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In many practical situations, the experimenter (or the decision-

P A A,

maker) is faced with the problem of comparing k (> 2) populations,

where each population is characterized by a real-valued parameter ¢.

P

In such situations, the classical approach is to test the hypothesis
of homogeneity (equality) among the k parameters. On the other hand,
the real interest (or goal) of the experimenter may be to identify
the best population (defined by the experimenter in terms of, say,
large value of ¢) or to find a subset which contains the best
population or a subset which contains all populations better than

a control or standard. Thus, the test of homogeneity is inadequate
in several aspects. Mosteller (1948), Paulson (1949), Bahadur
(1950) and Bahadur and Robbins (1950) were among the earliest
research workers to recognize this inadequacy. Since these early

i studies, the area of selection and ranking problems has been very

= active. It has seen tremendous growth over the last three and a half

decades.

There have been mainly two formulations in selection and

Bt
2'a"a’ e

ranking problems, namely, the "indifference zone" approach and the

- "subset selection" approach. In the first formulation, due to
‘: Bechhofer ( 1954 ), the goal is to select one population (or a
LY
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fixed number t, 1 < t < k) as the best population with a preassigned

minimum probability P*, whenever the unknown parameters lie outside
some subspace of the parameter space, the so-called indifference zone.
Important contributions using this approach have been made by
Bechhofer and Sobel (1954), Bechhofer, Dunnett and Sobel (1954),

Sobel (1967), Mahamunulu (1967), Paulson (1967), Bechhofer, Kiefer

and Sobel (1968), Desu and Sobel (1968, 1971), Dudewicz and Dalal
(1975), Tamhane and Bechhofer (1977, 1979), among others.

In the second formulation, pioneered by Gupta (1956, 1965),
the goal is to select a nonempty nontrivial subset of k populations
so that the best population is included in the selected subset with
a minimum guaranteed probability P*(%-< P* < 1) over the whole
parameter space. The size of the selected subset is not determined
in advance but is made to depend on the outcome of the experiment.
Some recent contributions in this formulation have been made by Gupta

and Studder (1970}, Gupta and Nagel (1971), Gupta and Panchapakesan
(1972), Santner (1975), Gupta and Huang (1975a, 1975b), Gupta and

Huang (1976 ), Bickel and Yahav (1977 ), Gupta and Hsiao (1983 ),
Gupta and Huang ( 1980), Lorenzen and McDonald ( 1981). Contribu-
tions to the nonparametric subset selection procedures have been
made by Rizvi and Sobel (1967), Barlow and Gupta (1969 ), Nagel
{1970 ), Gupta and McDonald (1970 ), Randles (1970 ), Ghosh (1973 ),
Hsu (1978, 1981), Huang and Panchapakesan (1982).

Recently some contributions to the selection and ranking

procedures based on isotonic estimators have been made by Gupta and
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Yang ( 1984 ), Gupta and Huang ( 1983), Gupta and Leu (1983b),
Huang ( 1984).

, There have also been some contributions to the selection and

Fe

EX 4 A 8 £X

ranking procedures in two stages. These are relevant when, for

example, the experimenter wants to select a subset of populations

MM D

(under investigation) which contains the populations of interest so

AL

that the populations in the selected subset can be examined further.
Some important contributions in this direction have made by Santner
( 1976 ), Mukhopadhyay (1980), Gupta and Kim (1984) under the classi-
5 cal setting, and Miescke (1980, 1983), Gupta and Miescke (1982),
Gupta and Miescke (1984) under the Bayesian setting.

For further developments in both formulations, reference can
be made to Gupta and Panchapakesan ( 1979) (see also Gibbons, Olkin
and Sobel ( 1977 ), Gupta and Huang ( 1981 ), and Dudewicz and Koo
(1982)).
iy The main contribution of this thesis is to propose and

study new subset selection procedures for some important and practical

i problems for the generalized family of lambda distributions. It should
'?: be pointed out that the family of Tukey's generalized lambda
- distributions is very broad and contains most well-~known distributions

N as special cases.

o o

Chapter 1 deals with selection and ranking procedures based on

LR R ¥

= sample medians for the symmetric lambda distributions and applications
of the lambda family of distributions. We investigate some properties
of the lambda family of distributions. We also propose some selection
procedures and study the properties of these procedures such as

3 asymptotic relative efficiencies. An application of the lambda
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distribution for approximating some constants used in the selection
and ranking procedures for other symmetric theoretical distributions
: is made. Tables of associated constants for the proposed procedures
are given in this chapter.
% Chapter 11 deals with the problem of isotonic selection
: procedures for the family of lambda distributions and for logistic
distributions. We propose and study some isotonic procedures
for symmetric lambda distributions and for logistic distributions. In

particular, we investigate the aporoximations of constants used in

Al

the proposed procedures. It is shown that the isotonic procedure is

»

better than some classical procedures in terms of reducing the
expected number of bad populations in the selected subset. Tables

of associated constants for the proposed procedures are given in

\ MR

this chapter.
Chapter II1 deals with the problem of choosing the optimal

score function for different nonparametric procedures proposed by

7R

Nagel (1970) and Gupta and McDonald ( 1970). The Tukey's lambda

family of distributions is considered as the distribution for the

.-'l

N score function. A Monte Carlo study for the optimal choice of the

- score function is carried out. This study indicates that the score

function based on a uniform distribution is optimal and robust against

possible deviations from the underlying distributions. Tables contain-

. [ Py »
¥, %y % % te e s ]

ing the values of score functions and the results of the simulations

are given in this chapter. )

Chapter IV deals with the problem of an elimination-type two-

YN

stage selection procedure under the Bayesian setting. We propose a

-.; A K fd &




two-stage procedure R(a,d) which retains good populations at the

first stage, and selects the best among selected populations. At

. Stage 2 we use a stopping rule to construct a 100(1-2a)% Highest
Posterior Density (HPD) credible region with a common width 2d for
the unknown means of selected populations. MWe study the properties
of the rule R(a,d). Severa] figures are drawn to examine the
performance of the procedure R(a,d). These figures are based on the

results of a Monte Carlo study.
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CHAPTER 1
SELECTION AND RANKING PROCEDURES FOR TUKEY'S
GENERALIZED LAMBDA DISTRIBUTIONS

1.1 Introduction

Tukey's generalized lambda distribution (hereafter called
lambda distribution) was suggested by Tukey ( 1960 ) as a wide
class of symmetric distributions and is defined in terms of its
inverse cumulative distribution function. It has been generalized
by Ramberg and Schmeiser (1972, 1974 )} so as to include both
symmetric and asymmetric distributions. Originally, Ramberg and
Schmeiser (1972, 1974 ) generalized and used the lambda distribution
for the purpose of generation of continuous unimodal symmetric and
asymmetric random variates since it is well known that the lambda
distribution can be used to approximate many continuous theoretical
distributions and empirical distributions. Therefore, since the
work of Ramberg and Schmeiser (1972, 1974 ) the lambda distribution
has been also used for Monte Carlo studies. Moberg, Ramberg and
Randles (1978 ) have used the 1ambda distribution for Monte Carlo
studies to check the robustness of the adaptive M-estimator for the
selection problem under the indifference zone approach formulation.

Also Ramberg, Tadikamalla, Dudewicz and Mykytka (1979) have used the

lambda distribution to fit a distribution to 2 given set of data.
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They also provided a useful table for various values of parameters -of
the lambda distribution for given combinations of skewness and
kurtosis. Hogg, Fisher and Randles (1972) have studied the
(empirical) power of the adaptive distribution-free test by using the
lambda distribution for various combinations of skewness and
kurtosis. Filliben (1969) has used the lambda distribution for
estimating the location parameters of symmetric distributions.

Joiner and Rosenblatt (1971) have studied the problem of the distri-
bution of ranges of samples from the lambda distribution. Mykytka
and Ramberg (1979) and Oztiirk and Dale (1985) have studied the
problem of estimating the parameters of the lambda distribution

with a given data set.
1f we confine ourselves to the class of unimodal continuous

univariate distributions, skewness and kurtosis can be used as good
measures to characterize a distribution. The lambda distribution is
defined by values of its parameters which are determined by its first
four central moments. The lambda distribution covers both symmetric
and asymmetric distributions. The family of Burr distributions
(1942, 1973 ) is also a general system of distributions, which is
defined by two constants which determine the corresponding skewness,
kurtosis, mean and variance. The Burr family, however, is much more
difficult to handle than the lambda distribution family because the
values of two constants of the Burr distribution do not provide a
clear interpretation of its skewness and kurtosis. On the other hand,

the lambda distribution is clearly defined by the location, scale and

shape parameters which are directly related to the skewness and
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kurtosis. The Pearson and Johnson systems (see Hahn and Shapiro
(1967)), again, require several different functions to cover the
classes of symmetric and asymmetric distributions. On the other hand,
the lambda distribution family is defined by only one function and
still it covers both symmetric and asymmetric distributions. Thus the
family of lambda distributions is simple, flexible, and easy to use as
well as it is quite broad and general. Hence the use of the lambda
distribution as a model for selection and ranking problems provides
results applicable to several parametric distributions, at least, to
get approximate results. Also by changing the values of the parameters,
we can examine the performance of the selection procedures by taking into
consideration the given data. For example, if based on a given

sample, one believes that the underlying distribution is a heavy-

tail distribution, somewhere between the iogistic and double exponen-
tial, then for this case one can assum> the lambda distribution with
several sets of values of parameters which are determined by the
kurtosis, which, in this case, varies between 4.2 and 6.0. Again one
can examine the robustness of any selection procedure due to several
assumptions on the underlying distribution.

Recently several computer package programs in the field of selec-
tion and ranking have been developed by several authors. For example,
the package RS -MCB is developed by Gupta and Hsu (1984a, 1984b) and
Edwards (1984a, 1984b) has developed the package RANKSEL. But these
package programs mainly deal with the normal models. But it is

possible to modify these package programs to cover more models because

the precision of the approximation in using the lambda distribution s
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very good. We will discuss this further in Sections 2 and 4 of
Chapter 1.

It is well known that for a symmetric distribution the sample

atetaafe e e,

median is an unbiased estimate of the location parameter and is robus:

‘i in the presence of contamination from heavy-tailed distributions.
Hence selection procedures based on the sample medians, under the
formulation of the subset selection approach, have been developed for

g several distributions. Gupta and Leong (1979 ) have considered a

procedure for selecting the largest of location parameters for the

case of double exponential or Laplace distributions. Gupta and Singh

(1980 ) have studied the case of normal distributions and Lorenzen

Chat oY
o

and McDonald (1981 ) have considered the case of logistic distribu~
tions.

Here we consider some selection pr.edures based on sample
medians for selecting the population associated with the largest loca-
tion parameter among k populations whose observable characteristics

follow lambda distributions.

In Section1.2, we define the lambda distribution and also discuss
some properties including tail-ordering.

In Section 1.3, the problem of selecting the population associated
with the largest location parameter is studied for both the subset

selection approach and the indifference 2one approach for the symme-

‘,‘,:‘ .".‘.'.

tric lambda distribution. Some new selection procedures are proposed.

1]

The properties of these procedures such as asymptotic relative

efficiencies (ARE) are studied. Also tables of constants necessary to

carry out the procedures along with ARE's of the proposed selection

1YY
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procedures are computed and tabulated. Comparisons of the rules basec

on medians with the selection rules based on sample means are provided

for the case of symmetric lambda distributions with different values .
of parameters.

In Section 1.4, an application of the lambda distribution for
approximating some constants used in the selection and ranking prob-
lems for other symmetric theoretical distributions is studied. Com-
parisons between exact values and approximated values are made for the
case of logistic distributions.

As a closing remark, since the lambda distribution can be used
to approximate theoretical continuous distributions, one can get many
(approximate) results including evaluations of constants used in the
various parametric situations for selection and ranking problems by
using a lambda distribution by choosing values of its parameters
properly.

At the end of this chapter, Tabie 1.1 is provided for values of
the scale and shape parameters for symmetric distributions for
various values of the kurtosis ranging from 1.8 to 9.0 with steps
of 0.1. This table gives 8 significant digits and this is an
improvement over the table of Ramberg, Tadikamalla, Dudewicz and
Mykytka {1979) in terms of both its scope and precision for the

symmetric case.

1.2 Definition and Properties of the Lambda Distribution

The definition of the family of lambda distributions is as

follows.

....................
..............




Definition 1.2.1. Let 8, s, ATIRP € IR], where eeyy > 0, Berip > 0

and Yyevp > 0. Let F(-) denote the cumulative distribution function
(cdf) of a distribution and let F'1(-) be its inverse. Then for
0 <p<1andxE€ IR], the lambda distribution F(x) is defined by its

inverse cdf as

(1.2.1) %m'] - (1-p) &y,

where 6 and g are location and scale parameters, respectively, and
R and Y, are shape parameters.

If Y = Yoo the Tambda distribution is symmetric. The moments
and the support of the distribution depend upon &, Y4 and Yo For
example, for ¢ > 0, Yy > 0 and Yo > 0, it has all positive moments of
all order and its support is the interval (e-1/8, 6+1/8). On the
other hand, for v, < -1, Yo > 1 and Y 2 1, g < -1, there exist no
positive moments. Ramberg, Tadikamalla, Dudewicz and Mykytka (1979)
have studied these properties in detail and have provided some figures
which characterize well-known continuous distributions by their stand-
ard third and fourth moments. Here we assume that the signs of both
scale and shape parameters are the same for the symmetric case.

The mean, the variance, and the third and fourth central moments

of the lambda distribution are given by

(1.2.2) uy = 0+ (17 (x31) = /vt )/,

(1.2.3) uy = {[1/(271+1)-23e(11+1, 72+1) + 1/(272+1)] -

- [V/(3y#1) = Uiyt )IPy6,
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(1.2.4) ug = {[1/(3y]+1)-33e(2y]+1, 72+1) + 3Be(y]+1, 272+1) -
= W (3v,41)] - 3[1/(2v+1) - 2Belvy*1, v,*1) +
W2y, )]0/ (v 41) = 1/ (4] +
# 200/ #1) = V(1) T365,

and

(1.2.5) g © {[1/(4Y1+1)-'4Be(3-y.|+'|, y2+‘|) + GBe(Zy]H, 2-,2+]) -
- 4Be(Y1+1, 3Y2+]) + 1/(4Y2+1)] - 4[]/(3Y]+]) -

- 383(2Y1+]: Yz*]) + 3Be(Y1+1; 272+]) - 1/(3Y2+1)]
[1/7(v141) = 1/(v,#1)] + 6[1/(2y41) - 2Be(vq+1,v,41) +

+ 1/2(Y2+1)][1/(y1+1)-1/(yz+1)32-3[‘/(71*‘) -
- i 1hred,

respectively, where Be(a,b) is the beta function with parameters a and

b. For the symmetric case, i.e., Yy T Yy T, these can be simplified

as
(1.2-6) U] = 8,
(1.2.7) wy = 201/(2v+1)-Be(y+1, v+1) 1762,
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(1.2.8) =0,

and

(1.2.9)  wy = 201/(4v+1)-4Be(3y+1, v+1) + 3Be(2y+1, 2v+1)1/8".

Hence the standardized fourth moment called kurtosis or a measure of

peakedness, denoted by u4/u§ is

(1.2.10) E% . 1/(4y+1) - 4Be(3y+1, y#1) + 3Be(2y+1, 2y+1)
up 201/(2y+1) - Be(y+1, v+1)1°

Now we discuss some other properties of the family of lambda
distributions. For this, we first discuss tail-ordering of distribu-
tions. The definition of a tail-ordering due to Doksum (1969) is as

follows:

Definition 1.2.2. Let G and R be continuous distributions of random

variables X and Y, respectively. Then G is said to be tail-ordered

with respect to H, denoted by 6 < H, if and only if G(0) = H(0)=<%
t

and H'1[G(x)] - x is non-decreasing on the support of G.

For symmetric continuous lambda distributions the

following theorem holds.

Theorem 1.2.1. Let F and G be symmetric lambda

distributions with location parameters e‘| = e2 = 0, scale parameters

84 and 8y and shape parameters g and Yo» respectively, where




Yy 2 vp- If By/vq 2 By/v,, then

F < G.
t

Proof. Let a(x) = G'][F(x)] - x. Then

a(x) = -;; [F(x)'2 - (1-F(x)) 2] - .

Transforming z = F(x), we have

dF(x) . By
dx Y]"1 ‘Y]"l
vz ' +(-2)

)
and thus, since Y-l : Yzo if B]/'Y\‘ i 82/Y29

Y2'1

Yol
B2 22 4(1-2) .

YyBs  Yq-1
1221 +(1-2)

8'(2)

N

-y - -
20 2)40-2)'2 (1-0-2)" 12

m -
21+ )

>

This completes the proof.
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Ramberg and Schmeiser ( 1974 ) have derived the kth moment, denoted
by u&, of the lambda distribution with e = 0, 8, Y1 and Y, 8s follows:
When “i exists,

v - =K
(1.2.11) E

He—1x

(K)(-)TBelyy (k=1)+1, v,i+1).
. i 1 2

i=0
Here by using the method of moment generating functions, the first 4
moments of the sample mean based on n independent random samples from
a lambda distribution with ¢ = 0, =, p and Yo» where ¢, Yy and 1, are

chosen so that the moments exist, are given by the following theorem.

Theorem 1.2.2. Let in denote the sample mean based on n independent
random samples from a lambda distribution with location parameter
¢ = 0, scale parameter ¢ and shape parameters R and Yoo If values

of &, Y and v, are such that ui, ué. ué and “& exist, then they are

given by
)
(1.2.12) W = §-U%$l
SUM(2) . (n-1) o2
(1.2.13) e —%—1»« suMe(1),
2 ns ne
3
. SUM(3) . (n-1)(n-2)SUM3(1)
(1.2.14) b3 = ‘TLB‘“ 73 ,
ne ng
and

S N TR T A S A R R M L T e, O, e - LR ) I e e ‘e "6 "m . .y - - .
Cf -\ },‘c‘, -;" a" vy o -"_ St ‘hf.-" S oy 7".1‘ EAEASY ‘.-:'- \\F\lb' \:‘1‘ o .l.,‘n-. “*.‘v‘ '-'.\"_‘q' ‘0.‘-.:‘ N ;\.“.' N
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2
v - SUM(4) . (3n-1)SUMT(2) . 4(n-1)SUM(1)SUM(2)
(].2-]5) h4 n3°4 + nss + n384

[ e e Tt N el Ay

. 6Ln-11(n~2)3$liM2(l)SUM(;) . (n=1)(n-2)(n-3)suM*(1)
3 ’
n-g ne

where

- i . .

. i ., .

& SUM(i) = T (3)(=)7Bely,(i-3)+1, y,3+1).

N j=0d

X

- Proof. From the fact that

'- t

. '3 (t) = [:px(;l‘)]n

-. n

- and

- ty . 2] T

: S5 = T 7 (B s,

i=0 - ;

N one can get the results by using standard methods, where wx(t) is the
moment generating function of a random variable X which has a lambda
distribution with parameters ¢ = 0, z. Yy and Yoo

- For a symmetric lambda distribution, i.e., V)T, T the

- following corollary holds.

D Corollary 1.2.3. Under the same assumption as in Theorem 1.2.7

’ anc letting YT T v the following equations hold.

-

(1.2.16) by = 0,

A .t
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_ SuM(2
(1.2.17) iy = —é—l

ng
(1.2.18) 4y = O,
(1.2.19) ug = n]Te‘ {SUM(4) + 3(n-1)sUM2(2)},
and
(1.2.20) l‘% - SUM(4) + 3(g-l)sunzL21.
us n SUMS(2)

Proof. Since SUM(i) = 0 for all i odd for Yy = Yo = Y, oOne can get

the results from Theorem 1.2.2 and hence the proof is omitted.

For a symmetric lambda distribution, the following remarks can

be made.

Remarks :

(1) From Corollary 1.2.3, one can see that the limiting distribution

of in has kurtosis 3 which is the same value as that of a normal distri-
bution.

(2) The Corollary 1.2.3 can be utilized to approximate the distribu-
tion of the sample mean of some symmetric continuous distributions
which are not infinitely divisible. Goel (1974 ) has derived the dis-
tribution of the sample mean from a logistic population as a series by

using the method of characteristic functions and has provided tables the

cdf for n = 2(1)12 at points 0.00(0.01)3.99 and n = 13(1)15 at points




a{.’l-,l‘-.‘ L‘.at

1.2(0.01)3.89. Using the result of Corollary 1.2.3, the cdf of the

a logistic sample mean was approximated. It was seen that the maximum
:ﬂ difference was less than 0.00155 for all values of n. This maximum

" error occurs at the point x = 0.6 for all the values of n. For

.E x > 1.0, the error decreases as x increases and for x € [1.2, 3.9] the
:E maximum error is less than 0.0007 for all n. The above discussion

g

shows that the distribution of the sample mean of a logistic population

can be approximated very well by using the lambda distribution.

1.3 Selecting the Population with the Largest Location Parameter

Based on Sample Medians

1.3.1. The Proposed Rule RT for Subset Selection - Symmetric Case

Let TaToseeesTy be k(> 2) independent populations which are

characterized by observable random variables XI’XZ""'xk’ respectively.

Let Xi follow a symmetric Tambda distribution with an unknown location

fl parameter 6., and common known second and fourth central moments

vy and ug» i=1,2,...,k, respectively. This implies that the random

- variables Xi's have common known scale and shape parameters 8 and v,

respectively, given by equations (1.2.7) and (1.2.9). Also without loss

= of generality, we may assume by = 1. Let f(-lei) and F(-;ei) denote

the probability density function (pdf) and cdf of a random variable Xi

and let xij’ j=1,2,...,n be n independent observations from T

i=1,2,...,k, respectively. Let o = {8 = {87,...48,) eR¥) be the

parameter space and let o4 = {¢ e:ﬂe1 *...= 8 =eg}. Llet

\ .
817 < B[] £ ++5 O[x] denote the ordered e;'s. The population

f:‘-;‘d‘ .,',.n" 5 \

. ..-. T AN }'.;_:._;. XN e MO N S > e “.‘- IRERN .'-,‘*J.‘-_..\_.:-‘.‘-,‘.- ' ‘.~ aralt.
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associated with e[k] is called the best population. Also let (1)

denote the population corresponding to e[i]' It is assumed that

el ool

no prior knowledge is available for the correct pairing between e[i]
and (i) i=1,2,...,k. Our goal is to select a nontrivial (nonempty)
subset including the best population so as to satisfy the P*-condition,
- i.e., inf Pe(CSIR) > P*, where CS stands for a correct selection

i i.e. gegeléction of any subset which includes the best. For conven-
ience, let n = 2m*1, m > 1, and let X;.m be the sample median of =..
Let X[1]:m < X(Z]:m Seeel X[k]:m be ordered X, 's. It is well known

> that a sample median Xi-m has a pdf and a cdf

(M) reixie.)I"01-F(xle. )T ¢(xl6,)
‘ (mt) 1 1 1
P and

< (1.3.2) G(x{ei) = IF(xlei)(m+]‘ m1),

(1.3.1) g(xlei)

LI A W

respectively, where Ix(a,b) is an incomplete beta function with

o

parameters a and b. Let X(i)-m be the sample median corresponding to

S[i].

Now we propose the following selection rule RT:

R.: . i i -

T Select m if and only if xi:m > x[k]:m do,

where d; (> 0) is chosen so as to satisfy the P*-condition. Without
loss of generality, we can assume that ug = 0 in QO' Under this
assumption, let G(-) and g(-) denote the cdf and pdf of the sample

median, respectively. Also under this assumption, let f(-) and F(.)

0 "-..l.. '..\ G

Q 0. -o. .\ 'I

't'u-‘v'- "\“\
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L4

denote the pdf and cdf of Xi’ respectively. Then the following
f theorem holds.
-
'l
N Theorem 1.3.1. For the rule R,
"
N (1.3.3) inf P,(CSIRy) = inf P_(CS|R;)
o €N - BEL, -
- - -0
5 _ (2me1)! T ke
- R NG RN bl
L) (m!)" -= 0 m
= [(1-F(x)] f(x)dx.
y
- Proof. inf P_{CS|R;) = inf P_(n is selected|R,)
D e 2T ge £ (K T
- = inf PriX, . > X, iy, =dny § = 1yee.,k=1)
- ool (k):m = 2(3):m""0
N jm k-1 (
2 = inf N G(x+6p, 9-6p.9+d.)g(x)dx
: 0 e g1 CTKLT™
- = | Gk°1(x+d0)g(x)dx
- (2m+1)! j“’ k=1 m
S = —————17 I (m1, m1)[F(x)]" -
~ (m!)" == Flx+dy)
N [1-F(x)I™F(x)dx.
: Hence the proof is complete.
;f Values of d0 z do(k,m,P*) can be obtained for various values of
ff k,m and P* by solving for the smallest value of d0 satisfying the

following equation

PACONNG
.
atets

[
s, 8,0

)




(2m+1)! © k-1 - px
- (1.3.4) %)lz I (k)7 ) LF(x) T 1-F(x) T (x)dx = P
or
1
(1.3.5) 2wl g k-] (m+1,me1)[t(1-t)"dt = p*,

(m)* 0 "FL3 (£¥-(1-t)V)+dy]

Using (1.3.5) values of d0 were computed. These are given in
Table 1.2 for m=1(1)5, k = 2,3(2)9,10,11, P* = 0.90, 0.95 and for
specified values of kurtosis (u4/u§) = 4.6, 5.0, 5.6 and 7.0 with

uy = 1.

) 1.3.2. Properties and Performance of the Proposed Procedure RT

Now we give some well-known definitions: Let P; denote the

) is selected by a selection rule R.

x probability that T

Definition 1.3.1.

(a) The rule R is strongly monotone in T(4) if P; is nondecreasing
in e[i] when all other components but e[i] are kept fixed and P; is
nonincreasing in e[j] for each j # i when all other components are
kept fixed.

(b) For 6 € &, R is said to be monotone if Py 2 pj for 1 <i <j < k.
(c) For g € and < i <k, R1is said to be unbiased if p. < p,.
Note that strong monotonicity for all i = monotonicity = unbiasedness.
(d) Let ¢i(y1,y2,...,yk) be the probability that (4) is selected by

using any selection rule R based on statistics Yys¥pseeesYye Then R

a8 e a AL

is said to be invariant (symmetric) if
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-

¢i(y1,...,yi,...,y.,...,yk) = ¢j(y1,...,y

3 j""’yi""’yk)'

LR N e At DY

Now we have the following theorem.

Theorem 1.3.2.

{a) The proposed selection procedure RT is strongly monotone in
"(i)’ for all i = 1,2,...,k.
(b) The rule RT is monotone and unbiased.

{(c) The procedure RT is invariant.
Proof. (a) The result follows from the fact that

(1.3.6) Py = PriX(iy.n 2 X(5yum e 3 = Toeeaks 3#1)

/

G(a+e[i]-e[j]+d0)dG(X).

o

j=1
3

k
"
.
j#

Also the proofs of (b) and (¢) follow from (1.3.6). Thus the

proof is complete.

The expected size of the selected subset for the rule RT’

EQ(S'RT)’ is given by

Pr{n(i> is selected}

" e—1x

(1.3.7)  E(SIRy) =

i=1

k = k
- 121 {, ji}G(x+d0+e[i]-e[jJ)dG(x)_
: e

"
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Hence, by using the same argument as in Gupta (1965), one can prove

the following theorem.

ChOMACAL PR

Theorem 1.3.3. For given k and P*(1/k < P* < 1),

(1.3.8) sup Ee(SlRT) = sup Ee(isT) = kwak-](X+dO)dG(x) = kP*,

> eea 2 8€a,

Note that both inf P(CSIRT) and sup EB(S}RT) do not depend on the
s -
common &, € o From (¢} of Theorem 1.3.2 and Theorem 1.3.3, the

following theorem hoids.

Theorem 1.3.4. The procedure RT is minimax among all invariant

o rules satisfying the P*-condition.

Proof. For 90 € 90,

(1.3.9) inf P_(CS|R;) = inf P_(CS|R;) = P_ (CSIRy) = P*
8€n 8 Ry 9&09 T 8o T

and

(1.3.10)  sup E_(S|R;) = sup E_(S|R;) = E (S|Ry) = kP*.
s 2T en ¢ T T Byt

Also for any invariant (symmetric) rule R and 90 €q,

k
Pr{m,., being selected|R}
21 (1)

i=

(1.3.11) EeO(SIR)

® k
f f¢i(y1,...,yk)[j21g(yj)]dy1dy2-.-dyk

i=] -

k
P, (CSIR).
121 %0

n
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Hence for 8, € a,,

(1.3.12) EGO(S}R)-EQO(SlRT) = k{Pgo(CSIR)-PQO(CSlRT)}.

Since the procedure R satisfies the P*-condition, from equation

(1.3.12), one can see that

Ego(SIR)Z E90(5|RT) = gg? Eg(S‘RT)

so that

(1.3.13) sup Ee(S!R) > sup Ee(S!RT).
pen - pEn -

Hence the proof is complete.

Now under a slippage configuration, that is, 6[1] = e[k_]] =
e[kJ'G’ where § > 0, the asymptotic relative efficiency (ARE) of the
broposed rule RT relative to the Gupta-type procedure RG’ which will
be defined later, will be discussed. First, the definition of the

ARE is given as follows.

Definition 1.3.2. Under a slippage configuration with ¢ > 0, let S'

be the number of non-best populations selected. Also given 0 < ¢ 1,

let n1(s) and nz(e) be minimum numbers of observations so that
(1.3.14) Ee(s||Ri) = ¢, i=1,2,

for procedures R] and R2. Then the ARE of the rule R2 relative to R]

is defined by
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(1.3.15) ARE(Rz,R]|6 11m ——%i;

provided that both procedures R] and R2 satisfy the P*-condition. 1In
the sequel, without loss of generality it will be assumed that
8[]] = e[k_]] = e[k]-é = 0. Also the Gupta-type procedure RG is defined
by

RG: Select s if and only if Xi > mgx Xj - dg»
where ii's are sample means and dG is a nonnegative constant chosen
so as to meet the P*-condition. Let Ny and g be the sample size for
procedures RT and RG, respectively. Then as N+« and NG one can

see that, by use of the central limit theorem,

. ® k-1
(1.3.16) ;2; PQ(CSIRG) ~ {: (x+dG/r_\G)d<b(x),
d
(1.3.17) inf Py (CS]Ry) = ] "o x + D)do(x),
g€Q 9 o7

(1.3.18) £ (S'IRg) ~ (k=1)f ¢5"2(xud /Rc)o(x=(8-dg) ic)do(x)

and

(1.3.19)  E,(S'[R) = (k- 1)f oK“2 (xrdy/ 0p)0(x=(6=d5)/or )do(x),

2 . 2
.where o = 1/4an (0).
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As ¢ + 0, nT(c) and nG(e) become sufficiently large and thus from the

equations {1.3.16) and (1.3.17), dG/EE ~ d0/°T' Also the integrals

of the right hand sides of equations (1.3.13) and (1.3.19) exist and

integrands of both integrals are bounded and finite on R ]. Thus

(1.3.20) E(S'IRg) - E((S'[R})

e
<

~ £m¢k'z(x+de/ﬁg){¢(x-(é-de)Mﬁg)-¢(x—(6-do)/oT);d¢(x)

= 0.

Since ¢(x) is strictly increasing in x, it can be seen that

nG(E)
ane;

~ 4f2(0) for any & > Q.
Hence the following theorem holds.

Theorem 1.3.5. Under the slippage configuration as defined above,

(1.3.21) ARE(Ry, Rp'é) = £2(0)

- ZZ(Y'])(%)Z'

The following table proviies ARE(RT, RGIa) for various values of

g and v for the following values of kurtosis u4/u§ =1.8, 3.0, 4.2,

5.0(1.0) 9.0, with uy = 1.




N

N Values of ARE(RT, RGEG)
- 2
> ug/uy g Y ARE (R, RG’G)
1.8 .5744 1.0000 .3299
3.0 .1974 .1349 .6454
4.2 -.0659x10°% -.0363x107%  .8235
- 5.0 - .0870 - .0443 .9068
6.0  -.1686 - .0802 9886
7.0 - .2306 - .1045 1.0532

8.0 - .2800 -.1233 1.0867

9.0 - .3203 -.1359 1.1503
; 1t is already known that for the slippage configuration,ARE's of
- the median selection rules for the normal, logistic and double expo-
f nential distributions are 0.6366, 0.8225 and 1.0000, respectively.
? On the other hand, for values of kurtosis 3.0, 4.2, and 6.0

for the lambda distribution, the corresponding values of ARE(RT,RGIG)

: are 0.6454, 0.8235 and 0.9886, respectively. These differences are
i mainly due to the approximation by lambda distributions with parame-
) ters & and y for the corresponding distributions. Also one can see
? that when the tail of the distribution becomes heavier,
S ARE(RT, RGlé) increases and thus the rule RT becomes as efficient as
Y the procedure RG and the rule RT is more efficient than the rule RG
: for very heavy-tailed distributions.
N
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Remark: From Theorem 1.2.1 and Theorem 1.3.5 one can see the following:
With the same condition as in Theorem 1.2.1 and under a slippage con-
figuration, the ARE(R., RGQG) for a distribution F, is better (larger)
than that of for a distribution F, when F, 5 F,.

Now the performance of the rule Ry will be discussed in terms of

PQ(CS)RT), Eg(s"RT) and PQ(CSIRT)/EQ(S'!RT). Recall that for ¢ ¢ &,

1 k-1
2m+1)!
(1.3.22) P_(CS|Ry) = j—-———%— nl (m+1,m+1)
: T (m!) é = F[% {tY-(1-t)*}+do+e[k]-e£j]] "

< [t(1-t)]"dt,

H
Ho—1x
©
)
=

(1.3.23) Ee(SiRT) = LI is se]ected}RT}

= Pg(CSiRT) + Eé(S'iRT)9

and

k-1 Lk
0.3.20) E(5'IRp) = (ml)t oy

¢ 0 =1 F {tY-(1-t)Y}+d +6
m)* 0 5=V Pl "hdgreriyers)

(m+1,m1)[t(1-t) T"dt.

Heré two configurations are considered, i.e., a slippage config-
uration e[]) = e[k_]] = e[k]’é and an equi-spaced configuration
6 = 5 Q= -{i-1)¢ = k-1)é, where & > 0. Under a
[1] 7 51237 7 epag{nhe T o (ke T)es where ¢ >
slippage configuration equations (1.3.22) and (1.3.28) can be

simplified as

1
2m+1) ! k-1 m
P (CSIR.) = ﬁ___—%_ I (m+1,m+1)[t(1-t)] dt
9( I*r) (m!) é F[ -(1-t) " 1+5+d,]




. 1
g E(S'|Ry) = (k-1) {ELLL pik-2 (m+1,m+1)
o > 1T mZ § FIT (£7-(1-t)+dy]

"1, . (m+1,m+1)
Flg (t7-(1-t)"}+dg-¢]

- [t(1-t)]"dt.

Values of Pg(CSIRT), EQ(S'|RT), Pg(CS(RT)/Eg(SlIRT) and EQ(SIRT)

under a slippage configuration are computed for & = 0.1(0.2)0.5,1.0,

m=1(2)5, k = 2,5(2)9, P* = 0.90, 0.95 and kurtosis (ua/ug) - 4.6,

5 5.0, 5.6, 7.0 with o = 1. These are given in Table 1.3. Similarly,

! under an equi-spaced configuration, values of Pe(CSIRT). Ee(S'lRT),

; Pe(CSIRT)/EQ(S'IRT) and Ee(SIRT) are computed.- They are ;iven in

Table 1.4 for & = 0.1(0.2)5.5. m=3,5 k=5,7, P*=0.90, 0.95 and

3 kurtosis (u4/u§) = 4.6, 5.6, 7.0. Note that, for k = 2, values of

3 P?(CS[RT), Eg(S'lRT). PQ(CSIRT)/Eg(S'IRT) and EQ(SIRT) under an equi-
spaced configuration are the same as those of under a slippage config-

; uration. From Table 1.3 and Table 1.4, the following remarks can be

% made:

. (1) As the value of kurtosis increases,values of Pe(CS[RT)/Ee(S'}RT)

2 increase and hence the proposed rule RT can be more-effective-for heavy-

‘; tailed populations.

- (2) Values of P,(CS|R)/Eg(S" [Rr) for P* = 0.90 are uniformly larger
than those for P; = 0.95 f;r all combinations of values of k, m and §
for slippage configurations and also for equi-spaced configurations.

;i This may be mainly the reason why an increase in the value of P*

Cd

*('6‘.(-";"'_ R OGN Ry
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causes RTto select more non-best populations compared with the

improvement on Pe(CSIRT).

These tabulated values can help in an optimal choice of the value
of P* in the sense of (approximate) maximizing the value of Pe(CS‘RT)
and (approximate) minimizing the values of Ee(S‘IRT), simulta;eously.
(3) An increase in the values of & decrease; the values of Ee(S'IRT)
more significantly than an increase in the values of m for bo;h
configurations. Also values of Ee(SIRT) decrease substantially as ¢

becomes larger for both configurations.

1.3.3. Selecting the t-Best Populations with Indifference Zone

Approach-Symmetric Case

In Section 1.3.1 the subset selection approach for the selection
of the population with the largest location parameter is considered.
In this section, the indifference zone approach to select the t-best
populations for the family of symmetric lambda distributions will be
studied. Let the assumptions and notations be the same as those of

Section 1.3.1 except for ¢ and QO’ where for &* > 0 and 1 < t < k, let

a(er: 1) = (g ¢ mk'e[k-m]'(’[k-t] 2 &

and

~

*. = k = = 6% = -f*
..0(5 :t) = {¢e €R Iem 8k-t] © ®[k-t+1) § ey~

Then our goal is to select the t-best populations associated with
e[k-t+1]""’e[k] without regard to order, and to satisfy the condition

that the probability of selecting t-best populations without regard to

-
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order is at least P* for given ¢*, which is also called the P*-

condition, where P* ¢ (1/(:),1) and s* are specified by the experimenter.

Then the selection rule RI(t) is defined as follows.

RI(t): Select the t populations associated with X[k-t+1]:m""’x[k]:m'

Then the following theorem holds.

Theorem 1.3.6. For &6* > 0,

(1.3.25) inf P (CS[R((t)) = inf  P(CSIR[(t)).
gea(e*:t) - oeng(6*:t)

Proof. Proof is easy and hence omitted.

From Theorem 1.3.6, the least favorable configuration is Qo(s*:t).

Also the minimum size of samples n, which guarantees the P*-condition

t
is the smallest integer n such that

(1.3.26) inf P (CSIR(L)) > P*,
Beny(s*:t) -
where
(1.3.27) inf P (CSIR (1)) = t] 6% Hxwe)(1-6(x))t a6 (x)
g€sig(e*,t) - -
1 k-t

- t§2m+1;! /1

(m1,me1)[1-1_(m+) ,me1)] 8!
(mH)< 0 F[%(p*-(1-p)’)+6*1 P

lp(1-p))"dp.

Remark. If Mo is not assumed equal to 1, &* in the equation (1.3.27)

should be replaced with 5*//[5.
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Table 1.5 provides the minimum sample sizes for selected values of
kurtosis u4/u§ = 3.0, 4.2, 5.6, 6.0, 7.0, P* = 0.90, 0.95, k = 2,3(2)7,
10, t = 1(1)3 (t < k), and &% = 0.5 and 1.0 with uo = 1.

1.4. Applications of the Lambda Distribution

In this section, some applications of the lambda distribution for
the evaluation of the d-values of subset selection approach in the
selection and ranking problem are carried out. Here we restrict our
attention to the symmetric case.

As mentioned in the introduction the lambda distribution can
approximate theoretical continuous symmetric distributions if values
of location, scale and shape parameters are chosen properly. The
following table shows values of scale and shape parameters g and v,
respectively, with which the lambda distribution can be used to

approximate some well-known symmetric distributions with My = 1.

distribution u4/u§ 2 Y
uni form 1.80 5774 1.0000
normal 3.00 1975 11349
Jogistic 4.20 -.0659x107%  -.0363x1077
Laplace 6.00 . 1686 - . 0802
t with § df 9.00 - 3202 -.1359
t with 10 df  4.00 .026) .0148
t with 38 df  3.20 1563 1016
Cauchy ; -3.0674  -1.0000
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Remark: For the case of Cauchy distribution, entries come from the
table of Ramberg and Schmeiser (1972 ;.

Now we consider an approximation of values of dG of the procedure
RG defined in Section 1.3.2 for the normal model. If one wants to use
the selection ruie RG’ one needs values of dG and these values are
provided by many authors (for example, Gupta (1956), Gupta (1963 ),
Gupta, Nagel and Panchapakesan (1972 ), among others). But by using
the lambda distribution one can approximate values of dG’ denoted by

dé. by solving the equation

(1.4.1) [ PN (xedg)dF (x) = P,

where F(.) is a cdf of the lambda distribution with a scale parameter
p = 0.1975 and a shape parameter y = 0.1349. 1In the following table
values of dG come from Gupta, Nagel and Panchapakesan (1972 ) and

vaiues of dé are evaluated from the equation (1.4.1).

p* K dg dé
0.90 2 1.8125 1.8126
5 2.5997 2.6024
S 2.9301 2.9339
0.95 2 2.3262 2.3278
5 3.0551 3.0596
9 3.3678 3.3728
0.99 2 3.2899 3.293
5 3.9196 3.9227
9 4.1999 4.2015




35 s )

2 g il e Sl e

PRSI NSO/ R AL L e WA A P M i ey S oPUlin I A A

W A AT M LR R LR e S E R R M B A e R o Pee Pa e

34

From the above table, we see that the values of dé are fairly
close to those of dG. These agree to at least two decimal places.
Furthermore, values of dé are conservative (larger than values of dG);
hence the P*-condition will not be violated if one uses dé-va]ues in
place of dG-values.

Now we consider another approximation of the d-values of the sub-
set selection procedures based on sample medians for the logistic
distribution and compare those values with values from tables of
Lorenzen and McDonald ( 1981 ). We know that a logistic distribution
can be approximated by a lambda distribution with a scale parameter
g = -0.0659x107 and a shape parameter y = -0.0363x1072. In the
following table values of dt come from the table of Lorenzen and
McDonald (1 1981) and values of d. are based on the approximation

by using the lambda distribution.

3 G.90 0.95
m
k d, d. d, d
2 | 2 0.879  0.879 | 1.137  1.137
5 1.274 1273 | 1510 1.510
7 1.377 _ 1.376 ] 1.609 _ 1.609
5| 2 0.599  0.598 | 0.771  0.771
5 0.863  G.s63 | 1.019  1.018
7 0.931  0.930 | 1.083  1.083
71 2 0.514  0.513 | 0.661  0.66]
5 0.740  0.739 | 0.872  0.872
7 0.797 __ 0.797 | 0.927  0.926
5| 2 0.457  0.457 | 0.588  0.587
5 0.657  0.657 | 0.775  0.774
7 0.708 _ 0.708 | 0.823  (©.882
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From the above table, we can see that the approximation by using

the lambda distribution works fairly well. The values agree with each
other at least to two decimal places and for many cases they agree up

to three decimal places.

Based on the comparisons made so far it can be concluded that
approximations based on the lambda distribution with proper values
of scale and shape parameters work very well and we may not need

tables for selection procedures for different distributions.

(ORI g

More generally, for any (parametric) statistical inference problem,

L A

one may use the lambda distribution model to get approximate good

results. This advantage may be useful for some package programs

on selection and ranking problems mentioned in the introduction.




€ e
A e

‘terev

r

[oL RN )

SN
PRy

Sl

DS

Table I.1

PO linaciing Sute - Pay 2

36

Values of : and - of the Tukey's symmetric lambda distribution for given

kurtosis and unit variance

kurtosis ] ~ kurtosis B ~

1.8 .5773503 1.0000000 1.9 .5360259 7315156
2.0 .4951808 5843119 2.1 4563041 4839393
2.2 4197244 .4092117 2.3 .3854375 3506705
2.4 .3533229 .3032138 2.5 3232217 2637705
2.6 .2949687 2303522 2.7 2684053 2016015
2.8 2433846 1765539 2.9 2197734 1545019
3.0 1974514 1349125 3.1 .1763108 1173758
3.2 1562549 1015705 3.3 1371972 0872407
3.4 .1190600 0741800 3.5 1017736 0622194
3.6 0852749 0512197 3.7 0695075 0410645
3.8 0544199 0316561 3.9 .0399657 0229114
4.0 0261027 0147597 4. .0127925 .0071401)
4.2 -.0006589 -.0003630 4.3 -.0123069 -.0067065
4.4 -.0241574 -.0130192 45 ~.0355787 -.0189735
4.6 -.0465955 -.0246001 4.7 ~.0572307 -.0299266
4.8 -.0675053 -.0349774 4.9 ~.0774389 -.0397743
5.0 -.0870496 -.0443366 5.1 ~.0963542 -.0486820
5.2 -.1053681 -.0528262 5.3 -.1141080 -.0567834
5.4 -.1225813 -.0605666 5.5 ~.1308066 -.0641874
5.6 -.1387938 -.0676566 5.7 ~.1465539 -.0709834
5.8 -.1540971 -.0741781 5.9 ~.1614332 -.0772475
6.0 -.1685712 -.0801994 6.1 -.1755197 -.0830410
6.2 -.1822868 -.0857783 6.3 ~.1888799 -.0884174
6.4 -.1953064 -.0909637 6.5 ~-.2015728 -.0934222
6.6 -.2076855 -.0957874 6.7 ~.2136507 -.0980939
6.8 -.219473¢9 -.1003156 6.9 -.2251605 -.1024662
7.0 -.2307158 -.1045492 7.1 ~.2361444 -.1065680
7.2 -.2414511 -.1085255 7.3 ~.2466402 ~.1104247
7.4 - 2517159 -.1122682 7.5 ~.2566820 -.1140586
7.6 -.2615425 -.1157981 7.7 ~.2663008 -.1174891
7.8 -.2709605 -.1191336 7.9 -.2755247 -.1207336
8.0 -.2799966 -.1222909 8.1 -.2843791 -.123807 4
8.2 -.2886751 - 12528 8.3 ~.2828874 -.1267242
8.4 -.2970185 -.1281275 8.5 ~.3010709 -.1294961
8.6 -.3050470 -.1308313 8.7 -.3089491 -.1321343
8.8 -.3127794 ~-.1334063 8.9 -.3165400 -.1346484
9.0 -.3202329 -.1358618
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Table 1.2

- Values of d

£
o

for the Procedure RT with My = 1.

u
3= 4.6
“2

(e, v) = (-0.0466, -0.0246)

m P* k 2 3 5 7 9 10 1
) 1 0.90 1.0970 1.3599 1.6026 1.7320 1.8317 1.8696 1.9033
: 0.95 1.4282 1.6788 1.9139 2.0462 2.1382 2.1755 2.2088
2 0.90 0.8606 1.0640 1.2492 1.3511 1.4210 1.4491 1.4740
0.95 1.1148 1.3064 1.4836 1.5821 1.6500 1.6774 1.7017
3 0.90 0.7305 0.9021 1.0571 1.1417 1.1996 1.2227 1.2433
0.95 0.9440 1.1046 1.2520 1.3334 1.3893 1.4117 1.4316
4 0.90 0.6455 0.7966 0.9325 1.0064 1.0567 1.0768 1.0946
0.95 0.8330 0.973% 1.1027 1.1734 1.2219 1.2413 1.2585
5 0.90 0.5846 0.7210C 0.8434 0.9098 0.9549 0.9729 0.9883
5 0.95 0.7537 0.8806 0.9963 1.0597 1.1030 1.1204 1.1357
:' u
& 4
g i 5.0
¥2
(e, v) = (-0.0870, -0.0443)
m Px K 2 3 5 7 9 10 N
] 0.90 1.0798 1.3399 1.5813 1.7166 1.8107 1.8488 1.8827
0.95 1.4085 1.6575 1.8924 2.0252 2.1180 2.1557 2.1893
N 2 0.90 0.8451 1.0455 1.2285 1.3295 1.3990 1.4270 1.4518
: 0.95 1.0960 1.2853 1.4609 1.5589 1.6266 1.6539 1.6782
- 3 0.90 0.7165 0.8852 1.0380 1.1216 1.1788 1.2018 1.2221
0.95 0.9267 1.0849 1.2305 1.3111 1.3665 1.3887 1.4085
4 0.90 0.6328 0.7811 0.9148 0.9876 1.2373 1.0572 1.0748
0.8171 0.9557 1.0825 1.1524 1.2003 1.2195 1.2365
5 0.95 0.5728 0.7067 0.8270 0.8923 0.9367 0.9545 0.9702
0.7389 0.8636 0.9774 1.0400 1.0826 1.0998 1.1150
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Table 1.2 (continued)

2
-
‘\
- "
- 4
N —
5 = 5.6
: U2
. (s, v) = (-0.1389, -0.0667)
mo P* k2 3 5 7 9 10 1
1 0.90 1.0589 1.3156 1.5553 1.6905 1.7849 1.8233 1.8575
0.95 1.3845 1.6315 1.8661 2.0000 2.0938 2.1315 2.1656
2 0.90 0.8264 1.0231 1.2035 1.2828 1.3506 1.4001 1.4023
| 0.95 1.0732 1.2597 1.4334 1.5064 1.5727 1.5996 1.6234
4 3 0.90 0.6997 0.8649 1.0149 1.0973 1.1537 1.1764 1.1965
s 0.95 0.9059 1.0611 1.2045 1.2840 1.3388 1.3609 1.3805
: 4 0.90 0.6175 0.7625 0.8135 0.9500 0.9980 1.0335 1.0344
: 0.95 0.7979 0.9336 1.0582 1.1093 1.1558 1.1745 1.1910
5 0.90 0.5586 0.6894 0.8071 0.3712 0.9748 0.9323 0.9477
0.95 0.7210 0.8430 0.9546 1.0160 1.0580 1.0749 1.0900
W
4 _
— = 7.0
H2
. (8, v) = (-0.2306, -0.1045)
- m  P* k2 3 5 7 9 10 1
- 1 0.90 1.0231 1.2736 1.5101 1.6448 1.7395 1.7782 1.8127
N 0.95 1.3427 1.5861 1.8196 1.9540 2.0489 2.0877 2.1225
2 0.90 0.7947 0.9851 1.1608 1.2587 1.3266 1.3541 1.3785
) 0.95 1.0345 1.2159 1.3862 1.4820 1.5488 1.5759 1.6000
: 3 0.90 0.6714 0.8306 0.9759 1.0560 1.1111 1.1334 1.153)
0.95 0.8706 1.0209 1.1604 1.2380 1.2917 1.3134 1.3327
: 4 0.90 0.5917 0.7312 0.8576 0.9270 0.9744 0.9935 1.0104
- 0.95 0.7656 0.8965 1.0172 1.0840 1.1300 1.1486 1.1650
- 5 0.90 0.5349 0.6605 0.7739 0.8357 0.8780 0.8949 0.9099
X 0.95 0.6911 0.8086 0.9164 0.9758 1.0166 1.0330 1.0475
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Table 1.5

Values of sample sizes for the Rule Rl(t) with unit variance

Kurto- t 2 3 3 I 10
sis P* § 1 1 12 1 2 1 2 3
3.0 0.9 0.5 21 31 43 51 49 61 55 69 75
1.0 5 9 11 13 13 15 15 17 19
0.95 0.5 35 47 59 67 65 77 73 8 93
1.0 8 1115 17 17 19 19 23 23
4.2 0.80 0.5 17 25 33 41Y 39 47 45 55 59
1.0 5 7 9 11 11 13 1115 15
0.95 0.5 27 37 47 53 53 61 57 69 73
1.0 7 9 13 15 13 17 15 19 19
5.6 0.90 0.5 15 21 29 35 33 41 39 47 5]
1.0 5 17 8 9 9 11 11 13 13
0.95 0.5 23 31 41 47 45 53 51 59 63
1.0 7 9 11 13 13 15 13 15 17
6.0 ©0.90 0.5 15 21 29 35 33 41 37 45 5]
1.0 5 7 9 9 9 11 11 13 13
0.95 0.5 23 31 39 45 43 51 49 57 61
1.0 7 9 1 13 13 13 13 15 17
7.0 0.90 0.5 113 21 27 33 31 37 35 43 47
1.0 5 5 79 9 1N 9 11 13
0.95 0.5 21 29 37 43 41 49 47 55 59
1.0 7 9 1111 M 13 13 15 15
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CHAPTER 11
ISOTONIC PROCEDURES FOR SELECTING POPULATIONS
BETTER THAN A CONTROL FOR TUKEY'S GENERALIZED
LAMBDA DISTRIBUTIONS AND LOGISTIC DISTRIBUTIONS

2.1 Introduction

The problem of selecting a subset containing all populations

U Aal 2N Il B

better than a control or standard has been considered by many authors
under different formulations. Dunnett ( 1955), Gupta and Sobel
(1958 ), Gupta (1965), Rizvi, Sobel and Woodworth ( 1968 ),
Bechhofer ( 1968 ), Huang ( 1974 ), Naik (1975), Turnbull (1976 ),
Brostrm ( 1977 ), and Gupta and Singh ( 1979 ) have studied this
problem. Using a decision-theoretic Bayesian approach, Gupta and
Kim (1980), Gupta and Hsiao {1981 ), Gupta and Miescke (1984)

have also considered this problem. For further references, see
Gupta and Panchapakesan ( 1979 ) and Dudewicz and Koo ( 1982 ).
However, most of these papers assume that there is no knowledge
about the correct ordering among unknown parameters. But in
practice, there are cases where the experimenter may know the
correct ordering even though the values of parameters are unknown.
For example, in the pharmacological studies, a higher amount of

N acetaminophen in thé pain reliever will result in a quicker effect

on relieving fever. In this situation, when the experimenter

.

e e e e ap- et a et e L JRE T N T Y S T T T ) el e e
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considers the time taken to reduce the temperature to a certain

degree as a measurement of the effect, the experimenter knows the
correct ordering among several pain relievers with different

amounts of acetaminophen even though the true values of the times

are unknown. For this case then, it is reasonable to assume an
ordering prior. Selection procedures under the assumption of ordering
priors are, in general, concerned with isotonic inference. Recently
Gupta and Yang (1984) have considered isotonic selection procedures
for the case of normal populations. They have also considered some
isotonic procedures under the assumption of partial ordering. Gupta
and Huang (1983 ) have studied isotonic procedures for the case of
binomial populations and Gupta and Leu (1983b) have proposed and
studied isotonic selection procedures for unknown guarantee lifetimes
in the case of two-parameter exponential populations. Huang { 1984)
has also proposed and studied a nonparametric isotonic selection
procedure.

In this chapter we investigate isotonic selection procedures for
the family of lambda distributions and for the Vogistic populations.
As pointed out earlier, the lambda family of distribution was
defined by Tukey (1960) and generalized by Ramberg and Schmeiser
(1972, 1974). It is well known that the lambda family of distri-
butions can be used to approximate many univariate continuous
distributions very well as shown in Chapter 1. For further dis-
cussion relating to the lambda family of distributions, reference

should be made to Section 1.2 of Chapter 1. Here we restrict

.......................

........................................
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e 8,0,

ourselves to the family of symmetric lambda distributions. We also
study the logistic distribution which is frequently used as a model
in biological assay problems, (see for example, Berkson (1944, 1951,
1953) and Finney (1947 )).

In Section 2.2, we introduce notations and definitions used
[ in this chapter.

In Section 2.3, some isotonic selection procedures are proposed
and studied for symmetric lambda populations and for the logistic pop-
ulations. Especially, we investigate the approximations of constants
used in the proposed procedures mainly because of difficulties in-
volved in obtaining the exact distribution of sums of sample medians.
For both the lambda distribution and the logistic distribution,

moments of sums of sample medians are derived.

'g 2.2 Preliminaries

Let TYs TysesesTy be (k+1) independent populations, where 0

N can be regarded as a control or standard population. Let a random

. variable X. be the observable characteristic of =, and let xij’

i j =1,2,...,n be n independent random samples from n., i =1,...,k,

\

- respectively. Let F(- 8y £} be a cumulative distribution function

N 2

; {cdf) of the random variable Xi, where e; is an unknown location
parameter that we are interested in and § is a vector of nuisance
parameters which are assumed to be common and known. For the lambda

8 populations, £ is a vector of the common known scale and shape

; parameters and for the logistic populations, £ is a common known

I variance. The value of €, associated with =y may or may not be

. known. A population =, is said to be "good" ("bad") if e > (<)eo.

'
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Assume that we have a simple ordering prior of e‘,...,e Without

K
Toss of generality, let 81 £ 8y S...2 8. Of course, the true values
of ei's are unknown. Our goal is to select a nontrivial subset which
includes all good populations with the requirement that the minimum
probability of a correct selection (CS) be at least equal to a

preassigned number P*,

i

Let ¢ = {8 = (eo,e],...,ek)- S e By B, TS B <,
- ® < eo < =} be the parameter space, where 0 C llk+] Also let us
define
Ip T {8 €ate < 5l
;1 = Ig < Q‘ka: < 60 < 6k-—‘i+]}’ i=1,2, Lk=1,
and
G = {e € 2i6g < 8y1-
k
Then ci's are mutually disjoint sets and o = U Q- We now give
i=0

some definitions.

Definition 2.2.1. A selection procedure R is called isotonic if

and only if whenever it selects -, with ©.. it also selects =, when

i J-

Definition 2.2.2. A real-valued function f defined on a poset (S, z)s

where < denotes & binary partial order on a set S, is called isotonic

if f preserves the partial order on S.

Definition 2.2.3. Let g be a given function on (s, é) and let W be

a given positive functipn on (S, ;). An isotonic function g* on
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(S, ;) is called an isotonic regression of g with weights W if it

minimizes the sum } [g(x)-g*(x)]ZW(x) over a class of all isotonic
X€S

functions on S.

From Barlow, Bartholomew, Bremner and Brunk (1972), it is known
that there exists one and only one isotonic regression of a given g
with weights W on S when S is simply ordered. Also the isotonic
estimator of b, can be found by using the max-min formulas given by
Ayer, Brunk, Ewing, Reid and Silverman (1955) as follows.

Let ii be the sample median of s based on n independent random

samples xi],...,x , 1 =1,2,...,k, respectively. For convenience,

in
let n = 2m+1, m > 0, and let the common known variance be 1 for both

2

lambda and logistic populations. Also let C° denote the common known

variance of X.. Let us define a finite set S = {61,...,ek|e] < ..:.ek)

.

and let w(ei) = w, =n, i=1,2,...,k, respectively. Then by the
max-min formulas, the isotonic regression of g with weight W is g*,

where
Xo+...+ X
S * o e t
g*(e.) = max min s i
T qesci setek tost

Hence the isotonic estimator ii'k of 8, is

> >

X.., = max X_..,
ik 1<s<i s:k
and
. . X 4X X +...4 X
v = mi s "s+] S k
xs:k = m1n’xs, 5 secoy T I,

for i = 1,2,...,k, respectively.
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We give the following definition for the sake of completeness.

- Definition 2.2.4. Let F(-|e,, 5) be a symmetric lambda family of

s distributions. Then, for ¢ = (g, vy) and 0 < u < 1,

- (2.2.1) Fl(u) = 65 + 3 [u'-(1-u)"],

Z: where 8 is a location parameter, g is a scale parameter and vy iS a

. shape parameter.

g For further discussion on the properties of the family of lambda
~£ distributions, reference should be made to Section 1.2 of Chapter 1.
; 2.3. Proposed Procedures R] and RZ‘

) We confine ourselves to the class of isotonic procedures which
E?i satisfy the P*-condition, i.e., for an isotonic rule R,
- (2.3.1) inf P (CSIR) > P*.

2 gen =
~:'
- 2.3.1. Definitions of the Proposed Rules R, and R,
i The cases of both €y known and 89 unknown are considered.
» (R) 8y known
& Since 59 js known, no samples need to be taken from the control
f population - Now the rule k] is proposed as follows:
Procedure R]: Steps i = 1,2,...,k-1, are defined as follows:

. Step i. Select the subset {“i""’"k} and stop if
o . (1)

2 ik 28 = Ui

A

o

AN

e’
'. ..

-, P P . . . . - e .
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otherwise reject Ty

and go to Step i+1, and

Step k. Select T if
- ; -t
sk 2 € = Gy
otherwise reject L and decide that none of k populations are
good.
Here dg!a, i=1,2,...,k are chosen to be the smallest
i non-negative constants so that the procedure R] is isotonic and
g meets the P*-condition. Since
i (2.3.2) inf P,(CS[Ry) = inf inf P (CS[R,),
N een - T<i<k gen; -
? the P*-condition is equivalent to
- (2.3.3) inf P _(CS{R,) > P*, for i=1,...,k.
\ <) 1/ =
- fEQ, =
. -~
X Also, for any ¢ € a5, 1 <1 <k, let
g ik i’ 2 7 k=]l 0
o
: where
2 X, - 6,
3 = 1 1 -
Zi c ') 1 = ], ,k
Then

(2.3.4) P, (CSIRy) = Py

k=41 . (])
o Kiee 2 89=Cd5:k)

b k=i+1 J (; o Cd(]))
= U U . 3 - .
Bl jo1 ae1 %K 0 " Jj:k

Ta"2"s 58 00
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b
N
k-i+1 j = 8 =6

¢ 5 £ 0 (1)
n :Pr% U Uiz, + > -d}, )}
'i. j='l 2=] R.k C - J.k '
v
'cj which is non-decreasing in Br ¥ = 1, .. ,k-141. Thus
2 : ] (1)
L (2.3.5) ;2; Pg(csm]) 2 PP ik 2 Yeniar i
-": - i
< Also one can see that

(2.3.6) (CSIRy) {k'm(‘ “’)}

2.3.6 inf P _(CS|R,) < P u (X;., > 8,~Cd},

- ] i BN B B
- ; (1)

E Pridyienii 2 “innid
‘,.' = - -
2 where 8% = (§,=,... =%, 6,5...,60).
L% i terms
X Since ik-iﬂ:k has the same distribution as 21:1” the following
j:j theorem holds.
"2 Theorem 2.3.1. For given P*(0 < P* < 1) and 8 ¢ a5

(2.3.7)  inf P_(CSIRy) = PriZy . > ~d\1). 0}, i= 1,k
i o X 8 1 1:i = Tk-i+l:k’? proc et
. veqy
- From Theorem 2.3.1, one can get the following corollary.
'f: Corollary 2.3.1. For a given P*(0 < P* < 1), dl(i,g”,k which is
Iy the solution of the equation

f
- = *

- Pr(Zhi > -2) =P
.. satisfies the P*-condition for the procedure R.,.
-
<.

n S

' ’.‘ :;V\;'.“:{.’.;‘\ ‘- .'f\ . .{.;-;'. -"-;.‘ -
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Proof. The proof is straightforward and hence omitted.

The evaluation of the constants d£12+1'k will be discussed in

the next section.

Remarks:

.k Cp b 3 (1) =
(1) Since Z,_i+7:¢ has the same distribution as Z,.;» dy jiq.¢ *
(1)

4

.js i=1,2,...,k.

(2) It can be seen that dglz is increasing in i.

(B) e unknown

Since 60 is unknown, n independent observations xm,...,xon

from the control population L are taken. Llet io denote the median

of the above samples. Then the selection procedure R2 is defined

as follows:

Procedure RZ: Steps i = 1,...,k-1, are defined as follows:

Step i. Select the subset {ri,...,ﬂk} and stop if

-

X - cal?)

itk 2 %o itk

otherwise reject ny and go to Step i+1, and

Step k. Select T only and stop if

" (
Xeok 2 %o = Ui

otherwise reject T and decide that none of them are good populations.

I Y .

»

Ll " AR
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Now similar to Theorem 2.3.1, the following theorem holds.

Theorem 2.3.2. For given P*(0 < P* < 1) and ¢ ¢ 255

i = ; 5 (2) i =
(2.3.8) inf Pe(CSIRz) PP{Z]:i > ZO-dk-i+]:k}' i | IR

g€, -

-~

where Z0 = (xo-eo)/c.

Proof. The proof is analogous to that of Theorem 2.3.1 and hence

omitted.

Corollary 2.3.2. For given P*(0 < P* < 1), d£?g+l-k’ which is the

solution of the equation

(2.3.9) PriZy.; » Zyt} = P¥,

03 0

satisfies the P*-condition for the rule R2‘

Proof. The proof is straightforward and hence omitted.

The evaluation of the constants d£§3+1-k will be discussed

in the following section.

Remark: It can be seen that for i = 1,...,k, d£?3+1:k = d%?% and

also d%?g is increasing in 1.

; (1) (2
2.3.2. The Evaluation of Constants d, ;,,., .2nd dyie) ke

Since the evaluation of constants d£?3+1'k is similar to that

of constants d£12+]'k’ we will discuss here only the evaluation of

(1)

constants d, _i.y.4-

LT AP YN AL S P e,
LI 2 A L L S PR . LIRS RS o™ .
. . Y LRI LA PO S et an DRI )

..........................

RIS A gnap S R L

- "

------------
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Now to solve the equation

(2.3.10) Pr{i]:i > -z} = ¥,

"e'a &4 .4 4. 8

the following lemmas are needed. First the lemma due to Gupta and

Yang ( 1984 ) based on the theory of random walk will be cited with-

out proof.

Lemma 2.3.1. Suppose U1, UZ"" are iid random variables whose

distribution is not concentrated on a half-axis. Let S0 = 0,

Sj = U] +...+ Uj, j=1,2,..., respectively and let Ui = Ti-x,
» where E(Ti) =0, for i = 1,2,..., respectively. Let

Sr. Then

~S|—

: V. = min
Vo 1ersd

3
(2'3.]]) Pr(vﬂ;}] > x) = -R%T JEOP?‘(VJ > X)Pr(sl-j*] > o)t

where Pr(V0 > x) =1 for all x.

To use Lemma 2.3.1, first it is necessary to evaluate the
-§+1 > 0), where for ease of notation Sj denotes the
sum of j iid sample medians for both symmetric lambda and logistic

quantity Pr(Sl

populations. To find the exact and closed form of distribution of

3 Sj is very difficult. Hence one can consider several ways to

; approximate the quantity Pr(S ..,

. Fisher expansion (ii) Monte Carlo Method (iii) Approximation by

> 0), for example, (i) Cornish-

using a lambda distribution. Since the lambda family of distribu-
tions can be used to approximate many theoretica) distributions
very well, provided that the values of scale and shape parameters

are properly chosen (based on the standardized second and fourth

LRI A

- » - - . Y
N A R A P S
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moments), the method of approximation by a lambda distribution wiil

be applied. Hence it is necessary to compute the second and fourth

central moments of the sum of k sample medians from k iid symmetric

3
«eta.
SN e,

lambda distributions with mean O and variance 1. The same problem

for the case of logistic distributions will be discussed later,

Lemma 2.3.2. Llet Mg be the rth central moments of the sum of k
sample medians from k iid distributions based on a common sample
- size n = 2m+1, m > 0. Then for k symmetric lambda distributions

with common scale and shape parameters £ and vy, respectively,

. 2
. _ 2k r(2m+2) [r(m+1)r{m+i+2v)-[T(m+1+y)]°]
- 2-3-]2 i = - 1]
: (2:312) v T T{2mi 2+ 2y )
: and
5 (2.3.13)  yp = 12klko) {r(z_m+2> }2 {r(mﬂ)r(m+1+211-|;run+1+2mz}2+
i; 4 84 [r(m+1)j2, T{2m+2+2y) 7
- + 2kr (2m+2) (T (m+1)T (m+1+4y)

ea[r(m+1)]2r(2m+2+4Y)

4 (me1+y)T(me143y) + 3[r(me1+24)1%0,
a where ©(-) is a gamma function.

Proof. Let ¢k(t) be the moment generating function of the sum of k

iid sample medians. Then it is well known that o, (t) = [¢1(t)]k.

Also one can get that
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-4

3 4 R+j
A (2.3.18) oq(t) = B2 7 7 LLEos ge(misgy, misw),

3 [r(m1)]° j=0 220 21j1g9%%

\ ' where Be(a,b) is a complete beta function with parameters a and b.
Thus by the standard method, one gets the result. Hence the proof

is complete.

In addition to Lemma 2.3.2, ug is computed and is given as

follow:
- (2.3.15)  ug = 15k(k-1)(k-2) {figﬂiil—g} A3 +
. {r(m+1)]
T(2m+2 y4 r(2m+2
+ 15k{k-1) ——-(—LZ} A A, + KA —ﬁ——%,
{[rwm, 273 )
where
(2.3.16) Ay = 35 {Be(m+1, m+1+2y) - Be(mtl+y, mi+y)},
B <]
(2.3.17) A, = 35 (Be(m+1, mH1+4y) - 4Be(m+l+y, m+1+3y)
B
+ 3Be(m+1+2y, mH1+2y)1,
- and
: (2.3.18) Ay = 35 (Be(m+1, mH146y) - 6Be(m+)+y, m+1+5y)
: 8
+ 15Be(m+1+2y, mri+dy) -
X - 10Be(m+1+3y, m+1+3y)]}.

s, 8, MG

D B SN
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This result for Mg (and higher moments) can be used if one wants
to use the Cornish-Fisher expansion.
To find the proper values of the scale and shape parameters of

a Jambda distribution from Lemma 2.3.2, values of kurtosis for the

sum of k sample medians based on n = Z2m+1 samples from lambda dis-
tribution with mean O and variance 1 are given in Table I1.1 for
k = 1(1)5(2)11, 15, 20 and m = 0(1)5(2)9,10(5)20,30,50 when the
underlying lambda distributions have common kurtosis 4.6, 6.0 and
7.0. Furthermore, based on Lemma 2.3.1 and Lemma 2.3.2, values of
d£12+1;k for the lambda populations are computed. They are given
in Table 11.2 for m = 0(1)3(2)9,10, P* = 0.75, 0.90, 0.95, .099 when
the underiying lambda populations have common variance 1 and common
kurtosis 4.6, 6.0 and 7.0.

For the case of logistic population, the following lemma, which

is simijar to Lemma 2.3.2, holds.

Lemma 2.3.3. Llet n = 2m+], m > 0 be the common sample size of k
iid logistic populations. Then the second and fourth central moments

of the sum of k sample medians from k logistic population are:

]
_2 1 2 T )
(2.3.19) b7 (g =" - L 32
and
4 m
o lzk(kn) 2t R o1
(2.3.20) ., — lgg- 1 7
a i=} i
2 2 m 4 m
12k 7 IRY; w 1
+ (= - =) -(g5- ) )],
a 6 121 iz 90 j=} i4

where a = n//3.
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Proof. Noting the fact that
(2.3.21) g (t) = 1 [1- (E32K,

the proof is analogous to that of Lemma 2.3.2 and hence omitted.

Similar to the case of lambda populations, values of kurtosis
for the sum of k sample medians based on n = 2m+1 samples from
logistic distributions with common variance 1 are computed. These
are given in Table 11.3 for k = 1(1)5(2)11, 15, 20 and
m= 0(1)5(2)9, 10(5)20, 30, 50. Also based on Lemma 2.3.1 and

Lemma 2.3.3 values of dg!a for the logistic populations are computed.

These are tabulated in Table 11.4 for m = 0{1)3(2)9, 10, P* = 0.75,
0.90, 0.95, 0.99 and k = 1(1)7.

2.3.3. Expected Number of Bad Populations in the Selected Subset.

Suppose 8 is known and thus, without loss of generality, let
69 = 0. Let B be the random size of bad populations in the subset
selected by the procedure R]. Then the expected number of bad

can be used as a measure of the efficiency of the rule R]. Now

populations due to the selection procedure R]' denoted by EA

for any j, 0 < J <k,

(2.3.22) sup Ee(BIR]) =
B&ly 5 - o€ k=

t
w
[ =4
o
W1,
0
-~
C
—
>
v
)
[
Q.
b —
—
T
S
——t

A A g
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Also under the same assumption as that of the rule R] let us
consider an alternative rule R3 which uses a fixed constant d, and

selects a subset simultaneously. This rule R3 is

R3: Select =, if and only if X5k s gt Cd3

for i = 1,2,...,k,
where d3(3 0) is chosen so as to satisfy the P*-condition. Then

one can see that d3 = dg?a and also

(2.3.23) sup E (B{RB) =
265k

1o

Now the foliowing theorem holds.

Theorem 2.3.3. For any j, 0 < j < ¥,

&

(2.3.24) sup EG(BER]) < sup E (BiR3).

éeﬁk_j = OGLk_j

Proof. The proof is straightforward and is based on the fact that

From the above theorem R, s uniformly better than R3 in terms

of the number of bad populations in the selected subset.

2.3.4. Another Procedure RN‘

Since the lambda family of distributions is not infinitely

divisible, it is very hard to find the exact closed form of the

distribution of the mean of samples from the lambda distribution.
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This is also true for the logistic distribution. But as we have
discussed in Chapter 1, the lambda distribution can be used to
approximate a univariate continuous theoretical distribution precise
enough, and thus we can use a lambda distribution to approximate the
distribution of the sample mean by computing its second and fourth
moments. Thus, when this kind of approximation is acceptable, we
can consider another isotonic procedure RM based on sample means
instead of sample medians. Here we consider the case of lambda

populations with 8y known. Now we define the isotonic procedure

RM as follows:
Procedure RM: Steps i = 1,...,k-1, are defined as follows:

Step i. Select a subset {ni,...,ﬁk} and stop if

M. M
Xiik 2 80 = Cudyie

A MR N B A

otherwise rejct ™ and go to Step i+1,

and
Step k. Select T and stop if
. " M
‘ Xk 2 80 = Ol

otherwise reject L and decide that none of populations are good,

where

G AN A

. PP T U T S SR SRR SO R N
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and

Here d?,k are the smallest nonnegative constants such that the
procedure RM is isotonic and meets the P*-condition.
Now similar to that for the procedure R1, the following theorem

holds.

5 Theorem 2.3.4. For given P*(0 « P* - 1), d' . .  which is the
{; solution of the equation

% M .

- (2.3.26) PriZy.; > -=2: = P*

- satisfies the P*-condition for the orocedure RM’ where

' 2. =% T

and
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Proof. The proof is similar to that of Corollary 2.3.1 and hence

omitted.

To solve the equation (2.3.26), we can use the same method as
that in Section 2.3.2 and thus it is necessary to compute second and
fourth moments of the sum of k sample means based on n independent
- observations from each of the k populations. Then the following

theorem holds.

y Theorem 2.3.5. Let u; be the ith central moment of the sum of k
E sample means based on n independent samples from each of the k

5 lambda distributions with a common scale parameter 8 and a common
E shape parameter y. Assume that the common variance of k lambda

8]

distributions is 1. Then

E} by = k sumgzz’

- ng
& Lk 2
y, = —=— {sum(4) + 3(kn-1)sum“(2)},
4 3.4
. n~g
’ where
. L . .
) sum(i) = ] (j)(-) Be(v(i-3)+1, vj+1),
. 3=0
~
M where Be(a,b) is a complete Beta function with parameters a and b.
S
2 Proof. The proof is straightforward.
ot
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Table I1.2

- Values of d%?& for the case of symmetric lambda
populations with common kurtosis and common variance 1

Kurtosis = 4.6

m N el 0.75 0.90 0.95 0.99
0 1 0.5920 1.1949 1.6141 2.5688
2 0.7382 1.2879 1.6796 2.5929
3 0.7836 1.3087 1.6899 2.5938
4 0.8029 1.3148 1.6918 2.5939
5 0.8123 1.3167 1.6922 2.5939
¥ 6 0.8174 1.3174 1.6922 2.5939
4
: 1 1 0.3860 0.7614 1.0081 1.5278
2 0.4745 0.8109 1.0393 1.5358
3 0.5005 0.8209 1.0433 1.5360
4 0.51M 0.8236 1.0439 1.5360
5 0.5161 0.8242 1.0440 1.5360
6 0.5187 0.8244 1.0440 1.5360
2 1 0.3077 0.6008 0.7885 1.1670
2 0.3758 0.6368 0.8100 1.1747
3 0.3954 0.6437 0.8126 1.1748
4 0.4032 0.6454 0.8130 1.1748
5 0.4069 0.6459 0.8130 1.1748
6 0.4088 0.6460 0.8130 1.1748
3 1 0.2634 0.5115 0.6682 0.9804
2 0.3259 0.5408 0.6853 0.9839
3 0.3369 0.5463 0.6873 0.9839
4 0.3433 0.5477 0.6875 0.9839
5 0.3463 0.5480 0.6875 0.9839
6 0.3478 0.5481 0.6875 0.9839
5 1 0.2127 0.4107 0.5339 0.7743
2 0.2579 0.4331 0.5466 0.7767
. 3 0.2706 0.4372 0.5480 0.7767
¥ 4 0.2756 0.4382 0.5482 0.7767
. 5 0.2780 0.4384 0.5482 0.7767
; 6 0.27N 0.4385 0.5482 0.7767
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Table I1.2 (continued)

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0

OO0OO0O0O0O0CO

QOOoOOo0OO0OO0O COO0OO0OO0O

Kurtosis = 4.6

0.75 0.90
1832 0.3527
2217 0.3715
2325 0.3749
2367 0.3757
2387 0.3759
2397 0.3759
1633 0.3138
1974 0.3303
2069 0.3333
2107 0.3340
2124 0.3342
2132 0.3342
1555 0.2987
1879 0.3143
1970 0.3171
2005 0.3178
2021 0.3179
2029 0.3180

Kurtosis = 6.0

5591 1.1526
7055 1.2573
7537 1.2834
7751 1.2920
7860 1.2951
7920 1.2963
3619 0.7218
4480 0.7731
4740 0.7839
4847 0.7869
4899 0.7878
4927 0.7881

0.95

0.4573
0.4679
0.4690
0.4691
0.4691
0.4691

0.4064
0.4155
0.4165
0.4166
0.4166
0.4166

0.3866
0.3952
0.3961
0.3962
0.3962
0.3962

1.5863
1.6683
1.6837
1.6874
1.6883
1.6885

0.9650
0.9991
1.0040
1.0048
1.0049
1.0049

0.99

0.6795
0.6614
0.6614
0.6614
0.6614
0.6614

0.5840
0.5856
0.5856
0.5856
0.5856
0.5856

0.5548
0.5563
0.5563
0.5563
0.5563
0.5563

2.6451
2.6867
2.6897
2.6897
2.6897
2.6897

1.4973
1.5078
1.5080
1.5080
1.5080
1.5080
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Table I1.2 (continued)

Kurtosis = 6.0

0.75

O0O00000O O0OO0O00O0O0 000000 O0OO0OO0O0O00O OCO0OO0000

0.90

.5671
.6032
.6103
.6121
.6127
.6128

.4819
.5107
.5162
.5176
.5180
5181

.3861
.4078
.4118
.4128
4131
.4132

3312
.3493
.3526
.3534
.3536
.3536

.2946
.3103
.3132
.3139
3141
3141

[=f=lolele] OCO0O0OO0O0O OCOO000O0 OCO0O0O0CO0O OO0OO0CO00
. L . . L] . . . L[] . - . . L) - . . . L[] L] L[] . L] - . . L[] L] L] .
[3,)
—
~4
F-J

0.99

.1286
.1340
34
L1341
1341
L1341

.9384
.9422
.9422
.9422
.9422
.9422

.7356
.7380
.7380
.7380
.7380
.7380

.6242
.6261
.6261
.6261
.6261
.6261

.5515
.553)
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) Table 11.2 (continued)
=
Kurtosis = 6.0
m k  px 0.75 0.90 0.95 0.99
10 1 0.1457  0.2803  0.3634  0.5235
2 0.1762  0.2952  0.3717  0.5250
3 0.1848  0.2979  0.3726  0.5250
v 4 0.1882  0.2985  0.3727  0.5250
- 5 0.1897  0.2987  0.3727  0.5250
* 6 0.1905  0.2987  0.3727  0.5250
oy Kurtosis = 7.0
0 1 0.5437  1.1317  1.5708  2.6758
2 0.6894  1.2413  1.6607  2.7282
3 0.7387  1.2702  1.6792  2.733)
4 0.7610  1.2802  1.6840  2.7331
5 0.7727  1.2840  1.6854  2.7331
6 0.7793  1.285  1.6857  2.733]
X 1 0.3507  0.7031  0.9441  1.4808
N 2 0.4355  0.7550  0.9795  1.4925
.. 3 0.4614  0.7663  0.9848  1.4929
5 4 0.4723  0.7694  0.9857  1.4929
5 0.4776  0.7704  0.9859  1.4929
- 6 0.4803  0.7708  0.9859  1.4929
" 2 1 0.2794  0.5513  0.7303  1.1081
- 2 0.3435  (0.5874  0.7530 1.1139
i~ 3 0.3624  0.5946  0.7560  1.1140
X 4 0.3701  0.5965  0.7564  1.1140
): 5 0.3738 0.5970 0.7565 1.1140
ad 6 0.375  0.5972  0.7565  1.1140
. 3 0.2391  0.4681  0.6156  0.9181
- 2 0.2925  0.4967  0.6329  0.922)
~ 3 0.3079  0.5022  0.6351  0.9221
: 4 0.3141  0.5036  0.6354  0.9221
3 5 0.3171  0.5040  0.6354  0.9221
o 6 0.3186  0.5041  0.6354  0.9221
s
S
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q Table 11.2 (continued)

Kurtosis = 7.0

m K p* 0.75 0.90 0.95 0.99
5 1 0.1930 0.3747 0.4893 0.7172
2 0.2349 0.3961 0.5017 0.7197
3 0.2468 0.4001 0.5031 0.7197
- 4 0.2515 0.4010 0.5033 0.7197
5 0.2537 0.4013 0.5033 0.7197
6 0.2548 0.4014 0.5033 0.7197
7 1 0.1662 0.3213 0.4181 0.6076
2 0.2017 0.3390 0.4281 0.6095
3 0.2117 0.3423 0.4293 0.6095
) 4 0.2157 0.3431 0.4294 0.6095
5 0.2175 0.3433 0.4294 0.6095
6 0.2184 0.3433 0.4294 0.6095
9 1 0.1482 0.2857 0.3709 0.5363
2 0.1795 0.3011 0.3796 0.5379
3 0.1883 0.3039 0.3806 0.5379
4 0.1918 0.3046 0.3807 0.5379
5 0.1934 0.3048 0.3807 0.5379
6 0.1942 0.3048 0.3807 0.5379
- 10 1 0.1411 0.2718 0.3526 0.5090
2 0.1786 0.2864 0.3508 0.5104
3 0.1792 0.2890 0.3617 0.5104
4 0.1825 0.2896 0.3618 0.5104
5 0.1840 0.2898 0.3618 0.5104
6 0.1847 0.2898 0.3618 0.5104
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Table 11.4

Values of d§!a for the logistic populations with common variance 1

m k p* 0.75 0.90 0.95 0.99

0 1 0.6047 1.2120 1.6240 2.5349

2 0.7516 1.2983 1.6836 2.5523

3 0.7957 1.3186 1.6900 2.5523

4 0.8135 1.3227 1.6930 2.5523

5 0.8223 1.3227 1.6930 2.5523

6 0.8276 1.3227 1.6930 2.5523

. 7 0.8298 1.3227 1.6930 2.5523
: 1 1 0.3961 0.7776 1.0253 1.5385
. 2 0.4854 0.8263 1.0552 1.5456
s 3 0.5114 0.8358 1.0590 1.5457
S 4 0.5219 0.8382 1.0595 1.5457
5 0.5269 0.8389 1.0596 1.5457

K 6 0.5294 0.8391 1.0596 1.5457
1 7 0.5308 0.8392 1.0596 1.5457
¢ 2 1 0.3158 0.6147 0.8046 1.1862
: 2 0.3849 0.6506 0.8258 1.1901
3 0.4047 0.6573 0.8282 1.1901

. 4 0.4126 0.659 0.8286 1.1901
o 5 0.4162 0.6595 0.8286 1.1901
X 6 0.4181 0.6596 0.8286 1.1901
. 7 0.4191 0.6597 0.8286 1.1901
3 1 0.2704 0.5239 0.6830 0.9973

2 0.3286 0.5533 0.6999 1.0006

3 0.3451 0.5587 0.7018 1.0006

4 0.3516 0.5601 0.7021 1.0006

5 0.3546 0.5604 0.7021 1.0006

6 0.3562 0.5605 0.7021 1.0006

7 0.3570 0.5605 0.7021 1.0006

5 1 0.2183 0.4209 0.5465 0.7902

2 0.2645 0.4436 0.5593 0.7925

3 0.2774 0.4478 0.5607 0.7925

4 0.2825 0.4488 0.5608 0.7925
5 0.2850 0.4490 0.5609 0.7925

6 0.2861 0.449 0.5609 0.7925

7 0.2867 0.4490 0.5609 0.7925

LA ALl wil W o




Table II.4 (continued)

" m k p* 0.75 0.90 0.95 0.99
¥ 7 1 0.1881 0.3616 0.4685 0.6740
-, 2 0.2274 0.3807 0.4791 0.6759
. 3 0.2384 0.3842 0.4803 0.6759
4 0.2428 0.3850 0.4804 0.6758

5 0.2447 0.3852 0.4804 0.6759

6 0.2457 0.3852 0.4804 0.6758

' 7 0.2463 0.3852 0.4804 0.6759
5 9 1 0.1617 0.3219 0.4165 0.5974
- 2 0.2026 0.3387 0.4258 0.5990
3 3 0.2123 0.3417 0.4258 0.5990
! 4 0.2160 0.3424 0.4268 0.5990
¥ 5 0.2178 0.3426 0.4268 0.5990
5 6 0.2187 0.3426 0.4268 0.5990
. 7 0.2192 0.3426 0.4268 0.5990
e 10 1 0.1596 0.3064 0.3963 0.5678
. 2 0.1928 0.3223 0.4050 0.5692
— 3 0.2021 0.3251 0.4059 0.5693
. a4 0.2057 0.3258 C.4061 0.5693
5 0.2073 0.3260 0.4061 0.5693

- 6 0.2082 0.3260 0.4061 0.5693
x 7 0.2086 0.3260 0.4061 $.5692
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CHAPTER 111
NONPARAMETRIC SELECTION PROCEDURES AND
THEIR EFFICIENCY COMPARISONS

3.1. Introduction

Since the selection and ranking problems were introduced and
formulated, many papers have been concerned with nonparametric
selection procedures. Since, in practice, there are many situations
in which one cannot observe the complete samples because of lack of
resources, such as time, budget, unexpected accidents, but one can
at least observe ranks. This kind of difficulty occurs in life-
testing very freauently. Also realistically the underlying distribu-
tions of populations are almost unknown to the experimenter and
hence sometimes a parametric approach to the testing hypotheses prob-
lems or other inference problems is sensitive to the assumptions on
the underlying distributions. Thus, to avoid these deficiencies of
the parametric approaches, ﬁonparametric approaches are frequently
used. These can provide robustness against deviations from the
assumptions about the underlying distributions. .

Some nonparametric selection procedures in terms of quantiles

were considered by Rizvi and Sobel (1967 ), Barlow and Gupta ( 1969 ),

among others. Also nonparametric subset selection procedures based
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on ranks were studied by Nagel ( 1970), McDonald (1969, 1972, 1973,

1975), Gupta and McDonald ( 1970 ), Hsu (1978, 1981), Gupta, Huang
and Nagel (1979 ), Huang and Panchapakesan ( 1982 ), Gupta and Leu
(1983a ), Gupta and Liang ( 1984 ) and Matsui (1984), among others.
Also, Bartlett and Govindarajulu (1968 ) have studied locally optimal
procedures based on ranks even though the functional forms of the
underlying distributions are assumed to be known.

Nagel (1970 ) and Gupta and McDonald (1970 ) proposed and studied
some nonparametric subset selection procedures for the location and
scale models which choose a subset including the best population among
k populations. The latter authors considered locally optimal selection
procedures based on some functions. But the optimal choice of the
score function for these procedures has not been studied. Since the
rank sum statistic is easy to deal with, many proposed nonparametric
subset selection proceducres are based on this statistic.

In this chapter we consider the problem of choosing the optimal
score function for different procedures proposed by Nagel (1970) and
Gupta and McDonald (1970 ). The Tukey's lambda family of distribu-
tions is considered as the distribution for the score function
because this family of distributions can be used to approximate many
theoretical (unimodal) continuous distributions and hence it is easy
to deal with.

In Section 3.2, the problem of selection and ranking with
nonparametric subset selection procedures is formulated and notations

and definitions including proposed procedures are given.

e ..j\'
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In Section 3.3, we evaluate those procedures and compute

constants which are necessary to carry out the procedures. Also

S I I

the score function which leads the procedures to be locally optimal
in the neighborhood of some points is introduced and evaluated.

A Monte Carlo study for the optimal choice of the score function
is carried out in Section 3.4. This study indicates that the score
function based on uniform distribution is optimal and robust against
possible deviations from the underlying distributions. Also the
score function which is a weighted sum of ranks turn out to be
optimal for some procedures. Furthermore, it shows that the Gupta-
type procedure is aimost uniformly better than another available
procedure. This is not the same conclusion as that in Gupta and
- McDonald (1970 ). The reason why these results are different is

due to the lack of number of simulations in Gupta and McDonald
¢ ( 1970) for various underlying populations. Also it is due to the
fact that they only use the rank sum statistics. Some tables
including the values of score functions are constructed. Also some

tables containing the results of simulations are provided.

Ny

3.2 Formulation

Let mpso.oumy be k(> 2) independent populations and let X. be

an observable characteristic of T i=1,2,...,k, respectively.
Assume that a random variable Xi follows a continuous distribution
F(-]ei), and that the family {F(-|e)} is stochastically increasing in
6. Here we assume that the 6, are unknown location parameters. Let
f Xij’ j=1,...,n be n independent random observations from

L] - - ~ - - - - - . ) - - A J Yo K3 ‘e
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" i=1,2,...,k. Let Rij denote the rank of the observation Xij

in the pooled sample of kn observations. Define

n
(3.2.1) nH; = ] a(R..), 1= 1,2,...,k,

where a(r) is a score function defined by
- = < a(r) = E(T(r)16) < =,

where T(1) < T(2) <...< T(N) is an ordered sample of size N = nk from
a continuous distribution G. Let e[]] - 6[2] <enn< e[k] be the
ordered ei's. Since the family {F(x!&)» is stochastically increasing

in &,

Fxlopyg) 2 Flxloppy) 2oo-2 F(x]op,q)

for any x ¢ IR1.
The populationr associated with e[k], i.e. F(xie[kj), is called

W the best. In case several populations have the same largest value

e
R B

e[k], randomly one of them is tagged as the best. Our goal is to

)
a“v e
o7

»
HL

select a subset which contains the hest with the usual regquirement

..
»

"
]

on the probability of a correct selection (PCS), i.e., for any

procedure R,

(3.2.2) inf P (CSIR) » P*,
6en -

an where {. = {gl¢e = (e?,...,ek), “ e B?ki is the parameter space.
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Gupta and McDonald (1970) proposed procedures R](G) and R3(G),
which choose a subset containing the best, and which depend on the

. : choice of G, as follows:

3 R](G): Select T if and only if Hi > max Hj-d, i=1,2,...,k,
N J
and

R3(G): Select m; 1f and only if H,

$20 1= L2k,

where d(> 0) and D(- « < D < =) are chosen so as to meet the P*-

% VOIS

condition.
Note that rules R](G) and R3(G) are equivalent if k = 2. Also
A} the rule R3(G) may select an empty set. A usual choice of G is a
{- uniform distribution which is appealing because of simplicity.
p Let (i) be the population associated with e[iJ' It is easy
3 to see that, for rules R,(G) and R,(G).
s
-
.’ (3.2.3) Pr(CS|Ry(G)) = Pr(H,, . > max H .,y - dy J =1,...,k-1)
2 1 (k) = j (3)
and
(3.2.4) Pr(CS|R3(G)) = Pr(H(k) > D),
where H(i) is the Hf associated with n(i), i=1,2,...,k, respectively.
3 3.3. Comparison of the Procedures R](G) and R3(G).
In order to compare R](G) and R3(G) for various choices of G,
:j we need first the results relating to the infimum of the PCS and
g
j evaluation of necessary constants.
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3.3.1. PCS for R](G) and R3(G) and Evaluation of Associated Constants
:; We state below (without proof) the results regarding the
-
‘; infimum of PCS for ruies R1(G) and R3(G) obtained by Gupta and
")
' McDonald (1970).
f Theorem 3.3.1. For procedures R1(G) and R3(G),
- (3.3.1) inf P (CS[R;(6)) = inf P (CS|R;(G)), J = 1.3,
geq - b€y -
- and further, for the procedure R3(G),
- (3.3.2) inf P_(CS|R,(G)) = inf P_(CS|R,(G)),
»- 9 3 & 3
%Q - %QO -
- where o, = {6 € Qle[k_]J = Oryyt and Ly = 18 e :!9[1] ERER AR
P Remark: When ¢ € 9,, procedures R,(G) and R3(G) are distribution-
! free in the sense that the distributions of the statistics
max H, - Hi and Hi do not depend upon the underlying distribution
1<j<k
F(-]e).
5 In general, the least favorable configuration (LFC) of the rule
ﬁ: R1(G) 15 unknown except for k = 2; however, it is known (see Rizvi
T and Woodworth (1970 )) that the LFC need not occur in Gg- In order
£ to compare rules R](G) and M3(G), for various choices of G, the
:f constants d and D are chosen to yield approximately the same P* when
,
- 8 € 95. The ratio EFF(R) = P(CSIR)/E(SIR) is used to compare the
o rules, where E(S|R) is the expected size of the subset selected.
:: Now, taking G to be a symmetric lambda distribution with
i: Jocation parameter a, scale parameter ¢ and shape parameter v, for
| ]

)

~. . .
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& € Gy, we have the following:

(3.3.3) a(r) = E(T(r)|6)

- T(N+1) %T(r+y)F(N r+1)=T{(r)r(N+y- r+])$
sr(r)r(N r+1) T{N+y+])
N
(3.3.4) 1 a(r) = aN,
r=]
and
(3.3.5) 'Z(H'k
«Dde .i:]i ax.

Now, let a(r)

(3.3.3)

e+t . When N = 2m+1, m > 0, we have from

Somt1 = “Eyseeeabpun T <Epe Epyy = 0.

In this case, we obtain

(3-3-6) E(Hi) =,
2 N(k-1) N 2
(3.3.7) n“Var(H,) = —EL—~—1 }oes,
T ke (N-1) jEme2 I
N
2 -2'-2 2 c§ ZN(n-1
(3.3.8) n“Cov(H; ,H;) "?%ﬁfTT‘ a.ﬂi%:_l,
and
(3.3.9) - o7 < Cov(H;Hy) < 0.

On the other hand, when N = 2m, m > 0, we get

R I

.'y.\'\\.'u\\

-.n

. ~-'.-.. \\
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Consequently, in this case also we obtain results (3.3.6) through
(3.3.9) except that the summztions in (3.3.7) and (3.3.8) will be
from m+1 to N instead of m+2 to N.

Gupta and McDonald (1970 ) derived the exact distribution of
]TgikH. - H; for the case of a(Rij) = Rij for k = 3 and n = 2(1)5.

Also, for a(Rij) = R,., H, is the well-known Mann-Whitney U-statistic.

ij? i
But in general the distribution of max H, - Hi is not known since

1<j<k
it depends on G. However, with a(r) defined as in (3.3.3), for
k=3and d > 0,

Pr{ max H. - H, < d} = Pr{H

-H, < d, Hy-H, < d}
1<j<3 2 1 = 371 =

can be evaluated on the computer. Without loss of generality, one
can assume that « = 0. Table II1.1, Table I11.2, and Table 111.3
provide, respectively, the values of a(r), d-values for the procedure
R1(G), and D-values for the rule R3(G), respectively, for k = 3,

n= 3,5, and (8, v) = (0.57735, 1.00000), (0.19745, 0.13491),
(-0.0006589, ~0.0003630), (-0.16857, -0.080199). 1In Tables II1.2

and III.3, we choose P* = (.75, 0.90, 0.95, 0.975 and 0.99. The

four choices of (&, v) specified above correspond to the cases

where the lambda distribution can be used to approximate uniform,
normal, logistic and double exponential distributions, respectively,

each with mean 0 and variance 1. Accordingly, these choices are

denoted in the tables by U, N, L, and D, respectively.
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Finally, we briefly discuss how approximate values of d and D can

p ' be obtained using asymptotic theory.
Theorem 3.3.2. For 6 € 94 and for the rule R,(G),
PCSIR,(6)) = [ oK T(x + %) do(x),

where vz = Var(Hi) - Cv, Cv is common covariance between Hi and Hj for

i % j, and ¢(x) is the cdf of a standard normal distribution.

Proof. By checking Lindeberg's condition, one can show that

nHi/JVar(HiS-CV is asymptotically normally distributed. Hence the

result follows.

The value of d satisfying

§7 kT (x + 19y do(x) = P

-00

can be obtained from the tables of Gupta (1963), Gupta, Nagel and
Panchapakesan (1969) or Gupta, Panchapakesan and Sohn (1985), who have
tabulated h = nd/v/2v.

Similarly the following theorem holds for the rule R3(G).
Theorem 3.3.3. For ¢ ¢ Qq and N = 2m+1,

- ok
P(CSIR4(G)) = o7 (<)

E where wl = —gféll%y En g2

- ) nk(kn- jeme2 )

Proof. Proof is analogous to that of Theorem 3.3.2 and hence omitted.

From the above theorem, we have D = ¢'](an*]/k).

o s & 8 t U
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3.3.2 Evaluation of Constants for R](G) and R3(G) using scores aagg).

In this section, we use a score function aa(r) (to be defined
later) in the rules R](G) and R3(G) and evaluate the associated
constants d and D.

In order to define the scores a5(r), consider the density d{x,%),
€@, Oon an interval containing the origin, satisfying the following
regularity conditions.

(i) d(x,e) is absolutely continuous in ¢ for almost every x:

(i1) the limit
d(x,0) = Tim L [d(x,8) - d(x,0)]
6-+0

exists for aimost every x:

(111) 19m [ [d(xs5)[dx = [ [d(x,0)|dx < =
60 =oo

holds, with &(x,e) denoting the partial derivative with respect to ¢.
Note that the existence of &(x,e) for almost every ¢ is insured at
every point x such that d(x,s) is absolutely continuous in 6. This,
however, does not make the condition (ii) superfluous.

In deriving locally most powerful tests for equality of location

Gupta, Huang and Nagel (1979) used the score function aa(r) defined by

fyr)
(3.3.10) ex(r) = E i 0)
-2 0 IR
d(XN ,0)
where Xér) denotes the r-th order statistic in a sample of size N from

the distribution with density d(x,0). For the location parameter case,

aa(r) can be written as
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"y
( 1 4
¥ f(F"'(U,.y,0),0)
: (3.3.11) ag(r)= £ { ———(r) { ’
where U(r) denotes the r-th order statistic in a sample of size N
~ from the uniform distribution. Now, specifying d(x,8) to be the
; symmetric lambda density with parameters 2(location), y(scale) and
. (scale), we obtain
] _ o r=1 i  aN-Tr v q_,y7-2
j N(N :‘l) B(Yi)u (] ul Q‘ J U) ) du, 830.

o Yo e (1-0) Y12
ag(r) =

¥ TR WA

1 r-1 N-r, y-1 =
N-1y (-8)(y-1 1- (W -(1-u)?
jO N(eoq) : YJZl(JuY'%H:-)-u)Y-#YT Qo) ) du, 8<0.

For k = 3, n = 3,5, and selected values of (&,y) which were

! denoted by U, N, L and D earlier in Section 3.3.2, the values of aa(r)
% are tabulated in Table III.4. For the same values of k, n and (8,Y),
-, the constants d and D are given in Tables III.5 and III.6, respectively,
. with P* = 0.75, 0.90, 0.95, 0.975, 0.99 in each case.
A

) Remark: Nagel (1970) and Gupta, Huang and Nagel (1979) have derived
- locally optimal subset selection procedures. It follows from their

. results that the rule R3(G) is lTocally optimal in the sense that the

:1 rule maximizes the PCS in a neighborhood of any 6 €qy among all rules
- which satisfy inf P(CS|R) = P*.

€ «'—0

-
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3.3.3. Comparisons of the Procedures R1(G) and R3(gl.

As we have stated in Section 3.3.1, the procedures R1(G) and

R3(G) are compared in terms of EFF(R), which is used as a measure of

Puls s a8 & #

efficiency. A large value indicates high efficiency.

For a proper comparison of the two procedures, we should have the
constants d and D such that the two procedures will have the PCS
approximately equal to P* for € ¢ 2 - In our Monte Carlo studies with
k=3, this led to the choice of P* = .90, 0.95, 0.975 for n=3, and
p* = 0.75, 0.90, 0.95, 0.975 for n=5. Further, we considered normal,

logistic, and double exponential distributions all with variance 1, as

' PUIAIRAP PN

three possible choices of the underlying distributions. Let e], 62,

f 84 be the means of the three populations Ty Moy Mo We considered

4 four different configurations of g = (6],62,63), namely,

. 1: 8 =(0,0,0.1), IT: ¢

(0,0,0.5),

III: ¢

(0,0,1), IV: ¢

(0,0.5,1.0).

For comparisons using the score function a(r), we chose the four
- choices of the parameter (8,y) of the lambda distribution, referred to
by U, N, L, and D in Section 3.3.1. For comparisons using aa(r), the
choice of (&,y), denoted by UD, is made so that the lambda distribution
Y can be used to approximate the underlying distributions with variance 1.
: For each choice of the underlying distribution, random sampies
. were generated by using the random number generator RVP, developed
by Professor Rubin at Purdue University. Our results are based

on 1000 simulations in the case of n = 3 and 500 simulations in

% eyt
L.




v a3

the case of n=5., Table II1.7 is reproduced for the cases where the unde--
: lying distributions are normal and logistic distributions with the
" ' mean configuration II for (n,P*) = (3,0.90); the patterns in the other

case are similar.

Besides comparing the efficiencies of the rules R](G) and R3(G)
under each choice of G, we are also interested in comparing the
different choices of G for each rule. Based on the Monte Carlo study,
our conclusions are summarized below.

N (1) When the means are close to each other, no rule performs

uniformly better than the other when the underlying distributions are

% (AN

normal or double exponential; however, as P*s1, the rule R3(G) performs
slightly better than the rule R](G). With means close to each other,
the situation changes when the underlying distributions are uniform or
logistic: Then, the rule R3(G) performs almost uniformly better than

the rule R](G).

Cr s
o e

(2) When the largest mean is sufficiently away from the next
largest, the rule R](G) generally performs better than the rule RB(G)
no matter what the choice of G is. This behavior becomes more clear as
n increases. Also, when P* is close to 1, the difference in the perfor-
mances of the two rules narrows down, even though R1(G) still is better.

(3) Generally, the rule R1(G) performs better than the rule R3(G)

when the choices of G are the lambda distribution to be the uniform

B0
l.'_l LI 4

I

and the underlying distribution F (i.e., G is U or UD) both with var-

- iance 1.

; (4) Considering the efficiency of the procedure R1(G), the best
4

s choice of G is the lambda distribution which approximates the uniform
N
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distribution with unit variance (i.e., G is U).
¥ (5) For the rule R3(G), the best choice of G is the lambda distri-
j bution approximating the underlying distribution with unit variance.
) This is all the more clear when the underlying distributions are norma!

or double exponential with their means close to each other.

Considering all the findings of the study, the overall recommenda-
tions will be:

(1) When the means of the underlying distributions are expected
to be close to each other, use either the rule R1(G) with U as the
choice for G or the rule R3(G) with UD as the choice for G.

(2) When the largest mean is expected to be sufficiently away

from the next largest, use the rule R1(G) with U as the choice for G.
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Table III.1

Values of a(r) under 2 for k=3,
o where 0, = {8 € 2|8y = 6, = 64}

2 n a(r) u N L D

- 3 a(9) 1.38552 1.48669 1.49804 1.49582
a(8) 1.03914 0.93118 0.87778 0.83529
a(7) 0.69276 0.57013 0.52348 0.48933
a(6) 0.34638 0.27334 0.24800 0.22992
a(5) 0 0 0. 0.

. 5 a(15)  1.51541 1.73896 1.79233 1.81764

§ a(14)  1.29893 1.24834 1.20149 1.15027

~ a(13)  1.08240 0.94605 0.88346 0.83506

i a(12)  0.86595 0.71257 0.65382 0.61080

- a(11)  0.64936 0.51350 0.46595 0.43213

) a(10)  0.43298 0.33363 0.30065 0.27756
a(9) 0.21649 0.16441 0.14759 0.13591
a(8) 0. 0. 0. 0.

ote For n=3, a(i) = -a(10-i), i=1,...,4 and for

n=5, a(i) = -a(16-i), i=1,...,7.

A A




Table III.2

d-values of the procedure R] (G) under

2 = 18€ nlel=ez=e3} for k=3

U L D
p* 3 5 3 5 3 5 3 5
0.75 2.423 3.156 2.431 3.173 2.402 3.135 2.388 3.094
0.90 3.809 4.887 3.644 4.825 3.597 4.750 3.538 4.684
0.95 4,501 5.843 4.264 5.744 4.227 5.648 4.114 5.556
0.975 4.848 6.619 4.747 6.490 4.644 6.370 4.545 6.249
0.99 5.194 7.485 5.131 7.288 5.026 7.124 4.920 6.984
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Table 111.4

Values of aa(r) for some values

of (g,v) and n=3,5

aa(r) N L D
a6(9) 0.95367 3997.81042 18.30010
aa(B) 6.96000 2999.62692 14.97188
a6(7) 4.31341 2000.12774 10.39644
66(6) 2.08126 1000.15792 5.30546
a5(5) 0.0 0.0 0.0
aB(]S) 2.76184 4371.83812 19.28142
a6(14) 9.24459 3748.92094 18.05537
a6(13) 7.09456 3124.76751 15.75637

*aﬁ(]?) 5.39158 2500.15400 12.98432
a6(11) 3.90891 1875.28911 9.93465
aa(IO) 2.54966 1250.26286 6.71000
66(9) .25921 625.15168 3.38000
a6(8) .0 0.0 0.0

Note n=3, az(1) = -a3(9),...,a5(4) = -ag(6). Also for
n=5, a = u¢6(15,...,a6(7)= -a6(9).
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Table 1I1.5
Values of d of the rule

RI(G) with aa(r)

n p* N L D

3 0.75 18.05 6996.0 33.47
0.90 27.09 10994.0 52.07
0.95 31.50 12994.0 62.17
0.975 35.35 13996.0 69.02
0.99 38.04 14996.0 74.33

5 0.75 23.51 9368.0 44.30
0.90 35.74 14365.0 67.90
0.95 42.59 16868.0 81.24
0.975 48.15 19365.0 92.2)
E 0.99 54.10 21865.0 104.62
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Table II1.5
- Values of d of the rule

R](G) with a5(r)

n p* N L D
y
f 3 0.75 18.05 6996.0 33.47
0.90 27.09 10994.0 52.07
; 0.95 31.50 12994.0 62.17
; 0.975 35.35 13996.0 69.02
3 0.99 38.04 14996.0 74.33
: 5 0.75 23.5) 9368.0 44.30
5 0.90 35.74 14365.0 67.90
sy 0.95 42.59 16868.0 81.24
; 0.975 48.15 19365.0 92.21
0.99 54.10 21865.0 104.62
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Table II1.6

Values of D of the rule

Ll RO i f

R3(G) with aa(r)

n p* N L D

3 0.75 ~-6.96000 -2997.84061 -13.20912
;{ 0.90 -13.18583 -4997.96834 -23.60556
0.95 -15.83242 -5999,91257 -30.67377

‘ “‘". ’ 'A‘ '_3 .e

0.975 -17.91368 -6998.09608 -34.00199
0.99 -22.22709 -8997.56508 -43.66842

5 0.75 -9.20044 -3746.81187 -16.98243
o 0.90 -16.89421 -6870.99386 -32.07069
0.95 -21.33906 -8125.32180 -40.66679
R 0.975 -25.02452 -9996.04816 -47.27144
- 0.99 -29.05684 -11249.13155 -56.14283
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CHAPTER 1V
A TWO-STAGE PROCEDURE FOR SELECTING THE
BEST AMONG GOOD POPULATIONS

4.1. Introduction

Since the early work of Bechhofer, Dunnett and Sobel (1954)
on the two-sample (two-stage) problem for selecting the population
associated with the largest unknown mean from k (> 2) normal
populations, several types of two-stage procedures have been
studied. Among them elimination type procedures, which select a
subset of populations of interests at stage 1 and finally select the
best population at stage 2, are important. Under the non-~Bayesian
formulation Alam (1970) has studied the known variances case and
Tamhane and Bechhofer (1977, 1979 ), using a minimax criterion,
also have studied the known variances case. Gupta and Kim (19ga )
and Tamhane ( 1975 ) have considered the common unknown variance
case. Recently Gupta and Miescke ( 1982, 1983 ), among others, have
studied the problem under the decision-theoretic Bayesian framework.

In this chapter, we propose an elimination type procedure under
the Bayesian setting. At stage 1 we use a noninformative prior for
unknown parameters. To select the best population at stage 2, we
use a stopping rule to construct a 100(1-2a)% Highest Posterior

Density (HPD) credible region with a common width 2d.




...............

In Section 4.2 we give notations and definitions including the

definition of the 100(1-2a)% HPD credible region.

In Section 4.3 we propose a procedure R{a,d) which selects the
best after retaining a subset of populations at stage 1 and

investigate its properties.

4.2. Framework

Let LARRERELI be i ‘ndependent normal populations with

unknown means 61,...,ek, respectively and unknown common variance

2 2
o

(0 < ¢© < «). Also let a random variable X; be the observable

characteristic associated with LR For i = 1,2,...,k, let

X: = (Xi1""

X; ) be a vector of n independent observations from

’Xin
LY i=1,2,...,k, respectively. Assuming that very little is

known to the experimenter about the prior distribution of (&],62,..q

B 02), we may use a locally uniform joint prior density

2

2y _ - 2 . . . .
r(e],ez,...,ek,c ) = o I(O,w)(c ), which is also a noninformative

prior for the model, where IA(x) is the usual indicator function.

" Let 11(91,...,ek151,...,§ be the marginal joint posterior

K
distribution of ¢' = (61,...,ek) given X' = (X],...,Xk).

;; T is seid to be 'good' ('bad') if &, 2 €g (ei < eo),
where 60 is a control or standard which is specified a priori by
2 the experimenter. Let §(]) (X) = (6%1)(51),...,6£1)(§k)), where

ég])(gi) is a nonrandomized decision rule for n, at stage 1, i.e.,

6(1)(51) = 1 if s is accepted as a good population and

i
Gg])(gi) = 0 if T is rejected as a bad one. Let the loss function

.............................. PSR RS A R A
PR R e e s N T e T e

......... “ L T I R I I, P

PRPAE WAL WA WU S WA SRS W WP PRI A L W P W Pl W W P WP I AP B S |




{0 o A MNP A A S A R R R M SO A SRR A S e M S0 et Sl Mt A S S PRI e SN W kSO Y 'f‘ft:'('l‘l"

105

L<1)(g, g(])(g)) at stage 1 be as follow:

(1 1
Ly )(91’5§ )(51)),

"oy x

(4.2.1) L0 (6,5 (x)) =

i=1

where Lg])(ei, égl)(gi)) is loss due to the decision 6§])(§1) about

T such that

if 61 (x.)

ko i =i

1 and 6, < £g

@.2.2) LMLl = iy i slDx) =0 and e > ¢

0 otherwise,
in other words, a loss due to selecting each bad population is k0

and a loss due to rejecting each good population is k].

Remarks:

One might question the suitability of a 1loss of this kind in
this problem. However, a loss function of this kind can be proper
for the two-component decision problems, because the loss function
of this kind can reflect the importance of two types of possible
misclassification errors. For our situation, at stage 1, we 'only'
want to classify populations into possible good and bad populations.
Thus at stage 1 our problem can be regarded as the k two-component
decision problems. Problems of this type have been investigated by
Lehmann (1957).

Let our final nonrandomized decision 6(2)(!) at stage 2 be
6(2)(!) = {j: j €S, where Y' = (!],...,!S) are combined samples

from stage 1 and stage 2 for populations in S where S is a selected
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subset at stage 1 with size s. Let a loss due to the decision

6(2)(!) be

(2) (2)(yyy =
(4.2.3) L7508, 627(Y)) = Tte, # opyq)s

Now we give the definition of the 100(1-2a)% HPD credible

region which we will use at stage 2.
Let 11(e|5) be the marginal posterior density of e given X.

Definition 4.2.1 (see Berger (1980)). The 100(1-2a)% HPD credible

region for 6 is the subset C(]-Zu) of the parameter space @ of the

form

(4.2.4) C(]-Za) = {6 €0; T](e“_( = )_S) > &23}9
where o is the largest constant such that

(4.2.5) Pr(C(]_zu)IX = x) > 1-2a.

Remark:

If 1,(e]X) is not unimodal, then the credible region C(]_zu)

may consist of several disjoint intervals.

4.3. Goal and a Proposed Procedure R{a,d)}.

Assume that no knowledge is available concerning the correct
pairing between populations and the ordered ei's. Our goal is to
select the population associated with the largest unknown mean, if

any, from the set of good populations. The procedure R(a,d) is

designed to meet the goal.
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4.3.1. Definition of the Procedure R(a,d).

Stage 1. Take ng = max{2, [Z(]_u)/d] + 1} observations from
each population ;> Where Z(]_a) is the 100(1-a) percentile of the
standard normal distribution and [a] is the largest integer < a.
Note that 2d corresponds to the width of the 100(1-20)% HPD credible
region for e, which is to be specified by the experimenter.

Now based on first stage samples, we select a subset S by the

following rule.

At stage 1, for i = 1,2,...,k, 6{1)(X;) = 1 if and only if

where GV(-) is the cdf of a Student's t distribution with v = k(no-l)
n
0
degrees of freedom, X. = J
=]

5 1 Xij/n0 and

n

v2 - E zo(x..-i.)z/kn (na=1).

i=1 397 ij "i 0''0

Now with a selected subset S with its size s,
(1) if s = 0, we decide that none of the populations are good and
stop,

(2) if s = 1, we decide that the population selected is the only
good one and hence it is the best and stop.

(3) if s > 2, we proceed to stage 2.

Stage 2. Take one observation at a time from each population

in S ti11 N-n, observations are taken such that

0
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) (4.3.1) N =infin: n > maxing, [t2vi/a%q)e3,

X

2 where t_is the 100a lower percentile of the Student's t distribution
N

¥ with q = (k-s)(no-l) + s(n-1) degrees of freedom and

n

v V2 - io(x 502+ 3 5 (N, - %)% and ¥ = Y,/
Y o= X .. = Y.)", an , = . /n.
3 1 i%s j=1 ij i i€s §=1 ij i i i ij
:ﬁ Then our final decision at stage 2 is

5 62(Y) = (j: j€Sand T, = max V3,
S DY O
% that is, to select the population associated with the largest
- overall sample mean and claim it to be the best population among
;Q good populations.

:ﬂ 4.3.2. Properties of the Procedure R(a,d).
- It is easy to verify that the marginal joint posterior joint
'f; density 11(61,...,ekl§1,...,§k) at stage 1 follows a multivariate t
;3 distribution with variance-covariance matrix W = VZI, where I is a
- kxk identity matrix. Hence the marginal posterior density of 6
Cﬁ given X,,...,X, at stage 1 follows a Student's t distribution with
t'.i' k(no-'l) degrees of freedom, a location parameter )‘(,i and a scale

:# parameter V. Similarly, at stage 2 the marginal posterior density
- of e, of =, in S given {X;, i ¢ S} and Y follows a Student's t

?j distribution with q = (k-s)(n0-1) + s(N-1) degrees of freedom, a
- location parameter V. and a scale parameter Q, where

K n

- 0 N

(s =82+ 11 (Y- 7.)?
(4.3.2) 2 - 18 3 J i€S §=1
. . qN

N

X

.

'f.

L.

e e QAN -\:.s NPT
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Hence the following theorem holds.

Theorem 4.3.1. The stopping rule N provides the 100(1-2a)% HPD
credible region with a common width 2d for each selected population

at stage 1.

Proof. The proof is straightfoward and hence omitted.

Remark :
Since the loss L(1)(g,§(1)(5)) at stage 1 is linear and
additative, the decision rule §(1)(§) is Bayes. This follows from the

(1) . <
fact that E(Li (ei’ an) koPr{ei < eolx} and

E[Lgl)(ei, oN] = k]PT{ei > eol§}, for i = 1,...,k, respectively.

Theorem 4.3.2. Let n = o°2%,_,/d°. Then for a fixed o%(0 < o < =)

and the stopping rule N,
(a) N/n~+1 a.s. as d=-0
and

(b) 1im E(N/n) = 1  (asymptotic efficiency).
d-0

Proof. From the definitions of "o and N, one can get the following
inequalities;

t 22 t2v

[+

(4.3.3) a1 N<-2
dq d

2 5
1 + (]8(’1) + 4-
q

2 2

Since e and N - « as d - 0 hence S + ¢ a.s.. Thus (a) and

(b) follow.
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To examine the performance of the procedure R(a,d) a Monte
Carlo study was carried out for k = 5, o = 0.025, 0.05 with 300
simulations. To generate normal random variates with common
variance 1, the random number generator RVP developed by Professor
Rubin was used. As underlying configurations of means (supposed
to be unknown to the experimenter), we chose four different

configurations with d = 0.4, namely,

(1)
(111)

[ Xe o]
]

(-0.2,0,0,0.2,0.4) (11)

1@
"

(-0.2,-0.2,0,0.2,0.4)

I
1}

(-0.2,-0.2,0,0,0.2) (IV)

[ e ol
[}

(-0.2,-0.2,-0.2,0,0.2).

The value of eo was supposed to be 0. As a special case under the
configuration (IV), d = 0.2 was also chosen and is called configura-
tion V. Basically four statistics were simulated: (a) the expected
subset size S at stage 1 (E(S)), (b) the exbected value of the overall
sample size N (E(N)), (c) the expected loss at stage 1 (E(L1)) and (d)
the probability of selecting the population associated with the larg-
est mean (PSB). For the loss function, (ko,k1) = (1,1), (1,2), (2,1},
(1,5) and (5,1) were considered. The results are shown in several

figures, where each figure contains five different configurations for

a = 0.025. In each of four figures, the abscissa is the ratio
ky/kg. Thus Figure 1 is E(S) versus ky/kgs Figure 2 is E(N);
Figure 3 is PSB; and Figure 4 is E(L1). Figures for o = 0.05 are

similar to these figures drawn for o = 0.025 and hence are omitted.

The results indicate:

(1) As k.l/k0 increases, the values of PSB increases.
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(2) 1In general, the value of E(N) increases as k../k0 increases.
(3) Vvalues of ky/kg are irrelevant to the values of E(L1).

(4) When the number of good populations among five populations
decreases, the value of E(S) decreases but the value of E(L1)
increases slightly.

(5) When the value of d decreases, the value of PSB increases.
But when the overall sample size required and the value of E(S) are
taken into consideration, the rule R(e,d) does not provide vast
improvement on PSB. This is mainly due to the fact that an
elimination-type procedure cannot recover the best population at
stage 2 if it has been eliminated at stage 1.

(6) For fixed values of the ratio ky/kgs as the distance between

the largest mean and the smallest mean increases, the values of PSB

increase and the values of E{L1) decrease (slightly).
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Figure 1. E[S] versus the ratio k]/k0
for five configurations.

Legend of Configurations

(1) (-0.2,0,0,0.2,0.4) with d

6 = = 0.4
< (11) ¢ = (-0.2,-0.2,0,0.2,0.4) with d = 0.4
A (111) e = (-0.2,-0.2,0,0,0.2)  withd = 0.4
C (1v) ¢ = (-0.2,-0.2,-0.2,0,0.2) with d = 0.4
- (V) e-=(-0.2,-0.2,-0.2,0,0.2) with d = 0.2
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or five configurations.

Legend of Configurations

(1) ¢ = (-0.2,0,0,0.2,0.4) with d
< (1D (-0.2,-0.2,0,0.2,0.4) with d
Zu (11T1) (-0.2,-0.2,0,0,0.2)  with d
‘:, (IV) ("O~2,“0.29"0-2|°.0-2) With d
v (-0.2,-0.2,-0.2,0,0.2) with d
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Figure 3. PSB versus the ratio k1/kO
for five configurations.
Legend of Configurations
T (I) e=(-0.2,0,0,0.2,0.4) with d = 0.4
< (1) g = (-0.2,-0.2,0,0.2,0.4) with d = 0.4
L (111) ¢ = (-0.2,-0.2,0,0,0.2)  with d = 0.4
C (1) ¢ = (-0.2,-0.2,-0.2,0,0.2) with d = 0.4
 (v) e=(-0.2,-0.2,-0.2,0,0.2) with d = 0.2




Figure 4. E[L1] versus the ratio k.'/k0
for five configurations.

Legend of Configurations

= (1) e =(-0.2,0,0,0.2,0.4) with d = 0.4

& o(11) g = (-0.2,-0.2,0,0.2,0.4) with d = 0.4

A (111) ¢ = (-0.2,~0.2,0,0,0.2) with d = 0.4

@ (1v) ¢ = (-0.2,-0.2,-0.2,0,0.2) with d = 0.4

D (V) 9 = ('002,‘0-2,'002’0’0.2) with d = 0.2
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