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SUMMARY

Ackley, Hinton and Sejnowski have recently proposed an algorithm, named
a Boltzmann Machine, which is capable of learning to recognise the

underlying structure in a set of patterns presented to it. The main
purposes of this memorandum are: to introduce Boltzmann Machines to those

.. who are not familiar with them; to outline how Boltzmann Machines may prove
useful in the knowledge acquisition problem in artificial intelligence; to
report some new results for a model problem; and to sketch out the
relationship between Boltzmann Machines and the spin-glass problem.
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1. INTRODUCTION

The useful property of a Boltzmann Machine is that it can Learn the
underlying constraints which characterise a problem domain simply by being
shown examples from that domain.

There is a Long history of attempts to write computer programs that
can learn from experience. Such systems fall broadly into two categories.
The first or "top down" approach uses mathematical logic to follow the
consequences of a set of general rules of thumb, usually in conjunction with
some further rules which are specific to the problem domain being studied. New
knowledge learned is encoded as additional rules. These programs are most
easily realised using a symbolic reasoning Language such as Lisp or Prolog.
Perhaps the most impressive example of this sort is Lenat's Eurisko program
[Lenat, 1964(a,b)) which has shown useful behaviour in fields as diverse as
number theory and VLSI design, and has also enabled its author, who had never
entered the competition before, to win a national U.S. war game championship
two years running.

The second, or "bottom up" approach originated in attempts to model
neural networks. Such models consist of a network of simple processing units
connected together by links of different strengths. Perception is viewed as
a parallel, distributed computation in which a large network settles into a
particular state" under the influence of sensory input [Hinton, 1984; quoted
in Bridle, 19843. New knowledge is encoded by changes in the strengths of the
connections. These systems are similar to models of other physical systems in
that they involve numerical rather than symbolic computations, and the key to
their behaviour Lies in questions of stability rather than mathematical logic.
Systems based on neural networks were a major research activity in the 190's
but work almost ceased following the publication of a critical study (Minsky,
1968] of the most popular model (perceptrons). Nevertheless, these models did
give some insight into theoretical computer science [Minsky, 1968) and have
also resulted in an interesting pattern recognition device, WISARD
-Aleksander, 19b33. There has been a resurgence of interest recently in
network models [Feldman, 19823 which stems in part from their relevance to
parallel computation. A second impetus is that Kirkpatrick has provided a
very useful tool, optimisation by simulated annealing [Kirkpatrick, 1983), for
finding the most stable states of network models.

One promising network model, named a Boltzmann Machine by its
inventors, has recently been described in a series of papers by Hinton,
Sejnowski and coworkers [Ackley, 1985; Hinton, 1983(a,b); Hinton, 1964). The
principal advantages of this formulation over previous models are as follows.
(1) Boltzmann Machines have a general learning rule which does not involve
assumptions about the problem under study.
(2) They are capable of modelling higher order constraints, that is
intrinsic properties of the data which are not directly constrained by the
input. The ability to do this was one of the key factors which perceptron
models lacked. This matter is discussed further in Section 4.
(3) They have a mathematical structure based on classical statistical
mechanics, to which some information theory is added. It is therefore
possible to use the techniques of statistical mechanics to study the behaviour
of the Machines. Such powerful methods of analysis make it much easier to
understand how the Machines should be operated.
(4) They have a parallel architecture. This is vital because very large
networks will be necessary for practical applications.
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Boltzmann Machines may have useful applications in visual image

processing [Hinton, 1983(b)3, speech processing [Bridle, 1984), synthetic

aperture radar [Luttrell, 1985), and communications [Pritchard, 1984) among

others. The suitability of the Boltzmann Machine architecture for various

computational tasks common to artificial intelligence programs (for example

'* set intersection, transitive closure, etc) have been considered by Fahlman,

." Hinton and Sejnowski [Fahlman, 19833. One purpose of this memorandum is to
- outline how Boltzmann Machines might aid or even take the place of the human

domain expert when building expert systems: a combination of "top down" and

"bottom up" approaches.

In Section 2 a general Boltzmann Machine is described in enough detail

to enable the reader to understand what it is and how it works. In Section 3
the use of Boltzmann Machines to get knowledge into Expert Systems is

discussed. Section 4 is a brief account of what useful lessons can be learned
from earlier work on perceptrons. One main conclusion which emerges is that
it is vital to get a thorough understanding of small problems in order to
appreciate the limitations of larger systems. For this reason a model problem
has been examined in some detail and the preliminary results are reported in
Section 5. Section 6 outlines the relation of Boltzmann Machines to
spin-glasses. Spin-glass physics may provide insights both into technical

.* details of how Boltzmann Machines may best be operated and their ultimate
Limitations. Section 7 contains the conclusions.

2. BOLTZMANN MACHINES

This section is not a complete technical description of the Boltzmann
" Machine algorithm. For that the reader should consult the elegant papers of
" Hinton, Sejnowski and coworkers [Ackley, 1985; Hinton, 1983(a,b); Hinton,

1984]. The aim here is an overview which is intended to amplify those aspects
which are the most important.

A Boltzmann Machine consists of a set of units. Except in a few

special cases, some units are devoted to input, some to output, and the rest
are internal units which do neither. At any instant a Boltzmann Machine is
running in one of three modes: a training mode where both inputs and outputs
are clamped; a free-running mode where neither inputs nor outputs are clamped;
or an operational ("testing for completion" in Hinton's words [Hinton, 19843)
mode where some inputs are clamped and the Machine, if it has learned
properly, produces appropriate outputs. The free-running mode is necessary

" because data collected in this mode is used together with data collected in
the training mode to provide the feedback mechanism by which the machine
learns. A Learning cycle is a sequence where the machine runs in training and
free-running modes alternately until a set of patterns has been shown, after
which the Machine's internal model is updated. After enough learning cycles

"- the Machine obtains an optimum model and is then operational. How does this
come about?

Each member of the set of units S=(s) may be in one of two states:
on or off. The units are joined by bidirectional links, Wz(wq), which may
take positive or negative values. A positive link between two units implies
that they tend to be on or off together; a negative Link means that they tena
to adopt opposite states. The links are symmetric, w. -w

-V.
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This structure is sufficient to define a configurational "energy" of

the whole system of n units. In the work of Hinton et al. the numerical

values corresponding to on and eff are 1 and 0 respectively. Provided that

the on state of a unit i is redresented by s,=l, the configurational energy is

E(W,S) =,- £ .=. s . (1)
i=1 j b L

The self terms in eqn. (1) are threshold terms which appear because of the

theory's origin in neural network modelling. The details are not relevant

here, but they may be found in [Hinton, 1964; see also Hopfield, 1982).

A pattern is presented to the Machine by constraining its input and

output units to be in particular states. An energy may then be assigned to
the pattern by finding the global minimum of eqn (1) subject to the

constraints imposed by the pattern. Let ar be the subset of S constrained by
the pattern. For pattern e.the state of 0 is 4. Then E(W,S) = E(W,sO')
where d is the complement of W.. One seeks the global minimum of E(W,O-,r)

w.r.t. d. Since this global minimum is characteristic of pattern 0C, we
label it Et(W,dw4,'). Thus the energy is minimised by altering the states of
all units which are not constrained by the pattern; the link strengths being
held constant. The first problem, then, is to find an effective global
minimisation method.

The only method which is guaranteed to find the global minimum is an
exhaustive search of all possible values of the cost function. Exhaustive
search is computationally out of the question for functions of many variables,
though no other method stands a reasonable chance of finding the global
minimum on surfaces where the minimum is a deep, narrow, isolated well as in
figure 1(a). Fortunately the problem here is not so pathological. For many
cost functions, including the free energy of spin-glasses, many of the local
minima are almost as deep as the global minimum (see fig 1(b)). In these
cases it is sufficient to find any one of these low-lying local minima because
the global minimum is not significantly lower. Of course, it is still
necessary to escape from higher local minima.

The solution is to adopt a method which has been widely used in
computer simulation studies of condensed matter, especially in spin-glass
physics. The technique, optimistion by simulated annealing (OSA), has
recently been applied successfully to a wide range of optimisation problems
including VLSI design [Kirkpatrick,'1983). The basic idea is this. An
optimisation problem involves a cost function to be minimised, in this case
the configurational energy, and a set of configurations generated by trial
moves. Gradient methods such as steepest descent accept only those moves which
reduce the cost function. Such algorithms have no way to escape from local
minima, Low or high, which is not the behaviour required. To avoid this one
can choose new configurations randomly and take the Lowest value of the cost
function found after a Large number of random choices. Randomising algorithms
can accept moves that result in higher values of the cost function, but these
moves are accepted blindly. Since the probability of finding a near-optimal
configuration is proportional to the number of near-optimal configurations
divided by the total number of possible configurations, randomising algorithms
perform less well as the dimensionality of the search space increases. OSA
also allows some moves which increase the cost function, but the moves are
accepted in a controlled manner. The basis of the method was proposed first
by Metropolis et al. [Metropolis, 1953). If a trial move decreases the cost
function it is accepted. If a trial move increases the cost function, it is

4
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accepted withjrobabiLity exp(- E/T) where E is the increase in the cost

function and T is a quantity with the same dimensions (Y=kT for the-energy

* minimisation considered here). Because of the physical analogy, I is referred

to as a temperature in the OSA Literature regardless of what cost function is

involved. From hereon we shall adopt this convention, drop the tilde and set

kz.

, .3

2. •I.

Fig. 1 (a) A surface with a single deep global minimum
(b) A surface with several minimum with values of the cost function

similar to the global minimum value. 1 is the global minimum; 2
are acceptable Local minima; 3 are high local minima which must be
escaped from.
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A system evolving under these rules will eventually reach thermal

equilibrium at any given temperature, and the relative probabilities of two

global states will be given subsequently by the Boltzmann distribution

(PI ) exp[-(E>-E./T] (2)

where PA is the probability of being in global state A with energy Ex. At

high temperatures the probability of accepting uphill moves is greater and

equilibrium is reached more quickly. At low temperatures equilibration takes

longer but the system is more heavily weighted towards low energy states. A

good strategy is therefore to begin the search at high temperature and then

slowly reduce T: hence the term "optimisation by simulated annealing". Note
that this method is unlike gradient algorithms in that it does not find the
minimum then stay there. The algorithm merely spends a larger proportion of

its time near the minimum as the temperature is Lowered. To stay in the global
minimum would require T=O in which case equilibration would take infinite
time.

We now come to a central problem in all network models, one which
Boltzmann Machines solve in a novel fashion. Having captured some aspect of
a set of patterns by minimising E(W,O',&) w.r.t, &' for each pattern, how can
this knowledge be encoded by altering the strengths of the connections? To
see how a Boltzmann Machine does this, consider how many patterns it is
possible to capture.

Let the n units be divided into two subsets: a non-empty set V of
visible units with v members and a set H of hidden units with h members *. The
visible units are the Machine's interface with the outside world, the input
and output units. Only visible units may be clamped by a training pattern.
The hidden units are the internal units which allow the Machine to model the
environment.

Since each unit may be either on or off, there are 2 possible global
states amongst the visible set. It should therefore be possible to model 2V

patterns. However, the energy expression (1) only has (v+h)[1 + (v+h-l)/2]
possible values, and many of these are degenerate. Hence it is not possible
to get a perfect internal model capable of distinguishing between all possible
2 states unless (v+h)[1 + (v+h-1)/23 >, 2v, which requires exponentially
large h. While this may be feasible for very small v, it will be impossible
for any useful application. Here we have used "pattern" to denote a state of
all visible units, input and output, i.e. the whole external environment of
the machine. The argument is also true if by pattern one means a state of the
input units only. The important point is that the lesser part of the
inequality is exponential. Note that although in any practical application
one would use some of the visible units for output, the formalism does not
require this. In fact, in the encoder problem described in section 5.1 output
units are not necessary since it is clear from the connection strengths when
Learning is complete.

* footnote:
The following relationships hold between the sets V,H,S,Crand 0r:

(i) V + H = S;
in training mode:
(ii) Cr = V, 0"  H ;
in free-running mode:
(iii) d'= 0, '= S ;
in operational mode:
(iv) cr= A, where A C-V,

"0 H + A' = S - A

6
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Because a perfect model is not usually possible in practice, the

- problem is to obtain an optimum model given some smaller number of hidden

units. One measure of the goodness of a model is the G metric or information

gain introduced by Kullback [KulLback, 19593:

G P lP,/Pf J (3)*0(()

where Pc. is the probability of the network being in state o.of the visible
units when the state is determined by the input and is the corresponding

probability when the machine is running freely without a pattern clamped on. G
is zero if and only if the probability distributions P and P+ are equal, in

which case the machine is modelling all input patterns perfectly. Otherwise G
is positive ana the best model is that which minimises G. Since PC depends on
Ed

G(W) = P. (E,) ln[P,(E.)/P (E0)

= P (W,, ) InP~ (,,0)/ (W,,) (4)

*( C

. The question posed three paragraphs ago can now be answered: the strengths of
the connections should be altered in order to minimise G.

The second, and vital, reason why OSA was used in the energy
minimisation is now evident. After equilibration the distribution of global
states is the Boltzmann distribution. Because the log probability of a global

. state is then proportional to its energy, and the energy is a linear function
of the strengths of the links, there is a simple expression for the partial
derivatives 6GI8 w., (see [Hinton, 1984) appendix A):

?G/ - - PfK) (5)

where

def ()

--------------------------------------------------------------------------
* footnote

In a physical system, the interpretation of G in thermrdynamic terms is
that it is the entropy produced ia the system by the change in global state
from {P+)} to {P} [Schlogl, 1971).

7



and

Pf. JL. Pf S't S." (7).

The outer summations in (6) and (7) run over states of the visible
units; the inner Loops over states of the hidden units. s4I is therefore the

state of unit i when the visible units of the Machine are in state 0(and the
hidden units are in state A. One therefore has the derivatives necessary to

minimise G, with the caveat that (P..} and (p ) must be measured when the

machine has reached equilibrium. When the numerical values cort.sponaing to a

unit being on or off are 1 and 0 respectively, p, and p.,J are trivial to
calculate since p J is then just the average probability that both units are
in the on state when a pattern is clamping the visible units, and pf. is the
same quantity when running free of input. -

Two further points should be made before leaving this discussion.
First, it is not necessary to have a Boltzmann distribution over global

states: the requirement is really that In P must be a linear function of W.
Second, except for the case where there are no hidden units [Hinton, 19b4),
G-space may also have local minima. The problem of finding the global minimum
therefore arises in G-space just as it did in the energy minimisation and the
same remarks apply. It is possible in principle to minimise G by annealing.
However, in practice this approach has not been adopted even for the simple
model problems in [Hinton, 1984). It is not hard to see why.

The minimisation of G is an outer loop. At each step within the loop
many annealings are performed to minimise E for each pattern. If there are n
units in the Boltzmann Machine then there are 0(r4 ) links. The energy has to
be minimised w.r.t. at most n variables, but G has to be minimised w.r.t.
O(n1 ) variables. As shown in section 5.3, much longer annealing scheoiles are
needed as the number of variables increases. Annealing to rind the mini'um in
G-space is therefore computationally extremely expensive. In most of the
work done so far [Hinton, 1984) occasional uphill steps in G heve boon made
possible by introducing some noise into the estimates of {p j} ano {pf}.
This is simply achieved by collecting them over only a rather small nuolber of
time steps. It seems likely that less ad hoc methods will replace this methoa
[Derthick, 1984). However, finding good search methods for G-space is a key
problem with Boltzmann Machines and unless it can be solved it is hard to see
how Boltzmann Machines will be able to achieve good internal models for useful
applications when n is large.

Finally, we have described the Boltzmann Machine algorithm in roughly
the same order as the original authors [Hinton,1984; Ackley,1985). We began
with an architecture and energy expression, and introduced G only because the
number of possible patterns is exponentially large. A more fundamental view
is obtained by turning the argument on its head. The quantity which measures
how well the Machine is modelling its environment is G, and the central
problem is to find that model which corresponds to the global minimum of G.
All the rest: the energy expression, simulated annealing, etc, are simply one
computational method to achieve that aim.

8
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3. BOLTZMANN MACHINES AND EXPERT SYSTEMS

Expert systems are computer programs in which a set of rules is used

to mimic the behaviour of a human expert in some welL-defined problem doain

*such as medical diagnosis. A user interacts with an expert systems in the

same way that he would consult a specialist; explaining the problem, giving

further details where required, and so on. In return he obtains advic
o and

possible solutions to his problems.

The rules which classify objects in the problem domain are obtained

either explicitly from experts (a programmer, or "knowledge engineer",

observes the specialist solving some model problems and tries to encode what

he does), or indirectly from experts via computer induction aids such as

TIERESIAS [Davis, 1982) (a suite of computer programs which do, amongst other

things, the job of the knowledge engineer). In either case the task of getting

knowledge out of the head of the specialist and into the computer program is

laborious. This "knowledge acquisition" problem is widely regarded as the

main limiting factor in the development of new expert systems [Feigenbaum,

19b4).

It is worth pointing out that the performance of current expert

systems is at best only as good as that of the specialist on whom the system

was modelled. Specialists often disagree. A graphic illustration of this

problem has been described by Hopford [Hopford, 1984]. ARE Portland were
engaged on a project to build an expert system to give advice on sonar

lineups. The problem is to produce the best lineup of sonar devices to detect
a given target at the longest possible range, with the equipi.ent servicable at
the time and in the oceanographic conditions which prevail.

An expert system was built with the aid of two naval specialists. The

first, who was also the knowledge engineer, had a good working knowledge of
sonar. The second is the navy's leading expert on sonar lineups and is the

author of the navy's tactical manuals on the subject. Th: technique used was
that the two specialists wrote the first set of rough rules then tried them on

some sample problems in order to refine the rule set. To test the final
system, six RN sonar officers were asked to produce sona- lineups for a set

of 50 sample scenarios. Considerable difficulty was found in getting the

sonar officers to agree. Furthermore, large differences hvcame apparent

between the first two specialists. On a scale where complete agreement
between them on all 50 samples implies a correlation coefficient of 1, and

complete disagreement minus 1, the correlation coefficient between the two
specialists peaked around +0.2. In other words the correlation would have been

almost as good if they had made random decisions. The correlations between
the expert system and each specialist was somewhat better, so to some extent
the model mediated between the two experts.

A further problem arises because expert systems, like human experts,

- often have to make decisions on the basis of incomplete evidence.
Furthermore, they do so using rules of thumb which are plausible but not,

usually, absolute. Most systems therefore need to reason in the presence of

uncertainty in both their rules and their data. At this point the elegant
rigour of logic programming tends to dissolve into numerical "confidence

factors" (judicious guesses provided by the specialist) ass-ciated with each

rule. Reasoning - finding the most plausible outcome for some given set of
data - now becomes a matter of satisfying conflicting weak constraints. An
expert systems with these properties begins to look like a ?oltzmann Machine.

9
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It is helpful to consider a concrete example. We choose MYCIN

[Shortliffe, 1976] which was one of the most successful of the early expert

systems and which has provided the model for many systems built since. MYCIN

was developed to provide consultative advice on the diagnosis and treatment of

infectious diseases. Time is of the essence in this problem and it is largeLy

this which makes reasoning with uncertainty necessary.. For example a specimen

from a patient may show signs of bacterial growth after several hours, but it

may take several days for a positive identification of the organism. The

physician must therefore decide whether or not to start treatment and what

drugs to use before there is enough information for certain identification.

Obviously many military, and for that matter industrial and commercial,

decisions must be taken in the same climate.

The MYCIN program has about 450 rules, each with associated confidence

factors. A typical rule is:

IF: { (1) the site of the culture is blood, and
(2) the organism is able to grow aerobica.ly, and
(3) the organism is able to grow anaerobically }

THEN: there is evidence that the aerobicity of the organism is
facultative (0.8)

or anaerobic (0.2).

The confidence factors are in parentheses.

Let H, be the hypothesis that the situation clause of the IF-THEN rule
(enclosed in { ) brackets) is true; H2 be the hypothesis that the organism is
facultative; and H3 be the hypothesis that the organism is anaerobic. If the
truth of hypothesis HL is represented by the state (on or off) of a visible
unit s, in a Boltzmann Machine, then the confidence factors imply that the
link strengths in the Boltzmann Machine are w1 1=0.8 and wl3=0.2. (This
rule makes no statement about wX3 .) Thus the MYCIN rule structure maps onto a
Boltzmann Machine. The rules define the connectivity of the units and the
confidence factors define the link strengths. Note that the way H, is
written suggests that some of the other rules in the program require H, to be
split into three separate hypotheses. This does not affect the argument. It
simply means that the three separate hypotheses are represented by three
visible units, and Hl is represented by a hidden unit whose state depends
upon the logical AND of the three separate hypotheses. This is just the sort
of higher order constraint which the hidden units in a Boltzmann Machine are
capable of capturing [Hinton, 19b4; Ackley, 1985].

Because confidence factors are related to the link strengths of a

Boltzmann Machine, it is possible to learn them if a set of suitable test data
exists, and thus avoid the necessity to make guesses by trial and error until
the program behaves in the correct way. This is an important advantage since
the numerical stability of pathways through the network of confidence factors
is a problem which has not been solved by the writers of expert systems. In
expert systems confidence factors are attempts to put numbers on non-numerical
concepts such as "possible" and "probable". One would like the reasoning
process to be robust to the values chosen. If changing a confidence factor
somewhere in the network from, say, 0.60 to 0.61 produces a different answer
for the same set of input, then the system is unstable and one would have
little confidence in the results. This problem does occur in expert systems.
During construction of MYCIN, for example, there were several cases in which a
new rule caused existing rules to be applied incorrectly or to cease being
applied altogether [Cohen, 1982]. The problem was not solved completely, and
for this reason MYCIN does not offer a "best" solution but a bundle of the
most likely alternatives EClancy,1984). Clearly, the stability problem becomes
more acute as the number of rules increases.

10
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Several combinations of BoLtzmann Machines and expert systems can be

envisaged depending on what proportion of the overall task is to be done by

thQ Boltzmann Machine. In the simplest case both rules and roug" estimates of

the confidence factors could be set by specialists. Given some training data,

" a Boltzmann Machine could refine the confidence factors and ensure a stable

network. However, there is a further advantage since the Boltzmann Machine

could constantly update the confidence factors on the basis of cses it

encountered in operation. Such a hybrid system should therefore be able to
learn from its operational experience. This is possible in very few expert
systems.

At a higher level of Boltzmann Machine involvment, specialists might
specify the rules but not give values for any confidence factors. These would
need to be learned entirely by the Boltzmann Machine; a much harder task.
There is a spectrum of possibilities where specialists set only those

confidence factors they have some knowledge about and the Boltzmann Machine is

left to discover the rest. The more prior knowledge about a problem that can

be incorporated, in this case by pre-setting the strengths of some

* connections, the more quickly a Boltzmann Machine should be able to find a

good solution.

A third possibility would require the Boltzmann Machine to cerive both
the rules and the confidence factors. Unless at least some rules were given,

it seems likely that only small problems could be tackled in this way. Where
prior knowledge is available it makes sense to incorporate it at the outset,
though one strength of the Boltzmann Machine is precisely this ability to find
a solution in the absence of prior knowledge.

To summarise, if Boltzmann Machines can be scaled up to a useful size
. then they offer the following advantages for expert systems. They provide an

intelligent aid for producing the knowledge base and the inference engine.
They make the knowledge base and the reasoning mechanism less dependent on any
individual specialist. They should lead to stable networks of confidence
factors, in contrast to the present methods which usually ignore this problem.
And they provide a capability for continuous learning during the operational
life of the system.

ALL this is possible only if a set of training data exists. While
this is not available for every problem, it is for many. After all, the human
experts whose skills are programmed into expert systems got their knowledge
from somewhere; and the more highly specialised the task, the more likely that
their relevent knowledge came from direct observations rather than secondhand

*from textbooks or lectures. The six sonar officer's lineups for the fifty
" scenarios are just the sort of training data needed, and the fact that thcy
* didn't all agree provides the competing weak constraints that Boltzmann

Machines were designed for.

Finally, although a medical example was chosen, military expert
systems exist with similar structures. For example, Hopford describes an
American surface ship or submarine mounted surveillance system called CLAIMS.
"CLAIMS is an enormously complex knowledge-based system. It is multi-level,
dynamic and operates in real-time with imprecise data." [Hopford, 1984). A
typical production rule is:

IF: the source was Lost due to fade-out in the near past, and
a similar source started up in another frequency, and
the Locations of the two sources are close

THEN: they are the same source with confidence factor 0.3.

This rule is of the same form as the MYCIN example shown earlier. A vase body
of training data is available for this problem, at least in principle, from

". naval exercises where submarines have attempted to escape sonar detection.
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It is heLpfuL to consider a concrete example. We choose MYCIN
[Stort iffe, 1976) which was one of the most successful of the early expert
systems and which has provioed the model for many systems built since. MYCIN

was deveLoped to provide consultative advice on the diagnosis and treatment of

infectious diseases. Time is of the essence in this problem and it is largely
this which makes reasoning with uncertainty necessary.. For example a specimen
from a patient may show signs of bacterial growth after several hours, but it
may take several days for a positive identification of the organism. The

physician must therefore decide whether or not to start treatment ana what

drugs to use before there is enough information for certain identification.
Obviously many military, and for that matter industrial and commercial,
decisions must be taken in the same climate.

The MYCIN program has about 450 rules, each with associated confidence
factors. A typical rule is:

IF: { (1) the site of the culture is blood, and
(2) the organism is able to grow aerobically, and
(3) the organism is able to grow anaerobically )

THEN: there is evidence that the aerobicity of the organism is
facultative (0.8)

or anaerobic (0.2).

The confidence factors are in parentheses.

Let He be the hypothesis that the situation clause of the IF-THEN rule
(enclosed in { ) brackets) is true; H2 be the hypothesis that the organism is
facultative; and H3 be the hypothesis that the organism is anaerobic. If the
truth of hypothesis HL is represented by the state (on or off) of a visible
unit s in a Boltzmann Machine, then the confidence factors imply that the
link strengths in the BoLtzmann Machine are w,1=0.8 and wg=0.2. (This
rule makes no statement about w2,.) Thus the MYCIN rule structure maps onto a
BoLtzmann Machine. The rules define the connectivity of the units and the
confidence factors define the link strengths. Note that the way H, is
written suggests that some of the other rules in the program require He to be
split into three separate hypotheses. This does not affect the argument. It
simply means that the three separate hypotheses are represented by three
visible units, and He is represented by a hidden unit whose state depends
upon the Logical AND of the three separate hypotheses. This is just the sort
of higher order constraint which the hidden units in a Boltzmann Machine are
capable of capturing [Hinton, 19b4; Ackley, 1985).

Because confidence factors are related to the link strengths of a
Boltzmann Machine, it is possible to learn them if a set of suitable test data
exists, and thus avoid the necessity to make guesses by trial and error until
the program behaves in the correct way. This is an important advantage since
the numerical stability of pathways through the network of confidence factors
is a problem which has not been solved by the writers of expert systems. In
expert systems confidence factors are attempts to put numbers on non-numerical
concepts such as "possible" and "probable". One would Like the reasoning
process to be robust to the values chosen. If changing a confidence factor
somewhere in the network from, say, 0.60 to 0.61 produces a different answer
for the same set of input, then the system is unstable and one would have
little confidence in the results. This problem does occur in expert systems.
During construction of MYCIN, for example, there were several cases in which a
new rule caused existing rules to be applied incorrectly or to cease being
applied altogether [Cohen, 19823. The problem was not solved completely, and
for this reason MYCIN does not offer a "best" solution but a bundle of the
most Likely alternatives [CLancy,1984J. CLearly, the stability problem becomes
more acute as the number of rules increases.

10
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Several combinations of Boltzmann Machines and expert systems can be

envisaged depending on what proportion of the overall task is to be done by

• " the Boltzmann Machine. In the simplest case both rules and roug" estimates of

the confidence factors could be set by specialists. Given some training data,

a Boltzmann Machine could refine the confidence factors and ensure a stable

-3 network. However, there is a further advantage since the Boltzmann Machine

could constantly update the confidence factors on the basis of cpres it

encountered in operation. Such a hybrid system should therefore be able to

-: Learn from its operational experience. This is possible in very fEw expert

. systems.

At a higher Level of Boltzmann Machine involvment, specialists might

specify the rules but not give values for any confidence factors. These would

need to be Learned entirely by the Boltzmann Machine; a much harder task.
There is a spectrum of possibilities where specialists set only those

confidence factors they have some knowledge about and the Boltzmann Machine is

left to discover the rest. The more prior knowledge about a problem that can

be incorporated, in this case by pre-setting the strengths of some
connections, the more quickly a Boltzmann Machine should be able to find a
good solution.

A third possibility would require the Boltzmann Machine to verive both

the rules and the confidence factors. Unless at least some rules were given,
it seems likely that only small problems could be tackled in this wiy. Where
prior knowledge is available it makes sense to incorporate it at the outset,
though one strength of the Boltzmann Machine is precisely this ability to find
a solution in the absence of prior knowledge.

To summarise, if Boltzmann Machines can be scaled up to a useful size
then they offer the following advantages for expert systems. They provide an

intelligent aid for producing the knowledge base and the inference engine.
They make the knowledge base and the reasoning mechanism less dependent on any
individual specialist. They should lead to stable networks of confidence
factors, in contdast to the present methods which usually ignore this problem.
And they provide a capability for continuous learning during the operational

life of the system.

ALL this is possible only if a set of training data exists. While

this is not available for every problem, it is for many. After all, the human
experts whose skills are programmed into expert systems got their knowledge

-, from somewhere; and the more highly specialised the task, the more likely that
their relevent knowledge came from direct observations rather than secondhand

*from textbooks or Lectures. The six sonar officer's lineups for the fifty
*: scenarios are just the sort of training data needed, and the fact that they

didn't all agree provides the competing weak constraints that Boltzmann
Machines were designed for.

Finally, although a medical example was chosen, military expert

systems exist with similar structures. For example, Hopford describes an
American surface ship or submarine mounted surveillance system called CLAIMS.

* "CLAIMS is an enormously complex knowledge-based system. It is multi-level,

dynamic and operates in real-time with imprecise data." tHopford, 19843. A
typical production rule is:

IF: the source was Lost due to fade-out in the near past, and
a similar source started up in another frequency, and
the locations of the two sources are close

THEN: they are the same source with confidence factor 0.3.

This rule is of the same form as the MYCIN example shown earlier. A vasc body

of training data is available for this problem, at Least in principle, from
naval exercises where submarines have attempted to escape sonar detection.
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4. BOLTZMANN MACHINES AND PERCEPTRONS

In the Introduction it was noted that systems based on neural
networks, of which the perceptron models were typical, were a major research

activity in the 1960's until the publication of Minsky and Papert's book

[Minsky, 1968). After that work almost ceased. What went wrong.? Do

Boltzmann Machines overcome the problems which Led to the demise of

perceptrons, or is a new generation of scientists falling into the same traps

25 years Later?

Boltzmann Machines have many similarities to perceptrons. Both are
neural network models and are intended to give some insight into how the brain
Learns. Both have feedback mechanisms where the strengths of connections are
increased or decreased depending on how well the device is modelling its
environment. Both are amenable to parallel computation, and are probably
suited to analogue devices. And in both cases there was an explosion of
interest after publication of the first papers. "Rosenblatt's (the inventor
of perceptrons) schemes quick(y took root, and soon there were perhaps as many
as a hundred groups, large and small, experimenting with the model either as a
'learning machine' or in the guise of 'adaptive' or self-organising' networks
or 'automatic control' systems. The results of these hundreds of projects and
experiments were generally disappointing and the explanations inconclusive.
The machines usually work quite well on very simple problems but deteriorate -
very rapidly as the tasks assigned to them get harder. The situation isn't
usually improved much by increasing the size and running time of the system."
[Minsky, 1968). Except that the hundreds of experiments are only just
starting and it is not yet known whether they can solve hard problems, the
same could be said about Boltzmann Machines today.

There are two main grounds on which perceptrons failed. The first is
the credit-assignment problem which arises because to be capable of
non-trivial calculations, networks must contain some hidden elements whose
states are not directly constrained by the input. These hidden units are
there to capture the underlying hidden structure in the patterns; for example,
the fact that it is the Logical AND of three separate hypotheses which is the
important quantity in the MYCIN rule cited earlier. When a network gives the
wrong result it can be very difficult to know which of the many connection
strengths are wrong. As Minsky and Papert pointed out, perceptrons have no
mechanism to solve this problem. Hinton et al. [Hinton, 1984; Ackley, 1985)
have argued persuasively and have also provided a convincing demonstration,
the shifter problem [Hinton, 19843, that Boltzmann Machines can overcome this
problem. This is an important step forward.*

However, it remains an open question whether Boltzmann Machines can
solve the second problem which bedevilted perceptrons. This concerns the rate
of Learning and determines whether they can be scaled up to solve useful
problems. One of the cornerstones of perceptron theory was the perceptron

convergence theorem. This guaranteed that the learning process would

----- --------------------------------------------------------------------------------
* footnote:

The credit-assignment problem is not restricted to network models;
it also arises in rule-based systems. Consider for example a program with a
set of rules to play chess. It is desired to refine the rules on the basis of
the program's performance over a number of games of chess. If the program is
only told at the end of each game that it has won or Lost, it will be very
difficult to know which rules should be changed. In rule-based systems the

'' credit-assignment problem will arise whenever a program performs a sequence of
actions before receiving any feedback.
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* eventually find a correct setting of the network parameters if one existed.

* "This must have been one factor which encouraged people to continue to tackle

hard problems even in the absence of much success. Minsky and Papert argued

* that perceptron devices were essentially finite state machines. An optimum

state could therefore be found in principle by trying each state in'turn. A

convergence theorem is then only useful if it says something'about the rate of

*, learning relative to a random or an exhaustive search. The perceptron

convergence theorem did not do this. In fact, Minsky and Papert showed the

existence of a class of problems for which the convergence time increases
faster than exponentially with the size of the problem [Minsky, 1968). The

Boltzmann Machine is also guaranteed to find an optimum result. As stated by
Hinton et al. [Hinton, 19843, "At present, we have an interesting mathematical
result that guarantees that a certain learning procedure will build internal
representations which allow the connection strengths to capture the underlying
constraints that are implicit in a large ensemble of examples taken from a
domain." The crucial question is, how fast?

We do not yet have an answer to this question, so it is not known
whether Boltzmann Machines can be scaled up to solve useful problems in
acceptable times. However, in view of the history of perceptron research, it
seemed more profitable at the present stage to gain some insight by studying a
small problem which can be understood than to build a big machine and try to
solve a "real" problem. For this reason we have examined Hinton's encoder

" problem in some detail in order to see how the algorithm scales with problem
size. The main reason for choosing this problem is that it is large enough to
show interesting behaviour but small enough that thermodynamic quantities can

be calculated exactly. So far we have focussed on the energy minimisation.
Our preliminary results have revealed some problems which will become
increasingly important as the number of units increases. However, we think

" these problems can be overcome by making some parts of the algorithm more
sophisticated and by the use of suitable parallel architectures. The problem
of minimising G is much more difficult, but we have found some evidence that

. the rate of Learning is sensitive to the annealing temperatures. Dependence
" on a familiar physical property gives hope that physical analogies may also be

fruitful for this problem, and it seem possible that some recent developments
in spin-glass physics may enable more searchable energy landscapes to be
constructed. The results are described in detail in Section 5.

5. CALCULATIONS ON THE ENCODER PROBLEM

5.1 DESCRIPTION OF THE PROBLEM

The encoder problem was proposed as a simple abstraction of the task

of communicating information among various components of a parallel network
[Hinton,1984; AckLey,1985). It may also be viewed as a simple pattern
recognition problem. The visible units are split into two groups, V, and V2,
each with 0 =v/2 units. AlL units in V, are connected to each other, as are
all units within V2 , but there are no direct connections between V, and V3.
Instead, the visible groups communicate via a set of hidden units H with h
members. The hidden units are not connected to each other, but each is
connected to all units in both visible groups. The problem is to evolve a set
of link strengths which allows the visible units to communicate their current
state to each other.

In the most general version of this problem each unit in V, (and V2 )

could be on or off. There are then 21 possible states of each group. A more
simple version of the problem allows only one unit in a group to be on at any
time, in which case there are only % possible states for the group. In the

," general case the minimum number of hidden units necessary to permit

13
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communication of 2 states is h='%; in the simple case it is h=Log1, . When

this equality holds we call the network a minimal machine. If there are more

hidden units the spare capacity makes it easier for the machine to find a set

of codes (i.e. sets of states of hidden units) which sokve the problem.

However, with spare capacity the power of the Learning algorithm becomes

apparent. Because the Learning algorithm seeks the global minimum of G, which

would correspond to the best possible model, having found a solution the

machine then goes on to modify the codes so that a maximally spaced code is

found [Hinton, 1984; Ackley, 19853.
-C. "

"- The particular version of the encoder problem which was investigated
by Hinton and coworkers is intermediate between the simple and general cases
sketched above. In essence the probability distribution over possible states
of the visible groups is strongly biased to favour those where only one unit
in a group is on at any time. However, there are small but non-zero
probabilities of all other states occuring*. Most of the work was done with
V=4 and h=2, and this system is called the "4-2-4" encoder problem. Full
details are given in [Hinton, 1984; Ackley, 1985] and we shall not discuss
further technicalities here except where they are necessary to understand the
present results.

In encoder problems it is not necessary to run the machine in

operational mode in order to see if it has solved the problem; one can tell
simply by looking at the Link strengths. Hinton has developed a very
attractive way of displaying the Link strengths [Hinton, 1984), and a typical
solution is shown in figure 2 (overleaf) which is taken from [Ackley, 1985].

• footnote:
The set of training patterns consists of O equiprobable vectors each

of length 2* which specify that one unit in V, and the corresponding unit in
V, are on together with all other units off. Suppose that for all vectors
each off bit is set on with probability x and each on bit is set off with
probability (1 -l)x. If x=O one has the simple case and the choice *=4, h=2
defines a minimal machine. However, this presents a problem if the visible
units within V1 (and V1 ) are connected to each other since it leads to large
negative link strengths between those units [Hinton, 1984; Ackley, 1985].
This problem can be resolved in two ways: by breaking the links within the

visible groups (in which case the first phase of Learning - inhibition within F2C,
the visible groups - becomes unnecessary); or by choosing x>. If x is too
Large then the probability distribution is no Longer biased in favour of
states with only one unit in a group on. The system is then closer to the
general case and is not solvable with h<0. The original work [Hinton, 1984;
Ackley, 1985] used x=O.05 for N7=4, and the same value is used here.
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Fig. 2 A solution to the 4-2-4 encoder problem (reprinted from [Ackley, 19853
with permission of the publisher). Each unit is represented by a
shaded box. The top four boxes represent the units in VI, the middle
two boxes show the hidden units, and the bottom row shows the units
in V1 . Each box shows the strength of that unit's Links to all
other units in the network. At each position in a box the size of
the square indicates the magnitude of a link strength. White squares
are positive links; black are negative values. The biases, {wji),
appear in the positions which correspond to a unit connected to
itself, for example the top Left corner of the top Left shaded box.

The pattern shown in fig. 2 is a solution because:
(a) each unit in V, has developed a unique combination of positive and

negative links to the hidden units.
(b) The same is true for V1.

• (c) There is a simple ordered mapping between the codes adopted by V1
and V1.

To illustrate how this solves the problem, consider the codes adopted
by the left units in V, and VL. Let the units in V1 be numbered VI(1) to
VI (4) from the left. The units in H and V1 are numbered similarly. Now
VI(1) and V(l) have positive Links to both hidden units. When VI(1) is
clamped on, it therefore tends to switch both hidden units on. When H(1) is
on it tends to switch on V2 (1) and V1 (3). If H(2) is switched on it also tends
to switch on V1(1), but because it has a negative link to V2(3 ) it counteracts
the effect of H(1) on V1 (3). The only unit in V.which is switched on by both
hidden units being on is V1 (1). Therefore the net result is that when VIl)

* :is on it is most probable that V2() is switched on too. The same reasoning
holds for other pairs.
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It may happen that an apparent solution is discovered after only a few

learning cycles. If this pattern of link strengths occured by chance and the

machine has not truly modelled its environment, the solution is unstable and

a different pattern is seen after a few more cycles. In the present

calculations a problem is considered solved on cycle N if the same solution

has been found for 10 consecutive cycles. In our experience it was rare for a

Machine to lose the solution after this condition is satisfied.

Hinton et al. [Hinton,1984, Ackley, 19853 did not specify their

criterion for considering a problem solved, but they quote a median learning

time of 110 cycles after 250 experiments. In ten runs of a 4-2-4 encoder

program written by R.K. Moore, we obtained a median value of N=114 learning

cycles. Although ten runs are not sufficient to get quantitative statistics,
we can claim to reproduce Hinton's results in essence.

5.2 UNIT ON-OFF REPRESENTATIONS

The choice of the unit on-off representation, that is the pair of
numbers which represent the possible states of a unit, does not just alter
parts of the Metropolis algorithm and the way that {p4 ) and {pi ) are
collected. It also affects the logic of the learning algorithm . When a
Boltzmann Machine is started, all Link strengths are zero. Hence by eqn(1)
all possible states have zero energy. As learning progresses the energy of
favourable states is Lowered relative to unfavourable states by changes in the
link strengths. Learning in a Boltzmann Machine therefore consists of lowering
the energy of favourable global states. The means of doing this occurs at

another level of the algorithm, the energy minimisations by simulated
annealing, where the goal is also to find low energy states; this time for
fixed values of the link strengths. Because the states of units represent
truth values of hypotheses about the Machine's environment, there are two
driving forces which may Lower the energy. If a pair of units are joined by a
positive link, it should be energetically favourable for them to be in the
same state. However, it should also be energetically favourable for a pair of
units to adopt opposite states if they are joined by a negative link. In the

original formulation [Hinton, 1984; AckLey,1985] ,z1 if unit i is on and 0 if
it is off. With this choice eqn(1) shows that a negative contribution to E is
found only if units i and j are both on and the link is positive. There is no
way in which the interaction between units joined by negative links can lower

the energy. However, both desiderata can be satisfied by choosing sP' =+1, s© fF

=-1.

The sign of E -w, -s*s is shown in table 1 for the representations
(o ( =1, se F=O) and (seAo 1, 'et =-I).

Table 1: Sign of E 6'

s=1,0 S,-1

.. w>0 s i =s on
S, s. off 0
. 5sL j 0 +

Ws <0 sZ = s; z on + +
ss = off 0 +
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A very different behaviour is evident in the two representations. With
the (1,0) representation most contributions neither raise nor Lower the
energy. The only interactions with non-zero E. are those where a pair of
units are both on, and there is no way of lowering E where Links are negative.
In contrast, in the (1,-1) case all contributions are either "good" or "bad"

energetically; they are never neutral (unless wj=O). Lower energies may be
obtained under the right conditions for positive and negative links. One would
expect the (1,-1) representation to be a better choice because it shows the
correct Logic and every term has some effect.

Some experiments were carried out with (1,-1) but we postpone a
discussion of the numerical results until Section 5.4 because they are
dependent on the temperatures used in the annealing schedule.

5.3 LENGTH OF THE ANNEALING SCHEDULE

It was noted in section 2 that the pair statistics {Pj) and (pf)
. must be collected after the machine has reached thermal equilibrium, by'which

one means d<E>/dt = 0 where <E> is the average energy. In [Hinton, 1984;
AckLey,1985) the annealing schedule allowed 80 trial moves per unit (one trial
move is one opportunity for a unit to change its state). After this it was
assumed that the network had reached equilibrium. It is not obvious that this
assumption is justified. The Metropolis method was borrowed from condensed
matter physics where typical simulations involve several hundred units (=atoms

. or molecules). In that field it is usual to allow at Least 1000 trial moves
per unit before collecting statistics. Shorter times do not ensure that
equilibrium is reached. The obvious way to test whether equilibrium is

. reached in a Boltzmann Machine is to extend the number of timsteps over which
statistics are collected at the end of annealing and calculate <E> as a
function of t. However, since in the 4-2-4 encoder there are only 2 m possible
states for a given set of link strengths, it is possible to calculate the
exact value of <E> directly. This is then the standard for testing the
approximate <E> obtained from the Metropolis algorithm. The mean energy is
given by:

1024
<E>= p (8)

i =1

where PL is the probability of being in state i of energy EL:

p- exp(-E*/kT)/o (9). , .:

and Q is the partition function:

102
Q = exp(-EY/kT) (10)

i=1

.:. 17



which will be discussed in more detail later. So

1024
<E>= (/Q) 3 E exp(-E/kT) (11)

i-=1

gives the exact value of <E> in a form which is easy to compute. Similarly

1024
<E > = (/Q) 7 E exp(-E/kT) (12).

i=I

Hence it is simple to calculate

var(E) = <El>- <E> (13)

which is related to the specific heat (C) of a physical system:

C = var(E)IkT1  (14)

Table 2 shows a typical comparison of <E> obtained by averaging after
simulated annealing using the annealing scheduLe of [Hinton, 1964; Ackley,
1985) and the exact sum-over-states (SOS) results from eqns (11) and (12).
The Boltzm nn Machine average was taken over the length of time used to
collect {pl }, 10 units of time, at the lowest annealing temperature. The
results arl for the free-running mode where all ten units are free to flip,
and were obtained with a typical set of link strengths which are a solution to
the 4-2-4 problem.

Table 2. Energy results for a typical Boltzmann Machine

BM algorithm Exact SOS

<E> 22.0 18.9

var(E) 195.6 210.9
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It is clear that the annealing schedule is Long enough for the system

.- to reach equilibrium, but only because the fluctuations are so large in this

small system. Boltzmann Machines capable of useful applications will have

hundreds or thousands of units and the ratio of var(E)/<E> will be smaller.

* It will then be necessary to allow much longer times for equilibration as is

the case in the Monte Carlo calculations on solids and liquids. There is

already some evidence in Hinton's results that larger numbers of units require

,, longer annealing schedules. In experiments on a 40-10-40 encoder they found

-. that, "To achieve good performance on the completion tests, it was necessary
to use a very gentle annealing schedule during testing. The schedule spent

" twice as tong at each temperature and went down to half the final temperature

of the schedule used during learning." [Hinton, 19843. This is actually more
serious than a factor of two since the unit of time is proportional to the
number of free units. In the operational (testing for completion mode) there
are 6 free units in the 4-2-4 case, but 50 in the 40-10-40 encoder.

5.4 EFFECT OF TEMPERATURE ON THE LEARNING RATE

In [Hinton,1984; Ackley,19853 the annealing schedule adopted for the
4-2-4 encoder is given without any comment about how the temperatures were
chosen. However, in view of the results in the previous section, it is .-

necessary to ask how the learning time depends on temperature.

The annealing schedule in [Hinton,1984; Ackley,1985J is a vector
T=(20,20,15,15,12,12,10,10,10,10) where the i'th element is the temperatu-e at
the i'th unit of time. The effect of temperature on learning time was
investigated by running ten Boltzmann Machines for each schedule T'=AT, where
A is a scaling factor. The results for unit representation (1,0) are shown in

* table 3. They are arranged in or2 - of increasing N, the number of learning
cycles needed for convergence. Within each set of ten Machines, the only
difference is the seed for the random number generator. The sare seeds were
used for each set.

Table 3: Learning time for (1,0) representation

A 0.5 0.75 1.0 1.25 1.5

41 51 72 61 49
47 58 76 61 53
68 71 78 83 61
91 73 87 92 85

106 87 110 95 88
112 107 117 121 89
157 238 119 >400 131

207 287 194 >400 183
380 349 232 >400 247

>400 >400 >400 >400 >400

median 109 97 114 108 89

Many more calculations are needed before quantitative conclusions can
be drawn, but it does appear that the Learning time is not very sensitive to
the annealing temperatures for the (1,0) case.
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The change in energy when unit k is flipped is:

&E E -E = (s ) wk S (15).

For unit representation (1,0) this reduces to Hinton's eqn(4). However, for
unit representation (1,-i) the average AE is twice as Large. To make a

comparison with the (1,0) results the base vector
T=(40,40,30,30,24,24,20,20,20,20) was used for the (1,-i) case, which ensures
that roughly the same number of Metropolis moves are accepted. The results
are shown in table 4.

Table 4: Learning time for (1,-1) representation

A 0.5 0.75 1.0 1.25 1.5

>400 39 43 57 33
>400 68 105 83 55
>400 69 117 83 91
>400 109 123 85 229
>400 147 126 87 >400
>400 151 131 178 >400
>400 186 154 >400 >400
>400 199 263 >400 >400
>400 322 >400 >400 >400
>400 >400 >400 >400 >400

median >400 149 131 87 >400

It appears from these preliminary results that the learning time is
much more temperature dependent than in the (1,0) representation. Why this
occurs has not yet been established.

Clearly, more calculations are necessary, but on the evidence of
tables 3 and 4 the (1,-i) representation does not Lead to faster learning
times in practice. If this is true when more results are available, the
reason is not obvious. One factor may be that t'.e (1,-i) representation leads
to "spikier" energy surfaces which may be me - Jifficult to search. We have
observed that the spread of energies typicaL~y obtained in Boltzmann Machines,
i.e. the difference between the highest and lowest energies of the 1024
states, is much Larger for the (1,-I) than for the (1,0) representation. This
suggests that the barrier heights between minima may be greater. A second
possible factor is that the different symmetry of the energy expression under
different representations Leads to extra degeneracies in the (1,-1) case. For
example, the energy is the same when all units are on as when all units are
off in the (1,-i) representation. This is not true for (1,0) except in the
trivial case where all w~j are zero.
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The way in which temperature influences the learning rate is by

altering the number of energy states which are thermally accessible at any

stage of the learning algorithm. The partition function Q is a direct measure
". of the number of states accessible. Consider the limit of Q from eqn (10)
-where all energies are relative to the energy of the ground state. At low T

the exponential goes to zero unless E =E L, , and the limiting value of Q is

the degeneracy of the ground state. At high temperatures exp(-EL/T)--l for
* all E and the limit of Q is the number of states in the system.

Let us focus on a fixed temperature: the lowest temperature, TfIn, of
the annealing schedule. When a Boltzmann Machine is started all states have
the same energy and Q=1024 at all temperatures including T .e . As learning
progresses and the link strengths are altered, the number of states accessible
at T decreases to some value >1. The situation is similar in some ways to
an energy minimisation by simulated annealing where the energy surface is
fixed and the number of states accessible is decreased by lowering the
temperature. It is natural to ask how Q varies during learning and whether
many Boltzmann Machines all tend to reach similar Q values when they have
solved the 4-2-4 problem.

To answer these questions Q was calculated from eqn(10) (at T,,A) at
each learning cycle for some typical Boltzmann Machines. Because of the small .

system size and the rather large step size in the link strengths there are
quite large fluctuitions in Q between learning cycles. However, some clear
trends do emerge. Q drops rapidly over the first few cycles: for all machines
the latest cycle on which 30 or more states are accessible at T is cycle 30.
All machines rapidly settle down to Q<20, but the fine tuning may be very
slow. Q then drops to final values in the range 5-15 when a stable solution

*" is found. This behaviour is reminiscent of Hinton's description of the three
stages of learning [Hinton,1984; Ackley,19853 and it is tempting to relate
Hinton's stages to particular Q regimes. If, however, there are any
quantitative correlations, they are hidden by the large fluctuations. The
results are summarised in table 5.

Table 5. Variation of the partition function with learning cycle. N
is the cycle on which a stable solution has been found for ten consecutive
cycles. Under "last 30" the Latest cycle on which Q is 30 or greater is
shown; similarly "last 20" gives the latest cycle when 0 is >20. Qj is the
value of Q on cycle N.

Run last 30 Last 20 N GN

1 21 44 110 10.5
2 21 39 72 9.4
3 29 42 194 4.4
4 24 55 119 10.1
5 30 40 76 7.5
6 20 60 239 7.6
7 28 51 87 12.0

8 24 50 78 10.3
9 20 54 117 6.3

10 22 42 509 10.4
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5.5 LINK STRENGTHS AS CORRELATION COEFFICIENTS

In Hinton's experiments on a 4-2-4 encoder the link strengths could

take any even integer value. While this is convenient for fast computation,

if the states of units represent truth values of hypotheses it seems logical

to regard Link strengths as correlation coefficients, i.e. real numbers in the

interval -1.<w-<wI. The speed of integer arithmetic need not be lost if

calculations are carried out with an integer cut-off, wrt . This is
equivalent to allowing only discrete real values in -1w(1. Several schemes

can be envisaged. One simple method is to change the lin1 strength w4 by

adding or subtracting (depending on the sign of (p.---p-+ )) a constant only if
the resulting value wl- would be within -wc ~ : . This is the Hinton I

method if wc,,,t is infinite. A further advantageLbf imposing a cut-off is that
patterns in link strengths developed early in the learning sequence have less
influence as time progresses - the system is more sensitive to more recent
experience. This method is being investigated.

6. RELATION OF BOLTZMANN MACHINES TO SPIN-GLASSES

Because Boltzmann Machines are a very recent development, few
numerical results are available. It will now be shown that there are close
similarities between Boltzmann Machines and spin-glasses. The latter have
been the subject of numerous computer simulations since the mid-1970's and
many of the results should carry over to BoLtzmann Machines.

A spin-glass is simple in concept. Consider a lattice of magnetic
atoms. At high temperatures the thermal energy is sufficient to overcome the
interactions between the magnetic moments which tend to make the spins align.
The spins are therefore able to rotate; there is no net magnetic moment, and
the system is paramagnetic. Below the Curie temperature the thermal energy is
not large enough to overcome the magnetic interactions: the system then adopts
an ordered ferromagnetic phase with a net magnetic moment. However, if the
magnetic interactions are weakened by replacing most of the magnetic atoms by
atoms of a non-magnetic metal, a different behaviour occurs. At low
temperatures the thermal energy is not sufficient to prevent the spins
freezing into particular orientations, but the magnetic interactions are too
weak to force the long-range order of a ferromagnet. This frozen disordered
state is believed to be the structure of the spin-glass phase.

Despite this simple picture, the theoretical treatment of spin-glasses
is a very active field of research where many of the major issues are only
just becoming tractable. One of the most extensively studied models is that
of Sherrington and Kirkpatrick [Kirkpatrick, 1978) for which the energy of a
system of n spins, in the absence of an external field, is given by:

n n
E = - 2 ] lj. s' s J-(16)

i=1 j=i+l sj

where the spin variables s. take values 1, and the interactions 4j are
random variables taken from a Gaussian distribution. The energy expression
for Boltzmann Machines, eqn (1), differs formally from eqn (16) only by the
inclusion of self-terms. However, there are two further differences in the
numerical calculations: most Boltzmann Machines adopt the unit on-off
representation (1,0), and the link strengths are not random variables. The
question therefore arises: do Boltzmann Machines exhibit spin-glass
properties?
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Most spin-glass calculations have been performed with hundreds of

spins, in contrast to the ten units of a 4-2-4 encoder. However, Young and

* Kirkpatrick have calculated the exact statistical mechanical behaviour for

." systems with up to 20 spins EYoung, 19823. A principal conclusion from their

study is that when a spin-glass is thermally excited out of its ground state,

clusters of spins are flipped. We have observed similar Low-energy cluster

excitations in Boltzmann Machines, and this is direct evidence that Boltzmann

Machines do have similar energy surfaces to those of spin-glasses. As an

example, table 6 shows the states of units in the lowest energy and first

excited states of a typical solution to the 4-2-4 encoder problem. In this

example 5 units must be flipped to reach the first excited state.

Table 6. States of units in the ground state and first excited state
of a typical Boltzmann Machine. Unit on-off representation (1,0).

Unit number 1 2 3 4 5 6 7 8 9 10

ground state 0 1 0 0 1 0 0 1 0 0
1st excited state 1 0 0 0 1 1 1 0 0 0

The number of spins which have to be flipped on average to go from the
" ground state to the first excited state of a spin-glass varies as n1/I [Young,

19823. The n-dependence in Boltzmann Machines has not yet been investigated.
However, if more extensive calculations show similar phenomena to those found
in simulations on small spin-glass systems, it is reasonable to suppose that
large Boltzmann Machines will also have energy surfaces like those of

*- spin-glasses. This would have several consequences. First, it would mean that
many of the technical details of the computations could be adapted to

S.Boltzmann Machines. Second, and more important, it should give information
• "about what energy surfaces are searchable by simulated annealing, and perhaps
.* about the limitations of Large Boltzmann Machines.

Consider a 1024-10-1024 encoder. Since h=Logg9, there are enough
hidden units to permit each visible group to communicate its state to the
other, i.e. a set of codes exist which solve the problem. Unfortunately, the
existence of a solution is no guarantee that a Boltzmann Machine will find it
since the algorithm is not an exhaustive search procedure. In fact the

." Boltzmann Machine can only work if the energy space is suitable for search by
simulated annealing. There are two requirements for this to be so: that
multiple Low-energy minima exist and that the barriers between them are not
insurmountable. If the energy space is Like that of a spin-glass, then
multiple Low-energy minima do exist. However, the Larger the system, the
Larger the barriers between the minima EMackenzie, 19823. This matter will
not be pursued here; we mereLy note that there is a useful body of knowledge
to be tapped.

7. CONCLUSIONS

The potential uses for any algorithm capable of getting knowledge into
a computer are enormous. Although they have only been demonstrated for model
problems which are simple in comparison with the tasks which a useful,
practical system would have to perform, Boltzmann Machines do appear to be a
significant step forward from earlier network models of Learning. The key
question is whether they can be scaled up to solve useful problems.
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As with any other novel idea, it would be surprising if the initial

formulation proves ultimately to be the best. However, before better systems

can be devised, it is necessary to understand the original example thoroughly.

The work reported here is a contribution towards that goat. We have shown

that exact statistical mechanics make it possible to follow the progress of

Learning in Boltzmann Machines, and to investigate some parts of the algorithm

quantitatively. We have also shown that Boltzmann Machines exhibit some of

the characteristics of spin-glasses, and much useful information could be

gained from this field of research.

Among the many potential applications, we have highlighted the way in
which Boltzmann Machines might be used to Learn the numerical measures of

uncertainty which are used in Expert Systems. Since choosing these numbers is

currently one of the major problems in building Expert Systems, Boltzmann
Machines may make a big impact here. Other potential applications, such as
those listed in the Introduction, are not considered less promising; they are

merely outside the scope of this report.
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