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Abstract

This is an invited review of bootstrap methods. It begins with an exposition of the boot-
strap estimate of standard error for one-sample situations. Several examples, some involving quite
complicated statistical procedures, are given. The bootstrap is then extended to other measures
of statistical accuracy, like bias and prediction error, and to complicated data structures such as
time series, censored data, and regression models. Several more examples are presented illustrating
these ideas. The last third of the paper deals mainly with bootstrap confidence intervals. The
paper ends with a FORTRAN program for bootstrap standard errors.
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The Bootstrap Method for Assessing Statistical Accuracy

B. Efron and R. Tibshirani
Stanford University

1. Introduction.

A typical problem in applied statistics is the estimation of an unknown parameter #.
The two main questions asked are (1) what estimator # should be used? And (2) having
chosen to use a particular §, how accurate is it as an estimator of #7 The bootstrap is a
general methodology for answering the second question. It is a computer-based method, whick
substitutes considerable amounts of computation in place of theoretical analysis. As we shall
see, the bootstrap can routinely answer questions which are far too complicated for traditional
statistical analysis. Even for relatively simple problems computer-intensive methods like the
bootstrap are an increasingly good data-analytic bargain in an era of exponentially declining

computational costs.

This paper describes the basis of the bootstrap theory, which is very simple, gives several
examples of its use, and ends with a bootstrap computer program, also very simple. Related
ideas like the jackkmife, the delta method, and Fisher’s information bound are also discussed.
Most of the proofs and technical details are omitted. These can be found in the references
given, particularly Efron (1982). Some of the discussion here is abridged from Efron and Gong
(1983), and also from Efron (1984b).

Before beginning the main exposition, we will describe how the bootstrap works in terms
of a problem where it is not needed, assessing the accuracy of the sample mean. Suppose that
our data consists of a random sample from an unknown probability distribution F on the real
line,

X1, X2, Xp~ F (1.1)

Having observed X; = z;, X; = z;,+--, X,, = z,,, we compute the sample mean z = 31 2a/n,

and wonder how accurate it is as an estimate of the true mean § = Er{X}.



If the second central moment of F is ua(F) = Er X? - (ErX)?, then the standard error

o(F;n. %), that is the standard deviation of 2 for a sample of size n from distribution F, is

o(F) = [pa(F)/n]'/2. (1.2)

(The shortened notation o(F) = o(F; n, 2) is allowable because the sample size n and statistic
of interest Z are known, only F being unknown.) This is the traditional measure of 2’s accuracy.
Unfortunately we can’t actually use (1.2) to assess the accuracy of 2, since we don’t know p,(F),

but we can use the estimated standard error

2 = [B2/n]*/?, (1.3)

where gz = 3" (z; — £)2/(n — 1), the unbiased estimate of p(F).

There is a more obvious way to estimate o(F). Let F indicate the empirical probability
distribution,

F. probability mass 1/n on z;,22,:--,2Zn. (1.4)

Then we can simply replace F by F in (1.2), obtaining

& = o(F) = [pa( F)/n]'/2, (1.5)

as the estimated standard error for £. This is the bootstrap estimate. The reason for the
name “bootstrap” will be apparent in Section 2, when we evaluate o(F) for statistics more
complicated than Z. Since .
fia = po(F) = Z@ (16)
=1

o i8 not quite the same as &, but the difference is too small to be important in most applications.

Of course we don’t really need an alternative formula to (1.3) in this case. The trouble
begins when we want a standard error for estimators more complicated than 2, for example a
median or a correlation or a slope coefficient from a robust regression. In most cases there is
no equivalent to formula (1.2), which expresses the standard error o(F) as a simple function

of the sampling distribution F. As a result, formulas like (1.3) do not exist for most statistics.

This is where the computer comes in. It turns out that we can always numerically evaluate

the bootstrap estimate & = o(F), even without knowing a simple expression for o(F). The



evaluation of ¢ is a straightforward Monte Carlo exercise, described in the next section.

Standard errors are crude but useful measures of statistical accuracy. They are frequently

used to give appraximate confidence intervals for an unknown parameter 4,
debdxasl (1.7

where z{?) is the 100 - a percentile point of a standard normal variate, e.g. 2098 = 1645
Interval (1.7) is sometimes good, and sometimes not so good. Sections 7 and 8 discuss a more

sophisticated use of the bootstrap, which gives better appraximate confidence intervals than
(1.7).

The standard interval (1.7) is based on taking literally the large-sample normal approx-
imation (6 - 8)/& ~ N (0,1). Applied statisticians use a variety of tricks to improve this
approximation. For instance if 4 is the correlation coefficient, and 4 the sample correlation.
then the transformation ¢ = tanh~!(4), § = tanh~!(f) greatly improves the normal approx:-
mation, at least in those cases where the underlying sampling distribution is bivariate normal.

The correct tactic then is to transform, compute the interval (1.7) for ¢, and transform this

interval back to the & scale.

We will see that bootstrap confidence intervals can automatically incorporate tricks like
this, without requiring the data analyst to produce special techniques, like the tanh~! trans-
formation, for each new situation. An important theme of what follows is the substitution
of raw computing power for theoretical analysis. This is not an argument against theory, of
course, only against unnecessary theory. Most common statistical methods were developed I
the 1920°s and 1930’s, when computation was slow and expensive. Now that computation is
fast and cheap we can hope for and expect changes in statistical methodology. This paper
discusses one such potential change, Efron (1979b) discusses several others.

2. The Bootstrap Estimate of Standard Error.

This section presents a more careful description of the bootstrap estimate of standard
error. For now we will assume that the observed data y = (21,22, -, 2,) consists of inde-

pendent and identically distributed (i.i.d.) observations X1,Xa, - ,X,,if@F, as in (1.1). Here



F represents an unknown probability distribution on I, the common sample space of the ob-
servations. We have a statistic of interest, say 5(,), to which we wish to assign an estimated

standard error.

Figure 1 shows an example. The sample space X is R**, the positive quadrant of the
plane. We have observed n = 15 bivariate data points, each corresponding to an American
law school. Each point z; consists of two summary statistics for the 1973 entering class at law
school ¢,

z; = (LSAT;, GPA;); (2.1)

LSAT; is the class’ average score on a nationwide exam called *LSAT”; GPA, is the class’
average undergraduate grades. The observed Pearson correlation coefficient for these 15 points

is § = .776. We wish to assign a standard error to this estimate.

Let o(F) indicate the standard error of 4, as a function of the unknown sampling distri-
bution F,

o(F) = [Varp{§(y)}]'/. (2.2)

Of course o(F) is also a function of the sample size n and the form of the statistic #(y),

but since both of these are known they needn’t be indicated in the notation. The bootstrap
estimate of standard error is

é = o(F), (2.3)

where F is the empirical distribution (1.4), putting probability 1/n on each observed data

point z;. In the law school example, F is the distribution putting mass 1/15 on each point

in Figure 1, and & is the standard deviation of the correlation coefficient for 15 i.i.d. points

drawn from F.

In most cases, including that of the correlation coefficient, there is no simple expression for
the function o(F) in (2.2). Nevertheless it is easy to numerically evaluate & = ¢(F) by means
of a Monte Carlo algorithm which depends on the following notation: ¢°* = (23,23, ---,2})
indicates n independent draws from F, called a bootstrap sample. Because F is the empirical
distribution of the data, a bootstrap sample turns out to be the same as a random sample of

size n drawn with replacement from the actual sample {z;, 22, -, z,}.

The Monte Carlo algorithm proceeds in three steps.
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Figure 1. The law school data (Efron 1979b). The data points,

beginning with School No. 1, are (576, 3.39), (635, 3.30), (558, 2.81),
(578, 3.03), (666, 3.44), (580, 3.07), (555, 3.00), (661, 3.43), (651,
3.36), (605, 3.13), (653, 3.12), (575, 2.74), (545, 2.76), (572, 2.88),
(594, 2.96).

(i) Using a random number generator, independently draw a large number of bootstrap
samples, say '.(1)1 y> (2)! .t "’.(B)'

(ii) For each bootstrap sample y(b), evaluate the statistic of interest, say 5‘(6) = 5("(6)),
b=1,2,---,B.

(iii) Calculate the sample standard deviation of the §*(5) values,

Ao = [ZGB:I{&‘(” - é.()}z] i “o(.) = E?:l 5.(” (24)

78 B-1 B
It is easy to see that as B — oo, 7p will approach & = a(I""), the bootstrap estimate of
standard error. All we are doing is evaluating a standard deviation by Monte Carlo sampling.
Later, in Section 9, we will discuss how large B need be taken. For most situations B in the
range 50 to 200 is quite adequate. In what follows we will usually ignore the difference between
op and &, calling both simply *5°.
Figure 2 shows the histogram of B = 1000 bootstrap replications of the correlation
coefficient, from the law school data. For convenient reference the abscissa is plotted in terms

of §* - § = §* - .776. Formula (2.4) gives & = .127 as the bootstrap estimate of standard error.



This can be compared with the usual normal theory estimate of standard error for 4,

. 1-4§°
INORM = [ 3yizz = 115, (2.5)

Johnson and Kotz (1970), p. 229.

Histogrom

Figure 2. Histogram of B = 1000 bootstrap replications of §° for
the law school data The normal theory density curve has a similar
shape, but falls off more quickly at the upper tail.

There is another way to describe the bootstrap standard error: F is the nonparametric
maximum likelihood estimate (MLE) of the unknown distribution F, Kiefer and Wolfowits
(1956). This means that the bootstrap estimate ¢ = a(f‘) is the nonparametric MLE of o(F),

the true standard error.

In fact there is nothing which says that the bootstrap must be carried out nonparamet-
rically. Suppose for instance that in the law school example we believed the true sampling
distribution F must be bivariate normal. Then we could estimate F with its parametric MLE
ﬁ'NOR.M’ the bivariate normal distribution having the same mean vector and covariance ma-
trix as the data. The bootstrap samples at step (i) of the algorithm could then be drawn from
PNOR_M instead of F, and steps (ii) and (jii) carried out as before.

The smooth curve in Figure 2 shows the results of carrying out this “normal theory

bootstrap” on the law school data. Actually there is no need to do the bootstrap sampling in



this case, because of Fisher's formula for the sampling density of a correlation coefficient in
the bivariate normal situation. see Chapter 32 of Johnson and Kotz (1970). This density is a
close approximation to éNQRM = "(ﬁNORM)' the parametric bootstrap estimate of standard

€rror.

In considering the merits or demerits of the bootstrap, it is worth remembering that
all of the usual formulas for estimating standard errors, like one over the square root of the
observed Fisher information, are essentially bootstrap estimates carried out in a parametric
framework. This point is carefully explained in Section 5 of Efron (1981b). The straightforward
nonparametric algorithm (i)-(iii) has the virtues of avoiding all parametric assumptions, all
approximations (such as those involved with the Fisher information expression for the standard
error of an MLE), and in fact all analytic difficulties of any kind. The data analyst is free to
obtain standard errors for enormously complicated estimators, subject only to the constraints
of computer time Sections 3 and 6 discuss some interesting applied problems which are far too

complicated for standard analyses.

How well does the bootstrap work? Table 1 shows the answer in one situation. Here X
is the real line, n = 15, and the statistic § of interest is the 25% trimmed mean. If the true
sampling distribution F is N(0, 1), then the true standard error is o(F) = .286. The bootstrap
estimate & is nearly unbiased, averaging .287 in a large sampling experiment. The standard
deviation of the bootstrap estimate & is itself .071 in this case, with coefficient of variation
.071/.287 = .25. [Notice that there are two levels of Monte Carlo involved in Table 1: frst
drawing the actual samples gy = (z;, 23, -+, 2y5) from F, and then drawing bootstrap samples
(z1,23.--+,z}5) with g held fixed. The bootstrap samples evaluate & for a fixed value of v

The standard deviation .071 refers to the variability of & due to the random choice of v

The jackknife is another common method of assigning nonparametric standard errors,
discussed in Section 10. The jackkmife estimate & is also nearly unbiased for o(F), but
has higher coefficient of variation (CV). The minimum possible CV for a scale-invariant
estimate of o(F), assuming full knowledge of the parametric model, is shown in brackets. The
nonparametric bootstrap is seen to be moderately efficient in both cases considered in Table

1.



Coeft Coef!
Ave S0 Ver A S0 W
Bootstrap ¢ : 287 .on 25 242 .
(8 = 200) ' o =
Jackknite o, 280 084 30 24 085 38
True : 1 222
Plinimum C.v ] kel it

Table 1. A sampling experiment comparing the bootstrap and jackknife estimates of standard

error for the 25% trimmed mean, sample size n = 15.

Table 2 returns to the case of § the correlation coefficient. Instead of real data we have a
sampling experiment in which the true F is bivariate normal, true correlation # = .50, sample
size n = 14. Table 2 is abstracted from a larger table in Efron (1981c), in which some of the

methods for estimating a standard error required the sample size to be even.

The left side of Table 2 refers to §, while the right side refers to ¢ = tanh"’(é) =
Slog(l + 8)/(1 — §). For each estimator of standard error, the root mean squared error of
estimation [E(é — 0)?]'/? is given in the column headed vMSE.

The bootstrap was run with B = 128 and also with B = 512, the latter value yielding
only slightly better estimates in accordance with the results of Section 9. Further increasing
B would be pointless. It can be shown that B = co gives VMSE = .063 for 4, only .001 less
than B = 152. The normal theory estimate (2.5), which we know to be ideal for this sampling
experiment, has vMSE = .056.

We can compromise between the totally nonparametric bootstrap estimate & and the
totally parametric bootstrap estimate &jyoRrM- This is done in lines 3, 4, and 5 of Table 2. Let
$= 0 ,(zi—2)(zi—2)"/n be the sample covariance matrix of the observed data. The normal
smoothed bootatrap draws the bootstrap sample from P@N,(0,.25%), @ indicating convoluiion.
This amounts to estimating F by an equal mixture of the n distributions N,(z;, .25%), that
is by a normal window estimate. Each point z; in a smoothed bootstrap sample is the sum
of a randomly selected original data point z;, plus an independent bivariate normal point

z; ~ N»(0,.25% ). Smoothing makes little difference on the left side of the table, but is
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spectacularly effective in the ¢ case. The latter result is suspect since the true sampling
distribution is bivariate normal, and the function ¢ = tanh~'# is specifically chosen to have
nearly constant standard error in the bivariate-normal family. The uniform smoothed bootstrap
samples from F@U(0,.253), where U(0,.25%) is the uniform distribution on a rhombus selected

50 U has mean vector 0 and covariance matrix .25 It yields moderate reductions in v'MSE
for both sides of the table.

Summary Statstics for 200 Tnais

Standarag Error, Standerd Error
Estmates for é Estmates for &
Ave Std Dev cv Vv MSE Ave Std Dev cv N MSE
1. Bootstrap B = 128 206 .066 32 .067 .301 065 22 .065
2. Bootstrap B = 512 206 .063 31 064 201 062 21 .062
3. Normal Smoothed Bootstrap B = 128 200 060 30 063 296 041 14 041
4. Uniform Smoothed Bootstrap B = 128 205 .061 .30 .062 298 .058 19 .058
5. Uniform Smoothed Bootstrap B = 512 .205 .059 29 .060 296 052 18 052
6. Jackknife 223 .085 .38 .085 314 .090 29 .081
7. Delta Method 178 .058 .33 .072 244 .052 21 076
{(infinttesimal Jackknife)

8. Normal Theory 17 056 26 056 302 0 0 .003
True Standard Error 218 299

Table 2. Estimates of standard error for the correlation coefficient 4 and for é= tanh~14,

sample size n = 14, distribution F bivariate normal with true correlation p = .5. From a larger
table in Efron (1981c).

Line 6 of Table 2 refers to the delta method, which is the most common method of assigning
nonparametric standard error. Surprisingly enough, it is badly biased downwards on both sides
of the table. The delta method, also known as the method of statistical differentials, the Taylor
series method, and the infinitesimal jackknife, are discussed in Section 10.

3. Examples.

Example 1: Cox’s proportional hasards model

In this section we apply bootstrap standard error estimation to some complicated statis-

tics.

The data for this example come from a study of leukemia remission times in mice, taken

from Cox (1972). They consist of measurements of remission time (v) in weeks for two groups,
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treatment (z = 0) and control (z = 1), and a 0-1 variable (§;) indicating whether or not the

remission time is censored (0) or complete (1). There are 21 mice in each group.

The standard regression model for censored data is Cax’s proportional hazards model (Cox
1972). It assumes that the hazard function A(t |z), the probability of going into remission in

next instant given no remission up to time ¢ for a mouse with covariate z, is of the form
h(t |z) = ho(t)e?>. (3.1)

Here ho(t) is an arbitrary unspecified function. Since z here is a group indicator, this means
simply that the hazard for the control group is ¢/ times the hazard for the treatment group.
The regression parameter § is estimated independently of hy(t) through maximization of the
so called “partial likelihood”

ef%i
PL= = (3.2)
E’ ZiGRi e52i
where D is the set of indices of the failure times and R; is the set of indices of those at risk at

time y;. This maximization requires an iterative computer search.

The estimate § for these data turns out to be 1.51. Taken literally, this says that the
hazard rate is ¢!*' = 4.33 times higher in the control group than in the treatment group,
80 the treatment is very effective. What’s the standard error of 47 The usual asymptotic
maximum likelihood theory, one over the square root of the observed Fisher information, gives
an estimate of .41. Despite the complicated nature of the estimation procedure, we can also
estimate the standard error using the bootstrap. We sample with replacement from the triples
{(y1,21,61),...,(y42, 242, 642)}. For each bootstrap sample {(y},2},4;), ..., (V421 232:045)} we
form the partial likelihood and numerically maximize it to produce the bootstrap estimate 4°.

A histogram of 1000 bootstrap values is shown in Figure 3.

The bootstrap estimate of the standard error of B based on these 1000 mumbers is .42.
Although that the bootstrap and standard estimates agree, it is interesting to note that the
bootstrap distribution is skewed to the right. This leads us to ask: is there other information
that we can extract from the bootstrap distribution other than a standard error estimate?
The answer is yes— in particular, the bootstrap distribution can be used to form a confidence

interval for §, as we will see in Section 9. The shape of the bootstrap distribution will help
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Figure 3. Histogram of 1000 bootstrap replications for the mouse
lenkemia data

determine the shape of the confidence interval.

In this example our resampling unit was the triple (y;, z;,§;), and we ignored the unique
elements of the problem, i.e. the censoring, and the particular model being used. In fact,

there are other ways to bootstrap this problem. We’ll see this when we discuss bootstrapping

censored data in Section 5.

Example 2: Linear and Projection Pursuit Regression
We illustrate an application of the bootstrap to standard linear least squares regression
as well as to a non-parametric regression technique.

Consider the standard regression setup. We have n observations on a response Y and co-

variates (Xi, X3,...X,). Denote the ith observed vector of covariates by 2; = (z;;, 22, . .. z;)'.
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The usual linear regression model assumes
»
E(Y,)=a+ ) pzij (3.3)
J=1
Friedman and Stuetzle (1981) introduced a more general model, the projection pursust regres-

sion model

E(Y;) =) sj(e;-2) (3.4)

=1

The p-vectors @; are unit vectors (“direction;’), and the functions s;(-) are unspecified.

Estimation of {@;,41(:)},... {@m,2m(:)} is performed in a forward stepwise manner as
follows. Consider {a;,#;(-)}. Given a direction @;, s,() is estimated by a non-parametric
smoother (e.g. running mean) of y on @, - 2. The projection pursuit regression algorithm
searches over all unit directions to find the direction &; and associated function 4;(-) that
minimize ) 7(y; — 41(@ - 2;))2. Then residuals are taken and the next direction and function
are determined. This process is continued until no additional term significantly reduces the

residual sum of squares.

Notice the relation of the projection pursuit regression model to the standard linear
regression model. When the function s,(-) is forced to be linear, and is estimated by the usual
least squares method, a one term projection pursuit model is exactly the same as the standard
linear regression model. That is to say, the fitted model 4,(&; - 2;) exactly equals the least
squares fit @ + E;=1 ﬁ,-z.y. This is because the least squares fit, by definition, finds the best
direction and the best linear function of that direction. Note also that adding another linear
term 4;(@; - 2;) would not change the fitted model since the sum of two linear functions is

another linear function.

Hastie and Tibshirani (1984) applied the bootstrap to the linear and projection pursuit re-
gression models to assess the variability of the coefficients in each. The data they considered are
taken from Breiman and Friedman (1984). The response Y is Upland atmospheric ozone con-
centration (ppm); the covariates X;- Sandburg Air Force base temperature (C°), X,- inversion
base height (ft.) , Xs- Daggot pressure gradient (mmhg), X,- visibility (miles), and X5- day
of the year. There are 330 observations. The number of terms (m) in the model (3.4) is taken

to be two. The projection pursuit algorithm chose directions &, = (.80, —.38,.37, —.24, —.14)'



and e; = (.07,.16,.04,-.05,~.98)". These directions consist mostly of Sandburg Air Force
temperature and day of the year respectively. (We don’t show graphs of the estimated func-
tions 4;(-) and iz(-) although in a full analysis of the data they would also be of interest.}
Forcing 41(-) to be linear results the direction &; = (.90, —.37,.03, —.14, ~.19)". These are just

the usual least squares estimates 4, .. 5, scaled so that 218} =1

To assess the variability of the directions, a bootstap sample is drawn with replacement
from (y1,211,... Z18), . . . (Y3301, 23301 - - - 23305) and the projection pursuit algorithm is applied.
Figures 4 and 5 show histograms of the directions &; and &3 for 200 bootstrap replications.
Also shown in Figure 4 (broken histogram) are the bootstrap replications of é; with 3,()
forced to be linear.

The first direction of the projection pursuit model is quite stable and only slightly more
variable than the corresponding linear regression direction. But the second direction is ex-
tremely unstable! It is clearly unwise to put any faith in the second direction of the original

projection pursuit model.

Example 3: Cox’s Model and Local Likelihood Estimation

In this example, we return to Cax’s proportional hazards model described in Example 1,
but with a few added twists.

The data that we’ll discuss come from the Stanford heart transplant program and are given
in Miller and Halpern (1983). The response y is survival time in weeks after a heart transplant,
the covariate z is age at transplant, and the 0-1 variable § indicates whether the survival time
is censored (0) or complete (1). There are measurements on 157 patients. A proportional
hazards model was fit to these data, with a quadratic term i.e. A(t |z) = Ro(t)eP1o+52* Both
A: and §; are highly significant; the broken curve in Figure 6 is f,z + P2z as a function of .

For comparison, Figure 6 shows (solid line) another estimate. This was computed using
local likelihood estimation (Tibshirani and Hastie 1984). Given a general proportional hazards
model of the form A(t |2) = ho(t)e’(*), the local likelihood technique assumes nothing about
the parametric form of s(z); instead it estimates s(z) non-parametrically using a kind a local

averaging. The algorithm is very computationally intensive, and standard maximum likelihood
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theory cannot be applied.

A comparison of the two functions reveals an important qualitative difference: the para-
metric estimate suggests that the hazard decreases sharply up to age 34, then rises; the local
likelihood estimate stays approximately constant up to age 45 then rises. Has the forced
fitting of a quadratic function produced a misleading result? To answer this question, we
can bootstrap the local likelihood estimate. We sample with replacement from the triples
{(y1,21,81) ... (y187, 2187, 6187)} and apply the local likelihood algorithm to each bootstrap
sample. Figure 7 shows estimated curves from 20 bootstrap samples. Some of the curves are
flat up to age 45, others are decreasing. Hence the original local likelihood estimate is highly
variable in this region and on the basis of these data we can’t determine the true behaviour
of the function there. A look back at the original data shows that while half of the patients
were under 45, only 13% of the patients were under 30. Figure 7 also shows that the estimate

is stable near the middle ages but unstable for the older patients.

4. Other Measures of Statistical Error.

So far we have discussed statistical error, or accuracy, in terms of the standard error. It
is easy to assess other measures of statistical error, such as bias or prediction error, using the

bootstrap.

Consider the estimation of bias. For a given statistic 5(.), and a given parameter u(F),

let
R(y,F) = b(y) - p(F). (4.1)

(It will help keep our notation clear to call the parameter of interest u rather than #.) For
example p might be the mean of the distribution F, assuming the sample space I is the real
line, and § the 25% trimmed mean. The bias of # for estimating u is

B(F) = ErR(y,F) = Er{i(y)} - p(F). (4.2)

The notation Ef indicates expectation with respect to the probability mechanism appropriate

to F, in this case y = (21,22, -, Zn) a random sample from F.
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The bootstrap estimate of bias is
B =B(F) = E4R(y, F)
= Ep{i(0")} - ().

As in Section 2, y* denotes a random sample (23,23,---,2%) from F, i.e. a bootstrap sample.

(4.3)

To numerically evaluate 5, all we do is change step (iii) of the bootstrap algorithm in Section
2to

D B o A

o =5 LR, ) = B0 T
=6°() - a(F).

As B — oo, fip goes to f, as given in (4.3).

As an example consider the blood serum data of Table 3. Suppose we wish to estimate
the true mean g = Ep{X} of this population using 6, the 25% trimmed mean. We calculate
A = u(F) = 2.39, the sample mean of the 54 observations, and # = 2.24, the trimmed mean.
The trimmed mean is lower because it discounts the effect of the large observations 6.4 and 9.4.
It looks like the trimmed mean might be more robust for this type of data, and as a matter
of fact a bootstrap analysis, B = 1000, gave estimated standard error ¢ = .16 for é compared
to .21 for the sample mean. But what about bias?

0.1, 0.1, 0.2, 04, 04, 0.6, 0.8, 0.8, 0.9, 0.9, 1.3, 1.3,
14, 15, 16, 16, 1.7, 1.7, 1.7, 1.8, 20, 2.0, 2.2, 2.2,
2.2, 23, 23, 24, 24, 2.4, 2.4, 24, 2.4, 25, 2.5, 25,
2.7, 2.7, 238, 29, 29, 29, 3.0, 3.1, 3.1, 32, 3.2, 33,
33, 3.5, 44, 45, 64, 94

Table 3. BHCG blood serum levels for 54 patients having metasticized breast cancer, pre-
sented in ascending order.

The same 1000 bootstrap replications which gave & = .164 also gave #*( ‘) =2.29, 50
f=229-239=-010 (4.5)

according to (4.4). (The estimated standard deviation of Bp— B due to the limitations of having
B = 1000 bootstraps is only 0.005 in this case, 80 we can ignore the difference between Bs

and ﬂ) Whether or not a bias of magnitude —0.10 is too large depends on the context of the
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problem. If we attempt to remove the bias by subtraction, we get § — § = 2.24 - (0.10) = 2.34,
which is close to the sample mean 2.39. Removing bias in this easy is frequently a bad idea,
see Hinkley (1978), but at least the bootstrap analysis has given us a reasonable picture of the

bias and standard error of .

Here is another measure of statistical accuracy, different than either bias or standard
error. Let é(y) be the 25% trimmed mean and u(F) be the mean of F, as in the serum
example, and also let s(g) be the interquartile range, the distance between the 25th and 75th
percentiles of the sample y = (23, 23, -+, 2,). Define

Ry, F) < 10 (F)
i(v)

R is like a Student’s t statistic, except that we have substituted the 25% trimmed mean for

(4.6)

the sample mean, and the interquartile range for the standard deviation.

Suppose we know the 5th and 95th percentiles of R(y, F), say p(%%)(F) and (%) (F),
where the definition of p{-%%)(F) is

Probr{R(y, F) < p!*)(F)} = .08, (4.7)

and similarly for p{*®)(F). The relationship Probp{p(®®) < R < p(*3)} = .90 combines with
definition (4.6) to give a central 90% °t interval” for the mean u(F),

p €8 -5pt®),  § 5009, (4.8)

Of course we don’t know (%3)(F) and p(**)( F), but we can appraximate them by their
bootstrap estimates p{-95)(F) and p{%8)(F). A bootstrap sample y* gives a bootstrap value of
(4.6), R(y*, F) = (8(y°*) - u(F)/s(y°), where i(y*) is the interquartile range of the bootstrap
data zj,z3,---,2;. For any fixed number p, the bootstrap estimate of Probp{R < p} based
on B bootstrap samples is

#{R(y*(8), F) < #}/B. (4.9)
By keeping track of the empirical distribution of R("(b),i"), we can pick off the values of p
which make (4.9) equal .05 and .95. These approach p{-%)(F) and (%) (F) as B — co.

For the serum data, B = 1000 bootstrap replications gave p{-%)(F) = ~.303 and o8 (F)
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= .078. Substituting these values into (4.9), and using the observed estimates #§ = 2.24,
i = 1.40, gives
B € [2.13,2.66] (4.16)

as a central 90% “bootstrap ¢ interval® for the true mean u(F). This compares with the
standard ¢ interval based on 53 degrees of freedom 2+ 1.672 = [2.04, 2.74). Here 2 = .21 is the

usual estimate of standard error (1.3).

It is interesting to notice that if we discard the S4th observation 9.4, then & decreases
to .16, and the Student’s ¢ interval 2 + 1.672 equals [2.12,2.66) which is almost exactly the
same as (4.10)! Bootstrap confidence intervals are discussed further in Sections 7 and 8. They
require more bootstrap replications than does &, on the order of B = 1000 rather than B = 59
or 100. This point is discussed briefly in Section 9.

By now it should be clear that we can use any random variable R(y, F) to measnre
accuracy, not just (4.1) or (4.6), and then estimate Er{R(y,F)} by its bootstrap value
Ep{R(y",F} = TL, R(y*(8), F)/B. Similarly we can estimate ErR(y, F)? by EsR(y", F)’,
etc. Efron (1983) considers the prediction problem, in which a training set of data is used to
construct a prediction rule. A naive estimate of the prediction rule’s accuracy is the proportion
of correct guesses it makes on its own training set, but this can be greatly overoptimistic since
the prediction rule is explicitly constructed to minimize errors on the training set. In this case,
a natural choice of R(y, F) is the overoptimism, the difference between the naive estimate and
the actual success rate of the prediction rule for new data. Efron (1983) gives the bootstrap
estimate of overoptimism, and shows that it is closely related to cross-validation, the usual
method of estimating overoptimism. The paper goes on to show that some modifications of

the bootstrap estimate greatly outperform both croes-validation and the bootstrap.

5. More Complicated Data Sets.

The bootstrap is not restricted to situations where the data is a simple random sample
from a single distribution. Suppose for instance that the data consists of two independent

random samples,

Ul)U2)°";Uﬂ~F and VX’st""VnNG! (5-1)

e e e gt e — o o e —
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Summary Statistics for &5
Average St. Dev. C.V.

B=100: 165 030 18
B=200: .166 .031 19
True o: 167

Table 4. Bootstrap estimate of Standard Error for the Hodges-Lehmann two-sample
shift estimate; m = 6, n = 9; true distributions F and G both Uniform [0, 1]. The table shows
summary statistics for 55, over 100 trials of this situation.

where F and G are possibly different distributions on the real line. Suppose also that the

statistic of interest is the Hodges-Lehmann shift estimate
# = median{F; -U; i=1,2,--,m, j=12,--,n}. (5.2)

Having observed Uy = uy, Us = u3,--+,V,, = v,, we desire an estimate for o(F,G), the

standard error of 4.

The bootstrap estimate of o(F,G) is & = o(F,G), where F is the empirical distribution
of Uy, U3, *,Um, an G is the empirical distribution of vy,v3,:--,v,. It is easy to modify the
Monte Carlo algorithm of Section 2 to numerically evaluate 5. Let y = (u;,u2,---,v,) be the
observed data vector. A bootstrap sample y° = (u},u3,:-,ul, vy,93,°+,v;) consists of a
random sample Uy,---,Uy from F and an independent random sample V;',---,V,® from G.
With only this modification, steps (i) through (ii) of the Monte Carlo algorithm produce ép,
(2.4), approaching ¢ as B — oo.

Table 4 reports on a simulation experiment investigating how well the bootstrap works on
this problem. 100 trials of situation (5.1) were run, withm = 6, n =9, F and G both Uniform
[0,1]. For each trial, both B = 100 and B = 200 bootstrap replications were generated. The
bootstrap estimate 6p was nearly unbiased for the true standard error o(F,G) = .167 for
either B = 100 or B = 200, with a quite small standard deviation from trial to trial. The
improvement in going from B = 100 to B = 200 is too small to show up in this experiment.

In practice, statisticians must often consider quite complicated data structures: time
series models, multi-factor layouts, sequential sampling, censored and missing data, etc. Fig-
ure 8 illustrates how the bootstrap estimation process proceeds in a general situation. The

actual probability mechanism P which generates the observed data g belongs to some fam-
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iy P of possible probability mechanism. In the Hodges-Lehmann example, P = (F,G),

a pair of distributions on the real line, P equals the family of all such pairs, and y =

(u1, 4z, ", Um, V3,92, +,0p) is generated by random sampling m times from F and n times

from G.

We have a random variable of interest R(y, P), which depends on both y and the unknown

mode] P, and we wish to estimate some aspect of the distribution of R. In the Hodges-Lehmann
example, R(y, P) = é(y) - E,{d}, and we estimated o(P) = EpR(y, P)?, the standard error

of 6. As before, the notation Ep indicates expectation when ¥ is generated according to

mechanism P

Family of

Possible Actual Estimated

Probability  Probability Observed Probability Bootstran

Models Model Data Model Data
S > P >y —> P > y*

R(y,P)
Random Variable of Interest

-~

R(y*,P)
Bootstrap Random Variable

Figure 8. A schematic illustration of the bootstrap process for a
general probability model P. The expectation of R(y, P) is estimated
by the bootstrap expectation of R(g®, f’). The double arrow indicates

the crucial step in applying the bootstrap.

We assume that we have some way of estimating the entire probability model P from the

data y, producing the estimate called P in Figure 8. (In the two-sample problem, P = (F,G),

the pair of empirical distributions.) This is the crucial step for the bootstrap. It can be



carried out either parametrically or nonparametrically, by maximum likelihood or by some

other estimation technique.

Once we have P, we can use Monte Carlo methods to generate bootstrap data sets y°,
according to the same rules by which y is generated from P. The bootstrap random variable
R(y*, P) is observable, since we know P as well as y*, so the distribution of R(y*, P) can be
found by Monte Carlo sampling. The bootstrap estimate of Ep R(y, P) is then EzR(y°, P),
and likewise for estimating any other aspect of R(y, P)’s distribution.

A regression model is a familiar example of a complicated data structure. We observe
y= (th, Y yn), where

y|'=ﬂ(ﬁ,t")+fi i=l)2,""n- (5.3)

Here f is a vector of unknown parameters we wish to estimate; for each 1, ¢; is an observed
vector of covariates; and g is a known function of # and ¢;, for instance ¢#*. The ¢; are an

i.i.d. sample from some unknown distribution F on the real line,

fla€2""1€ﬂ~F’ (5‘4)

where F is usually assumed to be centered at 0 in some sense, perhaps E{¢} = 0 or Prob{e <
0} = .5. The probability model is P = (8, F); (5.3) and (5.4) describe the step P — gy in
Figure 5B. The covariates t,22,-,t,, like the sample size n in the simple problem (1.1), are
considered fixed at their observed values.

For every choice of § we have a vector 9(8) = (9(8,11),5(8,13),- -, 9(B, tn)) of predicted
values for y. Having observed gy, we estimate § by minimizing some measure of distance

between g(f) and y,
£ : min Dy, 5(8)). (5.5)
The most common choice of F is D(y,#) = >, {¥: — 9(8,%)}>.
How accurate is 4 as an estimate of 87 Let R(y, P) equal the vector § — f. A familiar

measure of accuracy is the mean square error matrix

¥(P) = Ep(f - B)(A - B = ErR(y,P)R(y, P)'. (5.6)
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The bootstrap estimate of accuracy $= $(P) is obtained by following through Figure 8.

There is an obvious choice for P = (§, F) in this case. The estimate B is obtianed from
(5.5). Then F is the empirical distribution of the residuals.

F:masslon &=y-g(ts)) i=1,--,n. (5.7)
A bootstrap sample y* is obtained by following rules (5.3), (5.4),
y,?=y(ﬁ,t,-)+c,?, 1=12..--,n, (5.8)

where ¢;,€3, -, ¢, is an i.i.d. sample from F. [Notice that the €, are independent bootstrap

variates, even though the é; are not independent variates in the usual sense.|

Each bootstrap sample y*(b) gives a bootstrap value ﬁ‘(b),

peb): min D(y"(5), #(8)), (5.9)
as in (5.5). The estimate

1= T {8 () - B (IHB () - B ()Y
B

(5.10)

approaches the bootstrap estimate tu B - o0. (We could just as well divide by B-1in
(5.10).)

In the case of ordinary least squares regression, where 9(8,%) = f't; and D(y,p) =
2 i=1(¥i = 9:)?, Section 7 of Efron (1979) shows that the bootstrap estimate, B = oo, can be
calculated without Monte Carlo sampling, and is

$=42 (g t.ti-) I [" = 2:: ',,/n] . (5.11)

This is the usual Gauss-Markov answer, except for the divisor n in the definition of &3.

There is another, simpler way to bootstrap a regression problem. We can consider each
covariate-response pair z; = (t;,y;) to be a single data point obtained by simple random
sampling from a distribution F. If the covariate vector ¢ is p-dimensional, F is a distribution
on p + 1 dimensions. Then we apply the bootstrap as described originally in Section 2 to the

iid

data set z;,z5,:+-, 2, ~ F.




24

The two bootstrap methods for the regression problem are asymptotically equivalent,
but can perform quite differently in small-sample situations. The class of possible probability
models P is different for the two methods. The simple method, described last, takes less
advantage of the special structure of the regression problem. It does not give answer (5.11) in
the case of ordinary least squares. On the other hand the simple method gives a trustworthy
estimate of §’s variability even if the regression model is not correct. The bootstrap, as outlined
in Figure 6B,is very general, but because of this generality there will often be more than one

bootstrap solution for a given problem.

As the final example of this Section, we discuss censored data. The ages of 97 men at a
California retirement center, Channing House, were observed either at death (an uncensored
observation) or at the time the study ended (a censored observation). The data set y =
{(z1,d1),(z2,d2), -+, (Z97,de7)}, where z; was the age of the ith man observed , and

&= {l if z; uncensored (5.12)

0 if z; censored .
Thus (777,1) represents a Channing House man observed to die at age 777 months, while
(843,0) represents a man 843 months old when the study ended. His observation could be

written “843+”, and in fact d; is just an indicator for the absence or presence of a “+°.
A typical data point (X;, D;) can be thought of as generated in the following way: a real
lifetime X7 is selected randomly according to a survival curve
§°(t) = Prob{X} > t}, (0<t <o) (5.13)
and a censoring time W; is independently selected according to another survival curve
R(t) = Prob{W; > t}, (0<t< o) (5.14)

The statistician gets to observe
X; = min{ X7, W;} (5.15)
and

1 if X;=X?
D; { (5.16)

0 X, =W;.
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Note: 1 — §°(t) and 1 ~ R(t) are the cumulative distribution functions for X! and W; respec-

tively; with censored data it is more convenient to consider survival curves thag c.d.f.’s.

Under assumptions (5.12)-(5.15) there is a simple formula for the nonparametric MLE of
§°(t), called the Kaplan-Meier estimator, Kaplan and Meier (1958). For convenience suppose
z) < 23 < 23 - < 2, n = 97. Then the Kaplan-Meier estimate is

. o n-i \*%

$°(t) = E (m) : (5.17)
where k; is the value of & such that t € [2;,244;). In the case of no censoring, .§"(t) is
equivalent to the observed empirical distribution of 2,23, - -, 2a, but otherwise (5.16) corrects
the empirical distribution to account for censoring. Likewise

R(t) = ﬁ (n 2:;_ l)H‘ (5.18)

=1

is the Kaplan-Meier estimate of the censoring curve R(t).

Figure 9 shows $°(t) for the Channing House men. It crosses the 50% survival level at
§ = 1044 months. Call this value the observed median lifetime. We can use the bootstrap to
assign a standard error to the observed median.

The probability mechanism is P = (S°, R); P produces (X?, D;) according to (5.12)-
(5.15), and y = {(21,d1),"**,(2zn,dn)} by n = 97 independent repetitions of this process.
An obvious choice of the estimate P in Figure 8 is (S°, R), (5.14), (5.15). The rest of the
bootatrap process is automatic: $° and R replace S° and R in (5.12), (5.13); n pairs (X7, D3)
are independently generated according to rules (5.12)-(5.15), giving the bootstrap data set
7" = {z{,43),--,(2a,d})}; and finally the bootstrap Kaplan-Meier curve §* is constructed
according to formula (5.16), and the bootstrap observed median # gave estimated standard
error & = 14.0 months for §. An estimated bias of 4.1 months was calculated as at (4.4). Efron
(1981c) gives a fuller description.



r{.)

5°(0)

1.0 7/

e - e e = e m e tm m, .- -

800 ’ %00 1000 1064 1100

Figure 9. Kaplan-Meier estimated survival curve for the Channing
House men; { = age in months. The median survival age is estimated
to be 1,044 months (87 years).

Once again there is a simpler way to apply the bootstrap. Consider each pair y; = (z;, d;)
as an observed point obtained by simple random sampling from a bivariate distribution F, and
apply the bootstrap as described in Section 2 to the data set y;,y2,- --,y,.ivigi. This method
makes no use of the special structure (5.12)—(5.15). Surprisingly, it gives ezactly the same
answers as the more complicated bootstrap method described earlier, Efron (1981a).
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6. Examples with more complicated data structures.

Example 1: Autoregressive Time Series Model

This example illustrates an application of the bootstrap to a famous time series.

The data are the Wolfer annual sunspot numbers for the years 1770-1889 (taken from
Anderson 1976). Let the count for the ith year be z;. After centering the data, (replacing z;
by z — ;) we fit a first order autoregressive model

5=z + € (6.1}

where ¢; ~ 1.1.d. N(0,0%). The estimate $ turned out to be .815 with an estimated standard

error, one over the square root of the Fisher information, of .053.

A bootstrap estimate of the standard error of ¢ can be obtained as follows. Define the
residuals & = z; — $z;_; for i = 2,3,...120. A bootstrap sample 25,23 ...275 i8 created by
sampling é3,&3...é159 with replacement from the residuals, then letting z{ = z;, and 2! =
23, + &, i = 2,...120. Finally, after centering the time series zJ,2},...z05,, ¢° is the
estimate of the autoregressive parameter for this new time series. (We could, if we wished,

sample the ¢; from a fitted normal distribution.)
A histogram of 1000 such bootstrap values ¢3, 63,... $}o0 is shown in Figure 10.

The bootstrap estimate of standard error was .055, agreeing nicely with the usual formula.
Note however that the distribution is skewed to the left, s0 a confidence interval for ¢ might
be asymmetric about ¢, as discussed in Sections 8 and 9.

In bootstrapping the residuals, we have assumed that the first order auto-regressive mode:
is correct. (Recall the discussion of regression models in Section §). In fact, the first order
autoregressive model is far from adequate for this data. A fit of second-order autoregressive
model

Zi=az;_ g +0z;_0+ ¢ (6.2}

gave estimates @ = 1.37, § = —.677, both with an estimated standard error of .067, based
on Fisher information calculations. We applied the bootstrap to this model, producing the
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Figure 10. Bootstrap histogram of 4},...8}000 for the Wolfer
sunspot data, model (6.1)

histograms for aj,...a}ge and 8}, ...87p0o shown in Figures 11 and 12 respectively.

The bootstrap standard errors were .070 and .068 respectively, both close to the usual
value. Note that the additional term has reduced the skewness of the first coefficient.

Example 2: Estimating a response transformation in regression

Box and Cax (1964) introduced a parametric family for estimating a tranformation of
the response in a regression. Given regression data {(23,11),...(2s,¥s)}, their model takes the

form
z(A)=2;-B+¢ (6.3)

where z;(2) = (y} = 1)/X for A # 0 and logy; for A =0, and ¢; ~ i.i.d N(0,0?). Estimates of
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Figure 11. Bootstrap histogram of 4°,... a3 for the Wolfer
sunspot data, model (6.2)
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Figure 12.  Bootstrap histogram of 6*,...63,,, for the Woler
sunspot data, model (6.2)
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A and A are found by minimizing 3 7(z — &, - 8)3.

Breiman and Friedman (1984) proposed a non-parametric solution for this problem. Their
so-called ACE (*Alternating Conditional Expectation®) model generalises (6.3) to

(y;)=2-B+¢ (6.4)

where s(-) is an unspecified smooth function. (In its most general form, ACE allows for
transformations of the covariates as well). The function s(:) and parameter # are estimated in

an alternating fashion, utilizing a non-parametric smoother to estimate ().

In the following example, taken from Friedman and Tibshirani (1984), we compare the
Box and Cox procedure to ACE and use the bootstrap to assess the variability of ACE.

The data, from Box and Cox (1964), consist of a 3x3x3 experiment on the strength of
yarns, the response Y being number of cycles to failure, and the factors length of test specimen
(X1) (250, 300 or 350 mm), amplitude of loading cycle (X3) (8, 9, or 10 mm), and load (Xj)
(40, 45 or 50 gm). As in Bax and Cox, we treat the factors as quantitive and allow only a
linear term for each. Bax and Cox found that a logarithmic tmnsfomatidn was appropriate,

with their procedure producing a value of -.06 for A with an estimated 95 percent confidence
interval of (-.18,.06).

Figure 13 shows the transformation selected by the ACE algorithm. For comparison, the

log function is plotted (normalized) on the same figure.

The similarity is truly remarkable! In order to assess the variability of the ACE curve, we
can apply the bootstrap. Since the X matrix in this problem is fixed by design, we resampled
from the residuals instead of from the (s;, y;) pairs. The bootstrap procedure was the following:
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Figure 13. Estimated transformation from ACE and the log
function, for Bax and Cox example

Calculate residuals é; = é(y;) — 2 8, i = 1,2,...n

Repeat B times
Choose a sample ¢}, ...65 with replacement from ¢,,...é4
Calculate y? = i~!(s;-B+¢1),i=1,2,..n

Compute i*(-) = result of ACE algorithm applied to (21,47),... (2., 42)

End

The number of bootstrap replications B was 20. Note that the residuals are computed
on the #(-) scale, not the y scale, because it is on the #(-) scale that the true residuals are

assumed to be approximately i.i.d.. The 20 estimated tranformations, 4}(-),...53¢(-) are shown
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Figure 14. Bootstrap replications of ACE tranformations for Box
and Cax example
in Figure 14.

The tight clustering of the smooths indicates that the original estimate 4(-) has low
variability, especially for smaller values of Y. This agrees qualitatively with the short confidence
interval for A in the Box and Cox analysis.
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7. Bootstrap Confidence Intervals.

This section presents three closely related methods of using the bootstrap to set confidence
intervals. The discussion is in terms of simple parametric models, where the logical basis of
the bootstrap methods is easiest to see. Section 8 extends the methods to multiparameter and

nonparametric models.

We have discussed obtaining &, the estimated standard error of an estimator #. In practice,
6 and & are usually used together to form the approximate confidence interval # € § + 52(%),
(1.7) is claimed to have approximate coverage probability 1—2a. For the law school example of
Section 2, the values § = .776, & = .115, £(%8) = —1.645, give # € [.587,.965] as an approximate

90% central interval for the true correlation coefficient.

We will call (1.7) the standard interval for 8. When working within parameteric families
like the bivariate normal, & in (1.7) is usually obtained by differentiating the log likelihood
function, see Section 5a of Rao (1973), though in the context of this paper we might prefer to

use the parametric bootstrap estimate of 0, e.g. FNORM In Section 2.

The standard intervals are an immensely useful statistical tool. They have the great
virtue of being automatic: a computer program can be written which produces (1.7) directly
from the data y and the form of the density function for y, with no further input required
from the statistician. Nevertheless the standard intervals can be quite inaccurate, as Table 5
shows. The standard interval (1.7), using 6\yoRM> (2-5), is strikingly different than the exact
normal-theory interval based on the assumption of a bivariate normal sampling distribution
F.

In this case it is well-known that it is better to make the transformation ¢ = tanh~1(§),
¢ = tanh~'(4), apply (1.7) on the ¢ scale, and then transform back to the # scale. The resulting
interval, line 3 of Table TA, is moved closer to the exact interval. However, there is nothing
automatic about the tanh™! transformation. For a different statistic than the correlation
coefficient or a different distributional family than the bivariate normal, we might very well
need other tricks to make (1.7) perform satisfactorily.

The bootstrap can be used to produce approximate confidence intervals in an automatic

way. The following discussion is abridged from Efron (1984a and b) and Efron (1982, Chapter

«
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1. Exact (Normal Theory): [496,.898] R/L =

2. Standard (1.7): [687,965] R/L = 1.00
3. Transformed Standard: [.508,.907] R/L = .49
4. Parametric Bootstrap (BC): [488,900] R/L = 43

5. Nonparametric Bootstrap (BC,): [.43,.92) R/L = 42

Table 5. Exact and approximate central 90% confidence intervals for 4, the true correlation
coefficient, from the law school data of Figure 1. R/L = ratio of right side of mterval measured

from § = .776, to left side. The exact interval is strikingly asymmetric about #. Section 8
discusses the nonparametric method of line 5.

10). Line 4 of Table § shows that the parametric bootstrap interval for the correlation coef-
* ficient 6 is nearly identical to the exact interval. *Parametric® in this case means that the
bootstrap algorithm begins from the bivariate normal MLE FNOR.M' as for the normal theory
curve of Figure 2. This good performance is no accident. The bootstrap method used on line 4
in effect transforms 4 to the best (most normal) scale. All of this is done automatically by the
bootstrap algorithm, without requiring special intervention from the statistician. The price
paid is a large amount of computing, perhaps B = 1000 bootstrap replications, as discussed

in Section 10.

Define G(s) to be the parametric bootstrap c.d.f. of é°,
G(s) = Prob,{§* < s}, (7.1)

where Prob, indicates probability computed according to the bootstrap distribution of 8. In
Figure 2, (:'(c) is obtained by integrating the normal theory curve. We will present three
different kinds of bootstrap confidence intervals, in order of increasing genreality. All three
methods use percentiles of G to define the confidence interval. They differ in which percentiles

are used.

The simplest method is to take § € [G~!(a),G~}(1 - a)] as an approximate 1 — 2a
central interval for 8. This is called the percentile method in Section 10.4 of Efron (1982). The
percentile method interval is just the interval between the 100 - a and 100 (1 — a) percentiles

of the bootstrap distribution of 8°.
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We will use the notation of #[a] for the a-level endpoint of an approximate confidence
interval for 4, s0 & € [#[a], #[1 - a]] is the central 1 — 2a interval. Subecripts will be used to

indicate the various different methods. The percentile interval has the endpoints
la] = G (a). (7.2)
This compares with the standard interval,
Isla] = § + 2@, (7.3}
Suppose the bootstrap c.d.f. G is perfectly norﬁxd, say

Glo) =@ (‘ = i) , (7.4)

where &(s) = z‘;c‘—a‘—’ J2 . (1x)~/3.~"/24s the standard normal c.df. In other words, sup-
pose that §* has bootstrap distribution N (5,&’). In this case the standard method and the

percentile method agree, ds[a] = §,[a]. In situations like that of Figure 2, where € is markedly
nonnormal, the standard interval is quite different from (7.2). Which is better?

To answer this question, consider the simplest possible situation, where for all &
§ ~ N(8,0%). (7.5)

That is, we have a single unknown parameter # with no nuisance parameters, and a single
summary statistic § normally distributed about # with constant standard error o. In this case
the parametric bootstrap c.d.f. is given by (7.4), so0 #s[a] = ,{a). (The bootstrap estimate &
equals 0.)

Suppose though that instead of (7.5) we have, for all 4,
¢~ N($,7), (7.6}

for some monotone transformation $g(5), ¢ = g(#), where r is a constant. In the correlation
coefficient example the function g was tanh™!. The standard limits (7.2) can now be grossly
inaccurate. However it is easy to verify that the percentile limits (7.2) are still correct. “Cor-

rect” here means that (7.2) is the mapping of the obvious interval for é 6+ rz{@) back to the
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! scale, 4,[a] = 973(¢ + rz(2)). It is also correct in the sense of having exactly the claimed

average probability 1 - 2a.

Another way to state things is that the percentile intervals are transformation invariant,

¢rla] = g(#)[a]) (1.7)

for any monotone transformation g. This implies that if the percentile intervals are correct
on some transformed scale ¢ = g(4), then they must also be correct on the original scale 4.
The statistician doesn’t need to kmow the normalizing transformation g, only that it exists.
Definition (7.2) automatically takes care of the bookkeeping involved in the use of normalizing
transformations for confidence intervals.

Fisher’s theory of maximum likelihood estimation says that we are always in situation
(7.5) to a first order of asymptotic appraximation. However we are also in situation (7.6) for
any choice of g, to the same order of approximation. Efron (1984a and b) uses higher order
asymptotic theory to differentiate between the standard and bootstrap intervals. It is the
higher order asymptotic terms which often make exact intervals strongly asymmetric about
the MLE 4, as in Table 5. The bootstrap intervals are effective at capturing this asymmetry.

The percentile method automatically incorporates normalizing transformations, as in go-
ing from (7.5) to (7.6). It turns out that there are two other important ways that assumption
(7.5) can be misleading, the first of which relates to possible bias in §. For example consider
fo(8), the family of densities for the observed correlation coeflicient # when sampling n = 15
times from a bivariate normal distribution with true correlation #. In fact it is easy to see that
no monotone mapping ¢ = g(#), ¢ = g(#) transforms this family to ¢ ~ N(4, 72), as in (7.6).
If there were such a g, then Proby{d < ¢} = Proby{¢ < ¢} = .50, but for # = .776 integrating
the density function f77¢(6) gives Proberrs{# < #} = 431

The biss-corrected percentile method (BC method) makes an adjustment for this type of
bias. Let

2 = HC()}, (7.8)

where 7! is the inverse function of the standard normal c.d.f. The BC method has a-level
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endpoint
Iscla] = G--t(§{2k + '(a)}). (7.9)
Note: if G(f) = .50, that is if balf of the bootstrap distribution of #* is less than the observed

value #, then 2 = 0 and #scla] = #,[a]. Otherwise definition (7.9) makes a bias correction.

Section 10.7 of Efron (1982) shows that the BC interval for ¢ is exactly correct if
$ ~ N($ - 31, 7%) (7.10)
for some monotone transformation ¢ = g(i), ¢ = 9(¢) and some constant z,. If doesn’t look

like (7.10) is much more general than (7.6), but in fact the bias correction is often important.

In the example of Table 5, the percentile method (7.2) gives central 90% interval [-53s,
.911] compared to the BC interval [.488, .900]. By definition the endpoints .496 and .898 of
the exact interval satisfy

Prog=.ise{6 > .776} = .05 = Probyses{d < .776}. (7.11)
The corresponding quantities for the BC endpoints are

Probe=.(ss{f > .776} = .0465,  Proby=.s00{é < .776} = .0475, (7.12)

compared to

Probe—sae{f > .776} = 0725,  Proby= s {é < .776} = .0203. (7.13)

for the percentile endpoints. The bias correction is quite important in equalizing the error
probabilities at the two endpoints. H 5 can be approximated accurately (as mentioned in
Section 9), then it is preferable to use the BC intervals.

Table 6 shows a simple example where the BC method is less successful. The data consists
of the single observation # ~ #(x3,/19), the notation indicating an unknown scale parameter
8. In this case the BC interval based on # is a definite improvement over the standard interval

(1.7), but goes only about half as far as it should toward achieving the asymmetry of the exact
interval.

It turns out that the parametric family § ~ #(x3,/19) cannot be transformed into (7.10),

not even approximately. The results of Efron (1982a) show that there does exist a monotone




1. Exact [631-4,188-4] R/L =238
2. Standard (1.7) [466-4, 1.53-4] R/L =1.00
3. BC (1.9) [.580-4, 1.69-4] R/L =1.64
4. BC, (7.15) [630-4, 1.88-] R/L =2.37
" 5. Nonparametric BC, [640-4, 1.68-4] R/L =188

Table 6. Central 90% confidence intervals for 4, having obeerved § ~ 0(x3,/19). The exact
interval is sharply skewed to the right of . The BC method is only a partial improvement
over the standard interval. The BC, interval, a = .108, agrees almost perfectly with the exact
interval.

transformation g such that ¢ = g(é), ¢ = g(9) satisfy to a high degree of approximaton
$~N@-2m,1) (rs=1+ad). (7.14)

The constants in (7.14) are zo = .1082, a = .1077.

The BC, method, Efron (1984b), is a method of assigning bootstrap confidence intervals
which are exactly right for problems which can be mapped into form (7.14). This method has

0pc.la]l = Gt (Q {Io + Lo+ st }) . (7.15)

1 - a(zp + zlo))

a-level endpoint

if a = 0 then fpc, [a] = d8c|a], but otherwise the BC, intervals can be a substantial improve-
ment over the BC method, as shown in Table 7B.

The constant zo in (7.15) is given by z = &'{G()}, (7.8), and 20 can be computed
directly from the bootstrap distribution. How do we know a? It turns out that im one-

parameter families f.(é), a good approximation is

. SKEW, (é(t))
a= 6 ,

(7.16)

where SKEW,='-(£.¢(:)) is the skewness at parameter value # = § of the score statistic b(t) =
%log fo(t). For 8 ~ 8(x2,/19) this gives a = .1081, compared to the actual value a = .1077
derived in Efron (1984b). For the normal theory correlation of Table § a = 0 which explains
why the BC method, which takes a = 0, works 20 well there.
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The advantage of formula (7.18) is that we needn’t know the transformation ¢ leading to
(7.14) in order to approximate a. In fact #pc,[al, like #5¢,[a] and Ipla), is transformation
invariant, as in (7.7). Like the bootstrap methods, the BC, intervals are computed directly
from the form of the density function fy(-), for # near #.

Formula (7.16) applies to the case where # is the only parameter. Section 8 briefy dis-
cusses the more challenging problem of setting confidence intervals for a parameter # in a
multiparameter family, and also in nonparametric situations where the number of nuisance

parameters is eflectively infinite.

To summarize this section, the progression from the standard intervals to the BCgq method
is based on a series of increasingly less restrictive assumptions, (7.5), (7.6), (7.10), and finally
(7.14). Each step requires the statistician to do a greater amount of computation, first the
bootstrap distribution G, then the bias-correction constant %0, and finally the constant a.
However all of these computations are algorithms in character, and can be carried out in an

automatic fashion.

Chapter 10 of Efron (1982) discusses several other ways of using the bootstrap to construct
approximate confidence intervals, which will not be presented here. One of these methods, the
“bootstrap t”, was used in the blood serum example of Section 4.

8. Nonparametric and Multiparameter Confidence Intervals.

Section 7 focused on the simple case § ~ f,, where we have only a real-valued parameter
8 and a real-valued summary statistic # from which we are trying to construct a confidence
interval for 8. Various favorable properties of the bootstrap confidence intervals were were
demonstrated in the simple case, but of course the simple case is where we least need a general

method like the bootstrap.

Now we will discuss the more common situation where there are nuisance parameters
besides the parameter of interest #; or even more generally the nonparametric case, where the
number of nuisance parameters is effectively infinite. The discussion is limited to a few brief
examples. Efron (1984a and b) develops the theoretical basis of bootstrap confidence intervals

for complicated situations, and gives many more examples.
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for ¢ for ¢
1. Exact (Fieller): [.29,.76] [1.32,3.50]
2. Parametric Boot (BC): [.29,.76] [1.32,3.50)
3. Standard (1.7): [27,73] [1.08,2.92]
MLE =5 $=2

Table 7. Central 90% confidence intervals for # = n3/n; and for ¢ = 1/4, having observed
(v1,¥2) = (8,4) from a bivariate normal distribution y ~ N3(w,I). The BC intervals, line 2,
are based on the parametric bootstrap distribution of & = ya2/y;.

Example 1: Ratio Estimation

The data consists of y = (y1,y2), assumed to come from a bivariate normal distribution

with unknown mean vector § and covariance matrix the identity,

y ~ Na(n,I). (8.1)

The parameter of interest, for which we desire a confidence interval, is the ratio

0=n2/m. (8.2)

Fieller (1954) provided well-known exact intervals for # having observed y = (8,4). Also
shown is the Fieller interval for ¢ = 1/8 = n;/n;, which equals [.7671,.2972], the obvious
transformation of the interval for §. The standard interval (1.7) is satisfactory for #, but not
for ¢. Notice that the standard interval does not transform correctly from # to 4.

Line 2 shows the BC intervals based on applying definitions (7.8), (7.9) to the parametric
bootstrap distribution of § = y2/y; (or é = y1/y2). This is the distribution of §* = y2/y; when
sampling y* = (y7,y;) from i'NOR.M ~ Na((y1,y2),I). The bootstrap intervals transform
correctly, and in this case they agree with the exact interval to three decimai piaces.

Example 2: Product of Normal Means

For most multiparameter situations, there do not exist exact confidence intervals for a




for ¢ for ¢
1. Almost Exact: [1.77,17.03]  [3.1,290.0]
2. Parametric Boot (BC): [1.77,17.12]  [3.1,203.1]
3. Standard (1.7): [0.64,15.36] [-63.7,181.7]
MLE i=38 $=064

Table 8. Central 90% confidence intervals for / = mn; and ¢ = #2 having observed y = (2, 4},
where y ~ N3(n,J). The almost exact intervals are based on the high order appraxiatioz
theory of Efron (1984a). The BC intervals of line 2 are based on he parametric bootstrap
distribution of 8 = y,y,.

single parameter of interest. Suppose for instance that (8.2) is changed to

d=mn; (8.3}

still assuming (8.1). Table 8 shows approximate intervals for #, and also for é = ¢, having
observed y = (2,4). The “almost exact” intervals are based on an analogue of Fieller’s ar-
gument, Efron (1984a), which with suitable care can be carried through to a high degree o
accuracy. Once again, the parametric BC intervals are a close match to line 1. The fact that
the standard intervals do not transform correctly is particularly obvious here.

The good performance of the parametric BC intervals is not accidental. The theory
develobed in Efron (1984a) shows that the BC intervals, based on bootstrapping the MLE §,
agree to high order with the almost exact intervals in the following class of problems: the data
y comes form a multiparameter family of densities fn(y), both y and  k-dimensional vectors
the real-valued parameter of interest § is a smooth function of g, # = t(n); and the family
fn(y) can be transformed to multivarite normality, say

5(y) ~ Ni(h(n),I), (8.4

by some one-to-one transformations g and A.

Just as in Section 7, it is not necessary for the statistician to know the pnormaliziny
transformations g and A, only that they exist. The BC intervals are obtained directly fron
the original densities f,: we find 4 = f(y), the MLE of n; sample g* ~ f#; compute 8*, the
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bootstrap MLE of #; calculate G, the bootstrap c.d.f. of i, usually by Monte Carlo sampling,
and finally apply definitions (7.8), (7.9). This process gives the same interval for # whether or
not the transformation to form (8.4) has been made.

Not all problems can be transformed as in (8.4) to a normal distribution with constant
covariance. The case considered in Table 6 is a one-dimensional counterexample. As a result
the BC intervals do not always work as well as in Tables 7 and 8, though they usually improve
on the standard method. However in order to take advantage of the BC, method, which is

based on more general assumptions, we need to be able to calculate the constant a.

Efron (1984b) gives expressions for “a” generalizing (7.16) to multiparameter families,
and also to nonparametric situations. If (8.4) holds, then “a” will have value gero, and the
BC, method reduces to the BC case. Otherwise the two intervals differ.

Here we will discuss only the nonparametric situation: the observed data y = (z,,2,,---,
z,) consists of i.i.d. observations X;, X3,--, X, ~ F, where F can be any distribution on the
sample space I; we want a confidence interval for # = ¢(F), some real-valued functional of F;
and the bootstrap interval are based on bootstrapping #§ = ¢(F), which is the nonparametric
MLE of 4. In this case a good approximation to the constant a is given in terms of the empirical
influence function U?, defined in Section 10 at (10.11),

:-.=‘(U.-.)’

{To. ey

This is a convenient formula, since it is easy to numerically evaluate the U? by simply substi-

. 1
= E (8.5)

tuting a small value of # into (10.11).

Example 3: The Law School Data

For # the correlation coefficient, the values of U? corresponding to the 15 data points
shown in Figure 1 are -1.507, .168, .273, .004, 525, -.049, -.100, 477, 310, .004, -.§26, -.091,
.323, .125, -.048. (Notice how influential law school 1 is.) Formula (8.5) gives a = —.0817.
B = 100,000 bootstrap relications, about 100 times more than was actually necessary, see
Section 10, gave zo = —.0927, and the central 90% interval # € [.43,.92] shown in Table 7.

The nonparametric BC, interval is quite reasonable in this example, particularly considering
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that there is no guarantee that the true law school distribution F is anywhere near a bivariate

normal.

Example 4: Mouse Leukemia Data (the first example in Section 3)

The standard central 90% interval for § in formula (3.1) is [.835, 2.18]. The bias-correctioa
constant zo = .0275, giving BC interval [1.00,2.39]. This is shifted far right of the standard
interval, reflecting the long right tail of the bootstrap histogram seen in Figure 3. We caxu
calculate “a” from (8.5), considering each of the n = 42 data points to be a triple (y;, 2;,5;)
¢ = -.152. Because o is negative, the BC, interval is shifted back to the left, equaling
[.788,2.10]. This contrasts with the law school example, where a, zj, and the skewness of
the bootstrap distribution added to each other rather than cancelling out, resulting in a BC,
interval much different than the standard normal.

Efron (1984b) provides some theoretical support for the nonparametric BC, method.
However the problem of setting approximate nonparametric confidence intervals is still far
from well understood, and all methods should be interpreted with some caution. We end this

section with a cautionary example.

Example §: The Variance

Suppose I is the real line, and # = VarpX, the variance. Line 5 of Table 2 shows
the result of applying the nonparametric BC, method to data sets 23,232, *, 220 which were
actually i.i.d. samples from a N(0,1) distribution. The mumber .640 for example is the average
of 85c,[-05]/8 over 40 such data sets, B = 4000 bootstrap replications per data set. The upper
limit 1.68 - 4 is noticeably small, as pointed out by Schenker (1983). The reason is simple:
the nonparametric bootstrap distribution which is a scaled x2, random variable. The results
of Beran (1984), Bickel and Friedman (1981), and Singh (1981) show that the nonparametric
bootstrap distribution is highly accurate asymptotically, but of course that isn’t a guarantes
of good small-sample behavior. Bootstrapping from a smoothed version of F, as in lines 3, 4,
and 5 of Table 2 alleviates the problem in this particular example.

T e s e
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9. Bootstrap Sample Sizes.

How many bootstrap replications must we take? Consider the standard error estimate
6p based on B bootstrap replications, (2.4). As B — oo, &g approaches 7, the bootstrap
estimate of standard error as originally defined in (2.3). Because F does not estimate F
perfectly, & = o(F) will have a non-sero coefficient of variation (CV') for estimating the true
standard error ¢ = o(F); 6p will have a larger CV because of the randomness added by the

Monte Carlo bootstrap sampling.

It is easy to derive the following appraximation,

, 1/2 '
CV(6p) = {CV(&)’ + 5-{%13} : (9.1)

where § is the kurtosis of the bootstrap distribution of #°, given the data y, and E{3 } its

expected value averaged over y. For typical situations, CV(5) lies between .10 and .30. For
example if § = 2, n = 20, z;‘-’gN (0,1), then CV (6) = .16.

Table 9 shows CV (ép) for various values of B and CV(4), assuming E{§} = 0 in (9.1).
For values of CV (&) > .10, there i3 kittle smprovement past B = 100. In fact B as small as 25
gives reasonable results. Even smaller values of B can be quite informative, as we saw in the

Stanford Heart Transplant Data, Figure of Section 3.

B —

%5 50 100 200 oo
Cv(s) .25 29 2T .26 .25 .25

l 20 24 22 21 21 20
15 21 18 17 16 .15
05 15 11 .09 07 .05
0 a4 10 07 05 0

Table 9. Coefficient of variation of 6, the bootstrap estimate of standard error based on B

Monte Carlo replications, as a function of B and CV(5), the limiting CV as B — co. Based
on (9.1), assuming E{§} = 0.
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The situation is quite different for setting bootstrap confidence intervals. The calculatiaors
of Efron (1984b), Section 8, show that B = 1000 is a rough minimum for the number of Mont
Carlo bootstraps necessary to compute the BC or BC, intervals. Somewhat smaller values:
say B = 250, can give a useful percentile interval, the difference being that then the constart
2o need not be computed. Confidence intervals are a fundamentally more ambitious measure
of statistical accuracy than standard errors, so it is not surprising that they require mor

computational effort.

10. The Jackknife and the Delta Method.

This section returns to the simple case of assigning a standard error to é(y), where
¥ = (21, "+, 2,) is obtained by random sampling from a single unknown distribution, z;, - --,
X,,i'@ F. We will give another description of the bootstrap estimate &, which illustrates the
bootstrap’s relationship to older techniques of assigning standard errors, like the jackknife and'

the delta method.

For a given bootstrap sample y* = (z{,---,23), as described in step (i) of the algorithn
in Section 2, let p} indicate the proportion of the bootstrap sample equal to z;,

. #z =)

P; = 1=12---,n, (10.1}

?' = (p3,p3,--,pn). The vector p° has a rescaled multinomial distribution
»’ ~ Mult, (n’ ’.)/" (»* = (1/"’ l/nv T 1/")), (102?

where the notation indicates the proportions observed from n random draws on n categories,

each with probability 1/n.

For n = 3 there are 10 possible bootstrap vectors p*. These are indicated m Figure
15 along with their multinomial probabilities, from (10.2). For example, p* = (1/3,0,2/3),
corresponding to 2° = (z;, 23, z) or any permutation of these values, has bootstrap probability
1/9.

To make our discussion easier, suppose that the statistic of interest 4 is of functional

form: 8 = 8(F), where 8(F) is a functional assigning a real number to any distribution F

e = v e p———— e
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Figure 15. The bootstrap and jackknife sampling points in the case
n = 3. The bootstrap points (-) are shown with their probabilities.

on the sample space X. The mean, the correlation coeficient, and the trimmed mean are all
of functional form. Statistics of functional form have the same value as a function of F, no
matter what the sample size n may be, which is convenient for discussing the jackkmife and
delta method.

For any vector p = (p1,p2,** *,Pn) having non-negative weights summing to 1, define the
weighted empirical distribution

F(p) : probability p;on z; $=1,---,n. (10.3)
For p = p° = 1/n, the weighted empirical distribution equals F, (1.4).
Corresponding to p is a resampled value of 8,
6(p) = 0(F(p)). (10.4)

The shortened notation é(p) assumes that the data (z;, 22, -, z) i8 considered fixed. Notice
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that §(p°) = (F) is the observed value of the statistic of interest. The bootstrap estimate 5,

(2.3), can then be written
& = [ Var, §(p°)]*/2, (10.5)
where Var, indicates variance with respect to distribution (10.2). In terms of Figure 15,6 &

the standard deviation of the ten possible bootstrap values i(p‘), weighted as shown.

It looks like we could always calculate & simply by doing a finite sum. Unfortunately the
number of bootstrap points is (**7!), 77,558,710 for n = 15 so straightforward calculation of
¢ is usually impractical. That is why we have emphasized Monte Carlo approximations to 4.
Therneau (1983) considers the question of methods more efficient than pure Monte Carlo, but
at present there is no generally better method available.

However there is another approach to appraximating (10.5): we can replace the usually
complicated function #(p) by an approximation linear in P, and then use the well-known formula
for the multinomial variance of a linear function. The Jackknsfe approzimatson i:(p) is the
linear function of p which matches §(p), (10.4), at the n points corresponding to the deletion
of a single z; from the observed data set z,,2,, -, Zn,

1
= n——1(1911"',1y0y lr""l) (10.5)

+=1,2,---,n. Figure 7A indicates the jackknife points for n = 3; because # is the functiona!
form, (10.4), it doesn’t matter that the jackknife points correspond to sample size n — 1 rather

than n.

The linear function §;(p) is calculated to be
i:p)=ba+(p-»°)-U (10.7)
where in terms of §(y = §(p(y), §) = T, #(9/n, and U is the vector with ith coordinate
= (n-1)(dy - i) (10.8)

The jackknife estimate of standard error, Tukey (1958), Miller (1974), is

91 = n(n

-1 < . . n 2 1/2
. ,, l > - ’(-)}’] 2—'—] : (10.9)
=1
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A standard multinomial calculation gives the following theorem (Efron 1982),

Theorem. The jackknife estimate of standard error equals [n/(n — 1)]'/? times the

bootstrap estimate of standard error for i;,
n . 1/2
0y = ["—-l Var, ']('.)] . (10.10)

In other words, the jackknife estimate is itself almost a bootstrap estimate applied to a linear
approximation of 4. The factor [n/(n — 1)]'/? in (10.10) makes 3 unbiased for 02 in the case
where § = 2, the sample mean. We could multiply the bootstrap estimate & by this same factor,
and achieve the same unbiasedness, but there doesn’t seem to be any consistent advantage to
doing so. The jackknife requires n, rather than B = 50 to 200 resamples, at the expense of
adding a linear approximation to the standard error estimate. Tables 1 and 2 indicate that
there is some estimating efficiency lost in making this approximation. For statistic like the
sample median which are difficult to appraximate linearly, the jackknife is useless, see Section
3.4 of Efron (1982).

There is a more obvious linear appraximation to #(p) than #,(p). Why not use the first-
order Taylor series expausion for #(p) about the point p = p°? This is the idea of Jaeckel’s
infinstessimal jackknsfe (1972). The Taylor series approximation turns out to be

iz(p) =§(p*) + (p - p°)'U°
where

U = lim ML= 9 + k) = ip°)
=0 €

(10.11)

§; being the sth coordinate vector. This suggests the infinitesimal jackknife estimate of standard

617 =[ Var br(p°)]'/? = [SUR 02/ (10.12)

with Var, still indicating variance under (10.2). The ordinary jackkmife can be thought of
as taking ¢ = —1/(n — 1) in the definition of U?, while the infinitesimal jackknife lets ¢ — 0,

thereby earning the name.

The U? are values of what Mallows (1974) calls the empirical influence function. Their
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definition is a nonparametric estimate of the true influence function

€)F + ¢b,) - I(F)

€

IF(z) = .l‘-'% ”(1-

é, being the degenerate distribution putting mass 1 on 2. The right side of (10.12) is then the
obvious estimate of the influence function approximation to the standard error of 4, (Ham-
pel 1974), o(F) = [[ IF?(z)dF(z)/n]'/2. The empirical influence function method and the
infinitesimal jackknife give identical estimates of standard error.

How have statisticians gotten along for s0 many years without methods like the jack-
knife and bootstrap? The answer is the delta method, which is still the most commonly
used device for approximating standard errors. The method applies to statistics of the form
t(Q1,Q2,--+,Q4), where t(-,-,---,-) is a known function and each Q. is an observed average,
Qs = X, Qe(X:)/n. For example the correlation # is a function of A = § such averages; the
average of the first coordinate values, the second coordinates, the first coordinates squarad,

the second coordinates squares, and the cross-products.

In its nonparametric formulation, the delta method works by (a) expanding ¢t in a lin-
ear Taylor series using the usual expressions for variances and covariances of averages; and
(b) substituting 4(F) for any unknown quantity 7(F) occurring in (c). For example, the
nonparametric delta method estimates the standard error of the correlation # by

Y]

a - R R N R ; 1,’
f#_qg Pw 2z +4Mz_ $in1 iy
in |5 A% ooz B3,  Budes fifiez

where, in terms of z; = (y;, ), fga = S(y; — §)9(z; - 2)*/n (Cramer 1946, p. 359).

Theorem. For statistics of the form # = t(Q1,°-+,Q4), the nonparametric delta method
and the infinitesimal jackknife give the same estimate of standard error (Efron 1981b).

The infinitesimal jackkmife, the delta method, and the empirical influence function ap-
proach are three names for the same method. Notice that the results reported in line 7 of
Table 2 show a severe downward bias. Efron and Stein (1981) show that the ordinary jackknife
is always biased upwards, in a sense made precise in that paper. In the authors’ opinion the
ordinary jackknife is the method of choice if one does not want to do the bootstrap computa-

tions.
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Appendix

BOOTSTRAP PROGRAM

The following FORTRAN program bootstrape the statistic defined by the user-specified
function THETA. Comments in italics are not part of the FORTRAN code. Note that the
random number subroutines IRAND and RAND will be installation dependent.

REAL Y(100),YSTAR(100), THSTAR(1000)
EXTERNAL THETA
N=100 sample size
NBOOT=1000 number of bootstraps
DO 10 I=f{ N
READ(5,*) Y(I) read in data
10 CONTINUE
TENP=THEETA(N,Y)
WRITE(6,100) TENP write out value of theta for original sample
100 FORNAT(® TEEIA= °, £13.5)
READ(5,*) IBEED read sn sced for random number generator
CALL IRAND(ISEED) snitiakize random number genecrator
D0 20 I=1,NBOOT
DO 30 J=1{.XN
U=RAND() get a random number between 0 and 1
II=INT(UsN) + 1 convert it to a random integer between 1 and N
YSTAR(J)=Y(II) assign the jth element of bootstrap sample
30 CONTINUE
THSTAR(I)=THETA(N,YBTAR) compute bootstrap value
20 CONTINUE
THBAR=0
DD 40 I={ NBOOT
THBAR=THBAR+TESTAR(I)/NBOOT compute bootstrap mean
40 CONTINUE
THVAR=0
D0 50 I=1,NBOOT
THVAR=TEVAR+(THSTAR(I)-THBAR) *+2 compute bootstrap variance
50 CONTINUE
SDBOOT=SQRT(THVAR/(NBOOT-1)) compute bootstrap estimate of standard error
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WRITE(6,102) 8DBOOT

FORMAT(® BOOTSTRAP ESTINATE OF BTANDARD ERROR= *, £13.6)
WRITE(S,*)

WRITE(S,103)

FORNAT(® BOOTSTRAP VALUES OF THETA: °)

DO 60 I=1,NBOOT

WRITE(G,+) TESTAR(I) write out bootstrap values for further analysis
CONTINUE

8ToP

END

REAL FUNCTION TEHETA(N,Y)
REAL Y(N)

compute statistic of snterest for the sample y(1), y(2)...y(n)

RETURN
END

51

e o —— e



82

References
Anderson, O. D. (1976). Time Series Analysis and Forecasting.
Beran, R. (1984). Bootstrap methods in statistics. Jber. d. Dt. Math. Verein 86, 14-30.

Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann.
Statist. 9, 1196-1217.

Bax, G. E. P., and Cox, D. R. (1964). An analysis of transformations. JRSS B 26, 211-252.

Breiman, L. aud Friedman, J. H. (1984). Estimating optimal correlations for multiple regres-
sion and correlation. To appear J. Amer. Statist. Assoc., March 1985.

Cax, D. R. (1972). Regression models and life tables. JRSS B 34, 187-202.

Cramér, H. (196). Mathematical Methods of Statistics. Princeton University Press, New
Jersey.

Efron, B. (1979a). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.

Efron, B. (1979b). Computers and the theory of statistics: thinking the unthinkable. SIAM
Review 21, 460—480.

Efron, B. (1981a). Censored data and the bootstrap. J. Amer. Statist. Assoc. 76, 312-319.
Efron,B. (1981b). Maximum likelibood and decision theory. Ann. Statist. % 340-356.

Efron, B. (1981c). Nonparametric estimates of standard error: the jackknife, the bootstrap,
and other resampling methods. Biometrika 68, 589-599.

Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. SIAM CBMS-NSF
Monograph $8.

Efron, B. (1982a). Transformation theory: how normal is a one parameter family of distribu-
tions? Ann. Statist. 10, 323-339.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvements in cross-
validation. J. Amer. Statist. Assoc. 78, 316-331.

Efron, B. (1984a). Bootstrap confidence intervals for a class of parametric problems. To appear
in Biometrika.

Efron, B. (1984b). Better bootstrap confidence intervals. Department of Statistics, Stanford
University Technical Report No. 226.

Efron,B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross
validation. The American Statistician 37, 36—48.

Efron, B. and Stein, C. (1981). The jackknife estimate of variance. Ann. Statist. 9, 586-595.
Fieller, E. C. (1954). Some problems in interval estimation. JRSSB 16, 175-183.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist.
Assoc. 76, 817-823.

Friedman, J. H. and Tibshirani, R. J. (1984). The monotone emoothing of scatterplots. Tech-
nometrics 28, 8, 243-250.




83

Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist.

Assoc. 69, 383-383.

Hastie, T. J. and Tibshirani, R. J. (1984). Discussion of Peter Huber’s “Projection Pursuit”.
To appear in Ann. Statist., August 1985,

Hinkley, D. V. (1978). Improving the jackkmife with special reference to correlation estimation.
Biometrika 65, 13-22.

Jaeckel, L. (1972). The infinitesimal jackkmife. Memorandum MM 732-1215-11, Bell Laborato-
ries, Murray Hill, New Jersey.

Johnson, N. and Kotz, S. (1970). Continuous Univariate Distributions. Houghton Miffiin,
Boston.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete samples. J.
Amer. Statist. Assoc. 83, 457-481.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the
presence of infinitely many incidental parameters. Ann. Math. Statist. 37, 887-906.

Mallows, C. (1974). On some topics in robustness. Memorandum, Bell Labortories, Murray
Hill, New Jersey.

Miller, R. G (1974). The jackknife - a review. Biometrika 61, 1-17.
Miller, R. G. and Halpern, J. (1982). Regression with censored data. Biometrika 69, 521-531.
Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.

Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9, 1187-
1195. '

Therneau, T. (1983). Variance Reduction Techniques for the Bootstrap. Ph.D. Thesis, Stan-
ford University, Department of Statistics.

Tibshirani, R. J. and Hastie, T. J. (1984). Local likelihood estimation. Department of Statis-
tics, Stanford University, Technical Report No. 97.

Tukey, J. (1958). Bias and confidence in not quite large samples, abstract. Ann. Math. Statist.
29, p. 614.






