.2.2 3.1.3]

Figure 13. New Process r

60



SVC-REQUESTS

3.31.3.3

NEXT NEXT NEXTMESSAG MESG MSSAGE
LOCAL /REMOTE CNOMESSAGE 7 ERROR MESG ERI O MESSA X\
TYPIE FLAG TYPE FLAG TYPE FA

0

LOC -REQ REM-E CN0O-REO

3.1.3.3. 1 3.1.3323.3 1.3

Figure 14. Service Requests

61.



That is, a site would not receive a remote request from

another site unless the site contained the data in its host

database. Therefore, it would not have to go to the CNDD to

find the data location; the data would be in the site's LNDD.

The processing for the third type of request, CNDD requests,

was partially implemented to achieve the main goal of the

thesis.

Service Local Queries. In Figure 15 the local query

processing first calls "PARS QUERY" which parses the query

and stores the parts (relations, attributes and conditions)

of the query in a data structure. It then calls "DTERMINE_

LOCALQUERY TYPE" to decide whether to call either the module

"HOSTQUERY" or "NETQUERY" next. The "HOST QUERY" module

services a query which needs data that is all located on the

host computer. In contrast, "NET QUERY" processes a query

where all or some of the data are found at other sites in the

network.

Parse Query. As Figure 16 shows, there are three dif-

ferent modules to parse a query written in the Roth relational

DB language. "PARSQUERY" only parses PROJECT, SELECT AND

JOIN queries because the translator to convert from the Roth

relational language to INGRES only handled these types of

queries. Since it was originally planned to connect an

INGRES DBMS in the DDBMS, this restricted the kinds of quer-

ies that would be processed. However, due to time constraints,

the additional software to completely process a query was not

62

2 - * ,- ., -... -. "j-°. ••........ .. ••.-......... •.... . .........................



LOC-QUER Y

"URIES "URY QUERY ci.Rv

PARSED OLERY MOST ~ IET1ItO
WERI TYPE WERY "URY

OTER"1INE-LOCAL, NS-UR E-U~
PARS-UERYQUERY-TYPE

Figure 15. Service Local Queriesr

63



*l 1V 07 .m I n . r *--r r .r- - 1%r. wt- -vl us.

PARS-QUERY

PARSED PARSED PARSED POrDiT TO
QUERY I OLRY QUERY CHARACTER/AFTER NEXT WOD77

MESSGE/ MESAG /ESG MESG

ERWA EMOI ERROR NX
FLAO FLAG LI

PARS-PROJECT PR-ECT PARS-JOIN GET-VORO

F'igure 16. Parse Query

64



implemented. Therefore, there was no need to connect an

INGRES DMBS just to show that the CNDD processing worked.

The parsing modules "PARS PROJECT", "PARS SELECT" and

"PARS JOIN" used the procedure "GET WORD" to read each word

of the query. After identifying the relational operation,

the relations, the attributes, and the conditions of the

query, each of the parsing modules stored the information in

the same data structure that Roth used in his implementation

(Roth, 1979:54-55). Each relational operator was stored as

a node in a tree structure. In this way a query can be

partitioned into subqueries, each linked as a node in the

tree data structure. The query optimization routines will be

able to use this parsed tree structure later when they are

implemented. Also, the original query written in the Roth "

language was retained so that the query processing could use

the translators used in Boeckman's thesis (Boeckman, 1984:60-

61).

Determine Local Query Type. After the query is parsed,

the local query module calls another procedure which deter-

mines the query type. To do this, the procedure checks if

the locations of the data needed for the query are in the

site's LNDD or ECNDD. Because the LNDD and ECNDD were not

implemented, this module was coded as a dummy stub. If all

the data are located at the host computer, the query type is

a host query. Otherwise, the query is classified as a net-

work query. The "HOSTQUERY" module was implemented as a

65

. . .. . . . . . . .,
...........



- ... - - .~-. .-. .- . " .- . . 4o- - -

stub, whereas the "NET QUERY" module was implemented as shown

in Figure 17.

Service Network Queries. To process network queries,

the procedure "NETQUERY" first calls "CHKCNDD" which inter-

rogates the CNDD for the data locations. If the previous

module "DTERMINE LOCAL QUERY TYPE" determined that the loca-

tions were not in the LNDD or ECNDD, the CNDD Data Location

Request message is built and sent to the CNDD site. The site

then waits to receive the CNDD Data Location Results message

from the CNDD site.

After checking the CNDD for the data locations, the

network query processing calls two dummy modules. Both the

modules, "SEND QUERY PARTS TO REMOTE LOCATIONS" and

"COMPILENETWORKQUERYRESULTS", were stub modules in this

implementation but could be replaced with those written by

Boeckman in his partial implementation of the DDBMS. Imple-

menting these modules would complete the network query

processing.

Service CNDD Requests. As already explained, Figure 14

showed that the module servicing requests also calls the

module "CNDDREQ" to service CNDD requests, besides the

module just explained to service local requests. The only

CNDD request implemented was the CNDD Data Location Request.

The processing for this request was shown in Figures 6 and 7.

-* Since the processing was implemented as described in Chapter

3, this chapter will not explain the design again.

66



NET-QUERY

PARSEDY PARSED PARSED
GLIRY/ OMRY QUERY

QUERY 11GUEy
DATA IDATA

LOCATIONS LOCATIONS

QERY MOAKC
CA TA MLUCINILOCATIONS

0 0
SD-LEY-PARTS ownxL-ETOK

CHK-CNOO 0O-QEMPOTE-LOCATIONS QUERY-41ESLLTS

Figure 17. Service Network Queries

67



Summa'

The DDBMS was partially implemented by using two LSI-11

*." microcomputers and one Z-80-based S-l00 bus microcomputer.

. One of the LSI-11 computers was designated as the DDBMS CNDD

site and contained the software to service CNDD Data Location

Requests. An S-100 computer, connected to the CNDD site,

*, acted as a host computer to store and access the CNDD with a

dBASE II DBMS. The other LSI-Il computer was one of the

DDBMS sites and contained the modules to process local net-

work queries. These queries were originated at the site but

required data located elsewhere in the DDBMS network. Since

all the individual modules of software implemented in this

thesis tested successfully, the following chapter explains

how the modules were integrated and tested.

68



V. System Integration Testing-

Introduction

In this phase of the thesis project all the software

*. modules implemented were integrated and tested to determine

whether they performed together correctly. As the main .

objective, the testing evaluated the process of requesting

and extracting data locations from the CNDD. This involved

breaking the testing into two steps:

1) Constructing a CNDD Data Location Request

message, and

2) Extracting the information requested from the

CNDD and constructing a CNDD Data Location Results message.

To verify these phases, this chapter is divided into

three parts. The first section will explain the test data

stored in the CNDD. The second section will explain the

procedures and results of testing the remote site processing,

and the third will cover testing the CNDD site processing.

CNDD Test Data

Two test databases were constructed on different host

computers, both of which executed a relational DBMS. A dBASE

II DBMS ran on an S-100 microcomputer, and an INGRES DBMS ran

on a VAX-11/780 minicomputer. Although the tests did not

access these databases through queries, the locations of all

the data were stored in the CNDD.

The CNDD maintained a global or conceptual view of the

separate databases. This global database, as shown in

69

. . . .. ..

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .



"-- -

Appendix C, contained information about global relations and

global attributes. For instance, the user designed DDBMS

queries based on these global relation and attribute names.

Since this was a distributed DBMS, the global relations and

attributes were partitioned or distributed among the data-

bases. Ullman explained that relations can be partitioned

either vertically or horizontally (Ullman, 1982:411).

For example, he said if a relation is viewed as a table,

vertical partitions represent columns of the table. In other

words, a vertically partitioned relation has its attributes--

or columns--distributed among several databases. - -

On the other hand, Ullman explained the horizontally

partitioned relation is like a table divided by rows. This

means some tuples--or rows--of the relation are located in

different databases.

Besides partitioning the attributes of a global rela-

tion, the test databases also had duplicate data. The data-

bases copied either columns of attributes or rows of tuples.

Based on these definitions, Figure 18 shows the global

relations and how they were partitioned among the two test

databases shown in Figures 19a and 19b. A simple naming

convention was used to make the mappings more obvious between

the global names and the local names used in the actual

databases. Except for the first letter, the local relation

and local attribute names were the same as the global names
"4--:;

with which they corresponded.

70;_

-'*,



SUPPUERS

SNUM SNAME STATUS C:TY

NOCT PARTITIONED * FULLY RP.ICArED

PARTS

PNUI tPNAIEI COLOR~ VE:GHTj CIT

ORDERS

SNUM PNUM QTY CATE

VERTICALLYv P*W1TIONED. PARTIALLY REPLICATED

RECEI1PT '

SNUM PNUMIQTYI CATE

INVENTORYL

[~Y
IHMZZCTALLY PARTITZNE~o NOT WPUCATED

Figure 18. Test Global Relations

71



DSUPPL. ERS

OISNUM fOSNAMS OSTATUS jOCITY

OROES DINVENTORY

I SNUM ODPNUMf OQTY OPU DOTY

DRECEIPT

OSNUM I PNLRI DOTY DOATEI

P4~ A AAEME dBASE II TEST DATABASE

ISUPPLIERS

ISNUM I SNAME ISTATUS ICTYf

IPARTS

IPNUM IPNAME ICOLOR W ~EIGHTZCT

ZODERS ZINVENTORY

ISNUPI IPNUM ZOATE EPNU 1TY

9. INGRES TEST DATABASE

Figure 19. Test DDBMS Database Relations

72



T.~~. -17.,17

.L

According to Figure 18 the global relation "SUPPLIERS"

was not partitioned, but it was fully replicated at each

database. The relations "PARTS" and "RECEIPT" also were not

partitioned but were uniquely stored in their entirety at

just one of the databases. The relation "ORDERS" was verti-

cally partitioned with some data duplicated at both sites.

Finally, the relation "INVENTORY" was horizontally parti-

tioned, and no data was replicated in either database.

Remote Site Processing

During the tests the remote site processing only handled

a query up to the point of creating a message that requests

data locations to send to the CNDD site. The site did not

send the message to the CNDD nor did it send the query to the

host databases. The test procedures were as follows.

First, test queries were created with a text editor

following the Local Query Request message format in Appendix

E and stored in ASCII files (labeled "LOCAL.Q1"..."LOCAL.Q4"). L

The tests used the queries shown in Figure 20. These queries

requested data stored only in one database or in both data-

bases. Also, the PROJECT query included an attribute "bad"

which was not pact or the global relation. The last query

required data from the CNDD that was locked. That is, the

CNDD locked access to the relation "inventory" to simulate

* the data in the CNDD associated with the relation was being

updated.

7r3

73"'-2

S. . . .* *. ..



.°.lQuery #1: SELECT ALL FROM parts
WHERE (city = 'Chicago') GIVING newrel

Query #2: JOIN parts, receipt
WHERE pnum = pnum GIVING newrel

Query 43: PROJECT suppliers OVER snum, sname, bad
GIVING newrel

Query #4: SELECT ALL FROM inventory
WHERE (pnum - 'PI') GIVING newrel

Figure 20. Test Queries

The remote site program "DDBMS" executed four separate

runs to test each query. Before each run, the file con-

taining the query was copied into the file "LOCAL.TST". The

processing then simulated receiving a local query by reading

the file. After parsing the query, the program simulated

checking the LNDD and ECNDD for the locations of the rela-

tions. This was simulated because neither the LNDD nor the

ECNDD was implemented. The processing pretended the data for

the relation "receipt" was either in the LNDD or ECNDD. L

Finally, the remote site software created a file la-

beled "A0000l.DAT", which contained a CNDD Data Location

Request message. For example, the messages for queries #1, 2

and 4 requested the locations of all the global attributes

within the global relations "parts", "parts", and "inven-

tory", respectively. The message for query #2 did not in-

clude the relation "receipt" because its location was sup-

posedly in the LNDD or ECNDD. In contrast, the request

message for query #3 asked for the locations of only the

74



global attributes "snurn", "sname" and "bad" within the rela-

tion "suppliers". Test results verified that the request

message for each query was built correctly.

CNDD Site Processing

Once the remote site built the CNDD Data Location Re-

quest messages, tests checked whether the CNDD site proces-

sing extracted the data correctly. Four files (labeled

"REMOT0 E.Ql"..."R-EMOTE.Q4"), built with a text editor, con-

tained the same request messages that the remote site con-

structed during its four test runs. Before each run, a file

containing the request message was copied into the file

"REMIOTE.TST". The tests simulated receiving a message from

the network by reading the file "REMOTE.TST".

Before starting the program on the LSI-l1 computer, the

* S-l00 computer connected to System L was initialized. After

cycling up the operating system with the "Super 6 NETOS

System Disk", the command "PORTBAUD 9600"1 was entered to

establish a 9600 baud rate. Then the command "Stat con:=crt:"

was typed to link the S-100 with the LSI-11 computer through

the console port.

After the S-100 was initialized, the program "CNDD" was

executed four different times to process each Data Location

Request message stored in the file "REMOTE.TST". The soft-

ware accessed the CNDD and retrieved all the information

requested. At the end of the processing, the CNDD site

*program stored the formatted CNDD Data Results message in a

75



KC

- file named "A0001.DAT". The file "A0001.DAT" was renamed

"RESULT.Qx" where x was the query number. After each run, a I

text editor was used to check that each results message

contained the correct format and the data locations as out-

lined in Figure 19. The fourth results message, though, did

not contain any data locations because the access to the data

for relation "inventory" was locked. The results of all the

CNDD site tests were correct.

S immary

Two test databases were created but were not accessed

during the tests. However, the CNDD did contain a directory

of where all the data was located. During the first half of

the testing, the remote site processing correctly evaluated

four test queries and built satisfactory CNDD Data Location

Requests. In the last half, the tests verified that the CNDD

site correctly supplied the locations of all the data reques-

ted. Based on the work during the design, implementation and

testing phases of this thesis, the following chapter will

discuss ideas for follow-on projects.

76.....



VI. Conclusions and Recommendations

Introduction

The previous chapters explain the life cycle process of

developing part of the software for the DDBMS central site.

During each of the project's phases problems and ideas for

future work arose which other individuals may resolve and

complete in order to finish an operational DDBMS. This

chapter first discusses conclusions about the results of this

thesis, and then suggests recommendations for follow-on pro-

jects. Finally, the thesis concludes with some final com-

ments.

Conclusions on Results

This project accomplished the main goal of designing the

CNDD, implementing it on one of the DDBMS sites, and imple-

menting the software which creates and processes requests for

data locations stored in the network CNDD. The integration

testing period proved the implemented code worked according

to the system requirements and design.

Unfortunately, the DDBMS sites were not connected to a

network so that messages could be passed from one site to

another. Both the DDBMS software implemented so far and the

operating system (NETOS) for the LSINET local area network

would not operate on a single LSI-11 microcomputer together.

The computer's operating system could not execute all the

software in the memory allotted for the program. Conse-

77
........................



quently, resolving this problem should be the first priority

in any future development of the AFIT DDBMS project.

In addition, the thesis described the design of the ..

network messages and the process to update the CNDD, but it
. '.

did not implement the process. The detailed design also

specified the data contents of the LNDD and the ECNDD. How-

ever, the project did not implement them nor develop the

software which checks for data locations in these local

directories because of project time limitations and sizing

problems in the LSI-11 computer.

Follow-on Research

The following paragraphs recommend future research based

on the results of this thesis and the final goal of implemen-

• 9 ting an operational DDBMS. The first task should be to find

a way to link the DDBMS sites into the LSINET. Other pro-

jects include searching the LNDD and ECNDD, updating the

ECNDD from CNDD results and implementing the DDBMS on an

Intel Hypercube computer. Also, follow-on projects can im-

plement the other CNDD site functions of initializing the

DDBMS, reconfiguring the DDBMS, updating the CNDD, and pro-

cessing pending updates to remote sites. In addition, there

are several projects that Boeckman identified in his final

chapter (Boeckman, 1984:78-87).

Connecting the DDBMS in a Network. There are several

options available to resolve this problem. First, each DDBMS

site could connect to another LSI-11 which would contain the r

78



NETOS software and interface with the network. Second, a

multi-processing operating system on the LSI-l1 could operate

both the NETOS and DDBMS software on a single system. Third,

all the software could be reorganized into various files to

take advantage of overlaying portions of programs over each

other in memory. Unless there is a method of accessing more

memory with the LSI-11 operating system, the sizing problem

will occur over and over.

Implementing the LNDD and ECNDD. Now that the CNDD is

implemented, the other directories should be implemented.

Using the definitions of the LNDD and ECNDD contents des-

cribed in this study and the DDBMS overall design, follow-on

research can refine the detailed design of these directories.

Mahoney's work on the global translator contains some of the

mapping information needed that should be added to the LNDD

contents described in this thesis (Mahoney, 1985). After

implementing the directories, the research should implement

the modules to search these additional directories for data

locations and to update the ECNDD when a site receives CNDD

results.

Implementing the DDBMS on Intel Hypercube. Since the

AFIT DEL plans to receive an Intel Hypercube computer, an-

other future project may implement the DDBMS on this multi-

processor computer. Several parts of the DDBMS software may

be hosted on some of the 32 processors in this system.

r

79

...................................



n-u -v*--* -o-

Initializing the DDBMS. The current implementation does

not dynamically check which sites are connected in the DDBMS.

Instead, a table stored in a ASCII file contains default

* status values of all possible sites in the LSINET. A future

project could replace this table by implementing the initial

contact and startup messages as designed.

Reconfiguring the DDBMS. A follow-on thesis could write

more implementation-specific structure charts and implement

the ability to reconfigure the system. This includes the

processing to add or delete a remote site and to move the

CNDD to a new central site. If the CNDD at the new site is

not implemented as done in this thesis, the lower level

modules coded in this thesis, which extract data from the

dBASE II database, must be redone.

" Updating the CNDD. Using the design explained in this

thesis, a follow-on effort could implement the messages and

the processing required to update the CNDD. This project

would probably design more implementation-specific structure

charts before coding the modules.

Processing Pending Updates. Before the CNDD site can

process pending updates to inactive remote sites, the ability

to update the databases must be added to the current Roth- -

dBASE II and Roth-INGRES translators or included in new

" translators. As Boeckman suggested (Boeckman, 1984:80), the

translators could use the EDIT commands of Roth (Roth,

1979:119-121) and convert them to appropriate commands in

.ilLi  -8.

t. -i

"" 8* - .



INGRES and dBASE II. Besides changing the translators, the

researcher must also implement some update concurrency

algorithm. After implementing the update capability, the

follow-on project could refine the design and implement the ,

pending update processing at the CNDD site.

Other DDBMS Projects. In order to complete the DDBMS .

implementation, researchers must complete several other pro-

jects that Boeckman identified (Boeckman, 1984:78-87). For

example, designing and implementing a query optimization

algorithm is necessary to be able to efficiently process

input queries. This includes partitioning a query into sub-

queries, routing the queries to the optimum sites and com-

puting the query results. Another project could design and

%JO implement queue processing algorithms for the network mes-

sages if a multi-processing operating system is used in the

DDBM:S. This would speed up the DDBMS processing. For

example, a site could receive several messages, which would

be stored in a queue, at the same time as it was processing

the highest priority message. Also, the site could store all

output messages in another queue and continue its processing

without having to wait for the network operating system to

send each message to its destination.

Final Comments

Future work on the AFIT DDBMS should concentrate on

connecting the DDBMS in a network, first and foremost, and

then initializing the DDBMS, updating the CNDD, processing r

81 "

. . .. . ..

-- - . ... .. .. "o-'- ' ''-L*"-'
°
"i'-"-.' ._ • - ". '. •. -' -' -" ," ," ". ,.". .". .".-".-.. . . . . . .". .".. . . . . . .-. .'.. .". .- '". ."" " ' . . . . . .".•



APPENDIX A

CNDD DATA DEFINITIONS

Field Field Possible

Name Definition Values Description

grel name 15 chars Unique global relation name

grel access 1 digit Lock to prevent access to
any of the global relation's
data during update

0 6 Locked (no access)
1 Unlocked

gatt id 15 chars Unique global attribute id

gatt name 15 chars Global attribute name (does
not have to be unique)

sid 10 chars Logical site id of system
connected to the DDBMS net-
work

host 3 chars Type of host computer
(contains a DBMS) which is
connected to another pro-
cessor connected to the
DDBMS network

CDC CDC Cyber
100 S-100
UNX VAX 11/780 with UNIX o/s
VMS VAX 11/780 with VMX o/s

dbms name 3 chars Name of Data Base Manage-
ment System (DBMS) on host
computer

DBT DBTG
ING Ingres
DB2 dBase II
TOT Total
IMS IMS

dbmstype 1 char Type of DBMS on host

H Hierarchical
N Network
R Relational F-

83

-...... .- .......- ......".... .



db name 15 chars Name of Database (DB) onhost computer

irel id 15 chars Unique local relation id

irel name 15 chars Local relation name unique
only in host computer DB

irel index 1 digit Local relation index code

0 Not indexed on an attribute
I indexed on an attribute

irel access 1 digit Lock to prevent access to
local relation's data during
update .

0 Locked (no access)
1 Unlocked

irel rep 2 digits Local relation replication
code

1 No partitioning with no
redundancy

2 No partitioning with corn-
plete redundancy

3 Vertically partitioned1 with
partial redundancy

2

4 Vertically partitioned with
no redundancy

5 Horizontally parti tioned 3

with no redundancy

6 Horizontally partitioned
with partial redundancy

7 Vertically and horizontally
partitioned 4 with no re-

dundancy

8 Vertically and horizontally
partitioned with partial re- -
dundancy

9 Horizontall and vertically
partitioned with no re-
dundancy

84



1077 %-,, V T

10 Horizontally and vertically
partitioned with partial re-
dundancy

" lattid 15 chars Unique local attribute id

latt name 15 chars Local attribute name (does
not have to be unique) b.-

latt access 1 digit Lock to prevent access to
local attribute's data
during update

0 Locked (no access)
1 Unlocked

1 According to Ullman (Ullman, 1982:411), vertical partitioning

is when the partitions are columns of the relational table. That
is, the attributes of the global relation are in different local
relations.

2 Redundancy means some of the data in different local rela-

tions is duplicated.

3 Horizontal partitioning separates the table (relation) by rows
(tuples). In other words, each tuple of a local relation con-
tains all the attributes of the global relation, but no local
relation contains all the tuples of data.

4 There are at least two vertical partitions, one or more of
which is further divided into horizontal partitions.

5 There are at least two horizontal partitions, one or more of
which is further divided into vertical partitions.

85



h. * .,. APPENDIX B

CNDD USER'S GUIDE

Introduct ion

This User's Guide explains how to maintain the Centra-

lized Network Data Directory (CNDD) of the DDBMS. The CNDD

was implemented as a database itself using the dBASE II DBMS

* which executed on a Z-80-based S-100 bus microcomputer.

Appendix A defines the data items in the CNDD, and Appendix C

shows the CNDD test database implemented to evaluate the

DDBMS performance. This appendix describes the procedures

and the dBASE II commands necessary for changing the CNDD.

Initialization Data

In this implementation of the DDBMS the initialization

modules were not implemented. These modules ask the operator

which site is the CNDD site and which sites are part of the

DDBMS network. Because of not implementing the initializa-

tion processing, this version of the DDBMS used an ASCII file

containing this information. The file, called "DTABLE.DAT",

contained the three-letter designator of the CNDD site fol- "

lowed by a line feed (LF) on the first line. The following

lines list the designator of each site in the LSINET and the

site's status, with a LF after the designator and the status

code. The status code is "1" if the site is connected in the

DDBMS network and "0" if it is not connected.

86

U -;--: .:-:- - --.---- - - - ... ".--,-' ...- .-.-- "., - - --- .-. .. "



If the CNDD site changes from System L (three-letter

designator "LSL") as implemented now, the first line must
I

change to reflect the new designator. For example, the

database administrator (DBA) must use a text editor to change

the first line to "LSS" if System S is selected as the new

CNDD site.

Changing CNDD Data

When the CNDD data changes, the DBA must use dBASE II to

change the relations shown in Appendix C. To make the chan-

ges, the S-100 disk drive 0 must contain the diskette labeled

"DDBMS System Disk", and drive 1 must contain the diskette

labeled "DDBMS Data Disk". Begin the dBASE II DBMS by typing

"dbase<return>" and then the date followed by <return>. The

following procedures outline the process to add to the CNDD

the data pertaining to a new local relation stored at one of

the host databases. This example was used because it showed

how to change all the relations of the CNDD.

Adding Data. For instance, the DBA wants to add the

local relation called "ireceipt" to the host database connec-

ted to System K. The local relation has the local -ittributes L.
"isnum", "ipnum" and "iqty".

First, the DBA decides the local relation is part of the

global relation called "receipt". Now, he changes the CNDD -

relation called "grellrel" by typing:

USE grellrel<return>

APPEND<return>

87



*AD-*1U3 943 DESIGN AND IMPLENENTRTION OF A CENTRALIZED DATA
DIRECTORY FOR A DISTRIBUT.. (U) AIR FORCE INST OF TECH

"3 1 RXOHT-PATTERSON AFD OH SCHOOL OF ENGI.. J A HEDERTZ

7 UCRSFEDDEC 85 RFITIOCS/ENG/83D-24 F/G 9/2 N

I ~~~EEE...E



*: 4..

1.0 tI
W L3.2 J&

L 336



dBASE II will now expect the DBA to enter the attributes

of the relation "grellrel", namely the global relation name,

the access code, and the local relation id. The access code

will be "1" and the unique local relation id will be

"ireceipt". Enter the data by typing:

receipt<return>

ireceipt<return>

the cursor will automatically jump to the next field without

typing the <return>. Now type <control Q> to stop appending .1
to the relation "grellrel". If the DBA wants to examine the

- data, he types "LIST<return>".

Next, the DBA decides the local attributes "isnum",

"ipnum" and "iqty" match with the global attributes "snum",

"pnum" and "qty", respectively. Also, the DBA determines a

unique global attribute id for each global attribute. These

ids will be "recsnum", "recpnum" and "recqty". Since this

information is already in the relation "grelgatt", nothing

"" must be appended. However, if the information were not in

the CNDD relation "grelgatt", the DBA would type:

USE grelgatt<return>
APPEND<return>
receipt<return>
snum<return>
recsnum<return>
receipt<return>
pnum<return>
recpnum<return>
receipt<return>
qty<return>
recqty<return>
<CONTROL Q>

88

" -
..... *..;



The DBA next adds the information for the CNDD relation

"sidlrel". This data includes the site id, the host name,

the DBMS name and type, the DB name and the local relation

id. In this example, the site id is "LSK", the host name is

"UNX" (see Appendix A) , the DBMS name is "ING", the DBMS type

is "R", the DB name is "ddbms" and the local relation id is

"ireceipt". This information is already in the CNDD data-

base, but if were not in the database type:

USE sidlrel<return>
APPEND<return>
LSK<return>
UNX
ING<return>
R
ddbms<return>
ireceipt<return>
<CONTROL Q>

The next CNDD relation "irellist" contains information

about the local relation. This data includes the local

relation id, name, index code, access code and replication

code. After reviewing Appendix A, the DBA decides the index

code is "0", the access code is "i" and the replication code

is "5". In this example both the local relation id and name

are the same. To enter the data type:

USE lrellist<return>
APPEND<return>
ireceipt<return>
ireceipt<return>

1 _
5<return>
(CONTROL Q>

The DBA now appends data about the local attributes.

This includes the local relation id and the local attribute

89

~~~~~.. .... .. -.. -......- .... °'...-..' -.. . .. . .....-.... . '.. .. - . . . ....-,... ..,"- .'.".. . .'-..- . - - , - , .'


id, name and access code. In order to make the local attri-

- bute ids unique, the DBA assigns the ids "irecsnum",

"- "irecpnum" and "irecqty" to the local attributes "isnum",

* "ipnum" and "iqty", respectively. He also assigns an access U

code of "l" to each attribute. To enter the data type:

USE lrellatt<return>
APPEND<return>
ireceipt<return>
irecsnum<return>
isnum<return>

ireceipt<return>
irecpnum<return> -
ipnum<return>

ireceipt<return>
i recqty<return>
iqty<return>
1

"

<CONTROLQ>

to Finally, the DBA matches the global and local attributes

to each other in the CNDD relation "gattlatt". This CNDD

relation contains the global attribute id and the local

attribute id. The DBA enters the following:

USE gattlatt<return>
APPEND<re turn>
recsnum<return>
irecsnum<return>
recpnum<return>
irecpnum<return>
recqty<return>
irecqty<return>
<CONTROL Q>

Examining Data. If the DBA wants to examine the data in

any CNDD relation, he opens the CNDD relation and lists the

data. For example, if he wants to check the data in the

relation "gattlatt", he types:

90

Z...

USE gattlatt<return>

LIST<return>

Correcting Data. If the DBA finds an error in one of .W-

the relation's records, he must note the record number of the '

bad record. For example, if record #3 in relation "grellrel"

has an error, the DBA types:

USE grellrel<return>

EDIT<return>

The program will display:

ENTER RECORD #:

3<return>

dBASE II will clear the screen and then display all the

data in record #3. The DBA can then correct data in any

field by typing over the incorrect field. If a field within L

a record is correct, type <return> to move to the next field.

Deleting Data. If the DBA decides to delete record #4

from the relation "grelgatt", for example, he types:

USE grelgatt<return>
DELETE RECORD 4<return>

This record is only marked with a flag for deletion and

is not actually removed from the relation. If the DBA wants

to unmark the deletion flag he types:

RECALL RECORD 4<return>

If the DBA wants to remove the record, he uses the PACK

command. After executing this command, the DBA cannot recall

a record.

91

- C -. . - r.- '° -o-

APPENDIX C

CNDD Test Database

GRELLREL

GREL NAME GRELACCESS LREL ID

suppliers 1 isuppliers
suppliers 1 dsuppliers
parts 1 iparts
orders 1 iorders
orders I dorders "'
receipt 1 dreceipt i[

inventory 0 iinventory
inventory 0 dinventory i[-

GRELGATT

GREL NAME GATT NAME GATT ID

suppliers snum supsnum
suppliers sname supsname
suppliers status supstatus
suppliers city supcity
parts pnum parpnum
parts pname parpname
parts color parcolor
parts weight parweight
parts city parcity
orders snur- ordsnum
orders pnum ordpnum
orders qty ordqty
orders date orddate
receipt snum recsnum
receipt pnum recpnum

receipt qty recqty
receipt date recdate V
inventory pnum invpnum
inventory qty invqty

92

*.....

-N NTTI. ~*~*~, .~. . . F~. ~I~~- W Wu ~.u~-,

SIDLREL

SITE HOST DBMS7 DBMS7D7A NAE LREL ID~
ID NAME NAME TY'PE

*LSI(UNX ING R ddbms isuppliers
LSK UN X ING j R ddbrns iparts
LSK UNX ING R ddbms i orders I
LSK UNX ING R f ddbms iinventory
LSS 100 DB2 R d suppliers
LSS 100 DB2 R dreeip
LSS 100J DB2 R drersip
LSS 100 DB2 R dinveritory

LRELLIST

LREL IDLREL NAME LREL fLREL LREL
jINDEX ACCES S REP

isuppliers isuppliers 1 1 2

H. diprcit dpret 01 j 1

dinventory dinverito0 5

Fp

93

LRELLATT

*I LREL ID LATT ID LATT NAME LATTI ACCESS

*isuppliers isupsnum isnurn
isuppliers isupsnane isnarne1
isuppliers isupstatus istatus1
isuppliers isupcity icity1
iparts I iparpnum ipnum
iparts iparpname ipname
iparts iparcolor icolor
iparts I iparwaight iweight

I iparts j parcity icity1
iorders i ordsnum isnum 1
iorders I i ordpnun ipnum1

Ki orders iorddate idate 1
iinventory iinvpnum ipnum1

* ~ ~iilnventory iinvqty it
* dsuppliers dsupsnum J1snum 1

Isuppliers dsupsnane dsname
dsuppliers dsuostat,.iS dstate 1

*dsuppliers dsupcity dcity1
ciarders I d ordsnum dsnum 1
dorders dordpnun dpnum 1
dorders dordqty dqty 1
dreceipt drecsnun dsnun 1
dreceipt drecpnum dpnum 1
dreceipt drecqIty dqty 1

K-I dreceipt I drecdate ddate 1
dinventory J dinvpnum dpnum 0
dinventory dinvqty I dqty 0

94

GATTLATTI

GATT ID LATT ID

* invpnum -- ___________

invpnum dinvpnum
iflvqty iinvqty

irivqty ivt

orddate iorddate i
ordpnum iodrdpnum

ordqty dorcdqty
ordsnum iordsnum
ordsnun dordsnum
parcity iparcity
parcolor iparcolor
parpname iparpnane
parpnum iparpnum
parweight iparweight
recdate drecda te
recpnum drecpnum
recqty I drecqtyRe.recsnun drecsnum
supcity isupcity
supcity dsupcity
supsnarne isupsname
supsnarne dsupsn re

supsnumisupsnum
supsnum dsupsnum
supstatus isupstatus
spstatus dsupstatus

r

95

. -. q- . ~. -. - - '. .- 7- . .r5. -. . --. .r . -' .r - T-- -- ..r- i L .r .' J. ,.r fL~ r. W - J - r r ..r ra M d .- ala. S .
1

APPENDIX D

LNDD DATA DEFINITIONS

Field Field Possible

Name Definition Values Description

grel name 15 chars Unique global relation name

grel access 1 digit Lock to prevent access to
any of the global relation's -. -
data during update

0 Locked (no access)

1 Unlocked

gatt id 15 chars Unique global attribute id

gattname 15 chars Global attribute name (does
not have to be unique)

host 3 chars Type of host computer .- .
(contains a DBMS) which is
connected to another pro- ..

cessor connected to the
, DDB3IS network

CDC CDC Cyber
100 S-100
UNX VAX 11/780 with UNIX o/s
VMS VAX 11/780 with VMX o/s

-bm s name 3 chars Name of Data Base Manage-
ment System (DBMS) on host
computer

DBT DBTG
ING ingres
DB2 dBase II
TOT Total
IMS IMS

dbmstype 1 char Type of DBMS on host com-
puter

H Hierarchical
N Network
R Relational

dbname 15 chars Name of Database (DB) on
host computer r

96

- ~.. .',o*

.2

I

irel id 15 chars Unique local relation id

Irel name 15 chars Local relation name unique
only in host computer DB kv

lrel index 1 digit Local relation index code

0 Not indexed on an attribute
1 Indexed on an attribute

lrel access 1 digit Lock to prevent access to
local relation's data during
update

0 Locked (no access)
1 Unlocked

!rel-rep 2 digits Local relation replication
code

1 No partitioning with no
redundancy

2 No partitioning with com-
plete redundancy

3 Vertically partitioned' with
partial redundancy

2 L

4 Vertically partitioned with
no redundancy

5 Horizontally partitioned
3

with no redundancy

6 Horizontally partitioned
with partial redundancy

7 Vertically and horizontally
partitioned 4 with no re-

dundancy

8 Vertically and horizontally
partitioned with partial re-
dundancy

9 Horizontally and vertically

partitioned with no re-
dundancy

97r

97

* .* -.

~ . - . - - . - . - . - . - -- -

10 IHorizontally and vertically
partitioned with partial re-
dundancy

latt id 15 chars Unique local attribute id

latt name 15 chars Local attribute name (does
not have to be unique)

latt access 1 digit Lock to prevent access to
local attribute's data
during update

0 Locked (no access)

1 Unlocked

seg name 15 chars Segment name

seg_size 4 digits Segment size

seg seq 4 digits Segment sequence number

field name 15 chars Field name

field size 4 digits Field size

field type 1 char Field type
IL

N Numeric -.

C Character

oar name 15 chars Parent name

chd_name 15 chars Child name L

set name 15 chars Set name

settype 1 char Set type

N Numeric
C Char

rec name 15 chars Record name

itemname 15 chars Item name

item type 1 char Item type

N Numeric
C Char >1

itemlen 4 digits Item length

98

• .&

sort 1 digit Sort code

0 Not sorted 2
1 Sorted

sort key 15 chars Sort key name

sort order 1 char Sort order

A Ascending
D Descending

According to Ullman (Ullman, 1982:411), vertical partitioning
is when the partitions are columns of the relational table. That
is, the attributes of the global relation are in different local
relations.

2 Redundancy means some of the data in different local rela-

tions is duplicated.

Horizontal partitioning separates the table (relation) by rows
(tuples). In other words, each tuple of a local relation con-
tains all the attributes of the global relation, but no local
relation contains all the tuples of data.

4 There are at least two vertical partitions, one or more of

which is further divided into horizontal partitions.

5 There are at least two horizontal partitions, one or more of
which is further divided into vertical partitions.

99

9 9 '-. .-. ,"

APPENDIX E

MESSAGE FORMATS

Descriotion

This appendix shows the format for messages transferred

over the network in this implementation of the DDBMS. This

is a subset of those messages which Boeckman designed

(Boeckman, 1984:Appendix C) that deal with the directory

system. Changes from the original Boeckman design were

necessary because of the methods of implementation.

- . . . - -

Definition CNDD Data Location Request

Field Field

No. Definition Value Description

1 1 char STX Start of message

2 3 chars CDL Message type

3 1 char LF Field delimiter

4 10 chars System ID at destination computer

6 10 chars System ID at source computer I
7 1 char LF Field delimiter

8 4 chars Unique process ID 7"1
9 1 char LF Field delimiter

10 10 chars Time stamp (HH:MM:SS.T)

11 1 char LF Field delimiter

12 10 chars Password

13 1 char LF Field delimiter

14 1 digit Location Type Request Code

1 Request locations of all attributes
within the following global relation;
no attribute names listed immediately
after the following relation name

2 Request locations of some attributes
within the following global relation;
the global attribute names listed
after the global relation name - see
description in field 18

15 1 char LF Field delimiter

16 15 chars Global relation name*

17 1 char LF Field delimiter

r*,' '

18 Varies a. If field 14 contains "1", repeat
fields 14-18 until all relations and
attributes are listed, or

b. If field 14 contains "2", list
only the names* of the global attri-
butes within the previous global rela-
tion for which locations requested.
Place <LF> after each name. When
the attribute list is complete, repeat
fields 14-18 until all relations and
attributes are listed.

N 1 char ETX End of message (N = last field)

Example of Fields 14-N

l<LF>
student<LF>
2<LF>
faculty<LF>
name<LF>
address<LF>
I<LF>
staff<LF>
<ETX>

The CNDD will send the locations of all the attributes within

the relations student and staff and only the locations of the

attributes name and address within the relation faculty.

* If the length of a name is less than its maximum size, a

LF is placed immediately after the names without any padded
blanks before the LF. r

102

..

CNDD Data Location Results

Field Field
No. Definition Value Description

1 1 char STX Start of message

2 3 chars CDR Message type

3 1 char LF Field delimiter

4 10 chars System ID at destination computer

5 1 char LF Field delimiter

6 10 chars System ID at source computer

7 1 char LF Field delimiter

8 4 chars Unique process ID

9 1 char LF Field delimiter

13 10 chars Time stamp (HH:MM:SS.T)

11 1 char LF Field delimiter

12 2 chars R= Relation name in next field -

13 1 char LF Field delimiter

14 15 chars Global relation name*

15 1 char LF Field delimiter

16 2 chars A= Attribute name in next field

17 1 char LF Field delimiter

18 15 chars Global attribute name*

19 1 char LF Field delimiter

20 2 chars L= Data location in next field

21 1 char LF Field delimiter

22 10 chars System ID where data located, or

0 Data not found anywhere in DDBMS;
skip to field 38b; do not fill in
the following fields, or

103.

" -" . .* " : . - " * " "" "" '-". * * "-" .-" "' " ' "'" " . . " , i, ~ ." , ," "" "- ' .° "

1 Access locked to data being updated

23 1 char LF Field delimiter

24 3 chars DBMS name
DBT DBTG

ING Ingres
DB2 dBASE II
TOT Total
IMS IMS , °

25 1 char LF Field delimiter

26 1 digit DBMS type

H Hierarchical
N Network
R Relational

27 1 char LF Field delimiter

28 15 chars Database name*

29 1 char LF Field delimiter

30 15 chars Local relation name*

31 1 char LF Field delimiter

32 15 chars Local attribute name*

33 1 char LF Field delimiter

34 1 digit Index Code

0 Local relation not indexed on a field

1 Local relation indexed on a field

35 1 char LF Field delimiter

36 2 digits Replication code

1 No Partitioning with No Redundancy
(unique local relation contains all
attributes of global relation, and -

data are in only one place)

2 No Partitioning with Complete
Redundancy (local relation contains
all attributes of global relation,

104

S -

but data are fully replicated in at

* 3 leat~~ Vertically oethartitioned pae with No
Redundancy (different subsets of
global attributes within global
relation in one or more local re-
lations, but no data and non-key
attributes are redundant)

4 Vertically Partitioned with Partial t.
Redundancy (same as 3, except some
data and non-key attributes are
redundant)

5 Horizontally Partitioned with No
Redundancy (several local relations
contain all attributes of global
relation, but no data in any relation
are redundant)

6 Horizontally Partitioned with Partial
Redundancy (same as 5, except some
data are redundant)

7 Vertically & Horizontally Partitioned
with No Redundancy (global relation
contains two or more vertical parti- r
tions, one or more of which further
divided into horizontal partitions;
no data are redundant)

8 Vertically & Horizontally Partitioned
with Partial Redundancy (same as 7,
except horizontal, vertical or both
partitions have redundant data)

9 Horizontally & Vertically Partitioned
with No Redundancy (global relation
contains two or more horizontal par-
titions, one or more of which further
divided into vertical partitions; no
data are redundant)

103 Horizontally & Vertically Partitioned
IL with Partial Redundancy (same as 9,

except horizontal, vertical or both -

partitions have redundant data)

37 1 char LF Field delimiter

I-s

105

38 Varies a Repeat information in fields 20-37
for each local relation-local attri-
bute pair that associates with the
global relation-global attribute pair.

b. When there are no more locations to
list for this global attribute, list
another global attribute within the

global relation as in fields 16-19.Then repeat step a and this step until

there are no more global attributes to
list within this global relation.

c. List another global relation as in
fields 12-15. Then repeat step b and
this step until there are no more global ,
relations to list.

N 1 char ETX End of message (N = last field)

* If the length of a name is less than its maximum size, A
LF is placed immediately after the names without any padded

-blanks before the LF.F

106

................

.*.*~~~

CNDD Update Messaqe to ECNDD
and

LNDD Updates from CNDD

Field Field

No. Definition Value Description

1 1 char STX Start of message

2 3 chars Message type

CUM CNDD Update Message to ECNDD
LUC LNDD Updates from CNDD

4 10 chars System ID at destination computer

5 1 char LF Field delimiter

6 10 chars System ID at source computer

7 1 char LF Field delimiter

8 4 chars Unique process ID

9 1 char LF Field delimiter

10 10 chars Time stamp (llH:MM:SS.T)

1i 1 char LF Field delimiter

12 1 char Uplate type

A Add
D Delete
M Modify

13 1 char LF Field delimiter

If update type is delete or modify, fields 14-33 must contain
the old values which are used as a combined key to locate the
data. Only fields 34-54 contain the modified values.

*

14 15 chars Global relation name*

15 1 char LF Field delimiter

16 15 chars Global attribute name*

17 1 char LF Field delimiter

107

............................... *.--

18 10 chars System ID where data stored

19 1 char LF Field delimiter

20 3 chars DBMS name

DBT DBTG
4.- ING Ingres -

DB2 dBASE II .

TOT Total-

IMS IMS

21 1 char LF Field delimiter

22 1 char DBMS type

I1 Hierarchical
N Network
R Relational

23 1 char LF Field delimiter A
24 15 chars Database name*

25 1 char LF Field delimiter

26 15 chars Local relation name*

27 1 char LF Field delimiter

28 15 chars Local attribute name*

29 1 char LF Field delimiter ,1-',.

30 1 digit Index Code

0 Local relation not indexed on a field
1 Local relation indexed on a field

31 1 char LF Field delimiter

32 2 digits Replication code (see description in
CNDD Data Location Results message)

33 1 char LF Field delimiter

For Add or Delete Update Type:

34 1 char ETX End of message; do not fill in the
following fields

108

. ,...-. ,.. * -. .. . -. , ... , .,*... , ,...,.. ,... .. ., . .•.- .:. , .-

2' ,...,- ". -

For Modify Update Type:

List only the modified values in the following fields. Put
a single blank in any fieid not modified.

34 15 chars Global relation name*

35 1 char LF Field delimiter

36 15 chars Global attribute name*

37 1 char LF Field delimiter

38 10 chars System ID where data stored

39 1 char LF Field delimiter

40 3 chars DBMS name

41 1 char LF Field delimiter

42 1 char DBMS type

43 1 char LF Field delimiter

44 15 chars Database name

A 45 1 char LF Field delimiter

46 15 chars Local relation name*

47 1 char LF Field delimiter

48 15 chars Local attribute name*

49 1 char LF Field delimiter

50 1 digit Index Code

51 1 char LF Field delimiter

52 2 digits Replication code

53 1 char LF Field delimiter

54 1 char ETX End of message

* If the length of a name is less than its maximum size, a

LF is placed immediately after the names without any padded
blanks before the LF. r

109
II °

-I'
. [

T I

CNDD Updates

External LNDD Updates

Field Field
No. Definition Value Description

1 1 char STX Start of message

3 chars Message type

CUP CNDD Updates
ELU External LNDD Updates -

3 1 char LF Field delimiter

4 10 chars System ID at destination computer

5 1 char LF Field delimiter

6 10 chars System ID at source computer

7 1 char LF Field delimiter

8 4 chars Unique process ID

3 _* 9 1 char LF Field delimiter

1 10 chars Time stamp (lH1:MM:SS.T)

i 1 char LF Field delimiter

12 1 char Update type

A Add
D Delete
M Mod i f y

13 1 char LF Field delimiter

If update type is delete or modify, fields 14-29 must contain
the old values which are used as a combined key to locate the
data. Only fields 30-46 contain the modified values.

14 10 chars System ID where data stored

15 1 char LF Field delimiter

16 3 chars DBMS name

DBT DBTG
ING Ingres

110

..............

. 1- - - - - - -.

• .-.

DB2 dBASE II
TOT Total
I MS IMS

17 1 char LF Field delimiter

18 1 char DBMS type

H Hierarchical
N Network

R Relational

19 1 char LF Field delimiter

23 15 chars Database name* "ji

21 1 char LF Field delimiter
*h

22 15 chars Local relation name

23 1 char LF Field delimiter

24 15 chars Local attribute name*

25 1 char LF Pi eld delimiter

26 1 digit Index Code
Local relation not indexed on a field40

1 Local relation indexed on a field

27 1 char LF Field delimiter

28 2 digits Replication code (see description in
CNDD Data Location Results message)

29 1 char LF Field delimiter

For Add or Delete Update Type:

30 1 char ETX End of message; do not fill in
following fields

For Modify Update Type:

List only the modified values in the following fields. Put p
a single blank in the fields not modified.

30 10 chars System ID where data stored

31 1 char LF Field delimiter

.-..................... . ..-

." -

r; L

32 3 chars DBMS name

33 1 char LF Field delimiter

34 1 char DBMS type

35 1 char LF Field delimiter

36 15 chars Database name *

37 1 char LF Field delimiter

38 15 chars Local relation name*

39 1 char LF Field delimiter

40 15 chars Local attribute name*

41 1 char LF Field delimiter

42 1 digit Index Code .-

43 1 char LF Field delimiter

44 2 digits Replication code

45 1 char LF Field delimiter

46 1 char ETX End of message

If the length of a name is less than its maximum size, a
LF is placed immediately after the names without any padded
blanks before the LF.

112• -.~ Iftelnt fanm sls hnismxmmszaIiZ
LF is placed.immediately.af.er.the.names.without.a.y.padded..

[.-
'.'.',-'-. - -. 7. W r<r Y

Local Query Request Message
and

Remote Query Request Message

Field Field
N'o. Definition Value Description

1 1 char STX Start of message

2 3 chars Message type 4

LQR Local Query Request Message
R(R Remote Query Request Message

3 1 char LF Field delimiter

4 1J chars System ID at destination computer

L 5 1 char LF Field delimiter

6 10 chars System ID at source computer 4

7 1 char LF Field delimiter

8 4 chars Unique process ID

9 1 char LF Field delimiter

13 10 chars Time stamp (HH:MM:SS.T)

11 1 char LE Field deliimiter

12 10 chars Password

13 1 char LF Field delimiter

14 Varies Query

15 1 char ETX End of message

LL

113

.......................-...''....

....-..

Local Query Results
and

Remote Query Results

Field Field
No. Definition Value Description

1 1 char STX Start of message

2 3 chars Message type

LQM Local Query Message
RQM Remote Query Message

3 1 char LF Field delimiter

4 10 chars System ID at destination computer

5 1 char LF Field delimiter

6 10 chars System ID at source computer

7 1 char LF Field delimiter

8 4 chars Unique process ID

9 1 char LF Field delimiter

J 10 chars Time stamp (HH:MM:SS.T)

11 1 char LF Field delimiter

12 Varies Query Results

13 1 char ETX End of message

114

APPENDIX F

PUBLICATION ARTI'CLE

115r

Report on

DESIGN AND IMPLEMENTATION OF A

CENTRALIZED DATA DIRECTORY SYSTEM FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

Introduction

Many organizations store the data used in their various

computer programs in a database. This allows them to cen-

tralize the information so that it is easier to retrieve and

change the data. A centralized database management system

(DBMS) consists of software residing on one computer which

structures the data and manipulates it so that many applica-

tion programs can access it. On the other hand, a distri-

buted database management system (DDBMS) manipulates separate

databases stored on host computers which are linked by a

network. Distribution is transparent to the user so he can

access any data in the system without having to know where it L
is stored. A directory system, rather than the user, keeps

track of the data locations.

Imker designed a DDBMS using the three types of direc- .-

tories (Imker, 1982:63-79). A centralized directory, called a

centralized network data directory (CNDD), is stored only on

one system. It contains a conceptual view of the data en-

tities in all the DBMSs. An extended directory, called an

extended centralized network data directory (ECNDD) is a

small local version of the CNDD. Whenever a site requests the "","

116

*.- .

-

7 7-7 7 7
W.- 7 -.

location of data from the CNDD, the local site copies the

information into its ECNDD so it does not have to ask the

CNDD for the location again. The third type of directory is

the local network data directory (LNDD). This is a directory

of the data in the site's local DBMS.

Problem

This research, done at the Air Force Institute cf

Technology (AFIT), further refined the DDBMS design of Capt

John G. Boeckman (3oeckman, 1984). The objectives of this

research were to:

a) Design, implement, and initialize the centra-

lized data directory (CNDD)

b) Implement the software to request CNDD data

c) Implement the processing to retrieve data loca-

tions stored in the CNDD

This effort followed the generally accepted life cycle

method, namely: a) requirements analysis, b) detailed design,

c) implementation, and d) integration testing.

Analysis of Requirements

The central site has the following functions to control

the directory system (Boeckman, 1984:20-21):

1. Initialize the DDBMS

2. Service the Centralized Network Data Directory

(CNDD) site requests

3. Send updates to Extended Centralized Network

117

...............................

.-..

Data Directories (ECNDD) which contain copies of data changed

in the CNDD.

Initialize the DDBMS. Initialization of the DDBMS

occurs when the system starts up. Different procedures occur

depending on whether the site is the central site or not. If

it is the central site, the software initializes the CNDD,

queries the other sites, evaluates their responses, and sends

a startup message to all the sites participating in the

DDBMS. If the site is not the central site, software initia-

lizes the site's database and responds to the central site's

query.

Update the ECNDDs. The central site is also involved

with all directory updates. If data changes at a site and

affects its local directory (LNDD), the central site must

update the CNDD. The central site also must determine what

sites had requested the locations of the data that changed.

Then the central site sends changes to these sites so they

can change their ECNDD.

Service Requests at Central Site. Just as with the

other sites, the central site must process several types of

requests. They may be either CNDD data location requests,

CNDD updates, or pending update requests.

To service CNDD data location requests, the central site

searches the CNDD and returns all the locations of the data

requested.

118

-'7A

To service CNDD updates due to LNDD updates, the CNDD

S"""site receives the CNDD updates from another site and matches

the received data against the data in the CNDD. Next it

updates the CNDD and sends an update acknowledgement message

to the sending site. Then it sends updates to the ECNDDs

which also have the data. Finally, the central site receives

an ECNDD update acknowledgement message from the other sites

which received ECNDD updates. .

The last CNDD request type is servicing pending update

requests. For this request, the central site adds informa-

tion to the pending update file of an inactive site. This -.-

file stores all changes users make to data stored in sites

that are temporarily disconnected from the DDBMS. Also, the

central site sends the results of the update back to the site

which originated the pending update request.

General Content of Data Directories

Jones (Jones, 1984:149-153) presented what information a

data dictionary should contain when using a global relational

data model in a heterogenous DDBMS. It included information

about the databases in the system, what relations were stored

in each database, the attributes of each relation and other

information needed to map--or translate--from the global

language to a local database definition language.

Based on Jones' research, the following information was

included in the CNDD and ECNDD: '.-

a. Site identification of source (identifies the r

119

°%z :hq c *. . ' i K o * . **" , * . .,:

6P

network address of the site)

b. Host computer (e.g. UNIX VAX)

C. DB name (e.g. AFIT, Demo, etc.)

d. Global relation name ("Global" name is a common

name for possibly several local relations with different j
names stored in separate databases. A global relation iden-

tification was not needed because the global relation name

must uniquely identify the relation.)

e. Relation replication code (specifies whether

data is duplicated in several databases and how the data is

partitioned)

f. Global attribute identification

g. Global attribute name

h. Local relation identification ("Local" relation

is a relation stored at a local database. If the local DB,1S

was a network or hierarchical type DBMS, the entity was

translated to a relational type before storing it in the

directory. In a concurrent research effort, Mahoney

(Mahoney, 1985) stored the mapping information needed for

this translation elsewhere.)

i. Local relation name

j. Local attribute identification

k. Local attribute name

In addition to Jones' requirements, the fcllowing items

were necessary to implement the directory system:

a. Access code (prevents CNDD from releasing data

120

..

that is being updated)

b. DBMS name (e.g. DBTG, INGRES, dBASE II, Total)

C. DBMS type (e.g. hierarchical, relational or

network)
d. Local relation index code (specifies whether

the relation is indexed on a particular attribute).

As for the LNDDs, they contain the information above

except their own site identification and site name. They

also contain other information needed to map data definitions

from one type of DBMS to another. The LNDD should store the

mapping information because the processing does not need the

information until just before sending a query to the host

database. Therefore, when a site receives a query to send to

its host DBMS, the processing uses the information to convert

from the global relational data descriptions to those used

in the host database. -'.

Detailed Design of Servicing CNDD Site Requests

The structure chart in Figure F-1 shows three different

kinds of requests the CNDD site processes: data location re-

quests, CNDD updates and pending update requests.

The following section explains in detail how the CNDD

site services data location requests. The next section ex-

plains the conceptual procedures for updating the CNDD. This

paper does not explain the detailed design of servicing

pending update requests. However, Boeckman completed a gen-

eral design in his study (Boeckman, 1985:34).

121

"-o'-.. it'',- '. .','.. ".. .-" "

00

PA)

V9i

122,

Data Location Requests. For data location requests, the

"" central site first verifies whether the CNDD Data Location

Request message contains the correct password in order to

access the CNDD. The software then extracts information from

the request message in order to build a standard header for

the results message, which will contain all of the data

location information retrieved from the CNDD.

Since the user's query is written in a relational data

manipulation language, the query includes names of relations

and attributes. From the user's viewpoint these relation and

attribute names are global names. In other words, they are

names used at the highest conceptual level with which the

user is familiar. In contrast, the local relation and att -

ILO bute names are those names used in a specific host database.

The local names may be different from the global names or the

same as the global names.

Figure F-2 shows four high-level steps of servicing a

CNDD data location request. First a module gets the request

type and a global relation name from the request message.

This step was added to Boeckman's design because of the

decision to combine several request types into one message

format. Next, the CNDD processing extracts the data loca-

tions of one relation at a time. Then it reformats the

information returned from the CNDD into the CNDD Data Loca-

tion Results message. These three steps continue until the

CNDD has found the locations of all the relations and attri-

12

12 3

I :<

I- -, "K . - - - - . - . - - -. . . . 7

cln

c UJ

cC)

0..2

ItoI

124,

butes in the request message. Finally, the CNDD site sends

the results message to the requesting site.

CNDD Update Requests. Another function of the CNDD is

to service CNDD update requests. The following is a concep-

tual idea of how to process the update. Part of the process

must be manual because the central database administrator

(DBA) responsible for controlling the update may have

to make some decisions before the update can proceed. For

example, if a new relation is added at a site, someone has

to decide to which global relation(s) the local relation

belongs. le also has to match the local attributes within

the new local relation with the global attributes within the

global relation. To explain this process, Figure F-3 shows

* ** the upper-level modules required to service this request.

First, when the CNDD receives an update message from a

site, it locks the access to the global relation's data.

This prevents the CNDD from sending to a requesting site any

data location information on the global relation that is not

current.

Second, the CNDD site services the updates to the CNDD

sent from sites that intend to update their LNDDs. The CNDD

site software displays a message on the central site's termi-

nal, explaining the changes to be made and writes the same

information to a file. This allows the central DBA to review

the information off-line. After making the necessary deci-

sions, like global relation-local relation mappings, the r

125

.-]

-9;

WO C3ccI
r(n

wl)

FAJ

126

central DBA manually changes the CNDD when the system is off-

line. He also marks that the update is completed in the

file that contained the information on the update.

When the DDBMS comes back on-line, part of the CNDD

initialization processing checks this file. If there are

CNDD updates marked as completed in the file, the CNDD soft-

ware checks which ECNDDs and LNDDs must be changed because of

the data just changed in the CNDD.

In the third major step, the CNDD sends updates to

ECNDDs and LNDDs which must be changed. When the site which

originally sent the update to the CNDD receives the LNDD

update message from the CNDD site, it can finally update its

LNDD.

The CNDD site waits for an acknowledgment message from

the ECNDDs in the fourth step. When the CNDD site receives..

all the ECNDD acknowledgement messages it expects, it unlocks

the CNDD in the fifth and final step.

Partial Implementation

This project implemented the same DDBMS detailed design

described in Boeckman's thesis. The implementation followed a

top-down programming approach. Because of the time con-

straint and scope of this research, not all the DDBMS was

implemented. Since the centralized network data directory

system (CNDD) was the main thrust of this effort, this phase

completed all of the processing to make a request for data

from the CNDD and to get the data locations from the CNDD.

127

... ... 2-. . -...........-- "---"...--' --- --.- o.... --- 2

"Implemented Architecture. Figure F-4 shows the

architectural topology of the hardware used in this implemen-

tation. The DDBMS system consisted of two LSI-11 micro-

computers and one Z-80-based S-100 bus microcomputer. The Ii
LSI-1l computers were identified as System L and System S in

the AFIT Digital Engineering Laboratory.

System L acted as the CNDD site in the DDBMS. Because -1
of memory limitations, System L only contained the DDBMS

software necessary to process CNDD site requests. It did not

process queries to the distributed databases. It connected

to a host S-100 microcomputer, which executed the dBASE II

DBMS to load, update and access data in the CNDD.

The other LSI-11 computer, System S, was a remote DDBMS

site which executed the software to handle the DDB.4S queries

and create data location requests for the CNDD site. Al-

though the computers were nodes on the LSINET, because of

memory sizing problems, these LSI-11 computers were unable to

contain the network operating system (NETOS) used for the

LSI-11 computers to communicate between. NETOS required 34K,

I - the DDBMS software needed 40K and the CNDD processing used

36K. In order to link the DDBMS with a network, therefore,

the three programs must be hosted on different computers.

Implementation of CNDD. The CNDD was implemented using

a host DBMS. Due to the memory restrictions and the scope of

the thesis, only the data location requests were processed at

it the CNDD site.

128

IL76_ PC" -L

ki . :

h X- I I LS -1

SYSTEM LSYSTEM

Figure F-4. Implemented Architecture

129

-lI

The CNDD data was originally organized into the rela-

tions shown in Figure F-5a. These original relations were

all normalized to the third normal form. However, many of

these relations were combined to make the CNDD processing

more efficient. Figure F-5b shows the final six CNDD rela-

tions formed from those in Figure F-Sa and loaded into a

database with the dBASE II relational DBMS. DBASE II command

files contained relational algebra operations to retrieve

the data locations of the global attributes within a global

relation. The CNDD processing then started the execution of

dBASE II on the host computer, which in turn executed command

files to get the information from the CNDD database.

System Integration Testing

*9 In this phase of the project all the software modules

implemented were integrated and tested to determine whether

they performed together correctly. As the main objective,

the testing evaluated the process of requesting and extrac-

ting data locations from the CNDD. This involved breaking

the testing into two steps: 1) constructing a CNDD Data

Location Request message, and 2) extracting the information L

requested from the CNDD and constructing a CNDD Data Location

Results message.

CNDD Test Data. Two test databases were constructed on

different host computers, each of which executed a relational

DBMS. A dBASE II DBMS ran on an S-100 microcomputer, and an

INGRES DBMS ran on a VAX-11/780 minicomputer. Although the r

130-

OREL-LREL GREL -GA??

1GREL-NAMEf LREL-IO IGREL-ACCESS IGREL-NAME IGATT-ID1

GATr-LISr SITE-08 31TE-LIST

~IT-0GATT-NAME - Dj os

DO-DBMS DBMS-LIST 09-LIST

1013BMS-NAME DBMS-NAMEI DBms-TypEi jNA~

0B-LREL LREL-LIST

ID-0 REL7-D LREL- ID ILREL-NAME LREL-INDEX LREL-ACCESS LRE-E

LREL-LATT LATT-LIST

ILRE-IDI LTT-DJ LAYT-ID ILATT-NAMEJ LATT-ACCESSI

GATT-L ATT

16AT-101LATTID

A. ORIGINALLY DESIGNED CNOD RELATIONS

64,

GREL-LREL OREL-GATT

OREL-NAMEJ LREL-I0 IGREL-ACCSSS IGREL-NAME IGATT-NAMEJ GATT-101

SID-IREL

910 MOST DBMS-NAMIE DBMS-TYPE 09-NAME LREL- JZ,.
LREL-LIST

LREL -1)D LREL-NAME JLREL-INOEXJ LREL-ACCESS LE-E

LREL-LATT GATT-LATY

IREL-1I LATT-10 AT-NAMEJ LATT-ACCESS IGATT T~

B . IMPLEMENTED CNOO RELATIONS

Figure F-5. CNDD Relations

131

L.

Query #1: SELECT ALL FROM parts
WHERE (city = 'Chicago') GIVING newrel

Query #2: JOIN parts, receipt
WHERE pnum = pnum GIVING newrel

Query #3: PROJECT suppliers OVER snum, sname, bad
GIVING newrel

Query #4: SELECT ALL FROM inventory
WHERE (pnum = 'PI') GIVING newrel

Figure F-6. Test Queries

tests did not access these databases through queries, the

locations of all the data were stored in the CNDD.

Remote Site Processing. During the tests the remote

site program called "DDBMS" only handled a query up to the

point of creating a message that requests data locations to

send to the CNDD site. The site did not send the message to

the CNDD nor did it send the query to the host databases.

The test procedures were as follows.

First, test queries were created with a text editor and

stored in ASCII files. The tests used the queries shown in

Figure F-6. These queries requested data stored only in one

database or in both databases. Also, the third query in-

cluded an attribute "bad" which was not part of the global

relation. The last query required data from the CNDD that

was locked, to simulate the data in the CNDD associated with

a relation being updated.

132

Finally, the remote site software created a file which

contained a CNDD Data Location Request message. For example,

the messages for queries #1, 2 and 4 requested the locations

of all the global attributes within the global relations 2
* "parts", "parts", and "inventory", respectively. The message

for query #2 did not include the relation "receipt" because

its location was simulated to be in the LNDD or ECNDD. In

contrast, the request message for query #3 asked for the

locations of only the global attributes "snum", "sname" and

"bad" within the relation "suppliers". Test results verified

that the request message for each query was built correctly.

CNDD Site Processing. Once the remote site built the

CNDD Data Location Request messages, tests checked whether

the CNDD site processing extracted the data correctly. The

tests simulated receiving a message from the network by .

reading a file. Four files, built with a text editor, con-

tained the same request messages that the remote site con-

structed during its four test runs.

The program "CNDD" on System L executed four different

runs to process each Data Location Request message stored in

a file. The software accessed the CNDD and retrieved all the

information requested. At the end of the processing, the

CNDD site program created a file with the formatted CNDD Data

Results message. After each run, a text editor was used to

check that each results message contained the correct format

and the required data locations.

133

• ° °-"° ' J *° °. '-, o°°'.-. '.-.'' - . .- •". / ° . " ''. ° e - " ". '
°

- - °- " •. - ... ° -• . .
°

. ' ' • " " ° *

[-- -

• .Results and Conclusions

This project accomplished the main goal of designing the

CNDD, implementing it on one of the DDBMS sites, and imple-

menting the software which creates and processes requests for

data locations stored in the CNDD. The integration testing

period proved the implemented code worked according to the

system requirements and design.

Unfortunately, the DDBMS sites were not connected to a

network so that messages could be passed from one site to

another. Both the DDBMS software implemented so far and the

operating system (NETOS) for the LSINET local area network

would not operate on a single LSI-1l microcomputer together.

The computer's operating system could not execute all the

software in the memory allotted for the program. Conse-

quently, resolving this problem should be the first priority

in any future development of the AFIT DDBMS project.

In addition, the thesis described the design of the

network messages and the process to update the CNDD, but it

did not implement the process. The detailed design also

specified the data contents of the LNDD and the ECNDD. How-

ever, the project did not implement them nor develop the

software which checks for data locations in these local

directr ies.

Follow-on Research

Future work on the AFIT DDBMS should concentrate on

connecting the DDBMS in a network, first and foremost. Other

134

" . + "- * *.'--

-~V. .. 7.

L:L

projects include implementing the LNDD and ECNDD, updating

the ECNDD from CNDD results, initializing the DDBMS, updating

the CNDD, processing pending updates, optimizing the query

partitioning and implementing message queues. In order to

implement all these capabilities, though, the AFIT Digital

Engineering Laboratory will need a multi-processing operating

system with virtual memory addressing for its network com-

puters. The DDBMS design is just too big to implement on the

current microprocessor equipment. For example, the DDBMS

software could be rehosted on the Intel Hypercube, a multi-

processor computer. Continuing research in these areas will

some day make distributed database management systems a prac-

tical reality.

135

"3-

C. J* * -%-
S..

* Bibliography

Allen, Frank W. and others. "The Integrated Dictionary/
Directory System." ACM Computing Surveys, 14:
245-275 (June 1982).

Boeckman, Capt John G. Design and Implementation of the
Digital Engineering Laboratory Distributed Database
Management System. MS thesis, GCS/ENG/84D-5. School

f Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1984.

Ceri, Stefano and Guiseppe Pelagatti. Distributed Data-
bases, Principle and Systems. New York: Mcgraw-iTllBook Co, 1984.

Chu, Wesley W. "Performance of File Directory Systems for
Data Bases in Star and Distributed Networks," American
Federation of Information Processing Societies Conference
Proceedings, 45: 577-587 (June 1976).

Date, C. J. An Introduction to Database Systems. Reading
MA: Addison-Wesley Publishing Company, 1982.

Durell, W. "Disorder to Discipline Via the Data Dictionary,"
J. Syst. Manage., 34; no. 5: 12-19 (May 1983).

Garcia-Luna-Aceves, J. J. and F. F. Kuo. "A Hierarchical
Architecture for Computer-based Message Systems," ..

IEEE Transactions on Communications, 30 (1):
37-45 (Jan 1982). ,-.

Hartrum, Thomas C. Lecture materials on the AFIT Digital En-
gineering Laboratory LSINET distributed in EE 6.90, Soft-
ware Systems Laboratory. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, July 1985.

Imker, Capt Eric F. Design of a Distributed Database Manage-

ment System For Use in the AFIT Digital Engineering Lab-
oratory. MS thesis, GCSE/82D-21• School of En-

gineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1982.

Jones, 2Lt Anthony J. Analysis and Specification of a

Universal Data Mode for Distributed Database Systems.
MS thesis, Gd-/ENGN-/84D-ll. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
011, March 1984. '

136

S.- * -

Lefkovits, Henry C. Data Dictionary Systems. Wellesley
MA: Q. E. D. Infom--tion Sciences, Inc., 1977.

Leong-Hong, Belkis W. and Bernard K. Plagman. Data Dic-
tionary/Directory Systems. New York: John WileT &
Sons, Inc., 1982.

Mahoney, Capt. Kevin H. The Design and Implementation of a
Relational to Network Query Translator for a Distributed
Database Management System. MS thesis, GCS/ENG/85-12.

Sc~oT f-ngieeing, Air Force Institute of Technology
(AU), Wright-Patterson AFB Oh, December 1985.

Peebles, Richard and Eric Manning. "System Architecture for
Distributed Data Management," Tutorial: Centralized and

: Distributed Data Base Systems, 352. New York: IEEE .
Computer SocTety, 1979•

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdin Press, 1981.

Roth, 2Lt. Mark A. The Design and Implementation of a
Pedagogical Rela tinal Database System. MS thesi,
GCS/EE/79-14. School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH,
December 1979.

Rowe, Capt. Janice F. A Network Monitoring Facility for a
Distributed Database Management System. MS thesis ,
GCS/ENG/85-20. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH,
December 1985.

Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs
NJ: Prentice-Hall, Inc., 1981.

Uhrowczik, P. P. "Data Dictionary/Directories," IBM
System Journals: 12, November 4 (1973).

Ullman, Jeffrey D. Principles of Database Systems,
second edition. Rockville MA: Computer Science Press,
1982.

137

137 ii.

VITA

Captain James A. Wedertz was born on 12 April 1951 in

San Francisco, California. fie graduated from high school in

pSan Mateo, California, in 1965 and attended Brigham Young

University in Utah from which he received the degree of

Bachelor of Science in Computer Science in December 1975. As

I a distinguished graduate, he received a commission in the

USAF through the ROTC program. He was employed as a systems

* programmer at the Sperry Univac Company, Salt Lake City,

Utah, until called to active duty in June 1976. He served as

a systems analyst at the SAGE Programming Agency, Luke AFB,

Arizona, and as a software configuration manager at HQ NORAD,

I 6.Colorado Springs, Colorado. He then served as a computer

* systems staff officer in the Personnel Exchange Program at

* the Venezuelan AF headquarters, Caracas, Venezuela, until

entering the School of Engineering, Air Force Institute of

Technology, in May 1984.

Permanent address: 2311 South Norfolk Street

San Mateo, California 94403

II

138

UNCLASSIFIED . A i D W
SECURITY CLASSIFICATION OF THIS PAGE 7 " J5J7

7 1 REPORT DOCUMENTATION PAGE
aREPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED _______________________

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONAVAI LABILITY OF REPORT

Approved for public release;
2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE distribution unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If appicable)

school of Engineering

6c. ADDRESS iCity. State and ZIP Codej 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
*ORGANIZATION (it aPPiCable)

8 C ADDRESS City. State and ZIP Code)I 10. SOURCE OF FUNDING NOS.

LIPROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO,

1 1. TI TLE Inciuae Security Classificaiioni

See Box 19___ __ _

12. PERSONAL AUTHOR(S)

1-0S Jamres A. Wedertz, B.S., Capt, USAF
Q3& TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr. Mo.. LDayt 15, PAGE COUNT

t h-L IFROM _____TO ____ 1985 DecEmnber 149
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS iWontinue on reverse If nCCessa,~ and identify by block number)

91ELD GRU U RData Bases, Data Base Management Systems, Distributed
_nq n2Data Base Managemnt Systems, Networks, Directories

19. ABSTRACT Continue un reverse if necessary and identify by, blocst number)

STitle: DESIGN AND IMPLW'TATION OF A U.,Vfb~ - W AME tpf.
CENTRALIZED DATA DIRECIORY FOR A 9WLAK IL.IV1

D' I *01 Ssaech aud PmhkgejU %,4600-0DISTRIBUTED DATABASE MANAGEET SYSTE21 Air ?.am lamitiiate @1 tM9119* (#Afr-

Thesis Chairman: Dr. Thomas C. Hartm
Assistant Professor of Electrical Engineering

I

-3 DISTRIBUTION'AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION r7
UNCLASSI FI ED ULN LIMI TED0 SAME AS RPT OT IC USE RS UNCLASSIFIED

22 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Dr. Thomas C. Hartrm 5325224AI/N

O FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. __________________

SECURITY CLASSIFICATION OF THIS PAGE

- -. 41
-UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This study refined and implmnted a design of a centralized
data directory for a distributed database management system (DDBMS)
begun in a previous study for use in the AFIT Digital Engineering
Laboratory. This directory contains information about all the data
stored in the distributed databases. By following the life cycle
programm~ing me~thod to develop the system, this project completed a
requirements analysis, detailed design and imnplemntation of the
directory as well as a partial implemrentation of the DDP1M'S to test
the operation of the centralized data directory.

The requirements analysis outlined the functions of the central
site, which contained the centralized directory. This project used
Structured Analysis Design Technique (SADT) diagrams to document the
central site's functions. These included initializing the DDBMS,
updating the centralized directory, sending changes to other local
directories at the remote sites, reconfiguring the DDBMS and ser-
vicing requests for information in the directory.

Next, the project re'ined the detailed design of the directory
processing and depicted tLe functional decomp~osition in structure
charts. The following step imnplemrented on two microcomputers only
those modules necessary to show the centralized directory worked.
Tests verified that one DDBMS node which received a query could re-
quest and receive location information from the other node.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

FILMED

DTIC

77 -- 7 -- Z

-7 77

-7.7 - -:-. ii

