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ABSTRACT

g lave spectra calculated using the Parameterized

Nonlinear Wave Solution developed by Le Rehaute et al.

(1984) are compared with field data aciuired at Leadbetter

beach, Santa Barbara, California. The parameterized solu-

tion satisfies the nonlinear free surface boundary condi-

tions to a specified degree of accuracy and is expressed in

terms of a converging truncated Fourier series. The wave-

number, surface profile and wave orbital velocities are

determined by the vave height and wave period at the local

depth cf water. Srectral components are compared between

the model results and field data. Good agreement is observed

for waves corresponding to Ursell numbers ranging from 25 to

75. For large Ursell numbers (strong nonlinear effects) the

iarameterized model underestimates the data.
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I. INTRODUCTZON

The random nature of ocean waves is most .often descri-ed

using the linear spectral model, and many engineering prob-

lems related to offshore and coastal structures are solved

by employing the concept of directional wave spectra. Raves

in the sea, however, can exhibit nonlinear properties. A

departure of surface elevation from the Gaussian distribu-

tion with positive skewness is an example. Phase velocities

of high frequency component waves not satisfying the linear

dispersion relation is another example. Breaking of waves

is a spectacular example of nonlinear behaviour of water

waves.

The study of nonlinear, water waves traveling over a

horizcntal bottom dates back to Stokes(1847), who solved

this problem in the form of a power series in terms of a

small parameter ' E ' related to the average wave slope (E =

ak, where a is the wave amplitude and k is the wavenumber).

It was fcund, however, that the Stokesian type series are

nonuniformly convergent, and are only valid in deep and

intermediate water depth.

Boussinesq (1877) and Korteweg and de Vries (1395)

develcped the cnoidal wave theories, which are based upon

power series in terms of wave height relative to water

depth. These power series are uniformly convergent in

shallow water, but are invalid in dee2 water.

Making the connection between the two above theories,

Goda (1983) developed an empirical parameter to describe the

phenomena of wave ncnlinearities with good results. The

parameter bridges the wave steepness in deep water and the

Ursell's parameter Ur = (a/d)/(d/L)2 (with a the wave

amplitude, d the water depth, and L the local wave length)

11
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4 in very shallow water, spanning the full range of water

waves.

Then ccnfronted with experimental results, Le Behaute et

al. (1568) demonstrated that the nonlinear theories were not

suck tetter than the linear wave theory; nonetheless there

is a need to clarify the extent of wave nonlinearity in the

sea so that engineering problems can be solved with such
more confidence and accuracy.

During the last two decades, numerical approaches based

on truncated Fourier expansions have been proposed and well

verified experimentally. The first such approach was devel-

oped by Chappelear (1961) involving the use of the velccity

potential. Dean (1965) used the stream function to develop

his numerical wave tleory, which was computationally simpler

than Chalpelear's technique. Dean's stream function form

satisfies the Laplace equation, the kinematic free surface

boundary condition, and the bottom boundary conditicn; the

parameters in the stream function expression are chosen by a

best fit to the dynaxic free surface boundary condition. Von

Schwine and Reid (1972) developed characteristic solutions

to finite amplitude waves using the velocity potential.

Cokelet (1977) extended the method originally developed by

Schwartz (1974) to allow a very accurate calculation of the

characteristics of water waves. The procedure involves

expressing the complex potential solution in a Fourier

series and represents the Fourier coefficients in terms of a

perturbation parameter. Rienecker and Fenton (1980) used a

finite Fourier series to describe waves by solving a set of

nonlinear e'uations using Newton's method. Recently, le

.ehaute et al. (1984) developed a parameterized solution

which is valid for all practical ranges of values of wave

amplitude, frequency and water depth. In view of its rela-

- tive simplicity, and experimental validity, the parameter-

," ized solution is reccmmended for engineering applications.

.9 . •,.*p.*..*-. . * . . . . - .



The objective of this work is to utilize the spectral

model by Le ehaute et al. (1984) to compare with wave data
.acquired at Santa Barbara during the 2-6 February, 1980.
The range of application of the model will be checked

against measured wave spectral components and individual

waves. The wave nonlinearity and Ursell number are analyzed
using the model. Ccmments and conclusions are made for

further study.
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I.21 OUTCIL BACKROUND

A. PABIRZTERZZBD SOIUTION TO THE IOILIEEAR NATE PROBLEM

1. Overvie

The higher-order Stokian wave theories become alge-

braically very complex. For practical purpose, it was

desirable to develop wave theories that could be computed to

any order. Le Rehaute et al. (1984) developed a parameter-

ized solution to the monochromatic, irrotational, nonlinear

water wave over a hcrizontal bottom. The formulation is

expressed in a closed form in terms of a truncated Fourier

series. All coefficients are expressed in terms of simple

analytical functions which contain three parameters, namely,

wave height, H, wave period, T, and water depth, d. The

number of terms in the Fourier series is proposed paramet-

rically for a given level of accuracy. The solution is

-. assumed to be applicable for all practical ranges from deep

to shallow water waves, i.e., d/Lo ) 0.005. The deep water

soluticn for d/Lo = 0.5 is assumed to be valid for d/Lo >

0.5.

2. Ihereica Ej~nulati

As in the periodic water wave problem the formula-

tion has linear and nonlinear boundary conditions and a

linear governing difterential equation.

Choosing a coordinate system moving with wave speed

C - 0/ k so that the time dependency is removed, i.e., a

staticnary problem , it is possible to assign a constant

value to the stream function at the free surface. The vari-

able 0* is the wave angular frquency( (T = 2 7T/T) and k is
the vavemumber (k = Ir / L)o The solution is a velccity

potential function of the form

14
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¢puz-ct),z) or cO(Orz) which satisfies the Laplace

equation -

V20 . 0 (2.1)

7he variable 0 = kx - 0"t denotes phase, and the z axis is

vertical positive upwards from the S.W.L. (still water

level) and the horizcntal x axis is positive in the direc-

tion cf wave propagation.

-he kinematic bottom koundary condition is written

4.- as

0 (2.2)
~~Oz 'zm- od

Ihe dynamic free surface boundary conditicn, is

derived using Bernoulli's equation written in the dimen-

sionless form at z =77

21 2
H 1 I- SL7 4 1 L - ' -J -2 S Oe2) (2.3)

where H is the wave height, 77 is the water wave surface

elevatiom and Be = an arbitrary Bernoulli constant.

.he kinematic free surface boundary condition is

O(2.4)

The e's are the allowable errors which should be small.

The measure cf how well these two boundary ccndi-

tions are satisfied is defined by E/ . and E2 , which are

the mean siuared errcrs of the dynamic and kinematic free

surface toundary conditions :

51
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E= 
(2.5)

2  Z 2j ( (2.6)i jMl

in which j - sample at evenly spaced phase angles (e.g..

with 5 o interval) along the wave 1rofile. The Bernoulli

constants Be, is determined such that the variation cf the

phase sleed c is minimized over a wavelength. For an exact

solution. I, and B2 wculd be zero.

A solution in the form of a limited series (or trun-

cated Fourier expansion) is assumed

S= "= An cosh [nk(d+ Z) Isin no
a q (2.7)

in which = dimensionless potential function; An = a

derived coefficient; n is an integer and N = the number of

terms. All the internal wave field terms (velocity ccmjo-
nents, dynamic pressere and acceleration components) can be
directly determined from this equation. Eq. 2.7 satisfies

both the Laplace equation (2. 1) and the kinematic bottom

boundary condition (2.2) exactly.

"he equation for the free surface correponding to

eq. 2.7 is:

N
77 K S 'k ~An Sifh nk (d +77 )]Cos no
29 2 2 2 (2.8)~n= /

in which X = an integration constant satisfying

7r
":-~7 7d =f (2.9)

', 16
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At the wave crest ( 0 - 0), 77 a 77c and the wave trough

On a I 77- aqt .Therefore

+ =1 +E 3 (2. 10)
4 26

in whick E is to be determined and must be small.

le Nehaute et al (1984) defines the phase velocity c

or vavenumber k in accordance with the Hamiltonian varia-

tional Frinciple of zinimum energy, which, in practice, is

oktained through minimizing E, with respect to the waven-

umber, k

0 -oa 0 
(2.11)

Such a system of equations can eventually be solved as a

function of phase velccity.

The solutio& to the prcblem consists in providing an

analytical solution which describes all the wave character-

istics as functions cf only three parameters : wave height,

H, wave period, T, and water depthd. These parameters are

grouped into two dimensionless parameters

-5- 2
Deltb parameter: 6 d d ( (2.12)Lo. 2 7TS

lave steepness parameter: = _ o (2.13)
L* 71T

17
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T z'.&

in which Lo is the linear deep water wavelength and a H/2

is the wave amplitude.

Having specified the initial boundary value prcbles
and analytical forms cf eqs. 2.3 and 2.4, the problem now
consists of expressing all unknowns ; In, k, K, and N (eq.
2.8), in terms of the two parameters 6 and y such that
a desired level of accuracy is achieved. These unknowns are
determined by satisfying the boundary criteria as closely as

Spossible. Zg. 2.11, which specifies the phase velocity and
wave number, must also be satisfied. The method of solution
is one cf trial and error involving multiple iterative
processes as expressed in the flow chart in Figure 1.

. F or practical parposes, the final formulation may
be presented in the fcllowing:

INPUT EAn : Given E, T, and d then

L=,T 2 /27r k* 271L* d k= 27T/ L7 027r/ T

Sd/L. and HI "L ° Also 13= "r1ta"h 4.S8 °"'9

and 0' 2 = Skt tanh Ad

(The symbol * denotes the linear solution).

FORM CF SOLUTIONS:

?:. nil
aaS

Ok N
77 - K- . An sinh nk d+77 cos n0-ZL (-I2. 15)

-:, , " ' , " .; .; ' " ? .--" " " ' .; " ' " ' " " " " ' " " - ' " " " " " ' ' " " " " " ' " " " " " " " " " " " " " " " ' "1 8 "



- INTEGRATION CONSTANT: For application purposes, a parame-

terized form of K is determined by

K=- 1.76
4  9 LL k , o55 a.77

-Q" (2. 16)

The use of K as ezEressed atove generally yields larger

values Cf E's than the value of K obtained by eq. 2.9

directly.

-" NONLINEAR WAVE NU5BEs : k = 27T/L

S1. 0.005 , 5 4 0.1

k k'= k*

.9+ 2 (2.17)

2. 0.1 < 6 4 0.5

k =k
[1+ 3466 tnh1kd 3  6 0.15 (2.18)

The soluticn valid fcz 5 = 0.5 is also considered valid for

6-0.5 provided that all the Fazameterized functions which

follcw are determined with 5 = 0.5 irrespective of their

real value; this means that deep water solutions ccrre-

sponding to 5 > 0.5 are not influenced by water depth.

COEFFICIENTS:

A= A*(I-R)
(2. 19)

19
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A --
cosh (d (2.20)

1. 0.0054 6 0 0.1

)(2.21)

in which a'/ - 0.8132 exp(-0.0153 [ln(1X3 6 )

b 0 0.07471 exp(1. 1057 [1n(1 3 6
2. 0. 1 < 6 0.5

R 0.~0.3e')eP~[In (/ 6jif
0 -. (2.22)

in which a" 17.300238

€b" 1.389 tan'l (24.09/s836 )

C7  1.3676 exp(-179.0f 3.04)= )

Coefficient A2  :

1. 0.005 4 6 4 0.1

A2 = 0.49 7A I exp 9; (. 8 82 1b3 (2.23)

in which a'= -0.00933 expll.494 [In (s 36 )]o7

02 =-0.953 expl-0.029 11(0- )j I0

2. 0. 1 < 0.5

A2-2.5 x10 A, exp 0a exp( bz 5 2)(21

2
•in which a"n 13.547? exp(-0.01340-3 98

20

.h J , ''- -- .~ '. S, , ,* " -" . ",'',-' * .,'._, -,*.*. .* . - . -. .. .. . - s. -- .. .
* *~~ q ~ % . ~ ~ *% .. ~...* *%*.* . * -*. 9-.



.. !. ... ..s - - - .. .+ .. .

b"2= -1615.318 expl-O.O 11/-1.7g

c; = 5-4.328 expi-0.01123 
- 1 0 4 )

Coefficient A3 :

1. 0.005 5 0.1

S= . .672 (5 s 2  bJ
2 C1x3(2.25)

in i ac a - -0.021 exp{1.355 ln8103

b9. l -0.859 ezpi-O.0747 [ n(103 6 )] 28

2. 0.1 < 6 O.5

A3 = A 2 ep )2 e"x'' ) (2.26)

i,, bich a -- ,3.537 zo52 1-o.418

Coetjxcient An IL > 3)

n- A., exp (-3.537 6 . 5  .
S13(2.27)

The validity cf this theory is defined through the E

values as derived by eqs. 2.3, 2.4, 2.5, 2.6, 2.1C and 2.11

by order of importance. The magnitude of the Z's depends on

the number of terms N used in the series. Beyond a certain

value of N, it is found that the E values tend towards

asymptotic values, indicating that they are not reduced by

adding more terms, i.e., the series is bounded. With this

* 21



property in the solutions, the number of terms I reguired

can be expressed in ;arameterized form by :

M = integer part of nl n2 (5.38 - 0.2)) (2.28)

S/1- 19.13 exPl-0.3446 )J-') (2.29)

n n2 = 32.72 expt-.21211n (1O3 0 )(1.31)) (2. 30)

le MIehaute et al, 11964) showed that the parameter-

ized soluticn approximates the free surface dynamic boundary

condition as well as, if not better, than any other existirg

theory. It also approximates the kinematic condition gener-

ally letter, except for the stream function theory devel-

oped ty Dean (1974) by virtue of its definition.

"runcated Fourier series do not represent limit

". waves well since the cusp at the wave crest requires an

*- infinite number of tems as was demonstrated by Dean (1974).

herefore, the accuracy of the parametric solution decreases

rapidly as the wave leights afroach limit wave conditions,

* which is where Ur is large.

B. MEASURE OF NONLIIIRITT

7he Earameter which represents the wave nonlinearity in

* deep water is the wave steepness, or a measure of the

surface elevation slcpe. The most common representaticn is

either the ratio of wave height to wavelength H/L, or the

* parameter ak.

In the region of shallow water waves, the Stokian wave

profile for higher crders is an expansion using the nondi-

ensicnal term

Ur a (a/d)/(d2/L2) (2.31)

* 22
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a.

*; as the perturbation parameter. This term is called the

tUrsell parameter and has been shown to govern the transfor-

mation of water waves in shallow water. For example, it has

been demonstrated that the nonlinear shoaling of water waves

is predicted as the function of the Ursell's parameter.

When Ur << 1, the linear small amplitude wave theory

applies. In principle, more and more terms of the power

series are required in order to keep the sane relative accu-

racy as the Ursell parameter increases.

7he arsell parameter is a usefull guide, but is not

necessarily sufficient for judging the relative importance

of the nonlinear effects. A qualitative idea of the izpcr-

tance of nonlinearity is also given by the ratio of spectral

values of each harmcic frequency to the spectral value of

the fundamental frequency. However, the nonlinear effects of

shoaling transformaticn are cumulative, so that the ncnli-

nearities may be lccally weak, but significant cross-

spectral transfer can occur if the shoaling region is wide

in compaiscn to the nonlinear interaction distance.
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III. UIZHZI fl2CU!IiS

Nave and velocity data acquired at Santa Bartara,

Califcrria, during the 2nd, 3rd, 4th, 5th and 6th February

1980, as part of the Mearshore Sediment Transport Study, are

used to be compare with the parameterized model. The field

data, considered in this work, include only measurements

made by the current meters outside the breaking zone.

Current meters C071, C03X and C'11 (see Figure 2) are used

on the 2nd and 6th of February; current meters C03X, C01

and CODX are used on the 3rd of February, and C01X and CODX

are used on the 4th of February.

For each day and each instrument the following statis-

tics were calculated: average wave height, W, the maximum

wave height, Hiax, the significant wave height, H1/3, the

root mean sjuared wave height, Hrms, and the average of the

heights cf the 1/10 highest waves, HI/10, as well as the

associated water depths, and the surface

elevaticn spectrum.

A. V11! SPECTRAL ANAlYSIS

7be surface elevation spectra were calculated frcm 69

minute current meter records. The water particle velocity

compcnents measured by the current meters were recorded on a

special receiver/tape recorder, digitally low-pass filtered

and sampled at 2 samFles/sec. The data were then high-pass

filtered at 0.05 hz to exclude low frequency variations.

These current data were used to infer wave heights. The

velocity signals were convolved using linear wave theory to

obtain surface elevations. The complex Fourier spectra of

the hcrizontal velocity components were first calculated and
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vectorially added to give V (f). The complex surface eleva-

tion spectrun, X(f), was calculated applying the linear wave

theory transfer function H(f)

X(f) = H(f) * V(f) (3.1)

where

H(f) = (sinh kd)/(Qcosh k(d+z)) (3.2)

with z = measurement cf elevation.

The calculated energy density spectra are to be compared

with the parametric model. Since the parametric model

defines all the truncated Fourier series coefficients as

simple analytical functions in terms of the wave height H,

wave period T, and water depth d, it was necessary to trans-

form the energy density spectra of the sea-surface elevation

into a discrete (spikes) spectra as shown in Figure 3.
The discrete spectra were calculated by first finding

the fundamental freguency defined as the frequency associ-

ated with the highest energy density peak. The harmcnics

were defined as the integer mutiples of this fundamental

frequency. The bandwidths associated with the energy peaks

were defined at the frequencies corresponding to the half

power pcints of the energy density values. The variance of

the peaks, calculated as the area of the energy density

spectrum between half power points, describe the height of

the spectral spike. The analysis was carried out to the

highest harmonic for which half power points could be

defined. The reason for defining the Landwidths at the half

power Eoints is because the half power values correspord to

the level at which the spectral components are independent

of one another. It was noted that the bandwidth increases

approximately with the number of harmonic.
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Assuming 77 0, the variance of the wave surface is

given by

var u "7 dt (3.3)

"- The parameterized variance, or energy, can be defined from

equation 2.15 in the discrete mode

Svar (n)= K 2 a- ) 1 ASinh Akd+7) (3.4)

with n = 1,2,3...N.

The wave height (and wave amplitude) used to calculate

the parametric energy line spectrum was the average wave

height, N,because it was the wave height parameter which

offered best fitting to the field data.

Ccuparisons for all days were made between the ccnverted

actual line spectrum and the parametric line spectrum calcu-

lated using the input parameters of average wave height ',

average water depth d. and the period corresponding to the

defined funlamental frequency (T = 1/f), calculated for the

68 minute measurements.

B. INEIVIDUAL WIVE INILYSIS

A second approach was to compare individual waves seas-

ured in the field with the parametric model predictiobs.

The Filtered and digitized velocity signals were convolved

using linear theory tc obtain surface elevations. The indi-

vidual waves were defined using the zero-up crossing metbod

as explained in Figure 10. The highest maximum and the

lowest minimum of the surface elevation within a period

interval define the crest and the trough of a wave. A wave

height Hi is defined as the range of q (t) in that

interval, the period is the time interval between two

consecutive zero-up crossings cf 7 (t).
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a Fourier analysis was performed on each individual wave

using a Fast Fourier Transform algorithm. The parametric

coefficients associated with the surface elevation formula

*'. were also determined for each wave using the measured Bi,

Ti, and di. Statistics of Fourier coefficients from field

data and the parametric model were generated for each day

In = (1/w) (Ani) (3.5)

*(where Nw = number of analyzed waves). For each run compar-

isons were made between this approach and the wave spectral

analysis. Since the average wave period was atout 15

seconds, the total number of waves in each 68 minutes record

was about 300, which give reasonable wave statistics.

C. SURNART

Both analyses were based on the similarity between the

Fourier series representation of the sea surface elevation

t) = aO + an cos n O  (3.6)

(with aO = mean) and the sea surface elevation descrited by

the parametric model as defined by the equation 2.15. The

coefficients to be ccmpared are the an's for the Fourier

series defined by the Fourier integrals and the Le Mehaute

coefficients
- (I **2) *a *g *k* An * sinh [nk(d+77 ) )

where An are defined parametrically as function of the depth

parameter 6 and wave steepness T and 7 defined itera-
tively from equation 2.15.
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The spectral data analysis is a linear approach. The
spectral components are assumed independent of 9ach other.
The analysis considers that the spectral component phase
angles at each frequency are random (putting the Frcblem in
a probabilistic or stcchastic setting). On the other hand,

the individual wave analysis is also a linear approach, tut
the phase relationshi; between harmonics is presumed deter-
ministic (i.e. phase coupled with the fundamental frequency,
as evidenced by the observed peaked crests and flattened

troughs).
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A. SPICIRAL ANALSIS

A typical energy density spectrum for all analyzed

instruments is presented in Figure 2 (upper panel). The

presence of strong harmonics in the spectrum indicates the

importance of nonlinearities of the waves in this region of

shallcw water. A qualitative idea oi the importance of

nonlinearity is given by the ratio of the harmonic energies

to the primary frequency energy E(nf)/E(f), where n = 2, 3

are the harmonic frequencies. Due to the difficulty of

defining the half power points for the harmonics higher than

the third, only the ratios involving the first and second

harmonics are presented.

7ables I - V give the ratios for all five days

studied for both the Farameterized model (denoted L.M.) and

the field data (denoted by F.).The water depth and the

Ursell parameter associated with each measurement are also

presented. The range of water depths is from about 670 cm

to 138 cm. The range cf the Ursell parameter is from abcut 6

to 12C.

For large Orsell numbers ( Ur > 75 ), the parameter-

ized mcdel overestimates the isportance of the energy asso-

ciated with the harmonics relatively to the fundamental

frequency energy. The same ratios for the field data are 20

- 60 percent lover. For small Ursell numbers ( Or < 25 ),
the parameterized model underestimates the importance of the

harmonics relatively to the fundamental frequency energy.

The same ratios for the field data are 0.5 - 40 Fercent

higher.

29
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S! The best fitting between the parameterized model and

the field data occurs at intermediate Orsell numbers ( 25 <

Or < 75 ). It is found that the parameterized model energy

ratios ccapared with the field data energy ratios have an

error of less than 20 percent for the cases of intermediate

Ursell number. Some exceptions were observed to the above

indicated percentages, but the energy contribution at these

frequencies is very small.

2. loca S_.ectrj Coma~rson

An absolute ccmparison was made between the parame-

terized model spectral energy peaks and field data spectral

energy peaks as a function of frequency. Typical results for

three different Ursell numbers are presented in Figures 4

and 5.. In regions of strong nonlinear effects ( large

Ursell number), the parameterized model underestimates the

energy at the fundamental frequency. The energy drops

linearly from the fundamental frequency to the harmonics, in

the parameterized model, while field data spectra fall cff

much faster. In regicns of small Ursell numbers the parame-

terized model concentrates almost all the energy in the

fundamental frquency, overestimating it relative to the

field data. The best agreement between the parameterized

spectral energy peaks and field data energy peaks are

observed for intermediate Ursell numbers.

The Fourier ccefficients used to evaluate field data

spectra are plotted against the Le Mehaute spectral coeffi-

cients ( 1 / J **2) agkA sinh(nk(d +7)) (Figs. 6-8). A

reasonable correlation is found for the first three

coefficients.

The spectral analysis approach is summarized by

plotting the ratio of the Le Mehaute spectral peaks to field

data spectral peaks against the Ursell parameter (Fig. 9).
The ratio for the fundamental frequency energy decreases as
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% the Ursell parameter increases emphasizing how the parame-
terized model underestimates the fundamental frequency spec-

tral peak in situations of strong nonlinearities ( large
* rsell parameter). The ratios for both the first and second

harmonic frequency energies increase as the Ursell parameter

increases; it must be noted, as indicated earlier, that the

data cnly ranges in Ursell numbers from about 6 to 120.

B. 1U3IUIDDU L tVU hULYSIS

Individual waves were identified using the zero-up-cross

method. A Fourier analysis was performed on each individual

wave. 7he parameterized spectral coefficients were also

determined for each individual wave.

The Fourier coefficients associated with the fundamental

frequency, first and second harmonics are plotted separately

against the corresponding parameterized coefficients. The

coefficients at the fundamental frequency (Fig. 14) are

reasonably well correlated (correlation coefficient =

0.80). 7he Fourier coefficients plotted against the Le

Mehaute coefficients follow a straight line with intercept

at the origin and slope of about one. The group of plotted

points with a greater slope (approximately 2) are associated

with measurements in shallower waters with higher Ursell

numbers (see Figs. 12-16). The graphs of the the first and

second harmonic coefficients (Figs. 17-18) stow similar

characteristics as the fundamental frequency; however, the

correlation between the coefficients is poorer.

The ratio of the le Mehaute coefficients to the Fourier

coefficients is also plotted against the Orsell parazeter

The ratio for the fundamental frequency coefficients

converge to a bound value of 0.5 at large Ursell numbers

(Fig. 19). For Ursell numbers less than 75 the ratio of the

Le Mehaute to Fourier coefficients is about 1 with the
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exception of a few pcints near Ur = 0 which were identified

to be related w ith noisy signals. For large Ursell nusbers
the Yourier coefficients are about twice the Le Mehaute

coefficients, again showing the tendency that the parameter-
ized model has to underestimate the fundamental peak energy

in regions of strong nonlinearities (large Ursell numbers).
7he ratios for the first and second harmonic coeffi-

cients (Figs. 19 and 20) show a bounded value near unity as
the ursell parameter increases. Noisy signals near Ur = 0

are also observed.

C. CCNPVIISOES BETIZUU APPRO&CRES

Both linear (spectral analysis) and nonlinear (indi-

vidual wave analysis) approaches lead to similar results.
The parameterized mcdel is observed to overestimate the

fundamental frequency energy in regions of small Ursell

number (weak nonlinearities) and underestimate it in regions

of large Ursell number. The individual wave analysis pres-

ents a limit tendency for large arsell numbers, with the

fundamental frequency Fourier coefficients about twice those

of the parameterized spectral coefficients. The better

correlaticn observed between the Fourier coefficients and
the Le Mehaute coefficients in the individual wave analysis

as compared with spectral analysis approach is due, perhaps,

to the definition of half-power criteria or to the averaging

processes involved in calculating the wave spectra.

7he reason for the similarity of results for the two

approaches can be seen by comparing the spectra calculated

in the usual manner with a "nonlinear spectrum". A Mcnli-

near spectrum was calculated using the Fourier amplitude

coefficients calculated for the individual waves. Using the

same tandwidths as the ordinary spectrum, amplitude coeffi-

cients were sorted into the respective frequency bands and a

nonlinear spectrum calculated as
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*Gal (.f) =(1/Nw) Pf 2 (4.1)

where the coefficients i(f) are centered on frequency f

within bandwidth A f. The total number of waves is denoted

by Nw. An example of the comparison of the nonlinear spec-

trum calculated in this manner with the linear spectral

method is shown in Figure 21. The two spectra are similar

and bcth show strong harmonic peaks. The spectral energy in

the ordinary spectrum tends to be smeared sore, whereas the

peaks and valleys in the nonlinear spectrum are more sharply

I defined.
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V. COIG.SIIS

The coefficients of the parameterized solution tc the

nonochromatic, irrotational, nonlinear wave over a hori-

zontal bottom, as developed by Le Rehaute et al. (1984), are

expressed in terms cf simple analytical functions of wave

height, a, wave period, Tand water depth, d. All quanti-

ties exlicitly derived from the potential function

(velocity components, dynamic rressure, acceleration, i.e.,

the internal wave field) can be directly determined. The

relative simplicity of the calculations of the parameterized

solution recommends it for engineering applications.

The wave spectra determined from the parameterized solu-

tion show good agreement with the measured wave spectra from

field data for conditions of intermediate Ursell numbers (25

< Ur < 75). For small Ursell numbers, the parameterized
soluticn concentrates almost all the energy in the funda-

mental frequency representing a sinusoidal waveform. Under

these conditions, the field wave spectra always contained

relatively less energy associated with the fundamental

frequency and more energy distributed to the harmonics.

Fcr large Ursell numbers, the parameterized solution

descrites a waveform with more peaked crests and flatter

throughs relative to the measured waves, since it underesti-

mates the energy asscciated with the fundamental frequency

and overestimates the energy associated with the higher

harmonics.

The ratios between the Le Mehaute and field data spec-

. tral coefficients associated with the Ist and 2nd harmonics

present a bound ligit tendency of 1 for large Ursell

3.4
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numbers, indicating good agreement between the two processes

for these conditions. The same ratios for the coefficients

associated with the the fundamental frequency show a bound

limit tendency of 0.5 , indicating that the first coeffi-

cient of the parameterized model needs to be corrected for

strong (Ur > 75) nonlinear effects.

Further compariscas should be made for different sea

conditions to determine the corrections to the parameterized

model coefficients. However, it must be noted that a liii-

tation of the parameterized solution is that its accuracy

* decreases rapidly as the wave bei -ts approach limiting wave

conditions due to the use of a truncated Fourier series.
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Figure 1 Flay Chart of the Parameterized Nonlinear
Wave Hadel.

36



,.

SANTA BARBARA BEACH

CALIFORNIA

2 -6 FEB. 1980

WAVE STAFFS

1m - \ C 0~C7
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01 PRESSEJ;r~ SENSORSS

0 10Mn C0 C0l

Figure 2 Beach Profile with the Instruments Location.
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Figure 3 Typical Energy Density Spectrum (ab~ove) andCc1version into Liscrete Inergy spectrum (below).
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TABL I

Eatio of Harnonic Energy to Primary Frequency Energy02 FEB. 80 "

EB s

DEPTH (cm) 212.5 333.7 398.7 669.6

URSELL No. 115.6 31.3 23.4 7.6

L.M. F. L.M. F. L.M. F. L.M. F.

E(2f)/E(f) 0.548 0.165 0.167 0.132 0.108 0.120 0.008 0.021

E(3f)/E(f) 0.236 0.056 0.019 0.061 0.008 0.028

Instrument C07X C03X C01x CODX

TABLE II

Ratio of Harmonic Znergy to Pr mary Frequency Energy03 E£ 8

DEPTH (cm) 302.3 379.8 650.7

UPSELL No. 63.4 31.7 11.1

- -. L.M. F. L.M. F. L.M. F.

E(2f)/E(f) 0.365 0.194 0.173 0.150 0.025 0.145

E(3f)/E(f) 0.097 0.073 0.021 0.064 0.008

Instnznent C03X COix C0DX
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TABLE IZZ

a:Ratio of Harmonic En~yto.Pi~3ary Frequency Enrg

DEPTH (cm) 378.8 649.7

URSELL No.- 31.2 7.9

-- - ---... L.M. F. L.M. F.

" EC2f)/E(f) 0.171 0.159 0.013 0.125

E(3f)/E(f) 0.020 0.054 0.001 0.014

Instrument CoiX CODX

TABLE Iv
Ratio of Harmonic Enerqy to Primary Frequency Energy

05FEE. 80

DEPTH (cm) 363.6 634.6

"' LSELL No. 24.8 6.8

-- L.M. F. L.M. F.
,.

E(2f)/E(f) 0.123 0.101 0.008 0.069

E(3f)/E(f) 0.01 0.050 0.001 0.034

[_Instrument CoiX CODX

40

a.!

."-". . .



TABLE 'V
Ratio of Harmonic Energy to Primary Frequency Energy

0FB 80

DEPTH (cm) 138.8 278.7 345.4

URSELL No. 115.5 23.8 11.5

L.M. F. L.M. F. L.M. F.

E(2f)/E(f) 0.548 0.186 0.113 0.196 0.027 0.110

E(3f)/E(f) 0.236 0.068 0.009 0.088 0.002 0.049

Instrument C07X C03X COiX
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where X is a crest

*is a trough

o is the zero-up crossing

*1

Figuire 10 Defining paves using
Zero-up Cross Method.
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