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Suimary: one power series approximations to the exact null distribution

of the Chi-bar-square statistic for several testing situations are developed

using the first four cumulants of the null distributions, and their perfor-

mance is investigated numerically. The series expansions use Laguerre

polynomials and the associated gamma densities. Chi-bar-square statistics

arise when testing the homogeneity of normal means with the alternative

restricted by a partial ordering on the means and when testing the ordering

against all alternatives. Approximations are provided for the case of a

total order and a simple tree with equal, or nearly equal, sample sizes.

The numerical investigations indicate the accuracy and usefulness of these

approximations.
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I. INTRODUCTION We consider situations In wbiich one wishes to test

hypotheses about normal means which Involve order restrictions. For

instance, one may wish to test homogeneity, Ho:P 1 p 2 " o . ko with the

alternative restricted by the total ordering H1 :Pil I "'" I Uk" On the other

hand, one may 'wish to test H1 versus H2=1 I > pt+1 for some i. In comparing

several treatments with a control, a test of H0 with tha alternative

restricted by-the simple tree ordering H :%1  P for I - 2,3,...,k and of

H! versus H=P>1  V I for some I - 2,3,...,k are of interest. If the common

variance of these normal populations is known, then the likelihood ratio

test statistics have null distributions which are mixtures of chi-square

distributions, which Bartholomew (1959) called chi-bar-square statistics.

They also provide approximations- for large degrees of freedom.

The chi-bar-square distributions also arise as approximations when

considering multinomial parameters (Robertson, 1978) one-parameter

exponential families (Robertson and Wegman, 1978), Poisson intensities

(Magel and Wright, 1984) and nonparametric tests (Shirley, 1977 and

Robertson and Wright, 1985).

A great deal of information (e.g. the location, variability about the

mean, skewness and kurtosis of a distribution) Is contained In the first

four moments of a distribution, and so we consider four-moment

approximations for these chi-bar-square distributions. A natural choice is

to use the first four terms of a series expansion Involving Laquerre

polynomials and the associated gamma distributions. It should be noted that

uwmrioal Investigptions show that using higher moments, such as the fifth

and sixth, does not seem to improve the approximation enough to warrant the

8 09 30 021



extra effort. Sasabuchi and Kulatunga (1985) provide similar approximations

using the first three moments for the test of H0 versus H1 - H 0 with unknown

variance and they are based on expansions using Jacobi polynomials and the

associated beta distributions.

The approximations presented here are based on the first four moments,

or equivalently on the first four cumulants, of the chi-bar-square

distributions. Because the mixing coefficients for these distributions are

intractable for unequal sample sizes and even moderate k, we restrict

attention to the case of equal sample sizes. However, Robertson and Wright

(1983) and Wright and Tran (1985) have shown that the chi-bar-square

distributions are robust to moderate changes in the sample sizes for both

the total order and the simple tree. Hence, the approximations would be

reasonable if there Is not too much variation in the sample sizes.

Approximations for the totally ordered case are presented in Section 2.

The simple tree ordering is considered in Section 3 and the results of our

numerical investigation are summarized in Section 4. Bartholomew (1959, p.

330) proposed a two-moment approximation which Is equivalent to using the

first term, le the zero-th order term, in the Laguerre expansion. The chi-

bar-square distributions may assign positive probability to (01 and so we

show how the two and four-moment approximations can be corrected for the

discrete part. This type of correction was employed by Sasabuchi and

Kulatunga (1985). We found that, independent of the value of k, the

corrected two-moment approximation is adequate except in the far right tail

of the chi-bar-square distributions, but to the right of the 99th percentile

the Increase in accuracy warrants the use of the corrected four-moment

approximation.



5

Roy and Tiku (1962), Tiku (1964, 1965, 1971, 19T5), Tan and Wong (1977,

1978, 1980), and Hirotsu (1979) have used Laguerre series approximations to

approximate the sampling distributions of F-ratios In the analysis of

variance problems and related topics.

2. Series Approximations: The Totally Ordered Case. In this section, we

consider approximations to the null distributions of the likelihood ratio

test of H0 versus HI-H 0 and of H1 versus H2 based on Laguerre polynomial

expansions.

Assume that (Yj; J - l,...,n for i = 1,...,k are independent random

samples from k normally distributed populations with mean and c mmon

2
variance o . Consider the hypotheses Ho , H 1 and H 2 as defined in

Introduction, ie.

H0 : IR) V 12 *" Pk

HI: 1l 1 02 - k

H 2: Is > 1+1 I -192p,....,k-1.

When a is known, the likelihood ratio test of H0 versus H -H0 rejects

H0 for large values of

k
^c 2 2

-n Ill~p I.

where v' - ( is the maximum likelihood estimate of P ( -I"

S k n
If1 and V Il i ylj/nk; and under Ho,

pr(T a t) P(Lk) pr(Xi a t), t > 0

pr(T 01 - 0) - 1/k
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wahere P(t,k) denotes the probability, under H0 , that the coordinates of v*

2
have exactly I distinct values, and X denotes a standard chi-squared

2.

variable having L-1 degrees of freedom, with XO 0, of. Barlow et al.

(1972). The likelihood ratio test of HI versus H2 rejects H1 for large

values of

k 2 2n
T " iz(2 -- )n " j-lyij/n,

H0 is least favorable within H1, and under H0

k-12

pr(T 12 a t) - kE1P(l,k)pr(Xk t) I t > 0

pr(T 12 - 0) I /k!,

of. Robertson and Wegman (1978).

To compute a p-value for ef'ther T0 1 or Tt2, one needs to obtain the

P(L,k) either from Table A.5 of Barlow et al. (1972) if k 5 12 or from their

recursive relation, p. 145, for k > 12, and then compute the k - 1 chi-

square tail probabilities. Hence, approximations are of interest for large

k.

In the following paragraphs, four approximations to the null

distribution of the statistic TO1 are presented in detail, and the

corresponding approximations to the null distribution of the statistic T12

are described very briefly.

2.1 Approximations to the lull Distribution of T0 1 . Now, four series

approximtions to the null distribution of TO1 are discussed.

(1) or-Nu t ApWp'eimtion o ,
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First, the null distribution of T01 is approximated by a scaled gamma

density. That is, T - PXb where p > 0 and Xb has density

(x x b-1 e x

b rE (7 e, x > 0

le., the gamma density with parametors (b,1). Equating the first two

cumulants of T01 with those of pXby one obtains

b - k1/p, p a k2/kAI  (2.1)

where k amd k are the first two cumulants as in equation (3.47) of Barlow

et. al. (1972, p. 151). Then, following Davis (1976), Gideon and Gurland

(1977), and Kotz, Johnson and Boyd (1967 a,b), it can be shown that the

probability density function of X - TO1 /p can be expanded in a convergent

infinite series involving Laguerre polynomials and the associated gamma

densities as

f(x) - (1 j Ecj L b(x)) gbW

a b

- gb(x) 2 j.Z3 d sO -l)Sgb..(x)

where

b 1 .L (x) - (x
SJ! Saoa0sb3

is the Laguerre polynomial of degree J, and

d (b~j-1 ELb(XIdj -c ob'-) - ECL(X)).

To approximate the distribution only the terms up tband including j - 4

are retained. That is, with f(x) the density of TO,

x jgb) (x) + j 3 dj J a1( )(-I)sSb+(x) (2.2)
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where
1

d - (-k* + 2b)3 3! 3

d 1  k - 12 k! + 18b) (2.3)

k- k3 /p 3 , kj -
4

and k3 , k4 are the third and fourth cumulants given by equation (3.47) in

Barlow et. al. ((1972, p. 151).

(ili Four-Moment Approximation of TO1 With Correction

Note that pr(T0 1 - 0) - I/k. Therefore, the characteristic function of

the conditional distribution of T01 given that TO1 > 0, is given by

()-(#(t) - k- )/(I-k -1 )

where

(t) -'(z + 1)(z + 2)...(z * k-I)/kI

and z - (1-2it)-
1 / 2

The first four cumulants of the conditional distribution of T0 1 given that

TO1 > 0, are given by

k

k 2 k 2  2
(** Tk- 1 (k 2  + k1) -2 k I

(k-1)

k3**- k(k + 3kk k 3 k (k k 2
3 (k-1) 3 2 1 1) - k- 2- 1 k( 2 k 1)

(k-I

+ 2 -0 k3
(k-i)3  I

kC 2 2
k -*(Tk_ 1)(k4 + 3k 2 + 4 I Ck 3 + 6 k 1k 2 k I1)
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(k-) 2 kl lk3 ( 3k2kl * k+ )

k2 k3 2

-3 ( (k-+2  + 12 k k2(k + k 2
(k-1)2 (k-1)312 1

kII 4

(k-1)

where k1,...,k 1 are the cumulants given by equation (3.117) in Barlow et. al.

(1972, p. 151).

The corrncted four-moment approximation is obtained by taking

b - k*'/P ,P - kf2*/k*

d - -(-kj + 2b)

-(j 12 k* + 16)(2.41)

3 3 4 I

in the series expansion for f(x) in(2.2.)

In particular, let

Gb(x) - J*()dx.

For t > 0, under Ho, pr(T0 1 1 t) is approximated by

(-k 1  b+j(t/p) (2.5)

with

a 10  1 d3 + d 1, a1 - -(3d 3 + Id11), a2  (3d 3 + d 1 , a 3 - -(d 3 +4d 4)

(2.6)

and a1 4 d 1 4

, I
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For 5 S k S 40, the values of b, p, d3 and d4 are given In Table 1.

(iii) Two-Moment Approximation of TO1

In the two-moment approximation, the first two cumulants of the exact

null distribution of TO1 are made equal to those of a scaled gamma

distribution, and it can be obtained as a special case of the four-moment

series approximation by taking d3 = d - 0 in (2.2). That is under H0

pr(T0 1 a t) - Gb(t/p) for t > 0 (2.7)

where b and p are given by (2.1). Note that this approximation is due to

Bartholomew (1959, p. 330).

(iv) Two-Moment Approximation of T0 1 With Correction

The two-moment approximation to the null distribution of T0 1 with

correction is obtained by using.(2.7) where now b and p are given by (2.4).

Hence, under Ho,

pr(T 0 1 k t) - (1-k- 1) Gb(t/p) for t > 0, (2.8)

and the values of b and p are given in Table 1. This kind of approximation

with correciton is suggested by Sasabuchi and Kulatunga (1985) in

approximating the null distribution of the E-bar-square statistic.

2.2 Approximations to the Null Distribution of T1 2 . Note that pr(T12 - ) 

1/k!, which is small even for moderately large value of k, and so,

correcting for the discrete part may not improve the approximation

significantly. Therefore, only two approximations to the null distribution

of T12 are given.

The characteristic function of the null distribution of T12 is
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$(t) - E(eItT12 ) - (z+ )(z+2)... (z+k-1)
k-1z (k!)

1
where z - (1-2it) 2. The cumulant generating function is thus

O(t)- in 4(t) . kil ln(z'j) - (k-l)in z - In k!

The first four cumulants of T12 are given by

k (k-1) k k

k k
k 2(k-1) - j2 J11 _ j 2j-2

k k kk 3 = 8(k-1) -J E2 3j
-I- j E23J - - jE 2 2j- 3  (2.9)

-;k • 1 k -2i k, 48(k-1) -j2 15 j-1 15 i

- 212j
- 3  E26J

i) Four-Moment Approximation of T12

Again let

b - k /p and p = k 2/k1  (2.10)

where k1 and k2 are the first two cumulants of T12 given by (2.9). Then,

the four-moment approximation to the null distribution of T12 /p is given by

(2.2) and (2.3) where now k and k are the third and fourth cumulants of

T1 2 given by (2.9). In particular, for t > 0, under Ho, pr(T 12 a t) is

approximated by

a (t/p) (2.11)
JOj Ib j i ii
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with a given by (2.6) and b, ,d3 and d 4 are given in Table 2 for

5 S k S 40.

(ii) Two-Moment Approximation of T12

The two-moment approximation to the distribution of T 12/p, under H0 , is

pr(T 12  t) - Gb(t/p) for t > 0

where b and p are given by (2.10) or maybe found in Table 2.

3. Series Approximations: The Simple Tree Ordering. In this section, we

consider approximations to the null distributions of the likelihood ratio

test of H versus H'-H 0 and of H' versus H' based on Laguerre polynomial

expansions. Recall, H:5 1 for i - 2,3,...,k and H :u1 > 11 for some i

= 2,3,..., k. As in Section 2, we let Yij, 1 S j S n and 1 S i S k, denote

the observations with y ij - (uo 2 ) and consider the case of known

variances. If 1J = (IlI 2 ,...uk) denotes the maximum likelihood estimate of

i subject to the restriction GHj, then the likelihood ratio test rejects H.

for large values of

k 2 2
T01 - n Z I -1

and under Ho,

pr(T01 t) - E k 2 Q(t,k)pr(X
2 _ a t) , t > 0

pr(T 1 - 0) - Q(l,k)
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where Q(t,k) is the probability, under HO, that the coordinates of ; have

exactly I distinct values, cf. Barlow et. al. (1972). The likelihood ratio

test of H; versus HI rejects H1 for large values Of

; k= n k212

0 Is least favorable within H and under H0 ,

,k-1 2
pr(T12  t) = £9=iQ(lk) Pr(kXk a t), t > 0

pr(T;2 - 0) - Q(k,k) - 1/k,

of. Robertson and Wegman (1978). For k S 12, the Q(t,k) are given in Table

A.6 of Barlow et. al. (1972) and for k > 12, they may be obtained from their

(3.38) and (3.39). However, a numerical integration is needed to obtain

Q(1,k) for 2 1 9 S k.

The characteristic functiond of T and T' are given by
01 12

k - k k-1
M(t) = E9 =iQ(1,k) (1-2it) 2 and M2 (t) = E . Q(t,k)(1-2it) 2

respectively, Carrying out the numerical integrations needed to compute

Q(1,k), one can.obtain the first four cumulants of Tv and T' We see from
01 12-

Table A.6 of Barlow et.al. (1972) that Q(1,k) is converging to zero fairly

rapidly, i.e. Q(1,5) < .01 and hence we need not correct for the discrete

part of T;1. As is the case for the approximations without correction,

pr(T6 1 Z t) is approximated by (2.1) with b - k1/p, p - k2/k1 and d3 and d4

are given by (2.3). For T6I with 5 9 k S 40, the values of b, p, d3 and d4

are given in Table 3. Furthermore, the two-moment approximation gives

pr(T;, Z t) - Gb(t/p) for t > 0 with b and p taken from Table 3.

01 b!
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3.2 Approximations to the Null Distribuion of T;

In this case, pr(T ;2 0) - 1/k and so we consider approximations corrected

12

pr(T 2 a t) with t> >0 is given by (2.5) with b, p, d 3and d.given in Table

54. Of course, the two-moment approximation under H 0 is given by (2.8) for

t > 0.

4I. Numdrical Comparisons. For k - 5, 10, 15 and 20 and t successive

integers the exact value of pr(T 01 t) under Hot the two-moment, the

corrected two-moment, the four-moment and the corrected four-moment

approximations were computed. Table 5 gives these values to four decimal

places along with the percentage errors to the nearest 1/10 of a percent for

k - 5, 10 and 20 and those t which make the exact values closest to 0.2,

0.1, 0.05, 0.01 and 0.005.

Examining Table 5, one sees that the correction for the discrete part

is worthwhile. Even for k as large as 20 this is true in the right tail.

For practical purposes the corrected two-moment approximation could be used

except possibly for the far right tail, say at the 99th percentile and

beyond. There was considerable improvement obtained by using the corrected

four-moment approximation for such values for all k studied.

Similar computations were carried out for pr(T 12 t) and the results

are summarized in Table 6. While the trend observed in the approximation of

pr(T 01 2 t) continues in this case, it seems that for k Z 10 the two-moment

approximation would be adequate for practical purposes.

Studying Tables A.5 and A.6 of Barlow et al. (1972) we see Q(t,k)

behaves somewhat like P(k- +1,k), and so one would expect that the behavior
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of the approximations for pr(T6, - t) would be like those for pr(T1 2 Z t)

and those for pr(T; 2 Z t) would behave like those for pr(T01  t). For this

reason we did not conduct as thorough a study of the approximations for

pr(T6, > t) and pr(Ti2 >t). However, for k - 10 we did compute pr(T 2 : t)

for t - 15 and 21, as well as the two-moment and tour-moment approximations.

The error percentages are for t - 15 (21) 0.5$ (8.1%) for the four-moment

approximation, and 1.9%(10.5%) for the two-moment approximation. These

percentages are very similar to those for pr(T12 a t). For pr(T; 2 at), we

computed the exact value. The corrected two-moment and corrected four-

moment approximations for t - 7 and 12. The error percentages for t - 7

(12) are 6.0(34.5%) for the four-moment approximation, and 0.75(15.8%) for

the two-moment approximation. Again, these percentages are much like those

for pr(T 01 a t).
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Table 1. Coefficients for the corrected two-moment and four-moment

approximations to the null distribution of T01
k p b d3  d4 k P bdd

52.31791 0.69207 0.01352 0.01691 23 2.65541 1.07651 0.04081 0.05420
62.37111 0.73383 0.01650 0.02083 24 2.66168 1.08828 0.04163 0.05536

7 2.41322 0.77006 0.01908 0.02428 25 2.66757 1.09961 0.04242 0.05647
8 2.44757 0.80213 0.02137 0.02735 28 2.67310 1.11054 0.04318 0.05755
9 2.47626 0.83093 0.02343 0.03013 27 2.67832 1.12110 0.04392 0.05859

10 2.50066 0.85709 0.02529 0.03267 28 2.68325 1.13131 0.04463 0.05959
11 2.52174 0.88108 0.02700 0.03501 29 2.68791 1.14119 0.04532 0.06056
-12 25070.90325 0.02858 0.03717 30 2.69233 1.15077 0.04598 0.06150
13 2.55646 0.92386- 0.03004 0.03919 31 2.69654 1.16006 0.04682 0.06242
14 2.57098 0.94313 0.03141 0.04108 32 2.70053 1.16909 0.04725 0.06330
15 2.58403 0.96122 0.03269 0.04285 33 2.70434 1.17785 0.04786 0.06416
16 2.59584 0.97828 0.03390o 0.04453 134 2.7079S. 1.18b38 0.04845 0.06500
17 2.60658 0.99442 0.03504 0.04612 35 2.71145, 1.19469 0.04902 0.06581
18 2.61641 1.00973 0.03612 0.04762 36 2.71477 1.20277 0.04958 0.06661
19 2.62544 1.02431 0.03714 0.04906 37 2.71796 1.21066 0.05012 0.06738
20 2.63378 1.03823 0.03812 0.05043 389 2.72101 1.21835 0.05065 0.06813
21 2.64151 1.05153 0.03906 0.05174 39 2.72394 1.22586 0.05116 0.06887
22 2.64870 1.06428 0.03995 0.05299 40 2.72675 1.23319 0.05167 0.06958
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Table 2. Coefficients for the two-moment and four-moment approximations

to the null distribution of TI2

k p b d d k p b d3 d
3 4 d

5 2.30174 1.18027 0.03277 0.04535 23 2.11066 9.12780 0.10752 0.14656
& 2.27003 1.56386 0.03977 0.05490 24 2.10740 9.59670 0.11004 0.14987
7 2.24530 1.96283 0.04618 0.06363 25 2.10434 10.06682 0.11247 0.153W
8 2.22517 2.37360 0.05207 0.07164 26 2.10148 10.53808 0.11471 0.15623
9 2.20891 2.79370 0.05752 0.07903 27 2.09880 11.01036 0.11708 0.15976

10 2.19505 3.22135 0.06258 0.08586 28 2.09627 11.48364 0.11914 0.16213
11 2.18319 3.65527 0.06729 0.09225 29 2.09389 11.95782 0.12120 0.16499
12 2.17290 4.09443 0.07171 0.09823 30 2.09164 12.43284 0.12329 0.16814
-13 2.16388 4.53809_ 0.07387 0,10384 31 2.08951 12.90865 0.12532 0.17099
14 2. 15W9 4.98562 0.07978 0.10911 32 2.08749 13.38521 0.12721 0.17388
15 2.14876 5.43651 0.08349 0.11414 33 2.08557 13.86249 0.12902 0.17501
16 2.14235 5.89037 0.08700 0.11888 34 2.08375 14.34039 0.13097 0.17884
17 2.13656 6.34687 0.09035 0.12339 35 2.08201 14.81892 0.13281 0.18221
18 2.13128 6.80571 0.09352 0.12765 36 2.08036 15.29805 0.13444 0.18362
19 2.12446 7.2A65 0.09656 0.13181 37 2.07877 15.77775 0.13608 0.18514
20 2.12203 7.72950 0.09947 0.13567 38 2.07727 16.25794 0.13788 0.19053
21 2.11795 8.19407 0.10227 0.13949 39 "2.07582 16.73867 0.13936 0.18951
22 2.11417 8.66020 0.10501 0.14326 40 2.07444 17.21983 0.14125 0.19188

I



Table 3. Coefficients for the two-moment and four-mment approximations

to the null distribution of T01

k p b d3  d4  k P b d13  d4

5 2.31135 1.17029 0.03366 0.04674 23 2.13511 8.93305 0.13041 0.16981
6 2.2M329 1.54569 0.04152 0.05762 24 2.13155 9.39352 0.13192 0.16507
7 2.26135 1.93529 0.04899 0.06797 25 2.12814 9.85572 0.13251 0.15653
8 2.24357 2.33592 0.05611 0.07784 26 2.12485 10.31963 0.13188 0.14279
9 2.22877 2.74539 0.06289 0.08726 27 2.12167 10.78520 0.12983 0.12234
10 2.21619 3.16214 0.06939 0.09627 28 2.11859 11.25236 0.12632 0.09456
11 2.20532 3.58499 0.07560 0.10491 29 2.11559 11.72110 0.12103 0.05753
12 2.19580 4.01305 0.08157 0.11322 30 2.11266 12.19135 0.11386 0.01116
13 2.18738 4.44559- 0.08732 0.12122 31 2.10982 12.66299 0.10506 -0.04644
14 2.17986 4.88206 0.09285 0.12893 32 2.10705 13.13600 0.09394 -0.11654
15 2.17309 5.32199 0.09818 0.13633 33 2.10437 13.61022 0.08100 -0. 19787
16 2.16694 5.76502 0.10330 0.14343 34 2.10178 14.08549 0.06637 -0.29185
17 2.16132 6.21083 0.10821 0.15016 35 2.09929 14.56163 0.05016 -0.39810
18 2.15616 6.65916 0.11291 0.15644 36 2.09694 15.03839 0.03309 -0.51275
19 2.15138 7.10984 0.11729 0.16191 37 2.09475 15.51533 0.01625 -0.63262
20 2.14693 7.56269 0.12131 0.16635 38. 2.09273 15.99235 -0.00054 -0.75338
21 2.14277 8.01756 0.12495 0.16958 39 2.09096 16.46856 -0.01429 -0.86484
22 2.13884 8.47437 0.12804 0.17112 40 2.08930 16.94505 -0.02789 -0.97903
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Table 4. Coefficients for the corrected two-moment and four-moment

approximations to the null distribution of 12"

k p b d3  d k p b d3  d
434

3 2.32655 0.69580 0.01390 0.01740 23 2.75232 1.11216 0.04553 0.06070
6 2.38563 0.73980 0.01715 0.02166 24 2.76220 1.12520 0.04653 0.06210
7 2.43385 0.77829 0.02001 0.02548 25 2.77160 1.13777 0.04748 0.06345
8 2.47431 0.81255 0.02258 0.02893 26 2.78058 1.14990 0.04839 0.06476
9 2.50898 0.84349 0.02492 0.03209 27 2.78916 1.16163 0.04928 0.06601

10 2.53917 0.87172 0.02706 0.03500 28 2.79739 1.17298 0.05013 0.06722
11 2.56582 0.89770 0.02905 0.03771 29 2.80529 1.18397 0.05095 0.06839

2 2.58961 0.92178- 0.03089 0.04025 30 2.81288 1.19463 0.05175 0.06953
13 2.61103 0.94424 0.03262 0.04262 31 2.82020 1.20497 0.05253 0.07062
14 2.63048 0.96528 0.03424 0.04486 32 2.82725 1.21502 0.05328 0.07169
15 2.64827 0.98509 0.03576 0.04698 33 2.83406 1.22479 0.05401 0.07272
16 2.66463 1.00380 0.03721 0.04899 34 2.84064 1.23429 0.05472 0.07373
17 2.67978 1.02153 0.03858 0.05091 35 2.84701 1.24353 0.05541 0.07471
18 2.69386 1.03840 0003988 0.05273 36 2.85319 1.25254 0.05609 0.07567
19 2.70701 1.05447 0.04112 0.05446 37 .2.85918 1.26130 0.05675 0.07661
20 2.71935 1.06982 0.04230 0.05612 38 2.86501 1.26985 0.05740 0.07752
21 2.73096 1.08452 0.04342 0.05771 39 2.;87068 1.27817 0.05804 0.07842
22 2.74193 1.09861 0.04450 0.05924 40 2.87618 1.28630 0.05866 0.07930



Table S. Exact and Approximate Values for pr(T01 > t) Under H0

corrected corrected
two- %- two- I- four- I- four- I-

t moment error moment error moment error moment error exact

k= S
2 0.2114 6.7 0.2221 2.0 0.2136 5.8 0.2219 2.1 0.2267
4 0.0786 6.0 0.0815 2.5 0.0853 2.0 0.0842 0.8 0.0836
S 0.0495 3.3 0.0503 1.7 0.0543 6.0 0.0526 2.7 0.0512
8 0.0132 10.9 0.0123 3.6 0.0128 7.3 0.0124 4.5 0.0119

10 o.oo56 25.0 0.0049 9.1 0.0044 3.1 0.004S 1.0 0.0045

k-10

3 0.2151 6.4 0.2219 3.4 0.2211 3.7 0.2244 2.3 0.2297
S 0.0931 5.1 0.0949 3.3 0.1014 3.4 0.1000 1.9 0.0981
7 0.0414 0.3 0.0411 0.4 0.0449 8.8 0.043S 6.0 0.0413

10 0.0126 14.8 0.0119 8.0 0.0115 4.2 0.011S 4.1 0.0110
12 0.0058 28.S 0.0052 16.1 0.0041 9.7 0.0043 5.7 0.0045

k-20

4 0.2156 5.9 0.2196 4.1 0.2243 2.0 0.2251 1.7 0.2290
6 0.1029 4.5 0.1039 3.5 0.1122 4.2 0.1108 2.9 0.1077
8 0.0493 0.3 0.0490 0.3 0.0534- 8.6 0.0S26 6.9 0.0492

12 0.0114 18.2 0.0109 12.7 0.0096 0.6 0.0097 0.9 0.0097
14 0.0055 31.6 0.0051 22.4 0.0035 17.1 0.0036 12.8 0.0042

4!



Table 6. Exact and Approximate Values for pr(T1 2 > t) Under H0 .

two-. four-

t moment error moment error exact

k=S

4 0.2266 2.9 0.2319 0.6 0.2334
6 0.1002 1.8 0.1055 3.3 0.1021
8 0.0438 1.2 0.0456 5.5 0.0432

11 0.0125 8.7 0.0114 0.5 0.0115
13 0.0054 15.3 0.0041 11.9 0.0047

k-10

10 0.2000 1.1 0.2039 0.9 0.2022
12 0.1114 0.4 0.1134 1.3 0.1119
15 0.0430 1.6 0.0426 0.5 0.0424
19 0.0110 6.1 0.0099 4.0 0.0104
21 0.0054 9.0 0.0046 7.0 0.0049

k=20

21 0.2021 0.4 0.2034 0.3 0.2029
24 0.1064 0.0 0.1066 0.2 0.1063
27 0.0520 0.8 0.0515 0.2 0.0516
33 0.0104 3.4 0.0099 1.4 0.0101
35 0.0058 4.5 0.0055 1.7 0.0056
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