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Algebra Queries into QUEL
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Dennis F. Blumenthal

May 1985

Chairman: Dr. Stanley Y. W. Su
Major Department: Computer and Information Sciences

An-algorithm for translating relational algebra query

trees into QUEL is ktsented. The algorithm i% used to

process queries in a distributed, heterogeneous data base

management system used to support computer integrated

manufacturing. A node-by-node translation algorithm as well

as an optimal algorithm which uses minimization techniques

is presented. A general discussion about implementation is

also included.
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CHAPTER I
INTRODUCTION

Computer integrated manufacturing (CIM) is an important

goal of current manufacturing research underway at the

National Bureau of Standards (NBS). A general discussion of

that work is found in [Sim82]. The objective of CIM is to

autcmate all phases of manufacturing, ranging from engi-

neering design and analysis, to parts machining and

materials handling, and to integrate them into a system

which also supports automated management functions, such as,

process planning, shop scheduling, and inventory control.

Achieving this goal will undoubtedly facilitate factory

management, permit more even utilization of resources, and

result in increased productivity and reduced operating

costs. Comprehensive introductory material to batch

manufacturing is found in selected articles published in

[IEE83].

To accomplish CIM, it is essential to integrate and

manage the large body of data which comprises the manufac-

turing database. This database consists of many types of

data which cannot be easily included in a single database

manacement system (DBMS). Current automated manufacturing

systems utilize autoncmous data management resources of
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varying complexity, ranging from simple file management

systems to sophisticated database management systems. These

systems usually differ from each other, not only in their

internal data representation, but more importantly in their

underlying data models, data definition languages (DDL) and

data manipulation languages (DML). Discussions about DBMS

architectures for manufacturing systems are found in [Bee83]

and [Mac83]. A discussion on the use of homogeneous and

heterogeneou6, distributed data management systems is found

in [Bee83]. In [NBS85] a heterogeneous, distributed DBMS,

called Integrated Manufacturing Data Administration System

(IMDAS), is proposed for the Automated Manufacturing

Research Facility (AMRF). A description of the AMRF is

found in [Sim82], [Mac82), and [Mac83].

In order to share a heterogeneous database through a

network, it must be represented through a global schema that

incorporates logical units which can differ in local struc-

ture and content. The IMDAS architecture of [NBS85]

introduces a three-view concept of distributed data and is

shown in Figure 1. A global external view is a given

component system's view of the distributed database. It

contains entities and associations of interest to the

component system. The global conceptual view is the inte-

gration of the global external views and is the view of all

the data which comprises the manufacturing database.

Fragmented views ccntain occurrences of the global concep-

tual entities and associaticns which are partitioned or

-. ,° ° .. ° .. V ~. . . . . . . .
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replicated across the component systems. Ultimately, any

fragmented view is mapped into the particular internal

representation of the local subsystems which support it.

Global External Views

Global Conceptuadl View

Fragmented iews

Figure 1: Distributed database architecture.

When a component or user needs to access data in the

manufacturing database, it issues a network query, in a

common language, against one of the global external views,

which then undergoes translation so it can be processed by

one or more local data management subsystems. We note here,

that a distributed system without a common query language

and n local subsystems, requires a total of (n-l)n trans-

lators, while an equivalent system with a common query

language only requires a total of 2n translators.

The work presented in this/paper deals with the

development of an algorithm required to translate queries
_ /

from IMDAS', intermediate representation, relational algebra,

into QUEL, the query language of the INGRES subsystem.
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RANGE OF r IS PART
RETRIEVE INTO TEMP (r.ALL) WHERE r.weight < 15

Figure 19: Selection example in QUEL.

Union

Given two relations, R and S, which are union compati-

ble, it is possible to derive a relation, T, such that

R and S are partitions of T. The union operation can be

accomplished in QUEL as shown in Figure 20.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO X (r.ALL)
APPEND TO X (s.ALL)
RANGE OF t IS X
RETRIEVE INTO T (t.ALL)

Figure 20: Union in QUEL.

The last two lines in Figure 20 are used to eliminate

duplicate tuples which may be present after the execution of

the APPEND statement. Duplicate tuples are only allowed in

INGRES when relations are stored as heaps, as is the case

with temporary relations.

The QUEL sequence for PARTI UNION PART2 is shown in

Figure 21.

RANGE OF r IS PART1
RANGE OF s IS PART2
RETRIEVE INTO TEMPI (r.ALL)
APPEND TO TEMPI (s.ALL)
RANGE OF t IS TEMPI
RETRIEVE INTO TEMP2 (t.ALL)

Figure 21: Union example in QUEL.
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RANGE OF r IS R
RETRIEVE INTO S (r.A1, r.A2, . . . , r.Ak)

Figure 16: Projection in QUEL.

The QUEL sequence for the example, PART[color, partno],

presented in Chapter II, is shown in FigLre 17.

RANGE OF r IS PART
RETRIEVE INTO TEMP (r.color, r.partno)

Figure 17: Projection example in QUEL.

Selection

Given a relation, R, it is possible to derive a rela-

tion, S, such that its tuples are a horizontal subset of R,

for which the selection criterion, Q, is true. Q is a

logical predicate which compares at least one attribute of R

with another attribute of R or with a constant. The selec-

tion operation can be accomplished in QUEL with the sequence

shown in Figure 18.

RANGE OF r IS R
RETRIEVE INTO S (r.ALL) WHERE Q

Figure 18: Selection in QUEL.

The QUEL sequence for PART WHERE PAPT.weight < 15 is

shown in Figure 19.

. . . . . . .
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CHAPTER III
ALGEBRAIC OPERATIONS WITH QUEL

This chapter presents the QUEL sequences necessary to

accomplish all the algebraic operations presented in Chap-

ter II. QUEL, the query language of INGRES, is based on the

relational calculus and is relationally complete as proven

in [Cod72J. The syntax for QUEL is found in [Sto761 and

[Woo~l], and is summarized in graphical form in the Appen-

dix, a subset of [RT184). Although QUEL is relationally

complete, it is not always possible to represent each

algebraic operation with a single QUEL statement. The proof

that the QUEL sequences presented in this chapter accomplish

the relational operations is not presented but can be

derived from the material presented in [U1182].

Projection

Given a relation, R, with n attributes, it is possible

to derive a relation, S, such that its tuples are defined on

a vertical subset of attributes, Al,A2, . . . Ak, belonging

to R. The projection operation can be accomplished in QUEL

as shown in Figure 16.

i5
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(pl, nut, red, 12, London, sl, Smith, 20, London)
(pl, nut, red, 12, London, s4, Clark, 20, London)
(p2, bolt, green, 17, Paris, s2, Jones, 10, Paris)
(p2, bolt, green, 17, Paris, s3, Blake, 30, Paris)
(p4 , screw, red, 14, London, sl, Smith, 20, London)
(p4, screw, red, 14, London, s4, Clark, 20, London)
(p5, cam, blue, 12, Paris, s2, Jones, 10, Paris)
(p5, cam, blue, 12, Paris, s3, Blake, 30, Paris)
(p6, cog, red, 19, London, sl, Smith, 20, London)
(p6, cog, red, 19, London, s4, Clark, 20, London)

Figure 14: Tuples of PART JOIN SUPPLIER WHERE
PART.city = SUPPLIER.city.

For example, PART NJOIN SUPPLIER OVER city yields the

tuples shown in Figure 15 which is similar to

PART JOIN SUPPLIER WHERE PART.city = SUPPLIER.city

except that the attribute, city, only appears once.

(pl, nut, red, 12, London, sl, Smith, 20)
(pl, nut, red, 12, London, s4, Clark, 20)
(p2, bolt, green, 17, Paris, s2, Jones, 10)
(p2, bolt, green, 17, Paris, s3, Blake, 30)
(p4, screw, red, 14, London, sl, Smith, 20)
(p4, screw, red, 14, London, s4, Clark, 20)
(p5, cam, blue, 12, Paris, s2, Jones, 10)
(p5, cam, blue, 12, Paris, s3, Blake, 30)
(p6, cog, red, 19, London, sl, Smith, 20)
(p6, cog, red, 19, London, s4, Clark, 20)

Figure 15: Tuples of PART NJOIN SUPPLIER OVER city.

... ... - . . .. . .- -, - -- , .--... .....- . --.. --.--.--. •.- .-.
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(sl, Smith 20, London, pl, nut, red, 12, London)
(sl, Smith 20, London, p2, bolt, green, 17, Paris)
(sl, Smith 20, London, p3, screw, blue, 17, Rome)
(sl, Smith 20, London, p4, screw, red, 14, London)
(sl, Smith 20, London, p5, cam, blue, 12, Paris)
(sl, Smith 20, London, p6, cog, red, 19, London)
(s2, Jones, 10, Paris, pl, nut, red, 12, London)
(s2, Jones, 10, Paris, p2, bolt, green, 17, Paris)
(s2, Jones, 10, Paris, p3, screw, blue, 17, Rome)
(s2, Jones, 10, Paris, p4, screw, red, 14, London)
(s2, Jones, 10, Paris, p5, cam, blue, 12, Paris)
(s2, Jones, 10, Paris, p6, cog, red, 19, London)
(s3, Blake, 30, Paris, pl, nut, red, 12, London)
(s3, Blake, 30, Paris, p2, bolt, green, 17, Paris)
(s3, Blake, 30, Paris, p3, screw, blue, 17, Rome)
(s3, Blake, 30, Paris, p4, screw, red, 14, London)
(s3, Blake, 30, Paris, p5, cam, blue, 12, Paris)
(s3, Blake, 30, Paris, p6, cog, red, 19, London)
(s4, Clark, 20, London, pl, nut, red, 12, London)
(s4, Clark, 20, London, p2, bolt, green, 17, Paris)
(s4, Clark, 20, London, p3, screw, blue, 17, Rome)
(s4, Clark, 20, London, p4, screw, red, 14, London)
(s4, Clark, 20, London, p5, cam, blue, 12, Paris)
(s4, Clark, 20, London, p6, cog, red, 19, London)
(sS, Adams, 30, Athens, pl, nut, red, 12, London)
(sS, Adams, 30, Athens, p2, bolt, green, 17, Paris)
(s5, Adams, 30, Athens, p3, screw, blue, 17, Rome)
(s5, Adams, 30, Athens, p4, screw, red, 14, London)
(s5, Adams, 30, Athens, p5, cam, blue, 12, Paris)
(s5, Adams, 30, Athens, p6, cog, red, 19, London)

Figure 13: Tuples of SUPPLIER TIMES PART.

...- -. . - .
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(pl, nut, red, 12, London, sl, Smith, 20, London)
(pl, nut, red, 12, London, s2, Jones, 10, Paris)
(pl, nut, red, 12, London, s3, Blake, 30, Paris)
(pl, nut, red, 12, London, s4, Clark, 20, London)
(pl, nut, red, 12, London, s5, Adams, 30, Athens)
(p2 , bolt, green, 17, Paris, sl, Smith, 20, London)
(p2, bolt, green, 17, Paris, s2, Jones, 10, Paris)
(p2, bolt, green, 17, Paris, s3, Blake, 30, Paris)
(p2, bolt, green, 17, Paris, s4, Clark, 20, London)
(p2 , bolt, green, 17, Paris, s5, Adams, 30, Athens)
(p3, screw, blue, 17, Rome, sl, Smith, 20, London)
(p3, screw, blue, 17, Rome, s2, Jones, 10, Paris)
(p3, screw, blue, 17, Rome, s3, Blake, 30, Paris)
(p3, screw, blue, 17, Rome, s4, Clark, 20, London)
(p3, screw, blue, 17, Rome, s5, Adams, 30, Athens)
(p4, screw, red, 14, London, sl, Smith, 20, London)
(p4, screw, red, 14, London, s2, Jones, 10, Paris)
(p4, screw, red, 14, London, s3, Blake, 30, Paris)
(p4, screw, red, 14, London, s4, Clark, 20, London)
(p4, screw, red, 14, London, s5, Adams, 30, Athens)
(p5, cam, blue, 12, Paris, sl, Smith, 20, London)
(pS, cam, blue, 12, Paris, s2, Jones, 10, Paris)
(pS, cam, blue, 12, Paris, s3, Blake, 30, Paris)
(p5, cam, blue, 12, Paris, s4, Clark, 20, London)
(p5, cam, blue, 12, Paris, s5, Adams, 30, Athens)
(p6, cog, red, 19, London, sl, Smith, 20, London)
(p6, cog, red, 19, London, s2, Jones, 10, Paris)
(p6, cog, red, 19, London, s3, Blake, 30, Paris)
(p6, cog, red, 19, London, s4, Clark, 20, London)
(p6, cog, red, 19, London, s5, Adams, 30, Athens)

Figure 12: Tuples of PART TIMES SUPPLIER.
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Conversely, SUPPLIER TIMES PART contains the tuples

shown in Figure 13.

Note that the product is not commutative since PART

TIMES SUPPLIER is not equal to SUPPLIER TIMES PART.

Join

The join of R and S, denoted by R JOIN S, is a subset

of the product obtained by selecting tuples from the product

which satisfy the join predicate. The join predicate is a

qualification statement which contains at least one pair of

attributes from each of the operand relations, connected by

one of the relational comparison operators: equal, greater

than, less than, not equal, less than or equal, and greater

than or equal.

For example, PART JOIN SUPPLIER WHERE PART.city =

SUPPLIER.city yields the tuples shown in Figure 14.

Note that the attribute city appears twice in the

result.

Natural Join

The natural join of R and S, denoted by R NJOIN S, is a

special case of the join operation. The natural join

differs from the join in that only the equality comparison

is used in the predicate and duplicate attributes referenced

in the predicate are omitted--all the other columns not

specifically referenced in the predicate are not omitted.
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For example, PART MINUS PARTI yields the tuples shown

in Figure 10. Conversely, PART1 MINUS PART yields an empty

set, since all the tuples from PARTI also exist in PART.

(pl, nut, red, 12, London)
(p4, screw, red, 14, London)
(p5, cam, blue, 12, Paris)

Figure 10: Tuples of PART MINUS PART1.

Product

Given R and S, relations of arity k and k2 respec-

tively, the product of R and S, denoted R TIMES S, is a

relation of arity kI + k2 containing the set of tuples whose

first kI components form a tuple in R and whose last k2

components form a tuple in S.

For example, if the relation SUPPLIER defined as:

SUPPLIER(supno, sname, status, city)

contains the tuples shown in Figure 11, then PART TIMES

SUPPLIER contains the tuples shown in Figure 12.

(sl, Smith, 20, London)
(s2, Jones, 10, Paris)
(s3, Blake, 30, Paris)
(s4, Clark, 20, London)
(s5, Adams, 30, Athens)

Figure 11: Tuples of SUPPLIER.

p\
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Intersection

If R and S are two union compatible relations of

arity k, then the intersection of R and S, denoted by

R INTERSECTION S, is the set of k-tuples which belong to

both R and S.

For example, if PART3 contains the tuples shown in

Figure 8 then PART2 INTERSECTION PART3 yields the tuples

shown in Figure 9.

(pl, nut, red, 12, London)
(p5, cam, blue, 12, Paris)
(p7, shaft, black, 20, Brussels)
(p8, lug, brown, 15, Paris)
(p10, washer, red, 10, London)

Figure 8: Tuples of PART3.

(pl, nut, red, 12, London)
(p5, cam, blue, 12, Paris)

Figure 9: Tuples of PART2 INTERSECTION PART3.

Difference

If R and S are two union compatible relations of

arity k, then the difference between relations R and S,

denoted R MINUS S, is the set of all tuples which are

contained in R but not in S. Conversely, S MINUS R, is the

set of all tuples which are contained in S but not in R. It

follows that DIFFERENCE is non-commutative, i.e. S MINUS

R # R MINUS S.

.. - . . . . o • -°
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when referencing attributes of the same name from different

relations.

Union

The union of relations R and S, denoted R UNION S, is

the set of tuples that belong to R, S, or both. The union

operation can only be performed when both relations are

union compatible, that is, they have equal arity and corre-

sponding attributes are drawn on compatible domains. The

result has the same arity as the operands and its attribute

names are the same as those found in the first operand.

For example, if PARTI = PART WHERE PART.weight > 15

contains the tuples shown in Figure 6a and PART2 = PART

WHERE PART.weight < 15 contains the tuples shown in

Figure 6b, then PART1 UNION PART2 has the tuples shown in

Figure 7.

(p2, bolt, green, 17, Paris) (pl, nut, red, 12 London)
(p3, screw, blue, 17, Rome) (p4, screw, red, 14, London)
(p6, cog, red, 19, London) (p5, cam, blue, 12, Paris)

(a) (b)

Figure 6: Tuples of PART1 and PART2.

(p2, bolt, green, 17, Paris)
(p3, screw, blue, 17, Rome)
(p6, cog, red, 19, London)
(pl, nut, red, 12, London)
(p4, screw, red, 14, London)
(p5, cam, blue, 12, Paris)

Figure 7: Tuples of PARTI UNION PART2.
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For example, PART[color, partnol yields the tuples

shown in Figure 4.

-' (red, pl)
(green, p2)
(blue, p3)
(red, p4 )
(blue, p5)
(red, p6)

Figure 4: Tuples of PART[color, partnol.

Selection

Given a relation R of arity k, a horizontal subset can

be defined on R, such that the occurrences of certain

components of the subset satisfy a logical predicate which

references only attributes of R [U1182]. The selection on R

is denoted R WHERE p, in which p is the logical predicate

and is also known as the selection criterion.

For example, using the PART relation, PART WHERE PART.

weight < 15 corresponds to the tuples of parts which weigh

less that 15 units, i.e. the tuples shown in Figure 5.

(pl, nut, red, 12, London)
(p4, screw, red, 14, London)
(pS, cam, blue, 12, Paris)

Figure 5: Tuples of PART WHERE PART.weight < 15.

Note that the attributes of a relation are referenced

using qualified names, i.e. the relation name, followed by a

period, followed by the actual attribute name. The purpose

of using qualified names is to minimize ambiguity, such as,

&,.

ii
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arity 5, could consist of the tuples shown in Figure 3 and

is expressed empirically as:

PART (partno, pname, color, weight, city)

where PART is defined on the f-mappings of Figure 2.

(pl, nut, red, 12, London)
(p2, bolt, green, 17, Paris)
(p3, screw, blue, 17, Rome)
(p4, screw, red, 14, London)
(p5, cam, blue, 12, Paris)
(p6, cog, red, 19, London)

Figure 3: Tuples of relation PART.

The algebraic operators which are used to manipulate

relations are: selection, projection, union, intersection,

difference, product, join, and natural join. Depending on

the number of operands, these algebraic operators are

classified into unary and binary. Projection and selection

are unary, i.e. they use one operand. The other operators

are binary, i.e. they use two operands.

Projection

Given a relation R of arity k, the projection of one or

more components of R, denoted by R[i,i 2 , . . im], where

m < k, is the set of m-tuples, a a . . a such that there
1 2 m

is some k-tuple bl1 b 2 b in R for which a. = b. . for

j = 1, 2, . , m [U1182]. In simpler terms, we take a

relation, remove some of its columns and/or permute some of

the remaining columns.



CHAPTER II
RELATIONAL ALGEBRA

The purpose of this chapter is to present the

relational algebra notation that will be used in future

discussions leading to the translation algorithm. The

presentation of this notation is meant to be brief and does

not cover all aspects of the relational algebra.

A tuple is defined in [U11821 as a mapping from attri-'

bute names to values in the domains of the attributes. An

example of a tuple is:

(p1, nut, red, 12, London)

and the mapping f which defines that tuple is shown in

Figure 2.

f(partno) =p1

f(pname) =nut

f(color) = red
f(weight) = 12
f(city) = London

Figure 2: The mapping f.

Tuples can be grouped into relations. A relation is

defined in (U11821 as a set of k-tuples, where k is fixed

and is known as the arity of the relation. The arity of the

tuple in the above example is 5. A relation, PART, of
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Network queries made in a global data manipulation language

(GDML) are transformed into relational algebra query trees

which are in turn partitioned for processing by the perti-

nent subsystems. The translation algorithm, to be described

in this paper, maps the relational algebra into QUEL. The

significance of this work is that it lays a foundation to

develop other translation algorithms which can be used to

map the GDML into other subsystems. Relevant work dealing

with this type of translation is found in [Cer in press].

Material which justifies the use of relational algebra as

IMDAS' intermediate representation can be found in [Klu80]

and [Su8l].

The work is organized as follows. The material in

Chapter II, based on (Cod72], [Dat82], and [U11823, intro-

duces the notation and definitions of the relational

algebra. Chapter III develops the QUEL statements which

accomplish all the algebraic operators using [U11821 and

[Woo8l. Chapter IV develops a node-by-node algorithm to

translate relational algebra query trees into QUEL. Using

[Chu82I, Chapter V discusses minimization and presents an

optimized translation algorithm. Chapter VI discusses

implementation of the latter algorithm. Chapter VII gives

the concluding remarks about this work.

.
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Intersection

Given two relations, R and S, which are union compati-

ble, it is possible to derive a relation, T, such that all

its tuples exist, both, in R and in S. The intersection

operation can be accomplished in QUEL as shown in Figure 22.

Note that Al, A2, . . . Ai are the attributes of R, and BI,

B2, . . . Bi are the attributes of S.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO T (r.ALL) WHERE r.A1 = s.B1
AND r.A2 = s.B2 . . . AND r.Ai = s.Bi

Figure 22: Intersection in QUEL.

The QUEL sequence for PART2 INTERSECTION PART3 is shown

in Figure 23.

RANGE OF r IS PARTI
RANGE OF s IS PART3
RETRIEVE INTO TEMP (r.ALL)
WHERE r.partno = s.partno
AND r.pname = s.pname
AND r.color = s.color
AND r.weight = s.weight
AND r.city = s.city

Figure 23: Intersection example in QUEL.

Note that comparisons using all corresponding attribute

name pairs are built into the WHERE clause to test for tuple

equivalency.

~~ .-. . ... . - . . -- - - - - - - - --. . . . - - -- - - .
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Difference

Given two relations, R and S, which are union compati-

ble, it is possible to derive a difference relation, T, such

that all its tuples, except those tuples which already exist

in S, are taken from R. The difference operation can be

accomplished in QUEL as shown in Figure 24. Note that Al,

A2, . . Ai are the attributes of R, and BI, B2, . . Bi

are the attributes of S.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO T (r.ALL)
RANGE OF t IS T
DELETE t WHERE t.Al = s.Bl
AND t.A2 = s.B2 . . AND t.Ai = s.Bi

Figure 24: Difference in QUEL.

The QUEL sequence for PART MINUS PARTI is shown in

Figure 25.

RANGE OF r IS PART
RANGE OF s IS PART1
RETRIEVE INTO TEMP (r.ALL)
RANGE OF t IS TEMP
DELETE t WHERE t.partno = s.partno
AND t.pname = s.pname
AND t.colar = s.color
AND t.weight = s.weight
AND t.city = s.city

Figure 25: Difference example in QUEL.

Note that tuple equivalency is achieved the same way as

in the intersection operation.

- -°°~~~~~~~~.-... .. 4-...............°- .. .j , .o .................. ... .. .°•°'o-°. °°°
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Product

Given two relations, R and S, it is possible to derive

a relation, T, such that all its tuples are formed by making

all possible combinations taking one tuple from R and one

tuple from S and concatenating them. The product operation

can be accomplished in QUEL as shown in Figure 26.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO T (r.ALL, s.ALL)

Figure 26: Product in QUEL.

The QUEL sequence for PART TIMES SUPPLIER is shown in

Figure 27.

RANGE OF r IS PART
RANGE OF s IS SUPPLIER
RETRIEVE INTO TEMP (r.ALL, s.supno,
s.sname, s.status, city2 = s.city)

Figure 27: Product example in QUEL.

Note that when duplicate attribute names are present,

e.g. city, they must be aliased to a unique name in the

result. This is because INGRES does not allow duplicate

attribute names within the same relation. If all the

attribute names of both relations had been different, the

target list in the RETRIEVE statement would have been:

(r.ALL, s.ALL).

Conversely, the QUEL sequence for SUPPLIER TIMES PAPT

is shown in Fiaure 28.

Ir

." .- ° • m--.
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RANGE OF r IS SUPPLIER
RANGE OF s IS PART
RETRIEVE INTO TEMP (r.ALL, s.partno,
s.pname, s.color, s.weight, city2 = s.city)

Figure 28: Product example in QUEL.

The RETRIEVE statement could be stated equivalently as:

RETRIEVE INTO TEMP (r.supno, r.sname, r.status, city2 =

r.city, s.ALL).

Join

Given two relations, R and S, it is possible to derive

a relation, T, such that all its tuples belong to a subset

of the cartesian product which satisfy a join condition, P.

P is a logical predicate which references at least one pair

of attributes, one from each relation, and compares them

using any of the relational operators as described in

Chapter II. The join operation can be accomplished in QUEL

as shown in Figure 29.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO T (r.ALL, s.ALL) WHERE P

Figure 29: Join in QUEL.

The QUEL sequence for PART JOIN SUPPLIER WHERE

PART.city = SUPPLIER.city is shown in Figure 30.

|°.. - , . ** *
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RANGE OF r IS PART
RANGE OF s IS SUPPLIER
RETRIEVE INTO TEMP (r.ALL, s.supno,
s.sname, s.status, city2 = s.city)
WHERE r.city = s.city

Figure 30: Join example in QUEL.

As in the product, duplicate attribute names appear

aliased in the result.

Natural Join

Given two relations, R and S, it is possible to derive

a relation, T, such that all its tuples belong to the subset

of the cartesian product which satisfy a join condition P.

P is a logical predicate which references at least one pair

of attributes, one from each relation, and compares them

using only the equality operator. Attribute names refer-

enced in the join condition only appear once in the result.

The natural join operation can be accomplished in QUEL as

shown in Figure 31.

RANGE OF r IS R
RANGE OF s IS S
RETRIEVE INTO TEMP (r.ALL, s.ALL)
WHERE P

Figure 31: Natural Join in QUEL.

The QUEL sequence for PART NJOIN SUPPLIER OVER city is

shown in Figure 32.

"•'-, ~~~~~~~~~~. . .. . . .. -..............-......... .. ... . . ...- ...- .- ' -. - _- .P- % \ . . --. -
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RANGE OF r IS PART
RANGE OF s IS SUPPLIER

-. RETRIEVE INTO TEMP (r.ALL, s.supno,
s.sname, s.status)
WHERE r.city = s.city

-. Figure 32: Natural join example in QUEL.
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translation can be performed without accessing the target

subsystem.

The algorithm has two main components: tree processing

and operation mapping. Tree processing determines the

correct order of execution for the operations contained in

the query tree. Operation mapping converts algebraic

operations specified in the query tree into a sequence of

QUEL statements. It is based on the QUEL sequences that

were presented in Chapter III.

Tree Processing

Each operation specified in a query tree node will use

as operands relations contained in the target subsystem

and/or results of operations from preceding nodes. The

resulting QUEL sequence provides a way to store intermediate

results from lower level nodes so they can reused at higher

levels. This is accomplished through the use of temporary

relations. For the purposes of this discussion, temporary

relations will be referred to as TEMPx relations, x being a

sequence number which is generated by the translator. These

TEMPx relations are destroyed at some point in the execution

of the QUEL sequence, when they are no longer needed,

e.g. prior to translation of another query packet.

The correct order of execution is determined by exam-

ining the sibbling pointers at each node. This order is

noted, e.g. using a stack, and then used to generate

correctly ordered QUEL statements. Figure 33a shows an

' " ¢ e; '' " " " " '" """ " """ " " " "" ': " ". "" . "'; " "", " - . - "- ". "- "



CHAPTER IV
TRANSLATION ALGORITHM

The algorithm which describes the steps necessary to

convert relational algebra query trees into QUEL statements

is discussed in this chapter. The algorithm presented, can

be used to implement a translator program which generates

QUEL statements that are executable on the INGRES subsystem.

The translator takes as input a query packet file in a

predefined format and generates the proper sequence of QUEL

commands to be executed by the target subsystem. The query

packet specifies a series of algebraic operations organized

as a binary tree structure in which the order of precedence

is from bottom to top.

The way in which the query tree is stored is arbitrary

and depends on implementation design, thus it is not

discussed here. It is important to note, however, that it

contains pointers which allow the translator to discern the

relationships between all its nodes. It must also contain

information which defines the algebraic operations to be

performed at each node, i.e. operation, operands, attri-

butes, conditions, etc. It must also include dicticnary

information about all operands, so that the entire

24
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example of a query tree. Figures 33b and 33c show possible

orders of execution. The difference between the stacks is

the side chosen first during traversal. The left branch is

chosen first in Figure 33b, while the right branch is chosen

first in Figure 33c.

1 5 1 4

11 1

(a) (b) (c)

Figure 33: Query tree and execution stacks.

Operation Mapping

This portion of the algorithm translates each node

operation into the corresponding sequence of QUEL state-

ments. In order to generate the appropriate sequence

for a given node, the algorithm uses predefined templates

for each algebraic operation, i.e. each algebraic operator

-' - ", -' '''.-''-''..'' "". " " " ' .' - -, '..- . ..-. .. . -,,. .... .
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has a fixed template associated with it. These templates

closely resemble the sequences presented in Chapter III.

To translate a node operation into the corresponding

QUEL sequence, the template is coped into a work buffer and

the details which are particular to that node, i.e. sequence

numbers, relation names, attribute names, etc., are inserted

into the appropriate fields of the buffer, thus building up

the appropriate sequence for that node. Once the sequence

has been built, the contents of the buffer can be saved,

e.g. appended to an output file.

Having a template for each operation defines a unique

series of programmed steps required to translate the query

tree to QUEL on a node-per-node basis. This method is

relatively simple to implement although it may not be

optimal. The node-per-node translation algorithm is pre-

sented to acquaint the reader with the main details of the

translation process. An optimal method of translation is

presented in the next chapter.

In the coming paragraphs, the following algebraic

operators are mapped into QUEL: Union, Intersection,

Difference, Selection, Projection, Product, Join, and

Natural Join.

Projection

The steps necessary to translate a node containing a

projection operation are shown in Figure 34.
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Load Projection template into buffer area;

RANGE OF L IS relname
RETRIEVE INTO TEMPx (L.attrlist)

Generate sequence number and insert into TEMPx field;

Insert relation name into relname field;

Insert attribute names into target list, using
L-prefixes on all the attribute names of the relation;

Figure 34: Pseudo-code for Projection node.

Selection

The steps necessary to translate a node containing a

selection operation are shown in Figure 35.

Load Selection template into buffer area;

RANGE OF L IS relname
RETRIEVE INTO TEMPx (L.ALL) WHERE P

Generate sequence number and insert into TEMPx field;

Insert relation name into relname field;

Insert selection predicate into P field;

Figure 35: Pseudo-code for Selection node.

Union

The steps necessary to translate a node containing a

projection operation are presented in Figure 36.
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Load Union template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.ALL)
APPEND TO TEMPx (R.ALL)
RANGE OF X IS TEMPx
RETRIEVE INTO TEMPy (X.ALL)

Generate sequence number and insert into TEMPx and
TEMPy fields;

Insert relation names into relnamel and relname2
fields;

Figure 36: Pseudo-code for Union node.

Intersection

The steps necessary to translate a node containing a

union operation are shown in Figure 37.

Load Intersection template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.ALL)
WHERE L.attrl = R.attrl AND L.attr2 = R.attr2
AND . . . L.attrN = R.attrN

Generate sequence number and insert into TEMPx field;

Insert relation names into relnamel and relname2
fields;

Build WHERE clause using L-prefixes with the attribute
names of the left relation and R-prefixes with the
attribute names of the right relation;

Figure 37: Pseudo-code for Intersection node.

Difference

The steps necessary to translate a node containing a

difference operation are shown in Figure 38.
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Load Difference template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO Tempx (L.ALL)
RANGE OF L IS TEMPx
DELETE L WHERE L.attrl = R.attrl AND L.attr2 =
R.attr2 . . . AND L.attrN = R.attrN

Generate sequence number and insert into TEMPx fields;

Insert relation names into fields relnamel and
relname2;

Build WHERE clause using L-prefixes with the attribute
names of the left relation and R-prefixes with the
attribute names of the right relation;

Figure 38: Pseudo-code for Difference node.

Product

The steps necessary to translate a node containing a

product operation are shown in Figure 39.

Load Product template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistl, R.attrlist2)

Generate sequence number and insert into TEMPx field;

Insert relation names into relnamel and relname2
fields;

Build target list using L-prefixes with a11,the attri-
bute names of the left relation and R-prefixes with all
the attribute names of the right relation;

For duplicate attribute names, ienerate alias names and
enter them into the aliases table;

Figure 39: Pseudo-code for Product node.

, * ~~ ~ ~~~~ ~ ~~~~.. ................ -. , •. •,. -• ",.--...............
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Join

The steps necessary to translate a node containing a

join operation are shown in Figure 40.

Load Join template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistl, R.attrlist2)
WHERE P j

Generate sequence number and insert into TEMPx field;

Insert relation names into relnamel and relname2
fields;

Build target list using L-prefixes with all the attri-
bute names of the left relation and R-prefixes with all
the attribute names of the right relation;

For duplicate attribute names generate alias names and
enter them into the aliases table;

Build WHERE clause using the join predicate and add
L-prefixes to the attribute names of the left relation
and R-prefixes to the attribute names of the right
relation;

Figure 40. Pseudo-code for Join node.

Natural Join

The steps necessary to translate a node containing a

natural join operation are shown in Figure 41.
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Join

The steps necessary to translate a Type II node con-

taining the join operation are shown in Figure 53.

Load Difference template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistL) WHERE PL

RANGE OF T IS TEMPx
DELETE T WHERE T.attr = R attrRl AND T.attrL2 =

R.attr AND L.attr = R.attr AND P
R 2a*trR* Ln Rn R

Generate sequence number and insert it into the TEMPx
fields;

Insert relation names into relnamel and relname 2
fields;

Build target list for RETRIEVE statement using
L-prefixes with all the attribute names of the left
topmost attribute list;

Build first WHERE clause using using L-prefixes with
all the attribute names in the left composite
predicate;

Build second WHERE clause using T-prefixes on all the
attribute names of the left topmost attribute list and
R-prefixes on all the attribute names of the right
topmost attribute list;

Add R-prefixes to the attribute names of the right
composite predicate and append to the second WHERE
clause;

Figure 51: Pseudo-code for Type II
node with Difference.

- . . . . ..... . . . . o
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Load Intersection template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistL)

WHERE L.attr = R.attr AND L.attr =
Li Ri L2

R.attr . . AND L.attr = R.attr
R2 '**Ln Rn

AND PL AND PR

Generate sequence number and insert it into the TEMPx
field;

Insert relation names into the reinamel and relname2
fields;

Build target list for RETRIEVE statement using
L-prefixes with all the attribute names of the left
topmost attribute list;

Select corresponding attribute names from the right
topmost and left topmost attribute lists and append to
WHERE clause using the proper L- and R-prefixes;

Build WHERE clause using L-prefixes with the attribute
names in the left composite predicate and R-prefixes on
the attribute names in the right composite predicate;

Figure 50: Psuedc-code for Type Ii
node with Intersection.

Difference

The steps necessary to translate a Type II node con-

taining the difference operation are shown in Figure 51.

Product

The steps necessary to translate a Type II node con-

taining the product operation are shown in Figure 52.
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Load Union template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistL) WHERE PL

APPEND TO TEMPx (attr = L.attrR1 , attrL2

L.attrR . . attrLn = L.attr
R21ttrR2  Rn

WHERE PR

RANGE OF T IS TEMPx
RETRIEVE INTO TEMPy (T.ALL)

Generate sequence numbers and insert them into the
TEMPx and TEMPy fields;

Insert relation names into the relnamel and reiname2
fields;

Build target list for RETRIEVE statement using
L-prefixes on all the attribute names in the left
topmost attribute list;

Build first WHERE clause using L-prefixes on the
attribute names in left composite predicate;

Build target list for APPEND statement using R-prefixes
on all the attribute names of the right topmost attri-
bute list aliased to all the attribute names of the
left topmost attribute list;

Build first WHERE clause using R-prefixes on the
attribute names in the right composite predicate;

Figure 49: Pseudo-code for Type II
node with Union.

Intersection

The steps necessary to translate a Type II node con-

taining the intersection operation are shown in Figure 50.
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RANGE OF L IS RELATION1

RANGE OF R IS RELATION2

RETRIEVE INTO RESULT (L.left-topmost-attrlist,

R.right-topmost-attrlist)

WHERE join-predicate AND left-composite-predicate

AND right-composite-predicate

Natural Join. When two Type I branches are combined

through the natural join operation, it is equivalent to the

following:

RANGE OF L IS RELATION1

RANGE OF R IS RELATION2

RETRIEVE INTO RESULT (L.left-topmost-attrlist,

R.right-topmost-attrlist)

WHERE join-predicate AND left-composite-predicate

AND right-composite-predicate

Optimal Algorithm

We shall now present the steps for query translation

for each of the binary operations which use the minimization

rules just shown.

Union

The steps necessary to translate a Type II node con-

taining the union operation are shown in Figure 49.

"- ' '.4 "4'" .. . . 4.. . -. 4* -*4 .4 ..44 . -, -,- - .- -,
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AND L.attrl = R.attrl AND L.attr2 = R.attr2

AND . . . L.attrn = R.attrn

Difference. When two Type 1 branches are combined

through the difference operation, it is equivalent to the

following:

RANGE OF L IS RELATION1

RANGE OF R IS RELATION2

RETRIEVE INTO RESULT (L.left-topmost-attrlist)

WHERE left-composite-predicate

RANGE OF T IS RESULT

DELETE T WHERE right-composite-predicate AND

L.attrl = R.attrl AND L.attr2 = R.attr2

AND . . . AND L.attrn = R.attrn

Product. When two Type 1 branches are combined through

the product operation, it is equivalent to the following:

RANGE OF L IS RELATION1

RANGE OF R IS RELATION2

RETRIEVE INTO RESULT (L.left-topmost-attrlist,

R.right-topmost-attrlist)

WHERE left-composite-predicate AND

right-composite-predicate

Join. When two Type I branches are combined through

the join operation, it is equivalent to the following:
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RANGE OF X IS R

RETRIEVE INTO TEMP (X.topmost-attrlist)

WHERE composite-predicate

Type II

This type of pattern has one variation for each of the

binary operations.

Union. When two Type 1 branches are combined through

the union operation, it is equivalent to the following:

RANGE OF L IS RELATIONI

RANGE OF R IS RELATION2

RETRIEVE INTO TEMP (L.left-topmost-attrlist)

WHERE left-composite-predicate

APPEND TO TEMP (R.right-topmost-attrlist)

WHERE right-composite-predicate

RANGE OF T IS TEMP

RETRIEVE INTO RESULT (T.ALL)

Intersection. When two Type I branches are combined

through the intersection operation, it is equivalent to the

following:

RANGE OF L IS RELATION1

RANGE OF R IS RELATION2

RETRIEVE INTO RESULT (L.left-topmost-attrlist)

WHERE left-composite-predicate AND

right-composite-predicate

,* * - . , - ,,.d " -, -' . .- - -. . . . . . . - .. - . . . . . . . .



39

RETRIEVE INTO TEMPn (X.attrlist n)

is equivalent to

RANGE OF X IS R

RETRIEVE INTO TEMP (X.attrlist n)

Consecutive selections. Any number of consecutive

selections on a relation R is equivalent to one selection

which uses a selection predicate which is the conjunction of

all their predicates. This predicate is referred to as the

composite predicate. Thus,

RANGE OF X IS R

RETRIEVE INTO TEMPI (X.ALL) WHERE P1

RANGE OF X IS TEMP1

RETRIEVE INTO TEMP2 (X.ALL) WHERE P2

RANGE OF X IS TEMPm-l
RETRIEVE INTO TEMPm (X.ALL) WHERE P

m

is equivalent to

RANGE OF X IS R

RETRIEVE INTO TEMP WHERE P1 AND P2 AND . . . AND Pm

when PI" P2 ' . . " ' Pm are predicates which reference only

attributes of R.

Mixed projections and selections. Any mix of selec-

tions and projections on relation R, is equivalent to one

projection which uses the topmost attribute list and one

selection which uses the composite predicate, as follcws:
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Type I Type II

Figure 48: Basic pattern types.

Type 1

The two unary operations, projection and selection,

give rise to three variations of this pattern: consecutive

projections only, consecutive selections only, and mixed

selections and projections.

Consecutive projections. Any number of consecutive

projections on a relation R, such that the set of attributes

specified in any projection is always a subset of the set of

attributes specified in the previous projection, is equiva-

lent to one projection on R using the attribute set of the

last projection. This attribute set is referred to as the

topmost attribute list. Thus,

RANGE OF X IS R

RETRIEVE INTO TEMPI (X.attrlist 1)

RANGE OF X IS TEMPI

RETRIEVE INTO TEMP2 (X.attrlist 2)

RANGE OF X IS TEMPn-1



CHAPTER V
MINIMIZATION

The node-per-node translation algorithm presented in

the previous section can be implemented with relative ease

but the large number of QUEL statements that it produces

makes it inefficient. By introducing minimization tech-

niques [Chu82], it is possible to produce a smaller number

of QUEL statements which accomplish the same results as the

node-per-node translation.

Minimization Rules

Compression of the query tree during the tree process-

ing phase yields a new query tree which consists of fewer

nodes. The nodes of the new query tree specify combinations

of algebraic operations that can be expressed with less QUEL

statements. Selection of nodes to be compressed is accom-

plished by recognition of two basic types of reoccurring

patterns, shown in Figure 48.

The first pattern occurs when a series of consecutive

unary operations is specified and will be referred to as

Type 1. The second pattern occurs when the results of two

separate Type 1 patterns are combined through a binary

operation and will be referred to as Type II.
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7 RANGE OF L IS SPJ
K RETRIEVE INTO TEMPI (L.ALL) WHERE L.supno = "sl"

6 RANGE OF L IS TEMPI
RETRIEVE INTO TEMP2 (R.partno)

5 RANGE OF L IS PART
RETRIEVE INTO TEMP3 (L.partno)

4 RANGE OF L IS TEMP3
RANGE OF R IS TEMP2
RETRIEVE INTO TEMP4 (L.ALL)
RANGE OF T IS TEMP4
DELETE T WHERE T.partno R.partno

3 RANGE OF L IS SPJ
RANGE OF R IS TEMP4
RETRIEVE INTO TEMP5 (L.ALL) WHERE L.partno = R.partno

2 RANGE OF L IS TEMP5
RETRIEVE INTO TEMP6 (L.projno)
RANGE OF L IS PROJECT
RETRIEVE INTO TEMP7 (L.projno)

0 RANGE OF L IS TEMP7
RANGE OF R IS TEMP6
RETRIEVE INTO TEMP7 (L.ALL)
RANGE OF T IS TEMP7
DELETE T WHERE T.projno = R.projno

Figure 47: QUEL translation of Query 3.

S. . . . . . . . .. .
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4 RAN4GE OF L IS PROJECT
RETRIEVE INTO TEMP1 (L.projno, L.city)

5 RANGE OF L IS SUPPLIER
RETRIEVE INTO TEMP2 (L.supno, L.city)

3 RANGE OF L IS TEMP2
RANGE OF R IS SPJ
RETRIEVE INTO TEMP3 (L.ALL, supno2 =R.supno, R.partno,
R.projno, R.qty)

2 RANGE OF L IS TEMP3
RANGE OF R IS TEMPi
RETRIEVE INTO TEMP4 (L.ALL, projno2 =R.projno,

city2 = R.city)
1 RANGE OF L IS TEMP4

RETRIEVE INTO TEMP5 (L.ALL)
WHERE L.supno = L.supno2 AND L.projno = L.projno2

0 RANGE OF L IS TEMP5
RETRIEVE INTO TEMP6 (L.city, L.partno, L.city2)

Figure 45: QUEL translation for Query 2.

from supplier S1." The equivalent algebraic representation

for this query is:

PROJECT fprojnoj MINUS ((SPJ NJOIN (PART (partnol MINUS

(SPJ WHERE supno = 'Si') (partno])) [projno])

and the query tree arnd order of traversal are shown in

Figure 46. The corresponding QUEL translation is shown in

Figure 47.

MINUSW

IProjnol a [projnol

PROJECT 3 NJOIN over partno r
SPJ .i MINUS I

rPartnol '[partnol

PART 1SPJ WHERE supno-'s

spJ

VFigure 46: Query tree for Query 3.
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Query 2

Exercise 7.19 in [Dat82] read as follows: "Get all

(city, partno, city) triples such that a supplier in the

first city supplies the specified part to a project in the

second city." The equivalent algebraic representation for

this query is:

((SUPPLIER~supno, city] TIMES SPJ TIMES PROJECT[projno,

city]) WHERE SUPPLIER.supno = SPJ.supno AND

SPJ.prcrno = PROJECT.projno) [SUPPLIER.city, partnc,

PROJECT.city]

and the query tree and order of traversal are shown in

Figure 44. The corresponding QUEL translation is shown in

Figure 45.

Icity, par tno, city] w
(supno=supno ANO projno=projno) W5
TIMES r2

TIMES [projno,cityl ID

[supno,cityl SPJ PROJECT

SUPPLIER

Figure 44: Query tree for Query 2.

Query 3

Exercise 7.25 in [Dat82] read as follows: "Get prono

values for projects which use only parts which are available
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Query 1

Exercise 7.17 in [Dat82] reads as follows: "Get projno

values for projects using at least one part available from

supplier Sl." The algebraic representation for this query

is:

((SPJ WHERE supno = 'Si') [partno] NJOIN SPJ) [projno]

and the query tree and order of traversal are shown in

Figure 42. The corresponding QUEL translation is shown in

Figure 43.

lproinol (

NJOIN over partno f 3

[partnol 2 SPJ -

(supno-s) 3

SPJ
Figure 42: Query tree for Query 1.

3 RANGE OF L IS SPJ
RETRIEVE INTO TEMPI (L.All) WHERE L.supno ="sl"

2 RANGE OF L IS TEMPI
RETRIEVE INTO TEMP2 (L.partno)
RANGE OF L IS TEMP2

1 RANGE OF R IS SPJ
RETRIEVE INTO TEMP3 (L.partno, R.supno, R.projno, R.qty)
WHERE L.partno - R.partno

0 RANGE OF L IS TEMP3
RETRIEVE INTO TEMP4 (L.projno)

Figure 43: QUEL translation for Query 1.

."
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Load Natural Join template into buffer area;

RANGz OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistl, R.attrlist2)
WHERE Pj

Generate sequence number and insert into TEMPx field;

Insert relation names into relnamel and relname2
fields;

Build target list using L-prefixes with all the attri-
bute names of the left relation and R-prefixes with all
the attribute names of the right relation;

Delete duplicate attribute names which appear on the
right side(s) of the join predicate;

For other duplicate attribute names, generate alias
names and enter them into the aliases table;

Build WHERE clause using the join predicate and add
L-prefixes to the attribute names of the left relation
and R-prefixes to the attribute names of the right
relation;

Figure 41: Pseudo-code for Natural Join node.

Examples

The following examples illustrate the mechanics of the

translation algorithm and are based on the Parts & Suppliers

Database found in [Dat82], shown below:

SUPPLIER (supno, sname, status, city)

PART (partno, pname, color, weight, city)

PROJECT (projno, jname, city)

SPJ (supno, partno, projno, qty)
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Load product template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname 2
RETRIEVE INTO TEMPx (L.attrlistL, R.attrlistR)
WHERE P AND P

L R
Generate sequence number and insert it into the TEMPx
field;

Insert relation names into the relnamel and relname2
fields;

Build target list for RETRIEVE statement using
L-prefixes with all the attribute names of the left
topmost attribute list and R-prefixes with all the
attribute names of the right topmost attribute list;

Alias duplicate attribute names of the right topmost
attribute list to local names annotated in aliases
table;

Build WHERE clause using L-prefixes with the attribute
names in the left composite predicate and R-prefixes
with the attribute names in the right composite
predicate;

Figure 52: Pseudo-code for Type II
node with Product.

,r
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Load Join template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistL, R.attlistR)
WHERE Pj AND P L AND PR

Generate sequence number and insert it into the TEMPx
field;

Insert relation names into relnamel and relname2
fields;

Build target list for RETRIEVE statement using
L-prefixes with all the attribute names of the left
topmost attribute list and R-prefixes with the attri-
bute names of the right topmost attribute list;

Alias duplicate attribute names of the right topmost
attribute list to local names annotated in aliases
table;

Build WHERE clause using using L-prefixes with attri-
bute names in the left composite predicate, R-prefixes
with attribute names in the right composite predicate,
and the proper prefixes with the attribute names in the
join predicate;

Figure 53: Pseudo-code of Type II node with Join.
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-; Natural Join

The steps necessary to translate a Type II node con-

taining the natural join operation are shown in Figure 54.

Load Natural Join template into buffer area;

RANGE OF L IS relnamel
RANGE OF R IS relname2
RETRIEVE INTO TEMPx (L.attrlistL, R.attlistR)
WHERE P AND PL AND PR

Generate sequence number and insert it into the TEMPx
field;

Insert relation names into relnamel and relname2
fields;

Build target list for RETRIEVE statement using
L-prefixes with all the attribute names of the left
topmost attribute list and R-prefixes with the attri-
bute names of the right topmost attribute list;

Delete redundant attribute names, i.e. the attribute
names appearing on the right side of the join
predicate;

Alias duplicate attribute names of the right topmost
attribute list to local names annotated in aliases
table;

Build WHERE clause using L-prefixes with attribute
names in the left composite predicate, R-prefixes with
attribute names in the right composite predicate, and
the proper prefixes with the attribute names in the
join predicate;

Figure 54: Pseudo-code for Type II
node with Natural Join.
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Examples

The examples which are presented below illustrate the

improvement that results from applying the new translation

* algorithm to the sample queries presented in the previous

chapter. A reduced number of QUEL statements is achieved

when using this method of translation.

Query .

The translation of this query can be optimized by

compressing the query tree as shown in Figure 55. The QUEL

translation for the compressed tree is shown in Figure 56.

Figure 55: Tree compression for Query 1.

1 RANGE OF L IS SPJ
RANGE OF R IS SPJ
RETRIEVE INTO TEMPI (L.partno, R.supno, R.projno, R.qty)
WHERE L.supno = "sl" AND L.partno = R.partno

0 RANGE OF L IS TEMPI
RETRIEVE INTO TEMP2 (L.projno)

Figure 56: Optimized QUEL translation for Query 1.
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Query 2

The translation of this query can be optimized by

compressing the query tree as shown in Figure 57. The QUEL

translation for the-compressed tree is shown in Figure 58.

Figure 57: Tree compression for Query 2.

3 RANGE OF L IS SUPPLIER
RANGE OF R IS SPJ
RETRIEVE INTO TEMPI (L.supno, L.city,
supno2 = R.supno, R.partno, R.projno, R.qty)

2 RANGE OF L IS TEMPI
RANGE OF R IS PROJECT
RETRIEVE INTO TEmP2 (L.ALL, projno2 = R.projno
city2 = R.city)

0 RANGE OF L IS TEMP2
RETRIEVE INTO TEMP3 (L.city, L.partno, L.city2)
WHERE L.supno = L.supno2 AND L.projno = L.projno2

Figure 58: Optimized QUEL translation for Query 2.

Query 3

The translation of this query can be optimized by

compressing the query tree as shown in Figure 59. The QUEL

translation for the compressed tree is shown in Figure 60.
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Figure 59: Tree compression for Query 3.

4 RANGE OF L IS PART
RANGE OF P IS SPJ
RETRIEVE INTO TEMPI (L.partno)
RANGE OF T IS TEMPI
DELETE T WHERE R.supno = "sl" AND T.partno = R.partnc

3 RANGE OF L IS SPJ
RANGE OF R IS TEMPI
RETRIEVE INTO TEMP2 (L.projno) WHERE L.partno = R.partno

0 RANGE OF L IS PROJECT
RANGE OF R is TEMP2
RETRIEVE INTO TEMP3 (L.projno)
RANGE OF T IS TEMP3
DELETE T WHERE T.projno = R.projno

Figure 60: Optimized QUEL translation for Query 3.



CHAPTER V!
IMPLEMENTATION

This chapter discusses some general guidelines to

follow in implementing the algorithm presented in the

previous chapter. An implementation has been successfully

completed in the "C" language by Mr. Mohamed Khatib, a

graduate student currently doing related research for the

NBS project at the time of this writing. The main topics

that will be discussed are: query packet format, tree

processing, operation mapping, and minimization.

Query Packet Format

The Master Data Administrator System (MDAS) of LNBS85I

issues data management commands, in the form of query

packets, to each of the distributed data management sub-

systems. The packets are organized into records of pre-

defined format. These records contain all the algebraic

operators, relation names, attribute names, and qualifi-

cations which completely specify what the subsystem has to

do.

Each query packet has three types of records: tree

descriptors, operation descriptors, and relation tables.

Tree descriptors define the structure of a query tree,

52
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that is, they describe the tree in terms of node inter-

relationships, algebraic operators, and operand relations.

Operation descriptors contain either attribute lists or

qualifications, which further define the operations at each

node. Relation tables contain dictionary information about

the relations which are referenced in the query tree, which

makes it possible to perform the tranlation without

accessing the target subsystem.

Tree Descriptors

These records define a binary tree which determines the

order of operations to be performed. Each record consists

of the following fields: operation, left-son, right-son,

left-relation, and right-relation. Operation is one of the

algebraic operators, left-son and right-son are the sequence

numbers of the tree descriptor records which describe that

node's left and right successor nodes, and left-relation and

right-relation are the names of the relations used at that

node.

The third example from Chapter IV, whose query tree is

shown again in Figure 61, could be represented by the

tree descriptor records which appear in Table 1. The

information shown in parenthesis is only explanatory and

would not actually appear in the query packet. The hyphen-

ated entries are used to denote that a given node does not

have a left and/or right successor or that intermediate

results are used as operands.
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UMINUS

(projnol ' projnol

PROJECT 3NJOIN over partno

SPJ igMINUS

[partnol [portnol

PART 1SPJ WHERE supno=31

sPJ

Figure 61: Query tree for Example 3.

Table 1. Tree descriptors for Example 3.

(Rec #) (Oper) (L-Son) (R-Soi) (L-Rel) (R-Rel)

(0) MINUS 1 2-

(1) PROJ - - PROJECT

(2) SEL 3 --

(3) NJOIN - 4 SPJ

(4) MINUS 5 6-

(5) MINUS - - PART

(6) PROJ 7--

(7) SEL - -SPJ
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Operation Descriptors

These records are defined according to the algebraic

operations that they specify. There are three types of

field descriptors: attribute lists, predicates, and rela-

tion tables.

Attribute lists. Attribute lists are used to specify

attribute names for the projection operation. They consist

of the following fields:

N, attr-namel, attr-name2, . . . attr-nameN

where N is the number of attributes in the list and attr-

namel through attr-nameN are the qualified attribute names.

Using qualified attribute names helps the translator attach

the appropriate tuple variable to each attribute name by

replacing each relation name prefix with the proper tuple

variable prefix. It also simplifies attribute name aliasing

and eliminated ambiguity in projection operations which

permute attributes.

Predicates. Predicates are used with selection and

join operations. Each predicate consists of a QUEL-

compatible qualification string. In order to a predicate to

be QUEL-compatible it must use qualified names and all the

QUEL comparison operator symbols. Using QUEL-compatible

qualification strings saves the translator the task of

parsing these predicates. At run time, the translator

merely scans the predicate, replaces each relation name

prefix with the proper tuple variable prefix, and inserts

the qualification string into the QUEL sequence.
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Relation tables. Relation tables contain all the

attribute names for each relation referenced in the query

tree. In this case, however, the attribute names need not

be not qualified, that is, they do not contain relation name

prefixes since it is understood that all the attributes

belong to the relation specified in that record. Relation

tables consist of the following fields:

relation-name, N, attr-namel, attr-name2, . . . attr-nameN

where relation-name is self explanatory, N is the number of

attributes, and attribute-namel through attribute-nameN are

all the attribute names for that relation, in the order they

appear in the view or base relation of the target subsystem.

For economy reasons, only one relation table is required for

each relation referenced in the query tree.

To avoid ambiguity, delimiters must be used with all

three types of descriptors. The operation descriptors for

Example 3 are shown in Table 2.

Tree Processing

The objectives of this part of the implementation are

to arrive at the correct node ordering for processing and to

minimize the number of nodes to be translated.

As mentioned in Chapter IV, the correct order of execu-

tion is computed using the sibling pointers for each node

and the saved on a stack. The content of this stack can be

generated with a recursive function which traverses the tree

................. '.. L'. " . " "" ""'"...
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Table 2. Operation descriptors for Example 3.

(Record Content) (Remarks)

1 PROJECT.projno attr list for node 1

1 SPJ.projno attr list for node 2

SPJ.partno = PART.partno join condition for node 3

1 PART.partno attr list for node 5

1 SPJ.partno attr list for node 6

SPJ.supno = "Si" select condition for node 7

SPJ 4 supno partno projno qty relation table for SPJ

PROJECT 3 projno jname city relation table for PROJECT

PART 5 partno pname color

weight city relation table for PART

to find all the leaf nodes. This stack is then used to

generate the correct order of QUEL statements.

Minimization considerations are made while analyzing

the tree in order to produce an optimal number of correctly

ordered statements. The criteria for compressing the

original tree are actually described in the next section.

At this point it is sufficient to note that the stack which

defines the correct order of execution for the original tree

can be modified after the compressed tree is defined. An

alternate method is to integrate the compression criteria

into the recursive function so that only the modes contain-

ing binary operators are placed on the stack. In either
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case, all the information pertaining to unary nodes must be

linked to the corresponding compressed nodes.

Operation Mapping

There are two important mechanisms needed to support

the translation process: statement generation and attribute

tracking. The first one is used to build QUEL statements in

a buffer through template modification. The second is used

to keep track of the attribute names of relations throughout

the translation process. Both mechanisms are discussed

below.

Statement Generation

The translation of a node into QUEL takes place via

modification of the corresponding template in the work

buffer. Modifying the template to reflect the characteris-

tics of the operation specified at that node, is accom-

plished through following steps: a) insertion of the

sequence numbers for intermediate results (TEMPx relations),

b) insertion of all pertinent attribute names with proper

range variable prefixes into the corresponding target lists,

c) replacement of qualified attribute names with appropriate

row markers and attribute names in logical predicates and

subsequent insertion into the corresponding qualification

fields, and d) replacement of attribute names by aliased

names generated in preceding intermediate results.
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Attribute Tracking

Since QUEL does not permit the use of duplicate attri-

bute names within the same relation, it is necessary to

"alias" the names of duplicate attribute names in inter-

mediate results. In order to replace any attribute name by

the correct alias name, the translator must keep track of

all attribute names. This can be accomplished with an

attribute name table with an entry for each attribute name

from a temporary relation which contains its relation name

and the original qualified name. By tracking attribute

names in this manner, the translator is able to look up all

attribute names before insert them into the work buffer.

The sample attribute name table shown in Table 3 corresponds

to the second example presented in Chapter V.

Minimization

Minimization in initiated by identifying the nodes that

contain binary operations. These nodes will be the only

nodes which will exist after compression. There is one

exception: any series of unary operations which are near

the root of the tree and which are not followed by any

binary operations will also become a single node. Fig-

ure 62a identifies the nodes which will exist after com-

pression and Figure 62b shows the resulting tree following

compression.



BIOGRAPHICAL SKETCH

Dennis F. Blumenthal was born in Cali, Colombia, in

1950 and came to the United States in 1967. He began his

undergraduate studies at Queens College in New York City and

later received his Bachelor of Science in Computer Engi-

neering from Syracuse University in 1978. Before coming to

the University of Florida, he worked as a programmer for the

U.S. Air Force at the Rome Air Development Center in Rome,

New York. He also did system level programming for the

Directorate of Computer Sciences of the Armament Division at

Eglin AFB, Fort Walton Beach, Florida. After completing his

graduate studies, he will resume his duties as Computer

Systems Officer for the Air Force Technical Applications

Center at Patrick AFB, Cocoa Beach, Florida. He currently

holds the grade of Captain, is married, and has one son.

73



72

WOO81 J. Woodfill, Polly Siegal, Jeff Ranstrom, Marc
Meyer, and Eric Allman, INGRES Version 7 Reference
Manual (ERL Technical Memo. M79/43), University of
California, Berkeley, 1981.



71

Mac82 C.R. Maclean, H.M. Bloom, and T.H. Hopp, "The
Virtual Manufacturing Cell," presented at the Fourth
IFAC Symposium on Information Control Problems in
Manufacturing, Gaithersburg, Maryland, October 1982.

Mac83 C.R. Maclean, M. Mitchell, and E. Barkmeyer, "A
Computer Architecture for Small-Batch Manufac-
turing," in IEEE Spectrum, Vol. 20, No. 5, May 1983,
59-64.

Mcd83 N. McDonald and J. McNally, "Feature Analysis of
INGRES," in Relational Database Systems: Analysis
and Comparison, J.W. Schmidt and M.L. Brodie,
Editors, Springer-Verlag, New York, 1983.

NBS85 National Bureau of Standards, "A Distributed Data
Management Architecture for Computer Integrated
Manufacturing" (Technical Report in preparation),
National Bureau of Standards, Washington, D.C.,
1985.

RTI84 Relational Technology Inc., "Graphic Representation
of QUEL Syntax" (courtesy poster), Relational
Technology Inc., Berkeley, California, 1984.

Sim82 J.A. Simpson, R.J. Hocken, and J.S. Albus, "The
Automated Manufacturing Research Facility of the
National Bureau of Standards," in Journal of Manu-
facturing Systems, Vol. 1 No. 1, 1982, 17-31.

Smi75 J.M. Smith and P.Y.T. Chang, "Optimizing the
Performance of a Relational Algebra Database Inter-
face," in Communications of ACM, Vol. 18, No. 10,
October 1975, 568-579.

Sto76 M. Stonebraker, E. Wong, P. Kreps, and G. Held, "The
Design and Implementation of INGRES," in ACM Trans-
actions on Database Systems, Vol. 1, No. 3, 1976,
189-222.

Su81 S.Y.W. Su, H. Lam, and D.H. Lo, "Transformation of
Data Traversals and Operations in Application
Programs to Account for Semantic Changes of Data-
bases," in ACM Transactions on Database Systems,
Vol. 6, No. 2, June 1981, 255-294.

U1182 J.D. Ullman, "QUEL: A Tuple Relational Calculus
Language," in Principles of Database Systems,
Computer Science Press, Rockville, Maryland, 1982,
190-197.

Won76 E. Wong and K. Youseffi, "Decomposition Strategy for
Query Processing," in ACM Transactions on Database
Systems, Vol. 1, No. 3, 1976, 223-241.

• .• -°-o . .... .... ...



-L;77 7. T%~

BIBLIOGRAPHY

Bee83 W. Beeby, "The Heart of Integration: A Sound
Database," in IEEE Spectrum, Vol. 20, No. 5, May

1983, 44-48.

Cer in S. Ceri and G. Gottlob, "Translating SQL into
press Relational Algebra: Optimization, Semantics, and

Equivalence of SQL Queries," Politecnico di Milano, to
appear in IEEE Transactions on Software Engineering.

Chu82 W.W. Chu and P. Hurley, "Optimal Query Processing
for Distributed Database Systems," in IEEE Trans-
actions on Computers, Vol. 1, No. 3, September 1982,
835-850.

Cod72 E.F. Codd, "Relational Completeness of Data Base
Sublanguages," in Data Base Systems, R. Rustin,
Editor, Prentice-Hall, New York, 1972.

Dat82 C.J. Date, An Introduction to Database Systems,
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1982.

Day8l U. Dayal, N. Goodman, and R. Katz, An Extended
Algebra with Control over Duplicate Elimination,
Computer Corporation of America, Boston, 1981.

He175 G.D. Held, M.R. Stonebraker, and E. Wong, "INGRES-A
Relational Data Base System," in APIPS, Vol. 44,
1975, 409-416.

Hop83 T.H. Hopp and K.C. Lau, "A Hierarchical,
Model-Based, Control System for Inspection,"
presented at First ASTM International Symposium on
Automated Manufacturing, San Diego, California,
April 1983.

IEE83 IEEE, "Data Driven Automation," in IEEE Spectrum
(compendium of selected articles), Vol. 20, No. 5,
May 1983, 34-96.

Klu8O A. Klug, "Equivalence of Relational Algebra and
Relational Calculus Query Languages Having Aggregate
Functions" (Technical Report 389), Computer Science
Department, University of Wisconsin, Madison,
Wisconsin, June 1980.

70

.,. ' ,, .,. - .' -.-..-- --. -. --. ..-. ; .. . *.,.... .



69

FLI

Figure 78: Aggregate Name specification.

Figure 79: Function Name specification.
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Figure 75: Primary specification.

A-4

Figure 76: Function specification.

Figure 77: By Clause.
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Figure 72: Expression specification.

Figure 73. Term specification.

Figure 74: Factor specification.
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Figure 69: Qualification specification.

L a
Figure 70: Boolean expression specification.

Figure 71: Boolean primary specification.
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Figure 64: The APPEND statement.

Figure 65: The DELETE statement.

Fiue6:Ah"AG saeet

Figure 67: The RETRIEE statement.

Figure 68: The WHERE clause.



APPENDIX
INGRES SYNTAX

The purpose of this appendix is to acquaint the reader

with the portions of the INGRES syntax which are used

reoccurringly in the chapters of this thesis. The syntax is

presented in graphic form. The graphic constructs used are

shown in Figure 63. Figures 63a and 63b represent atomic

constructs, i.e. they cannot be recursively decomposed.

Figure 63c represents a construct which is not atomic,

i.e. it can be made up of atomic or non-atomic constructs.

-a-+ _404 -a-
(a) (b) (c)

Figure 63: Graphical syntax constructs.

The words which appear within the graphic constructs

have two forms: keywords and non-keywords. Keywords are

always underlined, non-keywords are not. The INGRES

statements which are shown are: APPEND (Figure 64), DELETE

(Figure 65), RANGE (Figure p6), and RETRIEVE (Figure 67).

In addition, the WHERE clause (Figure 68) and its components

(Figures 69-79) are also shown.
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It is recommended that an extended version of the relational

algebra be developed to better utilize the processing

capabilities of other target subsystems.

Another issue addressed by this author is the scope of

the patterns used for the minimization rules presented in

Chapter V. The translation algorithm presented in

Chapter IV obviously generates too many QUEL statements and

the algorithm presented in Chapter V is a worthwhile

improvement. However, it is debatable whether the latter is

truly optimal, e.g. there are more compact translations for

the query examples presented in Chapter V. In considering

pattern scope, this author contends that a generalized

algorithm with patterns of wider scope would be too complex

and would not be reusable in other translators, mainly

because the minimization technique depends on the target

DML's semantic capabilities. Thus, the author formulated a

"middle-of-the-road" solution, embodied in the Type II

pattern. In any case, the search for a truly optimal

translator merits further study.

To others undertaking future work on similar trans-

lators, this author recommends that analytical studies be

made about the relationships between the relational algebra

and the underlying semantics of the target DML. Thinking in

retrospect, mapping those relationships would have been

helpful to this author, e.g. converting relational algebra

to tuple calculus before translating into QUEL.

< . o... . . . - .... ,.. . .- . .... , . .
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CHAPTER VII
CONCLUSION

An algorithm to translate algebraic queries to QUEL was

presented in the previous chapters. At the time of this

writing, implementations of the node-per-node algorithm and

the optimal algorithm have been tested successfully. This

author is compelled to point out that, while this work

resulted in a practical and feasible solution, it is by no

means unique and other alternatives became evident during

the course of the work.

One of the issues confronted by the author deals with

the limited expressive power of the relational algebra.

QUEL has a great deal more expressive power, e.g. aggregate

functions, mathematical functions, sorting functions, etc.,

not found in the relational algebra. Consequently, a large

portion of the processing power of the INGRES subsystem

remains unexploited. This author made some allowances to

compensate for this, namely, a non-parsing technique is used

to build the predicates for the QUEL translation. This

technique is flexible enough to allow the usage of aggregate

mathematical, and sorting functions in QUEL predicates and

make better use of the INGRES subsystem's processing capabil-

ities.
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(a) (b)

Figure 62: Query tree compression.

When compression takes place, all operations in the

query tree must be preserved. The operations specified in

the nodes that are deleted must be integrated into remaining

nodes according to the rules presented in Chapter V. The

six templates previously presented, combine several unary

operations with one binary operation. A compressed node has

all the operations which were originally at that node plus

the left and right topmost attribute lists and composite

predicates which are extracted from nodes being deleted.

I
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Table 3. Attribute name table for Example 2 (optimized).

(attrnam.) (relation) (origin)

supno TEMPi SUPPLIER.supno

city TEMP1 SUPPLIER.city

supno2 TEMP1 SPJ.supno

partno TEMP 1 SPJ..rartno

projno TEMPi SPJ.projno

qty TEMP1 SPJ.qty

supno TEMP2 TEMPl.supno

city TEMP2 TEMPI.city

supno2 TEMP2 TEMP1.supno2

partno TEMP2 TEMP1.partno

projno TEMP2 TEMPI.projno

qty TEMP2 TEMPI.qty

projrio2 TEMP2 PROJECT.projno

-city2 TEMP2 PROJECT.city

city TEMP3 TEMP2.city

partno TEMP3 TEMP2.partno

city2 TEMP3 TEMP2.city2
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