AD-A163 843 DESIGN AND IliPLEﬁlTﬁ"OI OF ﬁ CENTRAL1ZED DA
DlR CTORV FOR DISTRII) RIR FORCE INST OF rscu
ON RFB OH SCHODL OF ENGI..

UNCLASSIFIED DEC 85 ﬁFlTIGCSIEIGIOSD 24

. M Tl

BAARA R
LI TS NN

A R R
[AECIY R I IR NN

*w
Ia

A ad

.
Iy U

il i ol Z .

LA 2__ 2_@ o ,O==_ z;

- = = % ¢

o~ o ol o UL 2

=EFE

. 2 3

B 2F = - 3 —_— 5 .

Lkﬂn—r—unu: .t M -

= 7 3

D & 3

o — 5 W 3

—_— —_ N g s

— g :

—— P———— ———— L -
— F——— .1 =

. 0,0,

IO

AN O A DL PN PO 8 AR AN W

N ey A A L el S T T v s CaPOC PR, e oimbins MY ol o

DL
>

o

I3
P

4 S
3

¥ DTIC i
ZLEWL T 1
FEB1 1 1988

R o

AP e msnals e s = * .. conafuTun® R

AD-A163 843

DESIGN AND IMPLEMENWTATION OF A
CENTRALIZED DATA DIRECTORY FOR A
DISTRIBUTED DATABASE MANAGEMENT SYSTEM

<. Y.’ . e
BV LU
AP R et h
St .

TSI S AN AN

" A
ddtnts Ty

,._,4,5
AT
e

THESIS

James A. Wedertz
Captain, USAF

."-
PRIPRF S

hea SRR NN '-, o
D
el
<t

s

e
ot
e
P

AFIT/GCS/ENG/85D-24

DISTRIBUTION STATEMENT A o

Apptoved for public releasel
Distribution Unlimited

e e’
L
BB T

™ T T

1

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Y
A

ONC FILE copy

T
RN

SN e

. L " e R S,
v et

.. -‘-. A.'.“‘A..' .l

Wright-Patterson Air Force Base, Ohio

86 2 10 . 023

rolt o
LAl AE AR

RO

e - . e - . .
Al e Ta®eTaFeF e a™ WVa . ;N - AR A Y ;& - PR R B dhe s ARELR TR - N e R TR

AFIT/GCS/LNG/85

DTIC

~LECTE
FEB1 119864

*-.---f-\

DESIGN AND IMPLEMEWTATION OF A
CENTRALIZED DATA DIRECTORY FOR A
DISTRIZBUTED DATABASE MANAGEMENT SYSTEM
THESIS

James A. Wedertz
Captain, USAF

AFIT/GCS/ENG/85D-24

Approved for public release; distribution unlimited

e e el e - . - a . . e RN . . et e wee N
P T T Tt e S T T R O O UL IO e e
- R A v e e WL et - « . IR ~ .
e A . e ey N et L et te PEREPR N ~ s DR A,
A P I I I S A T AT N WL DA R Sl P! ‘\“
ietendestnlhinsth e

4
>
4

R

kT
P % P N ey

l"
L]

T
VS,

oty
»

.
A,
v

r
v ;.l
N

r

Y

[o8
XN

. J}Z”";"”""w ‘.
N

-

l'.v'.l'- AR b S
'r..psa.‘ e '.' :.' ’ .' .. ',’ '4l '.. .
-i"'n‘l.‘l.j"'i‘ﬂ SRR

T
i

cacn

HOE N S A A R T S e s b A) o e e A T g e e e

AFIT/GCS/ENG/85D-24

e e K

DESIGN AND IMPLEMENTATION OF A

. "
s

CENTRALIZED DATA DIRECTORY FCOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

[Accesion For™
NTIS CRA]
DTiC TAg 0 o
Unannou:.ceq &)
Justification i
James A. Wedertz, B. S. By { 3
' Distiibution)~y T
Captain, USAF P —— AP
Availability Coges]
e
Dis W a.d/or e
t Special "1
December 1985 A l 1 RO
- _\'.".
-::‘h
]

-'"u.r'l.‘u
' AN
ity

Approved for public release; distribution unlimited

NN AL

Preface
The purpose of this study was to design and implement a
centralized data directory for a distributed database manage-
ment system being developed at the AFIT Digital Engineering
Laboratory. The first phase of this project included a re-
quirements analysis documented in Structured Analysis Design
Technigue (SADT) diagrars. In the next step, structure
charts showed the detailed design of the software modile
hierarchy. During the following phase, part of the design
involving the central directory was implemented on two micro-
computers in the laboratory. Finally, this study discussed
the project results and recommendations for future studies.
During the centire process of this study, I received a
lot of help from many people. I am very grateful to my
thesis adviser, Dr. Thomas C. Hartrum, for his suggestions
and analytical skill in resolving many computer interface
problems. Also, I am thankful to Major Walter Seward, an-
other member of my thesis committee, for reviewing this work.
!ty thanks also to Mr. Charlie Powers and Mr. Dan Zambon for
their invaluable technical support in the laboratory. Finally,
I am extremely grateful to my dear wife, Bettylou, for typing
the many drafts of this thesis and assuming many of my house-
hold responsibilities during this project. Without her loving

support, I never would have completed this thesis.

James A. Wedertz

T N W e T T TR TN Vb _SU0 - A 4 ol ¥ ~
3 Table of Contents
. Page
. Preface « v « o o o o o o o o o o o 2 o o« o 4 o o ii
:’
o List Of FIQUIES + & o & o o s o o s o o o o o o o v
W Abstract e o s o s e s s o e s o 2 s e s 2 e o e @ vii

I. INtroduCLion o « o o o o« o« o o o o o o o o » » 1

) Background . « .+ ¢ ¢ ¢ s ¢ ¢ o e s o s e 1
. Summary of Current Knowledge 5
Problem « « ¢« o o o o o o o o o o o s o 10
SCOPE « « o o o o o s o o o o o o o o o 10
ASSUmMPtiOonNsS + « ¢ o ¢ ¢ o o e o e e e e 11
APPIroach . . o & ¢ o o o ¢ o o o o s s 12
Overview of the Thesis . « « ¢« + « « « . 14

A I1. Analysis of Reguirements . . . « ¢ « o« o « o & 15

. INtrodUCEIiON « ¢ ¢ o o ¢ ¢ & o o o o o o 15
. General Functional Requirements 15
Detailed Reguirements . . « « ¢ ¢« ¢ o+ o+ o 18
General Content of Data Directories . . . 25

SUMMALY « o o o o s o o o o o o o o o o o 28
I1I. Detailed Design . « « o o o ¢ o o o s o « o = 29

Introduction .+ ¢ « « ¢« ¢ o 0 o 0 e e s o 29
Further Decomposition of Requirements . . 29
Structure Chart Design .« « ¢« ¢ & o « o & 33
- Service CNDD Site Requests .+ + &+ « + « 33 i
- Update the LNDDS ¢ o « o o o o o o« o o = 46 e

: S ummar y 4 9 :.:-:.:‘
: IV. Partial Implementation . . « « v ¢« « « o « o . 50 T
- ST
. Introduction . v ¢ 4 4 4 e 4 e e e s e e 50
Implemented Architecture . . . « « + + & 51 .
Implementation of CNDD .+ ¢« « ¢ & & « & & 53 :

Partial Implementation of DDBMS« . 57 ;;,
. Summaty * . . 68 :,"_-_‘

v. System Integration Testing . « « « « « « .« « & 69 L.

- Introduction « & v 4 4 . e 4 e e e e e s 69 L
- CHDD Test DAt@ « o o o o s o o o o o s 69 e
. Remote Site Processing .+ « « + &« « + o & 73 R
- CNDD Site Processing .+ « o o o o o o o o 75 s
Y SUMMALY « o o s o o o s o o o o s o o o & 76 [,M

.) -

iii RS

- 7

- ‘--- .\4
T
4

. . N .
at e . N et T wt et et A A T N T TSt
> \‘.‘)..J'_.!_A-_I'_A‘_L.‘:‘A')‘A"‘-' PR L WY PRI

AR e G e "2 e 4 1 Lo R A A N W G il G A g e Al St il S Rt AV A AN N M PR G acaee A M SN s S AR SO v A ek S DAL e e ek AR e D Rt
A LY Rt J PR A - PN T
'.
-

Page

- V1. Conclusions and Recommendations .+ « . « « .+ 77
Introduction .« . .+ ¢ ¢ ¢ s 4 s e e s e 77
Conclusions on Results .+ + + « ¢ & « « & 77

Follow-on Ra2s3earch .« « ¢ ¢ ¢ o ¢ s o & 78

Final Comments « &+ « o ¢ o o o o s s = o 81

Appendix A: CNDD Data Definitions . . « « « « + .+ & 83
Appendix B: CNDD User's Guide .« + + o o o o o o o & 86
Appendix C: CNDD Test Database « « « « « « o o o & 92
Appendix D: LNDD Data Definitions « « « « « o+ « .+ 96
Appendix E: Message Formats « o o o« o o o o o o o 100
Appendix F: Publication Article . « ¢ ¢ o « &+ + « & 115

Appendix G: Structured Analysis Design Technique
(3ADT) Diagrams

Appendix H: Data Dictionary of Design®

Aappendix I: Structuge Charts of Implemented
Modules

Appendix J: Data Digtionary of Implemented
Modules

appendix K: Program Listings™
Appendix L: Configuration Guide*

Bibliography . - L . L . L] . L] L] - L L L4 L 136

Vita - . 3 138

*These appendices are in an additional thesis volume main- s
tained at AFIT/ENG: Volume II: DDBMS Current Implementation ;“,
i

~ .i4

iv o

ROAt

.
et

R Ol [l Sl Aol Gl Al AN it

7

’d
[+
L
<
4
]
h
D

3|
’
»

b
4
;
A
~
e

List of Figures

v
)
]

\.
Figure Page
1. DDBMS Architectures . « ¢« &+ o o o o o o o o o & 4
2. Software Components of a DDBMS . « ¢ o & « o o 6

3., Initialize DDBMS v ¢ v o o o o o o o o o o o o = 19
4. Data Directories Data Definitions .« « « ¢ o o 31

5. Service Requests at CNDD Site . . . « « ¢« . . & 34

é
P
i
;
;
8
t,

6. Service CNDD Data Location Requests .« . « .« . & 38
7. Extract Data Locations from CNDD . . « &« « o o 40
8. Service CNDD Updates .« + « « « ¢ o o o o o o + = 44
9. Update and Maintain LNDD « « &« ¢ & o o o o o o« = 47

1J. DDBMS Partial Implementation Architecture . . . 52

11. CNDD R21ationNsS « o o o o o o o s o o o s s o o = 54
12. Main EXeCUtivVe ¢ o ¢ ¢ o ¢ & + o o o o s s s o o 58
13, New ProCeSS « &« o « s o o o s s s o o o « o o 60
14, Service ReQUESES &« + & o o o o s o o s o s o o 61
15, Service Local Queries .« . . ¢ ¢« v & o ¢ ¢ o o 63
16. Parse QUELY « « + o o o o o o s o s s o o o s 64
17. Service Network Queries .« . o o ¢ o ¢ o + o o« & 67

18. Test Global Relations « + ¢ « &« ¢ &+ o« & 71
19. Test DDBMS Databases Relations . + + o o o o o o 72
20. Test QUELLI®S '+ &+ o o o o o o o o o o o o s o o » 74
F-1. Service Requests at CNDD Site . + « ¢ &« o « o o« 122
F-2. Service CNDD Data Location Requests . . . « « » 124
F-3. Service CNDD Updates . + + « s o « o s o o » « » 126

F-4. Implemented Architecture . . . +« « &+ &« & o o« « o« 129

.........

f? (i) »
S A AT AT
AARBAD bt I

Page
131
132

AN
. .

. . .

coe
R

I RN

Mo bl At la

ies

fetat

Py

fest Quer

m
EY
-
B

F~-5. CNDD Relations
F-6.
L ;:;'{;‘:; *acataa

TRSS

.~“~_
-

.

e e e e ¢
[RN AR R [

.
-"n
s
2
R
-
-ta malm®

RSN IANIVIEY ASLRNPY K | B @ SRR SRS SRRV S

=

AFIT/GCS/ENG/85D-24

Abstract

This study refined and implemented a design of a cen-
tralized data directory for a distributed database management
system (DDBIl1S) begun in a previous study for use in the AFIT
Digital Engineering Laboratory. This directory contains
information about all the data stored in the distributed
databases. By following the life cycle programming method to
develop the system, this project completed a reguirements
analysis, detailed design and implementation of the data
directory as well as a partial implem2ntation of the DDBMS to
test the operation of the centralized data directory.-

The requirements analysis outlined the functions of the
central site, which contained the centralized directory. This
project used Structured Analysis Design Technigue (SADT) dia-
grams to document the central site's functions. Thes2 in-
cluded initializing the DDBMS, updating the central directory,
sending changes to other local directories at the remote sites,
reconfiguring the DDBMS and servicing requests for informa-
tion in the directory.

Next, the project refined the detailed design of the
CNDD processing and depicted the functional decomposition in
structure charts. The following step implemented on two
microcomputers only those modules necessary to show the cen-

tralized directory worked. Tests verified that one DDBMS

vii

Al SN

r
"
’
[-

!

T - T G T T T TV
- " - ~ - . ACi Syl Aal Catatainlu jute a4 b e e T ry .
e - AN - R SR AN R ML M SO et g A A A Al D o e RN Y

v
L}

= A A

2,

> =
- node which received a guery could reguest and receive loca~- }?

o

»
.
‘

«

pad
Yy 20"y

tion information from the other node.

AN YOI AN

.

ol v

viii)

¢l AR

e
|\.
ca® . . . e e - —_— .
SN AT e T s e T T T e T T T A ST e B - . A
o A OIS e e e e el AR e e AT e s e RO R R e
- PR RN W APPSR PP TP EA S UL VAL VK WAL VTSP W A PR Ve VIR DAY

B 2 DAL AN R A AL St sl it Sally Rde tn & R Sk Aok Vol dn BT B £ A0 ML AL G AV JAL oM 1o p N 10 it it oA afhac S

DESIGN AND IMPLEMENTATION OF A
CENTRALIZED DATA DIRECTORY SYSTEM FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

I. INTRODUCTION

h Background

Many organizations store the data used in their various

computer programs in a database. This allows them to cen-

tralize the information so that it is easier to retrieve and
change the data. A centralized database management system
{(DBM3) consists of software residing on one computer which
structures the data and manipulates it so that many applica-
tion programs can access it. On the other hand, a distri-
buted database management system (DDBMS) manipulates separate
databases stored in host computers which are linked in a
network. The network connects host computers either dis-
persed over a short distance (usually less than 1 km) as in a
local area network (LAN) or geographically distributed over a
large area as in a long haul network (Tanenbaum, 1981:4-5).
flowever, distribution is transparent to the user so he can
access any data in the system without having to know where it
is stored.

Organizations develop distributed databases for several

reasons as Ceri & Pelagatti pointed out (Ceri, 1984:11-12).

e s . L
'-'.'.‘- e
N .

First, they may use such a system for organizational and =
__:._-..
o ‘_- Y
.___\
SN
1 %
- = ._1
© e Y
—
A .

[
!
;
¥.
|
!
8

I e T A N o/ S it = e et Mt M = s i RESCA i g Rt S U S oy ety - iy giby~ e ol

ccononic reasons. 1f the organization has decentralized

Q

nerationz, the DDBMS may fit the structure more naturally.

:

also, larg2 nmainframe computers installed at a central loca-
tion may not he as economical as dispersed smaller computers.

3=cond, organizations may want to connect existing data-

azes rather than create 2 new one to support new applica-
! tions. Third, distributed databases allow for incremental

growth. Adding a new database on the system should have

limited impact on the existing databases.

ourth, distridbuted databases can increase performance.

3

‘j Th2 load can be shared among processors to allow parallel op-
erations. also, if each processor can do its operations

& alone without interfering with another processor, there will

be l2s3 communications congestion.

The fifth and final reason Ceri and Pelagatti mentioned
for using a distributed database i3 to increase system re-
liability. 1If one system goes down, this only affects the
applications at that site and those that use the data stored
there. In other words, one system failure should not cause
the entire system to crash.

Besides these advantages for developing a distributed
database, Capt. John G. Boeckman explained in his thesis
some disadvantages (Boeckman, 1984:2). The DDBMS is more
complex than a centralized DBMS. It must interface with a
network in order to reliably send and receive data. Also,

queries--reguests for information--must be decomposed effi-

ciently because the data may be stored in many places. 1In

addition, deadlock may occur when two or more systems are
waiting to update data held by the other system.

Data concurrency--or keeping several copies of the same
data current--is another problem with distributed databases.
The DDB!MS must use conmplex algorithms to synchronize these
data updates. In addition, a DDB!S must maintain a concep-

tual--or overall--view of all the data in the system. This

regiires a data dictionary/directory to keep track of data
’ locations, among other things,

According to Peebles and Manning, there are three ap-
proaches to designing a DDBMS architecture (Peebles,

1979:351-357): integrated, homogeneous, and heterogeneous.

‘_;. The following summarizes the differences between them.

In the integrated model (Figure la), each DBMS connects
directly to the network and can access information in another
DBM3 without translating data. Reducing the useful CPU time
and the amount of memory needed for the data exchange process
are two advantages of this architecture.

In the homogeneous model (Figure 1lb), each computer in
the network supports the same DBMS (e.g. INGRES). Each
computer, however, has separate DBMS and communication soft-
ware modules. The latter module performs the data exchange
functions.

In the heterogeneous model (Figure 1lc), the computers

can support different types of DBMS. For example, both

IR - . R . -~ .
- - - - - . - -

SN P AL L P A R R N I - e,
P A A A S R IR S e D S T A U 1y S A A

T T At et M - -~ - - . - L.
Ancly S W RRETARF PR PN TRV TS S USRS L St

R . s iR it i el LT e IR Rt Y
RS

-)

COMMUNICATION CHANNEL

(a) INTEGRATED ARCHITECTURE

@ ’ ’ ’

COMMUNICATION MODULE COMMUNICATION MODUL COMMUNICATION MOOULE]
[L]
COMMUNICATION CHANNEL

(b) HOMOGENEOUS ARCHITECTURE

COMMUNICATION MODULE

ICOMMUNICATION MOQULE

COMMUNICATION MODULE]

|

L

l

TRANSLATOR MODULE

TRANSLATOR MOOULE

—

I

TRANSLATOR MOOWE

|

COMMUNICATION CHANNEL ey

(a) HETEROGENEOUS ARCHITECTURE

.
Seamben,

=
l‘-i"

AP ey

. 'l e . .
L. R PR
S R e,

X 20 tele .
S R
. Ll 0.

.

«

ql
iy

e Figure 1. DDBMS Architectures

. . 0.-,0."‘.-.-..._"~' -.’-'.'-_*-.'\" ‘.’._'.\"."-'. Te T T e - T e S R S S < ot et
, e PR s - "o e e e O T e e e
LA T et AP PR PRI AL PCIy ._1..; . L_.L('-_'l J .-i‘- > .‘"; ._f. PN AR 'A":'_f:l'.-g’ .A-.‘l- At e e et :‘ -‘t"_,::!‘

e Y N —

1
M
f
-
P
M
A
¢
N
4

~

1l
»

Egvﬁ;

*y

S
5
tr

F
L3
¢

L4

. %

ey
o®
(3

RSN

-
et
D

S INGRES, a relational-type DBMS, and Total, a network-type

.
o
.

)

S

o

.

* .

DBMS, may be in the same network. In addition to the separate
DBMS and communication modules, a translator software module

exists to translate between the incompatible DBMSs.

This thesis used the approach for the heterogeneous
architecture and the Jdesign Capt John G. Boeckman developed et
in his thesis (Boeckman, 1984:20-56). It also incorporated
some of the data items for a data dictionary that 2Lt Anthony
J. Jones specified in his design of a global language for a
DDB!1S (Jones, 1984:149-153). With a global database model,
all query and update functions passed over the network were
written in one common language. When queries arrived at a
host computer or when the results returned to the network,

._. software modules translated the request from the global lan-
guage to the host DBMS language and vice versa. As summa-

rized in the following section, Boeckman's and Jones' theses

and other studies outlined specific elements included in such

a DDBMS. e

0

ot et
v

LS '._l-_.'

Summary of Current Knowledge

Ceri and Pelagatti (Ceri, 1984:13-14) explained the l.,

basic software components of a DDBMS as the (Figure 2):

b - 1) Database management component (DB),
2) Data communication component (DC),
3) Data dictionary component (DD), and s
4) Distributed database component (DDB). e
They explained the services of these components included: ﬁ%
1) Remote database access by an application R

program; this feature is the most important -

‘e 9 .
Py
'y 'y

LR =,

.
S T e e
% 2% oo At At et 2

———

L e e 4

v

o Ty

23— =4

e o

LoCAL

DB

DATABASE

DD

bDB

SITE 1

LOCAL
DATABASE

SITE 2

DD

LEGEND s
DB - DATABASE T

RANAGEMENT A
DC - DATA

DB

DDB conrunIcATION RO

00 - DaTA K
pICTIONARY

DS - DISTRIBUTED
DATABASE

T - TERMINAL

Figure 2.

.............
......................

- ta et

software Components of a DDBMS (Ceri,

...........

.......

1984:13)

..............................

.

N
........

S O I R e e - - -
r Tl N BN IR SR S et 4 AT T T T LR (Y L S e e y—" T e o G T WO R SO W Y RCUG S

b

el

. .: ‘;-;_

one and is provided by all systems which have ng
a distributed database component. o
1} . . m

2) Some degree of distribution transparency; E:v
this feature is supported to a different RO
extent by different systems, because there is e

0

»
'-'.'.'l

a strong trade-off between distribution trans- .
parency and performance.

.

A
LI 4
b
a®

o,
4

3) Support for database administration and
control; this feature includes tools for
monitoring the database, gathering informa-
tion about database utilization, and provi-
ding a global view of data files existing at
the various sites.

4) Some support for concurrency control and fqg
recovery of distributed transactions. T
Imker's high level design of a DDBMS was similar to the Sg;

outline just described (Imker, 1982:63-79). He divided the

DDB!1S software into three parts: the Network Access Process

(NAP), Network Database Management System and Network Data

Directory.

The NAP is the data communications component which links S
the computers in a network. In the AFIT Digi*zl Engineering ,;:?
Laboratory, a network operating system (NETOS) fulfills this t;j

role. NETOS follows the seven-~layer protocol described in
the Reference Model of Open Systems Interconnections (0SI)

which the International Standards Organization (1S0) de-

veloped. Each layer has specific functions (Tanenbaum, -
1981:453-~-487) and only communicates with its adjacent layers ,?
by calling loosely coupled modules. !ﬁ;

The DDBMS application software performs the functions of
the Application Layer, ISO layer seven. The DDBMS software

also does the functions of the Presentation Layer, layer six. —

A LD
s lalaa e e ale e

That is, it prepares the DDBMS inputs in standard NETOS

formats. Finally, the DDBIMS interfaces with NETOS at layer
six.

Another component of Imker's design was a network data-
base management system (NDBMS). This is eqguivalent to the
distributed database component Ceri and Pelagatti described.
It is the main software module at each site and interfaces
between the local DBMS and the DDBiIS. This component pro-
vides links with the user, the local DB!13, the directory of
data stored in the local DBMS, and the network.

The next part of Imker's design was the Network Data
Directory, which this thesis designed in detail and imple-
mented. According to Allen (Allen, 1982:246), this software
component has two functions:

1) Provide the relationships between the applica-
tion programs and system data usage.

2) Achieve data independence-~the users can get
data without knowing its location or characteristics.

Durrell (Durrell, 1983:12-19) points out several bene-
fits of a data directory. It can be used as a communication
tool, as a safequard against data redundancy, and as a glos-
sary of definitions. Also, it helps in .ystem development,
maintenance and documentation.

Allen also listed the following components of a data
dictionary/directory (D/D) system (Allen, 1982:268):

1) Database used in D/D to describe metadata, i.e.

~ . I
- .

- - . - - . - Al . - - . : ' - v . - . . . N)
RE L e T Ly . R L S T Y w N T te e e T L Tl T e
. NN D CRER T STLPRS ST ST OrOrOT W L PRV WA, WA SR o i .‘J

.
e

\-.

Pt e Ta® Cat e ¢ oL S 2 LN LR G Tl Sl Sid hl An Sl Sin L Dsie b s e A S et I S0 -t S B e

data about data entities, processes, and users.

2) Retrieval and analysis capabilities to help
develop application programs.

3J) Management tools for security, validity, reco-
varanility, integrity and shared access of the D/D.

4) Function interfaces to permit other software to
access the D/D and to convert metadata to the format required
by the D/D.

There are several ways to organize a directory system.
Imker, in his design, used the first three of the following
types of directories. A centralized directory, which Imker
called a centralized network data directory (CNDD), is stored
only on one system. It has a conceptual view of the data
entities in all the DBMSs. An extended directory, called an
extended centralized network data directory (ECNDD) in
Imker's design, is a small version of thne CHDD. That is,
Wwhenever a site requests the location of data from the CNDD,
the local site copies the information into its own ECNDD so
it does not have to ask the CNDD for the location again.
Imker called the third type of directory a local network data
directory (LNDD). This is a directory of only the data in
the site's DBMS. The last kind, called a distributed direc-
tory, was not included in Imker's design. In this system,
each computer has a complete copy of the CNDD.

Chu did cost performance tradeoffs between these dif-

ferent types of data directories (Chu, 1976:577-587). He

e T T St I 2y N M "Bl b e A0 A 3 g I BAs iae i 2 e o - — hmat - e i)
I - 7. LR e A RSP AR - e s M 48 A Ay ~ -
¥ - ! Rl . R G AR) A ey L e Cala me AT e TG TR T RITYCY o va)

~
o

sl

e I

suggested a different type of directory based on the ratio

2
v
' \"r"-_v'

1‘ ,;

between the number of directory updates to the number of
directory queries. le preferred the distributed directory if
the ratio was less than 10%. If the ratio was between 10%
and 50%, the extended directory was best. Finally, he pre-
ferred the local directory if the ratio was greater than 50%.
In conclusion, although Boeckman did not use Imker's
complete high-level design, he did incorporate in his de-
taiied design all three directories Imker proposed. Because
Boeckman did not implement the data directory system, this
thesis designed and implemented this software for the DDBMS

in the AFIT Digital Engineering Laboratory (DEL).

Problem

This project further refined Boeckman's DDBMS design of

SORE
f'.f'f"v'v 3

the central site's functions. The objectives of this

4

research were to:

. '!‘Y'. '.l'

a) Design, implement, and initialize the CNDD.

b) Implement the software to request data locations
stored in the CNDD, and

c) Implement the processing to retrieve data loca-

tions stored in the CHNDD.

Scope
The detailed design of this project complied with :}f:
o
Boeckman's overall system design requirements so the central %{Ei
A
site software will integrate with other parts that others ;if%
19

RO R TN W oo P . el RN e L e e . ST .
A R et _ -q. . I ‘.~-.._ﬁ ._ DR .‘- L e e e s et e e e e e e s o to e - - “h Ca '. ‘_» el -
;,~£.',k,.4~‘.;.}.t WV, PRSP AN Sl P R A A D A AN e RRAS .

_L‘A_J_A_A_.r J_f i JRAY

BRaS B o B A B e At ~x e |

N
i
will implement later. This thesis only designed and imple-
i o nented those modules necessary to service the requests for
data locations.
E Since there was no global translator implemented yet
i which would allow heterogeneous (incompatible) DBMSs to com-
i manicate, this project's implementation used the translators
T Boeckman used. However, this system was compatible with
i Jones' requirements for a DD3MS global language (Jones,
g 1984:149-153). By doing this, the translator modules used in
i: this thesis can be replaced by gloval language modules in a
ij follow-on thesis after the global language is implemented.

Also, because these translators cannot make updates to the
databases, this implementation did not maintain files to

.. store pending updates to data for inactive sites. As a re-

sult, the tests only made gueries for information stored in

L &
’

the DBMSs and therefore, did not update the data.

Finally, this thesis did not implement other functions

o .
- -r: ‘! "

- Boeckman included in his design for the central system. For
example, this thesis did not design nor develop the modules

required to automatically reconfigure the CNDD in case it was

.

destroyed. MNor did the thesis plan to develop a commercial-
type data dictionary. This would include database management

‘ tools like statistical reports.

Assunptions s

one of the assumptions of this thesis was that the }ﬁ#
N design of the DDBMS that Boeckman developed was acceptable to Y
- R

11

A
M.
A

f .(-l.:l'Lx‘..l. .t. .n' .l. .-. .l.

LRET T R

N S TR

A /A

[

.....

the user. This thesis then provided more design details on
the directory system without changing Boeckman's basic design
of using three types of directories.

This thesis also assumed the partial DDBMS Boeckman
implemented worked correctly. That is, a person should have
heen able to make a query from one terminal and receive a
rasult from either of the databases in the system. This also

implied the network communication software worked correctly.

Approach
This project followed the life cycle procedures ad-
vocated in software engineering to solve the problem, namely:
a) Requirements analysis,
b) Detailed design,
c) Implementation, and
d) Integration testing,

During the requirements analysis, the first step involved
learning how to operate the system Boeckman implemented and
analyzing his design. At the same time, the analysis phase
included a background literature search of the general data
contents of a CNDD, alternative ways to build a CNDD, and
Jones' requirements for the global language. Also, this
analysis described the general functions of the software
modules needed for this project. Finally, structured analy-
3is and design technigue (SADT) diagrams graphically showed

all of these requirements (See Appendix G).

..
e

& v 8 %

¥y oy by Oy 4y
)
& &

- LY
7
o
L]

'Q?‘

I A A
. k4 .
L

,

#4'- 1
'
2

e s

Kl .4
O]
.

P A el CaAntafing . Sl
A R A S A i S S S e G Yt NI LEP AL i i i e s s s atec i

o« a

Once the requirements were defined, the detailed design

i - described the data structures (formats) of the CHNDD, the data
passed to and from and software modules, and the algorithms
(procedures) required to do cach of the modules' functions.

i Structure charts graphically showed this detailed design (See
Appendix I). They also identified information passed over
the network which should be monitored during the testing

l ophase. These requirements for monitoring messages were
passed to Capt Janice Rowe, who was concurrently working on a
network performance monitor, so the monitor can also test

“ this project (Rowe, 1985). Finally, verification testing
checked that this design fulfilled the requirements defined
in the previous phase and those Boeckman defined for the

i ". overall DDB!S.

Next, the implementation phase produced software modules
in the programming language C. The CNDD used abstract data

i types s0 that its implementation method did not affect the
way high-level modules requested information in the CNDD.

For example, a call for an abstract data entity would not

change whether the CNDD was implemented in C data structures

) ,
. or in a DBMS. Only the lowest level module that communicated ;f
directly with the CNDD would change if the CNDD was implemen- {5
i ted a different way. Coding adhered to the detailed design i?
and executed on one of the computers connected to the DDBMS. E"
Boeckman's software also changed in order to link the direc- E?'
. .. tories into the system. During this phase a test plan %«

B o e L I S B P Vet L e o L L J S T T TP UV PO SRS S
(AU WAPIATSINT IR WA WAL ST A TP P IPR A SIS WA N P AP S, YO Y NP DAY W DT TR IR WAL I D Wiy

S A it e e AL Jam i e NS S et LM Rt A i i S S i e e

DA S SRS IE at oSMP aAIC - M ST e b S sfaraas ol St ot teh

ibed the procedures to check each module separately.

Q,
(
I

(81

C

5ts verified the accuracy of passing the locations of data

[i

"3
v

: stored in tne CNDD to sites.

In the last phase, the integration tests also used the

| test plan. This phase integrated all modules to perform a
full system test. The tests verified if all software modules
of the central site worked together correctly and complied

b with system reguirements.

Overview of the Thesis

The thesis format follows the approach just explained.
Chapter I1 describes the requirements analysis of the data
directory system. Chapter III then explains the detailed
design of the directory used in the DDBMS. From this design
Chapter IV describes the coding completed to implement the
directory system. Chapter V presents the testing methods
used to integrate all the modules and check the effectiveness
of the system's requirements analysis, design, and coding
phases. Finally, Chapter VI summarizes the results of the

thesis and presents recommendations for follow-on research.

L

o
e e e e e e e e
. - BT e D e e

et R . R T S St LT T T s e
PR W VUL Y N R R E AP PR S AR P T WAL Y W WL il PR R g R N Y |

r—— -
B e A A ot a3ty S e A B A% A e e gt e 2,

e

«® et

I1. ANALYSIS OF REQUIREMENTS

Introduction

The requirements for this thesis were based on those
already established in Boeckman's overall design of a DD3MS
(Boeckman, 1984:20-36 & Vol II) and in Jones' design of a
global language for a DDBMS (Jones, 1984:149-1533). Since
this thesis covered the portion of a DDBMS which dealt with
the data directory system, this chapter only describes the
requirements for implementing the directory system. The
Structured Analysis and Design Technigue (SADT) (Peters,
1981:62-64) was used to describe the requirements. Appendix
G shows the 3ADT diagrams Boeckman wrote to describe the func-
tions of the directories and the additional SADT diagrams
devaloped in this thesis to further break down some of the
functions. The next section explains the general software

functional requirenents of the data directory system and the

following sections describe each general area in more detail.

General Functional Requirements

The central site which controls the directory system has
the following functions (Boeckman, 1984:20-21):
1. 1Initialize the DDBMS
2. Update the CNDD with changes made in the LNDD
3. Send updates to Extended Centralized Network
Data Directories (ECNDD) which contain copies of data changed

in the CNDD

15

P “_ " P o« e
e Tt CIRSCIR U R I S R I R CORUS TN
o . . PR

- - ..A“-'.'- - DR -« . - -"-'.~-.-. * . DT . . - - % - . . "
el S A‘_._LA'_A'-'A..'JJAA’AA‘_-}.L’)\‘._“ALL:_‘.-A._A‘A_.:_A.‘._..AL‘LA".‘ P " G T

.
e

-

-:;

4. Service the Centralized Network Data Directory

(CHDD) site requests
5. Reconfigure the DDBMS
Initialization of the DDBMS occurs when the system

starts up. Different procedures occur depending on whether

the site is the central site or not. 1If it is the central ?i}
-~

site, the software initializes the CNDD, queries the other ;;ﬂ
sites, evaluates thelir responses, and sends a startup message iﬁ;
to all the sites participating in the DDBMS. If the site is }fg
-~

not the central site, software initializes the site's data- Ei%
base and responds to the central site's query. ;f:
In order to send gueries to the correct database, the S
three types of network data directories must be kept up-to- i{;

Gate. First, the CNDD, which is only kept at the central
site, has a complete view of all the data in the DDBMS. It
stores the locations of all data entities. S=2cond, the LNDD
at each site maintains information on only the data in its
DBMS. Third, the LCNDD at each site keeps the locations of
data that the site requested from the CNDD. This last direc-
tory makes other queries and updates to data previously
retrieved from other sites faster. In conclusion, any
changes to data locations in an LNDD must be reflected in the
CNDD and in all ECHDDs which stored the location of the data
that changed.

As a result, the central site is involved with all data

queries and updates and performs three functions to service

16

(¥

L
0
ey

e
"ot

LA e e e s
* l- " .

L e g
K
. s

el .I:\.\'l"\"-‘.':l (R S0 Y "3 "3 iR "R A S linr 5l Suk-Colnt kot o Aar—s Ser-vd W

requests. Whenever a site cannot find a data lccation in
either its LRDD or ECNDD, it requests the location from the
CNDD. Therefore, as its first function, the central site
must retrieve locations from the CNDD. Secondly, if data
moves from one DBMS to another, the central site must update
the CNDD and notify the affected ECNDDs. Finally, the cen-
tral site must manage a pending update file for each site
that is inactive. This file stores all changes users make to
data stored in sites that are temporarily disconnected from
the DDBMS.

Not only does data change, but also the system config-
uration changes. 1In this case the central site must control
the reconfiguration of either adding a site or deleting a
site., If a new site is added, the new site must notify the
central site and all others. The central site, ia turn,
sands all data updates to the new site if the central site
had a pending update file with information for the new site.
Then the central site notifies all sites that a new site is
added to the DDBMS. On the other hand, if a site is deleted,
the site must notify all other sites. At other times, if
there 13 a malfunction and a site abnormally disconnects from
the DDBMS, another site must notify all other sites of the
site deletion. Also, the central site begins a pending
update file for the deleted site.

Unlike other sites, if the central site is deleted,

there are additional steps in the reconfiguration process.

e

kS A
W e

3 AT

Lttt

S, W e
g

DRI N
Y I S,

T TN T TR T T T

RN N T L A)

A A ek il bl L QR MArR SN2 LA e o £ o a0 e nd ainy TeTETrY

If the central site is deleted, the central database admini-
strator in charge of the DDBMS must choose another site as
the new central site. Then the new central site copies the
CNDD and pending update files from the old central site.
However, if the central site malfunctions before it can copy
its data to another designated central site, the new central

site must read each site's LNDD to recreate the CNDD.

Detailed Requiremonts

Figure 3 (Boeckman, 1984:Vol II) shows the SADT design
for initializing the DDBMS. 1t consists of initializing the
central site and other sites. Other SADT diagrams contained
in Appendix G of this thesis show the design for reconfig-

uring the DDBMS, updating and maintaining the ECNDD and LNDD,

and servicing reguests for the CNDD and other sites. The

- s e e
LIRS

following sections will explain these requirements in more <
. _‘.":':'
detail. e
T

Initialize DDBMS. These software modules prepare the

R
A &
% 'y ", .
. » * .
RO A

DDBMS for execution (Appendix G, SADT #C4). After the central el
site is chosen, the software at that site activates the CNDD ;;E
and asks the operator which sites will be in the DDMBS. From ;;;
that information, the central site sends query messages to f;i
all sites. After the sites respond to the central site, the 5;5
central site updates the status information and issues a L;j
ready command to the sites to begin execution. Zf;

Other sites initialize their status information and E;f
prepare for a contact message from the central site (Appendix i;j

18

LY s .
.t
N .

Sttt
DS A

' a
DAL I A ERPE R * . - PR
- gtm T T w0 . B [M vt et .
L < N - st e . AT SR S tC
P W TS I BX A T B B A N _A'_;t_-_.'_.\."")-,-.-A-.- . e -."-.'_-_' ¥ c e e)T e e e Tl e T T e e N
N T S I . P ATV S NI SN I A ™

o
e ¢ 2 ..I!,r-o.--.)s -.,-.-..f,.- o e A I I

LEnA - PR ana s e caan apacs

e

AN

T

” L AL EAL v

Pl Sl St

T

-

CWa v WS s
L O N

[S T I] P
AN N

72 PR RRRRRE O

(11 TOA:P86T ‘uruyd20d) SWHAQ 3zZTTRIITUI *f 3Inbiy
N 3115 310434
€
N 311S
3ZITWILINX
J*THVESH B0 b {1
oaa v VIS N 31
sNIVLS ONVI10)
N 3118 dnNYYIS I 311§ 310M3Y
031v0dD N 3118
NOT1VHNOANT
sN1vLS
P | 3118
| 3118 N
3Z17VI1ING SOSH
|
NOT1YHYOINT
SNiv1S 3115 QOND
1 3118
031Y0dN ONYIS0)
JNLYYLS $39vSSIN
! AlIS sn1vis 3118
0NI_SNIVIS
3115 WHINDD
NDI 1 VHYO-INT_SN1VY1S ' aus
T OT 10 NI e Ve RS 03 WHINID LE}
19 snuvis 0" vos Tovss SEoo—_2TIIAME | smawis
031v0dN "
ONVISID) dJTUUYLS
3116 TVMINID
\ N\ 1)

ONVIHOD dNINYIS 8HE0O

19

v

R P L o et
. . 1 P SR .
RN AN OWLEA

o e PRSATTAT TR T TN UL
-

= RN

G, SADT $C5). When they receive it, they update their

”
~“

-

| R

status information with the CNDD's location and return the

information that the central site requested. Finally, when

they receive the startup message, they begin executing the ”2
DDBMS.)
Reconfigure DDBMS. The DDBMS may reconfigure or change Eﬁf

its configuration whenever a site is added to or deleted from f?
the network (Appendix G, SADT #Cé). Either an operator can i;—
enter a command to reconfigure the system, or else malfunc- 5;;
tions will cause the system to automatically reconfigure. i;%
When an operator wants to add a non-CNDD site (one that éi;
does not contain the CKDD) (Appendix G, SADT #C7), he first g;ﬁ
)
sends a contact message to the central site. The central gji

'y

"‘
EY 4

site, in turn, updates its status information and sends an

” L
, P
. RS .
N . .
i .

acknowledgement message to the added site. Then the added
site updates its status information and its local data from
information that the central site stored in a pending update ii;
file for the site. After the central site finishes sending
the pending update file, it notifies all the other sites that ~
a new site is added. é::
If a non-CNDD site is to be deleted (Appendix G, SADT ¢
C7a), the operator sends a message to all sites explaining

that the site is dropping off the network. Then the central

-, -

=
site and all other active sites mark their status information N
accordingly. Also, the central site starts a pending update :ﬁ?
-" h‘
-

file for the deleted site.

e l."
‘. 1 l/l
TR S
St .

20

- R T L P

BRI AR Y il S A I b b R T A e AN fon ghs BNy b aw olie it Ay

o
K

A

L,

A

7

A

A

1

5

3

"
. '

A

a2

Moving a CNDD site to another site (Appendix G, SADT #C8)

P S

S E R AL

requires copying the CNDD and the pending update files. When

g

]
A

the transfer is complete, both sites adjust their status

3
\'.

U AN
' %

information and also notify all sites of the new CNDD loca-

..
.
s,
L)
MY

tion. During this reconfiguration process the central site fﬁi
cannot respond to any data location reguests nor change its 3?3
pending update files. ;g;
In case of system malfunctions (Appendix G, SADT #C9), an Ef§
oparator does not have to initiate the reconfiguration as in Q;?
the previous three examples. Through malfunction messages é;:
the DDBMS will recover from a site crash by changing the ;;:
status information and beginniang a pending update file for :Eg
the site. 1If the CHDD site fails, another site, chosen by .g:
some predetermined method, automatically recreates the CNDD 5;7
by consolidating the data from all the LHNDDs. When there are E;:
NSy

communication line failures, the network must reroute mes- :Ei
sages so the sites can communicate between each other. Eéz
Finally, after the central site makes all the necessary iﬁi
changes to its status tables, it sends to all the sites Sgﬁ
information on the new DDBMS configuration. Ei:
Updating and Maintaining the ECNDD and LNDD. Two of the
functions of executing the DDBMS at the sites is to update é;
the ECNDD from CNDD updates and to update and maintain the ;I
LNDD (Appendix G, SADT #Cl3). When there are updates to the ?E
CNDD, the central site nust determine what sites had regues- j%f
ted the locations of the data that changed. Then the central #E

L

W [I
l.' .,

s

21

[t T T T T LAY T TS T~

site sends changes to these sites so they can change their
ECNDD. After a site receives the ECNDD update (Appendix G,
SADT #213a), it must make the changes to its ECNDD. Finally,
after making the changes, it sends an ECNDD update acknow-
ledgement message to the central site.

The second function to update and maintain the LNDD is
necessary to keep the LNDD current with the local DBMS (Ap-

pendix G, SADT #Cl3b). When external user inputs change the

database which require changes in the LNDD, the site must

notify the CNDD of the changes. However, the site software

v
T

does not change the LNDD until it receives an acknowledgement

message that the CNDD made the changes.

Service Reguest at Sites Other than the Central Site.

'., Another site function while executing the DDBMS is to service
requests from this site and other sites in the DDBMS. 1If the
query originates at the local site, it is called a local RN

query. Otherwise, if the guery at the site comes from ano-

ther site, it is a remote query.

To service local queries (Appendix G, SADT #Clé), software
first determines the query type by searching for the data's
location in the site's LNDD. If the site has all of the data
in its host--or local--computer, it is a host query. In this
case, the site can process the query without checking any T
other directories. On the other hand, if other computers in

the DDB!!5 have the data, it is a network guery.

CRC ST o e ST el TR
DT SR

R '..' RS N e e - .~ -~'..". LA .
- FIPEC RPN e e PRSI B “_‘.-::.L‘.-".' AP

et
> At et

RREANEA ACIACAACR A oty yiy - gy in i gtarih

To service a network local query (Appendix G, SADT §Cl18),
the system first translates the guery from the local language
into a global data model language. Then software services
the translatad network query (Appendix G, SADT #Cl9). If the
data location is not in the site's ECNDD (Appendix G, SADT #
Cl19a), the site must ask the CNDD for the location. Once
the datn locations are known, the system continues to process
the query. After the query results are completed, the site
updates its ECKNDD with data that was not in its ECHDD.

Besides servicing the local gueries, a site may service
a remote gquery (Appendix G, SADT #C25). For this query the
site only has to check its LNDD to verify its host DBMS
contains the data. If it does not have the data, the site
mast notify the CNDD site of the data location error in the
CNDD. In this case, the site must also notify the site which
originated the guery.

Service Reguests at Central Site. Just as with the other

sites, the central site must first determine the CNDD request
type (Appendix G, SADT #C28). They may be either CNDD data
location requests, CNDD updates, or pending update requests.

To service CHDD data location requests (Appendix G, SADT

4 C28a), the CNDD site receives the site requests, which in-

clude a global relation name with its global attribute names. -
A global name is a common name used for possibly several ;;j
alternate names used in different DBMSs. Then the CNDD ;;g
determines the data locations. The CNDD site will send all ;:%

23

v Lt~
e “ep e

(A DR N T A e e . o -
- R PN S T e et D N i S . <t et LI -
PRI L PP, P PN, B e i S S e o PR AR WA TSR MR A R IR DN DDA VS I
-

LT LA YU T T T TR

-
C-.
-’.'.'_-.-_'.‘.‘.-.‘_-'..-7 KRENE
k,‘- B N L S L A L R . A
<~ ol R B RN DB Yo W Y RPN TO R PP DA, G e e e e e e T e e T N T L
abadntdy ‘ i i It Babade ioa tomaman'a o Lon oy s

the locations of the data if it is redundant, horizontally
partitioned or vertically partitioned. Redundant relations
are those that have identical structures (i.e. they have the
sam2 attributes) and duplicate data. According to Ullman
(Ullman, 1982:411), if relations are horizontally split, two
or more relations contain the same attributes but the rela-
tions contzin different information. On the other hand,
Ullman states a vertically partitioned relation has attri-
butes wnich are physically located at different sites. For
example, a global relation may contain three attributes A, B,
and C. One DBMS may contain the relation with attributes A
and B, whereas another may contain the relation with attri-
butes B and C.

To service CNDD updates due to LNDD updates (Appendix G,
S5ADT #C29a), the CNDD site receives the CHDD updates from
another site and matches the received data against the data
in the CHDD. Next it updates the CNDD and sends an update
acknowledgement message to the sending site. Then it sends
updates to the ECNDDs which also have the data (Appendix G,
SADT #C29). Finally, the central site receives an ECNDD
update acknowledgement message from the other sites which
received ECNDD updates.

The last CHNDD request type is servicing pending update
requests (Appendix G, SADT #C28). For this request, the cen-
tral site adds information to the pending update file of a

site that dropped from the network while the DDBMS was opera-

24

ST “C L
-, . - .

LA A A A AR AN, Sol Pobatad Sl Ak Aol Aol Sk Ak Foll"da SN A AR Y A 0 24 0% AR 14y ity L 45¢ JpA i

TR LT Y :\.“‘.'_‘._’\‘_‘.-_“_i\“"'“" AT EITTY Dl A MY A B Rt eyt a s) LA A o Ll A) . - L/ il ol N [28R il e o
4 A T PICE SNCINOP A e ua e e e ol sien T W T E T e T

TET TEEEYTY v

AR A ARG . TRl

»"s

RN

ting. Also, the central site sends the results of the update

-

back to the site which originated the pending update request.

General Content of Data Directories

In his thesis Jones (Jones, 1984:149-153) presented what

a data dictionary should contain when using a global relational

data model. It included information about the databases in
the system, what relations were stored in each database, the
attributes of each relation and other information needed to
map--or translate--from the global relational language %to a
local database definition language.

Since no global relational language has been implemented
yet, this thesis did not include all the data requirements
Jones presented. Instead, this thesis only used those items
Jones described which were necessary to locate an entity
within a database. Other information needed for completely
mapping a global to local data definition language, and vice
versa, may be added as a follow-on effort to this thesis.

In the list of items in the directories "identification”
and "name" are used several times. An identification code is
a unigue number or unique character string, which is used as
a key in several of the relations in the CNDD implementation.
In contrast, a name is a descriptive, nonunique character
string used in one of the databases. Since the same name
could be used for different items, the unique identification
code, rather than the name, was used in several places to

establish links between different CNDD relations.

25

L Wt e e e e e e e e e - -
ORI ARG " R AR DRI MR AT L A T R I
PP Y 4 LN P LIPS TIPS T YA Sl Py S TP s R P ST

v.
.

)

ooy
LI

. ': d J
PR

"

/
)

— SE— - Cg——— e a e atn s
N AEAMCSC SN AR SN S SAGE RN LM S o S s P O S e e e are s o T SR Ak S Sah i ot Al o ard g il kol <o S e g
y

W AR

- B Based on Jones' research, the following information was

I) included in the CNDD and ECNDD:

i:: a. Site identification of source (identifies the
network address of the site)

. b. Host computer (e.g. UNIX VAX)

C. DB name {(e.q. AFIT, Demo, etc.)
d. Global relation name ("Global" name is a comnon
‘ name for possibly several local relations with different
nam2s stored in separate databases. A global relation iden-
tification was not needed because the global relation name
b must uniguely identify the relation.)
| e, Relation replication code (specifies whether
_ data is duplicated in several databases and how the data is
. ‘_9 partitioned)
f. Global attribute identification
g. Global attribute name
i h. Local relation identification ("Local” relation
is a relation stored at a local database. If the local DBMS
was a network or hierarchical type DBMS, the entity was

translated to a relational type before storing it in the

directory. In a concurrent effort with this thesis, Capt A

Kevin Mahoney (Mahoney 1985) stored the mapping information
. B
‘ needed for this translation elsewhere.) '-:
i. Local relation name ’-«1
~. j. Local attribute identification \1
!‘ _ k. Local attribute name l"%

26

ST e Te L N T T S - - -
e e Tt e A e e . LT - - o v . « B O S .
R K . R o te e T, P R N R MR
C RIS T . AP CWRPN W CUPR W W Wy k. S s) o BT ot Andadabedei ol PR SR

e e e At et et T L e e e
At et Tt atalm atat ot ZaNaa’n 'n'e el alasar et 2ty N RIS WA SN

; RN AR R ERAR ML gey e ai -aly SN AR S it we b tet i A b i 2y o e e S0 UL

In addition to Jones' requirements, this thesis added
the following items which were necessary to implement the
directory system:

a. Access code (prevents CNDD from releasing data
that is b2ing updated)

b. DBMS name (e.g. DBTG, INGRE3, 4dBASE II, Total)

c. DBMS typa (e.g. hierarchical, relational or
network)

d. Local relation index code (specifies whether
the relation is indexed on a particalar attribute)

As for the LNDDs, they do not need to store their own
sit2 identification and site name. However, besides this
information listed, other information needed to map data
dzfinitions from one type of DBM35 to another should be stored
in the LNDD. The LNDD should store it because the processing
should not have to convert from the global relational data
descriptions to that used in a host database until just be-
fore s2nding a query to the host database. Therefore, when a
site receives a query to send to its host DBMS, the proces-

s5ing should extract the mapping information from the site's

DD to make the data definition translations. Since it was
not in the scope of this thesis to design and implement the
global language translator, this thesis did not list all the

napping information.

AR T L PR .

et e N B e . . .
. L e L.

< A e w, PR . ..

S, S . -,

N

Sammary

This requirements analysis discussed the four general
tunctions of the data directory system and graphically decom-
posed the requirements using SADT diagrams. The software
modules consist of those to initialize the DDBMS, reconfigure
the DDB!S, update and maintain the ECNDD and LNDD, and ser-
vice CNDD site reguests. Also, the analysis described the
general data eclements of the data directories. The following

chaptar explains the detailed design for these requirements.

28

N L e e e A St e e e e s e e A Tl . S
PP R e e N T T T AT T T e e e e ST e e
A A P E SP P AP AT, BT L S) o0t e .
P R P A e I SR ST,

\
-
-
-
-
»
i
..
-
L.

SRS S A i At A A Mt S Autia At WP Rin B a4 R e~ B ol et vk RN a4 he. b iaciay

II1. DETAILED DESIGN

Introduction

This chaptar adds to the detailed design Boeckman pre-~
sented (Boeckman, 1984:37-56), where necessary, to be able to
implement the centralized data directory system. In particu-
lar, the following sections will describe the software proces-
ses to service the CNDD site reguests and update the LNDDs,
two of the central site's functions. The other central site
functions of initializing the DDBMS, updating the ECHNDDs and
reconfiguring the DDBMS will not be discussed because the
detailed design did not change from what Boeckman presented.

The detailed design used structure charts and process
and parameter Jdata dictionary entries that are located in
Appendices I and J. The structure charts described the
hierarchy of software modulss and the data passed between
modules. The process data dictionary entries expiained the
purpose of the modules, the relationships between the mod-
ules, and the modules' input and output data. The parameter
data dictionary entries described the parameters' use and

characteristics of these input and output data.

Further Decomposition of Requirements

As the requirements were further decomposed and imple-
mentation decisions made, there were limitations placed on
the requirements. For instance, there were restrictions on
the form of the CNDD data definitions and the ability to move

the CUNDD from site to site. This implementation first re-

B R e e e e -
. SVUTLTN TVNeTLE L r AR I AN SIS A A At el fad Sall R A -k Sk Gt S oA FR AT IV 2°0 000 A0 s orng e ot et L SR RN TN

stricted the CMNDD to use relational data definitions. 1In
other words, a data definition in a network DBMS had to be
converted via some algorithm to a relational form to be
stored in the CNDD. For example, Jones described how to map
from the network and hierarchical data definition languages
to a relational data definition, and vice versa (Jones, 1984:
115-137). The main reason the CNDD listed relations and
attributes was because the gueries were written in the Roth
r2lational data manipulation language {Roth, 1979:122-124)

developed at AFIT.

Figure 4 shows the CNDD has a global view of all the
DDBMS data stored in a relational data definition language.
That is, the data schema is described as attributes within

.;. relations. Since the LiIDDs nust be used to build a new CNDD
when the original CNDD site fails, they also must describe
the schema in terms of a relational data definition language.
However, the LNDDs must contain extra information not needed
in the CHNDD in order to map--or translate--from the relation-
al data definitions to the actual data definitions used in
the host DBMS, which may be a network, hierarchical or rela-
tional type of DBMS. Appendix A shows the definitions of the
data in the CNDD, and Appendix D shows those in the LNDD. A
separate description of the ECNDD was not included because it
contains the szame type of information as the CNDD.

The requirement to be able to move the CNDD from one

site to another was also restricted because of implementation

30

--_'.‘_. e R AT I .
) N B N S c el - ~

A T S T
AR TR LRI AL T ST SRR T
L A L AL JPL IR . B T S S S SR AL S R S T TP S PP e LT,

.......

s
S .' l‘
. ’
‘e 'l .l ‘s ‘e ’
O

Fi i i
gure 4. Data Directories Data Definitions

31

T T T TE e TR TR v - —
,V- AR T X BN AL N MO A A ML 0L N N I A S MR P St P GRS S & T Sadinriag Anh At i g g et Y

A

PR
DR
R

e

‘e v
PO

»
N

b

decisions. The general DDBMS design specifies that the CNDD ;f}
Lo

should be able to move from one site to another in case of :;Q
failure at the central site. Ilowever, the CNDD was imple- ‘;;‘:'&
mented on a host computer DBMS because the DBMS already :Eﬁ
provided data manipulation routines. Therefore, the DDBMS »L‘
cannot move the CNDD to a secondary site unless the lowest ifq
A

level modules which interact with the CNDD at the secondary fi;
site are also implemented. 1In other words, if the secondary :ij
LAk

4

site stores the CNDD in another type of DBMS, the nodules

a

which extract data from the CNDD must interface with the

specific host DBMS. As a result, all sites are designed to

v

K
~.'“.
o

0
8.

have the same software for the upper level modules necessary

-y
[N Y]
'n':
y o o |

T
y "o ' %
I

to act as the CHNDD site, but the code of the lower level

1r. "l
A

Y modules will differ based on how the CNDD is implemented at

I

the particular site.

This restriction would not be necesary, though, if the

L SNLIAY SRLPS-IL N

CNDD were implemented the same way at all sites. Each site
could have the same software to process CHNDD requests and R
therefora, could be interchangable. For example, every site ;-n
could define the same data structures for the CNDD in the o
common software modules executed at all sites. Then the

routines to manipulate the CNDD would be the same at all the

sites. ilowever, this method requires that the developer - -

~TE

design and code all the data manipulation routines already o
found in a DBMS. For example, a DBMS has software to define a0
data characteristics, update and access the data and maintain Fiﬁ
32 o

B B e SR A T T A T e - N T o e e N T s e e T e e T
B A P AT AT A UL P T R NN T T T T R T A e e
PR PRI PRI VL. § PSR R O S T R TSV ORI W PR VR PR P S S P Sl AP Sl S AP

N SN S A R A R T el g W g ML L. e L

o N
: 5
Tg 3 data integrity. Therefore, it is faster to implement a CNDD %5
i. v by using a DBUMS. by
’ k-
ﬁ Structure Chart Design Eﬁ
é The following sections in this chapter describe the §£
structure chart design and data passed between those modules i:
;' which support the central site's functions. According to the %g
system requirements, all the software to implement this de- E;S
sign should be on all sites in the DDBMS. However, if the E:
site is not the CNDD site, the modules to process the CNDD }ES
site requests will be turned off. The next sections describe ?3;
A the detailed design in this thesis that was expanded beyond i;
ﬁ Boeckman's design to support the following functions: ;;
;' 1) Service Centralized Network Data Directory EE&
. .—‘ (CNIDD) site reguests L
% 2) Update the Local Network Data Directories ﬁ?
e
- (L!1DD) o
3 Service CNDD Site Requests %3
%: The structure chart in Figure 5 shows three different fﬁ
: kinds of requests the CNDD site processes: data location re- EE
quests, CNDD updates and pending update requests. Since the -
central site software is part of every site's software, the éi
site first checks if it is the operating CNDD site. 1If it él
;; is, it continues to process one of the three kinds of re- ;E
Et quests. Otherwise, the site sends an error message back to EE
g the requesting site explaining it cannot process the reguest. ?S
- T B
33
d '
S S T e T s e e e T e T e

o .1.-:..”..)

b.f- .II L ') -

2315 adND e sisonbay aor1al19g

I
8

: . e L e e ‘vt
B A TR St R AR
QAL AL ottt e Ty A Y

¢ 21nb1g

TTTTE

S182NMOR 31vadN

TCETTT

831vadn
QOOND JIANIS

TETT T

$153N03
NOTLVD0Y vivQ
OOND 30TANIS

OHION3d IDIAM3S

Y4 HOMY3I

SNOILINNI TV
NOILYO vivO0

MYOAL N

$31vodn

34

§1SINON
NOI1VI01 Yiva
oaNd

S0y
31v0dN

OONJ3

.

it A

.. 3115 Qo) o
. 1v_51531034
. 31A38 B

—

A)

-
.

- vy

| AR AN

L T e R
. B NN 7 ' .
aa te e ‘ o A4 oo .
H y] i PRy uy . AT Us S

The following section explains in detail how the CNDD site
services data location requests. After this explanation the
chapter explains the conceptual procedures for updating

the CNDD. This is not as detailed as that explained for
servicing data location requests because it was not the
intent of this thesis to implement CNDD updates. Also, this
chapter does not discuss the design of processing panding
update reguests since it was out of the scope of the thesis.

Data Location Reguests. For data location requests, the

central site first verifies whether the CNDD Data Location
Reguest message (see Appendix E) contains the correct pass-
word in order to access the CNDD. There is only one password
for ganeral access to the CHDD. The CNDD itself does not
check whether the user has access privileges to a specific
database or to data within a database. The individual DBMS
has the responsipbility to control access to its database when
it receives a query message, which also contains a password.
After checking the password, the software then extracts
information from the request message in order to build a
standard header for the results message, which will contain
all of the data location information retrieved from the CNDD.
The information extracted from the request message includes
the requesting site's identification code and the query iden-
tification code. The CNDD site uses the requesting site's
identification as the destination for the results message it

will send back at the end of the processing. The query

35

«
“
a4

55 I

A

.

P B A
A
.

v v .
s e
RV

g AN S e il e

identification code has another purpose. The network optimi-

zing software assigns a unique query identification code to {uﬂ
each user's query. Then the optimizer divides the query into 53?
subqueries to send to different sites to get results for a {}x

o

user's original guery. Each subquery will carry the same
query identification code. 1In this way the DDBMS optimizing
. modules can combine all the results from several host DB!Ss
i into a final response.

{ Since the user's query is written in a relational data

manipulation language, the guery includes names of relations

and attributes. From the user's viewpoint these relation and

attribute names are global names. In other words, they are

names used at the highest conceptual level with which the

user is familiar. Hence, the goal of the CHDD data location Eii
software is to specify which DBIS in the network contains
local relations which are components of the global relation. Ej?
The local relation and local attribute names are those EEE
names used in a specific host database. The local names may .i&;
pe different from the global names or the same as the global igi
names. Even if the same, though, they may not match con- é::
ceptually with the global data. 1In other words, a central :5{]

datahase administrator has to decide which local relations

contain data that are defined as part of each global rela-
tion. Then he includes these mappings in the CNDD.
The CHNDD software was designed so that the modules

retrieve the data locations in two different ways. It can

36

- . T- . - ~ . " - - "
BT IR A, S SR PP

e e I e T T e e e e et e e e e T
A B T INE T B S Y AP S TR T S IC AA Y UE N BRI B AP O S AT ST PO O 1

A A 1 (o A e Nl S SN St/ Gl Gl Gl e A A N A R R SRS A o SRR AP PILICE I A e e ate ikt yiiogc e _pbe b aie

search for either the locations of specific global attributes
within a global relation or the locations of all global
attributes defined to be part of a global relation. There-~
fore, the CNDD Data Location Raquest message includes a
request type designator before each global relation name.
Type 1 informs the CNDD to extract the locations of all the
global attributes within the specified global relation. Type
2, on the other hand, signifies to get the locations of only
the global attributes listed after the global relation name.
For each relation listed in the request message, the CNDD
software finds out what the request type is and the name of
the relation.

Because of the overhead required in the message header
information, this design allowed several data location re-
guests to be combined into one message. If there were only
one raquest per message for a global relation's data loca-
tions, each message would have more header information than
the name of the relation. Therefore, it was more efficient to
combine the requests.

As a result, Figure 6 shows four high-level steps of
servicing a CHDD data location request. First a module gets
the request ‘ype and a global relation name from the request
message. This step was added to Boeckman's design because of
the decision to combine several requests into one message.
Next, the CNDD processing extracts the data locations of one

relation at a time. Then it reformats the information re-

37

R SCNa B Al S

sasonbsy uotiesol ejed AAND ¥D1A1SS

L "3 "0 0 Dl ™
SNO11YJ0T YIVO

IT4 O3NIKHILI0
YM4OALIN ON3S -00N) 1VHNO4

TIUCELL I

viv0 OOND
1ovuix3

PIULTLLTTTR
30vES M
2S3IN03Y WMOMS YN
NOIIYI3N B0 ¥
3dAL 1SIO 139

OVl4 IN3IS
SNOILYI01
viv0o OOKRY

uN0S
1S3N04

ND11YJ07 YivV0
ooN)
IMYNIUS

SNOX1YI0T vivl
O3NINYI130-000D

ovid
3dig
153N03Y

U &2 & S o

£1SINON
NDI1YJ07 viv0
QOHD 3JIAUTS

. St et e -
e e TN
A Lt
A doe o e B hoe 8 2

)
'y

PRSPy

el

-

. ate
PR N W P Y

38

RPN 1A

—

VS

Bl

[4

'
i
r.
r
-
,
3
3

s
¢

~¢ e 3 W TV
B s

s

T Te YT M TIRN TR TR

.
e S Te ~. - -
NPT PN A LY

v - ey
BN A R T Y S R Y R Y W U Y RN T AN TV W oW T

turned from the CUDD into the CNDD Data Location Results
message (see Appendix E). These first three steps continue
until the CNDD tfinds the locations of all the relations and
attributes in the request message. Finally, the CNDD site
sends the results message to the requesting site.

In order to extract the data locations requested, a
software module first checks if the CNDD contains the global
relation in its directory, as depicted in Figure 7. 1If it
does not exist in the CHDD, the software notes it in the
results message and then continues the processing for the
next relation in the reguest message. If the CNDD does
contain information on the relation, it next checks whether
access to the data locations is locked or not. The CNDD
prevents access to the information for a global relation
while the CNDD is updating any data on the relation. This
prevents the CNDD from sending back inaccurate information to
the requesting site.

Finally, the lowest level modules retrieve the data
locations of the global relations depending on the type of
request. For example, a type 1 data location request would
probably be used for a SELECT relational query. In relation-
al algebra, relations are represented as tables (with rows
and columns) of data. As C, J. Date explained, "The SELECT
operator constructs a new table by taking a horizontal subset
of an existing table, that is, all rows of an existing table

that satisfy some condition" (Date, 1982:75). Since a SELECT

39

et e Y N T A
- B e, .~

™
L

-~ e -
RIS .
SO
[

PRI S R

’
<,
s

.
B
a's
s
.
»

'

»
"9
o

ENRy,
6N

e e "'.f' g

ALl AT

LM S A N AN
Lo A B oy o0ty 2 0

.j
3
)

%% BSRRRRRR IR A, HacooOr SRR AEAOGASE SEERIDRINE SEIDEIPSNE SoS el Anit 0
oy e O e A S et e aa . a .-..... ...
Ay .lrw.ﬂ.... .<.......».. e el “.-lv}n (MY ol e Yl et -
M
QUND wWo1j suorjedo] ejeq 3IdeIIXm L a2anbta
,k, 1 wETvTrTerT Ol v ! & ol il 2l il d *Treeelt Ll el "4d 34 A i ™ 1°1°1°c°c°c 1t
t
07 IINATHNLLY FOVYESI 153N s3inalyL Ly OoON) M1 $S)v
- Qﬂwﬁéhwma IV 3IN0 ¥od MHOH4 WYH N8 TWBOW WV HOod ONY MOV
~000 LVHYHOA4 SNOI1YJ01T viva 139 ~1¥L1Y Weo 1320 SNO1LYI0Y Yiva 139 Ao W)
ov4 SNOI1Y0Y ¥ivD oVl
wOHY3 a3NIN3L30]
NOI1vI01 -00K) NOIL1Y2O
vivo
ev4
3 3dAL
163N03Y
FHYN [~
31naI¥ALY Lo
weow
YN
NOT1VTY3Y
wWB0W
8
X
ﬂ -..-HI.H- -c-ﬂjﬂ
\. OOND WOY4
- SHO11Y20Y)
9 viv0 1OvaiX3
.
2 P
3
4 — . e s sles . m— . tr . N . . mEm - . e e MR e

R it A A St e S A A i S A A A A A AR CR At At dc s s s e

(rad

operation returns entire rows of a table--or tuples--which A

“ .
o a’a’s 4

v . .
P
v .
.
' e

l include all attributes within the global relation, the DDBMS

F

optimizing software must know the locations of all the rela-
tion's attributes. In contrast, a PROJECT relational query

l would probably require a type 2 data location reguest. The

PROJECT operator in relational algebra "forms a vertical O

subset of an existing table by extracting specified columns”

to

i (Date, 1982:75). Therefore, since only specified columns--or
attributes--are returned, the optimizing modules need the
locations of only some of the attributes.

j In the case of the type 1 request, the CNDD software
retrieves the locations of all global attributes within the
specified relation. Before retrieving any data from the

. ‘_.0 CNDD, a software module checks if there are any global attri-

butes stored in the directory that are associated with the

; global relation. There should always be attributes defined

. for each ralation in the CHDD unless the directory was not

built correctly. If there are no attributes defined in the

CNDD, tue software notes it in the results message and con-

Y tinues to process the next relation. 1In the normal case when
there are attributes in the directory, the software retrieves e
the data locations of all the attributes at one time. All of .is
A the information is compiled into one file and then reformat- E;g
ted into the results message. gig
In contrast, the type 2 request finds the locations of ff%i
. LIS
[3 each attribute listed after the relation, one at a time. qu
—
s
11 1
' e

L
ST

. - » - D L R - . . .
- - . . - - . . - - - Y v ; . - v
(. - SO GY WE W AT T T S W PR PP CYS. S V|

L b

R S

First, a module gets a global attribute name from the request ﬁ;ﬁ
message. Then the software checks if the attribute is stored ;‘:
in the directory. 1t may not bz in the CNDD if none of the Eii
sites has data for the global attribute. 1If it is not in the ;&;

CNDD, the software processing marks it accordingly in the

results message. Then it begins the cycle again to get the

next attribute name in the reguest message. If the global
attribute nam= is in the CNDD, the program extracts the data E"ﬁ
location information from the CNDD. After the CNDD returns
the data for each global attribute, the software reformats
the data to add it to the results message. This type 2
process repeats until there is another request type in the
request message or else the request message ends.

When there is another request type in the message, the
software reevaluates which of the above processes to follow.
This entire process continues until the CNDD has searched for

all the data reguested. Finally, the CNDD site sends the

CNDD Data Location Results message to the requesting site. ﬁﬁﬁ

CNDD Update Requests. Another function of the CNDD is

to service CNDD update requests. The following is a concep- 3

tual idea of how to process the update semi-automatically

until the entire process can be automated. Part of the fx
process must be manual because the central database adminis- ;‘“
trator (DBA) responsible for controlling the update may have ‘f
to make some decisions before the update can proceed. For Eii
example, if a new relation was added at a site, someone has E?:
o

42

.-.'.“.'\‘.“""' ST - . . .'.."-..-"~..
A T T T S T VR VA UL U AP P TN S e L e e e e N e e T T S
P L S Tl Wl I I T Sl Y. Y P B T XS 0 T el Sl L EPRAPRIPN 0 W RPN R ST PR SR RPN O PN P N

MR AN MAAALSE UL AR MO it i L eI A e e R T W W0~ W%

| AR

o
NN

Y

»

to decide to which global relation(s) the local relation
nelongs. He also has to match the local attributes within

the new local relation with the global attributes within the

e R

giobal relation. To explain this process, Figure 8 shows the

S

upper-level modules required to service this request.

W -y
4 L

First, when the CNDD receives an update message from a

site, it locks the access to the global relation's data.
E This prevents the CNDD from sending to a reguesting site any

data location information on the global relation that is not
[; current. Besides changing the global relation's access code,
t] the software also changes the access codes of the specific
local relation and local attribute whose data is changing.
These access codes remain locked until the update is com-
ii .J’ pleted. Until then, the CNDD site sends a flag meaning the
data 1s being updated, rather than the data location informa-
tion, to each site that reguests information on the affected
- ralation.
Ei Second, the CNDD site services the updates to the CNDD
?; sent from sites that intend to update their LNDDs. The CNDD
i: site software displays a message on the central site's termi-
:ﬁ nal explaining the changes to be made and writes the same

information in a file. This allows the central DBA to review

B the information while the central site is off-line. After
making the necessary decisions, like global relation-local
r2lation mappings, the central DBA manually changes the CNDD

-' when the system is off-line. He also marks that the update

43

- 8 L e % e L . - - . P DY L e L e e e T T - . S) ~ C.
2 A - o " acoa gt g o PR MW S-S N I LIS

dn ¢aNd 2010198 .g 2anb1td

$31Y0dN

44

S e bl TRy YT T YT T

R R M AE MRS NI S A AT AT b S A e wie B vhle et L AL AL hd Ak At Tttt Aa e A0 2 00 S0 0 s o ste g et

R EY
]
RS

. was completed in the file that contained the information on :

Vs
.
B
>
i".l'..n
)

the update.

When the DDBMS comes back on-line, part of the CNDD
initialization processing checks this file. If there are
CNDD updates marked as completed in the file, the CNDD site
finishes servicing the CNDD updates before servicing new CNDD
requests. The software checks which ECNDDs and LNDDs must be
changed also because they have duplicate data just changed in
the CNDD. The site which originated the update is included
in this list because it does not change its LNDD until after
receiving an acknowledgement from the CZNDD zite, Also, it
may need some information from the CNDD, like the global
relation-local relation mapping, to store in the LNDD. The

"*. processing writes which directories and what chang2s are
necessary in each in a file containing CNDD acknowledgements
and replication data.

In the third major step to service CNDD updates shown in
Figure 8, the processing sends updates to ECNDDs and LNDDs
which must be changed. The software checks the file contain-
ing the CNDD acknowledgements and replication data. For each
ECNDD and LNDD update in the file, it builds an ECNDD or LNDD
update message and sends it to the site. When the site which
originally sent the update to the CNDD receives the LNDD
update message from the CNDD site, it can finally update its

LNDD.

N, e . . o e e e . . . e

- - - s . - . . “ . ,r, ", - LR 2 ?a e T T et - - . - . B - . . . - - . - rd - o~

e, W g R T T B SRS e S S s te St J T U AU P Y - -
o e et e, e DRI I Aol T R U I P RPN e TP A TSI P WL RS '~
LI WS I SR DAL PSP IPRIPY IS Ty, U R D I A W g SV UL N e T e et e S e n e

Next, the CNDD site waits for an acknowledgment message
from the ECNDDs in the fourth step. After cach site which
received an ECNDD update message makes the directory changes,
it sends an acknowledgement message to the CNDD site. When
the CNDD site receives all the ECNDD acknowledgement messages
it expects, it unlocks the CNDD in tue fifth and final step.
In other words, all access codes associated with the updated
global relation, local relation and local attributes are set

so any site can receive the CNDD data stored for these items.

Undate the LNDDs

Since the last section just explained that the processes
to update the CNDD and LNDDs are correlated, this section
2xplains the conceptual procedures to update an LNDD. When a
database administrator (DBA) wants to change data in a local
DBMS, which also affects the LNDD, he must interrupt the site
to notify the DDBMS of the pending LUDD update. This inter-
rupt causes the site to receive an External LNDD Update
message. This message and an LNDD Update message from the
CNDD both cause the modules shown in Figure 9 to begin execu-
ting.

When the update messages arrive, the software prints a
message on the site's console explaining the pending LNDD
update and stores it in a file for off-line review. Because
the LNDD data will be changed, the software locks the access
to the affected data. Until the data is updated, the LNDD

will not release any of the currently inaccurate data.

46

'.- "'n“. '_. . AN K . * e . .t . - '.‘. N T R, [
R . I R T T TR A W JERia L A A . R ST -
e A e e T NI RN RN P R A SV Y WA AN

et : ' e m e e

.
g

‘.- '-- .v. "-- - ® =, .ﬂ.- >~'
B SR A R S O

3 gaNT utejuley pue aijepdn 6 danbrg

a*2*L1°c 1re* et e br3ce ‘e gre2e1°c
npzrwa NONX X
INVEEM $31v0dN .—<W&. N I0YSSM S39VSS J1V0aN

TWYI0T ON3S O 1JVENYYL OOND 3AIIDIN MIOALIN ONIS OOND 3uvdINd

ad
e T e T e
R S R T BTG TR T ST TS

47

P S Ve o Ml e S o v s §

-4k 4 4

OONY NIVINIVM
Oy 3ivoan

T e TR R T

N R L TSR T S .o T o Y I T S PP G S
..................................
...........................
.......................................

......

.

b‘. .l"l'

! 2l

e B
(3

PRI
A3

o

Next, a software module prepares a CNDD update message. E?;

This message contains local data that must be changed. For Ei

example, the DBA may want to add another field to the DBMS. ng

If the host DBMS is not a relational DBMS, the DBA must ;z;

translate the data definition of the field to a relational ?Ei

{ data definition. ©Perhaps the field equates to an attribute }%E
f within a relation. The DBA responsible for this DBIS can 3;;
=
hi only supply the local information like the local attribute 5;1
: name, local relation name, etc. In order to insert the i%?
E global relation name and global attribute namz in the LiDD, i;;
- the local DBA must wait until the central DBA responsible for ii:
the entire DDBMS supplies this global information. EE?

So the site sends the CNDD Update message to the CNDD £§§

.;. site and then waits until it receives the CNDD Update Acknow- L
ledgement message. This message will contain the additional Z;ﬁ

information the LNDD needs. When the acknowledgement message .
arrives, a message appears on the site console. i;:

The next step is to transact the LNDD update. Boeckman o
designed this as an automatic procedure of finding the LNDD B
entry to be updated, changing it, and preparing a message L_
with the update results. The system then sends the LNDD

Update Results message to the host computer. o

At this point the automatic procedures will probably ;}
stop. Most likely the DBA will have to take the site off- {;
line to make the changes to the data in the host DBMS. After Eé

- the changes are done, the last step is to unlock the LNDD. Ef
N > .

I T R N . A, e .~ e el
PG BRI . ST AN L e e e e e
. A * v PR B SR AR SRR DU VRN W R SN

PSP IS R LT .4“4.‘)"'4 Y AP T T S P P DR SRR an N AR I R P R AR ."1-1.“' ‘(.‘- :i‘.

".‘ DRI ,'-'~.. _..' R

ARG A DA ARG (A St A Bl Al ATl i Rl A AR arA A L A Ir e B e aresed 2ot St e L Mie - wAt e LA St e e - e e

This means changing the access codes of the affected global
relation, local relation and local attributes in the LNDD.
Finally, the LNDD is bacX in normal operation to determine if

data is stored in the host DBMS.

Sunmary

This chapter described with the graphical aid of struc-
ture charts two of the central site's functions. Several
sections explained these functions by detailing the process
of servicing CNDD site requests and updating LNDDs. The CMDD
site requests discussed included the data location requests
and the CNDD update requests. In addition to explaining the
software process, this chapter showed the detailed format of
the messages necessary to implement these functions and the
definitions of data stored in the CNDD, ECNDDs and LHNDDs.
The next chapter shows how the DDBMS was partially imple-

mented based on this design.

49

P

|

L
3R

o e
e Y N
€« e

d
(4

¢t

;

\E'F"
25

»
vAr-Ta
Ty
P
i .

A
.'l ‘_lf .vﬁ-

‘.,
& N W

»_ v "' -
d "'l"'n" -"‘l'
‘A

. DT T T A RN
. o oo CP TR I P T T I SR Pe v e

NS
PR

Iv. Partial Implementation

Introduction

Rather than develop another design for a partial imple-
mentation of the DDBMS as Boeckman did (Boeckman, 1984:37-
56), this thesis implemented the same DDBMS detailed design
described in Chapter 3 of Boeckman's thesis and this thesis.
The implementation followed a top-down programming approach.
In other words, the top or highest level modules shown in the
structure charts were coded and tested before the rest of the
system was finished. However, because of the time constraint
and scope of this thesis, not all the DDBMS was implemented.
Some of the modules, written as dummy stubs, can be imple-
mented later on. Since the centralized network data direc-
tory system (CNDD) was the main thrust of this thesis, this
phase of the work completed all of the processing to make a
request for data from the CNDD and to get the data locations
from the CNDD. Appendices I and J show the structure charts
and data dictionary entries used in the implementation.

The DDBMS hardware consisted of two LSI-II microcompu-
ters and one Z-8@-based S-100 bus microcomputer. The S-180
computer executed a dBASE II DBMS, which is a relational type
DBMS, and supported the CNDD.

This chapter first discusses the computer architecture
used to test the DDBMS software implemented. Next, it ex-
plains how the CNDD was implemented using the dBASE II DBMS.

After explaining this background, the chapter outlines the

50

. R . . “ N LNt
. e e e .t D R P S B T T e TR R W

PR e
. L RSN . o L e e e N T T T e .
PREWPOR. PR I . 3 LR P P WS W R PR U W WAL Pl SRR il T WD R ST T R S

. .

»
Ll 4

PR AN P T I
'.r" '
MR e ek
4 L e, . Tt
L AP
.

W
v
P AL

. e . T .t
P I 2 2N

TR MU]

’ F 2

ot ’n, ‘rﬁ.« Lt

« et tr)
P Y SR

]
7
i

'
F 2

software modules written in this implementation of the DDBMS
and a summary of all the activities in this phase of the

project.

PhiPiel 2) g on gn g S glave, 5 4 g
.'l
it
1
.l I

Implemented Architecture

Figure 12 shows the architectural topology of the hard-
ware used in this implementation. The DDBMS system consisted
of two LSI~11 microcomputers and one Z-8(0-based S5-138 bus
microcomputer. The LSI-11 computers were identified as
System L and System S in the AFIT Digital Engineering Labora-
tory (Hartrum, 1985:1).

One of the LSI-11 computers, System L, acted as the CNDD
site in the DDBMS. Because of memory limitations, System L
only contained the DDBMS software necessary to process CNDD
site requests. It did not process queries or updates to the
distributed databases. System L connected to an S-10¢ micro-
computer which acted as a host computer. This S5-100 executed
the dBASE II DBMS to load, update and access data in the
CNDD. The other LSI-1l computer, System S, was a remote
DDBMS site which executed the software to handle the DDBMS
queries and create data location requests for the CNDD site.

Although the hosts were nodes on LSINET, because of
memory sizing problems, these LSI-11 computers were unable to
contain the network operating system (NETOS) used for the
LSI-11 computers to communicate between each other (Hartrum,
1985:1) . The NETOS software required 34K, the DDBMS remote

site software required 40K, and the CNDD site required 36K.

51

- - - - - . - - - - - . . . - - . b
R I S T L TR UL PR U N L L A L - S R T PR -
. Pl .« RO IS N 2T et \ A - PRSI T Pt TN e_\‘.'.-'a'_._-.-_’-.-."u'- ey -.'a
- N . - ~ . PR P IRY - -
M et ke dadada dasal

PR NS AL I SR S Y . P TR .
LS PG SN IS . I N LTS CPS I SN N -

e WA TR Y L T

R D SR /i i i, A St bt ol s aa s e S o —

.'n .';
L Tt

]
e

’
1(" AN R

,-

l}_ . xr;','r. LA EEN 24 ".“. R
. gL
r

DOBMS
CNDQ SITE
LSI-tI
SYSTEM L

HOST
COMPUTER
S-100

Figure 13. DDBMS Partial Implementation Architecture

52

. BN - . .
. ™, O .\ At [R R L Al T L S LU S SRt
-~ i e A PISRR A o 2™ ot ARSI R PO A W I R S L P I N A R N S P

-
-
.
N
i
-
[}
.
»
-
»
.
.
)
»
i

.

Vi e TV €V
. .

MRS A

Since neither the DDBMS or CNDD software is completed, the
menory requirements will grow as more software is impie-
mented. Therefore, the programs should be partitioned among
the computers. For example, the LSI-11 computers could only
contain the NETOS software while the host computers with
larger memory capacities could run the DDBMS remote site and

CNDD site software.

Implementation of CNDD

The CNDD was implemented using a DBMS just like any
other database in the system. However, this site only ac-
cessed the CNDD information and did not access any of the
distributed databases in the DDMBS that a user could query
and undate. It was decided that this site would only handle
CNDD site requests because of sizing problems. 1In fact, the
LSI-11 computer memory was not large enough to process all
the CNDD site requests. Therefore, due to the memory re-
strictions and the scope of the thesis, only the data loca-
tion requests were processed at the CNDD site.

The CNDD data shown in Appendix A was originally organ-~
ized into the relations shown in Figure lla. These original
relations were all normalized to the third normal form. How-
ever, many of these relations were combined to make the CNDD
processing more efficient. Figure 1llb shows the final six
CNDD relations formed from those in Figure lla and loaded into
a database with the dBASE II relational DBMS. In addition,

Appendix B contains a User's Guide on the update procedures

N GREL-LREL GREL-GATT

| [creL -Name | LREL-ID | GREL-ACCESS] [GREL -NaME | GATT-1D]
: GATT-LIST SITE-0B SITE-LIST
[6ATT-10 | GATT-NAME]
08-08HS DBMS-LIST 08-LIST
| {08-10 | DBMS-NAKE | [oams-name T poms-TveE] [o8-10 | DB-NaME|
DB-LREL LREL-LIST
|ce-10 | LReL - 10| [LReL-10 | LReL-NaME T LREL-INDEX [LREL-ACCESS | LREL-REP]
LREL -LATT LATT-LIST
: [LREL-ID | LaTT-1D| [LaTr-10 | LATT-NAME | LaTT-aCCESS]
- GATT-LATT

|6atv-10 | LATT-1D]

A. ORIGINALLY DESIGNED CNDD RELATIONS

GREL-LREL GREL-GATT
[GREL-NAME | LREL-1D | GREL-ACCESS| [GREL-NAME | GATT-NAME | GATT-ID}
- SID-LREL
| 510 | HOST | DBMS-NAME | DBMS-TYPE | DB-NAME | LREL-IO
LREL-LIST

[LReL-1D | LREL-NAME | LREL-INOEX | LREL-ACCESS | LREL-REP|

LREL-LATT GATT-LATT
) {LrReL-10 | LAT7-10 | LaTT-NaME | LATT-ACCESS] [arr-10| Larr-10]

8. IMPLEMENTED CNDD RELATIONS

-
(& 4
)

s SO
PP SR
. LT
* Pt S L
L a .t

»

Figure 11. CNDD Relations

54

;Eftg
) .
~t"<
ST
S
. '.-_‘.‘_1
AR

g
) alhte Nt S A i b 2 ALY AN Sl R & LA A Al S A A A A SIS AN A N B b e i A e A/ e - Lan e

e AP I

BB I

to maintain the CNDD, and Appendix C shows the CNDD test
database constructed.

For example, the following relational algebra opera-
tions on the relations in Figure 1l1b retrieved the data loca-
tions of all global attributes within a global relation:

SELECT GREL_GATT WHERE GREL_NAME = 'RELATION'
GIVING TEMPI1

JOIN TEMPl AND GATT_LATT ON GATT ID GIVING TEMP2
JOIN TEHMP2Z AND LREL_LATT ON LATT _ID GIVING TEMP3
JOIN TEMP3 AND LREL_LIST ON LREL_ID GIVING TEMP4
JOIN TEMP4 AND SID LREL ON LREL-ID GIVING TEMP5
PROJECT TEMP5 O GATT_NAME, SID, DBMS_NAME,
DBMS_TYPE, D3_NAME, LREL_ NAME, LATT_NAME,
LREL INDEX, LREL REP GIVING DB3_RESULT
The SELECT operation created a relation TEMPl, con-
taining all the identification codes of the global attributes
within the global relation. Next, the first JOIN operation
added the unigue identification codes (unigque keys) of the
local attributes which associated with the global attributes
to the relation TEMP2. That is, the local attributes were
those attributes actually stored in the distributed data-
bases. The following second JOIN operation included the
local attribute names that were used in the local databases.
The third JOIN operation created a relation TEMP4 which added
the information for each local relation in which the local
attributes were found. The next JOIN stored the information
on the site location of each local relation in the relation

TEMPS. Finally, the last PROJECT operation arranged the

55

.........

attributes in the order that was sent back in the CNDD Data
Location Results message.

Whenever a site requested only the data locations of
specific global attributes, all the same relational opera-
' tions, except the SELECT operation, were executed. The

SELECT operation was modified to include the name of the
global attribute as follows:

i SELECT GREL_GATT WHERE GREL_NAME = 'RELATION'
AND GATT_NAME = 'ATTRIBUTE' GIVING TEMP1

This operation created a relation with the global relation

FToTuTeT,

name, global attribute name and identification code of the

single attribute requested. After this relational operation,

T

the other operations formed a final relation with all the
data locations of only a single global attribute. All of
these operations were repeated to find the data locations of
each specific global attribute reguested.

Normally, the processing which handles a user's query
would need the locations of all attributes within a relation

so it could optimize how to partition a guery. Partitioning

LT RTY TN Ty ey YT,

a query is deciding how to break up a query into subqueries
that are sent to different sites. However, as already ex-
plained in Chapter 3, the optimization processing for a

PROJECT relational guery only needs the locations of those

attributes mentioned in the query. It would be unnecessary to
know where all the attributes within the global relation were

located since the PROJECT operation extracts only the speci-

TTEEE TyT Ty T e T 'Y Y YT T T ITERYT O,

RS fied attributes from the relation. E;:j

56

- - - - - - Lt . - T e Nt et LTyt L T T . -~ -t '-~' " ¥ -\-.\-

- . . -t et E N T . e T . N B . . - - - - S, . N ~ .~ et
s T AP A IR L T . WA e Y A S A S AP P R I, St
fe oy o T e e ey S e O P AT A P PRI S N i O A A A TR SRR, .;.:_.;.r_.-_J

Pl Tl A Ao A o sey
LI B S BN

ERSEACIRA I A e i ’ '4! ! !I. nl_ .l ~! ! .! I_> I.-"'."n""».!.:"'-" ‘“"‘-F‘k. B Sl A S Y G420 el il ACh i A

.....

[] .."-'.-"‘-77" * .
L)
X "."a'."f,:.

r.
&

In summary, the low level software modules called dBASE

.
- '. L

5 a0
o

II to execute command files which accessed data in the CNDD.

L] ." -
‘'

|‘l v,

These command files were created with a text editor and

e

contained the dBASE II commands necessary to perform the type

-~y
'y

of relational operations just explained. The next section

will describe the software modules implemented to test the

ability to request data locations from the CNDD and then

retrieve the information from the CNDD.

Partial Implementation of DD3IS

This partial implementation of the DDMBS followed the
detailed design described in this thesis and Boeckman's
thesis. Because of the magnitude of the DDBMS design, many
of the modules mentioned in this section were written as
stubs. Later as the DDBMS implementation continues using
this top-down programming method, the stubs can be replaced
with operational code. 1In the following structure charts, a
circle in the left corner of a module box means the module is
a stub, and an asterisk means it was implemented.

Main Executive. The main executive module shown in

Figure 12 calls three modules to: 1initialize the DDBMS, get
the next message that has arrived at the site, and start a
new process. All of the initialization processing modules
were stubs. The "GET_NEXT MESSAGE" module first gets a local
message, one that originated at the same site, if one exists.
Local messages were simulated by storing them in a file

"LOCAL.TST." If the processing can open the file, it reads RO

57 S

" “r . T T e . AR . e e e,

- - - .- - - - - ~ - .’ - - - >) -.- - -1
Tt e Al e N et e et AR TR L I .t et DCRACRE T L D IO I .- . e . - T e
BRI AC AT IA LIRS I I I S N WL IR RPN 3 S e Vi TG WP N A TN TR e et

B N S M RGNS R T T i R TR s a0 cateak)

v

Fa L e Ty Ty W

il

R

TR

ey

D iy

R s

e

=

MAIN

0.0

T
MESSAGE

NEXT
MESSASE

o
[/, Y
" o
8
o
o
!
>
w
z
8 o
QA’.
ma
[J
-
>
w
Zz
L]
-
W
£

2
wn -
x
@
[o]
(=]
-
()
Z
-

Main Executive

Figure 12.

58

R R T S A A At A, S 0 S N e almai oo o o & o i o b~ e i s G

the file and stores the contents into a buffer that is

R ST
.

vt . .

- LR

passed to the next dummy module "NEW _PROCESS". If there is

no local message, the "GET_NEXT MESSAGE" module calls "NXT_

4

AN
«

NETWORK_MESSAGE". This module gets the next network message

sent from another site by calling "RECV_FILE", an ISO Layer 6

O I 75 on 08 BN
RN oA)
I . .

\

module in NETOS (Hartrum, 1985:14). However, because of

memory limitations, the WETOS software was not loaded on the
h LSI~11 computer used for the CNDD site. Therefore, network
messages were not passed over the LSINET to the CNDD site,

bat were simulated by reading from the file "REMOTE.TST".

New Process. When "NEW PROCESS" is implemented with a

multi-processing operating system, it will create a process
for the message and store it in the process queue. However,
._‘ in this implementation, the module just calls "DO_PROCESS" as
shown in Figure 13. "DO_PROCESS", in turn, calls "INTERPRET"
which determines the type of message to process. If it is a
reconfiguration type message, the module calls the dummy
module "RECONFIGURATION". For all other kinds of messages,
it calls the module "REQUESTS". The only module "REQUESTS"
calls, which is not a stub module, is "SVC_REQUESTS".

Service Requests. Figure 14 shows that "SVC_REQUESTS"

services local requests, remote requests and CNDD requests. o
The local requests module was implemented because the proces-

sing for local requests interrogates the CNDD for data loca-

tions. On the contrary, the remote reguest processing was

not implemented because it did not have to access the CNDD. ?-q

59

R T R i I SR S . T e T m T ..

N T e TS e e e e e

L a, e e e

LA . . S A R LA R WL SR L W ST

- » " ® e - " .. - 3 o’ » - - - - . » - . . . - -
s"n--AnL-Ac&qL-k.,-_- PSP & 3 - " ot e et A W e T, o Tt e e e T T ta s _‘-_-J»_._._._._J
Pl A . . IR
. .

INTERPRET
3.1

o
NEV-PROCESS
3.0

NEXT
MESSAGE

00-PROCESS
3.'

o
RECONFIGURAT ION
3.1.2

MESSAGE
TYPES
FLAGS

REQUESTS
3.1.3

AP AT I

T g
R
DI

e -
o gt .

.

Figure 13,

60

~

> ettt TN N
. [P PR *
oL FAT AL A S

New Process

LY

A L R AP L S e S SR L A S AN
AT . - NEINEN ST
Pl St IS T S U Y AR LY U WU NS S S P O JP G Y WL

" .
N
-:' ~

e
S
LA
BOND
RS
« "
. v-‘.
C -
S
<
1] '..'
-
‘e
.
.
s
Y
>~ P
AN
e

=

I A S l.":.‘?"_.“r'.‘__ Cin e sl nive B B ihe S/l iton DM s e el e i) s T T TV r— v Ty "',-_.‘.

:::f'.:-t

-

»
L 4
. SVC-REQUESTS
3 3.1.3.3
NEXT
MESSAGE
\e
REMOTE
ERROR MESSAGE
TYPE
FLAG
. o
LOC-REQ REM-REQ CNQO-REQ
3.'-303-' 3-‘03&3.2 3“'3'3'3 B
o
P 1
- Figure 14. Service Requests ,
61 S

'.-‘q‘.
W S

T e e et A s e T T e T e
F AT R RPS P VSRR TR T VR VR P v

AT T

AR AU AN SN O A SA A N At alaiat el Rk to b el Bk Al talcde EOMEMA IS0 A4 1l 0410 SV Ul 0~ SH B/ L6 i peg e aen As ok son ug - n g g iae BERES S

That is, a site would not receive a remote request from ﬁfa
another site unless the site contained the data in its host
database. Therefore, it would not have to go to the CNDD to
find the data location; the data would be in the site's LNDD.
The processing for the third type of request, CNDD requests,
was partially implemented to achieve the main goal of the
thesis.

Service Local Queries. 1In Figure 15 the local gquery

processing first calls "PARS QUERY" which parses the query
and stores the parts (relations, attributes and conditions)
of the guery in a data structure. It then calls "DTERMINE
LOCAL_QUERY_TYPE" to decide whether to call either the module
"HOST QUERY" or "NET QUERY" next. The "HOST_ QUERY" module

‘i‘ services a query which needs data that is all located on the
host computer. 1In contrast, "NET_QUERY" processes a query
where all or some of the data are found at other sites in the
network.

Parse Query. As Figure 16 shows, there are three dif-

ferent modules to parse a query written in the Roth relational

DB language. "PARS QUERY" only parses PROJECT, SELECT AND

JOIN queries because the translator to convert from the Roth

relational language to INGRES only handled these types of
queries. Since it was originally planned to connect an ‘
INGRES DBMS in the DDBMS, this restricted the kinds of quer-

ies that would be processed. However, due to time constraints,

the additional software to completely process a query was not

et A'- FORAAR AR

62

L RN AT AT S
. . . . DL T TR IR S AV S
‘-t LIV AP0 NI S S B Y PN, T I PR I A -

ACLALE SER SR ALY

AN LML i SN e aioad i atugoan

LOC-QUERY
31331010

‘
A PR .
bl bl e

.
.
]

Y7 SRy

PARSED
QUERY

.
.

N\ QUERY HOST
: OUERY
TYPE
FLAG

. o o -

PARS-QUERY
_3.1.3.3.1.1.3

DTERMINE-LOCAL
QUERY-TYPE

Del-J:Fol. 1.4

HOST-QUERY
r LI I A RY RN

NET~QUERY
3.1.3.3.4.1.2

Figure 15.

MR
a2 _ar

A S PO

6

Service Local Queries

3

-

BEATONLAIL SN AL AN SN Y C T

RIS S

BT EVRENTR,

A N i Ul Uity St il aiie Eha i R A A MURAR R4 L) S M D e R A ¥

PARS-QUERY

2.1-3-3-0.2.3

PARSED
QUERY

ERROR

NEXT -
SSAGE

POINTER TO
AFTER NEXT VORD

PARSED
QUERY

NEXTY
MESSAGE

FLAG

\ =

PARS~PROJECT
3.).3.3.1.1.3.1

L 4 L 4

PARS~SELECT
3.1.3.3.1.1.3.2 3.

GET-WORD
3:1.3.3.3.1.2.)

PARS-JOIN
103300004343

Figure 16.

64

Parse Query

Ry implemented. Therefore, there was no neced to connect an

INGRES DMBS just to show that the CNDD processing worked.
The parsing modules "PARS PROJECT", "PARS_SELECT" and

"PARS_JOIN" used the procedure "GET _WORD" to read each word
of the query. After identifying the relational operation,
the relations, the attributes, and the conditions of the
query, each of the parsing modules stored the information in

h the same data structure that Roth used in his implementation

{Roth, 1979:54-55). Each relational operator was stored as

a node in a tree structure. In this way a query can be

partitioned into subqueries, each linked as a node in the
tree data structure. The query optimization routines will be
able to use this parsed tree structure later when they are
implemented. Also, the original guery written in the Roth
language was retained so that the query processing could use
the translators used in Boeckman's thesis (Boeckman, 1984:63-
61).

Determine Local Query Type. After the query is parsed,

the local guery module calls another procedure which deter-
mines the gquery type. To do this, the procedure checks if
the locations of the data needed for the query are in the
site's LNDD or ECNDD. Because the LNDD and ECNDD were not
implemented, this module was coded as a dummy stub. If all
the data are located at the host computer, the query type is
a host guery. Otherwise, the gquery is classified as a net-

work query. The "HOST QUERY" module was implemented as a

[65

py
‘o

o« e, e
S
‘e 4 T
T .
»
s
e
AN AN

Py

o« ¢
e
v

»

TR S
) s
"l":“-“' " ;e

I 2L

.
"ty
.
h
.
oo
..
()

stub, whereas the "WET_QUERY" module was implemented as shown
in Figure 17.

Service Network Queries. To process network queries,

the procedure "NET QUERY" first calls "CHK _CNDD" which inter-
rogates the CNDD for the data locations. If the previous
module "DTERMINE_LOCAL QUERY TYPE" determined that the loca-
tions were not in the LNDD or ECNDD, the CNDD Data Location
Request message is built and sent to the CNDD site. The site
then waits to receive the CHDD Data Location Results message
from the CNDD site.

After checking the CHDD for the data locations, the
network query processing calls two dummy modules. Both the
modules, "SEND_QUERY_ PARTS_TO_ REMOTE LOCATIONS" and
"COMPILE NETWORK QUERY RESULTS", were stub modules in this
implementation but could be replaced with those written by
Boeckman in his partial implementation of the DDBMS. Imple-
menting these modules would complete the network query
processing.

Service CNDD Requests. As already explained, Figure 14

showed that the module servicing requests also calls the
module "CNDD REQ" to service CNDD requests, besides the
module just explained to service local reguests. The only
CNDD request implemented was the CNDD Data Location Request.
The processing for this request was shown in Figures 6 and 7.
Since the processing was implemented as described in Chapter

3, this chapter will not explain the design again.

66

e e e_ry

T Y L T P TN Y Y IV P A AN X TN TR TN Y 7 ~r.

NET-QUERY
3.1.3.3.4.4.2

PARSED
QUERY

CHK~CNOO
3.1.3.3.1.1.2.1

Qo
SEND-QUERY-PARTS
TO-REMQTE-LOCATIONS

.1.3.3.1.0.2.2

o
COPILE-NETVORK

QUERY-RESIL.TS
JeteJedefot-2.3

Figure 17.

67

Service Network Queries

T

s

o=
P

a4

~

%y
3

3

0,

Summarz

The DDBMS was partially implemented by using two LSI-11
microcomputers and one Z-80-based S-180 bus microcomputer.
One of the L8SI-1l1 computers was designated as the DDBMS CNDD
site and contained the software to service CNDD Data Location
Reguests. An S$-100 computer, connected to the CNDD site,
acted as a host computer to store and access the CNDD with a
dBASE II DBMS. The other LSI-11 computer was one of the
DDBMS sites and contained the modules to process local net-~
work queries. These queries were originated at the site but
reguired data located elsewhere in the DDBMS network. Since
all the individual modules of software implemented in this
thesis tested successfully, the following chapter explains

how the modules were integrated and tested.

68

V. System Integration Testing

Intggduction

In this phase of the thesis project all the software
modules implemented were integrated and tested to determine
whether they performed together correctly. As the main
objective, the testing evaluated the process of requesting
and extracting data locations from the CNDD. This involved
breaking the testing into two steps:

1) Constructing a CHIDD Data Location Request
message, and

2) Extracting the information requested from the
CNDD and constructing a CNDD Data Location Results message.

To verify these phases, this chapter is divided into
three parts. The first section will explain the test data
stored in the CNDD. The second section will explain the
nrocedures and results of testing the remote site processing,

and the third will cover testing the CNDD site processing.

CNDD Test Data

Two test databases were constructed on different host
computers, both of which executed a relational DBMS. A dBASE
II DBMS ran on an S-100 microcomputer, and an INGRES DBMS ran
on a VA¥-11/780 minicomputer. Although the tests did not
access these databases through queries, the locations of all
the data were stored in the CNDD.

The CNDD maintained a global or conceptual view of the

separate databases. This global database, as shown in

69

; e e e e e e e e et e e e T
PR LIPS P L A P P LI L LR S S LN IR N Y TRV VO I R T S R, Ay i

Appendix C, contained information about global relations and

global attributes. For instance, the user designed DDBMS

. .l
‘.‘)
L3 ‘.
t A
' 4

queries based on these global relation and attribute names. Qﬁﬁ
'.f ‘.‘.
e
. . . .,)) "
Since this was a distributed DBMS, the global relations and ibf
ey

L oy

s

attributes were partitioned or distributed among the data-
bases. Ullman explained that relations can be partitioned
either vertically or horizontally (Ullman, 1982:411).

For example, he said if a relation is viewed as a table,
vertical partitions represent columns of the table. 1In other
words, a vertically partitioned relation has its attributes--
or columns--distributed among several databases.

On the other hand, Ullman explained the horizontally
partitioned relation is like a table divided by rows. This
me2ans son2 tuples--or rows--of the relation are located in
different databases.

Besides partitioning the attributes of a global rela-
tion, the test databases also had duplicate data. The data-
bases copi=d either columns of attributes or rows of tuples.

Based on these definitions, Figure 18 shows the global
relations and how they were partitioned among the two test
databases shown in Figures 19a and 19b. A simple naming
convention was used to make the mappings more obvious between
the global names and the local names used in the actual
databases. Except for the first letter, the local relation
and local attribute names were the same as the global names

with which they corresponded.

79

e e T T e e T e e e T T S e AT
LW, P WO W Wil Pl aiPt SR P S -

SUPPLIERS

SNUM | SNAME | STATUS | CITY

NOT PARTITIONED. FULLY REPLICATED
PARTS
PNUM {PNAME | COLOR | VEIGHT| CITY

UNIOUE
ORCERS
SNUM | PNUM | QTY | DATE

VERTICALLY PARTITIOMED, PARTIALLY REPLICATED

RECEIPT

SNUM | PNUM | QTY | DATE

UNIQUE
INVENTORY

PNUM | QTY
HORIZONTALLY PARTITIONED. NOT REPLICATED

‘rs h%
Figure 18. Test Global Relations 7

71

,,,,,,, . a e e e b
B e Ty S e PR UL
IO AT DS ACAL AL PR PR P PPN ¢ A Y

...............................

DSUPPL IERS E.

DSNUM | OSNAME | DSTATUS | OCITY ,\3
o
DORDERS DINVENTORY S
DSNUM | DPNUM | DGTY OPNUM | DOTY ;1
-
DRECEIPT fj]

OSNUM | OPNUM | DQTY | BDATE

A. dBASE II TEST DATABASE

INGRES DATABASE NAME = DOBMS

ISUPPLIERS

ISNUM | ISNAME | ISTATUS | ICITY

IPARTS

IPNUM | IPNAME | ICOLOR | IVEIGHT | ICITY

IORDERS IINVENTORY

ISNUM | IPNUM [IDATE IPNUM | IQTY
B. INGRES TEST DATABASE

Figure 19.

72

Test DDBMS Database Relations

A T o T T T Y.

S TR

According to Figure 18 the global relation "SUPPLIERS"

‘,_‘,
{

i - was not partitioned, but it was fully replicated at each
E database. The relations "PARTS" and "RECEIPT" also were not g%;
T

S partitioned but were uniquely stored in their entirety at ;Ei

i just one of the databases. The relation "ORDERS" was verti- A

3 cally partitioned with some data duplicated at both sites.

Finally, the relation "INVENTORY" was horizontally parti-
E tioned, and no data was replicated in either database.
Remote Site Processing
_ During the tests the remote site processing only handled

J a query up to the point of creating a message that requests
data locations to send to the CNDD site. The site did not
send the message to the CNDD nor did it send the guery to the

l— ". host databases. The test procedures were as follows.

2 First, test queries were created with a text editor iﬁﬁ

:3 following the Local Query Reguest message format in Appendix

! E and stored in ASCII files (labeled "LOCAL.Ql1"..."LOCAL.Q4").

;ﬁ The tests used the queries shown in Figure 20. These queries

1i regquested data stored only in one database or in both data-

" bases. Also, the PROJECT query included an attribute "bad" if{
which was not part o7 the global relation. The last query jai
required data from the CNDD that was locked. That is, the ;fﬁi

o CNDD locked access to the relation "inventory" to simulate L;ﬁ
the data in the CNDD associated with the relation was beuing Eiéﬁ
updated. f;i

L o

T

. 73 e

¥]

oA
.
T e e e S T e e B T e] S e e

Query #l: SELECT ALL FROM parts o
WHERE (city = 'Chicago') GIVING newrel ’

Query #2: JOIN parts, receipt
WHERE pnum = pnum GIVING newrel

Query #3: PROJECT suppliers QOVER snum, sname, bad
GIVING newrel

Query #4: SELECT ALL FROM inventory
WHERE (pnum = 'PI') GIVING newrel

Figure 29. Test Queries

The remote site program "DDBMS" executed four separate
runs to test each query. Before each run, the file con-
taining the query was copied into the f£ile "LOCAL.TST". The

processing then simulated receiving a local query by reading

the file. After parsing the query, the program simulated
checking the LNDD and ECNDD for the locations of the rela-
tions. This was simulated because neither the LNDD nor the
ECNDD was implemented. The processing pretended the data for
the relation "receipt" was either in the LNDD or ECNDD.
Finally, the remote site software created a file la-
beled "A@0JO0l.DAT", which contained a CNDD Data Location
Request message. For example, the messages for queries #1, 2
and 4 reguested the locations of all the global attributes
within the global relations "parts", "parts", and "inven-
tory", respectively. The message for query #2 did not in-

clude the relation "receipt" because its location was sup-

posedly in the LNDD or E=CNDD. 1In contrast, the request
message for query #3 asked for the locations of only the

RERX

3

74 X

!.'l ']

)
e e e L S T e e e e e L R

global attributes "snum", "sname” and "bad"” within the rela-

tion "suppliers". Test results verified that the request

v e
(3

message for each query was built correctly.

LA L A

2ot
J' l' f’ 'r‘

“0
e

&
.

’.J' v
PR
-7

CNDD Site Processing

Once the remote site built the CNDD Data Location Re-
quest messages, tests checked whether the CNDD site proces-
sing extracted the data correctly. Four files (labeled
"REMOTE.Ql"..."REMOTE.Q4"), built with a text editor, con-
tained the same request messages that the remote site con-
structed during its four test runs. Before each run, a file
containing the reguest message was copied into the file
"REMOTE.TST". The tests simulated receiving a message from
the network by reading the file "REMOTE.TST".

Before starting the program on the LSI-11 computer, the
$~130 computer connected to System L was initialized. After
cycling up the operating system with the "Super 6 NETOS
System Disk", the command "PORTBAUD 9608" was entered to
establish a 9600 baud rate. Then the command "Stat con:=crt:"
was typed to link the S-100 with the LSI-11 computer through
the console port.

After the S-190¢ was initialized, the program "CNDD" was
executed four different times to process each Data Location
Request message stored in the file "REMOTE.TST". The soft-
ware accessed the CNDD and retrieved all the information
requested. At the end of the processing, the CNDD site

program stored the formatted CNDD Data Results message in a

75

e Te L . te -~

AT A ST S G O
ST TR YT TR ; 12° AUUR MR e~ Al ph A e 0% Rl Sl bl et et A ki e gl ra D

3
J

Al E

¢
)

o
file named "AGPO61.DAT". The file "AQQOJ1.DAT" was renamed AN
S
"RESULT.Qx" where x was the query number. After each run, a fiﬁ
i- \-hr
text editor was used to check that each results message .?53
I..-- .F
RS
contained the correct format and the data locations as out- ggi
Ay
lined in Figure 19. The fourth results message, though, did 44&
E
not contain any data locations because the access to the data ﬁ{a
.. -

for relation "inventory" was locked. The results of all the

CNDD site tests were correct.

sSummary

Two test databases were created but were not accessed

during the tests. ilowever, the CNDD did contain a directory
of where all the data was located. During the first half of
the testing, the remote site processing correctly evaluated
four test queries and built satisfactory CNDD Data Location
Requests. In the last half, the tests verified that the CNDD
site correctly supplied the locations of all the data reques-~
ted. Based on the work during the design, implementation and
testing phases of this thesis, the following chapter will

discuss ideas for follow-on projects.

76

i — ——— T e -
. ST T TR Ty T T o T VT~ T T T T

; VI. Conclusions and Recommendations

Introduction

> The previous chapters explain the life cycle process of
developing part of the software for the DDBMS central site.

During each of the project's phases problems and ideas for

future work arose which other individuals may resolve and ﬂ;f

complete in order to finish an operational DDBMS. This S

'
[
L

SRy, .
B¢ RITEREI

chapter first discusses conclusions about the results of this »

AR

thesis, and then suggests recommendations for follow-on pro- 7:&

. . . e

- jects. Finally, the thesis concludes with some final com- Tl
- . A'z-
ments. o

Conclusions on Results o

.-. This project accomplished the main goal of designing the
CNDD, implementing it on one of the DDBMS sites, and imple-
menting the software which creates and processes requests for
data locations stored in the network CNDD. The integration

testing period proved the implemented code worked according

= to the system requirements and design.

Unfortunately, the DDBMS sites were not connected to a Y

network so that messages could be passed from one site to N

another. Both the DDBMS software implemented so far and the
operating system (NETOS) for the LSINET local area network

kz would not operate on a single LSI-11 microcomputer together.
The computer's operating system could not execute all the

:

h

~

“y

N

software in the memory allotted for the program. Conse- ;Li

ETACTACRA RS A S 5 T Sl Sl Gt Sl i i Ma Ao S el el e et

..............

PRSI v i N Sl Aak il Ca bl bt g

quently, resolving this problem should be the first priority
in any future development of the AFIT DDBMS project.

In addition, the thesis described the design of the
network messages and the process to update the CNDD, but it
did not implement the process. The detailed design also
specified the data contents of the LNDD and the ECNDD. How-
ever, the project did not implement them nor develop the
software which checks for data locations in these local
directories because of project time limitations and sizing

problems in the LSI-11 computer.

Follow-on Research

The following paragraphs recommend future research based
on the results of this thesis and the final goal of implemen-
ting an operational DDBMS. The first task should be to find
a way to link the DDBMS sites into the LSINET. Other pro-
jects include searching the LNDD and ECNDD, updating the
ECNDD from CNDD results and implementing the DDBMS on an
Intel Hypercube computer. Also, follow-on projects can im-
plement the other CNDD site functions of initializing the
DDBMS, reconfiguring the DDBMS, updating the CNDD, and pro-
cessing pending updates to remote sites. In addition, there
are several projects that Boeckman identified in his final
chapter (Boeckman, 1984:78-87).

Connecting the DDBMS in a Network. There are several

options available to resolve this problem. First, each DDBMS

site could connect to another LSI-11 which would contain the

78

................................

...........
....................

.....................

NETOS software and interface with the network. Second, a
multi-processing operating system on the LSI-11 could operate
both the NETOS and DDBMS software on a single system. Third,
all the software could be reorganized into various files to
take advantage of overlaying portions of programs over each
other in memory. Unless there is a method of accessing more
memory with the LSI-11 operating system, the sizing problem
will occur over and over.

Implementing the LNDD and ECNDD. Now that the CNDD is

implemented, the other directories should be implemented.
Using the definitions of the LNDD and ECNDD contents des-
cribed in this study and the DDBMS overall design, follow-on
research can refine the detailed design of these directories.

.'_. Mahoney's work on the global translator contains some of the
mapping information needed that should be added to the LNDD
contents described in this thesis (Mahoney, 1985). After
implementing the directories, the research should implement
the modules to search these additional directories for data
locations and to update the ECNDD when a site receives CNDD
results.

Implementing the DDBMS on Intel Hypercube. Since the

AFIT DEL plans to receive an Intel Hypercube computer, an-
other future project may implement the DDBMS on this multi-
processor computer. Several parts of the DDBMS software may

be hosted on some of the 32 processors in this system.

P SN S RRPOIS P S < e . .- .
LI Y e e e T R R S P R P S SN BT SRR Yy at e I
I A A IR IR A A PR AT A O TR T R s B T L -~ L

-
] I

r:

'l
-
P
’v

P.

y.
L
53

Initializing the DDBMS. The current implementation does

not dynamically check which sites are connected in the DDBMS.
Instead, a table stored in a ASCII file contains default

status values of all possible sites in the LSINET. A future
project could replace this table by implementing the initial

contact and startup messages as designed.

Reconfiguring the DDBMS. A follow-on thesis could write

more implementation-specific structure charts and implement
the ability to reconfigure the system. This includes the
processing to add or delete a remote site and to move the
CNDD to a new central site. If the CNDD at the new site is
not implemented as done in this thesis, the lower level
modules coded in this thesis, which extract data from the
dBASE I1 database, must be redone.

Updating the CNDD. Using the design explained in this

thesis, a follow-on effort could implement the messages and
the processing required to update the CHNDD. This project
would probably design more implementation-specific structure
charts before coding the modules.

Processing Pending Updates. Before the CNDD site can

process pending updates to inactive remote sites, the ability
to update the databases must be added to the current Roth-
dBASE II and Roth-INGRES translators or included in new
translators. As Boeckman suggested (Boeckman, 1984:88), the
translators could use the EDIT commands of Roth (Roth,

1979:119-121) and convert them to appropriate commands in

80

. A a e awm Com gt - - - - . - -

- . . g - - » . - - ~ . - - » . . - . 3 - . - . N - . - ~ . N N - N h - - . . -

L PR L «:m Wt Tt T T e e e e e e e e e e e e e et Lt e T et T T e e T R
7, o . L o . A T e T et e e e e e " S

alslela’”aN s L A S A P . R R A R A PR AL R AP S A A T Tl St Nl G Tt T L

.

»

oy,

n':'.t"ll'l‘(' ’
| R 1 '.'

AR

ARy L 1o
.

l"'
LA e

AR A P

O e o e EEaracar e s e o
Sl
b
.:_".:1
’-.‘-..‘
INGRES and dBASE I1. Besides changing the translators, the oo

researcher must also implement some update concurrency
algorithm. After implementing the update capability, the
follow-on project could refine the design and implement the
pending update processing at the CNDD site.

Other DDBMS Projects. 1In order to complete the DDBMS

implementation, researchers must complete several other pro-
jects that Boeckman identified (Boeckman, 1984:78-87). For
example, designing and implementing a query optimization
algorithm is necessary to be able to efficiently process
input queries. This includes partitioning a query into sub-
gueries, routing the gueries to the optimum sites and com-
puting the query results. Another project could design and
.'_. implement queue processing algorithms for the network mes-
sages if a multi-processing operating system is used in the
DDBMS. This would speed up the DDBMS processing. For
example, a site could receive several messages, which would
be stored in a queue, at the same time as it was processing
the highest priority message. Also, the site could store all
output messages in another gqueue and continue its processing
without having to wait for the network operating system to

send each message to its destination.

Final Comments

Future work on the AFIT DDBMS should concentrate on

i‘ connecting the DDBMS in a network, first and foremost, and
FT T then initializing the DDBMS, updating the CNDD, processing
b -
-

81

N CNDD DATA DEFINITIONS
Field Field Possible
Name Definition Values Description
grel name 15 chars Unique global relation name
grel_access 1 digit Lock to prevent access to
any of the global relation's
data during update
a Locked (no access)
1 Unlocked
gatt_id 15 chars Unigque global attribute id
gatt name 15 chars Global attribute name (does
not have to be unique)
sid 1g chars Logical site id of system
connected to the DDBMS net-
work
‘. host 3 chars Type of host computer
- (contains a DBMS) which is
connected to another pro-
cessor connected to the
DDBMS network
CbC CDC Cyber
100 S-100
UNX VAX 11/7808 with UNIX o/s
VMS VAYX 11/780 with VMX o/s
dbms_name 3 chars Name of Data Base Manage- 1;&
ment System (DBMS) on host R
computer
DBT DBTG
ING Ingres
DB2 dBase 1II
TOT Total
IMS IMS
dbms_type 1 char Type of DBMS on host
H Hierarchical
N Network
et R Relational e
83 o
P
T S T T R L R A LG SR N

APPENDIX A

- db_name

lrel id
1re1_name

lrel_index

lrel access

lrel rep

.
»
Y
’,

>
v
-

.

. e S LA (_" S

.
.
P AL ‘tA .:.A~,-..é;1¢1: ado

ar .
-t

AN

15 chars

15 chars

15 chars

1 digit

1l digit

2 digits

N 24 e bt e 4 e dn |

SRl SR B (e

-~ o

84

Name of Database
host computer

(DB) on

Unique local relation id

Local relation name unique
only in host computer DB

Local relation index code

Not indexed on an attribute
indexed on an attribute

Lock to prevent access to
local relation's data during
update

Locked (no access)
Unlocked

Local relation replication
code

No partitioning with no
redundancy

No partitioning with com-
plete redundancy

Vertically partitionedl with
partial redundancy

Vertically partitioned with
no redundancy

Horizontally partitioned3
with no redundancy

Horizontally partitioned
with partial redundancy

Vertically and horizontally
partitioned4 with no re-
dundancy

Vertically and horizontally
partitioned with partial re-
dundancy

Horizontallg and vertically
partitioned? with no re-
dundancy

ChllnTa Ba 0 o A Eu R, “ath il o i St

Ty o e e —|

LR a2 hu-9 aat e £ o5 Smh feg-u

10 Horizontally and vertically
partitioned with partial re-

dundancy
latt id 15 chars Unique local attribute id
latt name 15 chars Local attribute name (does

not have to be unigue)

latt_access 1 digit Lock to prevent access to
local attribute's data

during update

"] Locked (no access)
1 Unlocked

1 According to Ullman (Ullman, 1982:411), vertical partitioning
is when the partitions are columns of the relational table. That
is, the attributes of the global relation are in different local

relations.

2 Redundancy means some of the data in different local rela-
tions is duplicated.

3 Horizontal partitioning separates the table (relation) by rows

(tuples). 1In other words, each tuple of a local relation con- (}
tains all the attributes of the global relation, but no local <
relation contains all the tuples of data. k!
4 There are at least two vertical partitions, one or more of 2??
which is further divided into horizontal partitions. NON,
5 fThere are at least two horizontal partitions, one or more of E&%
which is further divided into vertical partitions. —
85 o

A

"

’_4.'_-.'_-1'_~-_‘-' -—‘..'---'_-A“--' --' A.‘ ..' .-‘ .q" ..' ...' .4' ‘-' . - -.' - --.' T -~' .-. -;‘ '-' ..' -.‘ .-‘ ns ’-" T i " " * ¢ - T -
et e . S AN T A Yy .‘_. SSICRL LRI LA SR R . S T A IO I S A \'\ -
T R T T R e o e S S S R -.1.:-: :

. - -
AACHE AT A e et dat et fe” e 4

L

PR S A S MRS e 4 Rl ALY b b o) e & arthealating Sab dat Aok S tod
ek Y
. W

APPENDIX B e

o
N
E
s
b
v
v
M

b

CNDD USER'S GUIDE

Ly]

RN
Dy)

AALNRTA

Introduction

.
,.‘.
N
I
™~

-. w
'r‘iv

This User's Guide explains how to maintain the Centra-

lized Network Data Directory (CNDD) of the DDBMS. The CNDD

was implemented as a database itself using the dBASE II DBMS
which executed on a Z-8J-based S-10¢ bus microcomputer.

Appendix A defines the data items in the CNDD, and Appendix C E';
shows the CNDD test database implemented to evaluate the %
DDBMS performance. This appendix describes the procedures

and the dBASE II commands necessary for changing the CNDD. B

Initialization Data

h‘ .i. In this implementation of the DDBMS the initialization ;;fk
modules were not implemented. These modules ask the operator

which site is the CNDD site and which sites are part of the

DDBMS network. Because of not implementing the initializa- S
tion processing, this version of the DDBMS used an ASCII file
containing this information. The file, called "DTABLE.DAT", f;g
contained the three-letter designator of the CNDD site fol-
lowed by a line feed (LF) on the first line. The following
lines list the designator of each site in the LSINET and the
site's status, with a LF after the designator and the status
code. The status code is "1" if the site is connected in the

DDBMS network and "g" if it is not connected.

86

BN ARG AR AR N A St A S A N S A U S ¥ 00 e R e R Nl Ad 02 Rial i Syl 0 Kl Al St A A R it Sk A g Ar i e g Ta L]

o
-

e
If the CNDD site changes from System I {(three-letter EE
designator "LSL") as implemented now, the first line must ;ﬁ
change to reflect the new designator. For example, the SS
database administrator (DBA) must use a text editor to change :3
the first line to "LSS" if System S is selected as the new :';'
%
Changing CNDD Data Ei
When the CNDD data changes, the DBA must use 4dBASE II to g;
change the relations shown in Appendix C. To make the chan- {
ges, the $-100 disk drive 0§ must contain the diskette labeled 55
"DDBMS System Disk", and drive 1 must contain the diskette i¥
labeled "DDBMS Data Disk". Begin the dBASE II DBIMS by typing i;
"dbase<return>" and then the date followed by <return>. The .
following procedures outline the process to add to the CNDD i:
the data pertaining to a new local relation stored at one of f
the host databases. This example was used because it showed ;%
how to change all the relations of the CNDD. ;ﬁ
Adding Data. For instance, the DBA wants to add the ;S
local relation called "ireceipt" to the host database connec- i:
ted to System K. The local relation has the local -ttributes ;;
"isnum”, "ipnum” and "iqty". }‘
First, the DBA decides the local relation is part of the ;
global relation called "receipt". HNow, he changes the CNDD F,
relation called "grellrel" by typing: :
USE grellrel<return>
APPEND<return> Y

87

............

| AD-R163 842 DES!gI AND 6=PLEHENTﬁTION OF A CENTRALIZED

TORY R DISTRIBUT. . CU> AIR FORCE 1
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. HEDERTZ
UNCLASSIFIED DEC 85 AFIT/GCS/ENG/83D-24 /6 9/2

DATA
NST OF TECH
J ﬂ

WA AT LN T T TR T AT e T N WL R N Y T W Ol nd - ~
[B R ARSI WOV S PO Y T A A S A oA DRI AR SO BT DN AR A A oo M Sttt T T T 0 A A0 0
~

4 L]

" .

S~

-
N
w

[l

FFFERER

EEER
R

rre
[4
£r

o

N
(3

i e

MICROCOPY RESOLUTION TEST CHART
NATHINATL RUREAL OF CTANDARDS 10R3 A

A AR PR SO A D AR L 6 g Bt 0 D MR A R, St “a oo tal Sad Rl el o @ S 8 & iC RS ar

dBASE II will now expect the DBA to enter the attributes
of the relation "grellrel", namely the‘global relation name,
the access code, and the local relation id. The access code
will be "1" and the unique local relation id will be
"ireceipt®". Enter the data by typing:
ieceipt<return>

ireceipt<return>

When "1" is typed, the computer will make a beep, and

the cursor will automatically jump to the next field without
tyoing the <return>. Now type <control Q> to stop appending
ii to the relation "grellrel". 1If the DBA wants to examine the
data, he types "LIST<return>".

Next, the DBA decides the local attributes "isnum",

"ipaum" and "igty" match with the global attributes "snum",
"pnum” and "gty", respectively. Also, the DBA determines a
unigue global attribute id for each global attribute. These
ids will be "recsnum", "recpnum" and "recqgty". Since this
information is already in the relation "grelgatt", nothing
must be appended. However, if the information were not in
the CNDD relation "grelgatt", the DBA would type:

USE grelgatt<return>
APPEND<return>
receipt<return>
snum<return>
recsnum<return>
receipt<return>
pnum<return>
recpnum<raturn>
receipt<return>
qty<return>
recgty<return>)
<CONTROL Q>

88

-"'\. - .

- - P
Ny

R
L NN JIE LSRR ¢ R A

-

'.. ..- " e ‘e e
TP P I B IR)

The DBA next adds the information for the CNDD relation
"sidlrel". This data includes the site id, the host name,
the DBMS name and type, the DB name and the local relation

id. In this example, the site id is "LSK", the host name is

"UNX" (see Appendix A), the DBMS name is "ING", the DBMS type

is "R", the DB name is "ddbms" and the local relation id is
"ireceipt". This information is already in the CNDD data-
base, but if were not in the database type:

USE sidlrel<return>
APPEND<return>
LSK<return>

UNX

ING<return>

R

ddbms<return>
ireceipt<return>
<CONTROL Q>

The next CNDD relation "lrellist" contains information
about the local relation. This data includes the local
relation id, name, index code, access code and replication
code. After reviewing Appendix A, the DBA decides the index
code is "@", the access code is "1" and the replication code
is "5". 1In this example both the local relation id and name
are the same. To enter the data type:

USE 1lrellist<return>
APPEND<return>
ireceipt<return>
ireceipt<return>
9
1
5<return>
(CONTROL Q>
The DBA now appends data about the local attributes.

This includes the local relation id and the local attribute

89

R T R S S .
W W, . L T

e e e T s

v
[

T

o
. e .
»)';A;,:“

" %"

N T

-

NASNE

’

v e
0
‘."

“. -
»

"
)

sk

‘s
s,

id, name and access code. In order to make the local attri-
bute ids unigue, the DBA assigns the ids "irecsnum",
"irecpnum" and "irecqty" to the local attributes "isnum",
"ipnum" and "iqty", respectively. He also assigns an access
code of "1" to each attribute. To enter the data type:

USE lrellatt<return>
APPEND<return>
ireceipt<return>
irecsnum<return>
isnum<return>

1
ireceipt<return>
irecpnum<return>
ipnum<return>

1
ireceipt<return>
irecgty<return>
igty<return>

1

<CONTROLQ>

Finally, the DBA matches the global and local attributes

to each other in the CNDD relation "gattlatt". This CNDD

relation contains the global attribute id and the local
attribute id. The DBA enters the following:

USE gattlatt<return>
APPEND<return>
recsnum<return>
irecsnum<return>
recpnum<return>
irecpnum<return>
recqgty<return>
irecgty<return>
<CONTROL Q>

Examining Data. If the DBA wants to examine the data in

any CNDD relation, he opens the CNDD relation and lists the
data. For example, if he wants to check the data in the

- relation "gattlatt”™, he types:

9@

4
i

- - - - . . - - . - - . - - o " mtwmt e A N A - -~ Al - . . " - - e .
e e N T T T T T T T e e T e T T e e
Sl e . A . RS

f
------- NS L. P P P T U . S SR S . - n T e T O T L AL A SN e
LY UL L v v R TGIRAL S DAL AU AT AL IAE SO S B S S AR A ST SO U WY ST ST TP ARL SR D . S AR W R, S SN A

.
'y

S
1]

..'.'
“h
PR
.
DA)
v h
»

v i
s
v

)
')
Vel
[

?q .5&#%%?11.C
EA IR .
0 BTSN TR

’
O

L e e e e A L N N M RS LR B 0 2% M ol iac i s aaian Lal® A S aa i iSal bemoliam Ingn i/ gon e ot Sot dutsn 4 P AR P s TP TN T Iy o

—v
.
-
‘.‘ A A

e

n

[}
P I A
e

USE gattlatt<return>
LIST<return>

"'

-

Correcting Data. If the DBA finds an error in one of

“
¢
.
4

the relation's records, he must note the record number of the
bad record. For example, if record #3 in relation "grellrel”
has an error, the DBA types:

USE grellrel<return>
EDIT<return>

The program will display:
ENTER RECORD #$:
Enter:

3<return>

;i dBASE II will clear the screen and then display all the

data in record #3. The DBA can then correct data in any

Y | | | | o =
, field by typing over the incorrect field. 1If a field within L_*
L
b a record is correct, type <return> to move to the next field. e
d T

of o~
i Deleting Data. If the DBA decides to delete record #4 f:j?:]‘

g

from the relation "grelgatt”, for example, he types:

Lte R
. s e e
. AN A
. . 'y
.] 0t
e P
e
-“— . PP

USE grelgatt<return>
DELETE RECORD 4<return> -

’
P
s

i This record is only marked with a flag for deletion and
is not actually removed from the relation. If the DBA wAants ﬂ
<Y
to unmark the deletion flag he types: f;3
i RECALL RECORD 4<return> $1
b

If the DBA wants to remove the record, he uses the PACK

command. After executing this command, the DBA cannot recall

R o
- a record E;J

e

91

.l
’
LG ™

e
DA

PERR Y .
et e s
......

St e e e . . L. (S
L . R e e .- . T, .

Bt a et N e e S e e Te e e T e e, e L - P T LN .. .
2 ahan LAl at POV AP AT WRR PO AT N S S AP R NP S S AR R L

-

vy =, -

P

to

Dt ey

APPENDIX C

CNDD Test Database

GREL_LREL
GREL_NAME GREL_ACCESS LREL_ID
suppliers 1 isuppliers
suppliers 1 dsuppliers
parts 1 iparts
orders 1 iorders
orders 1 dorders
receipt 1 dreceipt
inventory) iinventory
inventory) dinventory

GREL_GATT

GREL NAME GATT NAME GATT ID
suppliers snum supsnhum
suppliers sname supsname
suppliers status supstatus
suppliers city supcity
parts pnum parpnum
parts pname parpname
parts color parcolor
parts weight parweight
parts city parcity
orders snum ordsnum
orders pnum ordpnum
orders gty ordgty
orders date orddate
receipt snum recsnum
receipt pnum recpnum
receipt gty recqgty
receipt date recdate
inventory pnum invpnum
inventory gty invgty
92

Ve
.

NGRS R S LM 1P AR~ rag D e oA ohe~nde. Jha o r;"r_'ﬂmm
Ve

* .
T

»
a
)"'/

l’
P G SR

1]
[}

i
A 2,

e
W
o e

4, 2y g

v
‘y

2

-
l,)
.
.

LN

<5

T,
o

>
¥,

»

A

?

)

0y

SID_LREL
SITE HOST DBMS DBMS DB NAME LREL ID
ID NAME NAME TYPE
LSK UNX ING R ddbms isuppliers
LSK UNX ING R ddbns iparts
LSK UNX ING R ddbms iorders
LSK UNX ING R ddbms iinventory
LSS 100 DB2 R dsuppliers
LSS 103 DB2 R dorders
LSS 100 DB2 R dreceipt
LSS 100 DB2 R dinventory
LREL_LIST
LREL 1ID LREL NAME LREL LREL LREL
INDEX ACCESS REP
isuppliers isuppliers) 1 2
iparts iparts) 1 1
iorders iorders) 1 3
iinventory iinventory 0 1 5
dsuppliers dsupplie 0 1 2
dorders dorders 0 1 3
dreceipt dreceipt) 1 1
dinventory dinvento 1) /) 5

PRI ST PR P

Aa s an

93

e e e
LR
"' L
.

AR
VNI W)

ele'd

s SRR
RN
.
[T
aiilat,

[

'

.! ..' ‘-‘ .v' e T
VAl .
a' AVt

DL RTINS Vi R A YRR A A S AR ACE e N e e Pl i S ¥ - Ll S Al TR Y
LREL_LATT
LREL ID LATT ID LATT NAME LATT
ACCESS3

isuppliers isupsnum isnum 1 "

isuppliers isupsname isname 1 L

isuppliers isupstatus istatus 1 :

isuppliers isupcity icity 1
iparts iparpnum ipnum 1

iparts iparpname ipname 1 SNA

iparts iparcolor icolor 1 o
iparts iparwaight iweight 1 R
iparts iparcity icity 1 RN
iorders iordsnum isnum 1 v
iorders iordpnum ipnum 1 f“%
iorders iorddate idate 1 b,
iinventory iinvpnum ipnum 1 R
iinventory iinvqgty igty 1 N
dsuppliers dsupsnum dsnum 1 &:W
dsuppliers supsnama2 dsname 1 R
! dsuppliers dsupstatus dstatus 1 B
dsuppliers dsupcity dcity 1 Lfﬁ
dorders dordsnum dsnum 1 e

dorders dordpnum dpnum 1 T
dorders dordqty dqty 1 fﬁ?

dreceipt drecsnum dsnum 1 e
dreceipt drecpnum dpnum 1 ””q
dreceipt drecqty dgty 1 lfﬂ
dreceipt drecdate ddate 1 o
dinventory dinvpnum dpnum o e
dinventory dinvgty dqty) g
T
E.]
M- N
- .
. ST
94 .'.-:::-'
M Y
— AT e g e o T e e e RO OSEORNANY _.‘:SL::]

A A SRR A e MMA A MU R e Pl i A e (A S S o 4 R A AL A A £ Bt At A N g

»

'y
R
g .";

:* RACY|
Al '
'H " ‘e’
RS Lt O
ot

. .-l -

GATT_LATT

GATT 1ID LATT ID

r.-
NN - (N
v
.
o

e T

.

0
e

. T 'r"' v

[
' -

invpnum
invpnum
invgty

ordpnum
ordqty
ordsnum
ordsnum
parcity
parcolor
parpname
parpnum
parweight
recdate
recpnum
recqgty
recsnum
supcity

iinvpnum
dinvpnum
iinvgty
dinvgty

; invgty
- orddate iorddate
). ordpnum iordpnum

dordpnum
dordqgty
iordsnum
dordsnum
iparcity
iparcolor
iparpnane
iparpnum
iparweight
drecdate
drecpnum
drecgty
drecsnum
isupcity

e Sy
T R

’
.

AP "".'..'.. ‘.
1.

supcity dsupcity Fjﬁ
supsname isupsname e
supsname dsupsnane)
supsnum isupsnum N
supsnum dsupsnum ool
supstatus isupstatus —
Z supstatus dsupstatus O
=3 ...: .‘.:

';;!iu

= 95

)
“
et et e LN, 5 e e - o - - * ' . ' * te .
- e e PR -, . ~ - - .« e - - & - 3 SN e, W -
P P R I P D T LA PR I MR - - -, -, ~ ~ e L A S LR
PRI I P I I, '~ LI - K - - R c . R O . - St
OIS e e e R T i i A R TR LA S R TP

APPENDIX D

LNDD DATA DEFINITIONS

.
&8
aga)
«Salle
.k"‘: N

a0

.
%
>
)
, N Y
.

.
.
NAY
FL oL L]
R
e

Fi=ld Field Possiole
Name Definition Values
grel name 15 chars
grel access 1 digit
/)
1
gatt_id 15 chars
gatt name 15 chars
host 3 chars
CcDC
100
UNX
VMS
doms_name 3 chars
DBT
ING
DB2
TOT
IMS
dbms_type 1 char
H
N
R
db_name 15 chars

96

1” PR
1

* Y
:“l“"

Description

~
."l
h

Unique global relation name A

Lock to prevent access to l:'“'
any of the global relation's L
data during update S

Locked (no access)
Unlocked

Unique global attribute id

Global attribute name (does
not have to be unique)

Type of host computer
(contains a DBMS) which is
connected to another pro-
cessor connected to the
DD3MS network

CDC Cyber

S-100

VAX 11/780 with UNIX o/s
VAX 11/7808 with VMX o/s

Name of Data Base Manage-
ment System (DBMS) on host
computer

DBTG
ingres
dBase 1I1
Total
IMS

Type of DBMS on host com-
puter

Hierarchical
Network
Relational

Name of Database (DB) on
host computer

TaTaTER LT .

R R

S B A . Y T . . P et e T . .
A R A A O OO S T AL o L T NSRS

R N A A A B N ATl AR S A A A DAt N e 2 el b ecin A Ame o e T “v“wm
A et B AadaN

DRt

. -._',j

o

lrel _id 15 chars Unique local relation id

lrel name 15 chars Local relation name unigue
only in host computer DB

lrel index 1 digit Local relation index code

Not indexed on an attribute X
Indexed on an attribute e

[~

lrel access 1 digit Lock to prevent access to i
local relation's data during S
update \

) Locked (no access) ji}}
1 Unlocked E

2 digits Local relation replication
code

’..J
~
(6]
’. =
o}
17
ge]

1 No partitioning with no
redundancy L
S

2 No partitioning with com-
plete redundancy

3 Vertically partitionedl with e
partial redundancy2 E
by o v

4 Vertically partitioned with
no redundancy

5 Horizontally partitioned3
with no redundancy

6 Horizontally partitioned
with partial redundancy

7 Vertically and horizontally
partitioned4 with no re-
dundancy

8 Vertically and horizontally :
partitioned with partial re- PR
dundancy R

9 Horizontallg and vertically R
partitioned-? with no re- S
dundancy

97

A S O T O N Y T e T o T e T T T T T T T

Lol diariher Jaand

Ll AN s s e ofig 200

19 Horizontally and vertically ij
partitioned with partial re- e
dundancy e
g latt id 15 chars Unique local attribute id ﬁﬁq1
» - -“‘."‘q
. R
E latt_name 15 chars Local attribute name (does }{5%
2 not have to be unique) O
i. ":‘"'::j
. latt_access 1 digit Lock to prevent access to é‘“‘
, local attribute's data s
, during update RN
~ BRI
. 0 Locked (no access) R
i 1 Unlocked S
- seg_name 15 chars Segment name E{-ﬁ
. seg slize 4 digits Segment size A
N - o
i seg_seq 4 digits Segment sequence number
. field name 15 chars Field name
field size 4 digits Field size
'l .— field type 1 char Field type
. -
. N Numeric
: C Character
-
- par_name 15 chars Parent name
i chd_name 15 chars Child name
set_name 15 chars Set name ;f -
set_type 1 char Set type ;f~{
! N Numeric i .
. C Char I
. rec_name 15 chars Record name 1
i item name 15 chars Item name
: item_type 1 char Item type
. N Numeric
. C Char
! - item_len 4 digits Item length)
- N
v T
' RN
: 28)
g RN
y v
T
nband - S S) RN aials Tata tad

T T T T T T T e T R N T R N T R T T T W N e R e W T T R T e

sort 1 digit Sort code
e] Not sorted
1 Sortad
sort_key 15 chars Sort key name
sort order 1l char Sort order
i A Ascending
D Descending

L
1 according to Ullman (Ullman, 1982:411), vertical partitioning PO
is when the partitions are columns of the relational table. That DS
is, the attributes of the global relation are in different local RN
relations. T
2 Redundancy means some of the data in different local rela- i; ;
tions is duplicated. 9
3

Horizontal partitioning separates the table (relation) by rows
(tuples). 1In other words, each tuple of a local relation con-
tains all the attributes of the global relation, but no local
relation contains all the tuples of data.

4 There are at least two vertical partitions, one or more of
which is further divided into horizontal partitions.

5 ©There are at least two horizontal partitions, one or more of
which is further divided into vertical partitions.

99

Tl R T PR A - . .
o2 e oa WL S I S IR U S 10 SN DIPUEN G St DS i G AP

A A R e I S 2 A e e g v o
R A A AR AC PRI NIl Sk A S AR G~ 10 B 8 S A e s et o

APPENDIX E

MESSAGE FORMATS

Description

This appendix shows the format for messages transferred
over the na2twork in this implementation of the LCDBMS. This
is a subset of those messages which Boeckman designed
(Boeckman, 1984:Appendix C) that deal with the directory
system. Changes from the original Boeckman design were

necessary because of the methods of implementation.

100

e g e g e T T T T T e e

Ao tus Ao dealfon n . % &

A O A A R T T I AT § S e

CNDD Data Location Request

Field Field

No. Definition Vvalue Description
1 1 char STX Start of message
2 3 chars CDL Message type
3 1 char LF Field delimiter
4 10 chars System ID at destination computer
5 1 char LF Field delimiter
6 10 chars System ID at source computer
7 1 char LF Field delimiter <
8 4 chars Unigue process ID -]
RS,
. . ey
9 1 char LF Field delimiter i]
19 18 chars Time stamp (HH:MM:SS.T) .
11 1 char LF Field delimiter
12 18 chars Password
13 1 char LF Field delimiter
14 1 digit Location Type Request Code ﬁ?;
A
1 Request locations of all attributes E‘w
within the following global relation; AR
no attribute names listed immediately R
after the following relation name e
2 Request locations of some attributes :;Q:
within the following global relation; E 3
the global attribute names listed RERE
after the global relation name - see S
description in field 18 ;ﬂ
15 1 char LF Field delimiter A
1
16 15 chars Global relation name” T
17 1 char LF Field delimiter o
oy
P
T
}:j
.-*.."1
101 ,’_.'__;,1
'..‘A‘.;‘
IR
P
.‘:\.‘:1
e : L]
e R e R e e D

18

Varies

1 char

ETX

1<LF>
student<LF>
2<LF>
faculty<LF>
name<LF>
address<LF>
1<LF>
staff<LF>
CETX>

a. If field 14 contains "1", repeat
fields 14-18 until all relations and
attributes are listed, or

b, 1If field 14 contains "2", list
only the names of the global attri-
butes within the previous global rela-
tion for which locations requested.
Place <LF> after each name. When

the attribute list is complete, repeat
fields 14-18 until all relations and
attributes are listed.

End of message (N = last field)

The CNDD will send the locations of all the attributes within

the relations student and staff and only the locations of the

attributes name and address within the relation faculty.

* If the length of a name is less than its maximum size, a
LF is placed immediately after the names without any padded
blanks before the LF.

e T P
R vl R AT L SRR

..... T R R P
LABRPL P AP SRS T,

PR

192

PR P
nC e e .
~. -

N ~

A .. - » - - - -
R BRI TR L A R S R o, Wt R . . ‘
PO R S Vi Ve T e WSS WAL DRSS TR L -‘A\{'. TN

.'...;" XAy
PR PUID |

—Y"'""". L
ARG S RS
PR R

]

CNDD Data Location Results

Field Field

No. Definition Value Description
1 1 char STX Start of message
2 3 chars CDR Message type
3 1 char LF Field delimiter
4 16 chars System ID at destination computer EQE
5 1 char LF Field delimiter fi%
6 10 chars System ID at source computer i;;
7 1 char LF Field delimiter : 8
3 4 chars Unique process ID E?
9 1 char LF Field delimiter i::
13 10 chars Time stamp (HH:MM:SS.T)
11 1 char LF Field delimiter ;i?
12 2 chars Rs= Relation name in next field i:;
13 1 char LF Field delimiter
14 15 chars Global relation name® ,;?
15 1 char LF Field delimiter igf
16 2 chars A= Attribute name in next field ;;}T
17 1 char LF Field delimiter &E}
18 15 chars Global attribute name* é;:
19 1 char LF Field delimiter éi{
20 2 chars L= Data location in next field ;ﬁ;
! 21 1 char LF Field delimiter Eﬁ_
E 22 19 chars System ID where data located, or ?“
; g Data not found anywhere in DDBMS;

skip to field 38b; do not fill in
the following fields, or

193

.........

......
o - . T PR S Y
- 2adeses samnr ale s

1 Access locked to data being updated
char LF Field delimiter
chars DBMS name
DBT DBTG
ING Ingres
DB2 dBASE I1I
TOT Total
IMS IMS
char LF Field delimiter
digit DBMS type
H Hierarchical
N Network
R Relational
char LF Field delimiter
chars Database name®
char LF Field delimiter
chars Local relation name*
5 char LF Field delimiter
;f 32 15 chars Local attribute name*
r:._‘~
_ 33 1 char LF Field delimiter
- 34 1 digit Index Code
. g Local relation not indexed on a field
1 Local relation indexed on a field
35 1 char LF Field delimiter
36 2 digits Replication code
1 No Partitioning with No Redundancy
{unigue local relation contains all
attributes of global relation, and
data are in only one place)
2 No Partitioning with Complete
Redundancy (local relation containsg
all attributes of global relation,
104

s
T
L
Ve

»

’
.

.

222
LA
.-‘-

av
D
-
Cars

o

-
Pl
R

Nl .

T R R R e S N N e e S O S IR - e " T "

but data are fully replicated in at
least one other place)

3 Vertically Partitioned with No
Redundancy (different subsets of
global attributes within global
relation in one or more local re-
lations, but no data and non-key
attributes are redundant)

4 Vertically Partitioned with Partial
Redundancy (same as 3, except some
data and non-key attributes are
redundant)

Horizontally Partitioned with No
Redundancy (several local relations
contain all attributes of global
relation, but no data in any relation

wm

are redundant) iﬁ}

A

6 Horizontally Partitioned with Partial e
Redundancy (same as 5, except some D

data are redundant)]

7 Vertically & Horizontally Partitioned
._. with No Redundancy (global relation
contains two or more vertical parti-
tions, one or more of which further
divided into horizontal partitions;
no data are redundant)

8 Vertically & Horizontally Partitioned
with Partial Redundancy (same as 7,
except horizontal, vertical or both

.
- partitions have redundant data)

- 9 Horizontally & Vertically Partitioned
ii with No Redundancy (global relation

> contains two or more horizontal par-

. titions, one or more of which further
= divided into vertical partitions; no
.. data are redundant)

& 10 Horizontally & Vertically Partitioned S
with Partial Redundancy (same as 9, [
except horizontal, vertical or both

- partitions have redundant data)

37 1 char LF Field delimiter

N 185

W e P T e S P U PO SO e e T
B A AP T T T T T T T e s e e e T e e e e e e e e T e T e s
.....

. e a e e
Ly - - - . v, . L] : - .) " °, NIRRT a "~ * o * ot ..
e R I P S A SR R TR A) 1 - Catte vt *

e RN AR W A, WA T U SN -.!- l.,- “L.‘\‘."‘.’-‘."‘.". DAY METLIRTR N R N

TN T A T T e AN L AT TR YT s

38 Varies a. Repeat information in fields 20-37
for each local relation-local attri-
bute pair that associates with the
global relation-global attribute pair.

b. When there are no more locations to
list for this global attribute, list
another global attribute within the
global r=lation as in fields 16-19.
Then repeat step a and this step until
there are no more global attributes to
list within this global relation.

c. List another global relation as in
fields 12-15. Then repeat step b and
this step until there are no more global
realations to list.

N 1 char ETX End of message (N = last field)

e
. N
- O
e SN
.‘ -
- * If the length of a name is less than its maximum size, A
.r LF is placed immediately after the names without any padded
A blanks before the LF.
o 106 -

- . . e e m e .
Ca® e e e g e e Pl At St e ATt e e
. - B AR P LN S A e

. “ > - -
.. - - . - e - . - - - - T o o~ e > N - o B . ~ . S et - = R toa . - . . s, .
R A g S S o RS o L St A ST T A T T
— PO .- . . - e - - X

e T e T - b - wrr—— - ¥ e Yk > vy
WL Te TN T T T =Y R A AR WA e Tl -hie el i A Sl it S dun S By 4 weh OISt A i Sl S s St i A et et hatag Aatat Sart A (A 00 A S - it b he A e 4 denc

- CNDD Update Message to ECNDD

S and

!i i LNDD Updates from CNDD

X Fizld Field

b No. Definition Value Description

p .

b~

o 1 1 char STX Start of message

b 2 3 chars Message type

- CUM CNDD Update Message to ECNDD
LUC LNDD Updates from CNDD

3 1 char LF Field delimiter

3 19 chars System ID at destination computer g
]
[5 1 char LF Field delimiter T
Pa 6 18 chars System ID at source computer ;QJ
%‘ 7 1 char LF Field delimiter Efﬂ

. 8 4 chars Unique process ID
Y 9 1 char LF Field delimiter R

r

13 1¢ chars Time stamp (HH:MM:SS.T) fiﬁ
N 11 1 char LF Fisld delimiter L
12 1 char Update type ffg
A Ada L‘}
: D Delete R
M Modify AR
- oS
: 13 1 char LF Field delimiter =y

If update type is delete or modify, fields 14-33 must contain
the old values which are used as a combined key to locate the
data. Only fields 34-54 contain the modified values.

1

4
.. .'.'.'£

ahddad

L)

14 15 chars Global relation name*

e

ﬁ 15 1 char LF Field delimiter

16 15 chars Global attribute name?

"-"r

PN P N N
PR R N e,
S A R R
P T T . SO
[N s R
aala a Acd

AN
ot
» I‘ l'. .

3

17 1 char LF Field delimiter

-
4.

:fj Tﬁ}

)

JL
Ve,
Aty e
At

PR R e T — — -
A N IR A A A A ke St 4 AR AN At DACMATA At n ok ted talk el fed et Tt ol 000 13 0L I 0t Aa A £ LR 2y o/l oo et
: " Y v F o, vt 2 ...-.F.‘r:v'.'j

. 18 19 chars System ID where data stored
: 19 1 char LF Field delimiter
20 3 chars DBMS name
DBT DBTG
ING Ingres
DB2 dBASE 11
TOT Total
IMS IMS
21 1 char LF Field delimiter
22 1 char DBMS type
i Hierarchical
h Network
R Relational
23 1 char LF Field delimiter
24 15 chars Database name®
25 1 char LF Fi=2ld delimiter
.ﬂ? 26 15 chars Local relation name*
27 1 char LF Field delimiter
28 15 chars Local attribute name”*
29 1 char LF Field delimiter
30 1 digit Index Code
g Local relation not indexed on a field
1 Local relation indexed on a field
31 1 char LF Field delimiter
32 2 digits Replication code (see description in _;
CNDD Data Location Results message) e
33 1 char LF Field delimiter "?_'-1
(
For Add or Delete Update Type: =
34 1 char ETX End of message; do not fill in the iﬁi
following fields e
[108 el
.. '_~.“:\
i i\:-:.fl
I N'q
. T

e T e T e e e '.‘_‘.':..‘.',' '_b.‘_. R A AT IR I N N R 1
L RIS PSP O A A BRI RO DI S T S .

E——— ot el il el el o ol oo b Ak ‘4_!‘)."_..' n‘f;";‘\;‘\s‘?-"‘.“ ‘.-‘.'\ .’)‘_‘»‘ s e e - T e e e . - -.}
—— R T LA

."'.‘- P D A AL Sl G AR AN SR ARG R SN ol et e afi i e A 2 SRR - ARt i~ g

i
E For Modify Update Type:
i List only the modified values in the following fields. Put
! a single blank in any field not modified.
E 34 15 chars Global relation name*
E 35 1 char LF Field delimiter
! 36 15 chars Global attribute name*
; 37 1 char LF Field delimiter
i 38 19 chars System ID where data stored
! 39 1 char LF Field delimiter
10 3 chars DBMS name
41 1 char LF Field delimiter
; 42 1 char DBMS type
43 1 char LF Field delimiter
14 15 chars Database name®
' ..‘ 45 1 char LF Field delimiter
46 15 chars Local relation name®
47 1 char LF Field delimiter
' 48 15 chars Local attribute name®
| 49 1 char LF Field delimiter
50 1l digit Index Code
) 51 1 char LF Field delimiter
52 2 digits Replication code
53 1 char LF Field delimiter
J 54 1 char ETX End of message
* If the length of a name is less than its maximum size, a
i LF is placed immediately after the names without any padded

i blanks before the LF.

eSS s et e e .

169

Ay

¥
M)

.

f
bbb

...-..
: J U
,1
r
. AL P
A A
| , .

]
¥

0
DTSR

Cte Lt
v e
L VTt '
PN RN L
. .t 2.
e . . o

, . . « A

'
.
PRy]

v
’
[

.
» e
Foal gl gt

t
' :
AP VT g)

SHEEY Sy s

ed

Field Fi

No. Definition

W S T T T T T T T p—"
DN N SRS aeh - AN VR N
~ 9 - - LT A R Ty

eld

CNDD Updates
and
External LNDD Updates

value Description

1 1
2 3
3 1
4 10
5 1
6 10
7 1
8 4
9 1
13 10
i1 1
12 1
13 1

char

chars

char

chars

char

chars

char

chars

char

chars

char

char

char

STX Start of message

Message type

cup CNDD Updates
ELU External LNDD Updates
LF Field delimiter

System ID at destination computer
LF Field delimiter
System ID at sourcCe computer
LF Field delimiter
Unique process ID
LF Field delimiter
Time stamp (HH:MM:SS.T)
LF Field delimiter

Update type

A add

D Delete

M Modify

LF Field delimiter

If update type is delete or modify, fields 14-29 must contain
the old values which are used as a combined key to locate the
data. Only fields 30-46 contain the modified values.

i 14 10 chars System ID where data stored
' 15 1 char LF Field delimiter

i 16 3 chars DBMS name

b DBT DBTG

: -~ ING Ingres

: llo

RO el A o i e b oo

—— e een e . A

LR
'-J.

T
A wtatalal S

S

I o X
Voo

Ak kAo ot

: I M A AR AR ANt Bt e SR tale b A A W Ses fi Yid S £ e a0 I BAR Ao At Al ar
i
v
- DB2 dBASE II
. TOT Total
; IMS IMS
2 17 1 char LF Field delimiter
s 18 1 char DBMS type
[}
i H Hierarchical
s Network
R Relational
19 1 char LF Field delimiter :{é
l 20 15 chars Database name* ;'f;
. . i
21 1 char LF Field delimiter el
22 15 chars Local relation name” ;ﬂff
.:-'_1
. 23 1 char LF Field delimiter g
24 15 chars Local attribute name® Fff}
25 1 char LF rield delimiter
l ..‘ 26 1 digit Index Code ',-'.': f;-
") Local relation not indexed on a field &iF:
S 1 Local relation indexed on a field T
= '.s.":.\
X -
. 27 1 char LF Field delimiter T
ey
i 28 2 digits Replication code (see description in L%;
. CNDD Data Location Results message) R
29 1 char LF Field delimiter -'ff
3 For Add or Delete Update Type: N
30 1 char ETX End of message; do not fill in o
following fields J
For Modify Update Type: e
.»»'.‘-l
l List only the modified values in the following fields. Put P
e a single blank in the fields not modified. NS
N e
)]
. 30 10 chars System ID where data stored]
N IOAAK
~ AR
J 31 1 char LF Field delimiter N
- - E 1
T S
: 111 i
i g ﬁ
EAENE
...."-4
e Tm . D e L L T U U S . N . ey - ".‘.‘J
Mas e T . S AP I Pt T e et L L e e e e

o RIS .« e .- PRI P N R PRI
A S S A N DU LG S & R AT R AR Ce At e SRS
- " RS . A S P . RORTIASRIR .
a Ata A 4 aa 2 . Il At Te e Al A el al e L

A e S AR R e e vt oae oo e ot v T o YT ——————y
32 3 chars DBMS name
33 1 char LF Field delimiter
: 34 1 char DBMS type
. 35 1 char LF Fi2ld delimiter
i 36 15 chars - Database name*
;l 37 1 char LF Fi=21ld delimiter
E 38 15 chars Local relation name*
i 39 1 char LF Field delimiter
. 40 15 chars Local attribute name*
E 11 1 char LF Field delimiter
i 42 1 digit Index Code
g 43 1 char LF Field delimiter
EE 19 2 digits Replication code
i .. 45 1 char LF Field delimiter
i 46 1 char ETX End of message

°

f -

B R
=

: 9

. * If the length of a name is less than its maximum size, a - -

B LF is placed immediately after the names without any padded R

- - blanks before the LF. F 1

S RS

5 112 :

¥

s PITRII PSRRI A PRI .-: -.;- : e A e ;: :_._:‘ . ,4:(--_-_-:1_.-._.:- [:\.-'_'-.:'

Local Query Reguest Message
and
Remote Query Request §g§§9ae

Fi=1d Fi=1ld ,;:
Wo. Definition Value Description l;ﬁ
1 1 char STX Start of message 2;3
2 3 chars llessage type :hf
LQR Local Query Request Message ;ﬁ
ROR Ramote Query Request Message
3 1 char LF Field delimiter b
4 13 chars System ID at destination computer &:q
5 1 char LF Field delimiter :
6 10 chars System ID at source computer 3;j
7 1 char LF Field delimiter 571
T
8 4 chars Unique process ID '“1
9 1 char LF Field delimiter :
13 10 chars Time stamp {HH:MM:S5S.T) S
11 1 char LF Field delimiter ‘
12 10 chars Password ;ﬁj
) 13 1 char LF Field delimiter L*'*
;- R
: 14 varies Query :ﬁi
;; 15 1 char ETX End of message ;EZ
-
5 =

113

BEGAARRAT MY 0% 53 o N M AL G rshisg ted tat h ek et Akt LA TATAL 2 A0 W e 10 s\ e P& 20 b/ oy ot e O S n— —

Local Query Results

and
Remote Query Results
Fi=1ld Field
No. Definition Value Description
1 1 char STX Start of message
2 3 chars Message type
LQOM Local Query Message
RQM Remote Query Message
3 1 char LF Field delimiter
4 10 chars System ID at destination computer
5 1 char LF Field delimiter
6 10 chars System ID at source computer
7 1 char LF Field delimiter
8 4 chars Unique process ID
9 1 char LF Field delimiter
13 10 chars Time stamp (HH:MM:SS.T
11 1 char LF Field delimiter
i 12 varies Query Results
13 1 char ETX End of message

14
)

114

btk o nd

P

CRIP
AR
Kl _-".'.
PR
L e et
‘e

LR IR S I D T I N N R
W P e e T T T et e e T e L T e e e . 5 C et - .
ORI AN R ‘o"w'\"-’\.‘.'.'-'A_"'-'-“.'. I B R TP LT [e e e e e e e
RS I Tl B Y Y SR BN U R NT P PSR Lty et P N N TP T IR T N S
st i 2, L PSR VRPN Y - PP 2N

TIC
b 3

115

PUBLICATION AR

.....

_I

,.

p i)

!«?

S

Report on CQ}

DESIGN AND IMPLEMENTATION OF A Y

CENTRALIZED DATA DIRECTORY SYSTEM FOR A E.'.'

'.,_"

fo .

DISTRIBUTED DATABASE MANAGEMENT SYSTEM (:{{

A
Introduction &ﬁ
r'_'fj

Many organizations store the data used in their various ne
computer programs in a database. This allows them to cen- ;;‘
tralize the information so that it is easier to retrieve and NS
change the data. A centralized database management system :Sf
(DBMS) consists of software residing on one computer which }j;
structures the data and manipulates it so that many applica- &f
tion programs can access it. On the other hand, a distri- 2;:
buted database management system (DDBMS) manipulates separate EE

databases stored on host computers which are linked by a

network. Distribution is transparent to the user so he can Eii
access any data in the system without having to know where it Eij
is stored. A directory system, rather than the user, keeps E:
track of the data locations. iig

Imker designed a DDBMS using the three types of direc- i
tories (Imker, 1982:63-79). A centralized directory, called a
centralized network data directory (CNDD), is stored only on .ji

one system. It contains a conceptual view of the data en- L

B 4
- tities in all the DBMSs. An extended directory, called an o
& i
p- extended centralized network data directory (ECNDD) is a v
. \.:_:.
- small local version of the CNDD. Whenever a site requests the Ei

116 :A::'.

e . Y

T WU v) v s W
S DRI AR A MR A S DAL KRR i s g M A N AR i 4 e Sttt M AR A & Gl AR A A N T
Bt Y B - DL g - - Dl . . S

|

% il SN

o

e location of data from the CNDD, the local site copies the g%
T information into its ECNDD so it does not have to ask the zé
CNDD for the location again. The third type of directory is %q

the local network data directory (LNDD). This is a directory Eﬁ

of the data in the site's local DBMS, :?ﬁ

Problem R

This research, done at the Air Force Institute cf ‘fﬁ

Technology (AFIT), further refined the DDBMS design of Capt '?i

John G. Boeckman (3oeckman, 1984). The objectives of this :a

research were to: iﬁ

a) Design, implement, and initialize the centra- ii

lized data directory (CUDD) ig

b) Implement the software to request CNDD data EEI

‘—’ c) Implement the processing to retrieve data loca- E;
tions stored in the CNDD Ei&

,o

This effort followed the generally accepted life cycle ;ﬁ;

1 4

r.l
4

method, namely: a) requirements analysis, b) detailed design,

c) implementation, and d) integration testing.

F
e
YR

ot
v e M
L

«

B

[

Analysis of Requirements

The central site has the following functions to control
the directory system (Boeckman, 1984:20-21):

1. 1Initialize the DDBMS at

¥
2. Service the Centralized Network Data Directory :;
(CNDD) site requests :i%
‘h‘-.-
3. Send updates to Extended Centralized Network ;Qf
j:::,:.‘
117 e
: Lt
S e e A I T e L e I NI T e e e s e N R N

LN I S IR T

O A RN S SR e Dl o S e Jrie S B AR U e Bty Y40 e Jhhe Bt i - A i T et b Yl B o e e

Data Directories (ECNDD) which contain copies of data changed
in the CNDD.

Initialize the DDBMS. Initialization of the DDBMS

occurs when the system starts up. Different procedures occur
depending on whether the site is the central site or not. If
it is the central site, the software initializes the CNDD,
queries the other sites, evaluates their responses, and sends
a startup message to all the sites participating in the
DDBMS. 1If the site is not the central site, software initia-
lizes the site's database and responds to the central site's
query. |

Update the ECNDDs. The central site is also involved

with all directory updates. If data changes at a site and
affects its local directory (LNDD), the central site must
update the CNDD. The central site also must determine what
sites had requested the locations of the data that changed.
Then the central site sends changes to these sites so they
can change their ECNDD.

Service Requests at Central Site. Just as with the

other sites, the central site must process several types of
requests. They may be either CNDD data location requests,
CNDD updates, or pending update requests.

To service CNDD data location reguests, the central site
searches the CNDD and returns all the locations of the data

requested.

118

.- T .-,
ot . . e e - Ry

-t . - . WL e s B PR S S N M LS S o . ST
T AN T e e e N Tat. . P A A R L A PSP P P N I

ALY MR SRS AR R

RSOOSR T A S A A R S S IR

Pl Lol M O GRS i B

e e

.

"
*y
o,

ey

R Y
e S % N

[,'(¢

e

el [
el
Yo

Ay
I‘ .

F

L.
t
N

." <, o, DA A, | R
. % v e % (R .t et
., /""' '.[/- e . -.:,- ' .

-7 e .
P

e
e e tat

e T T T A N TR T T NN TR T e e, e T Dt 4 ChASE B Ty
s - - =% PO A I M S e DS At A |

P e - 2 v
I A e M Nl S A U Tt Mg 3t = 2n g s

»

<, 7,
‘1'. 1

t'

.
X

l. V‘ .
* o“".:’

To service CNDD updates due to LNDD updates, the CNDD

site receives the CNDD updates from another site and matches

4

A

the received data against the data in the CNDD. Next it

. .
o
a2

updates the CNDD and sends an update acknowledgement message

'-"1.']

.
A‘J'

to the sending site. Then it sends updates to the ECNDDs
which also have the data. Finally, the central site receives
an ECNDD update acknowledgement message from the other sites

which received ECNDD updates.

The last CNDD reguest type is servicing pending update
F: requests. For this request, the central site adds informa-
ij tion to the pending update file of an inactive site. Thié
file stores all changes users make to data stored in sites

that are temporarily disconnected from the DDBMS. Also, the

.‘_’ central site sends the results of the update back to the site

which originated the pending update request.

General Content of Data Directories

Jones (Jones, 1984:149-153) presented what information a
data dictionary should contain when using a global relational
data model in a heterogenous DDBMS. It included information
about the databases in the system, what relations were stored
in each database, the attributes of each relation and other
information needed to map-~or translate--from the global
language to a local database definition language.

Based on Jones' research, the following information was

included in the CNDD and ECNDD:

B a. Site identification of source (identifies the
119
e A L e e e Sl e I e

Y
3
g
"

T TATARA N O Y OV AT R

» ~ . N . -t e . -
- . St e e T et A .oe L. L. L e et e et T e e T
> ™ | I PR ot o e T P T A TP I A I S e
PO FRALTR TR I PRI O, I I R SR N RPN S8 N N - PN S 1'.-'._'...\‘.'.;4'}

network address of the site)
b. Host computer (e.g. UNIX VAX)
c. DB name (e.g. AFIT, Demo, etc.)
d. Global relation name ("Global" name is a common
name for possibly several local relations with different

names stored in separate databases. A global relation iden- -

tification was not needed because the global relation name

must uniquely identify the relation.) ﬁ?a
e. Relation replication code (specifies whether %ﬁﬁ
data is duplicated in several databases and how the data is '53
partitioned) ;f;%
. Global attribute identification %7j
g. Global attribute name i%:£
h. Local relation identification ("Local" relation ffﬁ
is a relation stored at a local database. If the local DBMS %Tﬁ

was a network or hierarchical type DBMS, the entity was

translated to a relational type before storing it in the

7
U]
3
.

’
’

directory. In a concurrent research effort, Mahoney

M)
""

i

» 1 s
v T ettt
. a

s

(Mahoney, 1985) stored the mapping information needed for

f
4, I,

- L
l'll

this translation elsewhere.) A
B
i. Local relation name A
j. Local attribute identification Ry
k. Local attribute name I:fl
P
In addition to Jones' requirements, the fcllowing items ‘;f«
S
were necessary to implement the directory system: 'gzﬁ
S
a. Access code (prevents CNDD from releasing data rgq
120 ?;‘.:'_’.i
-'_: -::‘1
. Y
'

FIASCIRY
.....

LR DR L B S At nill sl el cadin - ade 4

P I S N P s AR R M Ay S/ R g oA - e - gt ing - ha o T WP TIN

S
-‘ l’..J

that is being updated)
b. DBMS name (e.g. DBTG, INGRES, dBASE II, Total)
c. DBMS type (e.g. hierarchical, relational or

network)
d. Local relation index code (specifies whether

the relation is indexed on a particular attribute).

As for the LNDDs, they contain the information above

AR
o
wals
& 4)

\l "v
\

[

i
L ahh

except their own site identification and site name. They

AL

also contain other information needed to map data definitions

P
] ?“
o
o
o

. '
l"‘_" l'- I.l
. s ' o [
« A ‘e .]
» - v . . .
i . ;
'.l'l-

from one type of DBMS to another. The LNDD should store the

)

mapping information because the processing does not need the

Y R

information until just before sending a query to the host

I3
[

database. Therefore, when a site receives a query to send to
its host DBMS, the processing uses the information to convert
from the global relational data descriptions to those used

in the host database.

Detailed Design of Servicing CNDD Site Requests

The structure chart in Figure F-1 shows three different
kinds of requests the CNDD site processes: data location re-
quests, CNDD updates and pending update requests.

The following section explains in detail how the CNDD
site services data location requests. The next section ex-

plains the conceptual procedures for updating the CNDD. This

paper does not explain the detailed design of servicing
pending update requests. However, Boeckman completed a gen-

eral design in his study (Boeckman, 1985:34).

3
.
3
]
3
3
9

121

e Yt >utu e el

Ll A A Mot it 4
S AN A Y

Ty

AS

Al N

TRy

M gl ath i o

2315 QAND 3e sisanbay aoraias

*T-d4 2inb1g

et

S18 O3 31vOodN
SOOI IITANIS

a'cLeitt

831 v0dN
OOND DIAUIS

SNOTLIOMNN STV
WMOAL 3N

§31vadn

v
31vodn
OooND3

ccere

321Au38

[N A4 3N 4

$153 0O
NOIIYI01 YIV0
OND 3T71AM3S

BY14 youy3
NOI1YX01Y viv0

$1S3INO3Y
NO11Y307 vivOo
ooNd

- '.L.“ .

122

O
-

DR
FCIRPRC TIPS

= aS
Praby

SR
PP PR SRR

et ave= ~ e e M m TR = g
T e A Al Rl At i i N e A i o et e N Yy e————

) 4 ' Ly ;’
:.: ,_ o
[Data Location Regquests. For data location requests, the e
roren oy
i - central site first verifies whether the CNDD Data Location }ti
s
- Request message contains the correct password in order to ’
? access the CNDD. The software then extracts information from
o

the request message in order to build a standard header for
the results message, which will contain all of the data F;ﬁ

location information retrieved from the CNDD.

. Figure F-2 shows four high-level steps of servicing a

. Since the user's gquery is written in a relational data -
. manipulation lanquage, the query includes names of relations -5
e

and attributes. From the user's viewpoint these relation and ';ﬁ

tj attribute names are global names. 1In other words, they are f&]
= names used at the highest conceptual level with which the 571
._' .-t‘i-:i
N user is familiar. In contrast, the local relation and attri- ﬁﬁﬂ
i bo bute names are those names used in a specific host database. ‘_‘;.'
v 4

The local names may be different from the global names or the Eiﬂ

Tl

same as the global names. oo

)

.‘-:,H

t Y

)

CNDD data location request. First a module gets the request

l:t.A
P
1""
'J ‘jl‘

:ﬂ type and a global relation name from the request message.

¥ s !
‘l"/l

“d g" ‘a "‘l

ettt

% This step was added to Boeckman's design because of the X
’ decision to combine several request types into one message R
‘ format. ©Next, the CNDD processing extracts the data loca- ';
i tions of one relation at a time. Then it reformats the 1
A information returned from the CNDD into the CNDD Data Loca-

. tion Results message. These three steps continue until the

-

i CNDD has found the locations of all the relations and attri-

; 123 }?,
: ey
: AN

et e, P, . 3 T ettt
" - B A T e e T e e e .t R LR RSP S
RIS . T o T o TP S Sy Rl N TR

ST RERAE RS . AR e R S e e s
" _-'-'-A}l'h‘t‘“'g L I N W AL A A LR S Cote e PP . PSS S I - Te L S e y
A acura . P BRI B T I S N A L R S e T B T SO A

- oot
CTea™LS -“d

hii A A o B agde AR Sl S el

W R T RO

et

TN T

B i A A DACRA S yte e 3 baih fa bt S0 2k Sy A0 AL A Ay vty i Nl

.
)
S LIRL T s s KR ey R

i Bt Sagh Al s |
D

sisoanbay uo13ed0T BIEQ QAND 9D1A13S

*Z-3 danbtrg

34
JRONL 3N ON3S

e TLLLTL

SNOT1VI07 viv0
O3NIWN3130

SNATILVYI0
vivo OONd

L B "M = 2 0 %

vivo OOND
=00ND 1viNO4 1ovuix3

Pwnos
1S3N03
NO11V301 VivO
Qo)
MG SNOTIYIOY Viv0
03NDIL30-00
/«zﬁﬂ

UK 5 5 S 4

$1S3IN0ON
NOI1vI01 vivd
oD 321AYIS

LR e %l %l S B
I9vES M
1SIND3Y WONS INYN
NOIiYVI3M WB0W ¥
3dAs 21SIOI 130

N | Y s R

124

IR L S S)

Sl e T e
PR IRC I USSR L I

R RPN
ot am e ot
LIPS

ST

l.'

HR O AP A S A AR i i Al A Bt i ey

butes in the reguest message. Finally, the CNDD site sends

the results m2ssage to the requesting site.

CNDD Update Requests. Another function of the CNDD is

to service CNDD update regquests. The following is a concep-

tual idea of how to process the update. Part of the process

must be manual because the central database administrator

(DBA) responsible for controlling the update may have

to make some decisions before the update can proceed. For

example, if a new relation is added at a site, someone has

to decide to which global relation(s) the local relation

belongs. He also has to match the local attributes within

the new local relation with the global attributes within the

global relation. To explain this process, Figure F-3 shows

the upper-level modules required to service this request.
First, when the CNDD receives an update message from a

site, it locks the access to the global relation's data.

This prevents the CNDD from sending to a reguesting site any

data location information on the global relation that is not

current.

Second, the CNDD site services the updates to the CNDD

sent from sites that intend to update their LNDDs. The CNDD

site
nal, explaining the changes to be made and writes the same
information to a file.
the information off-line. After making the necessary deci-

sions, like global relation-local relation mappings, the

125

LR R e

software displays a message on the central site's termi-

This allows the central DBA to review

WA P TP W WP

EENER I Eafe At AR A S it A Db il (B Bl Bt Bk v Ayt Bt) gt B i e |

te
pe.

]
d
L. |

ARSI e At e Sttt A St e et S oy

LA TN S a e i o Ay sar s

HAP R
F—

sajepdn UAND 9O0TAIBS

*£-d4 sanb1y

............
LN .

.......
.......

-S4 S A 4

QoM XJOWN

L4 1 3 40 i

e LULTTL

el it

YYD OPONMYHD HIIA SO

SOONT ONY *0rD3

01 §31v0dN ON38

WO¥4 §31Y0dN
OOND 3JIAMIS

trettrteectee

wm.mh
N1 1207
YivQ ¥O4 615303y

o) 1IN0 X001

Oono3

31vodn $31v0dN $31v0dN
OO

oo

-5 5 4 AN 2 o

$31v0dN
OOND 321443

S A A A S

126

]

'_;'_ A-‘.
e T e
BT IR LRI P
aasalaloas

C I Y
WP L PN I Y

PV S TR Yl DY

taita A

et et et .
AR

P

"

PRI B3

-
OO .
. e . .

- Al T T o S S ?Aq-_-VA'..<~'._-'_ Lo i

central DBA manually changes the CNDD when the system is off-
line. He also marks that the update is completed in the
file that contained the information on the update.

When the DDBMS comes back on-line, part of the CNDD
initialization processing checks this file. If there are
CNDD updates marked as completed in the file, the CNDD soft-
ware checks which ECNDDs and LNDDs must be changed because of
the data just changed in the CHNDD.

In the third major step, the CNDD sends updates to
ECNDDs and LNDDs which must be changed. When the site which
originally sent the update to the CNDD receives the LNDD
update message from the CNDD site, it can finally update its
LNDD.

The CNDD site waits for an acknowledgment message from
the ECNDDs in the fourth step. When the CNDD site receives
all the ECNDD acknowledgement messages it expects, it unlocks

the CNDD in the fifth and final step.

Partial Implementation

This project implemented the same DDBMS detailed design
described in Boeckman's thesis. The implementation followed a
top~-down programming approach. Because of the time con-
straint and scope of this research, not all the DDBMS was
implemented., Since the centralized network data directory
system (CNDD) was the main thrust of this effort, this phase
completed all of the processing to make a request for data

from the CMDD and to get the data locations from the CNDD.

127

L R T N O P T ™ N Ny P

U BRI
LI AR

L
[4
»

"'l »

B

‘v Sa fay)
J .-'i .

_..,.
v s T 7
l' o' y’
s
U

o]
.l .--' '_‘J N "i

.

R I I
- s te ey A
o : . '
R LA L L
ot AR AT '
. TR
d PSR

St .
PRI TR LA

AYLGECL R SN LS PR TR SR TL L LTS AL (Al e (o S st st S g uir s asie)
.

Implemented Architecture. Figure F-4 shows the

architectural topology of the hardware used in this implemen-
tation. The DDBMS system consisted of two LSI-11 micro-
computers and one Z-8@-based S-100¢ bus microcomputer. The
LSI-11 computers were identified as System L and System S in
the AFIT Digital Engineering Laboratory.

System L acted as the CNDD site in the DDBMS. Because
of memory limitations, System L only contained the DDBMS
software necessary to process CNDD site requests. It did not
process queries to the distributed databases. It connected
to a host S-18¢ microcomputer, which executed the dBASE Il
DBMS to load, update and access data in the CNDD.

The other LSI-11 computer, System S, was a remote DDBMS

‘. site which executed the software to handle the DDB!S queries
- and create data location requests for the CNDD site. Al-~
though the computers were nodes on the LSINET, because of
memory sizing problems, these LSI-11 computers were unable to

contain the network operating system (NETOS) used for the

&

gf LSI-11 computers to communicate between. NETOS required 34K,
P; the DDBMS software needed 46K and the CNDD processing used

FL 36K. 1In order to link the DDBMS with a network, therefore,

the three programs must be hosted on different computers.

Implementation of CNDD. The CNDD was implemented using

a host DBMS. Due to the memory restrictions and the scope of

e the thesis, only the data locatjon requests were processed at ;4

y e

, el
the CNDD site. ‘:j:-jﬂ

— —— o

’ - ‘.‘?«

...... B g e LI ICAMic J t A S MAR- M o & MAS it A 254 ah
.

AR
[/

’

Ty T T
.
[ad
(S8
D
L,

.
cy .
»

N

1

.
O
)
-

*
o "a

¢,
.
et

P

"’
PR

LW Y Y e -
R R R O LR A e DA a1 AR i /i A N s o s B R wd Ml el netoud rungd e el o L4 AR LA D s g e o e

CA R bl
[]
i)

e
.

[
a
»

YT e T T

DoB8MS
CNDO SITE
LSI-t1
SYSTEM L

o 'pl

L AL T A
e
% n %

A
.
LAY

wr
A
A
.
N
PP

[

.
PR

HOST
COMPUTER
S-100

.- Lt
VT .)
s

o

- ‘e

Figure F-4. Implemented Architecture

129

- . LAY . - . - " - . - - -

) e TN S STt S Tt N e e T e e e e e e e e 0

. L e et e e T e e e e g T T e T N S U BT O O o S Y S Y
PR A A R S Y WA WA S A DR '-"A‘A VYV SAITRARA TS \.‘.‘a‘:‘- Y ';.'-. ‘;’.';..1':';:‘\\.‘-.‘.':.-

STAT AT e T s ST e T T T e R T Y N Y Y Y T LT L T VR LS T T Ty AT Ty T ETTTTTTYRT

.,.‘i

The CNDD data was originally organized into the rela-

tions shown in Figure F-5a. These original relations were

- all normalized to the third normal form. However, many of

F these relations were combined to make the CNDD processing
ii more efficient. Figure F-5b shows the final six CNDD rela-

f' tions formed from those in Figure F-5a and loaded into a

database with the dBASE II relational DBMS. DBASE II command

files contained relational algebra operations to retrieve
the data locations of the global attributes within a global
relation. The CNDD processing then started the execution of
dBASE II on the host computer, which in turn executed command

files to get the information from the CNDD database.

System Integration Testing

In this phase of the project all the software modules
implemented were integrated and tested to determine whether
they performed together correctly. As the main objective,
the testing evaluated the process of requesting and extrac-
ting data locations from the CNDD. This involved breaking
the testing into two steps: 1) constructing a CNDD Data
Location Request message, and 2) extracting the information
requested from the CNDD and constructing a CNDD Data Location
Results message.

CNDD Test Data. Two test databases were constructed on

different host computers, each of which executed a relational
DBMS. A d4dBASE II DBMS ran on an S-100 microcomputer, and an

INGRES DBMS ran on a VAX-11/780 minicomputer. Although the

130

Tt e W T o et 4~ - e

',

Y T e A S g W Tl 0 L AP R
o p P S YR gl A SR R S R I I .
e L ot s s el elad fx‘- PP N s’ X 'l-')}f:i'-'t .‘!....“'A“ .-‘-..‘- '-'."‘:‘.!L.'.‘Lt'..':‘"‘:‘l;'l-“ o ‘:-.‘.,o.‘.;.‘..-.'. SONLSLTA N .l\.."‘ 7

N
)
.

B

r

3w hys
R

S

2.

¢

o

A A ”y '
AR P

il

.
v

e

LW

W

Lo,

e - ’
e LN

ik

. L
altetale,

l','..

-
1

..
'V“l ‘.l '.I‘l
) ."‘0.7

¥ !
A

.

o
[RE R

L)

7

<

- l,' .'. l._'l

[

’
.

R

(3

l’ .!
va

.
:"'! .
.

A AP
""o_ .

T .

O R P ST T S S S I N T L S T N T A L Ve S, - .

<5

15¢4
RS
e
.- e
~ . ..
) =
k.
Wi
. “x
Y
Py
GREL -LREL GREL-GATT 3
GREL -NAME [LREL-ID [GREL-ACCESS] [GREL -naME | GATT-1D] .
GATT-LIST SITE-D8 SITE-LIST bl
Grmlovows [olowm] o
08-08MS DBMS-LIST 0B-LIST e
[os-10 | oBMs-NamE| {oBMS-NAME | DBMS-TYPE] oe-10 | 08-naKE| {—
Fal
DB-LREL LREL-LIST "
[oa-10 | LREL-1D| [creL-10] LReC-NaME [LREL-INDEXJLREL-ACCESS [LREL-REP] i
LREL -LATT LATT-LIST bl
LREL-ID | LATT-1D| [Lavr-10 | LATT-NAME | LATT-ACCESS] :
GATT-LATT o
[eatr-10 | LATT-1D) S
A. ORIGINALLY DESIGNED CNOD RELATIONS :f;::'.
te -
GREL -LREL GREL-GATT o
[oREL -NAME | LREL-ID | GREL-ACCESS] [GREL -NAME | 6ATT-NANE | GATT-ID] o
SID-LREL o
: SID | HOST | DBMS-NAME | DBMS-TYPE | DB-NANE | LREL-1ID -
T LREL-LIST o
b [LREL-ID | LREL-NAME | LREL-INDEX | LREL-ACCESS | LREL-REP e
s LREL-LATY GATT=LATY o
B [reL-10 [Lat7-10 | Latr-mame | Latr-access] [arr-10] LaTr-10] i
{ B. IMPLEMENTED CNDD RELATIONS 2
;“ ."L‘
[- ,-: &
% o
i ;
. -
i Figure F-5. CNDD Relations oo
Tt e
XS L
. 131 -
1
> .t e
e o
¥
- o
L"- -.\.
- -

S, -

TRt T At et AP ATt ", " LRI R T R T
e T e e e e e T T
v '.A'L'.L!‘-_ilf l'n\.z:-tx"!' e g n':'h'. L n‘k\“:'

.' EREERAC YR A A A N S R T AU TR P Sl Sl P Pl e e 28 N "ake B0 s B 0w B Tau g ad af ol
.

Query #l: SELECT ALL FROM parts
WHERE (city = 'Chicago') GIVING newrel

Query #2: JOIN parts, receipt
WHERE pnum = pnum GIVING newrel

Query #3: PROJECT suppliers OVER snum, sname, bad
GIVING newrel

Query #4: SELECT ALL FROM inventory
WHERE (pnum = 'PI') GIVING newrel

Figure F-6. Test Queries

tests did not access these databases through queries, the
locations of all the data were stored in the CNDD.

Remote Site Processing. During the tests the remote

site program called "DDBMS" only handled a gquery up to the
point of creating a message that requests data locations to
send to the CNDD site. The site did not send the message to
the CNDD nor did it send the query to the host databases.
The test procedures were as follows.

First, test queries were created with a text editor and
stored in ASCII files. The tests used the queries shown in
Figure F-6. These queries requested data stored only in one
database or in both databases. Also, the third query in-
cluded an attribute "bad" which was not part of the global
relation. The last query required data from the CNDD that
was locked, to simulate the data in the CNDD associated with

a relation being updated.

132

I'l..._YP'
ratae L ;
N

| o

-

“Xrew

*»
v

X
L]

’

f
&

oy 4

-

i

-!:l‘
¥
el

¢ s " %8
FSA
et

T

»
.

¥

.'T,' ol .
.

Rl I

~
o b e e

N . l.
ety

gl

\Y'l.
voh

- - N Y . - O ... ° . - » . *
et et tat e T “ata . At Yt .\r)&':‘; ¥

A R UL A L R NS SR L A A At AT Gl Gl A A LA At AV AN M S aAh SN e ot aad st Souaids e 24 are- of \ 2dl 2 -
- LR Y “" - BN RS R g - i ot 2—attnl

l.5'_l.w.
ll . .
e

S,
.

Finally, the remote site software created a file which
contained a CNDD Data Location Request message. For example, o
the messages for queries #1, 2 and 4 requested the locations
of all the global attributes within the global relations
"parts", "parts", and "inventory", respectively. The message

for query #2 did not include the relation "receipt" because

its location was simulated to be in the LNDD or ECNDD. 1In

contrast, the request message for query #3 asked for the

locations of only the global attributes "snum", "sname” and i
"5ad" within the relation "suppliers". Test results verified ;;ﬁ
that the request message for each query was built correctly. EEE

CNDD Site Processing. Once the remote site built the ET?
CNDD Data Location Request messages, tests checked whether ;Eﬁ
the CNDD site processing extracted the data correctly. The 1§€
tests simulated receiving a message from the network by %fﬁ
reading a file. Four files, built with a text editor, con- igé
tained the same request messages that the remote site con- &Eﬁ

structed during its four test runs.

The program "CNDD" on System L executed four different

R -
R

P SN A »
NN PR N
St e .]
PR L Y

runs to process each Data Location Request message stored in el

a file. The software accessed the CNDD and retrieved all the E:?

information requested. At the end of the processing, the ;&j

- ‘:'q

CNDD site program created a file with the formatted CNDD Data ﬁ%;

5 E

" Results message. After each run, a text editor was used to ;fj

;ﬁ check that each results message contained the correct format ﬁ;?

ii and the required data locations. ifg
QN P

t..' . NS .-*

:"{ * . _:_:

N 133 S

.‘.‘-

-
~
a2

¥
.
o,

PREAE
»

*e, 0,

T
"

ovzd
SRS
AN
N
.
'(.
-
I‘.
l.-'
s
N e e e .
PG SR NS

- =
A T .
sl mt e s et et e, e

Unfortunately, the DDBMS sites were not connected to a

network so that messages could be passed from one site to

another. Both the DDBMS software implemented so far and the

operating system (NETOS) for the LSINET local area network
would not operate on a single LSI-11l microcomputer together.
The computer's operating system could not execute all the
software in the memory allotted for the program. Conse-
quently, resolving this problem should be the first priority
in any future development of the AFIT DDBMS project.

In addition, the thesis described the design of the
network messages and the process to update the CNDD, but it
did not implement the process. The detailed design also
specified the data contents of the LNDD and the ECNDD. How-
ever, the project did not implement them nor develop the
software which checks for data locations in these local

directnries.

Follow-on Research

Future work on the AFIT DDBMS should concentrate on

connecting the DDBMS in a network, first and foremost. Other

134

T T el e L P T e e e -
ae T e Te e e e L ., [AA] S, o
LS N SRR T B N T e NN M L R N MR S L SRR UL S

~
. N T et et - . - . - N . . - . - EaiR N I
“tatatatatadlitatarts ol atle e e e T I e P T Y

DN IO IR N NS NS M MR A M A A SN s0n AR e ards 0 o ne sl ol s el o PR e Lk tat-d wtiad Sd et o8 o "__-".:
=i
.‘=.'
L"’.-,,j
e
Results and Conclusions DROY
This project accomplished the main goal of designing the ih?
CNDD, implementing it on one of the DDBMS sites, and imple-
menting the software which creates and processes requests for
|]
data locations stored in the CNDD. The integration testing
period proved the implemented code worked according to the ﬁfi
system requirements and design. o

L3
K,
i

:
14
&8

ey,

- - . . .
s L
» B Py
s L, S
Ve DA t
e e e e e
wiate. 2

1
v
.
-'."‘

L]
v
e e
S
s

13

.
2
.
e

l"
.
W)

S o '

.1"

’

o ca e

‘ LA
.

AR}

" 0y Tt

»

.

LT .

. PR

T B
e

v
.
4

o] ke TUNRIIS
“"1' ¢ e e
»

i B

VSN 0

: a7
A

' g

P AP P

.
i-"'
«

R R e T AL S SR A L L ST e A A S At sl s e oo o oo ag~
PR SO N

“~ '

projects include implementing the LNDD and ECNDD, updating
the ECNDD from CNDD results, initializing the DDBMS, updating
the CNDD, processing pending updates, optimizing the query
partitioning and implementing message queues. In order to
implement all these capabilities, though, the AFIT Digital
Engineering Laboratory will need a multi-processing operating
system with virtual memory addressing for its network com-
puters. The DDBMS design is just too big to implement on the
current microprocessor eguipment. For example, the DDBMS
software could be rehosted on the Intel Hypercube, a multi-
processor computer. Continuing research in these areas will
some day make distributed database management systems a prac-

tical reality.

) B T e T O
O ":.-' .“-“‘2;-_1 2 ‘..-i.;' .n';.':'n'_.-'_ .’.'-’:':‘}':':'.'j'.-f'.'»',\.-":r.f.-".-":ﬁ - .

>
L)

;fuqu

P 'n" PR A
": '-' 'o'\l'\::‘

-
o

l.‘ﬂa.
J..A_A:

d
T

Ay

rer
J‘
AZA

B

v

Ve

"

b

MM o

NS ST T T, T
N A A
LI T
o
4

Y
e
BT
.o }

T i SR P
e

» LR
— 4L

T AN
P A
AR TN U |
LI B e)
atn alslsls

Al

[

'
]

s
L

"
'
alea

i, v

o

.
e 3"

1

1
- Q*
NI AN e e

e e e

',

R
» Yol

alt

-’

et p et et e, Mt ey~ C e
A RSO L A T e e e e e e e e
AN AT S AR S AR -""v("‘.h-‘:n".a-'_p\f.'- DR e e e T e

Bibliography

Allen, Frank W. and others. "The Integrated Dictionary/
Directory System."™ ACM Computing Surveys, 14:
245-275 (June 1982).

Boeckman, Capt John G. Design and Implementation of the
Digital Engineering Laboratory Distributed Database
Management System. MS thesis, GCS/ENG/84D-5. School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1984.

Ceri, Stefano and Guiseppe Pelagatti. Distributed Data-
bases, Principle and Systems. New York: Mcgraw-Hill
Book Co, 1984.

Chu, Wesley W. "Performance of File Directory Systems for
Data Bases in Star and Distributed Networks," American
Federation of Information Processing Societies Conference
Proceedings, 45: 577-587 (June 1976).

Date, C. J. An Introduction to Database Systems. Reading
MA: Addison-Wesley Publishing Company, 1982.

Durell, W. "Disorder to Discipline via the Data Dictionary,"
J. Syst. Manage., 34; no. 5: 12-19 (May 1983).

Garcia-Luna-Aceves, J. J. and F. F. Kuo. "A Hierarchical
Architecture for Computer-based Message Systems,"
IEEE Transactions on Communications, 3@ (1):

37-45 (Jan 1982).

Hartrum, Thomas C. Lecture materials on the AFIT Digital En-
gineering Laboratory LSINET distributed in EE 6.90, Soft-
ware Systems Laboratory. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, July 1985.

Imker, Capt Eric F. Design of a Distributed Database Manage-
ment System For Use in the AFIT Digital Engineering Lab-
oratory. MS thesis, GCS/EE/82D-21. School of En-
gineering, Air Force Institute of Technology (AU), at
Wright-Patterson AFB OH, December 1982. R

Y

]
Jones, 2Lt Anthony J. Analysis and Specification of a 1
Universal Data Model for Distributed Database Systems. SR
MS thesis, GCS/ENG/84D-11. School of Engineering, Air o
Force Institute of Technology (AU), Wright-Patterson AFB

OH, March 1984.

136

............................

O AN L .
B SIS S SR T A SN DI I TN PRI UG SR B AR B AN

ST CEEmay.

SN Lefkovits, Henry C. Data Dictionary Systems. Wellesley
R MA: Q. E. D. Information Sciences, Inc., 1977.

Leong-Hong, Belkis W. and Bernard K. Plagman. Data Dic-
tionary/Directory Systems. New York: John Wiley &

Sons, Inc., 1982.

WAL R

.

Mahoney, Capt. Kevin H. The Design and Implementation of a
Relational to Network Query Translator for a Distributed
Database Management System. MS thesis, GCS/ENG/85-12.
School of Engineering, Alr Force Institute of Technology
(AU), Wright-Patterson AFB Oh, December 1985.

K

_ Peebles, Richard and Eric Manning. "System Architecture for

I Distributed Data Management," Tutorial: Centralized and
Distributed Data Base Systems, 352. New York: IEEE
Computer Society, 1979,

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdin Press, 1981.

j Roth, 2Lt. Mark A. The Design and Implementation of a e

' Pedagogical Relational Database System. MS thesis, NE
GCS/EE/79-14. School of Engineering, Air Force In- =
stitute of Technology (AU), Wright-Patterson AFB OH, e
December 1979. o]

Y . toring Pacil e

: Rowe, Capt. Janice F. A Network Monitoring Facility for a

' Distributed Database Management System. HMS thesis, %:T
GCS/ENG/85-28. School of Engineering, Air Force Institute N
of Technology (AU), Wright-Patterson AFB OH, AN
December 1985. v

l Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs E_j

NJ: Prentice-Hall, Inc., 1981.

- Uhrowczik, P. P, "Data Dictionary/Directories,”™ IBM
System Journals: 12, November 4 (1973).

Ullman, Jeffrey D. Principles of Database Systems,
second edition. Rockville MA: Computer Science Press,

1982.

[

- A

- 137 o

t 5

: R

o oty
AWK

N4 ORI N

(d - - . - -« - - - . - . . . - -

“‘.-“._Q‘-....‘L__‘..L-:L.;k'L.L‘L";L.M T R S < e AT AR SR I 1 -'-"‘;“-‘. Yo e e RO S "‘-'.".‘
J J [S R L] - PUIR S Pt r L 5PN

P I T U S IR e e e .

A e e e eI e e e T e e PN T T

v - . * . AEILIC I I Y S e R R O T T N Y PRI S e T T e . _.-_u.-.._...J
. S e A .

o e
.

v WS

.o,

R o 2 SRCERC SRE St AL A

.t e SN LA S .. . et it
LIPS TIPS e s’ - - B - A .
e o e T e m_u-f.'-z". -t‘.-u-u.--q-v-a.u-\“‘ A

NN T N TR T e TR T Y e e T e e Ty
N Lt At DRGNS A A A o AR g w4 iae iy Dl S T 0 A a

NGNS 5 Vi S g b n by i e e)

VITA

Captain James A. Wedertz was born on 12 April 1951 in !‘:.::

San Francisco, California. IHe graduated from high school in ;ﬁg
San Mateo, California, in 1965 and attended Brigham Young Eéé
University in Utah from which he received the degree of %fq
Bachelor of Science in Computer Science in December 1975. As {;ﬁ
a distinguished graduate, he received a commission in the :;i
USAF through the ROTC program. He was employed as a systems Efj
programmer at the Sperry Univac Company, Salt Lake City, ? ﬁ
Utah, until called to active duty in June 1976. He served as ;?%
a systems analyst at the SAGE Programming Agency, Luke AFB, %Tw
Arizona, and as a software configuration manager at HQ NORAD, -iﬁj

' ‘[! Colorado Springs, Colorado. He then served as a computer
systems staff officer in the Personnel Exchange Program at
the Venezuelan AF headquarters, Caracas, Venezuela, until
entering the School of Engineering, Air Force Institute of

Technology, in May 1984.

Permanent address: 2311 South Norfolk Street : ﬁ

San Mateo, California 94403

’

i
'.. e i ". ..".t’l‘-."t.".. .
] l' 0 -. ., v'. A -

s

P
SR S |

138

ST e
. “ ; ',"," '.'..'.
I

.

'v

v

.

>

.

A

v
el o e’ s

LN A A A A RS At A A A A A

| ¥
d UNCLASSIFIED D Alh3 P
- SECURITY CLASSIFICATION OF THIS PAGE

o I REPORT DOCUMENTATION PAGE
. . REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
: UNCLASSIFIED
26, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
- Approved for public release;
- 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited
|":
v 4 PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)
‘ AFIT/GCS/ENG/85D-24
NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL |7a. NAME OF MONITORING ORGANIZATION
- ol 1 of Engi . (1f applicadle)
School o 1neerin
. g J AFIT/ENG
. ADDRESS (City, State and ZIP Code) 7b. ADORESS (City, State and ZIP Code)
i Air Force Institute of Technology --
. Wright-Patterson AFB, Ohio 45433 LR
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1! appiicable, RN
| -3
. 8c ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. ‘:_ =1
D PROGRAM PROJECT TASK WORK UNIT u A
) ELEMENT NO. NO. NO. NO. e
IH. TITLE Inciuae Security Classification o
- See Box 19 S
&2 PERSONAL AUTHOR(S) ' o]
B (e___ James A. Wedertz, B.S., Capt, USAF .
l,:u TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Day) 15. PAGE COUNT a—
) MS Thesis FROM To 1985 December 149
. 16. SUPPLEMENTARY NOTATION
- -4
17 COSATI CODES 18. SUBJECT TERMS /Continue on reverse if nccessary and identify by block number) L 1
- FlELD GROUP SuB._GR Data Bases, Data Base Management Systems, Distributed Rp
; Qo 02 Data Base Management Systems, Networks, Directories R)

19. ABSTRACT Continue un reverse if necessary and (dentify by block number,

3 Title: DESIGN AND IMPLEMENTATION OF A é""" LOpLe roiomer 1w a7 110, L
CENTRALIZED DATA DIRECTORY FOR A 2 Lo =

Dean
DISTRIBUTED DATABASE MANAGEMENT SYSTEM K Porc Lnstrare o Tocmmmreee ey
Wright-Pattecson AFB OH 43433

Thesis Chairman: Dr. Thamas C. Hartrum LT
Assistant Professor of Electrical Engineering

- 47 9 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED.UNLIMITED X SAME AS RPT _ OTIC USERS _J UNCLASSIFIED
228 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢c QOFFICE SYM8B80L

e

j.v- tInciude Area Code) K :

. Dr. Thomas C. Hartrum 513-255-2024 AFIT/ENG 'i
] r

q OD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLE TE. UNCLASSIFIED =

= SECURITY CLASSIFICATION OF THIS PAGE T

: Sy

YRR et At a s
SN . -

A At RS N R A S e e, S BRI N PO . Tl
. o e Y -
SO

‘s

. ..
PRI B e eNate

TR N ST YT Ty Tt LAl i S At S T g S wary———— e el A Rl Y o e v
B - N P N B tLm - L [" LY. - . RS

o

o

.,

o

UNCLASSIFIED 1%

Ry
SECURITY CLASSIFICATION OF THIS PAGE AN
."

-
.

.
¢
P

A TR IR A

et

. L4 LI Y
. LT
EANRE I

H '."‘-

This study refined and implemented a design of a centralized 9
data directory for a distributed database management system (DDBEMS) -]
begun in a previous study for use in the AFIT Digital Engineering S
Laboratory. This directory contains information about all the data "
stored in the distributed databases. By following the life cycle]
programming method to develop the system, this project campleted a E J
requirements analysis, detailed design and implementation of the)

directory as well as a partial inplementation of the DDBMS to test
the operation of the centralized data directory.

e

The requirements analysis outlined the functions of the central i p
site, which contained the centralized directory. This project used E
Structured Analysis Design Technique (SADT) diagrams to document the K ‘i

central site's functions. These included initializing the DDBMS,
updating the centralized directory, sending changes to other local o
directories at the remote sites, reconfiguring the DDBMS and ser-

vicing requests for information in the directory. RERRY
S
Next, the project re“ined the detailed design of the directory]
processing and depicted t:.e functional decamposition in structure o
charts. The following step implemented on two microcomputers only 3
those modules necessary to show the centralized directory worked.
Tests verified that one DDBMS node which received a query could re- NN
quest and receive location information from the other node. g ﬂ p
~ -
I~
-
’-, 7 4
4
1
]
L.
R
pamp
—
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
e e L A N R e T e e e e D es

PSR e © e e R Jave gue aan 4
S e e e AT L T PR VORI

DASAEASARAKE AN
PO S S A R

