AD-A164 326 A UNIFIED APPROACH TO THE ANALYSIS AND SYNTHESIS OF 11
SYSTOLIC ARRAYSCU) ILLINGIS UNIY AT URBANA APPLIED

. COMPUTATION THEORY GROUP S W HORNICK APR 85 ACT-56
UNCLASSIFIED N@@@14-84-C-0149 F/G 9/2

CRRCRACIACRACEAIA IS Db S ? Suf ThTadt; M e Aab St

Vi

N
M
/

1

o
FEFFEERR
EEEE

S
¢ 0

—
—
—
——
—

—

.

-—

m

T

re

==

iz pes.

e

MICROCOPY RESOLUTION TEST CHART '
NATIONAL BUREAU OF STANDARDS - 1963 - A

N e e -,

BRI e 0 i)

P

® TIE TOPY

€

L.
e

AD-A161 326

N ST N N N T N VT PrW R Ie Ty e e Ty e TR

e ey

REPORT ACT-56

UL

A UNIFIED APPROACH TO

APRIL 1985

THE ANALYSIS AND SYNTHESIS

OF SYSTOLIC ARRAYS

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. AGPORT SECURITY CLASSIFICATION 15. AESTAICTIVE MARKINGS
Unclassified None
28 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPOAT
N/A Approved for public release, distribution
™. DCCLASSIMC71’ION/DOWNGRADDNG SCHEDULE unlimited.
) N/A
_J& PERFOAMING ORGANIZATION REPORT NUMBER(S) 8. MONITORING ORGANIZATION AEPORT NUMBER(S)
N/A
Sa. NAME OF PERFORMING ORGANIZATION OFFICE SYMBOL |7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Laboratory,| (I espilcsdie) Joint Services Electronics Program
WUniversity of Illinois r N/A
Se. ADDRESS (City, State end ZIP Code) ' 75 ADORESS (City, Stete end ZIP Code)
- §1101 W. Springfield Ave.) 800 N. Quincy St.
“fUrbana, IL 61801 Arlington, VA 22217
b .
| J8a nams OF ’wm“wr RING Sn. OFFICE SYMBOL |5. PROCUREMENT INSTRUMENT IDENTIBICATION NUMBER
| oIS S S TR ST ces | oot
Electronics Program N/A Contract N00014-84~C-0149
Sc. ADDAESS (City, Stase end ZIP Code) 10. SOURCE OF FUNDING NOS.
] 800 N. Quincy St. .::3::: :o. '“3‘&“ f:;.“ won:o?mv
Arlington, VA 22217
W10, TITLE (inciude Secunty Clamificstions A UDLl1ed ApPproach tp
-{ the Analysis and Synthesis of Systolic Arrays N/A N/A N/A N/A
12. PERSONAL AUTHOR(S)
4 Hornick, Scot Wayne
bl 13a TYPE OF ARPORT K~LUJY [130 TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 18. PAGE COUNT
ACT-56 ;UILU-ENG 85-2214 smom To .April 1985 45
18. SUPPLEMENTAARY NQTATION
IN/A
17. COSATI CODES 18 SUBJECT TEAMS lCondmn on revevee if necessary and identify by dock number)
£!1€.0 | GAoue sue. GR. }Systolic arrays, ¥tSi-desiga; parallel algorithms s matrix
computations; discrete comvolution , . e e

N19. WPSTRACT (Continue on reverse i/ necemary and ideniify by dlock number)

g Ia this thesis, we, take the first steps toward the development of a theoretical frame-
-Jwork to unify the analysis and synthesis of systolic networks. We describe a class of
transformations on systolic networks that alter the topology of a network while preserving th
timing of its computations. These transformations may be used to demonstrate the equivalence
of two existing systolic designs or to obtain a new design from an existing one, according to
particular design specifications. We present our model of systolic network and then identify
the parameters that we use to characterize one. Next, we prove the correctness of two types
of transformations on these parameters. We show how these transformatioms can account for
different processor types and multiple processor states. Finally, we demonstrate these
transformations and characterize those that avoid the phenomenon of crossing.’ e

-

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLassifieo/unLimiTeo X same as ner. O oric usans O Unclassified
.T220. NAME OF RESPONSIBLE INDIVIOUAL 220 TELEPHONE NUMBER 22¢. OFFICE SYMBOL
(Ineluds Aree Code)

)00 FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. ‘ UNCLASSIFIED

SECURITY CLASSIFICATION OFf THIS PAGE '

A UNIFIED APPROACH TO THE ANALYSIS AND SYNTHESIS OF SYSTOLIC ARRAYS

BY
SCOT WAYNE HORNICK
BS.. University of Illinois, 1983
THESIS
Submitted in partial fulfillment of the requirements .::'.‘:
for the degree of Master of Science in Electrical Engineering N
) in the Graduate College of the]
University of Illinois at Urbana-Champaign, 1985 S
Acfessfc:xw For "
NTIS GFA&l e
DTIC TR ' g
Unannounc: 4 M - ‘_
Justification . e %
i D O U— -~ :'1‘
By R
U) Distribution/ G
Llinois Availability Codes :'gﬁ
Avail and/or ‘ g
Dist Special ——

QUALITY
INSPECTED

.........................

{ ACKNOWLEDGEMENTS

P I gratefully acknowledge the patient guidance and perceptive insight of my thesis advisor, Profes-

sor Franco P. Preparata. [have also profited from several discussions with my friend and colleague,

vvw

Gianfranco Bilardi. In addition, I am indebted to Julie Overholt for typing the manuscript and format-

ting it for phototypesetting.

The work reported in this thesis has been supported in part by a Schlumberger Fellowship and by
the Joint Services Electronics Program under contract N00014-84-C-0149.

Finally, 1 want to express my gratitude to my wife, Lori, for proofreading the thesis, for helping

to draw the figures, and for supporting and encouraging my work.

TABLE OF CONTENTS

Page

rr 2
I IR
'n'f-lv"nf

1. INTRODUCTION 1

[

A

v rev e
[i M

2. MODEL OF A SYSTOLIC NETWORK 3

2.1. MODEL OF PROCESSING ELEMENTS 3

| 200 g8

22. MODEL OF DATA FLOWS 4 AN

3 3. TRANSFORMATION OF DATA FLOWS . 7

31. MATHEMATICAL DEFINITION 7

& 32. CANONICAL REPRESENTATION 10

DA
3 3.3. TRANSFORMATION OF STATE FLOWS 10 o
34. EXAMPLES OF TRANSFORMATIONS 12 o

3.5. CROSSINGS IN TRANSFORMED NETWORKS 4 AR

4. CONCLUSION 43

REFERENCES 4

-
n'

", R
. Wt e s
AR

R R ha
.

PP AP
(8, 4,09 8 Syt E

: 1. INTRODUCTION

}

h Recent advances in semiconductor device fabrication technology have made possible the realiza-
tion of increasingly complex digital integrated circuits. VLSI computation theory addresses the prob-

lem of efficiently using this chip complexity (as measured by area) in order to decrease computation

time. The search for efficient use of area and time resources has borne certain classes of architectures
that are repeatedly utilized.

One such class is that of systolic arrays. Systolic arrays have been described by H. T. Kung and C,
E. Leiserson {8}

A systolic system is a network of processors which rhythmically compute and pass data through the
system.. Every processor regularly pumps data in and out, each time performing some shart computa-
tion, 30 that a regular low of data is maintained in the network.”

Systolic networks exhibit regular and modular layouts. In addition, interprocessor connections are
bounded in number and localized in space. These features make systolic architectures particularly well
suited to the planar format imposed by VLSI technology. Systolic architectures also interface with con-
ventional computer memories in a natural and efficient way. A number of systolic arrays hn_re been
proposed by a number of authors [1,2,34,6,7,8,10,11] These arrays seem most promising in certain
numerical computations; proposed applications include: discrete convolution, matrix multiplication, LU

and other matrix decompositions, triangular system solution, and other related computations.

The systolic arrays that have been proposed thus far share many common features. However,

there has been little theory unifying these designs, and most have been presented ad hoc, without e
detailed analysis. Here, we take the first steps toward the development of a theoretical framework to
unify the analysis and synthesis of systolic networks. We describe a class of transformations on sys- :-;
tolic networks that alter the topology of a network while preserving the timing of its computations. ::
These transformations may be used to demonstrate the equivalence of two existing systolic designs or to f«s
obtain a new design from an existing one. ‘31
This thesis is organized as follows. In the second chapter, we discuss our model of a systolic net- ”1
work and identify the parameters that we will use to characterize one. In the third chapter, we present :*
o

I S S S N
- - - q N -
WA I I P e -,

-

Aot an o0]

wvwe

the main result of the thesis, two theorems that allow us to transform the parameters of a systolic net-

work while preserving the nature of the computation that it performs. We demonstrate these transfor-

mations and characterize those that yield “crossing-free” systolic networks. Finally, in the fourth }‘_
N

chapter, we present our conclusions and suggestions for further research. ' '
o":»
A

KN
Ry

LAS 2 4

w—g—

2. MODEL OF A SYSTOLIC NETWORK

2.1. MODEL OF PROCESSING ELEMENTS

A systolic network can be viewed as a collection of processing elements (PEs) located at vertices of
a multidimensional uniform grid. Each of the PEs can be partitioned (Figure 1) into a control machine,
M, and a compwzation machine, N. Both of these can be considered finite state machiness however,

references to the state of a PE will actually apply only to the state of the control machine. The state of

the computation machine is the contents of its data registers and will be considered later.

[~ state
control control signals control signals
machine from neighbors transition to neighbors
functions
B data from data to
neighbors computation neighbors
computation functions
machine

...,-_ - .

Wy

the network. Using the formalism of finite state machines, we have

Figure 1. General model of a systolic PE

s’ = 8(3Cy), Co = A(8C)s R = §{R.Dys), Do = M(R.Dy5),

The control machine effects the correct state transitions for the PE, transmits the appropriate control
signals to neighboring PEs, and controls the functions computed by the computation machine. In short,
the control machine performs the synchronization and sequencing activities necessary to coordinate the
operation of the systolic network. The computation machine, on the other hand, operates on the data

flowing through the network. It performs the arithmetic involved in computing the actual output of

where s, R, C, and D are the PE state, the PE register contents, the control signals, and the data,

..
P .".' .

K .
a gt

]
FAIAY

v e T T W W W W T T O Y T e e T W Ty T T ¥ Y T T v W T W w T W
LAt i B AR MR AS A ARt ML Jne st aa b s ML M YA LSRR AL EACA RS CAEA S : A

4

respectively. Also, the subscripts I and O denote input and output, respectively, and & and A are respec-

tively the state trapsition and output functions.

The PEs in a systolic network are selected from a set of possible module types. Some systolic net-
works utilize only one type of module, while others utilize as many as four types. In all cases, how-
ever, the number of module types is independent of the network size and is, instead, determined by the

type of computation performed by the network. Each module type is characterized by a module

description. The module description specifies the states in which a PE of this module type can be. Each
of these states, in turn, is characterized by a state description. A state description consists of a collec-
F tion of assignment statements and control statements to be executed by a PE in this state at the end of
every clock cycle. The assignment statements are written in a register transfer language and dictate the
;_ operation of the computation machine; they indicate which input ports or registers serve as sources of
. operands, which operations are performed on the operands, and which output ports or registers serve as

destinations for the results. The control statements dictate the operation of the control machine; they

indjcate state transitions to be executed by the PE or its neighbors. A state transition to be executed by

a neighbor must be initiated by the PE via control signals.

22. MODEL OF DATA FLOWS

The locations of the PEs in the uniform grid are constrained in two ways. First, consider the sub-
set of PEs belonging to a particular module type. We will require that the set of positions occupied by
these PEs forms a latticee A set, P, of points on a uniform grid is a lartice if
P={plp=Lg+dg€G), where G is the set of unit-grid points contained in a closed convex
domain (G is referred to briefly as a convex grid set), L (the distortion matrix) is a matrix of rational r
numbers mapping each unit-grid point to a uniform-grid point, and d is a fixed grid point (the origin) “
ie, P must be the result of an affine transformation on a convex grid set, G, (Figure 2). The notation p

is used here to represent a d-component vector [p; p» ‘°* paJf, where d is the dimension of the uni-

form grid in which the PEs are located. ' oo

2 d

.

7.

.

re

T T TR L R S fom Tt e T T e e T T e T T '.n ‘D
... N
e e S o PSP SR OO AL DT SR O I PP APy AP A I I P P nv) '.EJ

G

_m32
; L=113
8
1
g Figure 2. Example of a lattice in two dimensions,
5 the underlying convex grid set (G),

and the distortion matrix (L)

Secondly, consider a PE at position p. If this PE receives input data directly (in unit time) from
#; another PE at position p—~v (v#0), then, in order to maintain a regular flow of data, we will require

that it be able to transmit output data directly (in unit time) to a PE at position p+v (except, possibly,
for boundary PEs). Thus, there must exist a PE at p+v, a directed edge for data communication with

terminals (p—v,p), and one with terminals (p,p+v).

If we associate all the data that either flow along communication edges with a particular length
and orientation or reside in a particular set of computation machine registers, this will define a daza

Sflow. Formally, a data flow is a pair C = <A, > defined as follows

1. A isa set of data (inputs, outputs, or intermediate results of a systolic computation);]

2. NN, the set of natural integers, corresponds to the set of instants of discrete time (t € IN is the index w

of the time unit) 1“

3 ¢:A xIN — Uisan injective function of the data set and discrete time that maps, at any given ¢, ”1

each of the elements of A to a position on the uniform grid, U. Denote by ¢(A,t) the range ‘

N e R R AR R e e R R

) 6
)
t of ¢ at time . Function ¢ is further constrained as follows

a ¢(a.t+ki- Hap) =vforalla € Aandallkt € IN
|

(ie., all elements of A move with the same constant velocity, V).

F b ¢(A.t) must be a lattice for any integer t
& Combining (3a) and (3b), we obtain ¢(A,t) = {p | p=Lg +d + tv,g € G}. Thus, we can define

an injective, time independent function, ¥, which maps elements of A to a position in G, a given convex

grid set
y:A-G.

Therefore, ¢{at) = Ly(a) + d + tv.

W T e et Ty T T T Al TR TR LT LT .

3. TRANSFORMATION OF DATA FLOWS

3.1. MATHEMATICAL DEFINITION

In this section, we define a class of transformations on data flows that alter the topology of a sys-
tolic network without changing the timing of its data interaction. Other authors have suggested simi-
lar, but somewhat different transformations. In particular, Leiserson and Saxe have proven a "Systolic
Conversion Theorem” that converts nonsystolic networks to systolic networks [9) However, their
conversion is effected by retiming the computations of a network without changing the topology of the
underlying communication graph. Cappello and Steiglitz have also suggested transformations to unify
the design of systolic networks [S} They have described linear transformations of space-time that are
capable of altering both network topology and computation timing. As we shall explain later, the
transformations described by Cappello and Steiglitz are especially similar to ours, which are character-
ized by the two following theorems.

Theorem 1:

A constant vector, @, may be added to all data flow velocities without altering the data flow

origins, the distortion matrices, ¥, or the timing of the computations.

Proof: Consider two arbitrary elements of two different data flows, x € X and y € Y, that
must interact at some time t. This constrains X and Y to satisfy ¢(x,t) = ¢(y,t) If L, d,
and v, denote the distortion matrix, the origin, and the velocity of data flow X, respectively,
and L, dy, and v, denote the corresponding entities of data flow Y, we can write this con-
straint as

Lyy:x) + d; + tv, = Lyy,(y) + 4, + tv,.

We now show that if v, and v, are the transformed velocities of the X and Y data flows,

respectively, the above constraint is still satisfied.

Letv, =v,+u v,/ =v, +w

Y —— Nuc e Aune Shaar St Metiect Ol At
oo diius et Sas Jass death Jhef Jese S Shgte Shatt Rt Mgl i) - g 3 - . . . S e T . B . - -

Ly +d, +tv, =Ly, (y) +d, + tv,
Ly, x)+d, +tv, +m=Lyy(y) +d, + tv, + tu
Ly (x)+d + v, + W =Ly, (y) + 4, + (v, + u)

Ly (X) + d; + tv," = Lyy,(y) + d,+tv,’

Furthermore, since this transformation is invertible, no additional interactions are intro-
duced by it, i.e, there is a one-to-one correspondence between the data interactions in the ori-
ginal network and the data interactions in the resultant network. O

Theorem 22

All of the data flow velocities, origins, and distortion matrices may be multiplied by a non-

singular matrix, M, without altering % or the timing of the computations.

Proof: Again, we consider two arbitrary interacting elements and show that if v,’ and v,/
are the transformed velocities, d,’ and d,’ are the transformed ofigins. and L, and L, are
the transformed distortion matrices of the X and Y data flows, respectively, the positional

constraint is still satisfied.

Let v, = Mv,, v, =Mv, d,' =Md, d,' =Md,, L' =ML, L, = ML,
Lyy(x) + d; + tv, = Lyy,(y) + d, + tv,
M(L,y(x) + d; + tv,) = M(L,y,(y) + d, + tv,)
ML, 7,(x) + Md, + tMv, = ML,y,(y) + Md, + tMv,
Ly{x) +d + v, =Ly (y) + 4, + v,
Since M is nonsingular, this transformation is also invertibie, and, again, there is a one-to-

one correspondence between the data interactions in the original network and the data

interactions in the resultant network. O

These two theorems provide a simple, yet powerful set of rules for transforming systolic net-

works. Networks that are equivalent under these transformations are said to be a finely equivalent or

N simply equivalent. Networks that are equivalent under transformations of the second type alone (those

e

described by Theorem 2) are said to be Lnearly equivalent. In general, these affine transformations
result in topological changes in the network, but, if we restrict them to be linear, they result only in
“conformal” changes in the network, ie, dilation, contraction, rotation, or reflection. The intermediate
results of such transformations are arbitrary, but the final re.ult must represent a valid set of data
flows; in particular, each of the velocities and distortion matrices must consist of rational elements. In
subsequent portions of this thesis, we will tacitly ignore the data flow origins since these parameters can

easily be obtained after transformation through initial condition considerations.

As was noted previously, the affine transformation of data flow parameters is very similar to the
linear transformation of space-time as described by Cappello and Steiglitz. In fact, in cases where both
can be applied, our affine transformations are a special case of the Cappello-Steiglitz transformations.

Specifically, Theorem 1 describes transformations that Cappello and Steiglitz would represent by the

matrix
I u
0T 1
while Theorem 2 describes transformations that they would represent by the matrix
MO
or 1

(The last coordinate is taken to be time.) We feel, however, that this loss of generality is compensated
by the following considerations. First, the affine transformations give the designer more of a
“kinematic® intuition of the design process and are simpler to use if one i.s given a systolic network a
priori. The Cappello-Steiglitz transformations, on the other hand, require the geometric description of
an algorithm. Second, the set of systolic networks is closed under affine transformation. However,
Cappello-Steiglitz transformations may yield designs that are unrealistic in the VLSI model of compu-
tation, e.g, designs with unbounded fan-in or fan-out. (This is necessary, of course, in contexts where
such designs are to be studied.) Finally, as we shall see, afine transformations may also be used to

derive the module descriptions of a transformed network. This task becomes nontrivial when dealing

.......

o

'a e v P A
ok m

[

als’ s a A a <

¢
’

1
.
a

.
. tas

.....
ACYR

............

10
with systolic networks having multiple module types or a module type with multiple states.

3.2. CANONICAL REPRESENTATION

Since affine transformations can yield a number of equivalent systwolic networks, it will be useful
to distinguish a canonical network. The typical systolic computation is defined in terms of an opera-
tion, a set of one or more operands, a result, and, possibly, a set of side conditions. For a particular com-
putation, a systolic network has inputs and outputs corresponding in some way to the operands and the
result. This correspondence is unrestricted, i.e, inputs need not correspond to operands, and outputs
need not correspond to the result. The systolic network computes the outputs (whether they are results
or operands) so that the result is consistent with the operation on the operands, subject to any existing
side conditions.

With this in mind, we define the canonical network as one in which the result data flow has zero
velocity and an identity distortion matrix. All systolic networks can then be represented as a two step
transformation of a canonical design: first, we add a vector to all data flow velocities of the canonical
design (according to Theorem 1); second, we multiply all data fiow velocities and distortion matrices by
a nonsingular matrix (according to Theorem 2). This representation will be called the canonical
representazion of the network. Thus, a set of networks that share the same canonical network is an
affine equivalence class, and a set of networks that share the same canonical network and the same first

step of their canonical representations is a linear equivalence class.

3.3. TRANSFORMATION OF STATE FLOWS

At first, one might suspect that the module descriptions of a systolic network resulting from an
affine transformation cannot be méovered easily from the module descriptions of the original network.
Conceptually, though, it is quite simple. Let us replace each of the PEs of the original array with an
emulator, E, that, when given an input and a state chosen from the union of all possible states of all
module types, computes the output generated by a PE in the given state upon receipt of that input. The

emulator is essentially a computation machine general enough to compute any fuaction of any module

Caiaie g i Bkt A it M iR A Yt A .

AR
1'.- .

}
EAT LT
DRI e L% et e e

‘,‘
AP N
'l."'

et

L ’
'4" v

'3
R,
PR}

type, and the current state is simply one of the inputs to the emulator (Figure 3).

state from state to
neighbors neighbors
state >
data from data to
neighbors computation neighbors R
functions -
data
registers

Figure 3. General model of a systolic emulator

The equations for the emulator are R’ = §(R,D;,s) and Dy = A(R.D;s). The PE register contents (R)
and the input/output data (D; and D) are data fiow elements. (Register contents are elements of data
flows with zero velocity.) Collectively, the states can be thought of as another data flow, which we
will refer to as the szate flow. This state fiow can be transformed along with the other data flows.
After the transformation, the peculiarities of the new state flow may suggest new module types that

may be used to replace the emulators with hard-wired state transition control machines.

In order to carry out a transformation on the state flow, it is first necessary to have the module
descriptions in an appropriate format. First, we assign a distinct label to each state of every type of
module. This collection of labeled states forms the state alphabet from which elements of the state
flow are selected. Second, we modify the state descriptions by removing all control statements and
replacing input/output port and register designations in the assignment statements with the appropriate
data flow labels. Control statements can be eliminated since the state flow now provides state transition
information to module emulators, while port and register relabeling is necessary since data flow veloci-
ties are not preserved under affine transformation. For instance, data flowing from west to east in the
original network may, after a suitable affine transformation, flow from south to north in the resulting

network. Similarly, a data flow that is stationary, ie. contained in module registers, may move from

south to north after transformation. Thus, references to register names, east and west ports, or north

R IR
.

[‘ -
R LA T S A I T
PRSP 'J.'I “J ‘o' el

v

Oy
1,8,

weTs
KA
R

1T T ety
s e e T e
PR .
PP .
bk adad

BRI IR
LR s
PR R | ey O

r °, ..
s .o
DALY

N
d

i

a

12

and south ports become meaningless after transformation. Any ambiguity in reference to input/output

ports or registers by data flow label will be resolved in the following manner: a data flow label on the

v T-°

right-hand side of an assignment arrow will refer to the port through which elements of this data fiow

enter the module or, if the data fiow is stationary, the register in which elements of it are contained; a

LY,

data flow label on the left-hand side of an assignment arrow will refer to the port through which ele-

T ments of this data fiow exit the module or, if the data flow is stationary, the register in which elements

of it are contained.

Abstracting the state low from the control statements executed by the PEs is basically a problem

in the theory of cellular automata. We know of no formalized or algorithmic approach to this prob-

lem; however, most of the instances encountered With systolic processing require only a limited effort
and can be determined by inspection. The parameters to be determined are the velocity, a suitable con-
vex grid set, and a distortion matrix. Once these are determined, they can be transformed along with

the parameters of the data flows according to rules of Theorems 1 and 2.
3.4. EXAMPLES OF TRANSFORMATIONS

34.1. DISCRETE OPEN CONVOLUTION

Let us consider the problem of discrete open convolution, which is stated simply as follows given
a sequence of weights, W, and a sequence of inputs, X, compute the result sequence, Y = W s X, where

the operation "¢ is defined as Y[i] = } W[j] x X[i=j} Usually, W, X, or both have finite length, so the
i

summation has finite bounds.

Kung has catalogued a family of linear systolic networks for discrete convolution in [7] He e

refers to these as "(pure-) systolic” convolution arrays to distinguish them from “(semi-) systolic® arrays G

:‘_:1

in which global fan-in or fan-out is necessary. Kung, however, has used a nonstandard definition of e

o,

convolution where Y(i] = 3 W{j] x X[i+j~1] We prefer to adhere to the conventional definition of ‘:;'!
i

convolution since it preserves the symmetry (commutativity) of the operation, ie, WsX =X s W,

Clearly, convolution in the sense of Kung, which is conventionally referred to as “correlation,’ is

.............

13

equivalent to convolving X delayed one time unit and W reversed in time. In other words, if Y is the
convolution of X and W in the sense of Kung, then Y = U s V, where Ulk] = W[-k] and VIk] = X[k-1]
In this thesis, future references to the designs of Kung will incorporate the modifications necessary to

compute the conventional convolution.

-
One possible canonical convolution network is that labeled R1 (results stay, inputs and weights :
move in opposite directions) by Kung (Figure 4). This network is essentially a pipelined implementa-
tion of the defining equation of convolution. Since the network is a linear array, the unit grid men-
tioned above reduces to the integer line. Similarly, the velocities and distortion matrices of the data]
; flows reduce to rational scalars.
W, ,___J_ w, W,
Yo Y, Y, 3 Y
o e» e p- - - p - - o e o s oo o ...'
‘_—————-r_'—j—-f_ . | . .'-.
l} ' Xo Xy J‘ X2 ~
5 W, Wo =W,
o - c-; '-.-_
i Y xO Lot xl _:-
. o PF-1 % -
v ‘_'_"‘ Yo=Y+ W,X, :
n s
v Figure 4. General structure of the canonical convolver (R1) -
and functional description of modules .
There are three data flows in this network. The elements of W comprise an eastward data flow, -
the parameters of which will be subscripted with w. The elements of X comprise a westward data
flow; parameters associated with it will be subscripted with x. The third data flow is s:ationary and ‘
w
consists of the elements of Y, which are contained in the registers of the PEs; parameters associated with g
\- .
this data flow will be subscripted with y. As a convention, we will define y for all sequences (and vec- L
tors) such that y(a[i) = i. We then obtain these values for the data low parameters
. Ve =1, vy=<], v, =0,
canonical(R1) |1 w3 [=2 L =1 %

14

If a network in which the weights are stationary is desired, we could simply subtract v, from all

the velocities of the data fiows in the canonical design. The resulting data flow velocities are (distortion

matrices remain unchanged)
-1 {v,=0,v,==2,v,=~-1

In this network (Figure 5), the weights are indeed stationary and inputs move in the same direction as

the results, but at twice the speed. Kung mentions this network as a "dual® of design W2, although it

now seems more closely related to R1. Transformation of the module descriptions is trivial since the .

only PEs in which computation occurs are inner product step processors.

Figure 5. General structure of the -1 convolver and
functional description of modules

A network with stationary inputs can be obtained by subtracting v, from the data flow velocities

of the canonical network. The data flow velocities are then
+1ive=2,v,=0,v, =1

In this network (Figure 6), which is not catalogued by Kung, the weights move in the same direction as

the results, but at twice the speed.

at .

PR S
AL
v LN AT AR

CAC A A A A e arh Pl A A T Sh o terpc SR A R e e NI B Ao PR IR 8 R A R/ R g it ol i A A A O OO e A

15

Wo = W,

Yo - Y] + “):\

Figm'e°6. General structure of the +1 convolver and
functional description of modules

Another canonical convolution network catalogued by Kung is R2 (results stay, inputs and
weights move in same direction, but at different speeds). This design (Figure 7) has the following data
flow parameters: .

Vo =1/2, vy=1, v, =0,

canonical(R2) l L.=12 L, =-1, Ly =1,

W, je—t
— [
Y,
- [—>
X
—_* —
Xo - X '-.:.
- Wo = W,
Y - Y + le\[j
1
Figure 7. General structure of the canonical convolver (R2) RO
and functional description of modules e

Kurg mentions that this design has a "dual” in which the weights move twice as fast as the inputs.

This is clearly a result of the symmetry of convolution, which allows us to interchange the W and X

data flow parameters; in fact, the W and X data flow parameters of any systolic convolution network

P e e e e
C m e « e e v, .

PR I e ™
PRSI S AT
w e .

- » > - » - . . ~ - ., LS
- at, e, N L s, e e, PN R LIS ., R R R IR P P o
S ‘4.;‘-‘_‘ 4"‘-.':-":-?;\.1\4.'.4.') '..n")"‘n PRI YN "A\A et e e AP -"l‘ PR APIRIT IR N PACIR PP ¥

....... e e e e e '-’
.-. '-' .-- Q.'.. s’ -‘ ol ' I:) W A‘ -.h .’ -,‘ A A 2 » z L WY l—‘

16

can be interchanged to yield another valid convolution network.

Now, simply subtracting v,, from all data flow velocities in the canonical network yields a new

convolution network in which the weights are stationary. The resulting data flow velocities are
~1/2 { v, =0, v, = 1/2, v, = —=1/2.

This design is labeled W1 (weights stay, inputs and results move in opposite directions) by Kung (Fig-

ure 8).

“’-3 w-l “Y(' “vl \N:’

E ‘-_I- | Yo ‘-——J—] ———I-] Y I .J- -- i Y2

X"I‘ﬂxo
L No— X
w
. - -y + WY
Yo r" Y Yo = Y] X,

Figure 8. General structure of the -1/2 convolver and
functional description of modules

Suppose that we subtract instead v, from the velocities of the canonical data flows. The resulting

data flow velocities are
-1 { vy=-1/2,v,=0, v, =—1.

In this network (Figure 9), the inputs are stationary, and the weights and results move in the same
direction but at different speeds. If we interchange the data flow parameters of W and X, we obtain the

design labeled W2 (weights stay, inputs and results move in the same direction but at different speeds)

by Kung.

We might also seek a transformation to demonstrate the equivalence of R1 and R2. However, the
equivalence of R1 and R2 is not an immediate consequence of affine transformations or the symmetry

of convolution. One can observe that the signs of L, and L, are the same for R1; for this reason, we

T TP S R NG ot .-\\---_._»'.;_.'-.. A A

"-":J{ I;."..“: " "A" .'.’...

PR

NCRE MR ‘1‘.'-_'0;1,-_‘, oy P R
’ '1'.{4'1 PRI I | ‘f S

r

“iel
2L L

9

»
—e

R

1
>,

_________________ O el souh B Jund aar_apell abAR s Ml RN Jael Sl P R A NI B Jadd Gadiy .'q"-""-','.'_

17

W,
| PR
e
Y
“?O] “]
Wo = W, —{ J—
- Yo = Y1+ WX Wo = W,
=
2
| Figure 9. General structure of the -1 convolver and
P. functional description of modules
|
L Ky that R1 is a cogradient convolution network. For R2, though, the signs of L,, and L are opposite;

for this reason, we say that R2 is a contragradient convolution network. Clearly. no affine transforma-
tion or simple interchange of data flow parameters will map R1 to R2. Thus, it seems that all of the
i known systolic convolution designs lie in two affine equivalence classes, the class of cogradient designs

and the class of contragradient designs. These designs are summarized in the table below (Figure 10).

B affine linear Kung's label
R class class Vo v, v, unchanged We—X
.. ent 0 1 -1 0 R1 —
. (Ly=2.L;=2,L,=1) -1 0 -2 -1 "dual” of W2 —
+1 2 0 1 —_ —_
contragradient 0 172 1 0 R2 "dual® of R2
(Lv=1/2,1,=—1,L,=1) -1/2 0 172 -172 w1 -
-1 -1/2 0 -1 — W2

Figure 10. Summary of the systolic convolution networks

34.2. MATRIX MULTIPLICATION e

Another problem for which systolic solutions have been proposed is that of matrix multiplication, -i

i.e., given two matrices A and B, find the product matrix C = AB. The canonical systolic network for

18

t matrix multiplication is the planar array of "orthogonally-<onnected” PEs (Figure 11). In {11}
-

" Preparata and Vuillemin describe this network (rotated -90°) and show that its operauon may be
! viewed as a pipelined interaction of columns of A with rows of B. This pipelined interacuon of

[columns with rows is a central feature of many systolic computations and will be further explored

later. Since this network is a planar array, the unit grid becomes planar, the velocities of the data flows

are two-component vectors, and the distortion matrices are 2x2 matrices.
[_ Ao

_4 ‘ .‘\0 han A!
- B
3 B—[c]l 2B BB
u

: . C - C+ .A.lB]
[A

A

Figure 11. General structure of the canonical (0 OJF) matrix multiplier
and functional description of modules

There are three data flows in this network. The northward data flow consists of the elements of
A. The eastward data flow consists of the elements of B. The third data flow is stationary and consists
of the elements of the product matrix, C, which are accumulated in the module registers. The parame-
ters of these data flows will be subscripted with a, b, and c, respectively. In this thesis, we will assume

that y is defined for all matrices such that y{afi,jD = [i jIf. The data low parameters are

vo=[0 1], v, =[1 OF, v.=[0 OF,
-1 -1
o 1pLe=

A number of potentially useful linear equivalence classes of networks for matrix multiplication

10
01

1 0
L= 1-—1 —1} L. =

may be derived by applying transformations to this network, as specified in Theorem 1. First, let us

.........
.........
RPN »

g - .

—y L -
YRR I Yk 2 TyvyTyeTTy—e v T

W

.
. .’
UL I IN

«
Bt 5 N e
ok n ok ot

T
pIPLILY WY

At St S ket Sk ets 2t anen JeeAudt eenca i Sne e i i I S AL B A S AR At e Al b AL I St o A Sl ta A i S Bl 1 ol AafCTC I E Sl

19

consider the network obtained by adding the vector [=1 —1JF to all velocities. The new velocities are

(again, distortion matrices remain unchanged)

r R

v,=[=1 OF, v,=[0 ~1F, v, =[-1 —1].

As in the case of convolution, all the active PEs in the original network are inner product step proces-
r sors. Therefore, all the PEs in this network are also inner product step processors. Because each PE has

six neighbors, the network (Figure 12) 1s said to be "hexagonally-connected.”

B
1/ Ao

Ao € Ay Bo — By

/ Cy, —=C + AB

I

Figure 12. General structure of the [~1 —1JT matrix multiplier

Now, if we add the vector [~1/2 —1/2]F to all velocities in the canonical network, we obtain a net-

work (Figure 13) that is again "orthogonally-connected,” but communication along one of the axes is

bidirectional now. The network has these data flow velocities
v, =[=1/2 112F, v, =[1/2 -1/2[, v, =[-1/2 -1/2.

Yet another network can be obtained by adding the vector [~1/3 —1/3]T to all velocities in the canoni-

cal network. The resulting network (Figure 14) is "hexagonally-connected” with the following data

flow velocities e

v, =[(=1/3 2/3FF, v, =(2/3 =1/3F, v, =[-1/3 =1/3]".

20

Ao = 4
Bo"‘Bl

Co — G + AB

.ALO - ."\!
Bo - B)

CQ - C| + .‘\]B]

Figure 14, General structure of the [~1/3 —1/3] matrix multiplier

It is important to note that each of the three matrix multiplication networks derived above is
representative of a linear equivalence class of systolic networks: each can be "redrawn® in a more con-
ventional or pleasing manner simply by multiplying the data flow parameters by the appropriate

matrix. For instance, suppose we let

B AP
Vo L T L P
s
[, P

-3/2 3/2
-3 =3

If we multiply the data flow parameters of the {~1/3 —1/3]T network by M, we obtain the data flow

parameters of the Kung-Leiserson systolic matrix multiplier [8}

v, =[32 -], v, =[-32 =1T, v, =[0 2T,
-3 =3/2 _
o 3 ple=

Note that this network (Figure 15), when specialized to the case of banded matrices considered by Kung

32 3
30

_ =32 32
L= L= o3 -3

and Leiserson, has a parallelogram shape, as did their network.

Figure 15. General structure of the Kung-Leiserson matrix multiplier
(generalized to dense matrices)

3.43. LU DECOMPOSITION

The solution of systems of linear equations is another problem that has been approached with sys-
tolic techniques. This problem is usually posed in matrix form as follows given a nonsingular nXn
matrix A and an nXm matrix C, find the nXm matrix B such that C = AB. The solution of this prob-
lem, for general matrices, usually involves decomposing A into triangular factors and then solving tri-
angular linear systems, both of which can ve done directly with systolic designs. Kung and Leiserson

have presented a systolic network for LU decomposition in [8] This network (Figure 16) computes two

H .
PPy

\ .l v h . ‘. St
St

J
[|
i

ate Tt
PRI W W)

22

matrices, L and U, such that the input matrix, A, can be expressed as A = LU, where L is unit lower tri-

angular and U is upper triangular.

In the Kung-Leiserson design, the matrix A flows northward into a network of "hexagonally-
connected” processors. The L and U matrices may be retrieved from the network in a variety of ways
we will choose an implementation of the Kung-Leiserson design that more clearly exhibits network
svmmetry: L flows southeast from the lower-right margin of the network, and U flows southwest

from the lower-left margin of the network. These three matrices comprise the data flows in the net-

——"

work. The corresponding data flow parameters will be subscripted with a, [, and u, respectively.

n

¢ Analysis of the network vields the following values for the data flow velocities and distortion

matrices:

v, =[3/2 —1F, v, =[-3/2 —1F, v, =[0 2T,

=3 =372
o 3

=3/2 3/2
-3 =3

= » =

30

_‘3/23

Figure 16. The Kung-Leiserson network for LU decomposition

There are four module types in this network: the PE at the top of the network is a T-module; =
the PEs at the upper-left margin (except the top) are S-modules; the PEs at the upper-right margin

(except the top) are R-modules; all of the other PEs are G-modules. The module descriptions are given

.................

23

- below (Figure 17). The assignment statements are written in a concurrent form, as indicated by the use
h of commas to separate them.
1 module state assignment statements control statements
' type label

T (top) T1: L=1,Ue~A
- S (u-1.) St L~A/U U«~U

R (u.-r.) R1: L—LU+~=A
E‘. G (others) G1: L~LU~U,A-A-LU

Figure 17. Module descriptions for the Kung-Leiserson LU decomposer

Now, we will derive a canonical network for LU decomposition. In this computation, the opera-

tion is matrix multiplication, the operands are the L and U matrices, and the result is the matrix A.
The side conditions are that L is unit lower triangular and U is upper triangular. Therefore, the canon-
ical design is the one in which the A data flow is stationary and has an identity distortion matrix. It is
obtained, first, by adding —v, = [0 —2JF to0 211 data flow velocities and, second, by multiplying all data
fiow velocities and distortion matrices by L,™.. (Note that the Kung-Leiserson network is a member of

the L7'v, = [—1/3 —1/3[T linear equivalence class.) The results of the transformation are as follows

v/ =[0 1F, v,/=[1 OF, v,’=[0 OF,

1 0 L_ =11, (10 S
“1=1pl=|o 1pla=(0;, 5

This canonical network is shown below (Figure 18).
We now must describe the functions of the PEs in the canonical network. In all of the previously ':'j-

Ll' =

e
discussed transformations, obtaining the module descriptions was trivial since the networks had oaly -
one module type and that module had a single state. In this case, however, the state flow technique j

N
must be employed. In the Kung-Leiserson network, the PEs do not change state, so the state flow has N

s Y

zero velocity (v, = [0 OJF). If we take G, to be the convex grid set below (Figure 19), then D

. [1.3—{2. (.33

- 123223242 —>

1,1 2.1 3,1 4,1

. Figure 18. The canonical network for LU decomposition

-3/2 3/2}

Figure 19. The convex grid set underlying the state flow

Transforming the state flow parameters as we did the data flow parameters, we obtain:

N =13 =] |[o] [o]|_ [w3
o =LvemvI = s e X o] T 2T |13
e _|mis-us] (=32 32) [23 -3
L'=L7L=| 3 —1/6|*| -1 =1{=|-1/3 2/3 }

We will derive the module descriptions for the canonical network from this transformed state flow

(Figure 20).

Figure 20. The state flow of the canonical LU decomposer
(at first clock cycle)

We can observe that the PEs on the diagonal of the network (those of the form M{iiD can only
enter states G1 and T1. The PEs below the diagonal (thosg of the form Mli,il i> j) can enter only G1
and S1, and the PEs above the diagonal (those of the form M(i,jl i <j) can enter only G1 and R1. This
suggests three new module types D-modules (Mlii]) with states D1 = G1 and D2 = T1, L-modules
(Mli,j} i>) with states L1 = G1 and L2 = S1, and U-modules (M[j,jl i <j) with states U1 = G1 and
U2 = R1. (Here, equality of states indicates computational equivalence, ie., the assignment statements

of the states are the same.)

We will now determine a hard-wired state transition scheme that realizes this state flow. Since
the only part of the state flow that is crucial to the operation of the network is that which coincides
with the data flows, we will find it convenient to assume that all PEs are initially in the state
corresponding to G1, ie, D-modules are in state D1, L-modules are in L1, and U-modules are in Ul.

This state acts as a quasi-quiescent state, in the sense that the register contents of a PE in this state are

o e A S e SN R e

.

L
L
]

~ ¥ -r{r‘
* (I »
"-‘/‘ A

v,

.
)
5

PO U

1y ‘-'_"‘,"'-. y

not altered unless both the L and U data fiows are fiowing through the PE. The first PE to be excited
from this state is M{1,1] which enters state D2. This must be accomplished via an external signal
After each M[ii] enters this state, the processor immediately to the right of it enters L2, and the proces-
sor immediately above it enters U2. Therefore, we must include in the control statements of state D2 a
device to indicate that these state transitions occur. We do this with "goto” control statements 2 goto
preceded by a PE reference denotes a state transition control signal to be sent to a neighboring PE; one
without a PE reference denotes a state transition to be executed by the PE itself. So, for state D2, we
include "M{i+1,i] goto L2° and "M{ii+1] goto U2" The state L2 propagates to the east, so its control
statements include "M[i+1,jl goto L2." Similarly, the state U2 propagates to the north, so its control
statements include "Mli,j+1] goto U2." Immediately following these second states, the PEs may return
to the quasi-quiescent state, so we include in the control statements of D2, L2, and U2 “goto D1," "goto
L1,” and "goto U1,” respectively. The only remaining issue, then, is to determine a mechanism for D2 to
propagate along the network diagonal. There are several possible solutions, however, the most straight-
forward of these is to include in the control statements of state D2 "M[i+1,i+1] goto D2 in 3." By this,
we mean that Mfi+1,i+1] is to transition to state D2 in three clock cycles. This can be achieved by
buffering the control signal with a two-stage shift register. The module descriptions that finally

emerge are shown below (Figure 21).

module state assignment statements control statements
type label
D (M[iiD D1: L~LU~UAe~A-LU
D2 L—=1L,U«~A Mli+1,i) goto L2,
Mlii+1] goto U2,
Mi+1,i+1] goto D2 in 3,
goto D1
L (Mg i>p L1: L-LU~UA~A-LU
L2 L=A/UU~U Mli+1,j] goto L2,
' __goto L1
UMl i<y U1 L-LU~UA«~A-LU
U2 L-LU~A Mlij+1] goto U2,
goto U1

Figure 21. Module descriptions for the canonical LU decomposer

P A
n'r""v et

ARG
o '-.’p e

"

3.4.4. TRIANGULAR SYSTEM SOLUTION

;

As was mentioned previously, the solution of triangular systems of linear equations is an impor-

tant component in the problem of solving more general systems of linear equations. The lower-
} triangular variant of this problem is the following: given a nonsingular, lower-triangular matrix L
3’ and a matrix Y, find the matrix X such that Y = LX. In [8], Kung and Leiserson propose a systolic net-
work for solving this problem in the special case where Y and X are column vectors. Here, we make
o minor modifications to their network and generalize it (the details are omitted for brevity) to obtain

the network below (Figure 22), which solves lower-triangular linear systems in full generality (Y and

X are matrices).

Figure 22. A systolic network for triangular system solution

The marrix L flows southward into the “orthogonally-connected” network of processors, Y flows
westward into the network, and X flows eastward from the network. These, in fact, are the three data

flows in the network; their parameters will be subscripted with [, y, and X, respectively. The values are

v,=[0 -1, v, =[1 OFf, v, =[-1 OF,
1 -1 -2 -1 2 1
L=y 1 pLx=|o 1} Ly=|0 ~

There are two module types in this network: the PEs at the left margin are D-modules; the

remaining ones are M-modules. The module descriptions are given below (Figure 23). Initially, all PEs

are in a quiescent state, state 0. To initiate the computation, state D1 is externally excited in the

Lo 2% o D B A
B P TS

~

28
uppermost D-module (M[1,pD.
module state assignment statements control statements
type labe]
D (M(1,iD D1: L~LXe~YL M(1,j1] goto D1,
M(2,j] goto M1,
goto D2
D2: L—~LXe~Y/L
MWMLjli>1) M1: L-LXe~XY~Y-LX Mli+1,j goto M1,
goto M2
M2: LeLX~=XYe~Y-LX

Figure 23. Module descriptions for the triangular system solver

To derive the canonical network, we observe that, for this computation, the operation is again
matrix multiplication, the operands are the L and X matrices, and the result is the matrix Y. Therefore,
we add —v, =[1 OJF 1o all data fiow velocities and then multiply all data flow velocities and distor-
tion matrices by L,". This implies that the original network is a representative of the

Ly v, =[~1/2 OF linear equivalence class. The parameters that we obtain for the canonical network

are

v, =[0 1F, v,/ =[1 OF, v,/ =[0 OF,
1 0} . |-1-1] ., [10
-1 -1r=|o 1pL =01

Once again, the canonical network has an "orthogonally-connected” architecture (Figure 24).

L“ =

1,3 2.3 3.3 4, 3p—>

1.2 2.2 3.2 4,2

-

1,1 2.1 31 4,1

H

Figure 24. The canonical network for triangular system solution

S eara @i aarabrnd Sl Ak i Aok Jhd b Sl Sl fad Sl ~iah Aol

29

Here too, we must employ the state flow technique to obtain the module descriptions for the
] canonical network. The first step is to obtain a state flow for the original [—~1/2 OJF network. Observ-
) ing that state D1 is first excited in M{1,p] and then propagates to M[1,p-1] and then to M[1,p-2] and so
forth, suggests a state flow headed by D1 with velocity [0 ~1J%. In fact, since D1 = D2 and M1 = M2,
- the state flow is essentially the same as the L data flow, with state D1 occupying the positions of the

diagonal elements and state M1 occupying the other positions (Figure 25). If we choose G, as shown

below (Figure 26), then we have these state flow parameters

o)

Performing the transformation on these parameters:

v, =

172 12
0 -1

0
-1

-1
0

1 0
-1 -1

We will derive the module descriptions for the canonical network from this transformed state flow

(Figure 27).

X

v, =Ly v, -v,) =

i

e 12 12} [1 -1
L=LyL=14y 4{%]|1 1]|=

PP
L S A ST
e ‘e Yo fa te . s

"

B0 T Y NI

3 3

W
o -
/ D1
1 N
| .
! M1
e ' S
I N
' D1 M1
m : \
= ’ M1 M1
i /s’
(D1 mi] 2
7/
|
, M1 2|
P
{ V4
L \D1 ~
- P

Figure 25. The state flow of the [~1/2 OJ triangular system solver
(at forth clock cycle)

Figure 26. The convex grid set underlying the state flow

» - L
S Wl
AL“.L'.“'A_YJJ..‘.' PRSPy

..,
¢ 1T

LA

PR

1

Pt
oty fa s

L RGPy

»
—_ A

e,
o
b te Y6 fr

v

31

Figure 27. The state flow of the canonical triangular system solver
(at fourth clock cycle)

We now note that the PEs on the left margin of the network (those of the form Mi1,jD only enter
state D1. All other PEs (those of the form MIij] i> 1) can enter state D1 or M1. This suggests two new

module types A-modules (M[1,i) with a single state A1 = D1 and B-modules (M{i,jl i>1) with states
Bl = M1 and B2 = D1.

As before, we must determine a hard-wired state transition scheme that realizes this state flow.
We assume that all PEs are initially in the quiescent state, state O. The first PE to be excited from this
state (via external signal) is M[1,1] which enters state Al. State A1l then propagates northward, so we
include "M[1,j+1] goto A1" in the control statements of state Al. One cycle after each A-module enters
state Al, the B-module immediately to its right enters state B1; two cycles after, the B-module enters
state B2. Therefore, we also include "M[2,j] goto B1” and "M[2,j] goto B2 in 2" in the control statements
of state Al. State Bl then propagates eastward, so we include "M[i+1,j] goto B1" in the control state-
ments of state Bl. State B2 also propagates eastward, however at a rate of 1/2 processor per cycle.

Therefore, we also include “M[i+1,j] goto B2 in 2" in the control statements of state B2. All PEs are

.................
.............
........

.........
..................................

ST A
-

- »‘ s i .. Yo - - . - . . - 0] . . - L. . - -
":":‘f‘-"'v':- ..':-*AJP:’-:‘.;' B PP APPSR R AL WAL ST S VT Ss S LG E A VN S W PN R
_ ~ altys Mt mtaata” alwlie

-y — r— - L J
R D e e e T TR T Rndndu il ek Anl Andhy Safb

‘.

i\.;

-

i pdonch oo Sk g

A v et Sat It i e A § T T T T e

32

appropriately returned to the quiescent state by including "goto 0" in the control statements of states

Al and B2. Thus, we derive the module descriptions below (Figure 28).

module state assignment statements control statements
type label
A ML) Al L-LX~YL Mii,j+1] goto A1,
M(2,j] goto B1,
Mi2,jl goto B2 in 2,
oto O
BMlli>1) Bl L-LX~XYe~Y-1LX Mli+1,j] goto B1
B2 L~LXe~Y1L Mii+1,j] gowo B2 in 2,
goto 0

Figure 28. Module descriptions for the canonical triangular system solver

An interesting transformation of the canonical triangular system solver is one from which the
resulting state flow has zero velocity. The networks with zero state flow velocity are those of the

—v, =[0 —1]F linear equivalence class and have the property that no PE changes state. These networks

el o it

therefore have two module types, one corresponding to state A1 = B2 and one corresponding to state Bl.
Since no state transitions occur, the state descriptions of these modules do not contain any control state-

ments, ie, no control signals are transmitted through the network.

i R fvedadnadinns

To exemplify such a network, we will add —v, to all velocities and then multiply all velocities

and distortion matrices by M = L,”. The resulting parameters are

vl, = [o OFI vx' = [1 O]T' vy' = [o IF' v:’ = [0 OF’
ol ., [-1=1] . [1 o] .., [10
L‘=l'01]-l"‘= 1 o]>"v=—1-1}"-=01}

The resulting network is shown (Figure 29), and the module descriptions are given (Figure 30). Again,

we note that the choice of M does not alter the topology of the network; it is simply chosen so that the

SR ST S =

network can be drawn in a more convenient manner (in this case, with the same layout as the underly-

ing convex grid set, G,).

e e ce—

F' A e A e R S A el NN - DA EENCRACRA I CA R AL A e et e i e bt Gt i s it S G ER AR S
Y 33 :
H
' 4.4 :
[
- 3,3 4,
2,2 32 4,2 K
o 1,1 2,1 31 41 -
Figure 29. A [0 —1F network for triangular system solution
b module state assignment statements control statements }
type - label -
E (M[iiD El: Le~LX«~Y/L N
F Mlijli>j) F1: LeLX~XY~-Y-IX »
Figure 30. Module descriptions for the [0 1] triangular system solver -
-::j The previous discussion of systolic triangular system solvers was pertinent to the lower-triangular
variant of the problem. The following trivial observation, however, allows us to apply these results to :
the solution of upper-triangular systems If U is a nonsingular, upper-triangular matrix, then solving
the linear system W = UV can be reduced to solving the lower-triangular system Y = LX, where
L =RUR™, Y = RW, X = RV, and R is a revers permutation matrix, ie.,
0...01
.. 10
&
R=
01.... -
10...0 ..
Another modification of this problem is to set Y = I (by hardwiring, perhaps) in order to handle an E
important special case, triangular matrix inversion. One such systolic network (for upper-triangular -
matrices) has been proposed by Preparata and Vuillemin [10]

3.5. CROSSINGS IN TRANSFORMED NETWORKS

3.5.1. NECESSARY AND SUFFICIENT CONDITIONS FOR CROSSING

As one experiments with these transformations on two-dimensional systolic networks, one may
observe that many of them result in networks with communication edges that cross. Formally, a cross-
ing is the intersection of two nonparallel communication edges that have distinct endpoints. For
instance, if we transform the canonical matrix multiplier by adding the vector [—1/4 —1/4]" 1o all
data flow velocities, we obtain a systolic network with crossings (Figure 31). Networks with such
crossings are somewhat undesirable since they are no longer planarly embeddable in the grid. This pro-

vides the motivation to characterize the conditions that cause crossing.

Figure 31. A [-1/4 —1/4]F matrix multiplier

We now establish a necessary condition for crossings in a systolic network.

Lemma 1:

In a connected systolic network (one in which the underlying undirected graph is con-
nected) with m data flows having velocities v, v, * - ,vy, a crossing exists only if there
exists an m-component vector, X, in the null space of V =[v, .-+ v_] with exactly one or

two noninteger components corresponding to nonzero, linearly independent columns of V.

Proof: Copsider two edges e, (p,p. + ¥;), and f, (py,p; + v;), that cross at a point p. We

IR

)

.
3
2

My .o - *

-
[I A
[VU W R JEE .

T
bk

TP R

- e v T VoW e Tw e,
- alihga s ZEalt Shat Jmee Sates Mt oinat Paditet i aiincaniia aint e MR R A 4 L
M a s e s oo g s n s e inet i Jem S Muncinac et e Sl fai Sus Jiure hatt N0 i B it SRSt A Mt

A

35

then have the following:
| P. + £, = pr + §v, = p. Where £.£, € [0,1]
‘ Pe“Pf"'éevi‘éfv;:O

Because p, and p. are both vertices of the systolic network, and because the systolic network

n
B is connected, some sequence of edges (some possibly traversed in the reverse direction) will
form a path from p, to p;. Therefore, p, — p; = VX', where X' is a vector of integers and
Vx' + §vi—§v; =0
If weletx =x" + £.¢e, — {se, where e, is the unit vector with the kth coordinate equal to0 1,
: then Vx =0, ie, x is in the null space of V. Since e and f have distinct endpoints,
L

£ €(0.1)or §f. € (0,1), so x has one or two noninteger components. If x has one noninteger
component, that component must not correspond to a zero column of V, otherwise, the dis-
tinct endpoint condition is violated. f x has two noninteger components, then they must
not correspond to linearly dependent columns of V since, by definition, a crossing cannot

occur between two parallel edges. O

B We can also establish a sufficient condition for crossings in a systolic network.
Lemma 2
h ‘ In a systolic 'network in which each nonboundary PE has communication edges correspond-
. ing to every data flow, a crossing exists if there exists an m-component Vector, X, in the null.

space of V with exactly one or two noninteger components corresponding to nonzero,

linearly independent columns of V.

~-

o]
.-
-~
.4

Proof: Suppose that x is a vector with two noninteger components, X; and x, satisfying the

above criteria. Let £, = x, =[x}, & = [x] — x, and x" = x — £.¢, + £se; x' is therefore a vec-

e

tor of integers. Let p, be the position of an arbitrary nonboundary PE such that -

Pr = P. — VX' lies within the boundaries of the systolic network. Since each nonboundary :l‘:f
D,

PE has communication edges corresponding to every data flow, a simple inductive argument -

v T L Aadi el Ao AN Sl B AR Sedi s A A AL AN
ST e T pofnt B e BACEMICI A A B e T YRR A e Y - RS T Al .

:

36

v T
PRk
. -

shows that any integer linear combination of the data flow velocities, when added w p,,
F vields the position of another PE (as long as this combination lies within the boundaries of
the network). In particular, then, p; is also the position of a nonboundary PE. The follow-

ing argument shows that edge e, (p.,p. + Vv;), must cross edge f, (p,,p; + V%

Pr = p. = VX'
Pr=pP.— Vix = geex + gfe))
Pr =P — Vx + £ Ve, — £, Ve,

Pr =P + £V — &V,

Pr + éfv] = Pe + gevl

A similar argument can be applied when x has only one noninteger component. O "1

Combining these two results in a trivial manner yields the following theorem. ’1

Theorem 3: \J
In a connected systolic network in which each nonboundary PE has communication edges

corresponding to every data flow, a crossing exists if and only if there exists an m com- L::"j

ponent vector, X, in the null space of V with exactly one or two noninteger components -5!
cor;'esponding to nonzero, linearly independent columns of V. “4
Now, we will utilize this result to study the affine transformations described earlier and their effect on
crossing in systolic networks. r%

3.5.2. THE EFFECT OF AFFINE TRANSFORMATIONS ON CROSSING - .':'.‘

First, let us examine the effect of Theorem 1 transformations on crossing. Suppose we are given a

crossing-free systolic network with V as its matrix of data flow velocities. Let x be a vector with

Ss 4 ;x" # 0 and two noninteger components, X; and X, We can select a u that induces crossings

when added to all data flow velocities in the following manner. Since the original network is ".\:

crossing-free, Vx = 0. If V' represents the transformed matrix of data flow velocities, then

V=V+U,whereU=[uu -+ u}

-
AN
50

| 1R

LA
ALAEN

- - TR IR N ST T R N T ". .~ '-. .'...-.-' .-l -'-l- ------------- ‘.'p .- ‘h
O L Rl L S T S

Vx=(V+Ux

Vz=Vx+ Ux

Vx=Vx+Su

Therefore, if we choose u = —=Vx/S,, then V'x = 0. This implies that a crossing exists unless v, is

parallel to v;, which, in general, is not the case. This demonstrates the fact that a crossing-free systolic
network may be transformed to one with crossings according to the rules of Theorem 1. Since this
transformation is invertible, it also follows that a systolic network with crossings may be transformed
to a crossing-free one. Thus, crossing-freedom is variant with respect to Theorem 1 transformations

(which was expected since our example of a systolic network with crossings was derived by this type

of transformation on a crossing-free systolic network).

Now, we will examine the effect of Theorem 2 transformations on crossing. Let V be the matrix
of data flow velocities of the original network, and V' = MV be the matrix of data flow velocities of
the resulting network. If Vx =0, then Vx=MVx=MO0=0. If Vx=ws=0, then
V'x = MVx = Mw = 0 since M is nonsingular (according to Theorem 2). Thus, crossing-freedom is

invariant with respect to Theorem 2 transformations.

As an example, suppose we apply Theorem 3 to a suitably restricted systolic network with the

following matrix of data flow velocities

v_0
R

10
0 o (for instance, the canonical matrix multiplier).

If Vx =0, then x, =0, x, =0, and x; is unconstrained, so we may choose x; to be noninteger. This
component, however, corresponds to v, which is a zero column of V. Thus, no x can be chosen to
satisfy the criteria of Theorem 3, and the network is crossing-free, as is evident (Figure 7). Now, let us

transform this network by adding u = [~3/2 —1/2]F o all data flow velocities

V=

-3/2 =172 =32
172 =172 =172

If V'x=0, then x, =(1/3)x; =(—1/2)x;. Therefore, x =[1/3 1 —2/3[F satisfies the criteria of

-

T e vy
v
}" L]

v, rLTLY,
.
s fa- N

}

Ty TW
MR

.« e -
3 l"
by

S h e e e AT T AT At et S aYe
e e, - e v .

® e . . P T T C W S PR Wl SRR S Wault 3

> t. -' .--" .'.. '_-" '.‘ .\ - "‘ l.- I% -t t\;"'l.‘ oot 0. A h e T e .-\ \-\\‘ ...‘- '.!\ i) 2t et '. ~ LY

LPOCIAT I L AL IR L WL WP P S P WL

38

Figure 32. A [~3/2 —1/2]F matrix multiplier (showing crossings)

353. ENUMERATION OF CROSSING-FREE CANONICAL CLASSES

The previous discussion leads us naturally to ask which of the linear equivalence classes of matrix

multipliers is crossing-free. When we perform a Theorem 1 wransformation on the canonical design, we

obtain a new matrix of data flow velocities, V' = V + U, i,

V= 14u, u, u,

u; 1+u! Uy }

From Theorem 3, we know that crossings will exist if and only if there exists a vector in the null space

of V' with one or two noninteger components. The null space of V' is a one-dimensional subspace of

s
R? as long as V' has full rank, which must be the case. Therefore, the pull space of V' can be '—4
represented as the range space of a 3X1 matrix, W, where V'W = 0. If we partition V' into [V, V',] .-'j.'s

)

where V', = v," and V', = [v," v;'] we can rewrite this equation in the following way:

:
N
N LA , =
V‘W = [V 1V'2] W2 = v IWl + V 2W2 = O. ;:»:T
4’..-'
If v," and v’ are linearly independent, then we can choose a form for W with W, = 1. Then we ~r
..‘.\
must have W, = =(V’',))"!'V’,, If W, contains a noninteger, then x = W clearly satisfies the criteria of ";
Theorem 3, and a crossing must exist. Otherwise, let r = max{iw,y, Wy}, ie, r is the maximum -::‘i
[

.........
............................

i

<« 1]
PR

magnitude of the elements of W, If r > 1, then X = W satisfies the criteria of Theorem 3 and a cross-

ing must exist. The only remaining choices for W, are the 2X1 matrices over {-1, 0, +1}; these are

[0 OF, =[0 1T, =[1 OF, =[1 1F, and =[1 —-1]%.

We will now examine each of these possibilities on a case-by-case basis.

1+u1 Uy - u,
o= YV = -
W, = (V') V, R I

U, -(1+u1+UQ)

WS -y W3S o
Uz U

Solving for u,
-W» -1

= , U, =
t (1 +W2+W3) 2 (1+W2+W3)

W,=[0 O: u={0 —1F

W,=[0 1 u=[0 —-12]

W, = [0 —1]": u is undefined for this choice
W,=[1 0 u=[-12 =172

W, =[~1 OJ': u is undefined for this choice
wW,=[1 1% u=[-1/3 -1/3]

W,=[~1 -1: u=[-1 1]

Wy=[1 =1 u=[~1 -1F

Wy=[~1 1 u=[1 -1

Thus, there are seven linear equivalence classes of crossing-free matrix multipliers with v, and v;

linearly independent.

We can apply the same argument as above when v,” and v, are linearly independent simpiy by
permuting the columns of V~ (first and second are interchanged). Proceeding in this manner, we obtain

for the same possible choices of W

o4
sl

P R
L

-

- L
c'_.
oy
»o iy
u':
K
N
-
3

-1 =W

u, = y Ug = .
VT OFwgtwy 2 Qewiwy)

Therefore, the set of vectors we obtain is the same as the set above except that the first and second com-

rr'rc

ponents are interchanged. This actually yields only two new vectors, [~1 OJf and [~1/2 OJ.

« 5
l' "
-~

S
>

We have considered all possible cases except that in which v, and v; are linearly dependent and
v, and v, are linearly dependent. Since V must have full rank, this can be true only if vy =0 = v,
Indeed, this corresponds to the canonical network. Therefore, all together, there are ten linear

equivalence classes of systolic matrix multipliers.

35.4. TWO DIMENSIONAL NETWORKS WITH FOUR OR MORE DATA FLOWS
Theorem 3 can also be used to show that certain broad classes of two-dimensional systolic net-
works must have crossings. The following theorem summarizes this interesting result.
r. Theorem 4:
A two-dimensional systolic network (restricted as per Theorem 3) with four or more pair-

wise linearly independent data flow velocities must exhibit crossings.

Proof: Let us assume that v,, v, Vv, and v, are pairwise linearly independent. Since the

crossings found by considering these four data fiows alone are a subset of all the crossings in

. the network, we can, without loss of generality, consider the case of exactly four data flows

Vi V12 Vi3 Vg "
V=lv,vavv]=

V21 Vaz Va3 V2

We know from Theorem 3 that if a four-component vector, X, in the null space of V with

'II‘ R

exactly one or two noninteger components can be found, then crossings must exist in the net-
work (since we already know that the columns of V are nonzero and nonparallel). :'Z_
-
. The null space of V is a two-dimensional subspace of IR* and, as such, can be characterized as PN
' the range space of a 4X2 matrix, W, where VW = 0. We will rewrite this equation in the \‘
':' following way: ..E;

)

‘Lf

.
s far

DA AL AN AR s R AR A P P M i e BRI A AR E A A S S A S Al b et S A

.........

41
2 \Z :
VW =[V,V,) w. = ViV + V,;W. =0, where V, = [v; v,Jand V, =[v; v}
P As before, we can let W, =1 and W, = =V;!V,. Since the columns of V are pairwise =
RS
(linearly independent, V, and V. have full rank. Therefore, W, exists and has full rank. s
o Thus, all vectors in the null space of V have the form x = Wy, where y € R2 e
- Arguing as we did in enumerating crossing-free matrix multipliers, we restrict the choices
5 for W, to those 2X2 matrices over {-1, 0, +1}. We can eliminate those containing O since the Y
_ corresponding column of W would contradict the pairwise linear independence hypothesis.
. The only 2X2 matrices over {-1, +1} not eliminated by the fact that W, has full rank are
-1 -1 -1 -1 -1 +1 -1 +1
e Tl w1 Fl4r —1p Tl m1p WIE 4y
v In each of these cases, x = W[1/2 1/2JF satisfies the conditions of Theorem 3. Thus, in all
a possible cases, some x in the null space of V can be found with exactly one or two nonin-
teger components, and a crossing must exist. O o
"
It is important to note, however, that if we remove the restriction that all nonboundary PEs must have i
- communication edges corresponding to every data flow, we can construct crossing-free systolic networks .
with four pairwise linearly independent data flow velocities (Figure 33). f;'-:
;:.
r -
}'_-. 3
RS
~
_ i~
(Y
o
el e e e e e e T «'-".'{‘-".:--ff--',:.'",:.-::.',";--';-:'.:-"'-‘;:-‘:‘-':'-":'~':'-‘:C":'-‘-\-':'-':'";'~‘:'-r'::~‘-'-‘:'~':"-' '~".~"'..~".-;g".‘.

wrTre
‘l .l“'

e)

T
.
ot

:: ;'.',‘*. v ;_'-J--"M\

-

Figure 33. A crossing-free systolic network with four
pairwise linearly independent data flow velocities

N R A L EFCAPNY R W) S PP)
.-L.; e ..,."... ‘e .._'.‘l. .: TS R I

'f'~"_—I

o) e '{ », T, /._r.": ’
o e bt der bend sl

v
(2]
.

4 S

o

- .

[P T P
AR

ST Y A)

3
e

o

-.r‘
W I

.
-
I3
d
n‘
Y
i/
.
14
e

o
i
'l
g
..
’l
.

n’
'l

'v
e

LA Bl S Sl B S P S YA A ST

; 43

4. CONCLUSION

i In this thesis, we have abstracted the parameters that we feel are important in specifying a sys-

..
]

tolic design. We have given a simple set of rules for transforming these parameters while preserving

o
1
* 4,

e
AT,

the underlying computation. In addition, we have shown how to derive a description of the processors

. - .

. in the resulting design through a state fiow analysis. Finally, we have characterized those transforma-

tions that avoid the phenomenon of crossing.

We feel that these transformations may be useful to the designer implementing a systolic array as

a means of tailoring the array to a specific application, e.g to avoid preloading data registers (make all

data flows have nouzero velocity), to ensure that processors need not change state (make the state flow

l. have zero velocity), to make the array more compatible with solving partitioned problems of larger size
(guarantee that no subset of the data flows forms a cycle), to make the array pipelinable (add an extra
component to all parameters and add a velocity which is nonzero in this component). Furthermore,

these transformations may prevent researchers from “reinventing” equivalent systolic arrays in an ad

hoc manner. Perhaps the most interesting topic for further research would be a characterization of

those problems or algorithms which are amenable to systolic processing. This elusive goal would
a2 further unify the theory of systolic arrays.

.
»
T
'

.

1
1
=Y
4

2
D
P

sy o ,

>
™~
L

ol

.
-
»

[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

Ahmed, H. M, Delosme, J.-M., and Morf, M., "Highly Concurrent Computing Structures for Digi-
tal Signal Processing and Matrix Arithmetic,” Compuzer Magazine, Volume 15, Number 1, Janu-

ary 1982, pp. 65-82.

Brent, R. P. and Kung, H. T. "Systolic VLSI Arrays for Polynomial GCD Computation,” JEEE

Transactions on Computers, Volume C-33, Number 8, August 1984, pp. 731-736.

Brent, R. P. and Luk, F. T., "Computing the Cholesky Factorization Using a Systolic Architecture,”
Australian National University Department of Computer Science Technical Report, TR-CS-82-08,
Canberra, Australia, August 1982,

Brent, R. P. and Luk, F. T., "A Systolic Array for the Linear-Time Solution of Toeplitz Systems of
Equations,” Australian National University Department of Computer Science Technical Report,
TR-CS-83-02, Canberra, Australia, January 1983

Cappello, P. R. and Steiglitz, K., "Unifying VLSI Array Design with Linear Transformations of
Space-Time," Advances in Computing Research, Volume 2, VLSI Theory, (F. P. Preparata, Ed.),
1984, (to appear).

Guibas, L. J, Kung, H. T, and Thompson, C. D., "Direct VLSI Implementation of Combinatorial
Algorithms,” Proceedings Con ference on Very Large Scale Integration: Architecture, Design,
Fabrication, California Institute of Technology, January 1979, pp. 509-525.

Kung, H. T, "Why Systolic Architectures?” Computer Magazine, Volume 15, Number 1, January
1982, pp. 37-46.

Kung, H. T. and Leiserson, C. E, "Systolic Arrays (for VLSI)," Symposium on Sparse Matrix Com-

putations, Knoxville, Tennessee, November 1978, pp. 256-282.

Leiserson, C. E. and Saxe, J. B, “Optimizing Synchronous Systems,” Proceedings 22nd [EEE Sym-

posium on Foundations of Computer Science, Nashville, Tennessee, October 1981, pp 23-36.

e r L
PRRIATS SRS R ¢ Iy DS

c as

(10] Preparata, F. P. and Vuillemin, J. E, "Optimal Integrated Circuit Implementation of Triangular
Matrix Inversion,” 1980 International Conference on Parallel Processing, Boyne, Michigan,

v- August 1980, pp. 211-216.

{11] Preparata, F. P. and Vuillemin, J. E, "Area-Time Optimal VLSl Networks for Multiplying

Matrices,” In formation Processing Letters, Volume 11, Number 2, October 1980, pp. 77-80.

-
i

.
et

LIPS TSI SR

L AP A

o g

————

P P, A

ey Y=y
AR

]
B ABRORVNAA 56 2

- Wy

- e e ey e e . S
LIt - - B . . -~ . - - -
s BRI o eI T -_‘.‘-'\'*-\-"'u\‘ MR

"~_';-'--'- RECSESCS OISO, DO

