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t. "IﬁTKODUCTION We consider situations in which one wishes to test

hypotheses about normal 'meana whiceh involve order restrictions. For

instance, one may wish to test homogeneity, Ho”'l =Wy % oeee = U with the
al&rnat.ive restricted by -the total ordering H,:u‘ £ ... 8§ I On the other
hand, one ‘may "wish to test H, Qersu‘s Hz-: g > TP for some i. In comparing
several treatments with a control, a test of HO with the alternative

restricted by "the simple tree ordering H;:u1 s uy for i = 2,3,...,k and of

H; versus ﬁé:u‘ > ¥y for some { = 2,3,...,k are of interest. If the common
variance Qt‘ thesebnormal populations is known, thén the likelihood ratio
test statlsizics have null distributio;ls which are mixtures of chi-square
dlstfibutlons. which Bartholomew >(1959)' called chi.-bar-sq'uar-e statistics.
They also prov_!de approximations-' for largé,,dééregs of' freedom.

The‘ chi-bar-square dl.st'ributrions also arise as approximations when
considerlng ﬁultiﬂomi#l paramet‘ers,v"(‘Robébts_on‘, 1978) one-parameter
exponential fah;l'ies (Robértsoﬁ ah’d Wngan.- 19_78). Poisson intengities
(Magel and erght.,'198l) and nonparametric tééts (Shirley, 1977 and
Robertson and Wright, 1985). - ‘ |

A great deal of information (e.g. the location, variability about the
mean, skewness and kurtosis of a distribhtion) is contained in the first
four moments 6!‘ s distribution.‘ and so we consider four-moment
approximations for these chi-bar—square distributions. A natural choice is
to use the first four terms of a series expansion involving Laquerre
polynomials and the assocfated gamma distributions. It should be noted that
nuserical investigations show that using higher moments, such as the fifth

and sixth, does not seem to improve the approximation enough to warrant the

85 09 30 021




extra effort. Sasabuchi and Kulatunga (1985) provide similar approximations

using the first three moments for the test of Ho versus H‘ - Ho with unknown

variance and they are based on expansions using Jacobi polynomials and the
associated beta distributions.

. The approxlmations presented here are bascd on the first four moments,
or equivalently on the first four cumulants, of the chi-bar-square
distributions. Because the mixing coefficients for these distributions are
intractable for unequal sample sizes and even moderate k, we restrict
attention to tgé case of equal sample sizes. Hoﬁever, Robertson and Wright
(1983) and Wright and Tran (1985) have Qhown that the chi-bar-square
distributions aré robust to moderate changes in the sample sizes for both
the total order and the simple tree. Hence, the zpproximations would be
reasonable if there is not too much variation in the sample sizes.

Approximations for the totqllyVOPdered case are presented in Section 2.
The simple tree ordering is cohsldéred in Séctién 3 and the results of our
numerical investigation are summarized in Séqtion . Bﬁrtholomgw (1959, p.
330) proposed a two-moment approximation which is equivalent to using the
first term, ie the zero-th order term, in the Laguerre expansion. The chi-
bar-square distributions may asslgﬁ pﬁsitive probability to {0} and so‘we
sﬁaw how the twé and four-moment approxlmationa‘can be corrected for the
discrete part. This type 6f correction was employed by Sasabuchi and
Kulatunga (1985). We found that, independent of the value of k, the
corrected two-moment approximation i{s adequate except in the far right tail
of the chi-bar-square distributions, but to the right of the 99th percentile

the increase in accuracy warrants the use of the corrected four-moment

approximation.




Roy and Tiku (1962), Tiku (1964, 1965, 1971, 1975), Tan and Wong (1977,
1978, i980). and Hirotsu (1979) have used Laguerre series approximations to
approximate the sampling distributions of F-ratios in the analysis of
variance problems and related topics.

2. Series Approximations: The Totally Ordered Case. In this section, we

consider approximations to the null distributions of the likelihood ratio

test of Ho versus HI'HO and of H, versus H_, based on Laguerre polynomial

1 2

expansions.

-

Assume that {ylj‘ j=1,...,n}) for i = 1,...,k are .independent random

samples from k normally distributed populations with mean My and cQmmon

H, and H, as defined {n

variance o2. Consider the hypotheses Hyo Hy 2

introduction, ie.
| Hot iy = My ~ e = by
H1: u, S u, 5 W
Hye wg > w1 = 1,2,....k-’1.'

When o is known, the likelihood ratio test of Ho versus H‘-H rejects

0

H. for large values of

0

k
*2, 2
Tg; = D 1;,(u:-u) /0

where y* = (u;.....u;) is the maximum likelihood estimate of u = ("1""'"k)

n
51 yIJ/nk; and under H

- k
under H‘ and y = 1§1 3 0’

k
2
pr('l‘01 2t) .- 1£2P(!'k) pr'(x'.__1 2t), t>0

pr(‘l‘01 = 0) = 1/k




where P(L,k) denotes the probability, under Ho. that the coordinates of u*
have exactly & distinct values, and xi_1 denotes a standard chi-squared

variable having -1 degrees of freedom, with xg £ 0, cf. Barlow et al.

(1972). The likelihood ratio test of H1 versus H, rejects H, for large

2 1
values of
K -2 2 - n
- % -
Tz = m By /o0 vy = gRygy/me

Ho is least favorable within H1. and under Ho

k-1 A '
» 2
pr('r12 2t) = z§1P(!.k)pr(xk_l 2t) ,t>0

pr'('l‘12 = 0) = 1/k!,

cf. Robertson and Wegman (1978).

To compute a p-value for efther TOt or T!Z’ one needs to obtain the

P(%,k) either from Table A.5 of Barlow et ;1._(1972) if k S 12 or from their
recursive relation, p. 145, for k > 12, and then computé the k - 1 chi-
square tail probadbilities. Hence, abproxinations are of interest for large
K. 7

In the following paragraphs, four approximations to the hull

distribution of the statistic TOI are presented in detail, and the
corresponding approximations to the‘null distribution of the statistic 112

are described very Lriefly.

2.1 Approximations to the RNull Distridution of To‘. Now, four series

approximations to the null distridbution of TOi are discussed.

(1) Pour-Moment Appreoximstion of 701




First, the null distribution of Tm is approximated by a scaled gamma

density. That is, TOI - pxb where p > 0 and Xb has density

1 b-1_-x
gb(x)-m-yx e , x>0

ie., the gamma density with parametors (b,1). Equating the first two

cumulants of TOI with those of pxb. one obtains

b=k/p, b= Ky/K, | (2.1)

where kl amd k2 are the first two cumulants as in equation (3.47) of Barlow
et. al. (1972, p. 151). Then, following Davis (1976), Gideon and Gurland
(1977), and Kotz, Johnson and Boyd (1967 a,b), it can be shown that the

probability density function of X = ‘l‘o /p can be expanded in a é‘onvergent

infinite series involving Laguerre polynomials and the assocjiated gamma

densities as

b
f(x) = {1 «  Ese, Li(x)} g, (x)

- J
- gy (x) ¢ 1E39; s§0(3x-1 )ssms(x)

where

- d N
b 1 JviourS T(b1)
Lj(x) " 3T 350(3)( x) TTET%T
is the Laguerre polynomial of degree j, and

- bej-1, _ b
dJ °j( j ) E(Lj(x)}.

To approximate the distribution only the terms up tpand including j = A

are retained. That is, with f(x) the density of 'l‘m/p.

K J
£(x) = g(0) + Eud Fo(h-n%, 0 (2.2)
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where

d, = =-(-k% + 2b)

3 3 3
1
- 3 4

k; k3/p R kﬁ - ku/p

and k3. k” are the third and fourth cumulants given by equation (3.47) in

Barlow et. al. ((1972, p. 151).

(ii) Four-Moment Approximation of 1‘01 With Correction

Note that pr(‘r01 = 0) = 1/k. Therefore, the characteristic function of

the conditional distribution of T 1 given that T01 > 0, is given by

0

o*(t) = (o(t) - k- MI7(1-k"M)

where
o(t) =z + 1)z + 2)uulz * k=1)/k!
and z = (1-21t)" V2,

The first four cumulants of the conditional distribution of TO! given that

'l‘o1 > 0, are given by

k
k?"lk—i)kl
' 2
Kk 2 k
KER = toe (K, + KS) = ot K
2 Ty etk 2
KEF = (k. + 3k.k, ¢ k3) - 3 i K. (k. + k%)
3" " Teeytky 3Kk * kg oy e e el
3
. 2 K 3 k?
(k-1)

K 2 2 ]
kg* - Tﬁsz(kh + 3k2 + 4 k1k3 + 6 kiky ¢ k‘)




2
Kk 3
- & Kk, (k, + 3k k., + k)
(k—1)2'3 2N 1
2 3
Kk 2 Kk 2 2
-3 ———(k, + KS) ¢ 12 ——— KS(Kk, + KkT)
(k-l)z 2 ! (k-1)3 12 !
y
-6 ku":'
(k-1)

where k,.....ka are the cumulants given by equation (3.47) in Barlow et. al.

(1972, p. 151).

The corrected four-moment approximation is obtained by taking

- RiH - KEESKHE
b k‘ /0 , P k2 /k1*

1
[ -k* + 2b .
d3 v)

317 73
(P ;- |
dy = gk} - 12 k§ + 180) (2.4)

3 . y
k; = k§*lp and kﬁ = kg*/p

in the series expansion for f(x) in(2.2.)
In particular, let

xb(x)dx.

ES(X) - [

For t > 0, under H,, pr(T,, 2 t) is approximated by

X

]

-1 -
=", 5, 8y Gy, (2/0) (2.5)

with
ag=1-+ d3 +dy,a, - -(3d3 + bd,), a, = (3d3 ¢ dy), ag - -(d3+udu)
(2.6)

and a“ - dh‘
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For 5 S k § 40, the values of b, p, d, and du are given in Table 1.

3

(iii) Two-Moment Approximation of TOI

In the two-moment approximation, the first two cumulants of the exact

null distribution of T aEe made equal to those of a scaled gamma

01
distribution, and it can be obtained as a specjal case of the four-moment
series approximation by taking d3 = du = 0 in (2.2). That is under Ho

pr-('ro1 2t) = Gb(t/p) for t >0 (2.7)

-

where b and p are given by (2.1). Note that this approximation is due to
Bartholomew (1959, p. 330).

(iv) Two-Moment Approximation of TOI With Correction

The two-moment approximation to the null distribution of 'I‘ol with

correction is obtained by using.(2.7) where now b 2nd p are given by (2.4).

Hence, under HO’

pr(Ty, 2 t) = (- G (t/p) for t > O, (2.8)

and the values of b and p are given in Table 1. This kind of approximation
with correciton is suggested by Sasabuchi and Kulatunga (1985) in
approximating the null distribution of the E-bar-square statistic.

2.2 Approximations to the Null Distribution of T1 Note that pr(T12 =0) =

>

1/k!, which is small even for moderately large value of k, and so,
correcting for the discrete part may not improve the approximation
significantly. Therefore, only two approximations to the null distribution

of T,, are given.

12

The characteristic function of the null distribution of T12 is

-




1"

o (2+1)(2+2)...(z+k-1)

o(t) - E(eltTh2) —
z (k)

1
where z = (1-2it) 2. The cumulant generating function is thus

$(t) = 1n ¢(t) = gi: In(z+j) - (k=1)ln z - 1n k!

The first four cumulants of T1 are given by

2
ko 4
ky = (k=1) = I,
i k = 2(k-1) - g 371 - ; -2
ik Y
k 1 k5 k -3
= 8(k-1) - - - .L.2J 2.
k3 (k-1) 352 3j j§23j 35223 (2.9)
U S
ky = 48(k=1) = £, 153 - ;E,15
k K
_ s2573 - -4
FEALS IR A
(i) Four-Moment Approximation of T12
Again let
b = kllp and p = k2/k1 (2.10)

where k., and k., are the first two cumulants of T

1 2 2 given by (2.9). Then,

1

the four-moment approximation to the null distribution of T,./p is given by

12

(2.2) and (2.3) where now k3 and k, are the third and fourth cumulants of
T12 given by (2.9). 1In particular, for t > O, under HO’ pr'('r12 2 t) is

34 approximated by

2 T
| 3%0%) Cory

(t/p) (2.11)




Y T

oy

12

with a‘j given by (2.6) and b, ,d3 and du are given in Table 2 for

5 S k S 4o,

(ii) Two-Moment Approximation of le

The two-moment approximation to the distribution of T12/p, under HO' is

> = G
pr'('I‘12 2 t) Gb(t/p) for t > 0

where b and p are given by (2.10) or maybe found in Table 2.

3. Series Approximations: The Simple Tree Ordering. In this section, we

consider approximations to the null distributions of the likelihood ratio

test of H, versus H;-H0 and of H; versus Hé based on Laguerre polynomial

o]
expansions. Recall, H;:u1 < My for i = 2,3,...,k and H'2:u1 > My for some i

= 2,3,...,k. As in Section 2, we let yij’ 1$£j<nand 1 £1i £k, denote

the observations with yij ~ N(ui.oz) and consider the case of known

variances. If y = (61’;2"";k) denotes the maximum likelihood estimate of

u subject to the restriction EEH', then the likelihood ratio test rejects Ho
for large values of
k ~ -2, 2
1 = -
T01 n 21=1(ui w /o

and under Ho,

k 2
pr(T(')1 2t) = ZzszQ(l,k)pr(x£_12 t) ,t>0

pr'(T61 - 0) = Q(lnk)

—_
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where Q(%,k) is the probability, under Ho. that the coordinates of ﬁ have

exactly 2 distinct values, cf. Barlow et. al. (1972). The likelihood ratio
test of H; versus Hé rejects H; for large values of
' kK ,~ =.2,2
T;Z =n 21-1("1 yi) /0,

Ho is least favorable within Hi and under HO’

k-1 , 2
priTi, 2 t) = L, ,Q(L,%) prx, _, 2¢t), t >0

PI"(T;z = 0) = Q(kyk) = llk’
cf. Robertson and Wegman (1978). For k < 12, the Q(%,k) are given in Table
A.6 of Barlow et. al. (1972) and for k > 12, they may be obtained from their

(3.38) and (3.39). However, a numerical integration is needed to obtain

Q(%,k) for 2 £ 2 € k.

The characteristic functionéiof Tbl and T!., are given by

12

k-4

-1
2 and ¢,(t) = 5y QL,K(1-216) 2,

k .
¢,(t) = I, _.Q(2,k) (1-2it)

respectively, Carrying out the numerical integrations needed to compute

Q(%,k), one can.obtain the first four cumulants of Tb‘ and T;z. ¥We see from

Table A.6 of Barlow et.al. (1972) that Q(1,k) is converging to zero fairly
rapidly, i.e. Q(1,5) < .01 and hence we need not correct for the discrete

part of T61. As is the case for the approximations without correction,

pr(‘l‘(')l 2 t) is approximated by (2.1) with b = ki/p, o = k2/k1 and d, and d

3 ]

are given by (2.3). For T\, with 5 € k § 40, the values of b, p, d, and d
01 4

3

are given in Table 3. Furthermore, the two-moment approximation gives

pr(Ty, 2 t) = Es(t/p) for t > O with b and p taken from Table 3.
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3.2 Approximations to the Null Distribution of T;Z
In this case, pr('r;2 = 0) = 1/k and so we consider approximations corrected
for the discrete part of T{Z under Ho, the four-moment approximation for

pr(‘r;2 2 t) with t > 0 is given by (2.5) with b, p, d

3 and du given in Table

4. Of course, the two-moment approximation under H. is given by (2.8) for

0
t > 0.

4. Numerical Comparisons. For k = 5, 10, 15 and 20 and t successive

-

integers the exact value of pr('ro1 2 t) under Ho. the two-moment, the

corrected two-moment, the four-moment and the corrected four-moment
approximations were computed. Table 5 gives these values to four decimal
places along with the percentage errors to the nearest 1/10 of a bercent for
k = 5, 10 and 20 and those t which make the exact values closest t6 0.2,
0.1, 0.05, 0.01 and 0.005.

Examining Table 5, one sees that tﬁe correction for the discrete part
is worthwhile. Even for k as large és'20 this is true in the right tail.
For practical purposes the corrected two-moment approximation could be used
except possibly for the far right tail, say at the 99th percentile and
beyond. There was considerable improvement obtained by using the corrected
four-moment approximation for such values for all k studied.

Similar computations were carried out for pr'('l‘12 2 t) and the results

are summarized in Table 6. While the trend observed in the approximation of

pr(‘l‘01 2 t) continues in this case, it seems that for k 2 10 the two-moment

approximation would be adequate for practical purposes.
Studying Tables A.5 and A.6 of Barlow et al. (1972) we see Q(%,k)

behaves somewhat like P(k- +1,k), and so one would expect that the behavior
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of the approximations for pr(’r('” 2 t) would be like those for pr'('1‘|2 2t)
and those for pr(‘l‘;2 2 t) would behave like those for pr(-‘l‘o‘ 2 t). For this

reason we did not conduct as thorough a study of the approximations for

pr(Ty, 2 t) and pr('l‘;z 2t). However, for k = 10 we did compute pr'(‘l‘(')1 2 t)

for t = 15 and 21, as well as the two-moment and four-moment approximations.
The error percentages are for t = 15 (21) 0.5% (8.1%) for the four-moment
approximation, and 1.9%(10.5%) for the two-moment approximation. These

percentages are very similar to those for pr(T,, 2 t). For pr(T}, 2t), we
12 12

computed the exact value. The corrected two-moment and corrected four-
moment approximations for t = 7 and 12. The error percentages for t = 7
(12) are 6.0%(4.5%) for the four-moment approximation, and 0.7%(15.8%) for

the two-moment approximation. Again, these percentages are much 1{“0 those

for pr('ro1 2 t).
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Table 1. Coefficients for the corrected two-moment and four—-moment

o

2.31791
2.37111
2.41322
2.44757
2.47626
2.300466
2.352174
2.34017
2.33646
2.37098
2.38403
2.393584
2.460658
2.61641
2.62544
2.63378
2.64151
2.64870

b

0.469207
0.73383
0.77006
0.80213
0.83093

0.85709

0.88108
0.90325
o. 92385‘
0.94313
0.96122
0.976828
0.99442
1.00973
1.02431

11.03823

1.05153
1.06428

ds
0.01352
0.01650
0.01908
0.02137
0.02343
0.02329
0.02700
0.02858
0.03004

0.03141

0.03269

0.03390

0.03504

0.03612

0.03714
0.03812
0.03906

0.03995:

dy

0.01691
0.02083
0.02428
0.02735
0.03013
0.03267
0.03501
0.03717
0.03919
0.04108
0.0428S
0.04453
0.04612
0.04762
0.04906

. 0.05043

0.05174
0.05299

k

23
24
23
26
27

28

29
30

31

32
33

34

35
36
37

38 -

39
40

approximations to the null distribution of T

(o]

2.63541
2.66168
2.646757
2.67310
2.67832

2.468323

2.68791
2.69233
2.469654
2.70053
2.70434

2.70798
- 2.71143

2.71477

2.71796

2.72101
2.72394
2.72675

01 °
b

1.076351
1.08828
1.09961
1.11054
1.12110

1.13131

1.14119
1.135077
1.16006
1.16909
1.177865
1.18638

- 1. 19469

1.20277
1.21066
1.21683%
1.223686
1.23319

dy

0.04081
0.04163
0.04242
0.043186
0.04392
0.04463
0.04332
0.04598
0.04662
0.04723
0.04786
0.04843
0.04902
0.04958
0.03012
0.035065
0.05116
0.05167

dy

0.03420
0.03536
0.03647
0.03753
0.03839
0. 039359
0.06036
0.06150
0.06242
0.06330
0.06416
0.063500
0.063581
0.06661
0.06738
0.06813
0.06887
0.06958




Table 2. Coefficients for the two-moment and four—-moment approximations

(o]

2.30174
2.27003
2.24330
2.22537
2.20891
2.19505
2.18319
2.17290
2.16388
2. 15589
2.14876
2.14235
2.13636
2.133128
2.12646
2.12203
2.11793
2.11417

b

1.18027
1.56386

- 1.96283

2.37360
2.79370
3.22135
3.463327
4.09443

4.53809 _

4.98562
5. 43651
5.89037
6.34687
6.80571
7. 26665
7.72950
8.19407
8. 66020

dy
0.03277
0.03977
0.04618
0.05%207
0.05752
0.06258
0.0672%9
0.07171
0.07587
0.07978
0.08349

0.08700

0.09035
0. 09352
0.09656
0.09947
0.10227
0.10501

to the null distribution of

d
0.04535
0.05490
0. 06363
0.07164
0.07903
0.08588
0.09225
0.09823
0.10384
0.10911%

0.11414

0.11888
0.12339
0.12765
0.13181
0. 13567
0.13949

0.14326

Tiz .

k

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

(1]

2.11066
2.10740
2.10434
2.10148
2.096880
2.09627
2.09389
2.09164
2.08951
2.08749
2.08557
2.08375
2.08201
2.08036
2.07877
2.07727

1 2.07582

2.067444

b

9.12780

?.59670
10.04682
10.53808
11.01036
11.48364
11.95782
12.43284
12.90865
13.38521
13.86249
14.34039
14.81892
15.29805

15.77775

16.25794
16.73867
17.21983

d

0.10732
0.11004
0.11247
0.11471
0.11708
0.11914
0.12120
0.12329
0.12532
0.12721
0. 12902
0.13097
0. 13281

0.13444

0.13608
0.13788
0.13936
0.14125

d

0.146356
0. 14987
0.15350
0.13623
0.13976
0.16213
0.16499
0.16814
0.17099
0.17388
0.17501
0.17884
0.18221
0.18362
0.18514
0.190353
0.18951
0.19188




Table 3. Coefficients for the two-soment and four-moment approximations

(1]
2.31135%

2.28329

2.26135
2.24357
2,22877
2.21619
2.20332
2.19380
2.18738
2.17986
2.17309
2. 16694
2.16132
2.135616
2.13138
2.14493
2.14277
2.13884

b

1.17029
1.54549

- 1.93529

2.33592
2.74539
3.16214
3.358499
4.01305
4.44559.
4.88206
5.32199
3. 76502
6.21083
6.65916
7.10984
7.56269
8.01756
8.47437

ds
0.03366
0.04152
0.04899
0.05611
0.06289
0.06939
0.07560
0.08157
0.08732
0.09283
0.09818
0.10330

0.10821

0.1129%
0.11729
0.12131
0.12495
0. 12804

d
0.04674
0.05762
0.06797
0.07784
0.08726
0.09627
0.10491
0.11322
0.12122

0.12893

0.13633
0.14343
0.15016

0.15644

0.16191
0. 16635
0.16958
0.17112

to the null distribution of Tal

k

23
24
23
26
27
28
29
30
31

.32

33
34

35

36
37

- 3B .

39
40

o

2.13511
2.1315%
2.12814
2.1248%
2.121867
2.11859
2.11559
2.11266
2.10982

2.10705

2.10437
2.10178
2.09929
2.09694
2.09475
2.09273
2.09096

2.08930

b

8.93305
9.39352
9.85572
10.31963
10.78%20
11.25236
11.72110
12.19135
12. 66299
13. 13600
13.61022
14.08549
14.56163
15.03839
15.51533
15.99235
16.468%6
16. 94505

ds
0.13041
0.13192
0.13251
1 0.13188
0.12983
0.12632
0.12103
0.11386
0. 10506
0.09394
0.08100
0.06637
10.03016
0.03309
0.01625
~0.00054
-0.01429
~0.02789

da

0.16981
0.16507
0. 135653
0.14279
0.12234
0.09456
0.05733
0.01116
-0.04644
~0.11634
-0.19787
~0.29185
-0.39810
-0.51275
-0.63262
-0.75338
~0.86484
-0.97903




Table 4. Coefficients for the corrected two-moment_and

2.32635
2.38363
2.43385
2.47431
2.30898
2.53917
2.56582
2.38961
2.61103
2.63048
2.64827
2.566463
2.679786
2.469386
2.70701
2.71933
2.73096

2.74193

b

0.69380
0.73980
0.77829
0.81235
0.84349
0.87172
0.89770

- 0.92178 -

0.94424
0.946528
0. 98309
1.00380
1.02133
1.03840
1.035447
1.046982

1.08432

1.09861

d3
0.01390
0.01715
0.02001
0.02258
0.02492
0.02706
0.0290S
0.03089
0.03262
0.03424
0.038376
0.03721
0.03858
0.03988
0.04112
0.04230
0.04342

0.04430

de

0.01740
0.02166
0.02548

- 0.02893
©0.03209

0.03500
0.03771
0.04025
0.04262
0.04486
0.04498
0.04899

0.05091

0.0527%

0.054456
0.03612

0.05771
0.05924

k

approximations to the null distribution of

e

2.75232
2.76220
2.77160
2.78058

' 2.78916

2.79739
2.80529

- 2.81268

2.82020
2.82725
2.83406

2.84064

2.84701

2.98319
. 2.85918

2.86501
2.870468

2.87418

T2 -

b
1.11216
1.12520

1.13777

1.14990
1.16163
1.17298
1.18397
1.19463
1.20497

1.22479

1.23429
1.24353

1.252%4
1.26130

1.26985
1.27817
1.28630

d3

0.04353
0.0446353
0.04748
0.04839

1 0.04928

0.03013
0.05095
0.05175
0.05253
0.05328
0.05401
0.05472
0.05541
0.05609
0.0567S
0.05740
0.05804
0. 05866

four—moment

9

0.06070
0.06210
0.06345
0.06476
0.06601
0.06722
0.06839
0.06933
0.07062
0.07169
0.07272
0.07373
0.07471

0.07367

0.07661
0.07752
0.07842
0.07930




Table 5. Exact and Approximate Values for Pr(Ty; > t) Under H,

corrected ~ corrected
two- | B two- %- four- $- four- $-
t moment error ment error moment error moment ’ error exact
k=5 |
2 0.2114 6.7 0.2221 2.0 0.2136 5.8 0.2219 2.1 0.2267
4 0.0786 6.0 0.081S 2.5 0.0853 2.0 0.0842 0.8 0.0836
S 0.0495 3.3 0.0503 1.7 0.0543 6.0 0.0526 2.7 0.0512
8 0.0132 10.9 0.0123 3.6 0.0128 7.3 0.0124 4.5 0.0119
10 0.0056 25.0 0.0049 9.1 0.0044 3.1 0.0045 1.0 0.0045
) k=10 A
3 0.2151 6.4 0.2219 3.4 0.2211 3.7 0.2244 2.3 0.2297
9 0.0931 S.1 0.0949 3.3 0.1014 3.4 0.1000 1.9 0.0981
7 0.0414 0.3 0.0411 0.4 0.0449 8.8 0.0438 6.0 0.0413
10 0.0126 14.8 0.0119 8.0 0.0115 4.2 0.0115 4.1 0.0110
12 0.00S58 28.5 0.0052 16.1 0.0041 9.7 0.0043 5.7 0.004S
, k=20

4 0.2156 5.9 0.2196 4.1 0.2243 2.0 0.2251 1.7  0.2290
6 6.1029 4.5 0.1039 3.5 0.1122 4.2 0.1108 2.9 0.1077
8 0.0493 0.3 0.0490 0.3 0.0534. 8.6 0.0526 6.9 0.0492
12 0.0114 18.2 0.0109 12.7 0.0096 0.6 0.0097 0.9 0.0097
14 0.0055 31.6 22.4 0.003S 17.1 2.8 0.0042

0.0051 0.0036 1




ot s
Y- Y-¥S

two-

moment

0.2266

0.0438
0.0125

0.0054

0.2000
0.1114
0.0430
0.0110
0.0054

0.2021
0.1064
0.0520
0.0104
0.0058
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four-

moment

0.2319
0.1055

0.0456

0.0114
0.0041

k=10

0.2039
0.1134

0.0426

0.0099
0.0046

k=20

0.2034
0.1066
0.0515
0.0099
0.0055

HMOWNMWMO
¢« o o o 0

ounnnad

NSO MO
o s o o o

cownune

* o o o o

IR S XY XY

Table 6. Exact and Approximate Values for pr(Ty, > t) Under H,.

exact

0.2334
0.1021
0.0432
0.0115
0.0047

0.2022
0.1119
0.0424
0.0104
0.0049

0.2029
0.1063
0.0516
0.0101
0.0056







