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Abstract

Let N(t) be a counting process with continuous compensator A(t) and

f(t) a bounded predictable process. If E(exp(2}fflN(t))) < -and

E(exp(2(l + expfA)A(t))) < - then it is shown that z(t) = exp {-Jt f(u)dN(u)
t F

[exp(-f(u)) - l~dA(u)1 is a martingale. This is a partial extension of a

theorem of Kabanov, Liptser, Shiryaev (1980) who assumed A(t) < c but did

* ~not assume AMt is continuous. *~--.- -- *
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1. Introduction

If p(t) is a standard Poisson process of unit intensity with

P(p(t) = j) = exp(-t)tJ/j!, j = 0,1,... then it is easy to see that

(1.1) z(t) = exp{-Xp(t) - (e- -1)t} is a martingale for every X £ R.

Fomula (1) suggests that if f is bounded and predictable with respect

to the filtration F(t) = o(p(s), 0 < s < t) then

(1.2) z(t) = exp{- f(u)dp(u) - [exp(-f(u)) - 1]du}

is a martingale also. Note that by putting f(u) F A in (1.2) we obtain (1.1).

More generally Kabanov-Liptser-Shiryaev (1980) (henceforth abbreviated to

K-L-S) have proved the following theorem.

THEOREM 1: Let N(t) denote a counting process with continuous compen-

sator A(t) satisfying the condition A(t,w) <_ c and let f(t,w) denote a

bounded predictable process with respect to the filtration F(t) = a(N(s), 0 < s < t).

Then

(1.3) z(t) = exp{- tf(u)dN(u)- rt[exp(-f(u)) - li]dA(u)}

is a martingale.

Remarks: (I) K-L-S use the martingale z(t) to give a very nice proof

of a Poisson limit theorem for point processes due .to T. Brown (1978).

mmL
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2.

(ii) If we recall that the compensator of the Poisson process

At) t then we see at once that the condition A(t) < c Is too restric-

tive since it excludes the Poisson processl These remarks suggest that a

more natural condition to impose on A(t) in order for the process z(t)

defined by (1.3) above to be a martingale is the following one:

(1.4) E(exp(cA(t))) < , E(exp(dN(t)) <

for non-negative constants c and d which may depend on Ifl.

. It is the purpose of this paper to give a statement and proof of just

such an extension to Theorem 1.

THEOREM 2: Let N(t) denote a counting process with continuous com-

pensator A(t) and let f(t,w) denote a bounded predictable process.

(i) If A(t) satisfies condition (1.4) with c 2(1 + exp(Ifl)) and

d = 21fl then the process z(t) (defined at (1.3)) is a martingale.

(ii) If in addition f(t,w) . 0 and A(t) satisfies condition (1.4)

with c = 1 and d = 0 then z(t) is a martingale.

When the hypothesis that A(t) be continuous is dropped K-L-S (1980)

have shown that

(1.8) z(t) = exp{- f(u)dN(u) - (exp(-f(u)) - l]du - z s(exp(f(s)) - l)AA(s)}
s<t

is a martingale provided A(t) < c where D(x) = tn(l + x) - x. We conjec-

ture that (1.6) remains true under the less restrictive condition (1.4); the

proof of this result however has.so far escaped us.

i4
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Outline of the Proof: We first prove Theorem 2 in the special case where

N(t) - p(t). The general case is then reduced to this one via a random time

change. A similar method is used by Ikeda-Watanabe in their proof of a

Theorem of Novikov's cf. IKEDA-WATANABE (1981) Theorem 5.3 pp 142-144.

NOTATION: Whenever convenient we will drop the w and write f(t) for f(t,w),
A(t) for A(t,w) etc.

2. Proof of Theorem 2:

Recall the setting of the introduction: p(t) is a standard Poisson

process of unit intensity and F(t) = o(p(s); 0 < s < t).

LEMMA 1: If X() is F(s) measurable and bounded then

E(exp(-X(w)[p(t) - p(s)]IF(s)) - exp([t - s](exp(-X(w)) - 1)).

This is a consequence of the following lemma, the proof of which is left

to the reader.

LEMMA 2: Let h(x,y) be a bounded Borel measurable function and suppose

. X(V) and Y(w) are random variables such that X(w) is G measurable.

* Then

E(h(X,Y)IG) = g(X(w),w) where

g(x,w) = E(h(x,Y)IG).

I - q "~~ "'> "' "% *\ ./%v,- %*./, ".. -
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LEMMA 3: Let f(t,w) be a bounded F(t) adapted process with left

continuous paths (and hence predictable). Then

ft
exp(- t f(u)dp(u) - [exp(-f(u)) - l]du) is a martingale.

Proof: Assume f is a simple function i.e.

n-i
(2.1) f(u,W) =E f(tisw)I(t i,t i+ ](u) where

1=0

0 = t0 < ti < ... < tn . It suffices to show that

(2.2) E(exp(- f(u)dp(u) - Js[exp(-f(u))- l]du)IF(s)) = 1 0 < s < t.

* Assume tI <s < t < tl+ l so J f(u)dp(u) = f(t1 ,w)(p(t) - p(s)) and

ftj [exp(-f(u)) - l]du = (t - s)(exp(-f(tiw))- 1) which isF(s) measurable.

*Consequently by Lemma 1

E(exp(-Jfsf(u)dp(u))IF(s)) = E(exp(-f(t1,w)(p(t) - p(s)flF(s))

= exp{(t - s)[exp(-f(t1 ,w))- 1]} which yields (2.2).

If s < t i+1 < t then we can reduce it to the case just considered by

successively conditioning on F(ti+ l) and then F(s) etc.

For the next step we invoke Lemma 5.3 on p. 175 of Liptser-Shiryaev

V.1 (1977) which asserts that sample functions of the form (2.1) are dense in

the class of predictible functions satisfying the condition

V2

(2.3) E((f(uw))dA(ul) <
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Here density is of course understood to be with respect to the norm

E(t(f(uW) - g(u,W))2dA(u))
1/2.

Bring in the square integrable martingale M(t) = p(t) - t and recall that

the compensator of (M(t)) is t. Let fn(tw) denote a sequence of simple

* functions of the form (2.1) satisfying the conditions Ifn I < lf and

* (2.4) iim E( (fn(Uw) - f(u,)) 2du) = 0, i.e. set A(u) = u in (2.3);

l .It then follows that

(2.5) lim E(I fn(u,w)dM(u) - f(u,)dM(u)l = 0.

" Applying Schwarz's inequality and (2.4) we see that

t t2
(2.6) lrm E( Ifn(u) - f(u)Idu) < t lim E( Ifn(u) - f(u)I2du) = 0.

TI .O- n- - fo

In addition the condition Ifnl < Ifj implies that

I exp(-fn(u))du- exp(-f(u))dul < K JIfn(u) - f(u)Idu;

- thus

(2.7) lim E(I exp(-fn(u))du - exp(-f(u))dul) = 0

Next we observe that fn(u)dp(u) + [exp(-fn(u)) - l]du

t tt fn(u)dM(u) + S exp(-fn(u))du and that
ni ° 0

......

* . * ** p b . * . s * . . *
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t It
(2.8) i10 f (U)dp(U) + t [exp(-f n(u)) - l1dut <~ lf~p(t) + tW + exp(ifI)

Consequently

(2.9) iexp{-J0o, fn (u)dp(u) + i[exp(-f n(u)) - l~dulI <.

exp(Iflp(t) + tW +'explfl)

which is obviously an integrable function. It is clear we can now extract

a subsequence f ,o(u) such that

(t t

no- (2o0 jo (a nr If (u)dM(u) = f(u)dM(u) a.s.

nb - cim fo exp(-f n.(u))du fexp(-f(u))du a.s.

On the other hand we've already shown for simple functions f no that

(2.11) E(exp{- f f n (u)dp(u) - I: exp(-f n(uM) - I)duljF(s)) =1.

* The bound (2.9) and the existence of the limits in (2.10) now permit us to

pass to the limit in (2.11) and deduce that (2.2) remains valid for bounded

predictable f. Q.E.D.

LEMMA 4: Let N(t) be a counting process with a continuous strictly

increasing compensator A(t) satisfying condition (1.4) with c 2(1 +explfl)

and d = 21f1 (or c = 1, d = 0 if f(t) > 0). Then

(2.12) z(t) - exp{-f f(u)dN(u) -f[exp(-f(u)) -l]dA(u)1

is a martingale.
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Proof: Bring in the random time change A-1 tM inf{u:A(u) > t) and note

that A-1 tM is also continuous and strictly increasing. It is easy to

*see that N(A1 (t0) is again a counting process with compensator

A(A- It)) = t and therefore N(A1 I(t)) = p(t) is a Poisson process relative

to the filtration F'(t) = F(A1l(t)). Assume f is left continuous which

implies that f(A- (t)) is predictable and therefore by Lemmua 3

(2.13) exp{-~ f(A-1(u))dN(A 1 (u)) - [exp(-f(A1l(u)) - l]du} =v(t)

is a martingale. Now A(t) is a stopping time relative to the filtration

F'(t) = F(A1 (t0) and so Doob's optimal stopping theorem implies v(t,,Aks))

- is also a martingale. Let us assume that f(t) > 0 which, combined with

* the fact that N(A"1 (u)) is monotone increasing, implies the inequality

-(2.14) -fA(5 f(A1 (u)dN(A 1l(u)) - 'A(S [exp( -f(A1 (u)) - l]du <- A A(s).

Consequently 0 < V(t A A(s)) <exp(t A A(s)) < exp(A(s)). We may now apply

* the dominated convergence to conclude Jim v(t A A(s)) = v(A(s)) inL

* and hence v(A(s)) itself is a martingale. Now

A(s) fAA- s)du
(2.15) v(A(s)) _1 -()d(1(expl- f(A(u)(N( (u)exp(-f(A 1(u)) -)U

=exp{-f f(u)dN( u) - [exp(-f(u)) - l]dA(u))

=Z(s) is a martingale.

We have thus proved (ii) of Theorem 2, at least in the case where f is

continuous and A(t) Is strictly increasing. It is easy to extend this
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result to simple functions of the form (2.1) by means of the following

device: for each I construct a sequence of non-negative continuous func-

tions *kl(t), with compact support, such that lim Ck,i(t) l(t.,t )

n-I 1 
1 +

* Set fk(t) = E f(ti , )(t) and note that we can arrange matters so that
1=0 kit

fk(t) is F(t) adapted as well. Clearly lrn fk(t) = f(t) in the sense

of bounded pointwise convergence and from this it is easy to see that (ii)

of Theorem 2 remains valid for non-negative simple functions of the form (2.1).

The extension to arbitrary non-negative bounded predictable processes via

the methods used in deriving (2.4)-(2.11) is left to the reader.

If we assume that f is bounded then inequality (2.14) is replaced

by

t^A(s) t^A(s)

(2.16) f(A' (u))dN(A'l(u)) + [exp(-f(A-l(u)) - l]dul <

Ifjp(A(s)) + (I + exp(Ifl))A(s) = IfIN(s) + KA(s).

By Schwarz's inequality a sufficient condition for the integrability of

exp(IfIN(s) + KA(s)) is given by condition (1.4) with c = 2K = 2(1 + exp(IfI)

and d = 21f I. The proof of Theorem 2 is now complete, at least in the

case where A(t) is strictly increasing.

To complete the proof of Theorem 2 we drop the assumption that A(t)

be strictly increasing. It is still true however that p(t) = N(A M(t))

is a standard Poisson process with the property that p(A(t)) = N(t)

except possibly for an evanescent set and moreover matters can be arranged

so that A(t) is independent of p(t) - see T. Brown (1981) Theorem 2 on

% * %Z 9.$.* 9 '' . : :A d*9 : . -.' :."- .- ,i-' - .-. - ,-- - . ~. - ...-..- .- . . .- .
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p. 308. Bring in the natural (strictly) increasing process A (t) = A(t) + ct

and note that AY(t) decreases to A(t) as E decreases to 0 and

therefore lim p(A (t)) = p(A(t)) since p is right continuous - in par-

ticular p(AM(t)) converges weakly to p(A(t)). We observe that N. t)

p(A (t)) is again a counting process with strictly increasing compensator

Aj(t). By Lemma 4 then

z (t) exp(- f(u)dp(A (u)) - [exp(-f(u)) - l]dA (u))

is a martingale for every E > 0. In order to pass to the limit as C0

we first assume f is continuous and then use the weak convergence of

p(A E(u)) to p(A(u)) to conclude

st s
(2.17) lim f(u)dp(AE(u)) = f(u)dp(A(u))

- f(u)dN(u) a.s.

Similarly it is easy to check that

(2.18) llm , [exp(-f(u)) - l]dAE (u) = f exp(-f(u)) - l]dA(u) a.s.

Clearly this implies that lim zE(t) z z(t) is a martingale at least when

f(t) is continuous. Proceeding as we did just after (2.15) it can be shown

that z(t) is a martingale for step functions of the form (2.1) and finally the

proof for arbitrary bounded predictable f is carried out by means of the

standard approximation procedure used in (2.4)-(2.11). The proof of Theorem 2

is complete.

p°
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