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Abstract

~—~ A the’aretical model of :Il general production process is constmcteq. A production pfcccss
. is 'egarded as a network of jointly operating, interrelated activities which use system exogenous
inputs of goods and services to produce outputs. The production model displays explicitly tie
. intermediate product transfers between activities and incgfporam the time-varying aspects of
~ production directly. The primiiive elements iwhich are taken to be common to all prqduction
processes afe the activity production functions and the flows of products, goods and s;rviccs.
To cnﬁance clarity and rigor, the model is developed axiomaﬁcally. ie., propeniw on the primi-

tive elemems which are conjectured to be true in order to facilitate the theory are xdenuﬁed

. Juqu»« Cv

The general model extends previous axnomaﬁ& models-of-wndmo.bused in eoonormc
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~ theory. Specifically, laws of production and Skephards Duality Theorem are proved using the ~

- avioms of the general model. Moreover. the general model provides guidelines as to what
ed’

enmls a satisfactory model of preduction so that it may &Annhzetto study models ard solu-
tions of specxﬁc production planning: problems To illustrate, the general model is used to sys- .
| tematically analyze a heuristic solution proposed by Luchmm and Bomnmrfs; the prob- '
lem of multi-project resource-use. planning and to show how their approach can be eitended and

improved. (4 AL
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1. INTRODUCTION
In production planning, a decision-maker identifies objectives, available choicés, and the
result of each choice. Once the particular problem has been described, a model is then formu-

lated as a means of accompliéhing the objectives. This includes modeiing the result of each

"choice available to the decision-maker. In. production planning, a model of this choice-result

relationship is, either indirecily or directly, a model of the_ actual production process. Thus,

modeling the actual production process is a necessary and essential aspect of production plan-

.ning.

Because the produciion planner has to develop a model which is tractable for analysis, he
often makes certiin assumptions which are not specifically identified or adequately justified.

chce, the development of a model for a pMCular production prociss is primarily an art. To

. elevate the model- buxld.ng {0 a more scxentiﬁc level would requu'e the modeler to identify a//

of the assumptivns taken, either implicitly or explicitly, and justify each one. Therein lies a
fundamental prob!cin confronting research in the. area of production planning: how does one
know what were the implicit ‘and explicit assumptions taken? There ﬁre no general guicelines to
help the production planner identify the assumptions, and wcrse, there is no mechanism to sys-
temuucally analyze the lumumons such assumptions necessarily impose.

Another fundamemal problem confx onting research in the area of production planning is

‘the analysis, or lack thereof. of heuristic solutions. A ngorous analysis of a heuristic solution

would be one which provides a rationai basis or logical foundation for tliemoﬁosed methodol-
ogy. This is impossible uniess all of the nssumptionsv of the'oﬁginal model are idéntified. |
Asa ﬁrst step towa:ds elevating the art of production modeling and the analysis of heuns-
tic solutions to a science, we construct a2 theoret-nl model of a genersl production process
(Chapter 2). A production process is regarded as a petwork of jointly operating, interrelated
yroducnon activities which use system exogenous inputs of zoods and services in producnon to -
produce ﬁnal outputs. The production model displays exphmbr the mtcrmedmte product

transfers between activities. We identify the pnmqu elements which we take to be common to .




all production processes. They are the activity production fupctions and the flows of goo.. and
services through time. I'he model incorporates the time-varying aspects of & production process

directly. An explicit description of how ° :pu* is transformed into output is presented. Exten-

sions and limitations of the present model ure also discussed.

" To enhance clarity and rigor, we develop the model axiomatically. That i.'q, properties on
the primitive elements which we take to be true in order to facilitate the theory are identified.

The chief reasons for axiomatizing the theor::ical model are (1) it 'discloses many of the hidden

: -issumptions, (2) it displa}s the structure of the theory, (3) the key concepts and hypotheses

are identified, (4) the consequences of changes in the foundstions are better realized, and (5)

- the shortcomings of the theory can be spotted and corre'cted.’

Since a specific mode! Bf a production process necessarily imposes assumptions on the
primitive elements, the zeneral modsl fhcilitaies'the identification of the asstmptions. To illus-

trate, we describe in our framework !hé production models implicit in the production planning

" techniques of Material Requirements Planning (MRP) and the ordinary Critical Path Method

(CPM).  These descriptions will clearly reveal the implicit assumptions about the production

_processes made by production planners who use such techniques. .

Once the implicit assumptions or the primitive elements have hcen identified, it is possi-

. bleto analyze ary propdsed beuristic solution offered to solve a particular problem. To illus-
- trate, we use the general niodel as a too! to providé a systematic analysis of a heuristic solution
, proposed by Leachman and Boysen [19831 for the problem of mtn-pro;ect resource-use planning

.for a multi-project producuon system (Chapter 4). The problem is to determine explut

resource allocaglons through time to pro:ects to insure that schedules are met. Our systemauc'

analysis not only providés a logica! foundation for their approach but more importantly shows

" how their approach can be extended and.improved. The unalyses carried out in this chapter

illustrate the value of using a general conceptual framework of a production sysiemrto evaluate

proposed heuristic solutions to production planning problems.

} Adspted from Bunge l'l973).‘




Theoretical models of "general" production processes have beer. d:veloped before. Recog-
nizing the benefits of axiomatization, Shephard [1570a] developed an axiomatic description of
a steady-state production technology.? The primiiive elemnent in his model was the correspon-
dence which modeled the input-to-output relationship. The axioms werle therafore imposed on
the correspondences. 'Realizing that a steady-state framework ciid not "nc<‘>rporate the dynamic
aspects of production direcily, Shéphard and Fare [1980] exterided the framework :o model
dynamic production systems. Agm‘n, the prixf.itive element was tae correspondeace which
mpdeled the input-to- outpui relationship. Functions of time were taken to model the flows of
goods and services. The axiomatic descriptioh for this model was virtually the same as the
steady-state mpdcl except that certain mathematical axipms wzre employed to facilitate the
théory. Shephard et. al. [1977] developed the first network model of production and:later
presented an axiomatic Jescription of this model in 1981.3

The axioma;ic raodels oi production constructed in the past are not useful for the
' develtlapment or evaluation of dyﬁamic production planning models. Hcwever, these models
have ,sroved to be useful f(I)r the development of steady-state cost and produc.tion functions.*
More ii'riporv tly, parhaps, the previous axiomatic mode's enabl: one to prove laws of produc-
tion. By proving that laws of production hold from the axiomatic description, the question of
the validity of the laws is reduced to the question of whether the aiioxps in the axiomatic
fr‘arri_c_work are approvriate. We continue this worthwhiie task by proving, in our general ‘setting.
tvc; variants of tﬁe Law of Diminishing Returns as. fqrmulated byr Sb'e'plmrd.s In addition, we dis-
cuss technical qﬁ;iemy' and provid§ two‘ different proofs of Shephard's Dualio? Theoreny which
_be-cer explains this famous theorem (Chapter 3). |

l Since‘our model eipﬁcitly deﬁnes the c,ovrrespondenoa.whi.ch models the input-to-ou‘;put

relationship, our model is more descriptive of the production process than the past axiomatic

2 See also Shephard [1953), (19708).

3 See also Hackman and Shephard [1983].

4 See, for example, Hanoch and Rothschild [1972).
.5 See Shzphard and Fare [1980].




frameworks mentioned above. - In addition, since the choice of primitive elements dictates the
nature of the axiomatic description, our axiomatic description is completely different from past
frameworks. Some of the axioms which were taken in the 'esrlier frameworks were completely
anabytical, i.e, it would not be possible to verifv their validity' by experimentation. We helieve
our axiomatic descrintion can be‘veriﬁed through éxperimenmion and is easier to justify.

In summary, the g:neral framework of prc;duc;ion introduced here provives guidelines as
to what entails s satisiactory model of production. The framewqu is "general” enough tn ex.teud
previous axiomatic models useful for developing steady-state cost and production functions and

for understanding laws of production in economic theory. Moreover, it is "general” erough to

study models and solutions of specific production planning problems.
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2. THE GENERAL MODEL"

In this chapter, we develop a general model of a production process. Scction 2.1 presentﬁ

the frame-ork of the model. Section 2.2 devcloos the model axiomatically. Section 2.3 illus-

trates the generality of the model. ' Section 2.4 discusses the limitations of the present model

and describes how the mode! could be adapted to fit more spéciﬁc caces.

2.1. The an;teiork of the Model

- ln Section 2.1.1, we pfuent a conceptual framework common to all network iz:odels of
production.! In Section 2.1.2, we describe hcw we cnooze to model the flows of goods and ser-
vices. Sections 2.1.3 and 2.1.4 develop the mode: of the tm:sformatibn of input to output at

the activity and network levels.

2.1.1, Production ﬁetworks: A Conceptusl Frarrswork

A production system is modeleC as a directeu nenvork. the nodes of 'which ,repre'sent primi-
tive production activities. (An exnmpie of a Production: Network is shown in Figure (;-l).) Prim-
itive production amiviﬁa tre those within which the intermediate product transfers need not be
co'nsiderclr! ‘or the purposes at hand. The nodes are connected by directed lm to indicate pos-
sible transfers of intermediate anc lﬂml prcducts.. (Cycles are permitted.) System exogénous
inputs such as laber services, machine and facility services, energy and fuels, etc., are treated as
tmisfen.from zn umnl node Ay For u system with N producing activities, ﬁml outputs are
taken as delivered to node Ay,;. Thus, a production system is regarded as a jointly 'opeming,..
finite number ol" interreluted prinﬁtive pro&uction adiviﬁu Ay, Ay, ..., Ay which use system
exogenous inpuis of goods and services in production to produce ﬁnni outputs. .

Note that the production mode! displ;ys explicitly the intermediate product transfers. This
disﬁ!uy is essential for dymmic modek of broduction since final :output evolves as the evolu-
uamry now of intermediate producu to ﬁn.l producu

' ' Soc for sxample, Shephlrd ﬂ a. "977] Sbevhud {19812, and Hackman asd Shephlrd (l?l.‘!l




FIGURE (2-1)

EXAMPLE OF A PRODUCTION NETWORK



2.1.2. Modeling the Flows of Goods and Services
The flows of zoods and services (input and output) should havs a truly dynamic character.
A Sow, therefore, will be taken to be an el;mem of an appropriate subset of the set of nonne-
gative functions defined on the nonnegative part of the real line. Each flow will be referred to
as a time-rate history.? ,
' fhere are two fundamental types of flows. The first and more common type, called a ¢: -

tinuous flow, is one for which x(z) represents the rate--quantity per unit time--at time ¢. The

‘second type, called an event-based flow, .is one for which x(z) is a numerical representation of

an event at time 7. One example of an event-based flow, suitable for project-oriented produc-

tion systems (see Section 2.1) is when

1 if r is the project completion time
x(1) =10 otherwise.
Another example, suitable for batch transfers of intermediste products, isv when x () indicates

the quantity transferred lnt ume T,

2.1.3. The Activity's Dynamic Production Correspendence
How we choose to model the 'relgtionship of input into output at the activity level is

described in this section. The description of the input-ouipm relationship at the network level

is presented in the pext section.
" To produce output, each activity utilizes system exogenous inputs and interme&iatc pro- .
ducts. The outpu:s' miy be interm.ediaté producu used as inputs by other activities, §r final
products, of mixtures of both as in the case of spare pms '
As notation, let |

2 A_xmraiunmummm.thm(zz.u. a




x9, = (x4,.....x}) denote a vector of n time-rate kistcries of system exogenous

inputs allocated to the i” activity, i=1,2, ... N,
V, = (V). ...,V denote a vectos of :n time-rate histories of transfers of outputs

from the i” activity to the j* activity, i=1,2,... N, j-l,2,.. .., N+1,
V,= (V) ...,V™ denote a vector of m time-rate histories of outputs of the i*
activity, i=1,2, ..., N.
Note that in the foregoing representation: constants n and m were taken for convenience. That
is, a component of xo,, ¥, or ¥, may be zero.3
Abstractly, the actvity’s dynamic production correspondence, denoted by L,, is taken &s a
correspondence {set-valued mapping) ¥, — L,(V,) where informally one interprets the state-

ment thqt

25 w————

X0y i Vl,l € L,(V,)

J=1

1o mean that the i” activity 4, may produce ¥ if allocated x;; as system exogenous inpnt (over

N v
time) and ¥ V,, as intermediate product transfers from other activities (over time).
j=1 S

. To define the correspondences L, more formaily, one needs to diﬂerentiate-bexween' the

concepts of alloamon and appl...anon Since an activity may be allowed to dlspose or store its i

'mputs what is allocated to the lctmty as input [xm. z V,,] may not be what is actually
=t

applied, or consumed. as input into'the production process. As notation, let
yo= () ....y" denote a vector of « time-rate histories of system exogenous
inputs applied into the production process of A4,, :-}.2. ....N, |
Wea(W,..., W9 denote & vector of m time-rate his*ories of intermediate pro-
duct transfer inputs applied into the production process of 4, <~1,2,... N,

. The terin “zero” here refers 10 the function x: R, = R, such that x(1)=, V1 € R,. R ={t]r30}.
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T,=(T) ..., T, T, ..., T"™ denote a vector of n+m time-rate histories of

disposal‘ for beth input and output for 4, i=0,1,2, ... , N N+1.

Given a particular allocation of input | x,,, Z V; ] those choices for.applications of input
=

Y., W, and disposal T, which are feasible are those for which the following inventory balance

constraints are satisfied:4

if the j* system exogenous input is activity storable,

+f(x6_,—r.’-yﬂdp < C/, Vi€R, Q@
0

if the k™ procuct is activity storable,

t
0< b+ f (3 VE-Tr**— WHdu < B, Vi€R, .2
o / ‘
- if the j™ system exogenous input is not activity storable,
" 0w xfh=T/=yf 2.3

if the k™ product is not activity storable,

0= Tvi- T Qe

‘where ¢/,5*€ R, represent initial ‘stocks, if any, ana C,«‘. B“E R, U [oo] represent

the conmm capacity levels. lt is nnderstood that 7/ (T") |s zero nf the j"' system -

exogenous input (k"' product) is not dxsposable

The mode! at the u:uvny level assumes the existence of a production ﬁ)nczion, denoted by

_F,, which 'ukes a vector of inputs applied to the pfoduction process (y,, W) into realized vector

4 The measure i will be defined preeuﬂy in Axiom | next section. The set on which we are mtemun; -

is (0,1].

M e N e e e et weel s, e ey gy e, ey el el e, e - - -
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(of dimension m) »f outputs of the activity obtained through production, F,(y,,W,).5 Since
activities may be allowed to dispose or store products produces F, (v,,W,) need not be equal to
V,. By the expression "F,(y,,W,) is enough to support output level ¥," we mesn that the fol-
lowing inv’entéry balance constraints are satisfied: |

if the k™ product is activity storable,

0< "‘.k"'f{f'f(}’nm)‘ﬂ“‘ "lk’dF‘(Bpk’ V16R+, (2.5)
() .

if the k™ product is not activity storable,

o-‘ﬁ(ylo“’l)-n+k- yik- 2.6)

N o
Thus, to say that [xo,. z V,,] € L,(V,) we mean that there exist an application vecior
J=1

(v.,W,) and dispcsal vector T, such that (2.1)-(2.6) are satisfied. We now turn to describing

the inﬁutooutput transformation at the network level.

2.1.4. The Network Dynamic Prodnctlon Correspondence

_ Let um (), ..., u™) denote a vector of ﬁml output nme-me histories. The network
dynamic production conupondenee. denoted by LN isa eonupondence u — LN(u) which,

E loosely described, is the set of all vectors of system exogenous input rate histories x that when

appropriately nl)ou@ to the activities may produce the vector y of final output rate histories.
To be sperific, x € LN(u) means that we can find allocations of system exogenous inputs

" 10 the activities, xo,'s, and allocations of intermediate products to activities obtained from other

activities, the ¥,’s, such that the following mventory belance constraints are satisfied:

On the input s:dc.

‘ lf the j"’ system exogenous mput is system storable,
] Axioms for the Aamty Production Functions are presented in Section (2.2.2).
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0< b’?+fixJ— T6- Y xbldu € B/, Vi€K, Q.7
h bt ] '
if the j* system exogenous inpht is not system storable,
0= x/=T§ =3 x4, | 28)

where 5/ € R, is the initial stock, if any, and B’ € R, U (oo} repréents the constant
capacity. It is understood that Té =0 if the j* system exogenous input is not sys- -
tem disposable. ' '

~ On the output side,

if the k™ product is system storable,

! . :
0< b + flz V:".N#l - Tﬁi’i ‘uk]dﬂ-'< BY.1, VYi€R,, 2.9)
0 ] ,

if the k** product is not system disposable,

O0m ¥ Viyey = TR —u* . (2.10)
7 ‘

where by, €R, is the initial stock, if my.'md’Bﬁ“ € R, U (oo} reﬁrese'nts the'
' constant capacity. It is understood that TA',I‘{H-O if the k™ product is not system
. disposible. ‘ _
Finally, one needs to insure that the individual activities can produce what is required of them,

%0 one adds.
[xo‘,z}’,;] €L(V), i=12,...,N ' . Q@.1mn
1 o c

Two impdrunt comments are in ordei with respect to the deflnition of the correspondence

LN First, we have tacitly assumed, for each i,

N
N
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V=Y V,. Q12

This convenient assumpticn is not restrictive because:
(l). Storage and disposal of intermediate prodﬁcts are already allowed at the activity
level, | |
(2) If the producion system is such that it is more appropriate to dispose or store
intermediate products at the system level--for example, products are
warei\oused--lhen the acts of disposal and storage 'mhy be simply modeled as a |
separate'activity. If the acts of storing and disposing were costly, then model-

in; such acts as activities would be appropriats.

N _
The second comment concerns the expression 3. ¥, (the vector sum of intermediste product
ot . . J-l . . .

transfer inputs from ail activities into activity i). It is clear from this expressio‘n that our model
does not incorporate transfer or shipment la;s To incorporate thi$ time lag, one could define
V;, (1) as what A, sends A, at time ¢ and introduce V;i (1) as what A4, receives from A; at time ¢.
For exanple, if there we;'e a constant time lag /;, for shipment then

. (ve=1,) ife 34
Vi) = 0 ifogr<;.

Finally, we make a useful déﬁnition._ | If x € LN(x), there are many possible-collec:ions' ,
of flows xq,'s, VU';. »'s W,'s, and T,'s of goods and services which satisfy (2.1)-(2.11). By
the I.expres‘sion "a feasi!?le ﬁow for input x to support output level u’;. we mean one such collec-
tion of flows. On o&&sjon we will simply say 'a.fusil;le flow to support output level' u if
reference to a specific x is not required and « *fedsible ﬂouf‘ if referenee toa sw&ﬁé u is not

required.

..............
.....................................
et e P P R R R AL B R e e S P T A A WA ST Y VO e, e L et e
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2.2. An Axiomatic Presentation of the General Model .

In Section 2.1, we provided the framework of the general qxodel. We first introduced pro-
duction networks as a conceptual model. Then we modeled the flows of goods and services so
that they wouid be truly dynamic. Fmally, we dmnbed how input is transflormed into output.

From the discussion in Section 2.1, it is clear thAt two types of primitive elements comprise
the modet: | |

(1) the flows of goods and services, and

(2) the activity production ft_:nétions.

The purpose of this section is to define precisely these e'>meuts. As mentioned in the intro- -

duction, the best way of being precise is through the axiomatic method. In Section 2.2.1, we
develnp and justify the axioms taken for the flows of goods and services. In ’Sgcﬁon 2.2.2, we

develop and justify the axioms taken for the activity production functions.

We remind the reader that it is our attitude that an axiom is not an a priori truth but_

rather a scientific hypothesis conjectured in order to facilitate a (heory.' The justification of each
axiom rests mainly on the assertion that the property imposed is a property one would expect to

observe in the future or one has observed in the past.

2.2.1. Axioms for the Flows of Goods and Services

“2.2.1.1. Aﬂom 1: The Underlying Space o( Flows of (snll nd Services

It was argued in Section 2.1 that to represent the truly nd character of production, a

ﬁow of a good or service vshould be modeled Q’s a honnmtive function of time. That is, if z -

represents a flow then
2R, R,

where R, ={:7 3 0} models the time axis. - '

- -
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The mathematical operation of integrﬁtion was employed to define the inventory balance
constraints (2.1)-(2.11) presented in Section 2.1. To formally integrate & flow, it requires one
to first define a n;easunble space with respect to which the flow is measurable. If B(R,)
denotes the Lebesgue o-field of R restricted to R,, then we tske (R,,B(R,)) to be the
measurable space. Second, one must select an appropriate measure 1 on B(R,).

The meisure 4 must account for both continuous and eveat-based flows. Since a con-
Itinuous flow measures the quantity per unit time éontinuously through time, Lebesgue meas-
ure, denoted by A, is a sﬁiuble measure which may be uced to integrate a continuous flow.
However, L;besgue measure is nor suitable for event-based flows. Events, as we choose to
think of them, do not occur continuously :hroﬁgh time. That is, the set on which an event-
based flow is positive has Lellaesg_ue measure equal to zero. A suitsble measure which may be
used to integrate an event-based flow is a counting meawre,'denoted by », of the {ollowing type:
A countably infinite index set T={r,}{* C B(R.) is assumed to exist for which if
B€B(R,),

BAT| ifIBAT|<o
v(B)=1 o  otherwise
where |4 | denotes the cardinality of the set A.
Each pointin T indicatu a possible time of an event. So, to account for Soth conﬁnuou§ and
event-bued flows the measure u is uken to be of the form A+ We are now mdy to state

AJuom 1.

Axiom 1

If z represents a flow of a good or service, then z € LY (R,,B(R,),A +») where LT
denotés the nonnegative orthant of L™. If T denotes the index set associated with », thea T is

assumed to satisfy the following properties:

. ' .
R bt ‘)‘w——im -
. .

o -.. .-h -;h ..l ....’ ... . .- h‘ .‘h . - » h * d - l ... .. ..o -.Q‘..I ‘.. '.l .'. ..l '.‘ ..‘I".‘O" " h"’ ‘»' - "

St e .-. ASAAEAES ,‘,‘_ ..... DS A A TN

- »" AP PRE AN ) - - - ’ . - ‘v - - - e,
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(1) Dmpp< <<+ <1, <ty < * -

(2) k"}lf; [rk-'k—ll > 0

3) sup{t,—t4_)} < oo,
(3) k)f’l{k 1)

We make 3 comments about Axiom 1:

(A) The restrictions on: T were imposed o allow us to view I, = (f,_;, %) as a period in pro-
duction i)lming, the points in T as time-grid peints, and T as the time grid. The assump-
tion of a time grid T satisfying properties (1)-(3) above is always a.;sumed in discrete-
time planning and control.

" (B) Since a flow is defined up to sets of measure zero, it is understood that a'contin’uous flow
is constrained to, te one ior which 2(t)=0 if 1 € T and an event-based flow is one for
which z(¢1)=0if r ¢ T. |

(©) Axiom 1 states that a ﬂow‘is initially cbnstrained to be a function which is (i) nonnega-
tive, (i) raeasurable, and (iii) essentially bounded. Thg set of functions satisfyingl these
three properties is large. It includes functions which are not flows of goods ard services
on. expects to occur in produéﬁon. Therefore, additional constraints in the followiné
axioms r.eed to be imposed to define what constitutes an acceptable flow. The constraints'
to be imposed will apply tc each flow fype. By the expression "flow type®, we refer to a
pm_'ticular class of flows. For example, one of the flow types is the da§ of ﬂows;
corprondin'g to the allocatioﬁ of the j* input to the i** activity which we have denoted |

in Section 2.1 by the symbol x6,-._

22.1.2. Axiom 2: Limiting the Shape of the Flows of Goods and Services
‘Each flow is (essentially) bounded (in norm) over the infinite horizon and hence in each
period. We further insist that a flow’s bound in a period is bounded by a function of the cumu.

' lative amount of the flow in that period.

(IR
S e e e
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The thrust of Axiom 2 is to limit flows which are sharply "peaked.” TEat is, Axiom 2 in
effect limits the Jeviation between the bound of a flow in a period, Ilz-l_,lll..,_ and ike mean

2du

value of the flow in the period, (ﬁ' An example of a flow which is sharply' péaked is
. k ' ) N

graphically depicted in Figure (2-2).
The restriction to be imposed in Axiom 2 is made parametrically. The parameters are not

constants but continuous non-decreasing nonnegative scalar valued functions on R...

Axiom 2
For the i flow type, there exists families of paramaters {g/}s~;, (A}, so that if z is a
flow of this type then for all k

M if [ 2du € 4 thenliz-1, . € g/ L4)
[ .

QYHJMuSAmmMMWLQHUV
1, »

In d:screte-ume planning and control the nssumpuon almost always taken is that each

flow is a conunuous flow wkich is a step-function assocmed with the mne xnd. That IS, a flow is

‘assumed to be constant on each period J;. Since our time grid T ioes not change, we w:ll refer -

to these functions as step-funcnons The Jusnﬁauon for the structure of the propeny unposed
in Axiom 2 is that if we properly select the paramgters {gi}r, (i} then Axiom 2 may be used
to limit a flow to the set of ﬂeb-fmcﬁom. Moreover, we msy seiect parameters in such a way )

$0 8s 1o restrict the ranzg'of s flow.
Proposition (2.1.)

! Of course, this reduces 10 the statement that x(6) € 4 = x(n) <A ).

P




, S V.
, z(t)
- - - — — - m e m— - — = ===z
. # : zdy
-‘ —— -'- ‘l et - ——— -—— ——— —-— ——— - —-— —— *'- Ik '
. 7 ' {1y
N ‘ tk.l . : tk t ' *
f Ik~ n
|  FIGURE (2-2) | |
. EXAMPLE OF A SHARPLY PEAKED FLOW - ~
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Let S be a non-empty closed subset of R,. Th~n ihere exists parameters fg.}i°, {h )5
such that if z is a ilow satisfying Axiom 2 (with these parame:ers) ther z must be a step func-

tion whose range ‘s contained in S.

Proof of Proposition (2.1)

Since S€ is open in R, write it as a countable, disjoint union of intervais 7, = (a,, b,),

ie., SC= | I,2

q=]

For each k, define g; and A, as follows:

A o A
A if A €S
4 .
() -a"'] -
' a, + - 2 EX(Ik)a,,(A <X(Ik)b. +Gn 30, b, <o
gU)={ 4 2 ' (2.13)
|
-——-b—— ifx(lk)a,,<44 <IAUk)bn,al<o! bl<“
%[-ﬂ';—)—a,] ifA(I)a, <A KA{L)E,, by=os.
k/ . .

B =A. - e

"Figure (2-3) exhibits a pictorial representation of the graph of a iypied & Héte, the 'set
. S={2,4,6). Inspection of (2.13) and (2.14) shows that each g and A, are acceptable parame-
ters. E o ‘ '

Since the nonnegative a,'s and 5,'s necessari,y lie in S, it is a shnple matter to check that
A€R, g ((1)4)< A] =R, : (2.15)

2 Royden {1968], p. 39.
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WL = 2

S = {2,4,6)

_ FIGURE (2-3)

‘DEIDNSTRATION OF PARAMETERIZATION FOR STEP-FUNCTION CASE
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AER N8 OU)D=Al=s (2.16)

Let z be a flow sa:iéfying (1) and (2) of Axiom 2. By (2) and our choice of A,'s, we

have that, for each &,
Z(lk) < hk(Z(fk)) - %Z(fg)

which implies that 2(s,) = U for each k. Hence, z must be a continuous flow.

By (1) and (2.15), we also have that, for each k, z must satisfy the following inequalities: |
S e < Nz, 10 G
IS » .
< o 7{ G by (D)
&
< {m by a1s.
A o

Hence, the above inequalities must be equalities which implies that

udp o .
&
| n({zdu)- A fore.chk.mg | ENRLY
du _
& . . .
) l(l)- A(l.) lf‘tél.. . . . | (218)

In view of {2.16) and (2.17), it is immediate that the constant

[
[

EVA R

By (2.18), the result follows.®
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2.2.1.3. Aviom 3: Existence of a Lewer Bound

Axiom 3 essentially states that if a flow is positive, then it must be some minimal value.

Axiom 3

For the i* m)wfy.)e,thereexistsmc,>0méhthatif2 is a flow of this type then

uwl0<z<e)=0.

In ﬁrodhction -planning probiems, usually only the assumption of nonnegativity oh the
flows is imposed. Th:s aﬁsumption is made in order to facilitate the implemehution of aigo-
* rithms used to solve ‘the formulation of ihe problem. We believe, however, that flows one

would observe or have observed in production satisfy Axiom 3.

2.2.1.4. Axloln 4: Lhnltntlon o, Set-up times
Given 1 flow z, a ser-up time for z, loosely worded, is a time r at which z is either "stant-
ing up again or *stopping.” If z € LS (R,,B(R,),u), then w= define the set of set-up times

for z to be

SG¢)= rGRf;_li”ismopeniniervnl,rilCR.,then .

Cwll A @>0) S 0, and kll N =0)) > o). S @19

© Axiom 4 insisis that the time between any two iet-up times for a ﬂow is at least some minimal

value.

- Azlon 4

For the /* ﬂoytype.'menekisua'a,k;()nomt-i'f: is a flow of this type then ,

e e .. LI Y LS A L L R R N R

LI S W 1
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i ' 3.
v,y’lg(z) h ‘ > !

Before we proceed to prsént the axioms taken for the activity prodaction functions, it
will be useful tc introduce some notation. We let L{® () denote L (R,,B(R,),u). We let
the generic symbol L, denote that subset of L i) which satisfies Axioms 2-4 for flow type .

When referring to a particular flow type, we will use the symbol wnich refers to flows of that

type (for example, Lx“).

2.2.2. Axioms fer the Activity Production Functions

22.2.1. Axiem 5: Clesare of the Domaln | |
LetL, =L, x --- XL, Lw =Ly X -+ XLya. If D, denotes the domain of

the function F,, then D, € L, x Lw,. If there are additional constraints linking the domains of

the inputs applied in production. then D, may be a proper subset of L, x Lw3 Forenméle,in

the Leontief-type input-output models of production the inputs applied into production, if non

‘mo,mmumedwbepropomoml Anotherenmpleuvhenmnctmtyummone

machmetopmdueenvenlmhrtypaofpmdm lnthuemple,theexogenousmpms

-applied xnto-producuonipdudethemeofmachm_ebomnwhedtouchtypeofproduct. 'l'he.

funcn'onswbichdeﬁnennhmumﬁnkedinmatmmofmemmpodﬁwatmqume

Axiom §

’mmmn--mmumwnumdmmw

 differens ictivities, We chooss 9ot 10 incorporate this festure is our geversl model. Such cases will have 10

hmmduumhn.

. ¢
YL -.-.‘,'.'_.
- ' .
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Endow L, with the relative weak-star topology for each k.4 It is assumed that D, is closed

in the product topology on L,', X L,,',.

Tt is necessary for mathematical reasons that the domain for each production function is

closed. It is not possible to examine each instance of additidnal constraints linking the domains

of the inputs applied in production and show closure in each case. Hence, Axiom $ is imposed.

However, it will be shown that if D,=L, x L, then D, is closed in the weak-star product
wpol@ on (L")"*";. (Proposition' (3.4.2), Appendix, ‘Ch. 2). Furthermore, the domnlins'
associated with the two examples given above are also shown to satisfy Axiom 5 (Proposilio;i
(3.4.6), Appendix, Ch. 3). The purpose of examining these examples and showing that Axiom

5 holds in each case is to give a plausible basis for accepting Axiom S.

2.2.2.2. Axiom 6: Null Activities are Excluded

An obvious property to impose on each production function is to insure that each activity
is capable of producing at least one product. '
|
Axl’om 6 : C .
For all 4;, F, on D, is nonitrivial. That is, 3k and a (,,W,) € D, s.t. \Ft(y,,W))lla > O.

2.2.2.3. Axiom 7: Exigteneo System Essential Inputs

A subset of system exogenous inputs is called 2ssenrial if vhen none of these inputs are

spplied in produciion then no output of any kind is pouible."Typially, in most production sys-

tems labor services is an example of a set of essential inputs.

4 A basic open neighborhood A, of [zero in this topology has the foliowing form: 351, ... ." € L} and

me>0mchthat No(z € L1 | ] (of2)dul <a, Vi). N isusaally denoted by N(p', ..., p% ).

.......

.......
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Axiom 7
There exists a set E, @=EC{1,2,...,n}, |[E|<n, such that for each 4, if

(.,W,) € D, with y; -0 for j € E then F,(y,,W,)=0.

Any 8. waiisfying the above property will be called an essential set of system exogenous

inputs,

2.2.2.4. Axiom 8: Boundedness of the Production Fanction

If the rates of application associated with an essential set of system exogenous inputs

applied into an activity’s produciion process were bounded, then we maintain that tiie output

rates realized through producticn would be bounded regardiess of the magnitude of the rates of

" application of the intermediate product input. This axiom suggests itself from experienee.

Axiom 8
Let E be an essential set of system exogenous inputs. For CER,,let

Ye=Ube€L,| mxipl.€Cl.

Then for each A4,
(.,,)3?." Ye l'?“:" "F'.(y_’ W)ll-] <. VCER, '

2.2.2.5. Axiem 9: Input-Output Continuity
: Let (1, W), (72,W3) be two input vectors belonging 1o the domain D, of F,. Let h > 0.
ﬁxlhéhoﬁmtot,beﬁniteintervul.lﬂ.hl. If the difference in the cumulative amount of each
! inputinuchpetiodmmemhwtmbmﬂ;denuymn.miemdnmnuiat'

‘m&ﬂemmmcmmhhu”mtdmhmmm.hm between therealizgd

| ‘output vectors of production must necessarily be small. - ]

e e, RO N T e e e e L R e e N e e T e 2



als0 assumed that this function itself is bounded in a manner similar to Axiom 8.
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Axiom 9

For each 4, and Yh € R,, if (,,W,) € D,, then Ve >0, 35> 0 50 that if (7, W,) €D,

satisfies
()  max | f {=y)du <8, 1€j<n,
. AT
@ max| [ (W-WHdul<s, 1<k<m,
] -
;nto.al
then

IJ(E"(thl)—E“(yz,Wz))du l<e, 1<k<m.
(0,41 ' .

'n;erc are examples of production functit;ns which do not satisfy Axibm 9. One example
is thg production function associated with & chemical process which produces a successful reac-
tion only when a certain level or qitical threshold of input ‘is reached. To incorporate these
ictivity' production functions into an framework one mny either choose to modify the domain
D, so that levels below the critical threshold no longer belong to the‘ domain or modify the pro-
d-.ction function itself. We believe that either modification can be made wifhout seriously_

affecting the model of the activity’s production process.

2.2.2.6. Axiom 10: Efficiency of the Production Function

If the vector of intermediate product inputs applied into an activity's pfoducnon process is’

_ﬁxed then we munwn that’ there exms a bound on the cumulauve nmount of exogencus

operates inefficiently” we mean that an activity eould produce at least as much cumulative out-
put while using “less” exogenous ipput.
The bound on the cumulative amount of exogenous inputs applied into production is

assumed to be a function of the vector of intermediate products applied ‘into production. It is

.
-« o
..............

~ inputs lpphed in producuon before the activity oyemes ingo‘icmnly By the exprmon acmmy :

-------
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Axiom 10

For each 4, there exists a g,: Ly, x R, — R, such that ¥k € R, if (y;,W) ¢ [, with

d (W.h)
,‘2}‘2‘,[5&]"“>3( ) -

then there exists i 32! f y1 such that (y,, W) € D, and such that

: lEk(YZaW)d“ )Jﬁ(th)dﬂv l<k<m-
0.4 A) o

Let We=(We l-w,' 12‘3.." Wil € C]. Then each g; is nssuined 10 satisfy the following

property: Vh € R,

"Wc"(w'h) < o

2.2.2.7. Axiom 11: Past Production Not Affected by Futare Inpats

Let (y1,#), (y2,W) be two input vectors in the domain D, such that for some 4 > 0.
.’Vf'ﬁ'llo.hl. 1‘/‘"-

That is, y; is the restriction of y, to the horizon [0,4]. Since no future input can affect the out-

~ put already generated up to time A, then we maintain that

PO W) lop = FOL W) gy, 1<KSm
even though mathematically (v, W) = (y,, W).
Axjom 11
For each 4, and VA € R, if .(y.W) € D, then

: H((y"llo.hlc -_-l,-.;y."ﬂ.hl)v‘w) Y.IVF;‘(V'W)']WJI' l‘ k‘ M .,

\'. ....... N '~.g .... v -: .:_.:_. N .'--. -.a-:. '._. b T :‘. ...-_. :..-., A AT REREA _'..Y.' .............. . T T e e T Tt e et
e e T e e e e e, . L e . . . et . - o R T e S Y T R Nt TR U SIS
L AR T A R R Y ) .,"\fu.i A N T e PO LR LA Sy RO Rl AL Yook " Ml S O AP SUIL UL N AN SN
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2.2.2.8. Axiom 12: Cumulative Production Limited in Finite Horizon
We maintain that in a finite amount of tjme, an activity cannot produce an infinite

amount of ouiput regardless of the inputs applicd.

Axiom 12
For each 4, and VYA € R,

(y,fvuﬂp,. MlF,-"(y,W)du <o, 1<k€Em.

' We make an important observation about the implication _of Axiom 12. If in a finite

el o

amoun; of time only a ﬁqite ‘amount of cumulative output may be realized through production,
then the cumulative amounts oi the allocations and aﬁplimions of intermediate product input
associated with any feasible flow must be finite in a finite horizon. By Axiom 2, this implies
" that in a finite horizon the flows of the allocations and applications of intermediate product

input associated with any feasible flow are uniformly bounded in norm. Thus, a function

IO PR A WT Y U UL ST WKW

* B:'R,= R, exists such that B(h) is such a bound. The function B(h) is a function of the

horizon [0,4] and the parameters used to define Axioms 2 and 12.

Bt ol B S

]
|
I
|
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2.3. Spechl Cases of the General Model |
In this section, we illusuaté the model’s ‘genenlity. In Section 2.3.1, we use the descrip-
tion of the gener=! model to define precisely the Dynamic Linear Activity Analysis Model of ‘
| Production. In Section 2.3.2, we show how the Tnvelinﬁ Salesman Problem may be embedded
intc: the framework of ‘the general model. In Section 2.3.3, we discuss Material Requirements

Planning. Finally, in Section 2.3.4, we discuss single-project production systems.

2.3.1. The Dynamic Linear Activity Aaalysis Model (DLAAMD

The Dynamic Linear Activity Analysis Model of Production (DLAAM) is asi extension of the
dynamic Leontief input-output models of production.! All of these models assume a particular
form for the domain of the acﬁvify production functions and the production functions them-

selves.

The Activity Production Functions
Each domain D, is assumed to have the following form: there exist constants a,,

j-l,Z. DRI (S 3,,,. k"l.Z. .'. . »m such that
DI - {(y,,’V,)' 32,- such thlty,/- a,2 , u’lk- E‘*z'].

" In other words, if the npphauons of inputs are positive, thes they must be proportional, thus, .
: they may be mdexed in terms of one proﬂle, 2, called the intensity curve. The intensity curve z,
is mumed 10 be a bounded step-f uncuon associsied with an equal-length period time md
The production function F, is a function of (,,W,), In view of the form of the domain

' b, we may write the ﬁroductidn function as a function of the incensity curve denoted by F,(z,).

Each F,(z,) is assumed to have the following foﬁn; the_fe exists constants c;.. k:-!,Z. cee,m
 such that |

‘Fxmdevelopedebeﬂurd AlAyulLudnmmllmmmelelnzl ‘See .
aiso Leontief (1951], Koovmmll%ll and Morgenstern (1954]. A
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FX(z;) = c,z;, foreach k.
In other wcrds, the outputs generated are assumed proportional (if positive) and indexed by the

same profile as the one used to index the inputs.

Inventory Calculations

In the general model presented in Chapter 2, the inventory of a good or service was con-

strained to be nonnegative and less then capacity at a/l points in time. DLAAM relaxes"this

restriction in that the calculations of inventory only occur at the time grid points. For a finite
horizon, this relaxation implies .that the level sets LN(u) may be described in terms of a finite
set of linear inequalities. (The cumulative amounts of each flow in each period become the
variables.) Thus, forﬁulatiom of prodﬁction planning pi;oblems which assﬁme DLAAM as a
model of production perrait the use of linear programming.

The general invenfory balance constraims,ixhposed on the intermediate product transfers
are:

fzv*(f-:,)du> 2W,.*du, V,324,1<k<m. (2.20)

{ry.t,) i iy,

A lag 6f one period is incorporated in (2.20) to insure feasibility since the calculations of the

inventory only occur at the time grid points. Note that DLAAM does not explicitly mode! each

. ¥, but only the sums' V, =Y V, and W, =Y V,. This is because DLAAM does not impose
‘ i ' J .

any side constraints on the ¥,’s. Without side constraints on the Vs, these variables become

redundant. lq fact, most production models do fiot explicitly memionb the ¥;'s precisely
because theyi do not'impose sid‘e‘ constraints oh the V;'s. For ) further discussion of DLAAM

and its relationship to Leontief-type input-output models of production ste Leachman [1984].
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2.3.2. The Traveling Salesman Problem

Let H be a directed network with N nodes, N 2> 3. The traveling salesmzn problem is to
find a minimum-length Hamiltonian cycle, i.e., a cycle passing through each node exactly once.
As notation, let d(; ;)= length of arc (i,j). We assume d(, ) is a positive integer. We let 4
denote the set of arcs in H.

In this sectiori, we will gonstruci a production system such that, for an lappropriatachoice
of the final output vector u, each‘feas’ible flow for u corresponds to a Hamiltonian cycle and
vice-versa. Moreover, what is being produced by this production system is the kﬁgth_ of the Hamil-
tonian cycle. The development also illustrates the vlcry general ways in which the primitive ele-
ments can be defined.

We first proceed to construct the production network G associated ﬁm the productipn
system. The nodes in G correspond to the arcs in H; that is, if arc (i J) exists in H then node
A jexistsin G. | We also add a "sink™ node 4 (v+1 v+1). There is an arc from A, ;) 0 A ) if
(ij) = (k,)) and j=k. ~.i:n, for each (iJ)‘#‘ (N+1,N+1) an arc from A ) to A (v4iN+1) IS
added. . | ‘

To define the production system associated with G, we need to define the limitations on
the flow types. We list these below.

| (1) The time grid T is the set of wholel npumbers {0,1,2,--- ).

(2) All flows are ;:vent-baﬁed.

(3) The range of each flow belongs to (0,1} |

4) Excépt at the sink node, no inventoﬁe; of any hnd are ﬂlowed.
'(5) No disposal of any kind :s allowed.

(6) There is onl} one exogenous input and only one product,

- (1) Attention is restricted to the finite horizon [0,k] where A = Y dia
) GJjled

The additional constraints imposed on the flows--other .hnn those constraints already

imposed by the general model--are listed below:

f{ 3 )‘(k.n}dﬂr"l - ‘ , (2.21)
ol [ nme (N LMD _ :




J[ {Gn 1 ;(/ n A}‘V("n'(j'” du=1, j*= N+l (2.22)
3] RAR RGNV ‘ |

Yo =0—=Vipnwan+n=0. (2.23)

The production functions are defined as follows:

0 ify(,,-,)-O, W(k‘,)-ﬁ
)| Yo ) fyan=0, Wun=0
14 n .
FunGumWa s L+ eawy 1 i Ve, ”,go Wen#0 (2.24)

l Lircwg p+dg ) if =9, Wen=0

' where (W, ) =min{n | W (n)=1]. A routine check shows that all flow types satisfy the
axiomatic system presented in Section 3.2.
Before we state and prove Proposition (2.2), it will be useful for the reader to interpret

the statement
VingoW =1, (j)eA, (k)€
" 1o mean that "at time ¢ we have visited node J from node i and will now visit node & from

node j."

~ Proposition (2.2)
Let u=1;,. Each fegsible flow to support output u for the production system
eorresponds to a Hamiltonian cycle in H. Cecuversely, to each Hamiltonian cycle m H we may

associate a feasible flow to support output level u.

Proof of Propositien (2.2)

We first show that a feasible flow corresponds to a Hamiltonian cycle. Assume a feasible

flow to support u exists and select one. By (2.21) there exists eiactly one (k,!) € 4 such that

Yun©) =1, - (2.25).
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Since node / must satisfy (2.22), it follows that there exists an m, 1 < m €< N, aud & time ¢°

such that
Vanum) =1 | » ©2.26)
Since no inventories are atlowed, this in turn implies that
Wem@) =1, .27

Constraint (2.22) implies that

mj’)w(,_,,du <1, VGJj)EA. (2.28)
h . .

Hence, by (2.26) and (2.27) it is easily seen that T(W'(,‘m))-t'. By definition of F u.m (see

(2.24)) we have that
[F(I.m)(y(l.m)’W(I.,m))](’.+d(l.m)) -] ‘ (229) )
Since no inventories are allowed, (2.29) implies that

Vimmmt +dym) + Vam.vinen( +dgm) =1, - (2.30)
{nl(m,n)ed} ' .

By (2.23), we have that for exactiy one n, 1< n < N,

V(y.-,),(,,_,)(l"‘f’ d(,',,))_ -] | _ ‘ (2.31)
which in turn implies m;i
w‘,,,,.',,;(r‘-;»d;,;,.,) -l o : _ @3
" It is clear by the Qbove development that the forward-thi ough-time argumr ~Jatinues and

traces out a path in G. We symbolize this path by

(k0) = U,m; = (m,n) = -
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As a; easy consequence of constraint (2.22), the psth as 3enerated by our forward-through-
tiza~ a-gument must be fisite. (Loosely worded, Constraint 2.22 insures that a node in H can

n'.s Se visited more than once for any feasible flow.) Hence, .iz¢ path must be of the form
k)= (m) = (mn) = - = (wx)=— (xy)— (y,2).

The forward-through-time argument clearly indicates that: F, ,;# 0. Since no inventory is

allowsd excepr at the sink node and (y.z) is the last node in the path it is easy to see that

(».2)=(N+1,N+1). By (2.23), it fbllows that (x,y) = (k,/). Hence, it is easy to verify that
Wanlt' +dym+dmm+ - +dui) =1 - . (2.33)
F(N+1_N+|)(l.+d(:',,)+d(,,,‘,)+ cre 4 d(.‘k)) -], . (2.39)

We see that the forward-through-time argﬁmem construc:s from the feasible flow a cycle

in H which we symbolize by
Koo |y oo ppoms -.. —ow—ok'

We must now argue that this cycle is in fact a Hamiltonian cycle. Intuitively, Constraint 2.22
insures that a node in H has to be visited at least once for any feasible flow.
To argue more formally, let i denote a node in H not in the cycle constructed above.

Since i must satisfy Constraint (2.22), it follows that for some 4, j and ™
Vaanun ) =1, ' L (239)

Instead of using a forwards-lhrough-time argument starting at ¢, we now use a backwards-

through-time argy ments.. Constraint (2.35) implies that
Fan O Wa ™ =d ) =.1. ' (2.36)

- By 2.21), ya.»=0, heixce by (2.36) W, (1" =dy; ) = 1. This means that for some g
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Veman(™=d; ;) =1. X 1))

It.is easy to see how to propagate the backwards-throuzh-:ime argument.

The path in H generated from the backwud;-through-ﬁme argument, by ‘(2.22), must
terminate.' Furthermore, no node in this path can be a node in the cycle we jenented from the
forward-through-time argument (again, by (2.22)).- If (a,b) denotes the first arc in the patlh
generated by the backwards-through-time argument, it is easy ;o check (and intuitively clear) -
that |

Yan(0) =1. | (2.38)

And, of coﬁrsc, if (a,b) = (k,/) thea (2.21) is violated; if (a,b)= (k./) then (2.22)‘ is violated
for node /. Hence, our cycle is Hamiltonian. '
Finally, we wish to argue that " is in fact equal to d, ;). If 50, then we will have shown
that the intermediate product transfer into the sink node is the mdm&or of the length of the Hamil-
| tonian cycle. ' _ |
| By (2.26), we must have that |
FanGunWal@)=1. Q39
Since Wu,p=1"+dym)+ dimm+ * ** diu s (2.33), by definition of Fyu s (see 2.24) it is clear
that either It'-d'(,‘,) or r'-t'.-t-d(g.,)-kd(,;;’.';-i- b dgay. Since dopn>0, V(iJ) € A. we
have that 1* = d, . | | , ' '
Thie conclusion is that a feasible flow corresponds to a Hamiltonian cycle. I is immediate
‘that a Hamilionian cycle corresponds to a feasible flow. One simply mooses one arc in the

cycle as a starting point, say (k,/), and sets Ya.n(0) = 1. If (/,m) is the next arc in the cycle,

then one sets
FunGunWamlden =1
Vinom(dym) =1
—
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and continues in the obvious way. That the inventory balance constraints (2.1)-(2.11) are met '
is immediate. The proof of Proposition (2.2) is now complete.
Let LN refer to the network dynamic production correspondence for the production sys-

tem described in Proposition (2.2). Then as an immediate corollary we have the following fact.

Corollary (2.3)

ForallreR,, if u= l|,| then I.N(u)ag @ if and only if there exists a Hamiltonian cycle.

_QnHoflength Imunnorequal tor.

Asa consequence of our above developments, the following problem is equivalent to the
Traveling Salesman Problem: '

P: min{ udu | 3x with x € LN(u)|.

0,41

Henée. this last problem is NP-complete. Since finding the longessr Hamiitonian cycle' is also

NP-complete. then the general problem of maximizing scalar output for a production system is

* NP-complete.
©2.3.3. Material Requirements Planning

Underlying M“l

" Material Requirements Planning (MRP) is a production planning tool for the discrete parts

‘manufacturing enirironment 1To use MRP the producuon planner mumel that:

(l) All flows, except the intermediate product tnnsfer flows, are step functions
associated with an equal lemth period ume snd. The intermediate product

mnsferﬂonuemnndtobeevem-hndﬂow ‘The numbes of periods p
2 Fora comprchensive muuon see Orlicky 1970,1975) or Plossl, Wight llnll e

u'.-.‘_a.‘-.p('- ,‘-.*' RO ..‘.-.'.,.'.*“. .“'.'._. et et
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is assumed finite.
(2) Bill-of-Maierials Coefficients ay, 1=12,...,m, k=12, ...,m exist such
that to produce 1 unit ofproduct k requires a, units of product .

(3) Consunts L,, k=1,2, ..., m exist such that it takes no more than L, periods

that quantity.

(4) 1f a production planner uses MRP, then the planner is tacilly assuming, by (2)
and (3), that the production petwork associsted with the discrete parts
manufacturing environment is one for which activity 4, represents the produc-

tion of product k.
Ceastreints on the Intermediate Preduct Traasfers ’
If activity A, is to producerfl’*du units of product k in period /., then it is required
1)
thatnﬂintécmediawproducunecmrywprddmer'dunnitsofproductk for A, must be
[

available L, periods earlier. Thatis, for 1€ 7€ p, 1€/ < m, 1< I< m,

t‘-‘fy'du<

me} [ .-L, l.." }

{2 V‘}.m ' (2.40)
" (2.40) could be suitably modified to incorporate tnnsfer'hp if necessary.

'Explosion of Requirements .

Let u denote a fins! output vector. If one insists on eqnnhty in Constraint (2.40), then it

is easy 1o check that Assumption 4 unpha um al ¥,° : are determmed This determination is

usually referred 10 as the mtcmquwmt 's explosion or the expiosion of requirements.

" The Fundamental Problem with MRP

.........
e . -

...................
................
....................

t0 produce an arbitrary quantity of product k regardiess of the magnitude of

.« et
-----
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L The use of MRP only determines a schedule for the V,;’s. It says nothing about how the

_individual activities which comprise the production system will be able to produce the require-

- - owwe— .,

' mcms.'l Stated dxiﬁ"erently. by Assumption 3, MRP ignores the activity production functions

since it assumes that each aétivity may be able to gfoduce any quantity required. By choésiﬁg
l to ignore the ;ctivity production functions, the production lags, the L,’s, are introduoed and
inflated 1o insure feasibility of the schedule of the V,’s. It is well-known that this is the funda-

mental problem with MRP.3

2.3.4. Slule-Project Preduction Systems

T IR R

- A single-project_production system s one for which acuvma are assumed to perform a one-

TN .\ %N,

_'. ﬁme_ job, uninterrupted _from start to finish, and for a known fixed duration. A project is said to
X be completed when all of the activities are finished. Following Leachman [1983], it is assumed
E that each'exo;ehous resource is' non-storabie, that the total :mbunt of each exogenous mour;:e
i ) usedtoeompleteanl-ﬁﬁvityisknm.mdlbgtthemoumamtppuednmuntntes.

" Associated with a single-project production system is an activio-on-node precedence merwork
denoted by H. H is an acyclic, directed graph on N nodes. Node 4, in H corresponds to
u:tivi’tf i, i=12,...,N. The arcs indicate strict precedence relationships between the activﬁiu.
That is, if there is an arc from 4, tnen.c:;vityj anhota.nunmnﬁvityihn,ﬁnimed‘ Let

W denote the set of whole numbers. Let 4, de.notlebtbe duration ofu;:ivﬁ:y I, d, € W for esch
i.
Dcﬂnmoa Q.4 ,

Aﬂcx:ble xheak qfwrt-mnes for the activities is a vector S= (S, ...,Sy) € W¥ such

TTRY Y Y Yy =Y rggr, o, v, "e-

- that if arc (i j) exists in H then S, +d, 3 S,. We note that by taking S € W, we are assuming
that a start-time forinu.ﬁvity_dﬁysbegins'ntlhebe;inning of a period.

) For & dewsiled description of Uy probleny, with MRP, ses Kasper [1983].
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In this section, 8 production system is constructed subh that, for an appropriate choice for
the final output vector w, there is a 1-1 correspondence between the set of feasible flows to
support output level v and the set of feasible schedules of start-times. Furthermore, certain
feasible flows may be identified with the well-hom early-start and late-start schedules deter-
mined by the ordinary critical path mexhod.f

We first proceed to construct the production network G associated with the production
system. j"o the activity-on-node network H add sink node A,m‘ an’d add arcs (i N+1) from

. each néde A, to node Ay.,. This network will be taken to be the production network G.

To define the production system associated with G. we need to specify the limitations on

the primitive elements. We list these below: |
(*V .The time grid.T is the set (0,3,2, - - - ).

(2) Al flows are stcp-functions except the final output vector which is event.

based.
! . ‘ (3)  No disposal of any kind is allowed.
o ‘ | : N
(4) Attention is restricted 1o the finite horizon [0,4] where A=Y 4.
' : (]
i : The additional constninu'imposed'on the flows--other than those constraints already

imposed by the general model-—ase listed below.

| - On the Applications of System Exogenous Inpuits
_ As notation, let 8, k=12,...,n denote the total amount of resource k that 4,

requires. As notation, le_t; fori=12,...,N,

Z ={z €LY (u) ISS, € R, such that Z,-f‘!"l(_g"s;.»")} : (2.42)

and define for i=N+1

4 Sée Moder and Phullips (1970}, for exampie.

------
.....................................
.............
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Zya = {2y €ELT (#) | 3Sy+1 € R, such that zy ;= l(sﬁﬂ'.) . (2.43)
Then it is required that there exist a z, € Z, such that
Crebz, 1€k€n. | (2.44)

Note that the description of the application vector fits the form as required by DLAAM

L R P L P R TSI TN R WL.'_JL.’ [
N, - .

presented in Section 2.3.1. The variable 2, is referred to as an operating intensity. The interpre-
tation of z, is that fz, du expresses the fraction of the total amount of each resource required
° ) .

to complete 4, up to time r or expresses the fraction of the job eompleted up to time r.

On the Activity Preduction Functiens = K N .

To define F,(y,,W,), one needs to know what kinds of “products” 4, Iis *producing.” It is
assumed that each activity produces a distinct product for each of the activity's immediate suc-
cessors. Following DLAAM, the output rate is modeled as the rate of the utilization qf the sys-

tem exogenous inputs. . That is,

2, if arc (i) is in G and y*e= b, 2, for each k
R (2.45)

FO.W) =10 otherwise.

In effect, (2.45) 'nys that, up to'time 7, x% of an activity has bo;en' compieted if, up to time 1,

'x% of the resources reqi:ired to complete the activity have been utilized.

On the Intermediate Preduct Transfers
Each activity 4,, i % N+1, obtains a distinct intermediate product input from each of its

. .
immediate successors.
L
Definition (2.46)
‘\',‘.._..'_. ...... ~. '\.-','.':.':'I". :,' -.' T s .‘ : ’.‘.-' ...................................... P T T e K
Y B R R P R'.a'.-'l.'}"g" e e, ey e et e e R R T St e S A PE AR L P S SR P
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An intermediate prodct trarsfer functional is 8 map f;,: Z; — Z, defined by

1

, Z'l“;*$%*$+4’ if i = N+1
fﬂ,(‘jdl“l(s,..gwl)) - 15,00, ifimN+1 .47
It is then requjred that if
y=byz, 1€k<ga (2.48)
yh= l"mll » 1€k&n | (2.49)
then for j = 1'2.""'"' im1,2,...,N+1,
Vi=fatz) "(um
W g . (2;51)

This completes the description of a single-project production system. A routine check
verifies that the axioms are satisfied. As notation, let F denote the subset of indices

- {1,2,....m} associated with the intermediate product transfers into the sink node. The fol-

lowing proposition and its corollaries show why we have chosen to dzfine the primitive cle- .

ments in the manner given above.

Propositien (2.4) .
If the final ouxpﬁt vector u is defined by u’ = 0 if i¢ Fand u' =1, if i € F, then there is
2 ‘l-l correspondence between the set of feasible flows 10 support v and the set of feasible

schedules of sim-timu.

Preel of Pn',ulﬂg. Q.o

Assume feasible flows to :upppn oufput v exist and select one. Each y,, by constraint v

(244), has an operating intensity ‘asscciated with it. By definition (2.42), each z, has an

il etarislal,
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S, € R, associated with it. We claim that the vector S= (S, . . ., Sxy) so generated is a feasible
“schedule of stan~timcs.
Suppose 4, is an immediate predecessor to 4,. By the definition of a feasible flow the fol-

lowing inventory balance constraint must hold:

f{V,-, -~ Widu 3 0, Vi,Vrel0hl. 2.52)
o .

By the constraints imposed on ¥, and W/ (see (2.50), (2.51)) it follows that uf:on substitution

1

f{‘dl" 1(5}4.4}_5}...‘/.,")- _dL 1(:“5'*") d}t ) 0. Vré€ [0,h] . ' (253)
ot/ ' . _

Clearly this implies that -
S, > S,+d,. , (2.54) t

Hence, S is a feasible schedule.
Conversely, if S is a feasible schedule of start-times then define the induced operating

intensity for A,, denoted by z,, to be

2;".- 1(3.-51*‘.) . ‘ } ’ ~. (2.55)

_ A routine check verifies that the primitive elemehls defined from the operating intensities given
iq (2.55) satisfy the inventory balance constraints of the general model (2.1-2.11). Thus, s
feasible schedule § indrces a feasible flow in a natural way. -

The association between feasible flows and feasible schedules given above is casily seen 1o

be 1-1. Th= proof is now complete.®

Definition (2.56)

e T T L
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An Early-start schedule, denoted by E, is a feasible schedulé such that if S is any other

feasible schedule then S, > E, fori=12 ..., 6N.

Definition (2.57)
A Late-siart scheaule, denoted by L, is a feasible schedule ‘such- that if S is any other

feasible schedule then S, € L, fori=1,2,...,N.
The follbwing two corollaries are immediate:

Corollary (2.5)
A feasible flow minimizes the sum, over all activities, of the. cumulative: intermediite
product inventories at the sink node if and only if the schedule of start-times associated with

feasible flow is the late-start schedule.

Corollary (2.6)
A feasible flow maximizes the sum, over all activities, of the cumulative intermediate pro-
‘duict inventories at the sink node if and only if the schedule of start-times associated with the

feasible flow is the early-start schedule. For ease of yre-,enufién.we excluded it.




2.4. Comments on theCenenl Model

Comments about the general model and extensions to the model are made below.

On a Stochastic Framework

By our assumption and definition of the activiti production functions, our framework is
clearly deterministic. We are assuming that if we knew the applications of input that we would
krnow the realized output obtained from production. Environments such as agriculture where
weather plays an important role in determining yield do not fit this assutaption.

One can make the production functions random functionals to account for such environ-

ments. If we let 2 denote some probability space! then we can define F; as a raap from
Lr: xLyxQ - R,

where one interprets P}(y,,l}’,-.w) to he the actual output if (y;,W,) wes the vector of inputs
applied and w was. the state of nature observed. We are tacitly assuming here that 0 is
independent of L, x Lu,, i.e., @ does not vary with the choice of (y,,W,). Axioms onF, would
have to be suitably modified to accouat for the stochnsﬁc formulation of F;.2 To model produc-
tion systems where it is more appropriate to view ) as dependent on the chonee of (W) is

considerably more dxﬁcult but worth investigating. -

Lags
As ﬁe have elready mentioned ho explicit mention of time lags was given in the general
model Sueh lags could be easdy incorporated but would require the introduction .of new vari-

ablec in a manner similar 10 that treated in Section 2.1.4. There, vamblee V were mtroduwd.

1 = (Y,B.P) whete Y is 2 set, B is a o~algedrs of subsets of Y and P is s measure such that P is
o-finite with P(Y) = . . _
2 Mak {1981] developsa stochastic theory of Dynamic Production Correspondences.
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Dependence Between Activity Primitive Elements
As illustrated in our description of the Traveling Salesman Problem, specific productioh
systems might have additional constraints linkingl primitive elements belonging to different

activities. By changing our definition of the domains, we could allow for this flexibility. For

ease of presentation, we excluded it.




3. TOPICS IN PRODUCTION THEORY

This chapter addresses some of the issues found in Production Theory. In Section 3.1 we
analyse the technically efficient subset. In Section 3.2 we carefully analyse Shephard’s duality in
both the steady-state and dynamic cases. Section 3.3 addresses 2 versions of the Law ef Dimin-
ishing Returns as first formulated b& Shepl;ard. Finally, in the Appendix,’ Section 3.4, some of

the technical propositions are proved.
3.1. On The Technically Efficient Subset

3.1.1. On the Nonemptiness of the Tecknically Efficient Subset

The technicalljr efficient subset, denoted by EN(u), is defined to be
EN(u)={x € LN() | if y < x then y £ LN()}.! G.1)

The technically efficient points are those for which it is not possible to loiver the input rates and
still aehieve the seme output rates. Thus it is important to know that om'; general framework is
consistent with a‘desirable property that the eﬂicient subset is_ nonempty whenever the level set
“itself 1s nonempty. This result is also the first stepping stone toward# provixig Shephard’s Dual-
ity Theorem in the finite horizon dynamic case which is presented in ihe next section.
' We remark that we prove this theorem under the assumption of a finite horizon. 2 That is,
for some h > 0 the underlying space of flows of goods and services as presented in Axiom 1,
Chapter 3 vnll be changed to L ([0,4}, B, ).+v) where B is the restncnon of the Lebesgue
o-field 10 [0,h], Ais Lebesgue measure restricted to ([0,4], B) and » the counting measure

on{t, | 7, € h}. As notation, let L (x) denote L (10,h), B,A +»).

'fygx, lhen Vi, 1€ia, ulx! > y'j=a,
2 We do not have a proof in the infinite honzon case. Addit.onal hypomeees on the wumuve elements we
believe would have to be taken.
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Theorem 3.1.1

Fer the finite horizon case, if LN(v) = @ then EN(v) # .

Proof of Theorem (3.1.1) |
Pick an arbitrary z in the nonempty LN (u). Coflsider the following optimization prob-
lem. | B
inf f (;x’ Jdu
subjet;'t to:
(1) x €LNG)
Q) x (vz |
It is clear that if we can show that thefe exists an x € LN(u), x € z schieving the infimum in
f (z) then x € EN(v) and E‘N(u) is nonempty. What we have to show is !h;t this problem has
a solution. ,
To show this, endow eaéh‘ L; (the subsf:t of LY () nusfymg Axioms 2-4 for the i flow
type) with the relative weakstar tolpology‘ (viewing it as & subset of L*(x)) and

L!x --. x L* with the product topology. Letting L, stand for L} x -:- x L7 then the
. ¢
objective function ¢ viewed as a map from L, — R, is coniizruous.’ As an appiication of the

.theorems_of Banach-Alsoglu and Tychonoff, the set of x in L, satisfying (2) is cuntaine] in a
com'pgct subsei of (L"(ja))‘!.‘ In the Appendix we verify that each L, is’c.:-losed in L* () (Pro-
position 3.4;2); hence, the sét_ofl x in L, satisfying (2) is compact in L,. Since a contipuous

 real-valued function on ooinpad set achieves its infimum then in~o't.:m; i :omﬁlete the proof |
that EN(v) is nonempty- it sufﬁqes to show that LN(I;) is a weak-star d@d subset of
L= @)

3 The operation of addition is continuous. The integrable funciion here is p= 1yg yy. '

4 The theorem of Banach-Alaoglu states that the closed urit ball in the dual space of an erbitrary topologi-
cal vector space is weak-star compect (Rudin {1973), p. 56). Since L™ is the dual 10 L! we have that
{x | txtl,, € 1} is weak-star compect. Themeoremor‘ryd:onaﬂ'nmnmuhmmdw of compect spaces
is compect in the product topology (Dugrndgi [1966), p. 224).

$ See Dugundgi, p. 227.
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To show that'LN(u) is closed let {x,} be a net in LN(x) converging to x.6 To say that

X, 'é LN(«) for all a. means that for all o there exists a feasible flow 'for X, to support output
level u. In order to Show that x is in LN(z) (which is our goal) we need to exhibit a feasible
flow for x to'sﬁpp&rt Qutpu! 'level u. To arrive at this end we will extract 'limii' functions for
cach flow ftyfe frofn the feasible flows for each x,.

By .the‘very_deﬁnition of a feasible flow the net {x,} induces a net of functions for each
. flow type. What we will in effect show is that there exists a subnet of the original net {x,} such
that tpe associated sub-nets of functions for eaﬁh flow type have the property that they are uni-
: fofmly ﬁunded in'the L= (u) norm. Hence, by compactnes§, we may extract these sub-nets to
obtain limit functions.” By duality between L!(u) and L"(u) the invent-ry balance constraints
will hold for these functions. 8 The proof would then be complete.

The inventory balance constraints which must be .sagnsﬁed by the various pairs (,)f flow

types which when taken together make a flow feasible have the following structural form:
[/ v )
0<S+flx=T-yldu € C, Vrelol. B EF)
o 0

Here S represents the initial stock, if any, C the capacity (perhaps infinite), x the flow of input
into the "system’”, T the flow of disposal out of the system, and » the flow of input out of the

‘system (SceSecnon323) |
To arrive at our main resuli we first prove a snmple proposmon whxch paves the way for a

'verbal" proof of the rest of the theorem.

¢ We use ne's instead of sequences since L™ (u) as topologized does not have a countable neighborhood
base. For definition of a net see Halmos {1974], p. 65 For thoae unfamiliar with nets think of sequences in-
. stead.

7 We know that' thedonedumtwluwmm Omtmmofnhmmbomeomowhmmmytopo-‘
Iopal vector spece. '

'S We are using the ractuml.'(u) uthem-dunlofl.'(u) hence with p = 14 ,; the convergence is main-
tained. )

L L B R P T Y L A E e - - - .. - . )
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Proposition (3.1.2)
Let {x,}, (o), and {T,) be nets in the (appropriate) spaces L,, L,, and Ly which for each
a satisfy (3-2). Further assume that {x,} -~ x. Then subnets of the original nets exist which

are uniformly bounded in the L* (u) norm.

Proof of Proposition (3.1.2)
Let ¢ > 0. For snme 8 we have that eventually YV« 2 8, fx,dp. L 4 f xdu + € by conver-
gence. Thus, eventually, f Yadu € f xdu + ¢ and f T, du < f x+¢. By Axiom 2 it now fol-

lows easily that' eventually the norms of y, and T, (snd of course x,) must be uniformly

bounded.®

Now on to the conclusion of the proof of the theorem First treat the storage case. Since
x) = x/ for each j it follows easily by Proposition (3.1.2) ﬂm we may find an appropmte sub-
net so tlm the x{, and y/ sub-nets are uniformly bounded. By Axiom 8, esch of the nnduwd

F*(y2,W?) sub-nets are uniformly bounded too. Since there is an inventory balance constraint

of type (3.2) linking the F“(y,',W") s with the 2 V' ‘s it follows by Proposition (3.1.2)
=l

that a further reﬁnement of the original net gives us & uniformi bound on the ¥, nets. The

same argument may be used to deduce the same result for the W, and T, sub-nets. Now since

all nets of 'functions of each flow type are contained in compact subsets we may extract conver-

gent sub-nets.

If y, and W, denote, for each i, the limit vectors of mesub-ness .], (We), then by Pro-

position (3.4.6) in the Appendix to this Chapter we see that

FHO5 WS = F,. W) 6y

? Actually the same result could be obtained if we invoked Axiom 12. This would immediately imply that

‘the pets (FA(2, W), [V7), and (W?) are uniformly bounded (since we are reemeted tos ﬁnne horizon).

Seetheeommenuuluneadofom |2
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In view of (3.3) it now follows easily that the limit functions together satisfy all of the inven-
tory bdanée constraints needed to define a feasible flow for x w'ﬁpmn outpu't‘ level u.
" Hence, x € LN{u) which impiis that LN(x) is closed as desired in the storage case.

If inventories (in some cases ) were not allowed, then the argument is the same except
that it is much easier to obtain uniform bounds for the sub-nets. One nee&s to insure however
that if {x,}, (.} are nets such that x, € y, with x, = x, y, = y for all a then x is indeed less
" than or equal to y. This simple verification may be found in the Appendix, Proposition (3.4.1).

Our proof to Theorem3.1.1 is now complete.®
An immediate corollary, which will be needed later, is given below.

Corollary to Theorem (3.1.1)
LN(u) CEN(u) + (LY () ;o 3.4

We remark that we used (LJ° (u))" instead of L, since the difference of two functions in L,
" need not be in L,.

!

3.1.2. Extensions to Theorem (3.1.1)

If x* were h solution to problem P(z), then x* would be a vector of system exogenous

inputs which minimizes the total amount of resource over all xin LN@) O {x|x< 7). tis

~ certainly possible that x” might o ‘minimize the total amount of resource over all x in LN(u).

feé:L,— R,

"lem detined by
. infelx)
bject to: x € LN(u)

P i

has a solution.

R}
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otes the objective function, ihen it would be desirable to show that the prob- -
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Actualiy, this is an easy consequence of Axiom 2 as we now show. Suppose one could
find an x which was a solution to P. Let {g{}, {A{} denote the set of g,'s and A,'s (as defined
in Axiom 2) associated with the flow type {x/). Since x is assumed to be a solution to P and in

view of Axiom 2 it is easily seen that

nﬂm(hngduCMMw&m
o
= £(6(2)).

- Hence, lixile =max!ix’/ll, € f(#(2)). If we were to define the following problem
4

P infélx)
subject to:
(1) x€LN(w)
) Ixll, € f(#G)),
~ then by the above it may be seen that any solution to P* utsoluuontoP But P° has at least
one solution; hence, 30 does P.10 '
We may say more about problem P if we note that the bbjective function ¢ in P has the

' following structural form:

J=1

fiux/)dp IR (3.5

where the p/’s were all taken to be the function loa. Forany p=(!, ... ") € (L))"
the funcuonnl exprmon given in (3 S)Wulmfml. -R nconunuous (by dual-
~ ity). Hence, 8 soluuon to P for general p ¢ (L'(u))" exists.. lfpé (L'(x))" was strictly posi-

tive, i.e., p’ > 0 for each /, then any point achieving the mﬁmum vouki clearly be eﬁcmn;

10 Use the proof of Theorsm (4.1.1). We onlyn.dmtfnamm.:n'(: then we could restrict
LN(v) 10 8 compact subset. We got the same result by directly restricting the set LN(v) 10 # closed bell.

b
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x Let (L'(u))2, denote the subset of (L'(:)}" of strictly positive vectors and let

! | L, -Lull X oo XL o Let us defisie a correspondence from
(pu) € L', x L, — ¥(p,u) € L, where one defines \b(p,u) as the set of allAminimizers '

to Problem P with the objective function as in {3-5). The p/’s may be thought of as weighting

' factors for lhe'resources,which take into consideration their relative value to the pro;iuctinn

planner and the fact that future costs may need to be discountcﬁ." By our above éomment; we

know that each point in U  #b.u) is efficient for LN(x) and has the property that it
' bewwna :

T Game 2 0 s -

can be obtained through minimization of an appropriate optimization problem.. Alternatively,

and on more geometric grounds, one can say that esch point in ¥ ¥{p.,u) has the pro-
bewleny,) )

e BN Sy e

perty that there exists a hyperplane which supports LN(x) at this point.]2 An immediate
theoretical question is whether all efficient points can be obtained in this way, i.e., is
‘- o U @) =EN@W?
; SR ' , beiwnr,)

If this were true, then we would have a convenient characterization of the efficient subset.
A simpler theoretical questioh to address is whether or not
U vbpw D ENW),
bewnm .
i.e., does each efficient point have a hyperplane which supports LN(u) at the point (with p not
necessarily strictly po‘siti\}e)? -Jn the next section, we construct an example which shows that in
the infinite horizon case the answer to this question is no-- even if we ﬁsume that the level set

is convex and compact. The counter-example, being constructed for the infinite hoﬁgoh case,

AR [ AR e i 1 R IR EPLT g

shows that even if additional hypotheses were imposed on the primitii’re elements so that

1 In fact future costs were mor discounted in the previous example. Further, all of the resources were
given equal “weights®. ' ‘

12 1f X is a Topological Vector Space, then a hyperplane associated with X is & subset of X generated by
the following equation: {x | f(x)=¢] where / € X" (the set of continuous linesr functionals on X) and -

c€R. . R
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Theorem ‘(3.1.1) could be extended to the infinite horizon case efficient points need not be
obtainable throhgh an optimization problem of type (3.5). We remark that the level sets would
be convex if the production functions were assumed to be concave. In the Dynamic Linear
Activity Analysis Model of Production (DLAAM) dxscussed in Section (2.3.1), the production

functions were concave.

3.1.3. Co'nnget-Enmple: Efficient Points Need Not Be Suppertable!’

The mathematical statement to the question raised in the previous necﬁon may be phrased
as follows. Let SC (L (u))” be a (mk-st;r) compact, convex, monofonic subset. By mono-
tonicity we mean unt ifxes mdy)x then y € §. Letxbemefﬁcxent point ofS denoted
by x € E(S). Does there existap € (L'(u))' such that

ff”‘-"’d# < ‘}".:fp"-m, Vz€S?
J=1 J=

/.3 mentioned in the previous section, the counter-example is constructed in the infinite hor-

izon case (that is.'we now work with the measurable space (R, ,B) instead of ([0,4).B). To
construct the ‘countcr-éxample we will first work in the space /™ and then “translate” into
LZ ). (It suffices to construct an example in the case when ne=1)..
Define ¢, in ™ by
1ifj=n =

¢} = {1 if jmp-] : (3.6)
0 otherwise :

Let S=cole,)” denote the convex hull of the ¢,’s.14 Since the closure of a convex set in a-

topblo;ic;l‘ vector space is also convex then § is closed and convex.!S We will show below that

13 | wish to gratefully acknowiedge the assistance of Stephen Boyd, Department of Electrical Engineering
and Computer Science. University of California a1 Berkeiey, in the constuction of the counter-example.
WIf 2€S, then thers exists 8 A € /5, lAllj=1 with unmbudmnmmmmu

' ':- A‘c..le for each j, 3= A'ef.

Rudin (1973}, p 1
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$ is bounded in norm by 1; it would then follow that § is o 'mpact. We will show that 0 € E(§)

but 0 is nor cupportable in the sense described in the previous section.}é

Proposition (3.1.3}
0€ ES).

Proof of Proposition (3.1.3)

Suppose this were not true. Then this would mean that we tould find a z € § such that
;. < 0 for all k and for some i, 2z, < 0. We can find 2 nzt {x,) in S such that x, = z. By the
definition of convex hull we have that, f& some .\, € I3 witk !' norm equal to 1 whose

number of positive indices are finite, x,= Y AJe, for each a. By the definition of ¢, and the
k

fact that x, — z it follows that I‘(A;'-)t;f‘)-z’ | = 0 eventually. (This immediately implies
that 12| € 1; thus lz!l. € 1 which shows no;\r that § is bounded in norm by 1;)

The nets {A.} and {A.*!} are each contained in the unit intervil which is compact. Hence,
each net has a convergent sub-net. Without changing notation for the sub-net let ¢/ and c'*!

denot¢ the iimiting values. Clearly, (c¢'—c™*')wmz'. Since z' <0 this imnplies that

. ¢*13 12| > 0. Find integer N so that Nlz'| > 1.

Now by sequentially repeating this process for the nets (A*], r=1.2,... N “and not

_ changing notation for sub-nets we have that there éxist constants ¢'*’, r=1,2, ..., N satisfy-

ing
A=, rml2,... N tR))

-z, pmld....N 68

ot - c‘*"*'

Since z € 0 the constants ¢'*’, r=1,2,...,N are non-decreasing. Since ¢'** 3 lz'| this in

16 By Krein-Miliman's Theorem (see Rudin, [1973], p. 70), a closed, convex eompel subset of a topolog-
ical vector spece has 10 be the closure of the convex hull of its extreme points. Here, the ¢,'s ‘are the ex-
treme points of $. . ‘

o - o - . { b - . » Y A - . . . . v
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turn implies that

et

Yt 3Nt 3 N> ‘ (3.9

1=}

r=N raN re N
Since. 3 A" — ¥ ¢'*’ (by (3.7)) eventually (in view of (3.9)) ¥ A*"> 1. But then this
: rel ' re}

re]

means that eventually x, £ S, an obvious contradiction. The result fcllows.®

Proposition (3.1.4)

0 is not supportable, i.c., there does not exist & p € /', p# 0 such that O=p-0< p-x,V

x€S.
Proof of PMM G.1.4
Suppose such a p exists. Then p-¢, 3 0 whicl; implies thatpi 2 0. Since p-¢, 3 0 for exch
n this in turn implies that p"*! 3 p” for each n. Thus the sequence of p"’s is nondecreasing
'and nonnegative. Therefore, either p=0 or p ¢ /', In either case we would have a contradiction.
The result follows.®

We ndw tumn to constructing our counter-example in LJ” (u). Let
1+5 = {y €| 3x €5 such that y,=x, +1,Vi}. " 310)

Since translations in topological vector spaces are homeomorphisms which preserve convexity

" and eﬁciency then 1 is an efficient point of 1+ 5 and is not supportable in the sense of Propo-

sition (3.1.4). Now we may identify 1+ § with a compact subset of L:° () in the obvious way

by associating each x € 1+ § with x (1) € L® () defined by

X - 2&';(:—!.:’) : ' ) ,€3.11)

l-ll

(Here, the set of time points defining the possible times of event-based transfers is the sei of

. nonnegative integers.) 'Let S* denote the identiﬁdqﬁoa of 145 fu LY (). Then §° lns ihe

.................
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desired properties we were seeking in our construction of a counter-exampie.

This example ilh_xstram the problem of additional flexibility available b'y infinite time sub-
stitution. The step functions ¢, that 'genemg S° are those which are 1 evarywhere except in two
consecutive periods (i—1,i), (i,i+1) where the function is 0 on (i~1,/) and 2 on (i,i+1).

lnterprel the functions in L' (&) as price functions and the optimization problem gwen in (3.5)

as cost mnmmxzauon. For any ‘pnce function p € L'(u), p#0, the cost of the function'

I-z 1i-1, is lIpll;. Furthermore for some 1,fp 141 ,,>fp 1g.iep Gf not then the proof

1=}

of Proposition (3.1.4) shows that either p=0orpg L'()). Hence

Cost of 2‘ 1= zlfp'l(k-l.nd#
o - k=

- fp l(k-l xdu +fp 1i-1,nde +fp 1i,4nde

kﬁu-ﬂ

> T [r16-100du +2f p-1gndn

[ TNE

= Cost of ¢, .

Thus,_ ¢, would be chcgper than 1 so that 1 could nevér be obtained from cost minimization,
i.e., 1 is never supportable. The reason such a cost tradeoﬂ' as illustrated above can always be
Aclone is that tne gcnerit‘ors ¢, of $*"go out towards infinity."

Next, we i:ivestigate a property of our ﬁounter-exnmple vihich is of independerit interest.
Conasider the following theoreticiiquestion: is Iit always true that one can separate ﬁo compact,

convex subsets of R irhjch meet at only one point? Answer: No; counter-exampie: two line

segments méetin; at a single point. This exampie may be constructed because we did not insist -

that the two sets in question have nouoémpty interior. It tumns out that our example also has

this property.
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Proposition (3.1.5)

§ is nowhere dense in I‘; i.c., the interior of S=2.

Proof of Proposition (3.1.5)

Let x € 5. Let lx.)‘ be a net in S converging to x. Write x,= Y Af¢, where for each a,
. . k

A€ /', A%, =1, and the number of positive indices finite. Since x, — x this means that
Af=Af = x,. Extract a sub-net of the net {x,) so that the sub-net {A]} converges, say t0 py.
" Since Af =A§ — x, it follows that A§ — p,~x;. In fact, the following simple claim may be

made.

Claim

T k=l
AL -‘p,—2x,ﬂ, Yk.

i=]

Proof of Claim

We have shown this to be true when k=1 and k= 2. Suppose it is true for all £ € m.
' m~-1

Since A:.-I-L’;“ - X an? by induction - - b,-— 2 x; it follows that

=]

. m ' ’
Ans1= As—xy=p;—Y .. The induction step is shown and the result follows.®

o] " .

‘For all a and for each N we have that 13 3 A§ which implies by our claim that for all

kel
N k=1 ' - k=1 ’ ' k-1 .
. N,13 Y (py=3 x)) and hence 13 ¥ (p;~ 3 x). So if we define p; =p,~ Y x, then it
. k=) =1 k=1 -1 i=t

- may be easily seen that p € I, lipll; € 1 and the expression x=Y p,¢, is well-defined and
. k . ' ) '

correct.

We have thus shown by our above developments that

Sc [xl Fpelr,iph €1, x=F pre,.
. : _ %




.
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The converse conclusion is simple to show; hence, we may conclude that

[x | 3p€ir, ol €1, x = 2 Pr€i (3.12)
With this we will now turn to proving the ﬁroposition.

If the interior of S # @, then we can find an x € § and a neighborhood N, about x such
‘that N,c §. Find a'netin S, (=), such that x* — x. Since the weak-star topology is weaker

than the norm topology then for some > 0 we have that eventually, for some a,
x*€ B, (x*)CN,cS§.

Clearly this means there is some x € S such that z 5 x* (we fix some a large enough) and
z#0.
Ifze€S, then by (4.12) we have that for some p € 11, lipll; £ 1 (and number of posmve

indices finite) z-Zpkq, i.e., z,-p,-p,ﬂ Smce x° GS eventually x2=0. So, eventually,

pi € pi+1 Since 2 < x®. Since z # 0, lpll; € 1 we have that eventually p, £ 0. So the eonclusnon

|
l T is that the number of positive indices of p is finite and non-empty (since z = 0). It is not hard .
. .

to see that if p has the above properties then llpli; =1 so that z € S.

Write x* as J v, ¢, for some appropriate y. Since x* >zwe have

-~—7,ﬂ>x A vi, 61

yi=A 2 Vimr=Aists Vi, a o (3.14)
Since the number of positive indices for both y and p is finite eventually v,.1=A;+1= 0 so that
. 3\,.Vi in view of (3.14). This in turn implies that since Fy,= A, =1 (@ue to the.
i ) . i i .

finiteness of the number of positive .indim)" that y;=A;, Vi. Hence, X,=z which is a

ot
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finiteness of the number of positive mdlcee wat y, =A,,Vi. Hence, x,=z which is a contrad-
iction. The result follows.®

We make one remark. What we hevé shown is 4that SCES ); that is, all points in § are
efficient. Also, by (a-iz) it is easy to see that not all points in § »are efficient. For example, take

v, =% A, =%(%;" and let x-zne,‘,y-:hq. Then x is not efficient.

. 3.1.4. Compactness of the Closure of the Eﬁdent Subset

To prove Shephard’s duality, it is nqcéssary that the closure of thg efficient subset be
compact. In the axiomatic frameworX of the Dynamic 'l'heofy of Production Correspondences as
developed by Sheﬁhard' and Fare (198Q). this property of compactness of the: closure of the
eﬁcient subset was ammed as an axiom. We however prove this property from cur axiomatic

framework as presented in Section 2.2.

Proposition (3.1.6)
EN(u) is. compact.

Proof of Pmposltion (3 1.6)
Assume that E N?uf is nonempty otherwise there is nothing to show. Let x € EN(u) and

let (x'} be a net m EN(u) convergmg 10 x: Associate to each x* a feasible flow for x* to sup-

'port output level u. From the proof of Theorem (3.1.1) we lmo' that we may extract a sub-net
" of the original net (x*} so that the sub-nets associated with udl of the now-type nets induced

| _ from the feasible flows for x" to suppon output level u eonvaue and are um:ormiy bounded.

We denote the sub-net again by (x°}.

Since x* € EN(u) this means that there could not be any-disposal of system exogenous

" input in the feasible flow for x* to suppon’ output level u. Thus, for 2ach j' we must have that

for each a

,tw).‘;ﬂ:"\_zl; (xﬁ,)‘ld“ -'t‘z, (l’)"d“ i | ' (3I.l,5)
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" Furthermore in view of Axiom 10 it follows easily that
h .
[ (X ¢Ddu) < Te.We.h) (3.16)
0 i

(else x* ¢ EN(u)). By the assumed properties on g and that the cet {W?} is uniformly

bounded, it follows that, for some known function H, of B(T) and YRl

h .
[(Zdu € T (W0 ‘ 3.17)
0 i ‘ .

< ZH, (B(T),T) (by Axiom 12)

where.y; and W, represent the limit vectors of the nets ey, (we).

Hence by (3-15) it is easy to see that

]
[ xidu < THW,h)
0 i

which by Axiom 2 implies that Ilx/ll., is bonnded by a known function of I ; (W,,h) which is '

independent of x/. Hence, lixll,, is bounded by a known function of ¥ H,(W,,h) which implies

that EN(u) is compact.® -

AT AT

17 See the comments at the end of the statement of Axiom 2, Section 2.2.8. It discusses why in the finite
horizon net { W) is uniformly bounded under Axiom 12. '

- o »
EACIE Sl Yl s

'-':f."\,- ERNCRICEE R FChE ORI S I i N
S s 0 s e S N R

-
" .

o

- - - - - - - gy - - - . . )
> " e -‘_-_.‘. _-_‘-.‘n Y i‘U“'h'."-’-"-‘.-"b"‘-"b‘0‘.’o'
. -

o w e
LI

PRI
h‘b‘h\;\-\- .

o 8

«a®a et
LY I




60

3.2. On Shephard’s Duality

3.2.1. Statement of Shephurd’s Duality Theoreﬁ: (Steady-Siate)

In the Shephard model (Shephard, {1970]), the procCiction technology is characterized by
the Produétion Input sets or level sets L(u), u € R,. L(u) is to be interpreted as the set of all
input vectors x € R, which yield at least output rate u. The leyel sets are assumed to satisfy
the fi.lowing axioms:!

Pl LO=RZ,0¢LW) foru>0.

P.2 x¢€L(v)and x' 2 x, imply x' € L(u).

P3 If (@) x>0, or (#) x>0 and (-x) € L(@) for some X >0 and & >0, the
ray {A-x | A > 0! itstersects L(u) for all v € [0;5).

P4  uy2 uy 2 0implies L(u;) C L(u)).

P.5 o<.f"l‘“ol..(u) = L (up) for ug> 0.

b5 uﬂr&_)L(u) is empty.
P.7 L(u) is closed for all u € [0,00).
P.8 L(u) is convex for all u € [0,00). -

P9 E@)={xe€L@)|ify fx then y £ L(u')l is bounded for all u € [0,00}].

From the description of the production technolo;y and the axio:vs .taken on the level sets,

the production, distance, and factor minimal cos'tﬁmct:'ons can bz derived,
The Production Function .
The production :funttiog ®: RT — R, is defined Ly
®(x) = max{u | x € L(w)}. (1)

The production function ® measures the largest output rate obtainable with x.2

1 Shephard [1970s], p. 14.
2 See Chapter 2, Shephard [1970] for the proof that ® is well-defined.
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The Distance Furction

The distance function ¢: R, x R} ~— R, is defined by

0 ' u>0and A IAx€L(u)}=0 _ .
¥ (u x) = {Imin{A [A-x € L()}]7! u>0and{x|x-x_eL(u)}¢z : (3.19

oo u=0

Essentially ¥ (v,x) measures how much onc has to scale x, up or down, in order to just obtain'

output level u; that is, to put on the boundary of L(u) f possible. Observe that by the

&( )
definition of ¥ (u,x) one has that

L) ={xle@wx)z1). T (3.20)

Hence, ¥ is useful in that it may be used to characterize the level sets.3

The Factor Minimal Cost Function
Interpret p € R as prices and p-x as the cost of input vector x. If one defines the factor

minimal cost junction Q: R, X R} — 3,, by
Q(up) = min{p-x | x € L(w)}, : @2

~thes Q(u »2) would be the mnmmal cost of obtaining output level u.4 The sta ement of
Shephard s Duality be;ms to unfold when it is realized that Q(u.p) has all of the propemes
- that ¢ (u,x) has.’ ln effect, Q(u.p) lcts like a dmmee fnncuon If it would be thought of 8.

snch then the andxdate “level sets”, for which it would bea dasunce function would have to be
' Lg(u.)-lpl Q(u,p))l}.' ‘ | - (3.22)

Thinkin; of Lo (u) ls'pn‘ce séts'qfrhe coammmucp in the same way one thinks of Lw)ss -

3 Properues of ¢ may be found in Chaptet 3, Shephard [1970). .
4 As an sasy consequence of the axioms P.1-P.9, L(w)=E(u)+ R} = EW}+ RY. Since EW) is com-

pct it follows that Q (v p) is well-defined, i.e., the minimum is obtained. : ) -
S See Proposition 16, Shephllrd {1970).
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the production possibility sets of the production structure, Shephard's Duality Theorem, loosely
worded, is that we may derive one structure (cost or production) from the other. To quote
Shephard (p.8, {1970]):
*... production possibility sets of the production structure and the price sets of the
cost structure are shown to be duﬂs, derivable from each other by dual cost minimi-
2ations which determine the factor minimal and price minimal cost functions as dual
distance functions.”

To mathematically formulate the above statement, define the price minimal cost function

asb
, 0 ifLu)=2
¥ (ux)=linflpx|peLy(u)} ife>0,Lw) =0 RN €W X))
oo _ if yw0

. Shephard’s Duality Theorem is then the statement that

®(x) = max{u |9 (vx) 21}, (3.24)

3 2 2. Shephard’s Approach to the me of Duality

Let L () = {x] * (ux) 3 l] Shephard first shows that ¢ had the propemes of a dis-
wnce function.” Next, he shows that the sets L' (u) deﬁned a production technology, i.e.,
L°(u) satisfied axioms P. l-l’.. 9.8 Then, he shows that L'.(‘u)-l.(.'.qj from. which the dualiiy
statement may be 2asily derived and from whfcfn ¥  may be seen to be equal to .

The next two se;:tions provide two alternate ways to proving Shephng!'s theorem. Ver;ion
- ' 1 we believe is far more direct and simplgrv'to undersnnd than the original approach. Version 2

motivates the definitions of ¢ and ¢ " and in'some sense derives the identity. It shows that t0'a
¢ Shephard defined ¢ * differently. Memmmuonofthspmluavmuu)n-m >0

? Propositior 39, Shcphiard (1970].
§ Propositicn 40, Shephard {1970).
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large degree Shephard’s theorem is a statement about supporting hyperplanes of boundary

‘ points of a particular class of convex subsets of R .

3.1.3. Proof of Shephard’s Theorem: Version l

The proof of Shephard’s theorem is immediate if we can prove first that y =¢"°. Note that

~ ify=¢" then ¢ is a distance function, L"=L, and L" is a production technology.

Before we prove that w-w" we must first show that ¢ is well-defined which in this case

means that we must show that if ¥ >0, L(u) =@ then Ly () is nonempty. Sincé L) is

closed and convex with O£ L(x) it follows by the well-known strong separqtion theorem for

convex sets in Euclidean space that we can find a p € R", o € R such that 0<a < p-z for all
z € L(u).? Since L(u) is monotonic it follows that p € R%. Dividing p by a produces an ele-

ment in Ly (). We are now ready to prove the theorem.

Shephard’s Duality Theorem ‘
The Distance Function equals the Price Minimal Cost Function, i.e., ¢ =y,

Proof of Shephard’s Duality Theorem (Ve;sfoi 1) |

If either u=0 or ¥ >0 but i.(u)-z. then the r&ult follows by definition. If we ll ¢
R(x)= {A'?x | A 2 0] be the ray gen'erﬁed by x € R, then only two possibilities are left to
considered: . |
1) u>0, L(u)laé @,and R(x) N L.(u)-rz.
) ¥>0,Lw)*2,and RK) N L=,

Let us nnalyse case (1) ﬁrst By ﬁeﬁnition ‘nb(u,x)-O.' Hence we must show t+t
&'(u,-x)'-'-(i; that is, we must find ape Lo (u) such that p-x =0,

¥ See, for example, Bazarra and Shetty [1973], p.S1.
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Let 4 (x)={i | x,=0}. Since L(«) is monotonic, it is easy to see that 4 (x) is non-empty.

Set up the following optimization probiem:

P: min
yGL(u) e;u)y

Since L(u) =E(u)+ R’ it follows that problem P is equivalent to problem P*:

P’: min Vi
» €EGW), e;(x‘)
+ E(u) was assumed compact; the objective function is continuous so we may conclude that a
minimi'm is obtained. Let y" denote such a minimum and 8 denote the objective function

value evaluated &t y°.

If 5=0, then for A large enough A-x 2 y° which would imply that A-x € L(u). This in

turn would mean that R (x) meets L(v) which is not the case we are considering. Hence,

&>0.

Define p € R} by

i€Ax)

1
y o

b=

Obse've that p-x=0 and p-z > 1ifz€ L(u) Hencepel.o(u) with the desn’ed proper- -

- ties. We have shown that v (u ,x) =0 as desired.

Let us now tum to case (2). In this case we have that 0<¢(u,x)<uo For ‘any

P € Lo (u) it is immediate that

] ) 31 N 3.27

since

uluplymg throu;h by vy ,x) in (3. 27)) we have that ¢ (u.x) ) &(u.x)

I T I I R I e R I R e I I T e I T T R R T A
: - a0 . N ., . . ] . . . b . " " A ]

\

*( ) € L(u) Since (3 27) holds for any peLg(u) by definition of v (u.x) (and

AL SR W )
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If ¢ (u,x) > ¢(u.x), then by definition of w(u,x) (as a distance function) it must be the

¢ L(u). By the separation theorem we may find a p € R" and an a€R

case that
case tha 7 (u,x)

such that

x :
P v ) <a<pz, Yz€L(). (3.28)

As before we hote that p € R} ; thus a > 0. By dividing p by « we have that £— isin Lo (u)

with -f:--x < ﬁ'(u ) by (3.28). By taking the infimum over all p € L, (u) we would obtain the

obvious contradiction that ¥ (ux) < (u.x). Hence ¥ (u,x) < ¢y (u,x) which shows that
¥ (u,x) =y (u.x) in this case.

ur proof is complete.®

3.2.4. Proof of Shephml’s Theorem: Vetslon 2

Let S denote the set of all closed, convex, monotonic subsets of RY not containing the
origin. Let LeS. Let R_(x) denote the ray generated by an x € R, i.e., R(x)={A-x | A > 0).
If x€RY, then either R(x) () L=@ or R&x) Y L=@. If Rix) M) L =2, then ‘there

_exists a well-deﬁned constant  (x) such that m (x) is on the boundary of L (relative 1o R%).

. HRKX) (M L=2, then deﬁne w(x)-o

Now pick an x € R} and suppose R(x) (\ L #@. Let «> 0 and let 7 denote the vector
(e, ..., €0)€ERT. Smce ¥ is continuous (Proposition (3.4.8), Append:x) then for some y > 0

(to be determmed later) we can find an € > 0 so that

x+€ X .
~w(.‘r+’€)€ (Mx)) , » (3.29)

X\ e
(8, w (x) ). denotcs the open ball of radms y lbout ) ). Since " (x ) is stnctly positive

it fol}ows by an applic'ation of the sepmtion ‘theorem for convex subsets of R7 that a
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sunporting hyperplane for L at v ot x+€ = exists. That is, there exists a p € R}, p # 0 such that
X +€

0<p—2¥€ _<pz, VzelL. | 30

P w(x+?)<pz z _L. ' (33‘)

x+€

= 1. It follows therefore that
v(x+9

Re-normalizing we may assume that p-

x +
X +e€ ¢

X +¢€ 'I'X >0|
1= p- - —
;p ¥x+€) ’ m?;olp &(x+'¢') .lx>oi ] ¥ (x+)

fix ;)-__LL"J.?)_.
W0y e

Then we have that

”zmn<fum (3.31)
. lilx, >

In view of (3.29) and (3.31) we have that

Jx __x+7 X __X+te 4 )
P [W) ] < Z q"[ ] <fx0y. (32

v{x+7) = vix) Hx+?)
. " x+T . . :
Since p eGP 1 rearranging (3.32) we obtain that
px & ¥ +eG)Sf G edy. (.33)
Now let

H*={(p,a) € R1%R,, | 3x € L such thata=p-x <pz,Vz€L).

Since v is arbitrary and f (x,¢) is bounded for ¢ small enough, it is easy to ses that we have

Y N r--,”’-.‘a--,-..,.-.’, AR R TR "-;\'7:'.:‘-_...‘,.n:.-‘_::‘. et T et ettt L et e _..._.....-‘ o ._-., St
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just shown that

if Lx € ykx). (3.349)

{pale Ht) @

' p._X ,
For ‘p,a)éH*, « 500 2 1 so that, as an easy consequence,
if Lx3e0). | (3.35)
{pa)e ) &

Putting (3.34) together with (3.35) gives us

|o.i)n{yﬂ f-x-ftb(x).' | | (3.?6)

The interpretation of H* is precisely that it is the collection of sui:poninz hypemlat;es for
L which separate the ;aﬁsin from L. By what we have just shown those points in the boundary
which have supporting hyperplanes in H* are dense in the boundai'y. Further we have also
shown that given any point z on the boundary thére is a point y on the bodndary arbitrarily

close which has a supporting hyperplane (p,a) € H* whose "value” at z is arbitrarily close, i.e.,
l-l-y > -£°z +8,8 small 10

We comment that it is possible that there may exist a pomt on the bounduy which has no

supporting hyperplane in H" to support L at tlns point. To e tlns we construct the following
example. Let x,,-(l-- 1-- '/z") for n)l and let L be the smnllest caosed convex,
monotonic subset of R} containing the 'x,'s. Since x, -.(I,’l.O).' it foilows that (1,1,00 € L.
We glaim ll;an‘t no (p,a) € H* could exist which could support L at (1.1,0).’11' there wére such a

@) e.}l*.'then it is easy to se= that (1) at least one of Py Of py must be bositive. and (2)

p3> 0.11 Now we have that

10 x4+T
To see this, let ¢« > 0, and ¥y > 0. Thmkofzu *u).yu 3G+D"
(3.29) and (3.32).

n l((l)menonme then a=0; H(Z)mnmuuethea)x,<p(l H))lonnyn

.lndﬂ a8 q. Remmuom




L)

68

Pxn= =1y, 4 p )+ 10y (1459 + (93— L0y 422 337

Since -25:- ~ 0 as n — o we may find an n large enough so that ‘/z“p;—%(pﬁp;) < 0 imply-

ing that p-x,,v< p-(1,1,0), a contradiction.!2 We remark that this example ciearly illustrates

directly why the infimum is used in (3.36) as opposed to the minimum.

It is easy to see that since (p,a) € H* if and only if (f,l)eﬂ* we may identify H*

with the set!3

H'={(p,1)€RxR,, | 3x€L suchthat 1< p-x<p-z,Vz€L).
This last set of course may be identified with the set
{p€RY | 3x €L such that 1< p-x€pz,¥z €L}

Thinking of L as a level set L(u), this lat set is precisely Lo u) and  (x) is really ¥ (u.x). So
looking at (3.36), we see that we have shown Shephard’s Duglizy in the case identified ir the previous
section as case (2). | -

| So, by identifying Ly (v) with H* (which has already been interpreted) Shephard’s Dual-
ity theorem in this special case reduces to s mteme'nt about supporting hyperpianes of closed,
convex, monotoni; subsets of R]. In ‘o:her words. looéely worded, the level set is character-

ired by the boundary '\(hich is characterized by the distance (unction on one hand ‘(the boun-

.dnry of Lis the set of x which attains the *distance" of 1) md by the price minimal cost func-

' tion on the other hand (which npproxnmntes the boundary vmh supporun; hyperplanes)

..........
e St Y. *

oM.

The “Teason why ¢ md ¢’ are defined differently for speqal cases is simply that one

desires to extend the equalny of ¢ and -b to the entire domun of R%. Let us see how we may

"Thuunbedonebeausedntermsp,md(p,-d»p,,mbothmuve.
13 This follows because p can be arbitrarily re-normalized. In one case. we associate for (p.a) € H* the
mm(LI)GH In the other case, we associate for (p,1) € §° mepotm(ppx)ell‘vhefexuapmm

oprponml. for ». mwwﬂy.mmwdeﬂnemwmﬁmrm I(pl)lvbere
Ga)~(gh) if and only ifEt‘Oluch that (p.a)ec(g8). '
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motivate their respective definitions from this perspective.

First, suppose u=0, thus L(«)=R%. The idea of ¥ (u x) is that m‘%—y should be a

point on the boundary of L{u) on the ray generated by x "closest” to the origin. Since 0 € L)

a natural choice for ¢ (0,x) is to take it to be equal to oo. Hence, we take .nb'(O,x) =-oco,

Now suppose x € R}, L(u) =@ but R(x) (| L(u)=2 (case (1)). From :ﬁr_'pénies on |

convex subsets of R7 we showed in the previous section that there is & ;; € R7 such that

min{p-z |z € L(u)}=1 and p-x=0; that is, ¢ " (u,x) =0 in this case. Hence, we take ¢ (z,x) to
be 0'in this case. | |

Finally, suppose L(u)-‘a.‘ln short, none of the funciions are well-defined for this case.
Since' L(u) =@ implies tpat R (x) (M L(u) =2 to be consistent, we therefore take both ¢ and
¢'t6be0inthiscase. '

The upshot of thxs development and proof of Version 2 is that Shephard’s Duality

Theorem may be motivated by studying properties of supporting hyperplanes of a particular

class of convex subsets.!4 One does i:_tilize heavily the simple and ussful characterization of the

boundary by the distance function. Oﬁe obtains the D\;ality Statement as stated by Shephard’

whep one interprets the functions in an economic light.

3.2.5. Extensions to the Dynamic Case _
. ‘To extend the proof, a3 given in Venio';! 1, of Shephard’s Duality Statement for the finite
horizon: Dynamic Case we make some modifications. Instead of defining 4 (x) = {i | x, = 0} one

defines A4, (x) = {{ I x; (t}) -0}, Instead of solving the optimization problem as given in the proof

- of case (1) we re-write it as

N ‘ ‘ h .
P mR, TV .

4 We remark that we "proved” that ¢ = in this version by extending the definitions of ¢ and ¢ "

»
el oV, .
......
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After making the appropriate modifications for the statement of Shephard’s Duality in the
Dynamic (Function Space) case the proof of Version 1 still applies because |
(@) LN(u) is (weak-star) closed (see Theorem (3.1.1)).
&) ENQ)is (weak-star) compact (see Proposition (3.1.6)).
(©) LN(u) CEN()+ (L& ()" (see Theorem (3.1.1)).
(d) Separation Theorem for Locally Convex Topological Vector Spaces applies.
(We oniy proved (a)-(c) under the assumption of a finite horizon.)
We make two final remarks. First, to, exiend the proof of Sheplnrd’; Duality Statement,
as given in Version 1, for the inﬁnitg horizon case additionai hypotheses would have to be
assumed to insure that LN(x) is (weak-star) compact. The axiomatic systeny presentéd in Sec-

tion 2.2 is not strong enough to guarantee this property. Second, it is not possibie to extend

the proof of Shephard’s Duality Statement, as given in Version 2, because our coumer-exgﬁlple

(Section 3.1.3) shows that s*rictly positive points need not be supportable.

...............
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3.3. On Laws of Diminishing Returns

In this section we show how our general franrework of a productron process may be used
to deduce two versions of the Law of Diminishing Returns as formulated by Shephard. By
proving such laws frorrl the axiomatic framework, we reduce the questiorl of whether such layv;
are "true" to the questiorllof 'whether the axiomatic frazrrework is reasonable. In this sence we
hope to get "at the root" of such laws, | | |

The two general types of laws of return'posed by Shephard and- considered here are: (1)
Laws of Return for bounded input rates of E.ss;:ntial factors, and (2) l.;aws.of Return for
bounded intervals. The first type is defined and proved in Section 3.3.1. The second type is
defined and proved in Section 3.3.2. ‘ | |

3.31. Laws of Return for Bonnded Input Rates of Essenthl F:ctors
Taken from Shephard and Fare [1980], p.98 we descnbe this law in their own words:
"A law of return so expressed for the static mode!l bf production is one of a law of
. bounded cutput rate, It is suggesied for input and c;tr:put rates which are not con-
. stant, i.e., for the dynamic structlrre of production, that a law qf bounded output
rate may hold, i.e., if trme histories for essential factors are subject to an upper
bound on input rate, the related output rate histories wrll be bounded in some way
under unhmrted increase in the maximal time rate of the input rate histories of the
other factors ‘
We prove this statement, solely in rvords, from the axiomatic framework for the finite horizon

case.,

Proof of the First Type of the Law of Diminishing Retarns
Suppose the vector of system exogenous inputs is norm bounded. As an easy consequence
it follows that the cumulative amounts of the applications of exogenous resources to any

activity must be bounded in magnitude (in the finite horizon). By Axiom 2 on the flows of

-, - -_v_‘ LIPS R e ) - N
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goods and services it follows that the flow types associated with the applications of exogenous

resources is norm bounded. By Axiom 8 on the activity Production Functions this in turn

means that the outputs realized through the production process for any activity must be norm .

bounded. As an easy consequence of this fact the cumulative amounts of the outputs
transferred to the other activities from a given actmty must also be bounded in magnitude.
This means that the possible cumulative amounts of ﬁml outputs obtainable through produc-
tion is bounded in magnitude hence in norm by Axiom 2.

| - we'restri'ct attentidn to just bounding in norm an essential set of system exogenous

inputs, then in view of Axiom 8 the comments above still apply. Thus regardless of the magni-

tude of the other types of "nonessential" inputs the output rate would be bounded. And this is

the statement of the first version of the Law (in the finite horizon case).

3.3.2. Laws of Return for Bounded Intervals of Essential Factor Applicaiion

' Taken from Shephard and Fare [19801, p.100 we describe this law in their own words:
*The time spans o;/er' which essential input més may be or are applied positively
need noi be infinite, that is the support. of an input may be boutided, and
unbounded time substitutions for resources may not be permittedl. Then the ques-
ﬁon arises how outputs may be limited by limitations on the intervals of time ov.er
which essexmal factors are applied. Propositions of this type are laws of retum for
bounded mtervals of application of essential factors.” |

To prove this law, we will first prove a stronger statement.

If x € LN(u) such that for some T > 0, {x/ > 0} C {0,7] for all j, then there exists some -

T* such that {u* > 0} c [0,7°] for all k.

1 N is sufficient 1o prove the Law for the Essential Set of inputs consisting of ¥l inputs.

............
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To pave the wajr'f‘or a "verbal" 'proof of Proposition (3.3.1), we prove a simple proposition
below. For this proposition, let L denote a space associated with a particular flow type. Let ¢
denote the "lower bound” on the flows in L as dictated by Axiom 3. Let & denote the "minimal

spacing” between the set-up times of a flow in L as dictated by Axiom 4.

Lemma (3.3.2)

I x,z € L such that [ xdu < [ 2du for all + €.R. and (z > 0) C [0,T] fo some T, then
0 -0 :

there exists a T" such that {(x>0)clor).

Proof of Lemma 3.3.2)

If the cardinality of the number of set-up times in S (x) (see 2.19) is finite, then it is easy
to see that 7° = sup{t | # € S (x)} has the desired properties.

Suppose then that the cardinality of §(x) is infinite. By Axiom 4 we may index S(x) by a

set of time points ¢, i=1,2, ..., such that

0=t,< 1, <13< -+- suchthat [, =) > 8, Vi. (3.38) -

By the definition of the ¢;'s it .~ lows that either

f xdu=0 ot f xdp 2 min{e(t; ;1. €},

(ONY ey

the latter inequality due to Axiom 3.2 But then it follows that

S xdu > minfes,q) it f du=o. 0 (G39)

[4;1,49) {0y

2 We must account for the possibility that L js an event-based flow type. If this were not the case, then
the s, would have 10 be time-grid points; so . xdu = x(1;) which is either 0 or at least «. .
: ' It )

.
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Now let N={;| f xdp = 0). Since the cardinality of S(x) is infinite it foliows that -

l'n"lﬁl)

the cardinality of N is infinite. But this could not be the case because we would have that

+‘°°>.Z'zdy.I>[xdu?i f xdy = ¥ f xdp 3 ¥ min{e8,e] = 4o

i=0 [1,,0,,¢) PNl i€N

‘ So the proof of Lemma (3.3.2) is complete.®

Proof of Proposition (3.3.1)

Suppose the cond'tiogs of the theorem held. Find ; feasible flow for x to support output
level u. By,Lemn'lxa ‘(3.3.2), we may easily deduce that the supports of the flow type associated
with the applications of exogehous resources to the activities are finite. By Axiom 11, it follows
that the realized output of production for each activity is restricted to this finite horizon. By
Axiom 12, ot;ly a finite amou.t of output may be realized through production in ﬁs finite hor-
izon; hence by Lemxﬁa (3.3.2) the supports of the flow types asoqiated with the intermediate
product flows are finite. By a final application of Lemma (3.3.2) the supports of the flows types

associated with the final output variables must be finite. That is, eventually output must stop and

this is what we wanted to show.®

Proof of the Second Type of the Law of Diminishing Returns
Since the supporte of the flow types Mawd with the finsl output variables is finite, it
follows immediately by Axiom 2 that such flows must be norm bounded. This is Shephard’s

version of the Second Type of the Law of Diniinishing Retums.
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3.4. Appendix
In this appendix, we prove the technical propositions used in thé main body of the text.

As notation, let Lf denote the subset of L (u) which satisfies Axiom 2,3, and 4 for an

“event-based flow type; let L¢ denote the subset of L{® (u) which satisfies Axioms 2,3, and 4

for a continuous flow type, and let Lg=L2 (| L N\ L4, Lc=L& N L& ) L& It is under-
stood that these symbols are generic and stand for a particular flow type. Finally, throughout

this section, L{* (u) is topologized with the relative weak-star topology.

Proposition (3.4.1)
If {x,} and (y,} are nets in L (u) such that x, < y, for all @ and if x, = x, y, — ,

then x € .

Proof of Proposition (3.4.1)

Suppose this is not true. This implies that we find a set 4 with positive, finite measure
and an € > 0 such that the func.tion x‘ exceeds the function y by € on the set 4. Let p=1,.
Clearly, p.e L!. Let ¢, denote the continucus linear functional induced from p. By the con-
ﬁ uity' of p, ¥,(x,) =¥, &), ¥, (0.) =~ ¥,), and ¥,{x,) < ¥,(y,) for all a. Hence,
¥, (x) €v,(y). But by definition of p, ¢,(x’)~¢,(v)>cu(A)>0.' The oontndiétiqn is

ition (3.4.2)
Lg and Lc are each closed in L ().
Before we prove Proposition (3.4.2), we first show that neither L2 nor L& is by itseif

n:flosed as the following two coume:-exmiples show.

(Jonn!n-!impl‘c te the Closure of LJ
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Let € denote the lowe: bound described in Axiom 3. Let the time grid T (as described in

Axiom 1) be the set of na‘ural numbers. Define for n 21,

Xm=eXli 1
el "a 'a

It may be verified that
X3y = ‘%1(0,1)-

Of course, 'the function -;-l(m) violates Axiom 3.

Counter-Example to the Closure of L}
Let 8 denote the minimal distance between set-up times as described in Axiom 4. Fix

A > 0 and choose K > -g Again, let T be the set of natural numbers. Deﬁne forn21,

1

n 1 (i—l 1 i=

_._|)'
1 XK 2XX'K

+
M=

L
=1 ‘K KK i
» " The set of set-up times for each x,, § Cv,.). is clearly empty; thus, uch X, uusﬁes Axiom 4.
But, ciearly, . | -

gy

X, =

M=

41 1,
X &K%

-
[]

) violates Axiom 4.

which has X set-up times in the horizon [0,4)." Tbus. 21 R
_ T

.L.
o-lK

Proof of Propesition (3.4.2) ,
* In light of the two countei-examples, we will prove Proposition (3.4.2) by first proving -
* that.Ld (and L} ) is closed (Proposition 3.4.3) and menprovemu.g n L .nu.g ALY

" is closed (Proposmon 3.4.4).
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Proposition (3.4.3)
L& and L are each closed in Ly @), .

. Proof of Proposition (3.4.3)

By the continuity of parameters {h;) used to define Axiom 2 for an evﬁﬁt-based flow type,
it is immediate that L2 is closed in L (u). To show the closure of L2, Qc will show that the‘
complement of LZ in L () is open.

Pi az in the complement of LZ in Ly («). It follows by deﬁnilion of Axiom 2 that for

some 4 € R, and I, that |
flde €4 butizy e > ng). | | . (.40
Let 5=1iz-1 1)lo— 8 (4). Since & is continuous, we may find an ¢ > 0 such that
leeB) =g () < 2 whenever [B- 41 < c. 34D
Now define

pr= ll(z>|l:-l,.ll_-%).n 1)

al- (fpdu)%
M= G@4NGe) N E+NULO) N LT W
where forg € L'(u), 8> 0
i+N(q,ﬂ) -{)_EL:' () Ifq(z—y)dp.kﬁ .

(N is 8 neighborhood about z in this topology.) -
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Pickany y € N. Let 3= [ y'1, du. Since y € 24 N(p,a) it is easy to verify that

Lyl > Nz L tha= 3

By '(3.40), and (3.41), we then have that

lly-1,lle > llz-l.,kll..-—-:- -z (A)+-;-. B (3.42)

"There are two cases two copsider.

Case 1: |[B—A|<e.

Since |B—A] < e, by (3.41) and (3.42), it is immediate that
Iyl le > g B+ 2
Ll k 4

which implies that y is in the complement of LZ in L{* (i).

Case 2: |B—-A|>e.

Since y is also in z+ N(1,,.€), we have that

Srldu-e< [y1,du € fr1,du+e € Ate.

Hence, B € A +¢. Since [B—~Al> ¢, it follows that B < A —«. By monotonicity of g;. we

tﬂen hllve thst
H£B)<aU- < pld). (3.43)

It is immediate by (3.42) and (3.43) that y is in the complement of L.} in L3 ().
In cither case 1 or case 2 we have shown thet il y € N, then y is in the complement of LJ

in LY (). Thus, the comlplement of L3 in L (u) is open proving the desired result.®
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Proposition (3.4.4)
L N L} and L& () LY are each closed in LT ().

Proof of Proposition (3.4.4)
By the definition of an event-based, flow type and the properties imposed on the time grid
T, it is easily verified that L} and L2 are each closed in L{* (u). Hence, sois L7 () L2.

To facilitate the proof of closure of L& M L&, we first prove a simple lemma.

Lemma (3.4.5)
Let x € L. and let S (x) denote the set of set-up times for x (see 2.19). If /= la,b] such

that A {7 N (x-O)})OnndA(l N &>0}>0,thenSkx) N I=w.

Proof of Lemma (3.4.5)

If a € S(x), t:en the result follows immediately. So, suppose a £ S(x). By definition of

- S(x), there must be an interval of the form la.c), ¢>a, such thit either

AMla,c] () x=0)}=0 or A{la,c] ) (x>0)}=0. Without loss of generality assume that

Ala,cl N (x>0)l-0 Let ' =supld € 1] Ala,dl N (x> 0)}=0).
We now claim that "€ S(x). If 1" £ S(x), then by definitinn of S(x) we could either

find a 1™ > ", 1™ € [a,b], which has the property that A{ld,t™} () (x> 0)}=0 or 1" must’

equal . By deﬁﬁition of t°, it taust be the second case, i.e., t'= 5. But then this mesns that

. MZ ) (x> 0)) =0 which violates our original assumption. The resuit follows.®

We resume the proof of Proposition (3.4.4). Let {x,} be anetin L2 () L& converging to

" some x. Suppose x ¢ LJ. Then [0< x <‘¢l has pbgitive Lebesgue measure. Since Lebesgue

measure is mular it follows that there is a finite interval [é Dlclo<cx <. Choose '

t€(a,b). Let 6 denote the minimal distance betmn set-up times as described in Axiom 4

Choosgce(o )lotlmlfl, (t-2,3+ ]lndl,-[t+¢.l+2¢lthen1,C(ab) 1-12
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We make th; foilowing claim: for some 8, S(x,) N ; # 2, j‘- 1,2, forall @ 2 8. If this
were not true, then we could extract a countable sub-net {x,} such that S(x,) M) /; =2,
j=12. By Lemma (3.4.5), it follows that for each n either j=1,2. This in tum would imply
that cither [ x,1,du=~0 or [x,1,du> x> [x1,du>0, j=12. For P=1,
Jj=1,2, we would then have that x, does not converge to x—an obﬁous conmdictidn.

So we have shown‘ that for some 8, S(x,) () ;#0, j=1.2, foralia >'ﬁ. By construc-

tion of each /; it is immediate then that, for a 3 B, x, violates Axiom 4. And :his is a contrad-

“iction. Hence, x must be in L2,

Suppose x ¢ LS. Then we may find a 1, and ¢, each in 5(x) such that |r,—1)| < 8.

8= lrom :
Choose ¢€(0.—|—'%—-'l|-) so that if [=[,~e¢t+el, j=1,2, then I, N I;=2. By

definition of S(x), we have that A{/, (} (x>0} >0, j=1,2. Since x, — x, we then have

that, for all a,
f’-'lu, N w=ondk - f"'lu, Aa-y =0, Jj=12 (3.44)
Sl qusode =21y qusm 2 Al A G>01>0, j=12. (345

(We are using the fact that x € L i (3.45).) By (3.44) and the fact that each x, € L it foi-

lows that for some 8,, /=12, All; () (,=0)) >0 for all a3 8;, j=1.2. Similarly, by

(3.45) and the fact that esch x,€L2, it follows that for some Yse j- 1;2‘. '
A, (3 (e > 0)) > 0 for all a 3 7, j=1,2. Thus, by Lemma (3.4.5) and the above, we have
&m. for all a )52%.(3,.7,).' Six,) Ni=o, j=12 nus implies that x € L& whichisan .
obvious oonmdicu'onl. Hence, x must be in Lé. |

The above argument shows that x € L) L& The résuli‘fol!m"

Proposition (3.4.6)

‘ ¢ B b o ! . . . mrere tetate e . .
B s o . N L T e IR PC I .
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Let {x,}, (.} be nets in L. such that, for all a, A{(x, >0) N Ga>)=0. Ifx,—x

and y, — y, then A{(x > 0) M} (v > 0)} =0.

Ix; the discussion on Axiom § (closure of the domain), Section 2.2.2.1 we remarked that
there may be ndditionall constraints linking the domains of the inputs applied m production.
One example we gave is when an activity utilizes cne machine to produce fwo similar types of
products. For this example, the functions which define the rate of machine hours applied to
each type of product are linked in that both functions cannot be positive at the same time. It is
desirahle to show that.this property preserves closure so as to give a plausible basis for accept-
" ing Axiom §.

' Before proving Proposition (3.4.6), we remark that if the nets {x_} and {y,} were only

assumed to belong to- L (u) then Proposition (3.4.6) would be false. To see this, define for .

n)ll

= " Wm'a
Y= lon=Xn.
It may be verified that

X3 =1y and yy, — lon

and thus clearly the Qets {x20)s {¥7.) satisfy the conditions of Proposition (3.4.6) but violate the

conclusion.

Proef of Propesition (3.4.6)

Suppose A{(x >0) (\ (» > 0)} > 0. Find a finite interval la,b] € (x> 0) (Y (v > O)).

- Choose a1€(ab). Let '8, denote the minimal distance between set-,,up- times as descnbed in

"2

Axiom 4. Choose e € (d.%) 0 that if fye= [t~ .1 +£1, Ty i+t + 2] then I, € [a.5],

PRJORIC AT NS LI
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Jj=12.

Since x, = x,'x, € L2 for each a, and A{(x > 0) N ;1> 0, j=1,2, it foilows easily thét
eventually, for some 8;, A{(x,>0) (} ,} >0, Ya > 8;, j=1,2. Since y, =y, ya € L2 for
each a, and A{(y, > 0) () /) > 0 j=1,2, it follows again that eventually, for some 5, j = 1,2,
Ay >0) N 1)>0, Ve 28, j=1,2. Since, for all a, A{(x,> 0) () (¥, > 0)] =0 we have
that for @ 2 8;, j=1,2, A{(x,>0) () ,} >0. By Lemma (345) SN =2, j=12

But this implies that for_a > max {8,,8,), x. £ L¢ by our construction ofl,-, j=1,2. This con-
=i,

tradiction proves the result._i

Proposition (3.4.7)
Let F:L? (u) —~ Ly (u) such that for each x € L} (), F is bounded (in norm) in a
"neighborhood of x. Assume further that for each h € R,, F satisfies the following property: V

¢>Q

38>0 suchthat | | (F(x)=F(y))dul < ¢ whenever | | (x—y)dul < 8.
1] 4] ,

“Then F is weak-star continuous.

Mdl’u’ultlon (347)
P:ckmxel.., (a) Let Ulx) denotemenex;hborboodabomx mvhxchrubounded
Let B(x) denote the bound. ‘Let Fix)+NQ', ... ,p" ¢) denote'a hmcopen nen;hborbood

sbout F(x). Let 8--2—3(:). Find h large enough 30 that if /= [h oo) thc’n llpf-l,ll, <8 for

i=12, ....n. Find integrable, simplq functions ¢‘, i=12,...,n such that lip'~q'll), < 38

fori=12...,n. Finaily. Ietp-mm
. 3llq T

We'mny find a 8>0' that the propeny’ on F holds when «=p. ‘Lel .

Vix)=y€(x+N(1,.8) N (WG N l.':." (). For any p,, i=12...n, we have that

........

— A o e
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p' (F(x)=FMi, < lip! (F(x) = F()-1,l + 2B (x)lip' 1,0,

< p' = @'MIF (x) ~ FO)llw + 1@ N (F () = F ()11, + 2B (lip 1,1,

€ (===)B(x) + lig'il( )+ 2B (x)( )me.

—
3lig 'n T 6B {x)

68( )
Hencé, we have found a neighborhbod about x, Vi(x), such that if y€ Vix),

FO)eFx)+ NG, . .6 'Thus, F is weak-star continuous.®

Proposition (3.4.8)

'. Let L denote a closed, monotonic dut not necessarily convex proper subset of R} which is

non-empty. Let ¢ (x) denote the distance function (dropping the u in ¢ (u,x)). ¢ is continu-.

ous on R} .!

Before we prove this proposition, we remark that the. proof 6f Shephard’s Duality given in
Section (3.2.4) utilized the fact that the distance function is continuous. Shephard {1970}
proves that ¢ (u,x) is continuous on R, x R? by first citing a theorem that states that a con-

vex function defined on a convex open subset of R" is continous on this open 'subset and then

proving that ¥ is both upper and lower semi-continous on the boundary.2 Our proof below is .

simpler and more direct; furthermore, we do not assume that the leve! set is coavex.

Proof of Pmpo;ltion (3.4.9)

To prove this proposition, we first prove a very simple lemma.

" Lemma (3.4.9) -

! Since ¢ is constant and hence continuous when L=R? (corresponding 0 the case v = 0) or vhe,nvL-O
we omil these cases. ’
2 Proposition 16, Shephard lmol Berge [1963], p. 193,
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if x 2y then lll(X_))ll’();).

Proof of Lemma (3.4.9)
If this were not true, then for some x > y ¢(x) <¥(»). As ¢(y) > 0 this means that

R() N L #=@. Clearly this implies‘thnt RXINL #z since x 2 y. By munotonicity of L

and by definition of ¢ we havg that m U) —— €L with —— *(y) " (x) This contrndxcts the

definition of ¥ (x). The result follows.®

We now proceed with. the proof of Proposition (3.4.8). First we show that ¥ is continu-

ous on {x | $(x) =0}. ‘Let x de such that y (x) = 0. Define y* bjy,"-x,-+% for each i.

Claim (3.4.10)
v(")—=0as n=—oo.

Proof of Cllllll 3.4.10) ‘
!fthisw'grenot true, then‘foraome¢>0wcoul'dexmulwhe§uencey'* such that
. $0™) 3 ¢ for all k. By Lemma (3.49) it follows that, for each ke <™ <HO™. Thus
{¥ (™)} is contained in a compact subset and therefore has & Mt mﬁeqm. (We ivili
~ not change notation for the subsequence.) | | | |

Hence for isomep > 0 we have that

x : . (3.46)
wi™ P - : }

nu:-fy-f;:-_)-ez. for esch k and since L is'ao.edmismummnfet. 0. But then R (x)
v | s , ,

would meet L implying that ¥ (x) > 0, a contradiction. The result follows.®

e L At L e e e e e e e e g L T
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Now let v € B, (x) N R".. By Lemma (3.4.9) we have that ¢ (y) <@ (y") for each n. By
n

Claim (3.4.10), it is now easy to deduce that y is continuous on {x | ¢ (x) < 0}.

Let us now turn to proving that ¢ is continuous on {x | ¢(x) > 0}. Define z” by

x,'—'!' ifx,->0
n .

" . .
=1 0 otherwise

To faciltate the proof, we first make two‘simple claims.

Claim (3.4.11)

Va >0 eventually $/(") <y (x)(1+a).

Proof of Claim (3.4.11)

As before, if this were not true we could extract a convergent subsequence such that for

. somep>0
X - .
: TN -
ST < VO - G
Assin, £ € L. Since ;‘;— < ;(lx-)- we contradict the'déﬁnitioq of ¥ x). The result foliows.®

Claim (3.4.12)
Ya 5> 0 eventually (z") > ¢ (x)((1-a).

Proof of Claim (3.4.12)

If this were not true, i.en we could find a subsequence (z™}i, such that

#G™ €)1 =a) for each k. It is a simple general fact that if y < x with y, =0 if and oaly
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if x, =0 then R (x) () L = @ implies that R () (M) L » . From this we can now say that'
0<y(z™) € Y™ € ¥ x)(1-a), Vk.
As before, extract a convergent subsequence so that for some p > 0 we have that

2™ x x ,
v b >0 (3.47)

LI
v(z™) .
" boundary. But by (3.48) this is clearly not the case. A contradiction is reached thus prcving the

Since is in the boundary of L for each k (which is clo§ed) then % must be in the

claim.® _ ,
Let a>0. By Claims (3.4.11) and (3.4.12), we can find n(a), m(a) so that
*U"“’)(&(x)(l-!fa)‘ and ¥(E"@) > y(x)(1~a}. Let N(a)-max(n(a),m(a)l. Let

hGB_,__(x)nR., By Lemma (3.4.9) we have that
Na)

v(x)(1-a) < v("=) € ¢(h) € $O¥) < $(x)(1+a)

Therefore |y (h)—¢(x)| <ap(x). As a is irbitr"ary. it follows um'& is continuous on
{x | ¥(x) > 0}. Hence, ¢ is continuous.®. '

, f
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4. APPLICATION OF THE GENERAL MODEL TO MULTI-PROJECT RES(.)URCE;‘ ‘
USE PLANNING

In t."us chapter, we use the gercral model as a tool to provide a systematic analysns of a
heuristic solution proposed by Leachman and Bovsen [1983] for the problem of mu.n-projec;-
resource-use planning for a- multi-project pruduction system. The problem is to determine exp{icit ‘
resource allocations through time to projeets to insure that schedules are met. Qur systema:ic
analysis not only provides a logical foundanon for their approach but also shows how their
approach can be extended and 1mproved More importantly, the snalyses carried out m thxsv )
chapter nllustrate the value of using a general conceptual framework of a production systern to

evaluate proposed heuristic solutions to productior planning problems.

4.0. Introduction
A multi-project production system G is a production system comprised of a numb_er of
. single-project production systeﬁls G1,Gy, . . ., G each utilizing the same set of sysiem exo-
genous inputs. In these organizations, project managers are responsible for keeping projecis on
schedule and within budget. Without an effective method for allocating scarce resouirces to the
projects fiequent project delays ensue. Such delays eould be avoided if an effective methed for
multi-project resource-use planning were available; thatv is, a method t“or‘deterl'nining"expli'cit' :
resource allocations to projects throuah ﬁme to insure that schedules were met. - |
Traditionally, decision support systems for mixlti-projec't planning ‘deve'lop x;eeource- '
constrained schedulés of the ectivities within éach single-project production system by .t.r‘eatinx’ ‘
the muiti-project system as if it were one, large siegle-prbject'system.’ In our model of a |
.ﬁnﬂe-projem production system (see Section 2.3;4), once the ednedﬁles for the activities "are
. determined the resource allocations for the activities and hence the retource allocations 10 the
projects are determined. The pr'obiem erith this approach is twofold: first, developing resource-

constrained scheduling of the activities for lrge s:nUe-prqect ptoduction' systems ' is

! See, for example, Kurtulus and Davis (1982},

.....
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computationally unattractive; second, higher-level manage:.-ent is not respoasible for detailed
scheduling of individual activities. For similar reasons, 't is also uusatisfactory to approach the
problem by determining resource allocations to the activities. A new approach is needed.
Leachman and Boysen in their 1983 paper, “'An i-ggregate Model for Multi-Froject
Resource Allocation,” present a novel approach to solving the problem of multi-project
resource-use planning.2 The general idea is to combine activities in each single-project produs-
tion system into 'aggregate activities” and then allocate resources to the aggregate activities. It is
envisioned that the allocations of resources to the aggregate activities would serve as rcsource
constrainis ;or ihel resource-constrained schedulLng to follow. For the method to work the
choice of allocations to aggregate activities must insure that the set of schedules consistent with
the allocalnions includes schedules which are on time and within budgst.
. To develop the general idea of aggregation, let G denote a production network associated
with a single-project production syste'm. When activiﬁ& are combined into aggregute activities,

' an "aggregate production network” G' derived through structura! aggregation from G is created.

Definition (4.1)

A network G’ with M nodes is said to te derived through siructural aggregation from a net-
work G with N nodes if G' is acyclic, directed, and with the following Froperty: there exisis 8
surjective map ¢: {1,2, ..., N}—{1,2, ..., M} such that arc (i,j) isin G’ if and only if there

. exists an arc (k,)) in G with key'(), 16w ().

For example, .Figurs, (4-1a2) and (4-1b) show two detailed subnetﬁorks G, and G, mociatgd
with a singlé-project production §y§tem. 'f'he ‘circles indicate which activities have been com-
_' bined intc aggregate activities. The multin'glaure'sazc subnetwcrks G'; and G'; of the aggre-
~ gate production networks derived t'hrouzhv a structural aggregation : re shown in Figures (4-1c) '

and (4-1d). Note that Figures (4-1c) and (4-1d) are identical. This example shows that. two
2 See also Leachman and Boysen (1982). ' 4 '
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aggregate production networks may be identical but the underlying production networks from
ezhich they were derived may be fundamentally different.

For this example, it is intuitively clear that the choice for resource allocations to aggregate
activities B and C (in G', or G';) should be dependent in some way on the choice for the
resource allocations to aggregate A. Since G, is fundmenul!} different from .G,, it is also
intuitively clear that the dependence between choices for resource allocations of aggregate
activities A4, B; and C in G’ is different from the dependence between éhoices foi resource
allocations of aggregate acti;fities A, B, and C 'in G';. Essentially, Leacﬂman and Boysen's
method for determining resource allocations to aggregaie activities to facilitate scheduling of the
activities is a method for moc’~ling the dependence between the choices for resource e!locations
to aggregate activities. The example hopefully motivates why the production network and the
aggregate producnon network must both be considered when developing a method for modelmg
the dependence between choices for resource allocations to aggregate activities.

In their paper, Leachman anq Boysen give an example of a subnetwork G, of G and a
subnetwork G'; derived through structural ,auregation.from G, for which it would be difficult
to model the "dependence relationships” between the sggregate activities in G'; so as to fecili-
i&te the detailed scheduling. Hence, they present only those subnetw,drks G, and G'; for which
they eould model the dependence relationships using linear constraints. They then formulated a
linear program to accomplish the multi-preject resource-use elenning.

The ideas presefned in Leackman and Boysen’s paper are novel_, innovative, and intui-

tively epbea!ing. They recognized that dependence relationships between auregite activities

. exist and that :nodeling these dependence relatiohships ie intimately related to the structure of

the subnetworks at both levels. The fundamental problem with their approach is that is does

not present & methodology 'for attacking the general problem of how one should model the
dependence relauonshxps for an arbitrary subnetwork. Funhemlore. certain modelmz tech-

fiques were employed but were not adequately Jusuﬁed.

.. . . ' - -
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In this chepter we use the general model as a tool to provide a systematic, approach to
analyzing how one should model the dependence relationships. To a lesser extent, our sys-
temauc approach provides a mathematlcal basis for acceptmg some of their modeling tech-
niques. The approach, being structured and systemanc, enhances clanty ard thus provndes valu-
able insight into their approach. To a larger extent, our systemauc approach provides the
means for mt;deling dependence relationships for a larger class of subnetworks. Furthermore,
,fpr one important class of subnetworks,.our approach differs substantialiy from theirs. For this
- class of sﬁb‘networks, we feel our Qppfdach is more sensible.

The key idea to developing a systematic approach to modeling the dependence relation-
ships between aggregate activities is to »realize that Leachnian and Boysen’s_ approach for multi-
project resource-use planning is a production planning technique for an "aggregate” production’
system (albeit, a conceptual one). As mentioned in Chapter 1, to do production planning for
an (aggregate) production system the inplut-to-output transformation must be modeled for the
(aggregate) pfodﬁction system. Our systematic approach begins by assuming that the correspon-,
dence’wh,ich defines the input-to-oqtput transformation for the aggregate productioh system
satisfies the axioms in Chapte; 2. This. assumption in'ipliw that to model the input-to-output
transformation the flow types assdciafed with the .asgresate brbdudion system must be modeled
(i.e., one must model the aggregate pmdudion functions, the intermediate product transfers
betwéen ,aggregau'nctivitiu; and the applications of éyﬁtexﬁ exbgenous tnd intermediate pro-
duct inputs to the auregate acuvmes) Once the flow types have been modeied, the set Z of
feasible choices for the. alloauons of resources to the auregate ncnvmu has been detenmned
Since the set Z determines any deoendence between the chou:es I'or the apphcauons of
resources between aggregate activities, if we provnde a systematic approach to modelmg the flow

. types then we will have 'presemed a systematic appriach to modeling the &epende_ncg relation-
ships. o |

To develop models of the flow typesﬁsocvinted withi the subnetworks to be analyzed in

this Chapter, we first delimit the "class of aggregate production'neworks' that we will analyze

//

.
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(Section 4.1). The definition of this class will allow us to defirie u induced operating inzensity for
each aggregate activity. The induced operating intensity will be a wéightéd average of the indivi-
dual activity Opexjating intensities and will have the inierpretation of measuring the "progress” of
an aggregate activity.l | .

In Seciion 4.2, we present two classes of subnetworks for which we develop models of the
flow types associatad with the aggregate activities within the subnetwork. In a manner similar to
how the flow types were modeled at the detailed level, the flow types for each aggregate acti‘;ity
will be deterniined by the induced operaiing intensity. By an uialysis of the invpniory balance
constrain:s associated with the flow types at the detailed l'evel, the f?ow types so modeled will be

shown to be consistent, i.e., they satisfy the appropriate inventory balence constraints, and }.ea-

‘ solnable, i.e., the set Z induced from the models of th_e ilow types contains collections of alloca-

tions to the aggregate activities which insure that there are schedules for the detailed activities
consistent with the allocations which are on time and within budget.

The models developed are détermined from the i_hduced operating intensiiy. Hence, they

. are, in effect, dependent on the knowledge of the schedules for the underlying activities. To

allow the modcls to be tcpendent on such knowledge wou‘ld clear'y defeat (he purpose of aggre-
gation. Thus, as an absolme necess:ry, the modeis oonstmaed must be independent of any
knowledge of (he schedules for the underlying activities and therefore cannot be determined

from the mduced opemmg mtensny

In Section 4.3, we sbstract from mode!s of the flow types for the subnetworks malyzcd in
Section 4.2 to obtain mcdels for flow types which are independent. Tlns is done by suodeling -

the domains of ;he induced operating intensities. Functions belonging to these domains are-

referred to as aggregate operating intensities and are not necessarily induced from a schedule for

the underlying activities. Hence, the models of the flow types given in this secﬁon are

mdependem" from the underlying network It will be shovm that these models are "reason- '

able." The definitions of the models uven in Section 4.2 serve to mouvue the general

- definition for the aggregate network.

.........
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In Section 4.4, we introduce the technique of replicaiion of detailed activities. This tech-
nique will enable us to identify classes of subnetworks which are, 1n fact, equivalent to subnet-
works alre_ady aﬁalyzed. - Two additiona! classes of subnetworks are analyzed through this tech-
nique.

In Saction 4.5, we present some concluding remafks. We show ﬁow the models of the
flow types can be appyoximatﬁd so that the constraints which define the set Z (of feasible allo-
cations to ti’:e aggregate activities) are linear. We then point ¢ut how a Linear Program cquld be
formulated to accomplish multi-project resource-use planning. Next, we give an examplel which
shows that the models developed in Section 4.3 need not be "consistent.” The example points

' out thle need to fﬁrthcr restrict the domain of the aggregate operating intcasitics. We also p(laim
out how the anslyses carried out for the specific classes of subnetworks ue;tcd in tﬁis chapter
can be extended for wider classes of networks,.' Finally, suggestions for.future research are pro-

vided.
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A 4.1._ The' Oﬁentilng Intenshy of an Auregnte‘Acﬂvl'ty
In this Sectibn, we delimit the _class of aggregate production networks G’ that we will
analyze. Within_-thi§ class we can deﬁné an operatirg intensity for each aggregate activity. The
operatipg.iﬁtengity will be used to define the domains of the applicaticns of exogenous resou.ce
flo“; tyﬁes- (the y,’;'s). Ina manne‘r similar t6 Section 2.4.4, we will also use the operating inten-

sity to define the domains of the other flow types.

Noﬁﬁbn |

To differentiate between activities at the detailed level from thosé at the aggregate level,
we use lower case ietters (possxbly with subscripts) to denote d-tailed actmues and upper case
letters (possibly with subscnpts) to denote aggregate activities. The symbol which denotes an
aggrcgate activity will also be used to denote the set of detailed activities within the aggregate
activity. ‘ |

-The class d aggregate production networks that we will analyze must first satisfy the fol-

lowing property.

Propgny 1

For each aggrega:e acnvnty A, there ~xist numbers a,, [ € 4 such that if ¥ 4, >0 for
. 1€4
"some k then
a,,-—-—- 1€k<n. (4.2)
b ‘ L
n24 w ,

’ Property l nnsnsts that each detailed actnvu,' vnthm an aggregate lctm'y nmst utilize the same |
percen xge of the toul amount of esch resource requxred to complete lll of the activities within

the aweute acuvny

The Apip_llcmon of System Exdgenonl'keyoqms, '

.....
@ T e L
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Let S dencte a feasible schedule of start-time for the activities in G and let A denote an
aggregate activity in G The application vector of sysiem exogenous resources tc A is easily

seen to satisfy

yi= 3 yk= I buil. _ ' @3)
1€ A4 1€A4 ’

(The last equality holds by (2.45). The definition of z'is given by (2.56).)

Definition (4.4)

The induced operating intensity for A 'Cerived from S, denoted by 23, is given by

Zhs-' z i:l,uzig.
. €A

If we let

au= 2 bu v ' ‘ 4.5)

1€A
then by 4.3-4.5 it is simele to verify the identity
yhmapazi. T . (4.6)

Any application vector of system exogenc 3 inputs at the nweute level satisfies thé ﬁ:'rm
ngen in (4.6). Thns is precwely the usual restncuan xmposed on the application vector of sys-

tem exogenous inputs imposed by DLAAM (see Section 2.J. l) The interpretsuon of z§ is that '
the f zfdu expreses the fraction of the total resources reqmred to complete .all of the detailed
0 , , ‘ . _

activities within 4 up to time r. In effect, 23 is a way of measuring the progress of A towards

" Finally, in order to insure that the flow types at the aurenle'level are not llreidy deter-

mined it is necessary 1o insist that the ¢lass -of sggregate production networks that we will.

.........
--------
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Property 11

For each aggregate activity A, z5# 24

We insist on Property II because if z{, the induced operating intensity Zerived from the early-

start schedule, were equal to z7, the induced nperating intedsity derived from the late-stari

schedule, then clearly all flow types at the aggregate levgl associated with A would be deter-

mined.
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4.2. Developing Models of the Flow Types From the Induced Opentingllntensity
In this section, models of ti.e flow types associated with two classes of subnetworks, the
Parallel 4:B Subnetwork and the Parallel 4:BC Subnetwork, aré provided. The models of the

flow types cre shown to be consistent and reasonable as defined in Section 4.0. The models of

. the flow types will be determined by the induced operating imensity which 1lso determines the

application vector of system exogenous inputs to an aggregate activity.

4.2.1. The Panallel 4:B Subnetwork

‘The Parallel A:B Subnetwork is shown in Figure (4-2). Here, detailed activities

31,43, ...,ay are aggregated into aggregate 4 and detailed activities by,b;,..., by are

aggregated into aggregate B. 'In the aggregate subnetﬁrork, there would be one arc from A to
B. '

In order to present our models, we first make two definitions.

Definition (4.7)

Let A denote an aggregate activity in G'. The set of induced operating in;eﬁsities for}l
derived from the set of feasible schedule of start-times for the delaileé activities wit(nin A, denoted by
Z,, is defined by ‘ | |

Z, = |z4 € LT (u) | D feasible schedule S such that 2y =zi= ¥ ayz'].
N i€a

Definition 4.8)

The Parallel A:B  irtermediate  product transfer functional is a map

San ZQ, X o+ xZ, == Zg defined oy

141’(2.,. s ,Z.H) - 2‘0”/.)'(2.‘).




98

FIGURE (4-2)
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THE PARALLEL A:B SUBNETWORK
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See (2.45) in Section (2.3.4) for the definition ¢ the function Sa,a)
The models of the ﬂow,typés assbciatedeith the Parallel 4:B Subneiwork are determined

by the induced operating intensity in the follo_wiqg manner. If, for 1<k € a,

. o M
yi=auz where 2, =Y ayz,

=]

o M
Cyk -
YB = Qwgip whare Zp = Zagb‘zb,'

i=l

then the flow types F, (v, W, ); V., and Wy associated with the Parallel A:B Subnetwork are

modeled by . B

M N .
F, (VA ,'VA) - zaBb,FG'. (Yapwni) ' 4.9)
jm] . .

oM _ .
- zaBb/za, ("y 2.46) ‘ .

P

Vig ™ fA:B(za,v ces oza”) ‘ o (4.10)

M . :
=2 assfap (by 4.8)

i s .
=] o . !
,

o M ' '
, - zaab, Vg'b,.. (by 2.51)
] ' ,

M‘.
Wy=3 ag W,

-]

" L ,
- Ea,,,lz,: (by 44)

Ll

k! T L : ’ .
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1t is clear by definitions 4.9-4.11 that we are assﬁming that only one intermediate product is
being "sent” to B. To assume that M products were being produced by 4 and sent io B would

defeat the whele point of aggregation. One would_ simply dcﬁpe, fork=12, ..., M,
Fi W) = Fa,(Va,»Wa,)
Vie= 1 ayb; (2r-l,‘)
Wi = 25,

which is just another way of describing the flow types at the detailed level.
We now argue that the models of the flow types defined in 4.9-4.11 re consistent and
reasonable. For the Parallel 4:8 Subnetwork, there is only one inventory balance constraint

relevant to A which must be satisfied, -
T

f{FA Ou Wy)=Vegldu 20, VYreR,.l (1.12)
0 : )

Fixz, €Z,,i=1.2,...,M. Substituting in (4.12} the defnitions for F, (y,,W,) and V5 we

f(F,q(YA.WA)"VuMM-leGMF 0o, W) = Zau Vo 1du

-]

. M o . .
- 2 aBb,f ‘Fn, (ya,v Wa,) - Va,b,]d“
° .

e

2 0.

! The set on which are integrating includes the eadpoints 0 and v,
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Thus, we have shown that the models of the flow types F, (y,, W, and V,5 are consistent.
For the Paralle! 4:B Subnetwork, there is only one inventory balance constraint relevant

to both A and B. This is the constraint

f(Vnn-Wa}dI.t?O, YrER,. o (4.13)
0

Substituting in the definitions for ¥,z and W into (4.13) we obtain that, Vr€R,,

T

' M M
f{VAB- Wpldu ""f {zaab, V..-o,*):aa»,.zb, du
0 (] i=-]

i=]

T

M
- z {.Vn,b.-zb,ldl-"
=] 0

>0. o , ) 4.14)

Constraint (4.14)' impose.? a restriction on the choices for the induced operating intensities for
4 and B. Since the chofces for the indnced operating intensities for A and B determine the
applicatinn< of system exogenous inputs tc 4 and 3, constraint 4.14) is the model of the depen-
dence relationship between\A and B for the Parallel A:B Subnetwork. Thus, the question of rea-
sonabienm of the models of the flow types for the Parallel A:B’ Subnetwork redu;:a to the
question of how‘reasona le is (4.14) as a modél‘of thg'dependenee mhﬁonshiﬁ between 4 and
B.

At the detailed level, M inventory balance constraints

r

fl Voo ~2ldu 30, VreR,,i=12,....M

. . : B ' .
B N !
L, I AR T IR reoce --.c..v‘-v--‘b'-'.~',‘-'-'.~-ﬁ.'y’.'-’ni.‘a"'
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insure that the start-times for‘b,, i=12,...,M, are consistent with the finish times for q,,
i=12 ..., M. Atthe aggregate end, only one inventory balance constraint (4.14) exists to
constra;'n the possible ‘start-times for b, i=1,2, ..., M, given the finish times for a,,
Vli- 1,2, ..., M. (as reflected by z,). Hence, lwith only one constraint it will not be poesible to
medel the dependence relationships exacrly. But, for our models of the flow types, it 'is
-immediate by (4.14) that, for a fixed z,, all z3’s whose stan-times,for the b,’s are consistent
ﬁ!h 24 do satisfy (4.14) Thus, cur models of the flow types are “reasonable” in the sense
_ described in Section 4.0.

We make two comments about the subnetwork just malyzed. First, this one example -
illustrates that mrdeling the so-called dependeece relationships between the applications of sys-
tem exogenous inputs to aggregate activities is encompassed by queling the flow types associ-

" ated with the intermediate produci transfers between aggregate activities. Second, for the sub-
network just analyzed, ths production function i",, 04 W) was not. equal to the induced
operating intensity z,. This: gﬁﬂ'ers from the detailed case where F,(v,,W,) =z,
12, M.

The reason why we cannot model F, (y,,W,) as z, is because z, is a measufemem of the
mte A utilizes its resources, nor a measurement of when the activities within 4 have been
completed. To illustrate thie point, cpnéi_der ghe following 'enmple of a Parallel 4 :B Subnet-
work with 2 activities:

(a) the duration of each of the 4 activities is one period,

®) a, =ap,=.05, a,,=a =.95,
| © .2., =lon + z,= lay. _
Supi:ose’ F, (y,,W,) were modeled as z,. In this example at r=2, 2, tells us tim A has com-
pleted 5% of its work. As measured by resource use, tms is true. However. at r=2 g, has
finished and we would desire to allow b, to start. If b, did sun stre2, then the following

problem would emerge.

2

3 ] 2 ' "
fra(y‘-wa)dﬂ"'fhd“"'j“'a,zq""u{-,’dn
0 L% B ‘
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= .05
2 o2 2 | :
2 f Vigdp 2 f23d# - f[asblzb,*"aabzzb,}d#
0 0 0
-95.

So, for no choice of ¥,z would it be possible to begin b; at time 7= 2. This eliminates a possi-

bility for 4, which is not desirable.

4.2.2. The Parallel 4:8C Subnetwork
The Parallel A:BC Subnetwork is shown in Figure (4-3). Here, detailcd aciivities
aydy, .. .,8x, K41, - - - > Ay WETE aggregated into A, detailed activities by,b,, . .., bx were
aggregated into aggregate B, and ¢1,¢3, . - . ,'c,_ were aggregated into aggregate C. |
" The flow types associated with the Parallel 4:BC Subnetwork are F, (o4, W,), Vas: Vac,

Ws, and Wc. The inventory balance constraints associated with these flow types are:

' f (F, (y,,viq)-(;gﬁ Vic)ldu 2 0, Vr€R,, 4.15
0 ' . .
f‘VA,-WB,d“ & 0, V?€R+: ) (4’16)
-0 . . . ’ \
‘ f[V‘c-Wc}dp. >0, VreR,. . @&In

Our analysis of the Parallel 4:B Subnetwork motivates the following structure for the mecels of

the flow types: »
Forsome d, € R,, d1€ R,, dy+dy=1,if, for 1€ k< n,

' M : o .
Yiwayz for 24 =Y auz, ' N
. - ' ) ‘.‘ o ., )

i R A AR R AT A AT B R o R i i A A MU YN ;
- - - . - a0t

#tetastaty
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FIGURE (4-3)

THE PARAL EL A:BC SUBNETWORK
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K
yh=awpzs for zg= Y ap2,

i=]

L
k.
ytk=aczc for 20 =3 acz,

-]

then
K L
FoOa W) =di{Y, am,lz,'] + d;{z aCf,z"m:'] (4.18)
. 1] =}
k , _ .
V‘B - dl zaabrfﬂ,b, (zg'.) (4.19)
i=] .
L !
V‘c - d zlaccrfaiélbl (z'wx) (4.20)
Wg = dyz , 4.21)
We e dyzc. | 4.22)

It is easy to verify that the models of the flow types defined by (4.18-4.22) satisfy (4'.15—4.17)

and thus are oonsistem.'

_ Let A, denote the aggregate activity comprised by a1,d;, . - ., ax and let 4, denote the

aggregate activity comprised of axe1, . - - ,au- I Fu Q4 W), j=1.2, is defined by 49) and
. . VA 7V a, :

S48+ f,c are defined by (4.8) then (4.18-4.20) become

Fya Wy = 41FA,(VA,.W‘|) + d1F 4, 0ay W) ) L (4.23)
Vis = A0 8 Gap -+ 20) = diVaga 420
VAC - dlfd,:t (zl"lo e .. 2.~) - sz‘:c ' . (4_25)

Whnt'4.23-4.25 show is that the Pmlld A BC Subnetv‘{ork (K+L=M)is, in' effect, a combi-

- nation of s Parallel 4,:B Subnetwork and 'ln_ Pnﬂld A3 C Subnetwork. What 4.23-4.25 also .

—
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shows is that it is not possible to arrive at independent models for the flow types ¥,5 and V.

This is because V,5 (V,c) ic determined only from the 2, (’42) part of z,. Hence, we will

model this sum V= V,3+ V. It will be convenient for later purposes to introduce the fol-

lowing definition.

Definition (4.26)

The Parallel A:BC intermediaie product functional is a map
Ja.sc: Z"l X -- X Z'.M — dyZy + dyZ¢ = {d\zp +dyz¢ I 23€25,20€2¢

defined by
fA:BC(zal- o 'zau) - dlfd.:s(zc,v v -zax) i dlfl::C(zax“u o vzau)-
Of ' surse, V, = fa.ac Goyp - -0 20,,)-
The inventory balance constraint associated with V,, Wy, and W is

r

0<Jr!V4—(W,+ Wc)ldu, Vr€R,
0 .

which reduces to

0 ( fl‘dl(fn,:a(h,. . .24‘)"'2.)4'41(/4,:6’(20‘". cee ,z,u)—zc) du . 4.27
. A | | .

. Vs 24 € £4. It is immediate by (4.27) that all start-times fot by, ..., bk, ¢y, ..., Which

are consistent with the finish times for a, . .., ay satisfy (4.27). Hence, our models of the

flow types are “reasonable” in the sense described in Section 4.0. The appropriate choice for d,

and d, is deferred until the next section.

Y A SRR . VRS -
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4.3. Constructing Independent Models of the Flow Tyﬁes

The models of the flow types in the previous section were determined by the<induced
operating intensity and hence were not indepeﬁdem. Tc construct independent models, we first
model the domain of the induced ope-rating irgtensity. Functions belonging to this dorﬁain will
be referreq to is.aggregate opc,;raiing intensiniez. The models of the flow typ;:s provided in this

section are determined from the aggregate operating intensities.

4.3.1. Constructing the Domain of the Aggregate Operating Intensity

L.. 4 represent an aggregate activity. As notation, let

E"" Tllzi‘nE/, L‘ - l‘lf?‘.‘XLI, VWA - [EA,L,‘]. (4.2¢)

(E, is the early-start time f6r activity | and L, is the late-start time for activity /.) It is immedi-
ate by the definition of the induced operating intensity (4.7) that if z, € Z, then z, would

satisfy the following boundary conditions:

2, is a step—function (4.29)

L,

.[z,.dp.— 1. o (4.30)
. ‘ ’ 4 ‘ ' ' ' ‘
) r .. o ‘ r | -
| '.[z}du < !z,.du < !:fdu. Veew,. @431
A A A » ’ .

Let D, denote the set of all functions i L (u) satistying 4.29-4.31. It is immediate by the
definition of Z, that D, D Z,. D, will be taken as the model of Z,. Functions velunging to

D, are refetred to a8 aggregate operating intensities for aggregate A. Clearly, the functions

belonging to D, are independent (in the sense described m Section 4.0).
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4.3.2. Constructing an Independent Model of the Application Vector of System Exi.)genou's'
Inputs

"In Section 4.2, y,, the application vector of system exogenous inputs to aggregate A, was -
determined by an induced operating inu':nsity for ugregaté A, 2, €Z,. We will model the
applicatic;h vector y, in a similar manner. That is, if y, denotes an application Qeciof of‘ Sys-’

tem exogenous inputs to aggregate 4 then it is assumed that, for 1 < k <n,

yim=a,z, forsomez, €D,. _ - (432)

4.3.3. Constructing an Independent Model of V, for the Parallel 4:B Subnetwork -
Fr.-r‘ the Parallel 4:B Subnetwork, the intermediate prnduc: transier vriai__)le Vis ‘was
- determined from the induced operating intpnsity via the intermediate oroduct transfer func-

‘tional .
f‘Z,:Zl‘X te x'zlu-.z.'

(see (4.8) for the definition of f,.»). In this s'ecﬁon; we will construct an .ind4ependem model
for V,;, which we .wl'i!l‘denote by V.s. The essential idea ii 10 construct an f,.5:D, -DI,
which reasonably approximates /.5 on Z,, X - -+ x Z,  and then define. V5 -_f}-j(z,.) for
2,€D,. | | '

An inspection of the definition for the intermediate product transfer functional f,.p

shows that it giisﬁes the foilowing boundary eon'dit,ions; Va,.....5 V€2, x - xZ,,

lnd Yré€ W‘:

iy

[fn:n(l.,. v .z.,)du - ] o . 4.33)
» v P .

R)

‘[fd:ll(zll',t"'"z.‘”)d“ ‘I/A:B(zl|0"‘oz¢~)d“< _[f;:“&"’,--_--.'-’f,,)dﬂ ' (434) ‘
' I - kg L . s . o

. .
--------------
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It is also easy tc see that
SanGl, ... 25,) =2k (4.35)
SanGE, ... k) = f. (4.36)

Our goal is to construct an f,.s on D, which reasongbly approximates f,.3 6n
ZM x -+ xZ, . Inview of the definition of D, (4.29-4.31) and the boundary conditions
4.33-4.36, it‘ seems reasonable to insist that f, B satisﬁé the following boundary conditions, ¥
z4 €D, ,and Vr € Wy: | |

iy

.[f,;;g(z,‘ Ydu - 1 ' - (4.37)
] : ' '

.[f,.,;j(z}l, e .z}u)dy. £ .[fj:,(z,.)du < .[f,.;,(zf‘. - ,z,‘”)du (4.38)
% |

) »
which by 4.35-4.36 is equivaient to

L L r

fzﬁdu < ff,::n(zﬂd# € _[’fd".
.‘ ' ' | ’

Jaa D) = f4.5GD) = 2f . ' (4.39) -

f;:l(lzj'\’ - [4-1(2,{') - zﬁ. .-

Fix z, € D,;. The only real information that we know about z4 is given in the bpnndary
conditions 4.29-4.31 and this iﬁ not much. Since f,.5(z,) satisfies 4.37-4.39, an intuitively - -

appealing ides for the definition of f4.5(z,) is that f4.5(z,) should satisfy the foilowing pro-

perty:

L S P S . . . .
AL AR A 2 A L A R PRI S P e .
- 8% 4t e P Fgd Tt g, s a C " n L ISP N .. . - .
s % % o Y ' . ' ta. "0 N PPN S B RN e Patt aT a7 a T w Tl T % . . - o ¥ T - ., - .
- - . . . e’wva Dl El N w Ve . « M - . . . afa®. . a0 . M
e e RO T e e e e s el et Kava
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For some p: Wy — W,, f4.5(z,) must satisfy the following equation:

plr)

!U;:a(za)f2£ld# 'f(z,.-z}ldp
- - V?€ WH‘

I3 . plr) ',

».[{zf—-zﬂdu [i-’z“h)dﬁ

A

A map p is required since Wy = W,. Of course, to transform the idea of (4.40) into a well-

defined mnthematical'ly correct definitica for f,.5(z,) requires us to impose certain restrictions

on p and the right-hand side in (4.40)

_To arrive at the restrictions, it will be convenient to introduce the following definition. 1

Definition (4.41)

The relative progress functional for &n aggregate activity A is a map p,: Dy X R, —

defined by

0 ifrEW,
, A

| -_[lzg -z4)du

— ifté W‘,Z‘#ZAE

f ‘24 -z2f)du |

€W, 20m28

Pa(z4 Jg) =

Pa(z,,1) is referred 10 as “the relative progress® of z, at time /.
" Let us re-write (4.40) as -

r r

! First introduced in Luchmn Boysen [1982}.

NRCTRNE N

(4.40)

(4.4

I/A'(I‘)d“-f‘l‘dﬂ +P‘(240P(T)).[‘Zi“lﬂd#. Vré€ W..
] 8 .

(0,1}
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Equation (4.42) is an implicit definition for f,.5 (z,.).. Since indefinite integralé of integrable
functions are absolutely continuous and hence differentiable?, if p were diﬂ'eremiable then one
~ could differentiate both sides of (4.42) with respect to 7 to obtain a definition for f.5(z,).
The criterion of differentiability on p is not too restrictive. Equation (4.42) and the definition

for p, (z,,0(7)) suggest that it is reasonable to insist that p should be

continuous and increasing A (4.43)

and satisfy the boundary conditions
( Eg) = E,, pLg) =L, | C (444)

If so, then p would be automatically differcntiable.3 Hence, to complete tﬁe definition for
£1.5(z,) as given in (4.42) and hence V it is sufficient to select a p which satisfies 4.43-4.44,

A natural choice for p which does satisfy 4.43-4.44 is to insist that

p(r)-E, - v—~Ey

L4“54 L,-’E’ * VTGW,
which re-ivritten becomes
(L‘ “E‘)
plr) = E4 + T (r--Ep), VYreW,. , (4.45)

. However, this will not be a good choice for'p.' To motivate why, consider the special case when

L,~E, =Ly~ Ey. This would occur, for efumple. if the detsiled activities within 4 and B

" had equal durations. Under this special case, (4.45) reduces to the requirement that

p(r) = E 4 (r—Ep) mr~(Ep~E,), Yr€ W".

2 almost everywhere,

3 Ses Royden p. 96.
.
..... - * . - . - .
T, LN ‘s',._ AR R A AR ., o A n.\- e ‘,,n_. "~ - - e . S
IR Y feta e
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Hence, p would be a simple time leg of longth Ez — E,. Since the d=finition for p as suggested
in (4.45) does not in any way consider the boundaries 2%, 2k, zF, and zf, it follows that under
the special case cited above, p would always be 2 time lag length Ep—E, regardless of the
bouncaries. In general, the .boundaries 2§ and z§ are not determined from z£ and z{ by a sim-
ple time lag. Thus, (4.45) shouid no‘t be 2 good choice for p.

To iilusuate further why the choice for p as given by (4.45) is pot a good one and to .

motivate our choice for p, consider the examiple of a 2-Parallel 4:8 Subnetwork shown in Fig-

X

ure (4-4). The dotted line in Figure (4-42) represents the curve [z,. du generated from a par-
: { ]

ticular z, € D,. The dotted line in Figure (4-4b) represents the cusve If,.' .8%24)du as defined
: ) ¢ (]

by (4.42) with p defined by (4.45).
When we modeled ¥, in Section 4.2.1, we motivated that it is through the inventory bal-

ance constraint

: .[‘VAB‘ZQ)dM 20, Vre W. ' ' . ‘ :_;,
»

that the depehdence réhzionship between the applications of system exogenous inputs to 4 and

C B is modeled. Since we the modeled Vs by Vj,l it is now through the inventory balance Lt '_
constraint '
_ _[ UisG)=25)du 30, Vi€ W, o (4.46) .
. 2 ' . : .
. ]

lt!m the dependence relationship between 4 and B is modgled. Hence, for each r € Wy, the
restriction imposed on the choice for z given a choice for z, may be measured by.the shided |
ares shown in Figure (4-4b). In our example, for any 7€ Wy, the shaded area _évalunted atr |
ixi pfoponion 10 tﬁe tom_;ru evaluated at ¢ is ﬁuite small. 'This reflects the fact that by our : . ~~

choice of f4.5(z,), ie., Vyp constraint (4.46) is forcing 2p toi essentially *run luté.f On the

............................
........................................................
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Lot
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other hand, an inspection of Figure (4-4a) reveals that the shaded area evaluated at p(7) in
proportion to the total area cvaiuated at p(7) is fairly large. This reflects the fact that z, is
essentially "running early.” So what we have is that > ‘is "running early” but we are constraining
2p to run 'I'late".

Based on this one example, let us insfst that regardless of the choice for p, f,.5(z,) must
satisfy the additional property that the shaded areas normalized by the' total areas, eval;xatcd at
the corresponding points in time, are equal. Mathematicaliy, we are insisting that f,.5(z,)

satisfies the following criterion:

i

’ pln)

[IUJ:a-ZHd#dx IIIZA-Zﬂd#dr,
I 4 A

- . YreWy. (44D

' ..[Zlé-:ﬂd#dx | .[I{zf-z}ld#dr.
: » C8 ¢ £a g

It will be convenient to introduce the following notation: for an aggregate activit, 4,

h, (x)-flzf-z,{']dp., x€ER, ' . (4.48)
(Y o

(Note that i, (x) = h (L) V>3 L,.) |
Re-write (4.47), Vr € W;. as

r Y 103

f h](X)dx[P,q (Z‘ .X)h‘ l‘X)h
. A

_[ f;:a(zn)dﬂdx'[f7ﬁdu&+ 2 . (449
B R _ s =B : ! »

hq (x)dx

Proposicion (4.3.1)

F L o L T Y S L P L T T U S P TP S ST I
R S ST L L AT AT AT, T L LT L R e e T T T Tt Tt e
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If Yz, € D,, f4.8(z4) is required to satisfy (4.49) for some p satisfying 4.43-4.44 then

" f1.8(z,) satisfies (4.42) Vz, € D, for the same p if and only if p is the (unique) solution to the

equation

r pir)

_[h"(“)dx .[",4 (x)dx
B3 . A
iy | m(L) Vr€ Wy -‘ (4.50)

Proof of Proposition (4.3.1)

| Suppos¢ Yz, € D, and for some p satisfying 4.43-4.44, f,.5(z,) satisfies bcth (4.42) and

- (4.49). Diflerentiate sach side of the equation (4.49) with respect to = to obtain the equation, V

‘7r€ Wﬂsva EDA,

. o, . hg (x)dx

_[f;;g (z4)dp = .[zbdu + p4(z4,(p(z)h, (p(r))p'(f)-;(-:)—--—;

’ -7 By () e
A

’ _ ‘~.p(r) - ) r
plt) l h3 (T).!‘ h‘ (xsdx = h‘ @(?))P'(T)‘! hg (x)dx
+ | palzax)h, (x)dx ol ———— z . (4.51)
. plr).
A
h,.‘(x)

A

- Since S, ;,(2,) alsovsatisﬁes, (4.42), if we subtract (4.42) from (4.51) and rearrange teims we

obtain the equation, Vr € Wy, Yz, € D,

v - olr)

» . h,(x)dx : Pa (2,( .X)hd (x)dx . N
O g () = by (plr))p'(r) s Hp, (24, (p (1)) = i : 4.52)
By Ge)dx , | hitoax |
DT | o B 7

L .o , . . . .
L n.‘.d'.i_' R c’__J_'f.',!:.'fT..f.-'_;t'af.,‘.,v;‘.o.. LI e N S Y
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Since k4 (x) > 0 (except at x = E,) then it is clear that

plr)

Pa (ZA ,X)h,q (X)&'

Pa(z4,0(7)) = ——

ho (x)dx

A

=0, VreW, (4.53)

P4 (24,x) is strictly increasing. Clearly, D, contains z,’s such that p, (z, x) is strictly increasing

(by Property" I, Section 4.1). Since (4.52) holds ¥z, € D, and since the expression

hy )

ha (@3 = by ())p'(7)
f ha () e
4 .

is independent of z,, it follows by (4.53) that

.-[h,(x)dx
0= hylr) = hy(p(r))p'(r) =2

olr
f”n (x)dx
“ 1

@) ha (o ())p'(r)

"plr)

_[h,(x)dx .[Iu O)dx
(] A :

or, equivalently, -

., VreW,. (4.54)

Since

v .

Cmt . b v e P I ) . . . - PP I BPRE TUE U TP R R SRR Y YT )
B L e B R R R A A R A S A A A A A R A A RO A R AR B

.




)...‘i¥ ‘....w

117

. ' 'p('r) . )
ffg;@e_@.-ﬂ.n[mm, Ve € Wy
A .

h,q (X)dx

then by integrating both sides of (4.54) we obtain the ‘equatiun

T plr)

J‘hg (x)dx - C‘.[ h"(X)d s Vr € WB N : . (455)
% .
hg(Lg)
for some constant c. Evaluanng (4.55) for 7= L, shows that the constant ¢ equals IR
A N4

Thus, p must satisfy the equation

v plr)

J' hg (x)dx .[ hy (x)dx
2 4

haLy) | mLly)

VTE W3

which proves the desired result.®

To prove the converse direction, suppose p satisfies (4.50). Clearly, p is continuous,

increasing, unique and satisfies p(E,)-E‘._p(L,) -'L,.. Since p satisfies (4.50), (4.49) -

becom&s. Vr e Wg,

¢

plr)

Pa (24 )y (x)bx

. (P, L % o
j:.fnzn(fn)dﬁdx J:t’;zj‘{“dx*’hn(lm) - - .(.4.56)

.[h;. (x)ax
‘ .

Differentiating each side of (4.56) with respect to r we obtain the equation, V7 € Wj,

4

| .[fj;,(z,.)du - .[zﬁdn + h’ t L‘z A TOTA) IIOR 457
( (]

~ . oL

-t QW oW - R . . B ’
PR ] )- AR .0l.-_“-.‘._q‘.p.“.‘.‘.ﬁ’0’0’ o .‘l :b.. ™. -" ..'5 \’,.‘N.ﬁ.._.\ \‘..\.s.-... 'h \. ...‘ -

L

t“‘-’ ‘q
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Differentiate each side of (4.50) with respect to 7, we obtain the identity

hg(Lp)

h (7) = [y (1. )

hy(p(2))p’ ('r) Ve Wsp. (4.58)

Substituting (4.58) into (4.57) we have that

ff.;w(zn)d#-[zﬁd# +p,4(24,p(-r))f(zfl-_zﬂdu, Yre Wy
» 7 »

which is equation (4.42). This concludes the proof.®

Our mod=l of Vip is now complete. We define f;.5(z,) implicitly by equation (4.42)
with p chosen to satisfy implicitl} the eqi.ntion (4.50) and then set Vey=f; ,(‘z‘). As 3 result
of this choice for J4.8(z4), we know by ?roposition 4.3.1) that it also satisfies (4.49).

We make one final comment. Coxis'ider the restriction imposed on the choice for 25 given

a particular choice for z,. As we have 'suted before, this restriction is reflected in the inven-

v ) - . '
' fz,dp. < J‘ V;,dlp,, er EW,. ‘ (4.5?)
» ' »

Substituting in (4.59) the definition for V5 we have that, ¥r € Wp,

tory balance constraint

.[ 2pdu € .[ Vigdu= .[ J4:8(zq)dp= .[ hdu + 24Ga @) .[ Gf - hdu
» » S v » S » ) '
or, after rearranging terms,
Py (23.7) L 9 Pa (14 .P(f)). » (460)

Essentially, Leachman and Boysen’s method for modeling the dependence relationship between .

A and B for a Parallel 4:8 Subnetwork was to reqﬁire thst the chom for z, anﬁl'x_j satisfy
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(4.60).

4.3.4. Constructing an Independent Model of V, for che Parallel 4:BC Subnetwork
For the Parallel 4:BC Subnetwork, the intermediate product transfer variable V, was

determined from the induced oberating intensity via the intermediate preduct transfer func-

tional

Ja:nc: Z’,l X ++¢ X Z,'-’ dlZ?+d22¢

(see 4.26 for the definition of f,.5c). In this section, we will construct an independent model
of V, which we denote by V,. The essential idea is to construct an fj;x: Dy = d\Dg+d,D(
which reasonably approximates f,.pc on Z, X - - X Z,, and then define V= f;.ac(z4) for

Z4 € DA . )
An inspection of the defnition for the intermediate product transfer functional f,.ac

'shows that it satisfies the following boundary conditions, Yy 02, ) €2 % 200 X Z,,

and min{Ep,Ec) € r € max(Ls,Lc),

nu(l.,.l.c)
‘ f‘:x(z.'. ven ,Z.u)dﬂ. - l ! (‘.61) s .
mio(Zy.Ec) o o
. J fu:x(zf,o---‘zf,)dn < fdzx(za,v"---za')dl"
, min(Eg.Ec) min{Zy.Ec) .
< SancGE, . . 2, )i (4.62)
“minlEy £0)

For notational convenience, let Epc=min(EpEc) and  Lac=max(lyLc) - and

Wy = [Eac Lac). 1t is easily verified by the definition of f,.ac that

fa:x(znl’....'.zfu)-’d,z[+d;zl'_' o C o (4.63)

e e . LI - - -~ - - - - -t . - « v .
. - - - by T . . ~ - » - - . " * L4 - LR - - - . L
L LR R AT P R N e P R I DA e P TP TR BRIt I T P S S e SR A Y .t PR e, eLw - -
- LI LR AT R RS '.'.a; S N e e A S T L e W ST s e ¢\‘n LI T DT WA N ot ‘.‘. . AN
c ) M ', e Ye e
' LI AL B R Y

FUENER

[ 25 BTNV SN PN
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Sanca,, ... 2f) = dyzf+dyz

~Of course, boundary conditions 4.61-4.62. are exactly analogous to the boundary condi-
tions for f, 4.8 Biven in 4.33-4.34. Based on the motivation and explanation provided for the

de\"relopmem'of the definition for f,.5, we define f,.sc implicitly by the equation, ¥ € Wac,

: ff;.x(zA)dﬁ'J‘fnzac(zf)d# +PA (ZAaP("))J‘UAQx(Zﬂ"fA ac(ZA)ld#
” x "

-J‘[d,z§+dzzé}dp>+ P4Gep(®) f ld,(zi-zf)+d;(z£—=zé)}du

! o : 8C
for some p: Wy — W, which satisfies
pEsc)=E,, plpc)=1L,
and which is
eogtinuous and increasing .

Analogous to the additional requirement imposed on f;. (see 4.49), let us insist that, V
24 € Dy, f4.pc 8IS0 satisfies the equation, Vr € Wy,

oly)

. J[o -z,.)dudx | j; ij(z,.)-(dgffdzzé)ldpdx
: ' 4 ac "X .

“plr)

fj (z‘-z‘)dy.dr J'f ld,(zf-z[)-o-d,(zf-zé)lduok

By a proof similar to the proof of Proposition (4.3.1) it may be readily verified tilal p must

14

satisfy the equation

r ol

"[(4.h,<x)+¢,:.‘¢(x)la b .
Pl S— - (4.64)

Y ATAET L7 % R %
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To complete the model of. V, tequires us to select the weights d; and 4. To motivate
our choice for d, and d,, let us first consider the restriction imposed on the choices for zg and

zc given a particular choice for z,. As we have stated before, this restriction is reflected in the

inventory balance constraint

J‘ {dizs + dazcldp < J. Vidu = J.f,;;ac(ZA Ydu, V1€ Wy (4.65)
5C . C 5C .

iR

Substituting into (4.65) the definition for ffj .zc(z4)du we obtain, after re-arranging terms,
. x . '
the inequality
J {dl(lg - Z‘) + dz(Zc - d'\}dp.
5C

T

, f (dz5—z5) + dz(zf-zé)}djg
C '

(4.66) is equivalent to the inequality

hy(r)
dihg (r) +dihc (r)

Pa(z4 (7)) 3 41{ }Pn (z5,7)

+ d;{ e () lpc(Zc.‘l') .v Yr€ Wye. ‘ | {4.67)

dihp N+ d;hc(f)

Let A, denote the set of activities in 4 which prmde 'th§ activities in B, let 4, denote.

the set of activities in 4 which precede activities in C, and define

.......

<P (24 ,P(?)) , VYré€ WBC . (4.66)

e, J=12. - 458

..
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It may be easily derived algebraically that if z, =z for some feasible schedule S, then

Iu‘(p('r))
Palzap(1)) = ay P PI) FPP LAY pr(’fx*P‘(f))

ha, () .
* @aaha, @) +ay b (o) Pay(za, 0 ().

(4.69)

To motivate our choice for d, end d;, consider the special case when, for some / > 0,
2f(r) = z,fl (=1 = zfz (r=1) = 25(r), V1€ Wy (4.70)
() = 2h =D = 2k G=1) = 2k(), Vr€ Wpc.

In this case, an inspection of (4.64) shows that p(r) = r ~/ (which is intuitively clear). Furth-

ermore, P(T,)- r~/ and (4.70) imply that
hy(r) = hy (7)) = hy (p(r)) = he(r),  Vr€ Wyc. 4.7M)

| ' ' I Lo
Substituting the ideatities found in (4.69) and (4.71) into the inequality (4.67) gives us the ine-
quality, V7 € Wpc, |

03 (dwps Gg,7) =y 4pa, (23, £ () +_(dzﬁc(lc.f)‘qg,‘p‘,(zf,p(f))}-' 4.72)

Since the subnetwork nisociatgd with 4, and B (resp.; A and c) comprises a Paralle]l 4,:8 -
Subnetwork (resp., a Parallel 45:C Subne!work). it follows from our work for dm subnetwork

that we would like 10 constrain 2y and 2¢ by the inequalities
Palen.) € 0,5, (1)), 7€ Wpe @)

pclzc.1) (pj,’(:,f,.p(f)). 7€ Wpe.

.....................
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Hence, if we set
df - ad}A » J=12 - : - (4.74)

then any z3 € Dp, zc € D¢ which do satisfy (4.72) will satisfy (4.72). Henée, for this choice of
d, and d, (and for this special case), we will not eliminﬁte any reasonable choices for zp and 2.
Therefore, we specify d and d, by (4.79). o |

We make one final remark about the model for ¥V, and hence our model for the depen-
dence relationship between 4, B, and C. Leachman and Boysen’s method for modelin'g the
dependence relationship between A, B, and C is to insist that Z4, ‘z,. and z- satisfy the ine- -

quality
' a, ;,‘pg (Zg.P;‘(T)) + a,,‘pc(zc,p'f'(f)) < Pa (24 ,?) .. ’.IV“I’ € WBC (4].75)

where, for i=B,C, p;}(r) satisfies

Pl

r h, Ox)dx f h; (x)dx
{4 - £
h,‘ (L‘) h,' (L,)

An inspection of the relationship between (4.75) 'md' (4.72). | 'revgals thni. except for the
 differences in the definition of p(r), Leachman and Boysen's method for b:odeling the dependence
. relationship is our method under rhé special case cited above. For more general cases, we feel our
spprﬁach is more sensible since it will weight a aa, 20d a ,.,.', by :im;-morihg factors. Olﬁmately. '
it will have 1o be tested to see if it performs better. (See Section ((5.4) for a discussion con-

cernihg testing of the nppronchvfor modeling the flow types.)
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4 1.5. Constructing an Independent Model of the Production Function,
For both subnetworks analyzed, F, (y,,W,) does satisfy the usual bodndary conditions. It
would therefore be appropriate to model it in exactly the same manner as we modeled Vs or

V,. Since V, 5 and V, were modeled in detail, we omit the analysis.
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44. Analyzin;‘Sﬁbnetw&rks ’l’hmgh the' Technique of Replication
In Section 4.3, we dcv_el_oped models of the flow types for the i’ara!le! AB éubnetwork
and the Parallei A:BC Subn'etwo'rkv. This section introduces the technique of replication of
" detailed activities and uses it (0 devélop models of the flow types for two further classes of sub-
networks. We proceed to develop models of the flow iypes for two classes of Non-Parallei

A :BC Subnetworks.

4.4.1. The Complete Precedence Non-Parallel ABC Subnetwork
The Comp'leté Precedence Non-Parallel ABC Subnetwork is shown in Figure (4-5}. Here,
detailed  activities 01,82 ...,y were sggregated into aggresate A, detailed activities
by,by, . .., by were aggregated into aggregate B, and detailed activities €1.C2 - - . 4 Cpg WETE
aggregated into Wte C Let G denote the underlying production system and let G’
denote the productibn network associated with. G. We will construct a production system H
which is, in eﬂ'eci, “equivalent” to G 'and analyze H to arrive at models of the flow types for
~ the subretwork shown in Figure (4-5).
To construct H, let us first construct the production network H° associated with H':
Step 1: .Add nddos ajy, .. .,dy3t0 G. Re-label node g toa, i=1.2,. M.
Step 2: h A&d in: (d.a,) 10 G° if iheﬁ is an arc’ (d,aa)inG,i=1 2,.. oM.
Addarc(a,,.d) oG’ :ftherensannrc(a,.d)mG i=12, ..., M.
H' is ‘the network obmned from G from Steps 1 and 2 11:e subnetwork in H whlch
| eomponds to the Complete Preeedence Non-Panllel A:BC Subnetwork in G ‘is shown in Fig-
ure (4-6). As notation, we have let the symbol 4,, j—l 2, denote the aggregate actmty in H
,compnsed of activities a,,,:-lZ ..M. Essentially, 'H' is' G* with nodes ay,...,00 |
*replicated.” '

The pfoddction system H whose production network is H' is defined as follows:

L.
.
)




126

©
lo

=

FIGURE (4=-5)

THE COMPLETE PRECEDENCE, NON-PARALLEL A:BC SUBNETWORK
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SUBNETWORK IN H .COPRESPONDING TO
COMPLETE PRECEDENCE A:BC SUBNETWORK IN G
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(i)  The duration and resource requirements of activity a; in A are identical to
the duration and rescusce requirements of activity a4, in
G,i=12...,M,j=12. |

i) For an activity in H other than some a,;, the durstion and resource require-
wn~nts are identical to theQ duration and res>urce requirements of it§
c&rresponding counterpart in G.

(iiiy It is required that the operating int‘ensities %, and 2z, are equal,

i=12,..., M.
Since the subnetwork pictured in Figure (4-6) is comprised of two Parallel 4:8 Subnet-
works, it follows that for the production systém H, the variables F,.l(z,ﬁ), FA;"‘;)’ Vass

v, ,C Wy, and W are determined from the induced operating intensities z4, and z,, exactly as

described in Section 4.2.1. Given 24 € Z,.J. J=1,2, the restrictions imposed oa the choices for .

2y and 2 are modeled by the constraints

J'(V“’-Zgldﬂ 2 0, r€ W, ) (476)
(]
) r :
'[[V‘,cl-z‘(-]du‘} 0, 7€ W, . (R
C

It i¢ immediate by our construction of H and (ii) .abbve in particular that Z;. the set of
iﬁduwd onerating intensitiés for aggregate 4 in G, is equal to Z, K J=12, the set of induced
operating intensities for ageregate 4 in l-l »J=1,2, when these sets are viewed as set; bof func-
ti;)ns. If .one idemiﬁés Z, with Z,, j=1,2, then it is immediate by our method.'for modeling

the intermediate prod.ct transfers ‘presented in Section 4.2 that
<VAJ- V“‘ y VAC -_VA,C- i - . (478)

Hence. it is appropriate to view aggregate 4 in G as producing mo identical products, i.e., to
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define for z, € Z,

F, (VA'WA) - [FAB(-VA'WA)v Ff(yAxWA)] - [FA‘(yAva)s FA,(VA'WA)) ! :(4-79)
(where F, is defined by (4.9)) and, in view of (4.79), 0 define for 2.€2,
Vis=Su,3Cap -2 )= Vans Vac=Suycap o - 120,) = Vayc. .~ (4.80)

The restrictions oea the choices for z5 and z- given z, would be modeled by constraints 4.77-
4.78 (with the substitution of the ideatities given in 4.81). |

Since the models of the flow types determined from the induced operating intensities foe
these two subnetworks are ndemml it seems reasonable to insist that the mdependent models
of the flow types determined from the aggregate mtensmes also be ldenucsl Thus, we define

VAB’ VAC’ md F‘ (YA'WA) 0 m

Vis = Vs

Vic = Vax
AR AL [f;,(YAoWA); F;,(Y,«!,WA)]-

The varisbles Fy (;,W,), i=12, V, p and Va,c were defined in Section 4.3.2. This con-

cludes our analysis of this subnetwork.

4.4.2. The Partial Pneedence Non-Parallel 4:BC Snbnemrk

| The Partial Precedence Non-Parallel A:3C .subnerwrk is shown in Figure 4N, Here.
detailed activities a. . . . , gy were aggregated into aggregate A, detailed activities bi....by
were aggregated into aggregate B, and detailed activities ¢y, . . . ,¢; were aggr.egated into aggre~. ,
fate C.Lat G denote the underlying production system ;nd let G* denote the production net-

 work associated with G. We will construct a production'system H which is, in effect, equivalent
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THE PARTIAL PRECEDENCE NON-PARALLEL A:BC SUBNETWORK
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to ,G and analyze H to arrive at models of the flow types for the subnetwork shown in Figure
@, |
To construct H, let us first construct the production network H' associated with H :
Step 1:  Add nodes Qe+ - ,ay2 ©© G'. Re-label node a, to a,,

imK+1,.... M.

TR T YT Yy

-

Step 2: Add arc (d,a,)) to G' if there is an arc (d,a,) in G, i=K+1,... M.

LN
-

Add arc (a,5,d) to G if there is an arc (g, d)inG,i=K+1,..., M.
H’ is the network obtained from G° from Steps 1 and 2. The subnetwork in H which
corresponds to the Partial Precedence Non-Parallel 4:BC Subnetwork in G is shown in Figure
(4-8). As notation, we have let the symbol A;, j=1,2, denote the aggregate activity in H
comprised of activities a,, i=K+1,...,M. Essentially, H' is G~ with nodes ax., . ..,ay
“replicated.”
The production system H whose broductiqn network is H' is defined as follows:
(i) The duration and resource requirements of activity ay in H are identical to
the duration and resource | requirements of activity g, in G,'
imK+1, ..., M, j=1.2. |
(ii)  For an activity in H other than some a;, the duration and resource require-
ments are identical to the duration and resource requirements of its
corresponding eounterpm in G ‘ . '
Gii) It is requnred that the openung intensities  z, , z,,z “are equal,
i-K+l. v M.
Bt ls immeditlte by our construction ‘of H that Z,., the set of induced operating intensities
for aggregate 4’ in H, eﬁuals Zs, t!;e set of induced opemine in(ensitia for aggregate 4 in G,
.und ttm Z,.,. the set of induced operating mtensma for aggregate 4, in H, equals Z". the set
" of mduud operating intensities for 4, in G (when all sets are v:ewed as sets of functnons) If

one identifies Z, with Z,. and Z,., with Z,, then it is'immediate by our modelmg of the inter-

mediate product transfers pmemed m Section 4.2 that, for z, € Z,.,
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V,m - fA';p(Z.l. e ,Z,(K“". e .2,‘“)

Vic = Ve = Sayc Cagepyy - - - 1 200)

ik M
Fa 0’4 JWy) = 2 apy2, + ; aceZe,
=K+l

| Since the modeis of the intermediate product transfer flow types determined from ihc

. induced operating intensities for these two subnetworks are identical, it seerns reasonable to
- insist that the independent models. of these flow types determined from the aggregate operatjng
intensity also be identical. When 4, and 4’ have been aggregated, the subnetwork pictured in
Figure (4-8) is a Parallel 4:BC Subnetwork. From having studied this case in Section 4.3, we
know ihat while it is not possible to arrive at an independent model for either V3 or ¥, .c Ve
do know hovﬁ to constrain the choices for zy and z- given z,- by modelinﬁ the sum

Va-=Vyp+ V. Thatis, z and zc must satisfy (see 4.67)

h, (1’)
d;’lp (r)+ drhe (r)

+ dgl

PA"(Z‘ '\P'(T)) P dl[ ]p; &j ,‘l’)

he ()
d\hp (-r)_~+ dyh-(7)

’pC (zCJ)I v YT € Wy (4.81)

whére '

€4y

2 Xy i

- i€A”

dy= ﬁny' -,

24 - dn'nflf' *ﬁny'lf,

- a‘:‘-zf+a‘9-zfl

------

...................

....
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z"' - ﬂ"A"Zj"*'d‘,"Z}:
- 'GA'A'Z,""’GAY‘*Z"l

and p(7) satisfies the equation, V7 € Wy,

v plr)
J{d.h,u)+d,hcu)]a _[ (diha ) + dyhy (x))dx
5C A

dihp (L3)+d‘z'lc (Lc) - d,h,'(l.,)+dzh,,(l.,z)

plr
f (dyha () + doh, (N
A

dlh,‘ (L‘ )+ d;lllz(L‘,)

Note that if z,-=z3- for some feasible schedule S in H then by (4.69) we would have thai, V

v € Wx,

hlp)
Pelisrote)) = ld,h, TN+ daha o)) [P Ca®

)

he, o))
% (p(7))+d,h,,(p(r)) Pay

+ dy 4, (24,.0(1‘))

| hlp(r)) ‘
- d'[ d\hy (1)) + d1y (o (7)) Pa (24 p (1))

| PG
- 141"4 (1)) +dah, (p(r)) p‘n("a"’(’))

Intuitively, pp and pc are being constrained by p, and p,, which makes sense based on our

analysis of Parallel 4:B Subnetworks.
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If one used z,-, then (4.81) would serve to model the dependence relaiionships. Unfor-

tunately, it is y, not y,- that models resource use for 4. Without knowing 24, We could not

easily transferm trom y,- to y,. However, if we made the simplifying assumption that
2z 2y (=22, ) (4.82)
ther

Ya-=yoand py- = Py

Essentially, Le#hmm and Boysen’s method for modeling the dependence relationships for this
subnetwork is to use (4.82) with the simplifying assumption (4.83). While (4.83) is intuitively
appealing-- without additional information, it assumes all 'activitia within aggregate 4 progress
ai the same rate-- it is restrictive. More than anything else, it points out the fact that modeling

dependence relationships for complicated (i.e.,‘non-panllel) subnetworks is difficult.

.....
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4.5. Concluding Remarks

4.5.1. Extensions . .
The developmle‘nt of the ‘models of the flow types for the Parallel 4:B, Parallel 4:8C,
Complete Precedence Non-Paralle!l 4:BC, and .the Partial Precedence _A:BC Subnetworks
presented in Sections 4.1-4.4 may be repeated for similar classes of subnetworks. For example,
it is easy to see by "syl'mmetry" how one would model the ﬂpw'typs for the Parallel BC:A Sub-
 network (see Figure (4-9)), the Complete Precedence Non-Parallel BC:4 Subnetwork (see Fig-
ure (4-10)), and tﬁe Parual Precedence Non-Parallel BC:A4 Subnetwork. The subnetworks
shown in Figures (4-9),. (4-10) and those analyzed in detail in this chapter include all of the

subnetworks presented in the Leachman and Boysen [1983] paper.

4.5.2. Constructing Tractable Models

In order to develop a convenient method for accomplishing multi-project resource-use
planning, it is desirable to construct models of the ﬁow types which are tracable. That is, the
- constraints which define the set Z of feasible chtlaim for the allocations of resources to the
aggregate activities induced from the models of the flow types are lmw An ipspectioh of the
models of the flow tvpes developed in Section 4.2-4.4 reveals that oaly the inliefinite integrals
of the flow typeundnot the flow types themselves, are required to determine the constraints
which define the set Z. To define models of the flow types which are tractable; we simply con-

struct & piecewise-linear appmximrionvto‘ the indefinite integrals of the flow types.
Definition (4.83)

_Let z€L (). The piecewise-linear approximation to fzdu. denoted by fi'dp. is
: _ ‘ ° °

defined by

...............................................
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FIGURE (6—9l)

THE PARALLEL BC:A SUBNEIWORK

. .
..............




138 -

D0 OV)

(&
O,

®

e
&
o
b

 FIGURE (4-10)

THE COMPLETE PRECEDENCE, NON-PARALLEL BC:A SUBNETWORK
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(where [x] equals the greatest integer of x).
The models of the flow types are now understood to be the piecewise-linear approximations to
the previous models of the flow types. (Since the aggregate operating intensities we e coﬁ-
strained to be step-functions, the indefinite integrals of such flow types aré already piecewise-
~ linear.) | |

An inspection of the constraints which model the dependehce rclatjonships between
aggresate activities giveﬁ in Section 4.3 clearly shows that they now become linear constraints.
Since all flow types and hence all constraints wlﬁéh model dependence relationships are déter-
mined from the aggregate operating intensities, a Linear ‘Progrnm which accomplishes multi- l
project resource-use phndng may be formulated by having the indefinite integrals of the aggre-' .
gate opentinﬁ intensities as the decision variables. A suitable objective functio‘n (one for which
minimizes cost, for example) is all that is required. See Leachman and B;:ysen il983l for their ..

choice for an objective function.

4.5.3. Lack of Consistency for the Models of the Flow Types .

The constraints which model the dependence rehtionshiﬁs are required to be satisfied and
appear in the Linear Program dxscussed in Section (4.5.1). However. it is possible that the |
inventory balance constr=ints which link the production vamble to the intermediate product a

tnnsfer vambles are not satisfied.

Consider the example of a Parallel 4:BC Subnetwork (whéce A has two lctwmes) shown |

in F:;ure (4-11). The mvemory balanoe constmnt
] " . . )
.[IF; G W)=Vildu0 (4.84)
is not always satisfied. Funhemoré, the indefinite inte;rﬂ of Vg, o
| _[v;du SR )
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is not always increasing, i.e., ¥, is negative at some points in time.

_)'l‘he rriain_ reasons why such an example can be constructed are twofold. First, the domain
D, is 00 large, i.e., additional constraints must be imposed to insure that the variable z, is
close to an induced operating intensity (the particular z, in Figure 4-11) is uo‘t).l Second, tae
boundaries z§ and z§ are completely different in "shape” than the boundaries z5 and z%. Perhaps
such inconsistencies point to the fact that the unde(lying activities should not be aggregated.

In any event, models of the flow types associated with the production functions and the

intermediate product»transfelrs should satisfy the inventory balance constraints similar to (4.85). .

In addition, an ineonsisténcy such as (4.86) should not occur either. As a test for the construc-

tion of the models, these criteria could be employed.

4.5.4. Suggestions for Future Research

It is desirable to extend the analyses provided in Sections 4.2-4.4 to wider classes of more
complicated networks. ln addition, the approac}i to constructing independent quels (Section
4.3) which is the key to modeling the dependence relationships should be tested. Results of a
preliminary test of the approach may be found in Dalebout’s [1983] Master’s thesis. Based on
her. results, the a'pproach. due to Leachman md_ Boysep, extended in this chapter, seems to
work ‘.vell. .Llstly, further study into methods for restricting the Mﬁm of the aggregate
operating intcnsities. 30 as to insure consistency is ,déinble and might be the key to more real-

~ istic models of the dependence relationships.
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