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Abstract

-- A theoretical model of a general production process is constructed. A production prccess

is "egarded as a network of jointly operating, interrelated activities which use system exogenous

inputs of goods and services to produce outputs. The production model displays explicitly ttie

intermediate product transfers between activities and incorporates the time-varying aspects of

production directly. The primitive elements which are taken to be common to all production

processes are the activity production functions and' the flows of products, goods and services.

To enhance clarity and rigor, the model is developed axiomatically, i.e., properties on the prini-

tive elements which are conjectured to be true in order to facilitate the theory are identified.

The general model extends previous axioma-iiý', models"of-inxouctivfiýused in ecionomic

theory. Specifically, laws of production and Shephard's Duality Theorem are proved using fe.-&

axioms of the general model. Moreover, the general model provides guidelines at to what

entails a satisfactory model of pr.4uction so that it may beitifized'to study models and solu-

tions of specific production planning problems. To illustrate, the general model is used to sys-

tematically analyze a heuiistic solution' proposed by Leachman and BoysenVMIt9Ufor the prob-

lem of multi-project resource-use planning and to show how their approach can be extemided and

improved. (CrI" ,

• i
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1. INTRODUCTION

In production planning, a decision-maker identifies objectives, available choices, and the

result of each choice. Once the particular problem has been described, a model is then formu-

lated as a means of accomplishing the objectives. This includes modeling the result of each

choice available to the decision-maker. In production planning, a model of this choice-result

relationship is, either indirectly or directly, a model of the actual production process. Thus,

modeling the actual production process is a necessary and essential aspect of production plan-

ning.

Because thL. production planner has to develop a model which is tractable for anaysis, he

often makes certiin assumptions which are not specifically identified or adequately justified.

Hence, the development of a model for a particular production procý.ss is primarily an art. To

elevate the model-building to a more scientific level would require the modeler to identify a!)

of the assumptions taken, either implicitly or explicitly, and justify each one. Therein lies a

fundamental problem confronting research in the area of production planning: how does one

know what were the implicit and explicit assumptions taken? There are no general guidelines to

help the production planner identify the assumptions, and wcrse, there is no mechanism to sys-

tematically analyze the limitations such assumptions necessarily impose.

Another fundamental problem confronting research in the area of production planning is

the analysis, or lack thereof, of heuristic solutions. A rigorous analysis of a heuristic solution

would be one which provides a rationai basis or logical foundation for the, proposed methodol-

ogy. This is impossible unless all of the assumptions of the original model are identified.

As a first step towards elevating the art of production modeling and the analysis of heuris-

tic solutions to a science, we construct a theoretical model of a general production process

(Chapter 2). A production process is regarded as a network of jointly operating, interrelated

production activities whitch use system exogenous inputs of goods and services in production to

produce final outputs. The production model displays explait, the intermediate product

transfers between activities. We identify the primitive elements which we take to be common to

* . .. . ... .....-..•... ...... ... ..- ,,,.... .. , ,. .... ,.:•.• ....... ,...",'• :•.:.
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all production processes. They are the activity production functioin and the flows of goc... and

services through time. The model incorporates the time-varying aspects of a production process

directly. An explicit description of how :pL." is transformed into output is presented. Exten-.

sions and limitations of the present model are also discussed.

To enhance clarity and rigor, we develop the model axiomatncally. That is, properties on

the primitive elements which we take to be true in order to facilitate the theory are identified.

The chief reasons for axiomatizing the theor.tical model are (1) it discloses many of the hidden

assumptions, (2) it di-splays the structure of the theory, (3) the key concepts and hypotheses

are identified, (4) the consequences of changes in the foundations are better realized, and (5)

the shortcomings of the theory can be spotted and corrected.1

Since a specific model of a production process necessarily imposes assumptions on the

primitive elements, the general modtl tacilitates the identificaion of the assumptions. To illus-

trate, we describe in our framework the production models implicit in the production planning

techniques of Material Requirements Planning (MRP) and the ordinary Critical Path Method

(CPM). These descriptions will clearly reveal the implicit assumptions about the production

processes made by production planners who use such techniques.

Once the implicit assumptionr on the primitive elements have been identified, it is possi-

ble to inalyze any proposed heuristic solution offered to solve a particular problem. To illus-

trate, we use the general model as a tool to provide a systemati analysis of a heuristic solution

proposed by Leachman and ,oysen [19831 for the problem of multi-project resowwwur e planning

,for a multi-project Production system (Chapter 4). The problem is to determine expliit

resource allocations through time to projects to insure that schedules are met. Our systematic

analysis not only provides a logica foundation for their approach but more importantly shows

how their approach can be extended and improved. The malyses carried out in this chapter

illustrate the value of using a general conceptual framework of a production system to evaluate

proposed heuristic solutions to production planning problems.

Adwo from Dui .1 673).
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Theoretical models of "general" production processes have beer d,-veloped before. Recog-

nizing the benefits of axiomatization, Slephard [1970a] developed an axiomatic description of

a steady-state production technology. 2 The primItive element in his model was the correspon-

dence which modeled the input-to-output relationship. The axioms were therefore imposed on

the correspondences. Rezlizing that a steady-state framework did aot ;ncorporate &.e dynamic

aspects of production directly, Shephard and Fare [1980] extended the framework :o model

dynamic production systems. Again, the primitive element was tie correspondence which

modeled the input-to- output relationship. Functions of time were taken to model the flows of

goods and services. The axiomatic description for this model was virtually the same as thu,

steady-state model except that certain mathematical axioms w,:re employed to facilitate the

theory. Shephard et. al. [1977] developed the first network model of production and later

presented an axiomatic UJescription of this model in 1981 .

The axiomatic rmiodels oi production constructed in the past are not useful for the

development or evaluation of dynamic production planning models. However, these models

have ,roved to be useful for the development of steady-state cost rd production functions.-

More import; tly, perhaps, the previous axiomatic models enabl: one to prove laws of produc-

tion. By proving that laws of production hold from the axiomatic description, the question of

the validity of the laws is reduced to the question of whether the ixioms in the axiomatic

framework are appropriate. We continue this worthwhiie task by proving, in our general stting,

tv o variants of the L2w of Diminishing Returns as formulated by Shephard.5 In addition, we dis-

cuss technical efficiency and provide two different proofs of Shepherd's Duality Thorem' which

be'ter explains this famous theorem (Chapter 3).

Since our model explicitly defines the correspondence which models the input-to-ou-'put

relationship, our model is more descriptive of the pioduction proem than the past axiomatic

2 See also Shephard 119531, (1970h].
3 See also Hackman and Shephard [19831.
4 See. for example. Hanoch and Rothschild ,19721.
5 See Sha•hard mW Fate 119801.

"7 A-7............ ....... .......
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frameworks mentioned above. In addition, since the choice of primitive elements dictates the

nature of the axiomatic description, our axiomatic description is completely diferent from past

frameworks. Some of the axioms which were taken in the eorlier frameworks were completely

analytical, ie, ii would not be possible to verify their validity by experimentation. We believe

our axiomatic description can be verified tbrough experimentation and is easier to justify.

In summary, the E.neral framework of production introduced here provities guidelines as

to what entails a satisiactory model of production. The framework is 'general' enough tn extend

previous axiomatic models useful for developing steady-state cost and production functions and

for understanding laws of production in economic theory. Moreover, it is "general" enough to

study models and solutions of specific production planning problems.

°¶

... ...'..'....:-,..., ............,... ............ ....... ,..:.....-..-"...-... ..........
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2. THE GENERAL MODEL'

In this ch-ipter, we develop a general model of a production process. Scction 2.1 presents

the frame-vork of the model Section 2.2 devcloos the model axiomatically. Section 2.3 illus-

trates the generality of the model. Section 2.4 di.cusses the limitations ofthe present model

t and describes how the model could be adapted to fit more specific cates.

2.1. The Framework of the Model

In Section 2.1.A, we present a conceptual franework common to all network models of

•' !production.1 In Section 2.1.2. we describe hrw we cnoote to model the flows of goods and ser-

vices. Sections 2.1.3 and 2.1.4 develop the modei of the transformation of input to output at

the activity and network levels.

* 21.1. Productlon. Netwrks: A Conceptual Frawwork

A production ssterm is modeled as a direci•eu tmork, the nodes of which represent primi-

five production aciv•se& (An example of a Production Network is shown in Figure (2-1).) Prim-

itive production ,ctivities Ere those within which the intermediate product transfers need not be

consideret! for the purposes at hand. The nodes are connected by directed arcs to indicate pos-

sible transers of intermediate and final prtducts. (Cycles are permitted.) System exogenous

inputs such as labor services, machine and facility services, energy and fuels, etc., are treated as

transfers from r.n initial node A0. For a. system with N producing activities, final outputs are

taken as delivered to node AN+,. Thus, a production system is regarded as a jointly operating..

finite number of ifiterrelhted primitive productiov activities A 1, A 2... AN which use system

exogenous inputs of goodi and services in production to produce final outputs.

Note that the production model displays e.xpiciy the intermediate product transfers. This

display is euntiuad .for dynamic models of production since finid output evolves as the evolu-

tibnary flow of intermediate products to &A products.

See, for ezampl•. Shagd e,. Wi. 119771. SheWd 4$111!. aHl d Ha mWd ShephOd 119131.A.



FIGURE (2-1)

EiWLE OF A PRODUCTION NETWORK
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2.1.2. Modeling the Flows of Goods and Services

The flows of goods and services (input and output) shbuld have a truly dynamic character.

A Slow, therefore, will be taken to be an element of an appropriate subset of the set of nonne-

gative functions defined on the nonnegative part of the real line. Each Ilow will be referred to

as a time-rate history.2

There are two fundamental types of flows. The first and more common type, called a c!,n-

tinuousflow, is one for which x(t) represents the rate--quantity per unit time--at time t. The

second type, called an event-based flow, is one for which x(i) is a numerical representation of

an event at time t. One example of an event-based flow, suitable for project-oriented produc-

tion systems (see Section 2.1) is when

.I if r is the project completion time
S -0 otherwise.

Another example, suitable for batch transfers of intermediate products, is when x (W) indicates

the quantity transferred at time r.

2.1.3. The Activity's Dynamic Preducti.t Co imspemdc.

How we choose to model the relationship of input into output at the activity level is

described in this section. The description of the input-output relationship at the network level

is presented in the next section.

To produce output, each activity utilizes iystem exogenous inputs and' intermediate pro-

"dects. The outputs may be intermediate products used as inputs by other activities, or final

products, or mixtures of both as in the case of spare parts.

As notation, let

Axlom for'th iOM, of 0006 mWrms V . wnmetd we is Seo (2.21).
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x6- (xO ...... 0x,) denote a vector of n time-rate histories of system exogenous

inputs allocated to the iP activity, i-1,2. N,

V, - (V,,.. , V,',) denote a vector of ,n time-rate histories of transfers of outputs

from the Ph activity to the jI activity, i-1,2,.... N, j-li,2, N+I,

V, - (V,1 
.... V,") denote a vector of m time-rate histories of outputs of the ih

activity, i--1,2, .... N.

Note that in the foregoing representation. constants n and m were taken for convenience. That

is, a component of xo,, Vj or V may be zero.3

Abstractly, the activity's dynamic production corespondence. denoted by L, is taken as a

correspondence (set-valued meapping) V, L, (V,) where informally one interprets the state-

ment that

SI]

IxO, Vi. E L, (V,)

to mean that the i* activity A, may produce V if allocated x0, as system exogenous input (over

" ~N
time) and 1: V•, as intermediate product transfers from other activities (over time).

J-i

To define the correspondences L, more formally, one needs to differentiate between the

concepts of 'alocation and ,app.'ation. Since an activity may be allowed to dispose or store its

inputs, what is allocated to the activity as input x04 i may not be what is actually

"=". applied, or consumed, as input into the production proces As notation, let

- (yo', ... y,*) denote a vector of o' time-rate histories of system exogenous

inputs applied into the production process of A,, i-1,2, .. , N,

W,- (W,',.... W,') denote a vector of m time-rate hisinries of intermediate pro-

duct transfer inputs applied into the production process of A,, 1,2 .... N,

he lenT tnzero" hen rfer to the function x:R.--R4 mch that x(f)-O.kVI 4 R.. R.-if I 0).

................... ....... , -'.••.......: -................. -.... 4* . - - *% *,e...
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T,- (T,', .' ., T,", ,"+,..... T,"÷-) denote a vector of n+m time-rate histories of

disposal for both input and output for A,, i-0,1,2. N,N+1.

Given a particular allocation of input [Xo,, j V, those choices for applications of input
j-1

y,, W, and disposal T, which are feasible are those for which the following inventory balance

constraints are satisfied:4

if the j'h system exogenous input is activity storable,

O c/+ f x4,-Tb- djA c/, Vt ER (2.1)
0

if the k'h proCuct is activity storable,

0 b,+ W,+h)dg< Bk, Vt E R+ (2.2)
I. 0

if the Jh system exogenous input is not activity storable,

-0 - x6,- Tj-•y/j (2.3)

if the k0 product is not activity storable,

0- 3V" 7"'+- Wf (2.4)

where cI, bk R, represent initial stocks, if any, and C/,B,* E R+ U (ca) represent

the constant capacity levels. It is understocd that TJ (7*,) is zero if the JI system

exogenous input (k'h product) is not dispoiable.

The model at the activity level assumes the existence of a production fincrion, denoted by

F,, which takes a vector of inputs applied to the production process (y,, W,) into realized vector

' The meaure •t wiU be defined precise1y in Axiom I net ction. The set on which we afe intesrt.in .
, is ,0 .. ..

- .
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(of dimension m) of outputs of the activity obtained through production, F, (y,, W,).s Since

activities may be allowed to dispose or store products produce' F, (y,, W,) need not be equal to

1ý,. By the expression "F, (y,, W,) is enough to support output level V," we me.an that the fol-

lowing inventory balance constraints are, satisfied:

if the k"r product is at-ivity storable,

0 c,+f f (Fk(Y,W,)-T Vkd, . Bk, Vt CR, (2.5)00

if the k0 product is not activity storable,

O-'F, (y,,W,)- W , +k._ ;,. (2.6)

"Thus, to say that Xo04 V, E L, (,) we mean that there exist an application vecior

(y,,W,) and disposal vector T, such that (2,1)-0..6) are satisfied. We now turn to describing

the input-output transformation at the network level.

2.1.4. The Network Dynamic Production Correpodence

Let u - (uI .... ., u") denote a vector of final outpa time-rate histories. The network

dynamic production correspondence, denoted by LN, is a correspondence u - LN(u) which,

loosely described, is the set of all vectors of system exogenous input rate histories x that when

appropriately allocated to the activities may produce the vector u of final output rate histories.

To be specific, x E LN(u) means that we can find allocations of system exogenous inputs

to the activities, x0 ,'s, ,and allocations of intermediate products to acities obtained from other

activities, the Vj's, such that the following inventory balance constraints are satisfied:

On the input side,

if the Jth system exogenous input is system storable,

Axioms for the Acfivity Production Function aeM lMlated ian See* (Q2.2).

" o q .•, .°•.o, • . . . .- *- e•.o.o•.........-.*.
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0 4 < i, + Ixj- T6 - :x4,}a•, 4 BI Vt ER + (2.7)

if the j"I system exogenous input is not system storable,

0 -xi - T x (2.)&

where bJ E R+ is the initial stock, if any, and BE R+ U{o} represents the constant

capacity. It is .anderstood that T6 -0 if the jR system exogenous input is not sys-

tem disposable.

On the output side,

if the k1* product is system storable,

0 bN+ I f I Vk, + -r,4 -uk)d , I B•+, VtER,4 (2.9)

if the klh product is not system disposable,

o- &..N+,. -T• - uk (2.10)

where bhA+ I E R+ is the initial stock, if any, and BA+I E R+ U {oo} represents the

constant capacity. It is understood that i+ '-0 if the k* product is not system

disposable.

Frnal y, one needs to insure that the -individual activities can produce what is required of them,

so one adds

Two important comments are in ordet with respect to the definition of the correspondence

LN. First, we have tacitly assumed, for each i,
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Y, Y'j(2.12)
i-I

This convenient assumptien is not restrictive because:

(1) Storage and disposal of intermediate products are already allowed at the activity

level,

(2) If the produr ion system is such that it is more appropriate to dispose or store

intermediate products at the system level-for example, products are

warehoused--then the acts of disposal and storage may be simply modeled as a

separate activity. If the acts of storing and disposing were costly, then model-

ing such acts as activities would be appropriate.

N
The second comment concerns the expression T V,, (the vector sum of intcrmediate product

J-1

transfer inputs from all activities into activity ,). It is dear from this expression that our model

does not incorporate transfer or shipment lag. To incorporate this time lag, one could define

j,, () as what Aj send& A, at time t and introduce V;(t) as what A, receivs from A, at time t.

For exa.nple, if there were a constant time lag/s, for shipment then

. Vj,(t - 1j') if t ;
V; 1 0 ifo t 4 41

Finally, we make a useful definition. If x E LN(u), there are'many possible collecf.ons

of flows xo,'s, V4's, y,s Ws, and T,'s of goods and services which satisfy (2.1)?-(2.1l). By

the expression "a feasible flow for input x to support output level up, we mean one such collec-

tion of flows. On occasion we will simply say "a. feasible flow to support output level u" if

reference to a specific x is not'required and w "feasible flow" if reference to, a specific u is not

required.

a............
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2.2. An Axiomatic Presentation of the General Model

In Section 2.1, we provided the framework of the general model. We first introduced pro-

duction networks as a conceptual model. Then we modeled the flows of goods and services so

that they would be truly dynamic. Finally, we described how input is transformed into output.

From the discussion in Section 2.1, it is clear that two types of primitiw elments comprise

the model:

(1) the flows of goods and services, and

(2) the activity production functions.

The purpose of this section is to define precisely these ef-meuts. As mentioned in the intro-

duction, the best way of being precise is through the axiomatic method. In Section 2.2.1. we

develop and justify the axioms taken for the flows of goods and services. In Section 2.2.2, we

develop and justify the axioms taken for the activity production functions.

We remind the reader that it is our attitude that an axiom is not an a priori truth but

ralier a scientific hypothesis conjectured in order to facilitate a theory. The justification of each

axiom rests mainly on the assertion that the property imposed is a property one would expect to

observe in the future or one has observed in the pest.

2.2.1. Axioms for the Flows of Goods and Services

2.2.1.1. Axiom 1: The Underlying Spae of Flows of Goods and Se"dies

It was argued in' Section 2.1 that to represent the truly dynamic character of production, a

flow of a good or service should be modeled as a nonnegative function of time. That is, if z

represents a flow then

z: A + "* R

where RA- (t: t ; 0) models the time axis.
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The mathematical operation of integration was employed to define the inventory balance

constraints (2.1)-(2.11) presented in Section 2.1. To formally integrate a flow, it requires one

to first define a measurable space with re:,pect to which the flow is measurable. If B(R+)

denotes the Lebesgue o'-field of R restricted to R+, then we take (R+,B(R+)) to be, the

measurable space. Second, one must select an appropriate measure IL on B (R+).

The measure IA must account for both continuous and eveat-based flows. Since a con-

tinuous flow measures the quantity per unit time continuously through time, Lebesgue meas-

ure, denoted by X, is a suitable measure which may be used to integrate a continuous flow.

However, Lebesgue measure is not suitable for event-based flows. Events, as we choose to

think of them. do not occur continuously :hrough time. That is, the set on which an event-

based flow is positive has Lebesgue measure equal to zero. A suitable measure which may be

used to integrate an event-based flow is a counting measure, denoted by P, of the following type:

A countably infinite index set T7- (tk)I- C B(R+) is assumed to exist for which if

B E B (R+),

IBn r) if lB rlT< <
,(B) - CO other'Mise

where IA I denotes the cardinality of the set A.

Each point in T indicates a possible time of an event. So, to account for both continuous and

event-based flows the measure j& is taken to be of the form X + ,. We are now ready to state

Axiom 1.

Axiom I

If z represents a flow of a good or service, then z E L+(R+,B(R÷),A+o,) where L.*

denotes the nonnegative orthant of L". If T denotes the index set associated with ,, then T is

assumed to satisfy the following properties:
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(1) <- t < t2 < ... < t, < t < ...

(2) itflf(tk -tk-1) > 0
k I

(3) SUt,,-P tk < -<

We make 3 comments about Axiom 1:

(A) The restrictions on T were imposed to allow us to view I - (tk-., rk) as a period in pro-

duction planning, the points in T as time-grid points, and T as the time grid. The assump-

tion of a time grid T satisfying properties (1)-(3) above is always aisumed in discrete-

time planning and control.

(B) Since a flow is dcfined up to sets of measure zero, it is understood that a continuous flow

is constrained to, be one for which z(t)-0 if t E 7' and an event-based flow is one for

which z(t)-O if tf T.

(C) Axiom I states that a flow is initially constrained to be a function which is (i) nonnega-

tive, (ii) r, easurable, and (iii) essentially bounded. The set of functions satisfying these

three properties is large. It includes functions which are not flows of goods acd services

on. expects to occur in production. Therefore, additional constraints in the following

axioms r.eed to be imposed to define what constitutes an acceptable flow. The constraints

to be imposed will apply tc each fiow OW. By the expressioni 'flow type, we refer to a

particular class of flows. For' example, one of 'the flow types is the class of flows

corresponding to the allocation of the ji" input to the i* activity which we have denoted

in Section 2.1 by the symbol x6j.

2.2.1.2. Axiom 2: Limiting the Shape of the Flows of Goods and Services

'Each flow is (essentially) bounded (in norm) over the infinite horizon and hence in each

period. We further insist that a flow's bound in a period is bounded by a function of' the cumu.

lative amount of the flow in that period.

-. ,.'. . ,. -. ,..,.- -.. . .. .. ,.' . . . ., .. . ..." , . ....-.- -. .-.. . . . . . . .. ... -. ,- .- , ... -.- . . - . •

*.*..* ...- ... . . .. . . . *.~¾'. . . . '~~*-*
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The thrust of Axiom 2 is to limit flows, which are sharply *peaked. That is, Axiom 2 in

effect limits the deviation between the bound of a flow in a period, 11z-l.., and the mean

rzdIs
value of the flow in the period, .-- An example of a flow which is sharply peaked is

graphically depicted in Figure (2-2).

The restriction to be imposed in Axiom 2 is made parametrically. The parameters are not

constants but continuous non-decreasing nonnegative scalar valued functions on R+.

Axiom 2

For the il flow type, there exists families of param=ters {}g'I)k-, {b/•}'.j, so that if z is a

flow of this type then for all k

(1) if f zdg (A then liz-11,I. < g/(A)
I1

(2) if zd. < A then IIz.l,,II,. hN (A)l

In discrete-time planning and control, the assumption almost always taken is that each

flow is a continuous flow which is a step-finction associated with the time grid That is, a flow is

assumed to be constant on each period Ik. Since our time grid Teoes not change, we will refer

to these functions as step-functions. The justification for the structure of the property imposed

in Axiom 2 is that if we properly select the parameters (g}', {(h}l I then Axiom 2 may be used

to limit a flow to the set of step-functions. Moreover, we may seiect parameters in'such a way

so as to restrict the range of a flow.

Proposition (2.1)

Of cour, this reduc to ft s.atment that x( 0) • -- x() (h,(A).

- %.* • o"*, * *, s o , . . . , . . . .. . . .o
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z t)
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kI

FIGURE (2-2)

EXAMPLE OF A SHARPLY PEAKED FLOW
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Let S be a non-empty closed subset of R,. 71,m there exists parameters fjIh)

such that if z is a flow satisfying Axiom 2 (with these parameters) ther z must he s step func-

tion whose range -s contained in S.

Proof of Proposition (2.1)

Since Scý is open in R, write it as a countable, disjoint union of intervals 1,- (a~,,b,),

i.e., SCi uJ..2
For each k,,define &, and hk av follows:

A if A ES

A 2

X (1k aM,Jt

9k (AJk AA 12,.a.Ob~o (2.13)

I .(k)
if X (1k)a < A<\UA)b.,a,<O0, b.<a

%I A a.I iX ka.<A X b

h,, (A)- 'hA .24

Figure (2-3) exhibits a pictorial representation of the graph, o a typcal5k Hi re, the "set

S -(2,4,6). Inspection, of (2.13) and (2.14) shows that each gk and ht are Acceptabl parame-

ters.

Since the nonnegative a 's and %s ' necesIsanky lie in S, it is a sikaple Mpatter ti check that

AfAER+ 1,& 0, Q)A)< A1R+ (.5

2 Royden (19681. P. 39.
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9k (A)

A ~~

7/2-

3-

5/2- 0(A

2-

3/2-

1-

S ( 2,4,61

FIGURE (2-3)

DEMONSTRATION OF PARAMETERIZAT ION FOR STEP-FU!NCTION CASE
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(A E R+I gt(A(Jk)A).Al S (2.16)

Let z be a flow satisfying (1) and (2) of Axiom 2. By (2) and our choice of hk's, we

have that, for each k,

z' Q~t) 4 ht (z (it))- 'hz G )r

which implies that z (t,)- for each k. Hence, z must be a continuous flow.

By (1) and (2.15), we also have that, for each k, z must satisfy the following inequalities:

fzdu 4 11Z'l1,11-1 Qk)
it

zd~t byt(2.15).

Hence, the above inequalities must be equalities which implies that

zd24
(d,, ) foreachk.and (2.17),

' z(t)..XJ-- if tf 1,. (2.18).41'

In view of (2.16) and (2.17), it is immediate that the constant

"By (2.18), the result follows.8
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2.2.1.3. Aoiom 3: Existence of a Lower Bound

Axiom 3 essentially states that if a flow is positive, then it must be some minimal value.

Axiom 3

For the i' flow tye, there exists an e, > 0 such that if z is a flow of this type then

j%{0 < z < ,) -0.

In production planning problems, usually only the assumption of nonnegativity on the
flows is imposed. This assumption is made in order to fanilitate the implementation of algo-

rithms used to solve the formulation of the problem. We believe, however, that flows one

would observe or have observed in production satisfy Axiom 3.

2.2.1.4. Axiom 4: LimItati.. om Set-up dties

Given s flow z, a wt-up time for z, loosely worded, is a time r at which z is either 'start-

ing up again" or 'stopping.* If z E L,' (R+,B(R.,),#L), then we, define the set of set-up times

for z to be

S•&)u" [E RX+ if I is an ope n interval. IC R, then

041i n'(z > 0)) >o 0 and,•1fl(/n -0)) >0. (2.19)

Axiom 4 insists that the time between any two set-up times for a flow is at least some minimal

value.

Axiom 4

For the ,* flow type, there exists a 3, > 0 so that if: is a flow of this type then

............ .....................
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in

' - Before we proceed to present the axioms taken for the activity prod•'tion functions, it

will be useful to introduce some notation. We let L.(u) denote Lr(R+,B(R+),I&). We let

the generic symbol Li denote that subset of .L+' (g) which satisfies Axioms 24 for flow type i.

When referring to a particular flow type, we will use the symbol wnich refers to flows of that

type (for example, 1A

2.2.2. Axioms fw the Acivity Prodution Functions

2.2.2.1. Axiem 5: Clesm of the Domain

Let L,, -L,, X... X .... Lw, LL, x .. x,, L . I D, denotes the domain of

the function F,, then D, C L, x Lw,. If there are additional cnstraints linking the domains of

"the inputs applied in production then D, may be a proper subset of L, x Lw,.3 For example, in

the Leontief-type input-output models of production the inputs applied into production, if non

zero, are assumed to be proportional. Another example is when an activity utilizes one

-. machine to produce several similar types of productsL In this example, the exogenous inputs

applied into production include the rate of machine hours applied to each type of product. The

functions which define such rates are linked in that no two of them are positive at the same

time.

Axiom 5

Ptoducumc uysums exi utasr cajw e mpomd cM Ite anpbagiem of hpbt beioagif to
dve MUvUagM Wec om otN to WcOWrpMe alMfeimo W alumemimo. Su•* -wi have to
be exoamnd an am wdmrivI bmo

p".
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Endow Lk with the relative weak-star topology for each k.4 It is assumed that D, is closed

, in the product topology on Ly, x L.,.

"It is necessary for mathematical reasons that the domain for each production function is

closed. It is not possible to examine each instance of additional constraints linking the domains

of the inputs applied in production and show closure in each case. Hence, Axiom 5 is imposed.

However, it will be shown that if D,- L,, x L,,, then D, is closed in the weak-star product

topology on (L)"÷. (Proposition' (3.4.2), Appendix, Ch. 2). Furthermore, the domains

"associated with the two examples given above are also shown to satisfy Axiom 5 (Proposition

I. (3.4.6), Appendix, Ch. 3). The purpose of examining these examples and showing that Axiom

5 holds in each case is to give a plausible basis for accepting Axiom 5.

I.

2.2.2.2. Axiom 6: Null Activities are Excluded

An obvious property to impose on each production function is to insure that each activity

is capable of producing at least one product.

Axiom 6

For all A,. Fj on D, is non trivial. That is, 3k and a (y,,W,) eD, s.t. tII(y,,w,)11. > 0.

S2.2.2.3. Axiom 7: Existe•e r System Essential Inputs

A subset of systeme xog ous inputs is called z'ssrnaal if when one of these inputs are

applied in production then no otput of any kind is possible. Typically, in most production sys-

tems labor services is an examp e of a set of esential inputs.

'A b•aic ope tshborhood N. Of two in thi t•poo has e foboing form: ,.. ELI sad
"" a p>ubmthMN-fI(LI Ij (IJ,(p )d4<4, Vil. N u&&ydmt ..byN .p;).

I .. . * -
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Axiom 7

There exists a set E, 0 EC (1,2,.... n), IEI<n, such that for each A, if

(y,,W,) E D, withy m 0 forji E E then F, (y,, W,) - 0.

Any v: ..misfyng the above property Will be called an eswentifl set of system ecogenous

inpus

2.2.2.4. Axiom 8: BoundMed s of the Prldution humed.

If the rates of application associated with an essential set of system exosenous inputs

applied into an activity's pr-oduction pocess were bounded, then we maintain that tie output

rates realized throuJ. production would be bounded regardkss of the magnitude of the rates of

application of the intermediate product input. This axiom suggests itself from experience.

Axiom S

Let E bean essential set of system exogenous inputs. For C E R+, let

Y'¢ -Lv E L,, I max IIP 'II. C)I

Then for each A,

su max 11,t*(., W)tOW< ,vC•R

2.2.2.5. Axiom 9: Input-Output Cotinulty

Let (Y, Iw 1), (Y2,W) be two input v ec .,belonsing to edomain D, of F. Let h >0.

Fix the horizon to the finite interval 10,h). If the difference in the cumulative amount of each

input in each period between the two input vectors is sufficiently small, then we maintain that

the difference in the cumulative amount o( each output over the horizon between the realized

.output vectors of pfoducuio must necessarily be mall.

-'v3
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Axiom 9

For each A, and Vh E R, if (y1,WI) E D,, then YE > 0, 38 > 0 so that if (Y2 ,W 2 ) E D,

satisfies

()maxl f Wy -yj)dg < 8, 14,j <n ,
SI •r~to,hl

(ii) max f (Wt-W'2)dIl<8, 1< k <m,
I i ln 1o.hi

then

(F,*(YI, WO-F,"(Y2, W2))d• < e, < k m.

There are examples of production functions which do not satisfy Axiom 9. One example

is the production function associated with a chemical process which produces a successful reac-

tion only when a certain level or critical threshold of input -is reached. To incorporate these

activity' production functions 'into an framework one may either choose to modify the domain

D, so that levels below the critical threshold no longer belong to the domain or modify the pro-

d it.tion function itself. We believe that either modification can be made without seriously

affecting the model of the activity's production process.

2.2.2.6. Axiom IS: Efkien of the Proeduct i'wFmctim'

If the vector of intermediate product inputs applied into an activity's production process is

fixed, then we nuantain that'there exists a bound on the cumulative amount of exogenous

inputs applied in production before the activity operates ineffciently. By the expression 'activity

operates inefflciently* we mean that an activity could produce at least as much cumulative out-

put while using "less" exogenous input.

The bound on the cumulative amount of exogenous inputs applied into production is

assumed to be a function of the vector of intermediate products applied'into production. It is

also assumed that this function Itself is bounded in a manner similar to Axiom 8.

_ _A . '
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Axiom 10

For each A, there exists a g,: Lw x R. - R., such that Vh E R+ if (y0,W) A L, with

max dA>g Wh

then there exists a Y2 < yI such that (Y2, W) E D, and such that

k(Y2 ,W)dA o, , . k m.

Let Wc (W E Lw, max II Wk11. 4 C). Then eachg,'isassumedtosatisfythe following14k 4

property: Vh E R+,

WSUPc (W,h) <

2.2.2.7. Axiom 11: Past Production Not Affected by Fturme Inputs

Let (y , W), (Y2,W) be two input vectors in the domain D, such that for some h > 0.

That is, Y2 is the restriction of y, to the horizon [O,h]. Since no future input can affect the out-

put already generated up'to time h, then we maintain that

F(Y 2,W).lo.,i -10Ay,,W).l), I ( k ';,,

even though mathematically (Y2, W)- (Yl, W).

Axiom 11

For each A, and Vh E R÷ if (yW) ED, then

i .t *-.- - . .. ..k..

_ _ -* ,.*-"..'. -.* -•"-. '** *~ 4". '4" .',',o,>'i..:',>..• .%',-,,'• .-. ,,%"%' -. '.',.' ' '.' ' ' '- '-.;." ,..'. .- ,.. ", .- , , .



2.2.2.8. Axiom 12: Cumulative Production Limited in Finite Horizon

We maintain that in a finite amount of time, an activity canlnot produce an infinite

amount of output regardless of the inputs applied.

Axiom 12

For eachA, and Vh ER+,

We make an important observation about the implication of Axiom 12. If in a finite

amount of time only a finite amount of cumulative output may be realized through production,

then the cumulative amounts or" the allocations and applications of intermediate product input

associated with any feasible flow must bee finite in a finite horizon. By Axiom 2, this implies

that in a finite horizon the flows of the allocations and applications of intermediate product

input associated with any feasible flow are uniformly bounded in norm. Thus, a function

B: R, -- R+ exists such that B(h) is such a bound. The function B(h) is a function of the

horizon 10,h] and the parameters used to define Axioms 2 and 12.

. . •'Oo~~~~~~.. .. oOoz.....)..o o.-O......w.o.o . •. . ).o ...... *.....o .•o• •. . ... '

• . . , . • By " " " ''- " Q e ' e • e ,• ) . q , a g e i , ) . . .
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2.3. Special Cases of the General Model

In this section, we illustrate the model's generality. In Section 2.3.1, we use the descrip-

tion of the generp'" model to define precisely the Dynamic Linear Activity Analysis Model of

Production. In Section 2.3.2, we show how the Traveling Salesman Problem may be embedded

intc: the framework of the general model. In Section 2.3.3, we discuss Material Requirements

Planning. Finally, in Section 2.3.4, we discuz-s single-project production systems.

2.3.1. The Dynamic Linear Activity Azalysis Model (DLAAM)

The Dynamic Linear Activity Analysis Model of Production (DLAAM) is an extension of the

dynamic Leontief input-output models of production.) All of these models assume a particular

form for the domain of the activity production functions and the production functions them-

selves.

The Activity Production Functions

Each domain D, is assumed to have the following form: theme exist constants a,j,

j - 1,2. ..... n, d,*, k - 12,2 .. m such that

D, - W(,w 3z, such that .- a z,, Wi1&,) z,.

In other words, if the applications of inputs are positive, then they must be poportional; thus,

they may be indexed in terms of one profile, z, called the inwriv, cirve. The intensity curve z,

is assumed to be a bounded step-function associated with an equal-length period time grid.

The production function F, is a function of (y,,W,), In view of the-form of the domain

D, we may write the production function as a function of the iamosity curve denoted by F, (z,).

Each F, (z,) is assumed to have the following form: there exists constants ca, k 1,2.. m

such that

1 Farsz developed in Sep•hard, AI-Ayst, Leacuman 119771 ani bur adepud by Lmaiedun (19121. See
alo Leontief 119511. Koopmam 119511. and Mormenstema 119541.

. .,-. -. - - -. ' . .. .... •'- ' .- ..o ,%- .-. . ".'. ....-...... .. ..... ' . •...-..,•. . ..
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Fk(z,) - CkZ,, for each k.

In other words, the outputs generated are assumed proportional (if positive) and indexed by the

same profile as the one used to index the inputs.

Inventory Calculations

In the general model presented in Chapter 2, the inventory of a good or service was con-

strained to be, nonnegative and less then capacity at all points in time. DLAAM relaxes this

restriction in that the calculations of inventory only occur at the time grid points. For a finite

horizon, this relaxation implies that the level sets LN(u) may be described in terms of a finite

set of linear inequalities. (The cumulative amounts of each flow in each period become the

variables.) Thus, formulations of production planning problems which assume DLAAM as a

model of production permit the use of linear programming.

The general inventory balance constraints imposed on tte intermediate product transfers

are:

f tVk(vr -ti)djs l f jfdj&, V., >ti,14 k <m. (2.20)
|tltJ I i "

A lag of one period is incorporated in (2.20) to insure feasibility since the calculations of the

inventory only occur at the time grid. points. Note that DLAAM does not explicitly model each

/ V, but only the sums' Vi Vjj and W -1:'V#. This is because DLAAM does not impose

any side constraints on the Vq's. Without side consstraints. on the V,.'s, these variables become

redundant. In fact, most production models do not explicitly mention the YV's precisely

because they do not impose side constraints on the VjLs. For a further discussion of DLAAM

and its relationship to Leontief-type input-output models of production ste Leachman 119841.

* .. . . .*~ - ,' ,.
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2.3.2. The Traveling Salesman Problem

Let H be a directed network with N nodes, N > 3. The travelinc salesmw problem is to

find a minimum-length Hamiltonian cycle, i.e., a cycle passing through each node exactly once.

As notation, let d(,.i)- length of arc (ij). We assume d(,.) is a positive integer. We let A

denote the set of arcs in H.

In this section, we will construct a production system such that, for an appropriate, choice

of the final output vector u, each feasible flow for u corresponds to a Hamiltonian cycle and

vice-versa. Moreover, what is being produced by this production system is the kngth of the Hamil-

tonian cycle. The development also illustrates the very general ways in which the primitive ele-

ments can be defined.

We first proceed to construct the production network G associated with the production

system. The nodes in G correspond to the arcs in H; that is, if arc (ii) exists in H then node

A(,,,) exists in G. We also add a "sink' node A (N+I,N+I). There is an arc from A(,j) to A(k.,) if

(ij) # (k,l) and j-k. r.in,, for each (ij) #d (N+I,N+I) an arc from A(,j) to 4(N+.,N+I) is

added.

To define the production system associated with G, we need to define the limitations on

the flow types. We list these below.

(1) The time grid T is the set of whole numbers (0,1,2,-.)- .

(2) All flows are event-based.

(3) The range of each flow belongs to (0,1).

(4) Except at the sink node, no inventories of any kind are allowed.

'(5) No disposal of any kind is allowed.

(6) There is only one exogenous input and only one product.

(7) Attention is restricted to the finite hoizon 10,k] where -h dbj.

The additional constraints imposed on the flows-other lie those constraints already

imposed by the general model--are listed below:

~~+tN~t)7k~~dAI- 1(2.21)
fo .~A(I +' Io

/.''..'.'.. ."• .',: " "-' . -" ."-" ."- ...........- ""-... "... '..".. ''-... .. ".... '..'..'..."-..-i'".-."".."--" "'. "" -" .'..".
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V j) a. -dg 1, j d N+I (2.22)
(iI)I)G.( 1)) jN+

y(I)- 0 V(ij),(N+I.N+I) - 0. (2.23)

The production functions are defined as follows:

)0 if Y (k1)- 0, W(k,,)-

" ! tO(k1)} ifY(k,)*O, W(kI)-O

F- d1,,) + .(1(,.o)I ifY(k1) 0 O, W(k,)•0 (2.24)

Il-.(Wek,))+d(,j)) if Y )-0, W(k,) 0

where -( W(k.1))- min(n I W(kj)(n)- 1). A routine check shows'that all flow types satisfy the

axiomatic system presented in Section 3.2.

Before we state and prove Proposition (2.2), it will be useful for the reader to interpret

the statement

V(iJ)(j,)(t) - 1, (ij) E A , (j,k) E A

to mean that "at time t we have visited node j from node i and will now visit node k from

node j."

Proposition (2.2)

Let u - lah}. Each feasible flow to support output u for the production system

corresponds to a Hamiltonian cycle in H. Conversely, to each Hamiltonian cycle in H we may

associate a feasible flow to support output level u.

Proof of Proposition (2.2)

We first show that a feasible flow coffreponds to a Hamiltonian cycle. Assume a feasible

flow to support u exists and select one. By (2.21) there exists exactly one (k,I) E A such that

Y(kj)(O) I . (2.25)

* .:..... . . .. .. .

. . . . . . . ." • • • • • • | I
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Since node I must satisfy (2.22), it follows that there exists an m, 1 < m < N, aud a time I'

such that

1 . (2.26)

Since no inventories are allowed, this in turn implies that

W(Im(t) 1.(2.27)

Constraint (2.22) implies that

W(jds < 1, VGij) E A. (2.28)

Hence," by (2.26) and (2.27) it is essily seen that -r(W(,,.)) - iK By definition of F(J..) (see

(2.24)) we have that

[FI)((M)WIm)(1dIm) 1 (2.29)

Since no inventories are allowed, (2.29) implies that

S VU~m)(m~n)(t'+d(Im.)) + V(I.),(N+I.N.+l)(I* + d(,..) -1. (2.30)
In I (w,n)(A I

By (2.23), we have that for exactly one n, 1 n N,

which in turn implies that

Wdm,, +d'UIm))-1 (2.32)

It is clea by the above develooment that the forward-thiough-fime arpmr-1. ,j.ntinues and

traces out a path in 6. We symbolize this path by

*.... .... .... .... ........ )
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As a& easy consequence of constraint (2.22), the path as Zenerated by our forward-through-

Sti r-& a'-gument m ust be fifite. (Loosely worded, Constraint 2.22 insures that a node in H can

n',: be i'isited more than once for any feasible flow.) Hence, ,he path must be of the form

(k,I)-, (!,m) (m,n) ..... (w,x) (xv)- (yz).

The forward-through-time argument clearly indicates that F(.') # 0. Since no inventory is

allowad excepf at the sink node and (y.,z) is the last node in the path it is easy to see that

*y0',z)- (N+I,N+I). By (2.23), it follows that (x-')- (k,1). Hence, it is easy to verify that

W (kJ) (t + d(,) + d(.,.)+ "'" + d(b.k)) 1 (2.33)

F(+1.N+D('+d(#,.)+d(m,.)+"' +d(w.k))- 1. (2.34)

We see that the forward-through-time argument construcs from the feasible flow a cycle

in H which we symbolize by

k--rmn n- w-k.

We must now argue that this cycle is in fact a Hamiltonian cycle. Intuitively, Constraint 2.22

insures that a node in H has to be visited at least once for any feasible flow.

To argue more formally, let i denote a node in H not in the cycle constructed above.

Since I must satisfy Constraint (2.22), it follows that for some h, j and t"

( - 1. (2.35)

Instead of using a forwards-through-time argument starting at t, we now use a backwards-

through-time arv, 'venm Constraint (2.35) implies that

[F(A.,V((a,), W(.,))] (t" -d(jj)) -1. (2.36)

By (2.21) -O, hence by (2.36) W(h.)( U-d(,,)) - 1 This means that for some g
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V~s,),- 1. (2.37)

It. is easy to see how to propagate the backwards-through-time argument.

The path in H generated from the backwards-through-time argument, by (2.22), must

termrinate. Furthermore, no node in this path can be a node in the cycle we generated from the

forward-through-time argument (again, by (2.22)). If (a,b) denotes the first arc in the path

generated by the backwards-through-time argument, it is easy to check (and intuitively clear)

that

- ( - 1. (2.38)

And, of course, if (a,b) ;d (k,l) then (2.21) is violated; if (a,b)- (k,l) then (2.22) is violated

for node 1. Hence, our c)cle is Hamiltonian.

Finally, we wish to argue that t is in fact equal to d(&j). if so. then w wifl hav shown

that the intermediate podi transfer into the sink node is the inditowr of the enth of the Hamil-

tonian cycle.

By (2.26), we must have that

[Fc.)(Ych), Wok,i))](t')- I. (2.39)

Since W(k,t)-t"+d(,..)+d(.,x)+ • d(w..) (2.33),, by definition of F(,j) (see 2.24) it is clear

that either tId(h,) or t--r+d(h,).+(,.,,)+ +d(..,). Since d(,j) > O, V(iJ) E A we

have that t d(kj).

The conclusion is that a feasible flow corresponds to a Hamiltonian cycle. It is immediate

that a Hamiltonian cycle corresponds to a feasible flow. One amply chooses one arc in the

"cycle as a starting point, xay (kl), and sets y(t 1)(O) - 1. If (1,m) is the next arc in the cycle,

then one sets

[F(*..)(y( ,j). W(,.h)ll(d(&.1))- 1

'4

%•" Yltl!.O,.)( ls.,)) - 3
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and continues in the obvious way. That the inventory balance constraints (21-042.11) are met

is immediate. The proof of Proposition (2.2) is now complete.

Let LN refer to- the network dynamic production correspondence for the production sys-

tem described in Proposition (2.2). Then as an immnediate~corollry. we have the following fact.

Corollar" (2.3)

For all r E JR.~, if u 11l1 then MOOu 0 if and only if there exists a Hamiltonian cycle.

in H of length less than or equal to r.

As a consequence of our above developments, the following problem is equivalent to the

Traveling Salesman Problem:

P: minffudstL 3x with x ELN(u))

Hence, this last problem is NP-complete. Since finding the loneSm Hamiltonian cycle is also

NP-complete, then the general problem of maximizing xalar output for a production system is

NP-complete.

2.3.3. Maserial Raquluemgets Phasinlg

Material Requirments PlannRn (MRP) is a- production planining too[ for the discrete parts

manufacturing environment. 2 To use MR?, the production planner assumes that:.

(1) All flows, except the intermediate product transfer flows,' are step functions

associated with an equal length period time grid. The intermedate product

transfer flows are'assumed to be event-based flows. ýThe numbet of periods p

2For a ampmhrohw e I trsmntan m Orlicky 1197,19731 or Ploul. Wibs 11971).

. . . . . . . . . . . . . .
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is assumed finite.

(2) BilI-of-Marils Coefficients am, 1- 1,2.... m, k- 1,2.... m exist such

that to produce I unit of product k requires ak units of product.

(3) Constants Lk, k - 1,2... m exist such that it takes no more than Lk periods

to produce an arbitrary quantity of product k reardfess of the magnitude of

that quantity.

(4) If a production planner uses MRP, then the planner is tacitly assuming, by (2)

and (3), that the production network associated with the discrete purts

manufacturing environment is one for which activity Ak represents the produc-

tion of product k.

Coastrlnts em to e Intermediste Product Transfen

If activity At is to producef V**do units of product k in period 4,, then it is required

that all intermecdate products necessary to produce VkdL units of product k for A, must be

availableLA, periods earlier. That is, for ICr I 4C j 4mi.141 1Cm,

S,,,-1 V.I , *.
*t IV* do& 4 (2 .40)

(2.40) could be suitably modified to incorporate transfer lap if necessary.

Explem of Requlmemts

Let, u denote a fNs! output vector. If one insists on equality in Constraint (2.40), then it

is easy to check that Assumption 4 implies that all V# 'a We determined. This determination is

usually referred to as the mnvwrtalrequiremem's e '*s. or the dosion of requreenwus.

The Fundamemul Prblem With MRP

° .* . . b *

, * .*. .o. . .,. o .** . .
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The use of MRP only determines a schedule for the V,,'s. It says nothing about how the

individual activities which comprise the production system will be able to produce the require-

ments. Stated differently, by Assumption 3, MRP ignores the activity production functions

since it assumes that each activity may be able to produce any quantity required. By choosing

to ignore the activity production functions, the production lags, the L1 's, are introduced and

inflated to insure feasibility of the schedule of the Va's. It is well-known that this is the funda-

mental problem with MRP.3i

2-3.4. Siagle-Proj•ct Prductim System

A singl-project production system is one for which activities are assumed to perform a one-

time job, uninterrupted from start to finish, and for a known fixed duration. Aproject is said to

"be completed when all of the activities are finished. Following Leachman 119831, it is assumed

that each exogenous resource is non-storable, that the total amount of each exogenous resource

used to complete an activity is known, and that the resources are applied at constant rates.

"Associated with a single-project production system is an acrwm,-on-node pretedece network4r'

denoted by H. H isan acyclic, directed grap on N nodes. Node A, in H corresponds to

activity i, i- 1,2 ..... N. The arcs indicate swr pr•eenceke~tknfsh between the activities.

That is, if there is an arc from A, then activity j cannot start until activity i has finished. Let

* W denote the set of whole numbers. Let d, denote the duration of activity i, f £ W for each
I i

II

NDefitim (2.41)

A feasbk, cex t of srt-tims for the activities is a.Vetor S-(S1. .SN)E WA such

that if arc (Gj) exists in H then S, +d, 0 $S. We te that by taking S E W., we me asuming

that a start-time for an activity always begins at the beginning of a period.

)For a detaed dumpuss of tIm Wo•brM wpthl MRP. nm gKra 119631.

i. ' • . . . .• 'p . ".. ", . , V
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In this section, a production system is constructed such that, for an appropriate choice for

th. final output vector u, there isa 1-I correspondence between the set of feasible flows to

support output level u and the set of feasible schedules of start-times. Furthermore, certain

feasible flows may be identified with the well-known early-start and late-sun schedules deter-

mined by the ordinary critical path method.4

we Wfir proceed to construct the production network G associated with the production

system. To the activity on-node network H add sink node ANv+ and add arcs (G,N+I) from

each node A, to node AN÷,. This network will be taken to be the production network G.

To define the production system associated with G, we need to specify the limitations on

the primitive elements. We list thes below:

(V) The time gnidT is the set (0.:,2, .

(2) All flows are step-functions except the final output vector which is event-

based.

(3) No disposal of any kind, is alowed.

N

(4) Attention is. restricted to the finite horizon [0,hI where h 1= d,.

The addiona constraintsimposed on the flows-other than those constraints already

imposed by the general model-a-e listed below.

On the Ap ikolas of System Ezx Ipeuts

As notation, let b4, k- 1,2, .... it denote the total mount of resource k that A,

requires. As notation, let, for 1- 1,2...., N,

Z,-[zL.F.Li')I,3S,R,R.suchthatmt ,-, ls..:..}(.
I (2.42)

and define for i-N+1

Sot Mod" Md PItdps 119701. for eUmPe

- . . . . . . . . . . . . . . -
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"4
ZNi s~ EL• • I3SN.+t E R, such that zA,- cs,+t (2.43)

Then it is required that there exist a z, E Z, such that

S.bk,,z,, 14•k •n . (2.44)

Note that the description of the application vector fits the form as required by DLAAM

presented in Section 2.3.1. The variable z, is referred to as an operating inwnsiry. The interpre-

tation of z, is that f z, d4 expresses the fraction of the total amount of each resource required
0

to complete A, up to time r or expresses the fraction of the job completed up to time T.

On the Activity Productiom Functioms

To define F, (y, W,), one needs to know what kinds of "product. A, is 'producing.* It is

assumed that each activity produces a d&sinct product for each of the activity's immediate suc-

cessors. Following DLAAM, the output rate is modeled as the rate of the utilization of the sys-

tem exogenous inputs., That is,

(y, x, if arc (,.) is in G and y,*- bz, for each k (.5
W) 0 otherwi (2.45)

In effect, (2.45) says that. up to time r, x%!of an activity has been completed if, up to time r,

x% of the resources required to complete the activity have been utilized.

On the Intermeilat. Preduct Trnustfs

Each activity A,, i o N+-, obtains a distinct intermediate product input from each of its

immediate sucedsors.

Ddnltle. (.46)

........... •.+ ... 0.•
+b *"". +""" + ". + . "°" . * o•+• .. .+• . . • . . . . . . . . . . . . . . .
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An intermediate producr transferfiinctional is a map f,,: Z, - Z, defined by

(S +,f~dd if iPtN+1

I (dJ.'))f I+.) if i-N+1 (2.47)

It is then required that if

y,-bkj , 1 k a (2.48)

y k.bk,z,, I(k n (2.49)

then for j- ,2...n,i-1,2 ... N+1,

VP -fC ) (2.50)

W/- ,. (2.51)

This completes the description of a single-project production system. A routine check

verifies that the axioms are satisfied. -As notation, let F denote the subset of indices

11,2 ... .i m associated with the intermediate product transfers into the sink node. The fol-

lowing proposition and its corollaries show why we have chosen to define the primitive ele-

ments in the manner given above.

Proposltion (2.4)

If the final output vector u is definedby u '-0 if i s F and u'-l II, if i E F, then there is

a 1-1 correspondence between the set of fbwrible flows to support u and the set of feasible

schedules of stal-times.

Pr4ofd Preopsltlon (2.4)

Assume feasible flows to support output u exist ad select one. Each y,, by constraint

(2.44), has an operating intensity msciated' with -it. By definition (2.42). each z, has an

".. -. ",•...- ••.......-..'o-. -..-... ~, .. ,-.•."..'...... o,%°%...... .. "..' ,....-.. '...'.." -..

• .% .... . , • ..... % •.%.%,•...... %..... .. o.% ,.... .... %* . . ... .• . ..... ........ ..,.-.....•?
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S, E R, associated with it. We claim that the vector S- (S, ..... SN) so generated is a feasible

schedule of start-times.

Suppose Ai is an immediate predecessor to A,. By the definition of a feasible flow the fol-

lowing inventory balance constraint must hold:

fI V, - Wdt ;0 0, Vi Vv E [0,hi. (2.52)
0

By the constraints imposed on V,, and WJ (see (2.50), (2.51)) it follows that upon substitution

1C S+tt) d#L 0 0, ViE [10,h). (2.53)

Clearly this implies that

IS, 0 IS + dj. (2.54)

Hence, S is a feasible schedule.

Conversely, if S is a feasible schedule of start-times then define the induced operating

intensiryfor A,, denoted by z,, to be

:i" 1(s,.s,+d,)~ .(2.55)

A routine check verifies that the primitive elements defined from the operating intensities given

in (2.55) satisfy the inventory balance constraints of the general model (2.1-2.11). Thus, a

feasible schedule S ipdcaes a feasible flow in a natural way.

The association between feasible flows and feasible schedules given above is easily seen to

be 1-1. The proof is*now complete.8

. -' ... -.-.-.. . .•7 . . . . ," • i,. , _ - .
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An Early-start schedule, denoted by E, is a feasible schedule such that if S is ary other

feasible schedule then S, E E, for i- 1,2, ... N.

Definition (2.57)

A Late-start schedule, denoted by L, is a feasible schedule such that if S is any other

feasible schedule then S, . L, for i- 1,2 .... N.

The following two corollaries are immediate:

Corollary (2.5)

A feasible flow minimizes the sum, over all activities, of the cumulative, intermediate

product inventories at the sink node if and only if the schedule of start-times associated with

feasible flow is the late-star schedule.

Corollary (2.6)

A feasible flow maximizes the sum, over all activities, of the cumulative intermediate pro-

duct inventories at the sink node if and only if the scbedule of stan-times associated with the

feasible flow is the early-start schedule. For ease of prentation, we excluded it.



2.4. Comments on the General Model

Comments about the general model and extensions to the model are made below.

On a Stochastic Framework

By our assumption and definition of the activity production functions, our framework is

clearly deterministic. We are assuming that if we knew the applications of input that we would

know the realized output obtained from production. Environments such as agriculture where

weather plays an important role in determining yield do not fit this assumption.

One can make, the production functions random finctionals to account for such environ-

ments. If we let 11 denote some probability space1 then we can define F, as a raip from

L, 1 x Lw, x (- R+

where one interprets F,(y,,W,,w) to be the actual output if (y,,W,) was the vector of inputs

applied and w was the state of nature observed. We' are tacitly assuming here that fl is

independent of L., x L w,, i.e., (I does not vary with the choice of (y,, W). Axioms on F1 would

have to be suitably modified to account Tor the stochastic formulation of F, 2 To model produc-

tion systems where it is more appropriate to view fl as dependent on the choice of (y,, W,) is

considerably more difficult but worth investigating.

Lap

As we have already mentioned, no explicit mention of time lags was given in the general

model. Such lags could be easily incorporated but would require the introduction of new vari-

ables in a manner similar to that treated in Section 2.1.4. There, variables, V; were introduced.

Sl- (Y.3.P) whee Y is a so. 5 is a w--mpbtm osfjbmtU of Y and? P is a msuw sech that P is
u-finte with P(Y) - 1.

2 Mak 11911 deveops a tohaic t•ow"r of Dynamic Prouction Coa odndMM

o • o.........0...oo... °o•. •.•....-
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Dependence Between Activity Primitive Elements

As illustrated in our description of the Traveling Salesman Problem, specific production

systems might have additional constraints linking primitive elements bIJonging to different

activities. By changing our definition of the domains, we could allow for this flexibility. For

ease of presentation, we excluded it.

-.•........-.,..•"-'...'...-.-.'.. ;..'....-".. .-.. .. ....- . .- ... .... •. .- -. .m

' • '• i . ... . . .



3. TOPICS IN PRODUCTION THEORY j
This chapter addresses some of the issues found in Production Theory. In Section 3.1 we

analyse the technically efficient subset. In Section 3.2 we carefully analyse Shephard's duality in

both the steady-state and dynamic cases. Sect.on 3.3 addresses 2 versions of the Law of Dimin-

ishing Returns as first formulated by Shephard. Finally, in the Appendix, Section 3.4, some of

the technical propositions are proved.

3.1. On The Technically Efficient Subset

3.1.1. On the Nonemptiness of the Technically Efficient Subset

The technically efficient subset, denoted by EN(u), is defined to be

EN(u)- Ex LN(u) ify 4 x then y * LN(u)I. (3.1)

The technically efficient points are those for which it is not possible to lower the input rates and

still achieve the same output rates. Thus it is important to know that our general framework is

consistent with a desirable property that the efficient subset is nonempty whenever the level set

itself is nonempty. This result is also the flrs& stepping stone towards proving Shephard's Dual-

ity Theorem in the finite horizon dynamic case which is presented in the next section.

We remark that we prove this theorem under the assumption of a finite horizon. 2 That is,

for some h > 0 the underlying space of flows of goods and services as presented in Axiom 1,

C'iapt':r 3 will be changed toL. " ([0,h1,BX.+ P) where B is the restriction of the Lebesgue

u-field to [O,hJ, X is Lebesgue measure restricted to ([0,h],B) and ' the counting measure

on t1k I tk h). As not!tion, let L4' (1) denote Z+' ([0,h],B,,+,,).

Ir 4 x, then Vi, l~i~n~ju(x'>y1)_1..

2We do not have a proof in the infinite horizon cae. AdditL.nl hypotheses on the pimitive elements we
believe would have to be taken.

V
•""" " " " "'"'" " " "' " ;" " '" "" : "' "'""'""" "-"," ' .-' " -"'-" --C-.

.,-? -.. " . .. ,: .. ,..'.-.-..• '-. :..' '- -' - . .... ....



46

Theorem 3.1.1

Fer the finite horizon case, if LN(u) ;0 then EN(u) 0.

Proof of Theorem (3.1.1)

Pick an arbitrary z in the nonempty LN (u). Consider the following optimization prob-

lem.

P (z): inffl (xi dM

Subject to:

(1) xELN(u)

(2) x z

It is clear that if we can show that there exists an x E LN(u), x 4 z achieving the inhimum in

P(z) then x E EN(u) and EN(u) is nonempt7. What we have to show is that this problem has

a solution.

To show this, endow each Lj (the subset of/L+' (it) satisfyingl Axiomhs 2-4 for the il flow

type) with the relative weak-star topology (viewing it as t subset of L'(q)) and

L4 x •.. x Lx with the product topology. Letting L, stand for Ltx • •.. x L. then the

objective function 4 viewed as a map from Lx -- R+ is conti;uous.3 As an application of the

theorems of Banach-Alaoglu and Tychonoff, the set of x in Lx satisfying (2) is cuntainel in a

compact subset of (L("))!'. In the Appendix we verify that each L,, is dosed in L's) (Pro-

position 3.4.2); hence, the set of x in L. satisfying (2) is compact in L,. Since a continuous

real-valued function on compact set achieves its infinum then in 6t' zomplete the proof

that EN(u) is nonempty it suffices to show that LN(u) is a weak-star dlosed subset of

3 The operation of addition is continuous. The integrable fur'".,on here is p I -
SThe theorem of Banach-Aloglu states that the dosed ur•t ball in the dual space of s abtraMy topologi.

cal vector space is weak-star compact (Rudin 119731, p. 66). Since L" is the dual to L' we have that
Ix I iU., 4 11 is weak-star cmpact. The theorem of Tychonoff is that an "a"t fay fto of compact spaces
is compact in the product topology (Dug'ndgi 119661. p, 224).

See Dugundpi. p. 227.

%/

- --- I,
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To show that LN(u) is closed let Ix.) be a net in LN(u) converging to x. 6 To say that

x. E LN (u) for all a means that for all a there exists a feasible flow for xo to support output

level u. In order to show that x is in LN(u) (which is our goal) we need to exhibit a feasible

flow for x to support output level u. To arrire at this end we will extract "limit" functions for

each flow type from the fensible flows for each.x,.

By the very definition 4tf a feasible flow the net Jx.) induces a net of functions for each

flow type. What we will in effect show is that there exists a subnet of the original net Ix.) such

that the associated sub-nets of functions for each flow type have the property that they are uni-

formly bounded in the L (,s) norm. Hence, by compactness, we may extract these sub-nets to

obtain limit functions.7 By duality between L (L) and L"(t), the invent'-ry balance constraints

K will hold for these functions.8 The proof would then be complete.

The inventory balance constraints which must be satisfied by the various pairs of flow

types which when taken together make a flow feasible have the following structural form:

0 S + fIx- T-yld, < C, Vr E [O,h]. (3.2)
0

Here S represents the initial stock, if any, C the capacity (perhaps infinite), x the flow of input

into the "syitem7, T the flow of disposal out of the system, and y the flow of input out of the

"system. (See Section 3.2.3.)

To arrive it our main result we first prove a simple, proposition which paves the way for a

"verWai" proof of the rest of the theorem.

6 We use ne*, instead of sequences since .'( as topologized does not have a countable neighborhood
base. For definition of a net me HIalmos 119741, p. 65. For those unfamiliar with nets think of sequences in-
stead.

7 We know that the dosed unit bai is vompact. Operations of soatin ae homeomorphisis in any topo-.
loia vector space.

S We are usng the fact that L'(,) is the pie-dual of L'(¶) hence with p- llgo.j the convergence is main-
waned.
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Proposition (3.1.2)

Let (xa), (y.), and {TJ,, be nets in the (appropriate) spaces L,, Ly, and LT which for each

a satisfy (3-2). Further assume that {x.) -. x. Then subnets of the original nets exist which

are uniformty bounded in the L'¶.) norm.

Proof of Proposition (3.1.2)

Lete > 0. For some we have that eventually Va >, f x.dl < fxdOL +a by conver-

"gence. Thus, eventually, f y.djA < f xdjs +e and f T.dt% f x +e. By Axiom 2 it now fol-

lows easily that eventually the norms of y. and T. (Gnd of course x.) must be Unormbl

bounded.@

Now on to the conclusion of the proof Of the theorem. First treat the storage case. Since

4xJ. - xJ for each j it follows easily by Proposition (3.1.2) that we may find an appropriate sub-

net so that the x&, and y sub-nets are uniformly bounded. By Axiom 8, each of the induced
"-p

"",v', WO) sub-nets are uniformly bounded too. Since there is an inventory balance constraint

J-N+I
of type (3.2) linking the F,(y,", W,-) 's with the 1 V* 's it follows by Proposition (3.1.2)

-- 1

that a further refinement of the original net gives us a uniform bound on the Vj nets.9 The

same argument may be used to deduce the same result for the W, and T, sub-nets. Now since

* all nets of functions of each flow type are contained in compact subsets we may extract con wr-

Sent sub-nets.

If y, and W, denote, for each i, the limit vectors of the sub-nets (.V*, { ,e), then by Pro-

position (3.4.6) in the Appendix to this Chapter we see that

'-F•,* (),;, We ,*i (yk•, b,,W,) (3.3)

SActually the same result could be obtained if we invoked Axiom '12 This would immediately imply that
- 'the net IF5,,. W,0)1. (V7'I. and (W,"1 are uniformly bounded (sime we ae restricted to a finite horizon).

See the comments ,t the end of Axiom 12.

.7



* 49

In view of (3.3) it now follows easily that the limit functions together satisfy all of the inven-

tory balance constraints needed to define a feasible flow for x to support output level u.

Hence, x E LN(u) which implies that LN(u) is closed as desired in the storage case.

- If inventories (in some cases ) were not allowed, then the argument is the same except

that it is much easier to obtain uniform bounds for the sub-nets. One needs to insure however

that if (x.), (y.) are nets such that x. 4 y. with x. -- x, y. -- y 'for all a then x is indeed less

than or equal to y. This simple verification may be found in the Appendix, Proposition (3.4.1).

Our proof to Theorem 3.1.1 is now complete.a

An immediate corollary, which will be needed later, is given below.

" Corollary to Theorem (3.1.1)

- LN(u) C EN(u) + (L/" (,))" (3.4)

2 We remark that we used (L+" (.))* instead of L, since the difference of two functions in L4

need not be in L,.

* -3.1.2. Extensio a to Theorem (3.1.1)

If x' were solution to problem P6), then x" would be a vector of system exogenous

inputs which mi imizes the total amount of resource over. all x in LN(u) n (x I x 4 z). It is

"certainly possibl that x" might not 'minimize the total amount of resource over all x in LN(u).

If 4: L, R, otes the objective function,' then it would be desirable to show that the prob-

"lem deflned by

P: a W(x)

b*t to: x E LN(u)

- has a solution.

I: -. %



50

Actualiy, this is an easy consequence of Axiom 2 as we now show. Suppose one could

find an x which was a solution to P. Let Wg•), {jh) denote the set of gk's and hk's (as defined

in Axiom 2) associated with the flow type Wx). Since x is assumed to be a solution to P and in

view of Axiom .2 it is easily seen that

l l ,, I T)

Hence, lIxll.-maxllx~il. 4f(O()). If we were to define the foMowing problem

P': i'f• (x)

subject to:

"(1) x E LN(u)

(2) lxii. 4 f (OWL

then by the above it may be seen that any solution to P" is a solution to P. But P" has at least

one solution; hence, so does P.10

We may say more about problem P if we note that the objective function in P has the

following structural form:

-(35)

where the ps's were all taken to be the function ll.,. For any p,,,(p.. .. ,p')E (L(M))n

the functional expresion given in (3.5) viewed as a map from L, -- R is continuous (by dual-

ity). Hence, a solution to P for general p U (L0(•))" ais., If p E (L (g))4 was strictly posi-

tive, i.e., pI > 0 for each t, then any point achieving the infimum would dearly be efficient.

'0 Une the proof or Tbhaom (4.1.1). We only und the fad tha ohme x ig tbm we culd rostrni
LN(O) toa mpi a subset. We p1t the am remul by dienly is iin the as LN(m) oa closed bell.

. .... " "'.-
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Let (L.(•)).", denote the subset of (LW(ýt0.) of strictly positive vectors and let

-L, L x ... x L,,. Let us defl.te a correspondence from

"(p,u) E (LU(IA)),. x L, - •(p,u) E L, where one defines 0,(p,u) as the set of all minimizers

to Problem P with the objective function as in (3-5). The pJ's may be thought of as weighting

factors for the resources, which take into consideration their relative value to the production

planner and the fact that future costs may need to be discounted.11 By our above comments we

know that each point in U *(p,u) is efficient for LN(u) -and has the propeny that it

can be obtained through minimization of an appropriate optimization problem. Alternatively,

and on more geometric grounds, one can say that each point in U *(p,u) has the pro-
*: i E(LI'(,,)):,

perty that there exists a hyperp~ne which supports LN(u) at this point.12 An immediate

theoretical question is whether all efficient points can be obtained in this way, i.e., is

I- U ,u) EN(u).?
UpE(t,))-1

If this were true, !hen we would have a convenient characterization of the efficient subset.

A simpler theoretical question to address is whether or not

;-U. *(p,u) D EN(u),
Q{e (L,0))"1

i.e., does each efficient point have a hyperplane which supports LN(u) at the point (with p not

necessarily strictly positive)? In the next section, we construct an example which shows that in

the' infinite horizon case the answer to.this question is no- even if we assume that 'the level set

is convex and comnpac. The counter-example, being constructed for the infinite horizon case,

shows that even if additional hypotheses were imposed' on the primitive elements so that

Stt In fact future costs 'were ow discounted in the pevious example. Further, all of the resources were
given equal -wooeig.

13 If X is a Topologial Vector Space, then a hyperplane asociated with X is a subset of X penerated by
the followins equation: x I (x)-cl where af X " (the set of continuous linear functionals on X) sad
eER.

__ ._ - -. ". .,.-...."..".-.-;., ..................... ... ,.. -... .'..,"............. ... •.... ..- :.........-... .:..'.
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Theorem (3.1.1) could to; extended to the infinite horizon case efficient points need not be
obtainable through an optimization problem of type (3.5). We remark that the level sets would

be convex if the production functions were assumed to be concave. In the Dynamic Linear

Activity Analysis Model of Production (DLAAM) discussed in Section (2.3.1), the production

functions were concave.

3.1.3. Conter-Example: Eflcient Points Need Not Be Sgppsrtblet13

The mathematical statement to the question raised in the previous aection may be phrased

as follows. Let S C (U. (j))" be a (weak-star) compact, convex, monotonic subset. By mono-

tonicity we mean that if x E S and y ;i x then y E S. Let x be an efficient point of S, denoted

"by x E E(S). Does there exist a p E (L'(,))" such that

'Efpi-xJd;& f. ~p¼-Jdu, V.,E S?
i - i i,..

/s mentioned in the previous section, the counter-example is constructed in the infinite hor-

izon case (that is, we now work with the measurable space (R+,B) instead of ([0,hJ,B). To

construct the counter-example we will first work in the space I" and then "translate" into

L. (j). (It suffces to construct an'example in the case wbe n l).

Define c. in I" by

I 'ifJ-'
(3.6)

0 otherwise

Let S-co(a.tj' denote the convex hull of the C.°S.14 Since the closure of a convex set in a.

topological vector space is also convex then S is closed and convex.I 5 We will show below that

, I wish to gatefully adnowledge the suistanm of Steen Boy Doaoetnmt of Etwrimi Engineering
O a Computer science. University of California at Berkeley. in the cormu io. of the ounter4xample.

I. fr * S, then thereiists a A E 1 il • with te number of positiv indim fiite sc th1a
t" A.,, i.e., for eachj, Zj-"A'*i.

1IRudin 119731. p II

. " . " . * - . .,- ' " . - .
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Sis bounded in norm by 1; it would then follow that is compact. We will show that 0E E(S)

but 0 is not rupportable in the sense described in the previowa section.16

Proposition (3.1.3)

0 E E (S).

Proof of Proposition (3.1.3)

Suppose this were not true. Then this would mean that we could find, a z E§ such that

z, ( 0 for all k and 'for some i, z, < 0. We can find a net (x.1 in S such that, x. - z. By the

definition of convex hull we have that, for some A. E l.* with I' norm equal to I whose

number of positive indices are finite, x.-E k.4' for each a. By the definition of e, and the
h

fact that x,- z it follows that (k - -X ') - 0 eventually. (This immediately implies

that Iz' 14 1; thus Ilz)l. 4 1 which shows now that S is bounded in norm by 1.)

The nets {.k}) and (k.'+' are each contained in the unit intenrv- which is compact. Hence,

each net has a convergent sub-net. Without dhagn notation for the sub-net let c' and c'+'

denote the iimiting values. Clearly, (ci-c'+l)-z . Since z'<0 this implies that

ci+ 10 Iz'I > O. Find integer N so that Nz' I >1.

Now by sequentily repeating this process for the nets (Xi÷', r -1,2, .... N and not

changing notation for sub-nets we have that there exist constants c'", r- 1,2 ... ,N satisfy-

ing

)"M+r C#+O'r ,... N (3.7)

c*'-'÷÷!" '÷,r-1,2,.... N (3.8)

Since z 4 0 the constants c'÷", r-1,2 ... N are non-decreasing. Since c'÷' ) Iz:I this in

iB Dy Krein.Millman's Theorem (wee Rudin. 119731, p. 70). a coed, convex omact subset oft a topolog-
ical vector spe has to be the dosue of the convex huU of its extrem points. Here, the @m,'s ae the ex-
truea poiut of.q.

- -
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turn implies that

Ic'' ) Nc'÷' ;0 N'1 > I (3.9)
Il, I

v- 'on r-
Since. •,A'-- c'+ (by (3.7)) eventually (in view of (3.9)) Z" A,0+'> 1. But then this

r-i

means that eventually x, . S, an obvious contradiction. The result follows.@

PnPositlon (.1.4)

0 is not supportable, i.e., there does not exist a p E 1, di 0 such that O-p.O p x, V

XzS.

Pros of Propdti M.I.4)

Suppose such a p exists. Then p-. 1 0 which implies that pI ; 0. Since p.,e o 0 for each

n this in turn implies that p'1t )p' for each n. Thus the sequence of p4's is nondecreasing

and nonnegative. Therefore, either p -0 or p P I. In either case we would have a contradiction.

The result follows.s

We now turn to constructing our counter-example in L." (u). Let

1+.,§- y E 1"-1 3x C - such fttyt ,-x, ÷ , Vi}. %1.0)

Since translations in topological vector spaces are homeomorphisms which preserve convexity

and efficiency then 1 is an eftient point of 1 + 5 and is not supportablein the sense of Propo-

sition (3.1.4). Now we may identify I + 9 with a compact subset of L' (j&) in the obvious way

by associating each x E I+5 with x W) E L" (a) defined by

X

(Here, the set of time points defining the possible times of event-based transfers is the sei of

nonnegative integers.)'Let S" denote the identification of' 1+.i in L",-4). Then S has the

-. "." . " . . .,' • " . " . .. . " -.. ' . . . . ' . ' o .. ' , . ,. " - "•.•. . . . . -'. ," . . . . . . .. o '.• , . ° . •* . ' ., .% , - . '
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desired properties we were seeking in our construction of a counter-example.

This example illustrates the problem of additional flexibility available by irnfnite time sub-

stitution. The step functions e, that generate S" are those which are I everywhere except in two

consecutive periods (i-I,/), (i,i+I) where the function is 0 on (i-Ii) and 2 on (i,i+l).

Interpret the functions in L V(u) as price functions and the optimization problem given in (3.5)

as cost minimization. For any ,price function p E L I(u), p 0, the cost of the function

I- I,,.,) is I plI. Furthermore for some i, f p. IG_.,,) > f p-I,,.,÷,) (if not, then the proof

of Proposition (3.1.4) shows that either p - 0 or p j L|(4)). Hence

Cost of iIt|-•.,f PI U..l_,d,0

~ ,+fP.1(k-l~k)di +fp-l(-,,,)di +fp-l(i,i+,)dM

> fp.l(k-1,0kdM + 2fp.1,I.,+0,,d

-Cost of 4,.

Thus, 4, would be cheaper than 1 so that 1 could never be obtained from cost minimization,

i.e., I is never supportable. The reasonl such a cost tradeoff as illustrated above can always be

done is that tne generators a, of S" 'go out towards infinity.'

Next, we investigate a property of our counter-example which is of independent interest.

Consider the following theoreticalquestion: is it always true that one can separate two compact,

convex subsets of R+, which meet at only one point? Answer: No; countei-example: two line

segments meeting at a single point. This example may be constructed because we did not insist

that the two sets in question have non-empty interior. It turns out thatour example also has

this property.

:,."-::":"::i~i:i:i~~iii::-:.., .• •_. ::! •;:ii:.i!;::i:.i i••:;.::::.•:.::.::•:.:.::: .i:.:.::.. : •• .`. .•. •` : : : ..:::•.:.:,-." :i:.:-:..:.,•: .::!;:'. :• ..:. .
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Proposition (3.1.5)

S is nowhere dense in ", i.e., the interior of S- 0.

Proof of Proposition (3.1.5)

Let x E S. Let Ix.) be a net in S converging to x. Write x. X.,otk where for each a,
k

X. E 11, I1a1ll1 - 1, and the number of positive indices finite. Since x. - x this means that

X.O-kf]'- x1 . Extract a sub-net of the net Ix.) so that the sub-net ik.4) converges, say to pl.

Since )X-'-X xi it follows tl.iat p-. p--x 1 . In fact, the following simple claim may be

made.

Ca im

k-I
XkO-p,-jx,, V/c.

Proof of Claim

We have shown this to be true when k -I and k-. Suppose it is true for all k 4 m.

Since A -A.,, + x,, anz' by induction A.* -' p,- x, it follows that

X. +.- , -x, "p- I -c,. The induction step is shown and the result. follows. a
;-1I

N

For all a and for each N we have that 1 0 1" A k which implies by our claim that for all
'k-I

Nlk-I ..- k-I

S1 0x,). So if we define pk-P 1 -o x, then it
k-I i-I k-I i-I i--

may be easily r.en that p E I+', Ilpllt 4 1 and the expression xmt"pkfk is well-defined and
k

correct.

We have thus shown by our above developments that

S. C..x.I 3peI.....l. ,I X ... P.eek.
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The converse conclusion is simple to show; hence, we may conclude that

§S-xI3 pE I,,llpll<l,x. 1,Xh PkkI" (3.12)

With this we will now turn to proving the proposition.

If the interior of S ;d 0, then we can find an x E S and a neighborhood N, about x such

that N. C S. Find a net in S, 1:10), such that x *-- x. Since the weak-star topology is weaker

than the norm topology then for some e > 0 we have that eventually, for some a,

x& E B. (xa) C N, C S.

Clearly this means there is some x E S such that z < x (we fix some a large enough) and

zO 0.

If z E S, then by (4.12) we have that for some p E l+1, l1p1 1 < 1 (and number of positive

indices finite) z PkkC, k i.e., zPi- Pt-,+1. Since xa E S eventually xjO-0. So, eventually,
k

p, pI+I since z < x*. Since z •0, I1pll 4 1 we hav'e that eventually p, ( 0. So the conclusion

is that the number of positive indices of p is finite and non-empty (since z ; 0). It is not hard

to see that ifp has the above properties then lpllI-I I so that z E S.

Write x& as ,Vkgk for some appropriate y. Since x4 > z we have

"(3.13)

or that

v,•-)', y',+,-k+i~, Vi. "(3.14)

Since the number of positive indices for both - and p is finite eventually vf.+1- ,•++-0 so that

j > Vi in view of (3.14). This in turn implies that since 1: Ex,- I (due to the

finiteness of the number of positive indices) that 7 1 -As,Vi. Hence, 4JZ-w which is a

..... %-'.~.*.. ... '. .%. •.;, .

. ....-....'........................................................
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finiteness of the number of positive indicep) ",hat , -x,, Vi. Hence, x.m-z which is a contrad-

iction. The result follows. a

We make one remark. What we hrve shown is that S C E(S); that is, all points in S are

efficient. Also, by (V-12) it is easy to see that not all points in S are efficient. For examp!e, take

Y,-'h', XI - 1h('h)' and let x'YkEk,Y' kkfk k. Thenx is not efficient.

3.1.4. Compactness of the Closure of the Efficient Subset

To prove Shephard's duality, it is necessary that the closure of the efficient subset be

compact. In the axiomatic framework of the Dynamic Theory of Production Correspondences as

developed by Shephard and Fare (1980), this property of compactness of the closure of the

efficient subset was assumed as an axiom. We however prove this property from our axiomatic

framework as presented in Section 2.2.

Proposition (3.1.6)

EN (u is, compact.

Proof of Proposition (3.1.6)

Assume that =ENu is nonempty otherwise there is nothing to show. Let X E EN(u) and

let {x*I be'a net in EN(u) converging to x. Associate to each z" a feasible flow for xe to sup-

port output level u. From the proof of Theorem (3.1.1) we know that we may extract a sub-net

of the original net (x-} so that the sub-nets associated with each of the flow type'nets induced

from the feasible flows for x* to support output level u converge and are unilormly bounded.

We denote the sub-net again by (x4).

Since xA E EN(u) this means that there could not be any disposal of system exogenous

input in the feasible flow for xO to support output level u. Thus, for caCh J we must have that

for each a

(x)- du 1 .)A'
- . . " . • • . , .. . .. .. .... (3 .15

-1 i 7.



Furthermore in view of Axiom 10 it follows easily that

fly{, (vJ)adj} < •g, (Wah) (3.16)
0i

(else xa * EN(u)). By the assumed properties on g, and that the net (Wia) is uniformly

bounded, it follows that, for some known function H, of B (T) and T, 17

fo{•Ty/ld;L 4 1 g,(W,,h) 
(3.17)

Osi

4 F.,(B M, T) (by Axiom 12)

where ,y, and W, represent the limit vectors of the nets Lyvi, MW~I.

Hence by'(3-15) it is easy to see that

f xiddi 4 EH,(W,,h)
0

which by Axiom 2 implies that IIxIAI. is bounded by a known function of Hf (W,,h) which is

independent of xi. Hence, Ilxll. is bounded by a known function of ' H, (Wi,h) which implies

that EN(u) is compact.0

17 See the comments at the end of the statement of Axiom T2. Section 2.2.1. It discusses why in the finite

horizon net'f Wj) is uniformly bounded under Axiom I1Z
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3.2. On Shephard's Duality

3.2.1. Statement of Shephard's Duality Theorem (Steady-State)

In the Shephard model (Shephard, (1970]), the protraction technology is characterized by

the Production Input sets or level sets L(u), u E R,. L(u) is to be interpreted as the set of all

input vectors x E R+" which yield at least output rate u. The level sets are assumed to satisfy

the f.,lowing axioms:1

P.1 L(O)-R",OL(u)foru>O.

P.2 xEL(u) and x'x, imply x'EL(u).

P.3 If (a) x>0, or (b) x>0 and (6.x)EL60) for some >0 and U>0, the

ray (.-x A, )> 0' itersects L(u) for all u E 10,0.).

P.4 u2 u1  > 0 implies L(u 2) C L(u,).

P.5 n L(u)-L(u0 )foruO>O.
O~u,•u0

I i n L(u) is empty.

P.7 L(u) is closed for all u E [0,ae).

P.8 L(u) is convex for'all u E [0,co).

P.9 E(u)-{xEL(u) I ify <x then y OL(u)} is bounded for all u E [0,.=)).

From the description of the production technology and the axim., taken on the level sets,

the production, distance, and factor minimal cost functions can br derived.

The Production Function

The production .unetion 0: R+, -A.,R+ is defined, by

O0W) - max (u I x E L(u)). (3.18)

The production function 0 measures the largest output rate obinMble with x. 2

I Shephird 11970al, p. 14.
2.See Chaom 2, Shophaid (19701 for the proo( tha* is weI1d

........... ...-.....'...,.:..•................ ....-.... •....-.........:....:....-........

* /



61

The Distance Fur otion

The distance function 1:R+ x R -- R+ is defined by

S0 u> 0 and (X X -x E L(u))-0

*(u x) - [>in0).xEL(u)}]-1 u'> 0 and IX Ix E L(u)} 0 (3.19)

Essentially @(ux) measures how much one has to scale x, up or down, in order to just obtain

output level u; that is, to put on the boundary of L(u) tfpossible. Observe that by the

definition of *(ux) one has that

L(u) - {x I *u) 1). (3.20)

Hence, , is useful in that it may be used to characterize the level sets. 3

The Factor Niinimal Cost Function

Interpret p E R.' as prices and p-x as the cost of input vector x. If one defines the factor

minimal cost iunction Q:R x R,-* R+ by

Q(u,p) -min p.x I x E L(u)}, (3.21)

th&- Q (u ,p) would be the minimal cost of obtaining output level u.4 The statement of

Shephard's Duality begins to unfold when it is realized that Q(up) has all of the properties

that *(ux) has.5 In effect, Q(u,p) acts like a distance function. If it would be thought of-as.

such, then the candidate "level sets, for which it would be'a distance function would have to be

Lo(u) - (p Q(u,p) > 1} ' (3.22)

Thinking of Lo(u) as prce sts qf the cost mtwe much in the same way one thinks of L(u) as

PIowetums o(# may be found in Chaptet 3, She.hard 119701.
4'. As an es conquence of the axioms P. I-P.9, L(u)-E(u)+R .. L•+R. Since Mu is coin-

pat, it follows that Q(.NP) is well-defined, i.e., the minimum i obtained.

s See Proposuton 16, Shephard 119701.
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"the producuion possibility sets of the production structlre, Shephard's Duality Theorem, loosely

worded, is that we may derive one structure (cost or production) from the other. To quote

Shephard (p.8, [19701):

'... production possibility sets of the production structure and the price sets of the

cost structure are shown to be duals, derivable from each other by dual cost minimi-

zations which determine the factor minimal and price minimal cost functions as dual

distance functions.*

To mathematically formulate the above statement, define the price minimal cost function

556

S0 if L(u)- 0
. (ux)- inf(p-xIPELQ(u)) if:>O,L(u)lo (3.23)

if u-0

Shephard's Duality Theorem is then the statement that

Sx)-max (u I#(,x) )l. (3.24)

3.2.2. Shephard's Approach to the Proof of Duality

Let L(u) - Ix I "(ux) o 1). Shephard first shows that " had the properties of a dis-

tance function.7 Next, he shows that the sets L(u) defined a production technology, i.e.,

L(u) satisfied axioms P. I-P.9.8 Then, he shows that L'(u)-L(L) from which the duality

statement may be asily derived and from which " may be seen to be equal to ,.

The next two sections provide two alternate ways to proving Shephard's theorem. Version

I we believe is far more direct and simpler, to understand than the original approach. Version 2

motivates the definitions of,# and *" and in some sense deriws the identity. It shows that to'a

Shephard defined ,*" diffeently. T1aet wo uo metiom o(fh dals Cm whe LMW) Ied a a > 0.
7 Propositior 39, Simadrd 119701.
I Propos•tirn 40. Shepherd 119701.
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large degree Shephard's theorem is a statement about supporting hyperplanes of boundary

points of a particular class of convex subsets of R +.

3.2.3. Proof of Shephard's Theorem: Version 1

The proof of Shephard's theorem is immediate if we can prove first that h - it. Note that

if q -* then q" is a distance function, L" - L, and L" is a production technology.

"Before we prove that q# we must first show that q" is well-defined which in this case

means that we must show that if u >0, L(u);d0 then Lo(u) is nonempty. Since L(u) is

"closed and convex with 0f L(u) it follows by the well-known strong separation theorem for

convex sets in Euclidean space that we can find a p E R", a E R such that 0< a < p-z for all

z E L(u). 9 Since L(u) is monotonic it follows that p E R. Dividing p by a produces an ele-

ment in LQ cu). We are now ready to prove the theorem.

Shephard's Duality Theorem

The Distance Function equals the Price Minimal Cost Function, i.e., -

Proof of Shephard's Duality Theorem (Version 1)

If either u-O or u>0 but L(u)-0, then the result follow; by definition. If we l t

R (x) - (-x I x ) 0) be the ,ray generated by x E R, ,.then only two possibilities are left to

considered:

(I) u>0, L(u) ,oand R(x) W L.(u)-o,

- (2) u > 0, L(u) ;e 0, and R (x) L(U) ;d 0.

Let us analyse case (1) first. By definition *(ux)-0. Hence we must show tlt

.(u,x)-0; that is, we must find ap E L?(u) such that p x-0.

' See, for example, Bazaa and Sheuy 119731, p.51.

. ..
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Let A (x)- i I x, -0). Since L(u) is monotonic, it is easy to see that A (x) is non-empty.

Set up the following optimization problem:

P: mrin : y,
YE L(u)A EWA)

Since L(u)- E(u) + R+. it follows that problem P is equivalent to problem P*.:

P: min7 E L3 gE A(x)

E Mu was assumed compact; the objective function is continuous so we may conclude that a

minimim is obtained. Let y" denote such a minimum and 8 denote the objective function

value evaluated at y.

If 8-0, then for X large enough A x 'y which would imply that Xx E L(u). W This in

turn would mean that R (W) meets L(u) which is not the case we are considering. Hence,

a8>0.

Define p E R• by

-IEA(x)

-. "'1 
0  I*•A(x) (3.26)

"Observe that 0x-0 and p'z ) 1 i" i E L(u). Hence p E LQ(u) ,with the desired' pro er-

ties. We have shown that ,(ux)- 0 as desired.

Let us now turn to ease (2). In this case we have that 0< (Ux)<--. For any

p E L (u) it is immediate that

"x (3.27)
*(U ,x)

since -s-- E L(u). Since (3.27) holds for any p E L(u), by definition of #*(u,x) (and

*(U'x)

multiplying through by *(ux) in (3.27)) we have that (ux)) o (ux). .
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if i' (ux) > 0 (ux), then by definition of 0 (ux) (as a distance function) it must be the

* case that f L(u). By the separation theorem we may find a p E R" and an a E R

such that

iX

. p. <a<pz, VzEL(u). (3.28)

As before we note that p E R.; thus a > 0. By dividing p by a we have that ' is in LO (u)
a

with 2-x < q,(u,x) by (3.28). By taking the infimum over all p E LQ(u) we would obtain the
• a

.7

obvious contradiction that 41*(ux) <,k(ux). Hence *(u,x) •( (ux) which shows that

(u,x)--, (ux) in this case.

ur proof is complete.U°

j. . 3.2.4. Proof of Shephard's Theorem: Version 2

* Let S denote the set of all closed, convex, monotonic subsets of R+! not containing the

origin. Let L E S. Let R (x) denote the ray generated by an x E R+, i.e., R Wx) - (•.x I X > 0).

3 If xER", then either Rwx) fl L-0 or R(x) fl L'0. If R(x) n Lio, then there

exists a well-defined constant W (x) such that X is on the boundary of L (relative to' R ).

if R(x) n L-0, then define (x)- 0.

Now pick an x E R 1 and suppose R (x) f L 0 o. Let > 0 and let T denote the vector

"(a,e, ... , s) E R. Since 0 is continuous (Proposition (3.4.8), Appendix) then for some vy > 0

(to be determined later) we can find an. > 0 so that

X +1 B(-x) (3.29)

(B,( x)denotes the open ball of radius •/about --- ) Since X+) is strictly positive

it follows by an application of the separation 'theorem for convex subsets of R, that a

* -*, ./, .n ... . * * / . *
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x+E
supporting hyperplane for L at x exists. That is, there exists a p E R.", p ;d 0 such that

* (x +T)

0 <,P- p.z, VzCEL. (3.30)
40 (X +T')

Re-normalizing we may assume that p x - 1. It follows therefore that
4 (x +

X,+E x, + +(x,>0 a+-1) It I X p.> 0 1 (X +P>#(+

Let

f ( ,X 4 ) - #k (X + 0 '

I, im1lx, + +a

Then we have that
4

A 14 , f (x,f).- (3.31)

I(ax-> 01

In view of (3.29) and (3.31) we have that

PI 4.) < f f(x,.)'y. (3.32)
(X +i) ,j > ' 01 #) *X(+0)

Since p. x - 1 rearranging (3.32) we obtain that,(X +)

p'x 4 *(x)+*(x)f(,xUOY. (3.33)

Now lei

H+- {(pa) E R" xR,, 3x e L such tht a-pzx 4,p.:, VzE L).

Since y is arbitrary and f(xc) is bounded fori small enough, it is easy to see that we have

".'.'.. "."%.',,.".',,e.."'.-..... ," .'.." "'" •",.......,,,.._.,%/...... ,...•. .. ,..... . ,-...... ,,.... .. ,.. .. ...
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just shown that

For (p,a) E H+, x I so that, as an easy consequence,

"),If L ~ ~(X). (3.35)

Putting (3.34) together with (3.35) gives us

i,'i L-X-g*(X). (3.36)

The interpretation of H* is precisely that it is the collection of supporting hyperplanes; for

L which separate the origin from L. By what we have just shown those points in the boundary

which have supporting hyperplanes in H4 are dense in the boundary. Further we have also

shown that given any point z on the boundary there is a point y on the boundary arbitrarily

close which has a supporting hyperplane (p,a) E H, whose *value. at z is arbitrarily close, i.e.,

a

We comment that it is possible that there may exist a point on the boundary which has no

supporting, hyperplane in H+ to s~apport L at this point. To see this, we construct the following

example. Loet x.-(-0- .I -, I-J-,) for n ;01 and let L be the smallest closed, convex,

monotonic subset of AR3 containing thex,X's. Since x. -(1,1,0),' it follows that (1, 1.0) f L.

We claim that no (p,a) E H4 could exist which could support L at (1.1,0). If there were such a

(p,a) E.H4, then it is easy to sen that (1) at least one of pI Or P2 must be positive, and (2)

IP3> 0.1 Now we have that
1 To we this, let 4 !'.O,aMW y >0. 7nk of 2 5 X a ý+1  Md 0 . Review equations

(3.29) and (3.32).
If 1(1) wei oxthae, tbau*-;f (2) wagenl amthen Pox,< P.(,1,O) for any .

....... %
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pxM- (1--'-)(P. +p2) + 'h"p 3 - (pl +p2) + (hp3--2 (p1 +P2)). (3.37)nn

Since 2 -" 0 as n -- we may find an n large enough so that 'Amp3- (I +P2 ) < 0 imply-
2N n

ing that p-x, <p.(1,l,O), a contradiction. 12 We remark that this example clearly illustrates

directly why the infimum is used in (3.36) as opposed to the minimum.

It is easy to see that since (p,a) E H+ if and only if (• 1) E Hr we may identify H+
a

with the set13

H' {(p,l) ER.• xR., 3x E L such that 14 p-x 4 p-z, Vz E L).

This last set of course may be identified with the set

(p E R+1 I3x E L sucb that 144 p-x p-z , Vz E L).

Thinking of L as a level set L(u), this last set is precisely LO (u) mnd *(x) is really (ux). So

: looking at (3.36). we we that we have shown Shephard's Duality in the cam identified in the previous

NCtion as case (2).

So, by identifying LQ (u) with Hr (which has already been interpreted) Shephard's Dual-

ity theorem in this special case reduces to a statement about supporting hyperplanes of closed,

convex, monotonic subsets of R. In other words, loosely worded, the level set is character-

ired by the boundary 'which is characterized by the distance function on one hand (the boun-

dary of L is the set of x which attains the "distance of 1) and by the.price minimal cost func-

tion on the other hand (which approximates the boundary with supporting hyperplanes).

The reason why and ** are defined differently for special cames is simply that one

desires to extend the equality of * and *" to the entire domain of RA. Let us see how we may

12 This can be done because the terms p3 and (pt+p2) are both positive.
13 This follows beause p can be arbitrarily re-normalized. In one caue we mmioate for (Pa) E H+ the

point (Z.1) C H. In the other am, we associate for (p,,) E H the point (,,px) (EM" where x is a point
of support in L for p. Rigorouuly, one mould define equivalence ram of ft form I,,)1 where
(pa)-.(q ) if and only if 3c> 0 such tha (pa)-c(qA).
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motivate their respective definitions from this perspective.

First, suppose u-O, thus L(u)-R.. The idea of *(ux) is that x should be a
* (u,x)

point on the boundary of L(u) on the ray generated by x "closest" to the origin. Since 0 E L(O)

a natural choice for (0,x) is to take it to be equal to oo*. Hence, we take '(0,x)-oo.

Now suppose x E R ., L(u)i 0 but R(x) n L(u)- (case (1)). From -"- enies on

convex subsets of R we showed in the previous section that there is a , E R such that

min(p-z 1z E L(u)j- 1 and p'x-0; that is, *'(uox)-0 in this case. Hence, we take *(ux) to

be 0'in this case.

Finally, suppose L(u)-0. In short, none of the functiions are well-defined for this case.

Since L(u) - 0 implies that R (x) n L(u) 0 to be consistent, we therefore take both V and

*" to be 0 in this case.

The upshot of this development and proof of Version 2 is that Shephard's Duality

Theorem may be motivated by studying properties of supporting hyperplanes of a particular

class of convex subsets.14 One does utilize heavily the simple and us.ful characterization of the

boundary by the distance function. One obtains the Duality Statement as stated by Shephad'

when one interprets the functions in an economic light.

3.2.5. Extensions to the Dynamic Case

To extend the proof, as given in Version 1, of Shephard's Duality Statement for the finite

horizon Dynamic Case we make some modifications. Instead of defining A (x) - i Ix, - 0) one

defines A, (x)-t I x, (t)- 0). Instead of solving the optimization problem as given in the proof

of case (1) we re-write it as

kP,': rain 1fY f l~d .
IELN(U) i f0

1' We remark thi we Opved tha i- n * this vesoo by extonadm the defntiom of ev W*.

" " " ' !

• .
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After making the appropriate modifications for the statement of Shephard's Duality in the

Dynamic (Function Space) case the proof of Version 1 still applies because

(a) LN(u) is (weak-star) closed (see Theorem (3.1.1)).

(b) EN(u-)is (weak-star) compact (see Proposition (3.1.6)).

(c) LN(u) C EN(u- + (U." (A))" (see Theorem (3.1.1)).

(d) Separation Theorem for Locally Convex Topological Vector Spaces applies.

(We only proved (a)-(c) under the assumption of a finite horizon.)

We make two final remarks. First, to, extend the proof of Shephard's Duality Statement,

as given in Version 1, for the infinite horizon case additional hypotheses would have to be

assumed to insure that LN(u) is (weak-star) compact. The axiomatic system presented in Sec-

tion 2.2 is not strong enough to guarantee this property. Second, it is not possible to extend

the proof of Shephard's Duality Statement, as given in Version 2, because our counter-example

(Section 3.1.3) shows that sorictly positive points need not be supportable.

.. .. .. . . . . . . . . *.** ,*. o
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3.3. On Laws of Diminishing Returns

In this section we show how our general framework of a production process may be used

to deduce two versions of the Law of Diminishing Returns as formulated by Shephard. By

proving such laws from the axiomatic framework, we reduce the question of whether such laws

are 'true' to the question of whether the axiomatic framework is reasonable. In this sence we

hope to get "at the root" of such laws.

The two general types of laws of return'posed by Shephard and considered here are: (1)

Laws of Return for bounded input rates of Essential factors, and (2) Laws of Return for

bounded intervals. The first type is defined and proved in Section 3.3.1. The second type is

defined and proved in Section 3.3.2.

3.3.1. Laws of Return for Bounded Input Rates of Essential Factors

Taken from Shephard and Fare [19801, p.98 we describe this law in their own words:

"A law of return so expressed for the static model of production is one of a law of

bounded eutput rate. It is suggested for input and output rates which are not con-

stant, i.e., for the dynamic structure of production, that a law of bounded output

rate may hold, i.e., if time histories for essential factors are subject to an upper

bound on input rate, the related output rate histories will be bounded in some way

under unlimited increase in the maximal time rate of the input rate histories of the

other factors."

We prove this statement, soely in words, from the axiomatic framework for the finite -horizon

* case.,

Proof of the First Type of the Law of Diminishing Returns

Suppose the vector of system exogenous inputs is norm bounded. As an easy consequence

it follows that the cumulative amounts of the applications of exogenous resources to any

activity must be bounded in magnitude (in the finite horizon). By Axiom 2 on the flows of

.* % -~ ~- ~ .~ w* **.~*~ .. *' ** . ..... .*...* ~*.*S |
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goods and services it follows that the flow types associated with the applications of exogenous

resources is norm bounded. By Axiom 8 On the activity Production Functions this in turn

means that the outputs realized through the production process for any activity must be norm

bounded. As an easy consequence of this fact the cumulative amounts of the outputs

transferred to the other activities from a given activity must also be bounded in magnitude.

This means that the possible cumulative amounts of final outputs obtainable through produc-

tion is bounded in magnitude hence in norm by Axiom 2.

If we restrict attention to just bounding in norm an essential set of system exogenous

inputs, then in view of Axiom 8 the comments above still apply. Thus regardless of the magni-

tude of the other types of 'nonessential" inputs the output rate would be bounded. And this is

the statement of the first version of the Law (in the finite horizon case).

3.3.2. Laws of Return for Bounded Intervals of Essential Factor Appleuailon

Taken from Shephard and Fare [19801, p.100 we describe this law in their own words:

"*The time spans over' which essential input rates may be or are applied positively

need not be infinite, that is the support of an input may be bounded, and

unbounded time substitutions for resources may not be permitted. Then the ques-

tion arises how outputs may be limited by limitations on the intervals of time over

which essential factors are applied. Propositions of this type are laws of return for

bounded intervals of application of essential factors."

To prove this law, we will first prove a stronger statement.

Proposition (3.3.1)

If x E LN(u) such that for some T > 0, {xJ > 0) C 0,FT! for all J,then there exists some

T" such that {uk > 0) C [0,T'J for all k. 1

It is sumient to pove the Law for tOw eEential Set of inputs comisting of d inputs.

.......-...-... .o" .. ......... , ,. .. ,- .,.. , .. ...-. . . ............... -.i'•'..... ..... -. .... o. .... .. ,-. .-. ,...... ......... •... ...... i
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To pave the way for a "verbal" proof of Proposition (3.3.1), we prove a simple proposition

below. For this. proposition, let L denote a space associated with a particular flow type. Let E

denote the "lower bound' on the flows in L as dictated by Axiom 3. Let 8 denote the "minimal

spacing" between the set-up times of a flow in L as dictated by Axiom 4.

Lemma (3.3.2)

If x,z E L such that f xdj• f zdit for all r E.R. and {z > 0) C [0, T" for some T, then
0 0

there exists a T" such that {x > 0) C [0,T'.

Proof of Lemma (3.3.2)

If the cardinality of the number of set-up times in S(x) (see 2.19) is finite, then it is esy

to see that. T'-sup(t I t E S(x)) has the desired properties.

Suppose then that the cardinality of S (x) is infinite. By Axiom 4 we may index S (x) by a

set of time points ti, i-1,2 ..... such that

0-tO< h < `2< ... such that I't,-,l •8, Vi. (3.38)

By the definition of the t,'s it 'lows that either

f xet- O or f xdp. >

the latter inequality due to Axiom 3.2 Out then it follows that

, xd • min{.8,4) if f xd4, 0 0. (3.39)

2 We must account tar the possibility that Ls an event-based flow type. If this were not the case, thea
the ts, would have to be time-grid points, so XJ xd.-x(e,) which is eithe 0 or at leam.

, . o .. •• .• . . .. . •+ ., . .-. ... . -. . . . . . +..%.
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Now let N- i I f xdj W 0). Since the cardinality of S(x) is infinite it follows toat

the cardinality of N is infinite. But this could not be the case because we would have that

+ > f zdju fxdju > f xdAL f xdj& > 1 tmmnfe.8,e1+6
0 -O [t,,t+I) if N t,,+) i(tN

So the proof of Lemma (3.3.2) is complete.u

Proof of Proposition (3.3.1)

Suppose the cond'ions of the theorem held. Find a feasible flow for x to support output

level u. By Lemma (3.3.2), we may easily deduce that the supports of the flow type associated

with the applications of exogenous resources to the activities are finite, By Axiom 11, it follows

that the realized output of production for each activity is restricted to this finite horizon. By

Axiom 12, only a finite amouat of output may be realized through production in this finite hor-

izon; hence by Lemma (3.3.2) the supports of the flow types associated with the intermediate

product flows are finite. By a final application of Lemma (3.3.2) the supports of the flows types

associated with the final output variables must be finite. That is, eventually output must stop and

this is what we wanted to show.a

Proof of the Second Type of the Law of' Diminishing Returns

Since the support, of the flow types associated with the final output variables is finite, it

follows immediately by Axiom 2 that such flows must be norm bounded. This is Shephard's

version of the Second Type of the Law of Diminishing Returns.

.° *. .- %" *%° .• • . . . . -. 7 ' - -. .• -|
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3.4. Appendix

In this appendix, we prove the technical propositions used in the main body of the text.

As notation, let LQ denote the sitket of L' (g) which satisfies Axiom 2,3, and 4 for an

i' . event-based flow type, let Lk denote the subset of L.7 (p.) which satisfies Axioms 2,3, and 44• 4

for a continuous flow type, and let LE"-Lin L Lin LF, c-L4 Lý n LC. It is under-

stood that these symbols are generic and staad for a particular flow type. Finally, throughout

*- , this section, L+ (A) is topologized with the relative weak-star topology.

Proposition (3.4.1)

If Ix.) and (y.) are nets in L."(+ ) such that x. y. for all a and if x. -x, y. -y,

then x (y.

Proof of Proposition (3.4.1)

Suppose this is not true. This implies that we find a set A with positive, finite measure

and an > 0 such that the function x exceeds the function y by e on the set A. Letp IA.

Clearly, p E L1 . Let *,, denote the continuous linear functional induced from p. By the con-

, ti uity Of p ,(x.)- *,(x), 9*,(y.) - " #p ), and ,(x.) 4 , (y.) for all a. Hence,

" .(x ) 4 #, (y ). B u t by d e fin itio n o f p , y,) >--,(v ) > g (A ) > 0 . T h e co n trad ictio n is

*ly apparent.U

itio. (3.4.2)

LE and Lc are each closed in L," (,u).

Before we prove Proposition (3.4.2), we first show that neither /• nor !s by itse lf

osed as the following two counter-examples show.

m ner-Example to the Closure of Lý

S • t s 

..
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Let e denote the lowe; bound described in Axiom 3. Let the time grid T (as described in

Axiom 1) be the set of natural numbers. Define for n • 1,

X2AEl( 6

It may be verified that

X2n 2(0.

Of course, 'the function -- 1((0,1) violates Axiom 3.2

Counter-Example to the Closure of LC

Let 8 denote the minimal distance between set-up times as described in Axiom 4. Fix

h> and chooseK> Again, let T be the set of natural numbers. Define for n 1,

* ~K K

>7-2K T ndo > K 2K K

The set of set-up times for each x., S(x.), is.clearly empty; thus, each x, satisfies Axiom 4.

But, clearly,

I-I K 2'K,

K
which has K set-up times in the horizon [6,h]. Thus, I l( , violates Axiom 4.

Proof of Proposition (3.4.2)

In light of the two countei-examples, we will provc Proposition (3.4.2) by first proving

fthtLl(and Ll) is closed (Proposition 34.3)mand then pmeehat Lýlfln (and Lj LE'4

is closed (Proposition 3.4.4).



77

'F Proposition (3.4.3)

Lý and L/ are each closed in L.' ().

Proof of Proposition (3.4.3)

By the continuity of parameters {h') used to define Axiom 2 for an event-based flow type,
it is immediate that L is closed in L.+ (). To show the closure of L?, we will show that the

complement of Lj in L." (u) is open.

Pit a z in the complement of Lj in L.7 (.). It follows by definition of Axiom 2 that for

some A E R+ and 'k that

fz.-1,dj A but IIz.-1, ll. > 9k(A). (3.40)

"Let 8-11z'1 k.--gk(A). Since gk is continuous, we may find an e > 0 such that

i gk (B) -- gi(A)1, < •"whenever [B-Ai < . (3.41)

Now define

p-I
j(z > ,•tslik,.- 1) .n no

where for q E i-'(0), >0

z+N(q8).. EL+-(,)l 1fq(z-y)djI<1J.

(N is a neighborhood about z in this topology.)
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"Pick any y V N. LIt B-f y 1 I dA. Since y E z + N (p,a) it is easy to verify that

"A8

>a::i'• IIYvIlkIIl. > IIz.,II,..-- 2

By (3.40) and (3.41), we then have that

"y 1' II.. > I1z'1,II..---. - :k(A)+j. (3.42)

There are two cases two copside7.

Case 1: B--A I<e.

Since IB-A I <*, by1(3.41) and (3.42), it is immediate that

•ly.1i 1. gk(Bg)+4

*.. which implies that y is in the complement of Ll in L.4 (i).

Case 2: 'IB-A I >a.

Since y is also in z + N(l,,e), we have that

Hence, B • A +e. Since IB-A l' I>a, it follows thatB < A -s. By monotohicity of g,, we

then have that

St g(B) 4 s,,( -0) g• (A). (3.43)

It is immediate by (3.42) and (3.43) that y is in the complement of L3 in L." (u).

In either case I or case 2 we have shown that J y E N, then y is in the complement of Q?

in L+" (j). Thus, the complement of L4 in L+" (gi) is open proving the desired. result.N
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* " Proposition (3.4.4)

Lifl L4 and L ý are each closed in L," (A).

Proof of Proposition (3.4.4)

., By the definition of an event-based, flow type and the properties imposed on the time grid
T, it is easily verified that LI and L are each closed inL4(). Hence,so is LJLP.

To facilitate the proof of closure of Lý fl L4, w; first prove a simple lemma.

* Lemma (3.4.5)

"Let x E Lc and let S(x) denote the set of set-up times for x (see 2.19). If I- [a,b] such

s that wd n (x-O))}>Oandwl n (x >0)) >o, thenS(x) l n e1 .

Proof of Lemma (3.4.5)

If a E S(x), tuen the result follows immediately. So, suppose a J S(x). By definition of

• S(x), there must be an interval of the form (a,x), c>a, such that either

-(,aci n (x-O))-O or x{ua,cJ n (x > 0)}-0. Without loss of generality assume that

-kla,cdfn (x>0)1-0. Lett t-zupfd E I I {a,dn (x> > 0))-0).

We now claim that t E SxW. If t S W•), then by definition of S (x) we could either

find a t > t%, t" CE [a,b, which has the property that X(IdC,t] f ( >0)1-0 or t" must

equal b. By definition of t, it must be the second case, i.e., t -b. But then this means that

w, f (x > 0)1-0 which violates our original assumption. The result follows.11

We resume the proof of Proposition (3.4.4). Let (x.) be a net in r)L converging to

some x. Suppose x i/L,. Then (0 < x < e1 has positive Lebesgue measure. Since Lebesgue

measure is regular, it follows that there is a finite interval [a,b] C (0< x < el. Choose a.

I E (ab). Let 8 denote the minimal distance between set-up times as described in Axiom 4.

Choose E (03,)so that if I" -j.s -] and !2- [1+e,t+2u1 then Ij C (a,b), J-1,2.

-. 2
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SWe make the foilowing claim: for some P, S(xo) nl Ij d , j- 1,2, for all a • f. If this

were not true, then we could extract a countable ;ub-net Ix.) such that S (x) nf i -0,

j - 1,2. By Lemma (3.4.5), it follows that for each n either j - 1,2. This in turn would imply

that either fx..1,di,-o or fx..1,jdAd a(Aj)>fx.Idj&>O, J-1,2. For IP-i,,1j
j- 1,2, we would then have that x, does not converge to x-an obvious contradiction.

So we have shown that for some P, $(x*) f'l I, •0, j- 1,2, for all q P. By construc-

I tion of each Ij it is immediate then that, for a o P, x, violates Axiom 4. And :his is a contrad-

iction. Hence, x must be in L2.

Suppose x L -. Then we may find a tl and t2 each in S( ) such that 112-t1I<8.

I Choose aE (0, 8-2- II) so that if Ij-[tj-t,- j +], jl,2, then Inl 12-0. By.. 2

definition of S(x), we have that )xJ f1 (x>01>0, j-1,2. Since x.-x, we then have

that, for all a,i
f X.hIvi n .(j dAý- ' fx'ij n (- 0, i-o' 1,2 (3.44)

i fx."il"n•>°",dA•--f•'Icn(.>°" •'xlj n 0>0) > 0, J-1.2. (3.45)

(We are using the fact that x E12 in (3.45).) By (3.44) and the fac that each x. E LI it fol-

lows that forsoe #j,1.2,AiI n (x, o))>ofor a1a),p, J.-1,2. Similarly, by

(3.45) and -the fact that each x.E/,f it follows that for some y. 1-I,2.

w.J n U. > 0) > 0 for &H a >• ,j 1 ' 1,2. Thus, by Lemma (3.4.5) and the above, we have

that, for all a W max {o,.,-j, s(x-) n I P9 0, j-1,2. This implies that x.E Lc which is an"J- 1.2

obvious contradiction. Hence, x must 6C in L4.

The above argument shows thatx E Ln q/4. The result'fonows.ma

"Propesitloo (3.4.6)

..d
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Let Ix.), Lv}) be nets in Lc such that, for all a, x ((x. > 0) n (Y.>)oV}0. Ifx. -x

andy,-y, thenx > 0) n (y > 0)--0.

In the discussion on Axiom 5 (closure of the domain), Section 2.2.2.1 we remarked that

there may be additional constraints linking the domains of the inputs applied in production.

One example we gave is when an activity utilizes one machine to produce two similar types of

products. For this example, the functions which define the rate of machine hours applied to

each type of product are linked in that both functions cannot be positive at the same time. It is

desirable to show that this property preserves closure so as to give a plausible basis for accept-

ing Axiom 5.

Before proving Proposition (3.4.6), we remark that if the nets {x-' and Lye) were only

assumed to belong to- L"' (g) then Proposition (3.4.6) would be false. To see this, define for

nX)l

XY flh1(iI)X2

aR a

It may be verified that

X2 , - (o.1) and y2a, -,O

and thus dearly the nets {x2,), LA,,) satisfy the conditions of Proposition (3.4.6) but violate the

conclusion.

Prut of P1r.psitfmt 0.4.6)

Suppose U(x > 0) (y (> O)j> 0. Find a fnite interval ab] C ((x > 0) fl (y > ).

Choose, a t E (,b). Let 8 denote the minimal distance between set-up times as described, in

Axiom. 4. sChoose <0 'go that ifhI,-[-q.±,+2]. ,-[it+ezf+2., then I., C (ObJ,

3d . . , .... ... :.,.- ,. . .. ..
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j- 1,2.

Since x. -. x,.x E L23 for each a, and .{(x > 0) n 1) > 0, j- 1,2, it follows easily that

eventually, for some 8j, • ((x. > o) f• I}> 0, Va )ý j, j-1,2. Since y. -- y, Y. E L2 for

each a, and{ (Y., > o l ij) > 0J- 1,2, it follows again that eventually, for some 8., j.- 1,2 ,

k((y. >0) f Ij) > 0, Va ) 8j, j- 1,2. Since, for all a, x ((x, > 0) n (y, > 0))-0 we have

that for a > 8j,j- 1,2,? ((x. > 0) nlj) > 0. By'LLemma 0.4.5), S(X) •/ 1j;0, j-1,2.

But this implies that for a > max Pj ,8j}, x. J Lý by our construction of /j, 1-1,2. This con-

tradiction proves the result.,

Proposition (3.4.7)

Let F:L. (,u) - L.' (it) such that for each x E L." (j), F is bounded (in norm) in a

neighborhood of x. Assume further that for each h E R+, F satisfies the following property: V

6>0,

38>0 such that VWf (Fx)-F(y))dul <a whenever Uf (-y)dd <8.

Then F is weak-star continuous.

Proof of Prultlon (A.4.7)

Pick an x fLE +-(). Let U(x) denote the neighborhood about x in which F is bounded.

Let B(x) denote the bound. 'Let F(x')+N(p N ... pa;•) ,dente'a baski open neighborhood

about F x). Let 8-6B(x). Find 'h large enough so that if I-[h,oo) then lip'. I1,t <8 for
6

i-1,2..... n. Find integrable, simple functions q', 1 1,2.... x such that IUp'-q'1I I<8

for i- 1,2..... n. Finally, let p- min•'n _

We may find a 8>0 that the property oa F holds when a-p. Let

V(x) -y E (x + N(,,,8)) n (U(x)) flL W"•) For any p,, i, 1,2 ...,x, we have that

, * , - . .. , *. '.- ' .-. * . - -* 2 - ~
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Ilpi(F(x)-F(y))IIj 4 lip' (F(x)-F(y))"1,111 + 2B(x)lIp'.llI

<lip' - q'iIIF(x)-F(y)II. + ttq'ii.'ll (F(x)-F(y))" 1111 + 2B (x)ilp'1111

4, X)) x+Iqý e )+2B~x)(- 5'--) -e.

6B~x) 311q'li.. 6B(x

Hence, we have found a neighborhood about x, V(x), such that if y E V(x).

F(y) E F(x)+N(pI ... ,p-;e). 'Thus, F is weak-star continuous.a

Proposition (3.4.8)

Let L denote a closed, monotonic but not necessarily conwex proper subset of R+R which is

non-empty. Let *W(x) denote the distance function (dropping the u in #(u,x)). * is continu-

ous on R .*.

Before we prove this proposition, we remark that the proof of Shephard's Duality given in

Section (3.2.4) utilized the fact that the distance function is continuous. Shephard 119701

proves that #(ux) is continuous on R+ x R+* by first citing a theorem that states that a con-

vex function defined on a convex open subset of R* is continous on this open subset and then

proving that * is both upper and lower semi-continous on the boundary. 2 0,u proof below is

simpler avd more direct; furthermore, we do not assume that the level set is convex.

Proof of Propouition (3.4.8)

To prove this proposition, we first prove a very simple lemma.

Lemma (3.4.9)

Since is constant and hence cmtinuous when L-R: (corresponding to the acs waO) or when L ,,
we omit these caes.2 Proposition 16. Shephord (19701. B I19631. p 193.
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ifx . then ,,x) ,(y).

Proof of Lemma (3.4.9)

If this were not true, then for some x y (x) < ,(y). As *(y)>0 this means that

R (y) n L0 d 0. Clearly this implies that R (x) nf L i;0 since x > y. By monotonicity of L

and by definition of 0 we have that f EL with < . This contradicts the

definition of W(x). The result follows.s

We now proceed with the proof of Proposition (3.4.8). First we show that * is continu-

ous on xI,(x)-0). Let x be such that (x)-0. Define y' byy;-x + -- for each i.
ft

Claim (3.4.10)

OWy)- 0 as n--o.

Proofse Claim (3.4.10)

If this were not true, then for some > 0 we could extract a subsequence y' such that

a(y'h) E for all k. By Lemma (3.4.9) it follows that, for each k,. ( %Y) (,(ya '). Thus

((@{y)] is contained in a compact subset and therefore has a convergent subsequence. (We will

not change notation for the subsequence.)

Hence for some p > 0 we, have that

Y (3.46)*(),") ,.p

But Y EL foreachkandsinceLI is dosed thimeans that fEL too. But then R(x)

would meet L implying that #(x) > 0, a contradiction. The result foilows.u

A-\r
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Now let Y E B,(x) w R".. By Lemma (3.4.9) we have that q4(y) < S(y") for each n. By

Claim (3.4.10), it is now easy to deduce that * is continuous on (x I q, W) 4 0).

Let us now turn to proving that is continuous on Ix I qs (x) > 01. Define z" by

x,-- f1  >

-" 0 otherwise

To faciltate the proof, we first make two simple claims.

Claim (3.4.11)

Va >0 eventually 1k(y") <i#e(X)(1+ 0).

Proof of Claim (3.4.11)

As before, if this were not true we could extract a convergent subsequence such that for

some p > 0

Ik X

1 . 1 1,()

p *(x)(1+a) #(W)

"Again, E L. Since 1 < ! we contradict the definition of #(x). The result foliows.i
p P #(W

Claim (3.4.12)

a 5> 0 eventually*k(,') >* (Oc(l-a).

Proof of Claim (3.4.12)'

If this were not true, !-en we could find a subsequence {z"**., such that

# ,(z') W(x)(I -a) for each k. It is a simple general fact that ify 4 x with y,-0 if and only

-" '°'• -' '*. . . ' '.. . . . . .." o" " •- .. . ,. . . . . • , o* , , , • •
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if x,-0 then R (x) n L ;e 0 implies that R (Y) fl L #0. From this we can now say that'

0 < ,(z"') 4 *,(zk) i,(x)(1-a), Vk.

As before, extract a convergent subsequence so that for some p > 0 we have that

"*(z"k) p #(x)"

Since zz is in the boundary of L for each k (which is closed) then -_ must be in the
•, (k) P

boundary. But by (3.48) this is clearly not the case. A contradiction is reached thus prcving the

claim.1

Let a>0. By Claims (3.4.11) and (3.4.12), we can find n(a),m(a) so that

*(yR(D))<qo(x)(l+a) and #(z'"(a))>*(x)(1-a)Y Let N(c)-max(n(a),m(a)). Let

hER I (x)fnR.. By Lemma (3.4.9) we have that
N (a)

W 0 )(--a) < 10(ZM ()) 4 t(h) 4 t(yNs)) < W( )(+ a)

Therefore 1#() -(x) i a#(x). As a is arbitrary, it follows that is continuous on

(x I W(x) > 01. Hence, , is continuous.!.
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4. APPLICATION OF THE GENERAL MODEL TO MULTI-PROJEL"T RESOURCE-

USE PLANNING

In this chapter, we use the general model as a tool to provide a systematic analysis of a

heuristic solution proposed by Leachman and Boysen [19831 for the problem of multi.projec,

resource-use planning for a multi-project production system. The problem is to determine explicit

resource allocations through time to projects to insure that schedules are met. Our systematic

analysis not only provides a logical foundation for their approach but also shows how their

approach can be extended and improved. More importantly, the analyses -carried out in this

chapter illustrate the value of using a general conceptual framework of a production system to

evaluate proposed heuristic solutions to production planning problems.

4.0. Introduction

A multi-project production system G is a production system comprised of a number of

single-project production systems G1,G2, .... Gk each utilizing the same set of system exo-

genous inputs. In these organizations, project managers- are responsible for keeping projects on

schedule and within budget. Without an effective method for allocating scarce resources to the

projects frequent project delays ensue. Such delays could be avoided if an effective method for

multi-project resource-use planning were available; that is, a method for determining *explicit

resource allocations to projects through time to insure that schedules were met.

Traditionally, decision support systems for multi-project planning develop resource-

constrained schedules of the activities within each single-project production system by treating

the multi-project system as if it were one, large single-project system.1 In our model of a

single-project production system (see Section 2.3.4), once the schedules for the activities are

determined the resource allocations for the activities and hence the resource allocations to the

projects are determined. The problem with this approach is twofoldk first, developing resource-

constrained scheduling of the activities for tar sinle-pr.ct production systems is

See. for exampie, Kunulus and Davis 11921.

. -
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computationally unattractive; second, higher-level manage' -ent is not responsible for detailed

scheduling of iudividual activities. For similar reasons, 't if also ujsatisfactory to approach the

problem by determining resource allocations to the activities. A new approach is needed.

Leachman and Boysen in their 1983 paper, *An :,.ggregate Model for Multi-Project

Resource Allocation," present a novel* approach to solving the problem of multi-project

resource-use planning.2 The general idea is to combine activities in each single-project produ,.-

tion sy-stem into "aggregate activities" and then allocate resources to the aggregate a.tivitie. It is

envisioned that the allocations of resources to the aggregate activities would serve as rcsource

constraints &or the resource-constrained scheduLng to follow. For the method to work the

choice of allocations to aggregate activities must insure that the set of schedules consistent with

the allocations includes schedules which are on time and within budget.

To develop the general idea of aggregation, let G denote a production network associated

with a single-project production system. When activities are combined into asregpte activities,

an "aggregate production network" Q' derived through structural aggregation from G is created.

Definition (4.1)

A network (' with M nodes is said to te deriwd through svuctual aggregation from a net-

work G with N nodes if G' is acyclic, directed, and with the following Propeny: there exists a

surjective map #: (1,2. N}{1,2. ,M)'such that arc (ij) is in G' if and only if there

exists an arc (k,l) in G with kE,'(i), IE,-a(I)

For example, Figures (4-1a) and (4-1b) show two detailed subnetworks G, and G2 associated

with a single-project production system. The circles indicate which activities have been com-

bined inte aggregate activities. The resulting aggregate subnetwerks G', and G2 of ,he aggre-

gate produc:ion networks derived through a, structural aggregation .re shown in Figures '(4-1c)

and (4-1d). Note that Figures (4-ic) and (4-1d) are identical. This example shows thai, two

See ,ao La a a oWBO Y=1921.

>........................... *'*** . . .
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/00-
aa b

(a) Detailed Suhnetwork G1(b) Detailed Subnetwork G2

S(c) Aggregate Subnetw•ork G'• (d) Aggregate Subnetwork G'

1 2

.* FIGURE (4-1)

EXAMPLES OF STRUCTURE 1fl4DERLY INC AGGREGATE SUBNETWORKS

c 2~

a\4\

' ~ ~ ~ ~ a De ai e "i n tw r G (b' 
"De-"-"t"-"a.led". 

S.u.b.net""work'.'''.',.. .G.. .2• ." .,,-. .. .'
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aggregate production networks may be identical but the underlying production networks from

which they were derived may be fundamentally different.

For this example, it is intuitively clear that the choice for resource allocations to aggregate

activities B and C (in G', or G'2) should be dependent in some way on the choice for the

resource allocations to aggregate A. Since G, is fundamentally different from G2, it is also

intuitively clear that the dependence between choices for resource allocations of aggregate

activities A, B, and C in G', is different from the dependence between choices fcL resource

allocations of aggregate activities A, B, and C in G' 2. Essentially, Leachman and Boysen's

method for determining resource allocations to aggregate activities to facilitate scheduling of the

activities is a method for moel-ing the dependence between the choices for resource allocations

to aggregate activities. The example hopefully motivates why the production network and the

aggregate production network must both be considered when developing a method for modeling

the dependence between choices for resource allocations to aggregate activities.

In their paper, Leachman and Boysen give an example of a subnetwork G1 of G and a

subnetwork G', derived through structural aggregation from G1 for which it would be difficult

to model the "dependence relationships" between the aggregate activities in G', so as to facili-

tate the detailed scheduling. Hence, they present only those subnetworks G, and G', for which

they could model the dependence relationships using linear constraints. They then formulated a

linear program to accomplish the multi-project resource-use planning.

The ideas presented in Leachmnan and Boysen's paper are novel, innovative, and intui-

tively appealing. They recognized that dependence relationships between aggregate activities

exist and that modeling these dependence relationships is intimately related to the structure of

the subnetworks at both levels. The fundamental problem with their approach is that is does

not present a methodoloty for ittacking the general problem of how one should model the

dependence relationships for an arbitrary subnetwork. Furthermore, certain modeling tech-

niques were employed but were not adequately justified.

" ., .. . . .. '. . .. .. . . . ..... -.. .. , . . ..I . . . . . . . . . . . , : . ' .
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In this chapter we use the general model as a tool to provide a systematic approach to

analyzing how one should model the dependence relationships. To a lesser extent, our sys-

tematic approach provides a mathematical basis for accepting some of their modeling tech-

niques. The approach, being structured and systematic, enhances clarity and thus provides valu-

able insight into tlheir approach. To a larger extent, our systematic approach provides the

means for modeling dependence relationships for a larger class of subnetworks. Furthermore,

for one important class of subnetworks, our approach differs substantially from theirs. For this

class of subnetworks, we feel our approach is more sensible.

The key idea to developing a systematic approach to modeling the dependence relation-

ships between aggregate activities is to realize that Leachman and Boysen's approach for multi-

project resource-use planning is a production planning technique for an "aggregate" production'

system (albeit, a conceptual one). As mentioned in Chapter 1, to do production planning for

an (aggregate) production system the input-to-output transformation must be modeled for the

(aggregate) production system. Our systematic approach begins by assuming that the correspon-,

dence which defines the input-to-output transformation for the aggregate production system

satisfes the axioms in Chapter 2. This assumption implies that to model the input-to-output

transformation the flow types associated with the aggregate production system must be modeled

(i.e., one must model the aggregate production functions, the intermediate product transfers

between aggregate- activities, and the applications of system exogenous and intermediate pro-

duct inputs to the aggregate acivities). Once the flow types have been modeled, the set Z of

feasible choices for the allocations of resources to the aggregate activities has been determined.

Since the set Z determines any dependence between the choices for the applications of

resources between aggregate activities, if we provide a systematic approach to modeling the flow

types then we will have presented a systematic appr,,ach to modeling the dependence relation.

ships.

To develop models of the flow types associated with the subnetworks to be analyzed in

this Chapter, we first delimit the class of aggregate production networks that we will analyze

" "" " " """- ... "- • " " ," " • *" '" ":' ",. . " '. .," ". " 'p' .', '.<."." '*; .- '-'-" . .... ,. .. •,,-'-. • " .,. '. ..
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(Section 4.1). The definition of this class will allow us to define an induced operating in:ensiy for

each aggregate activity. The induced operating intensity will be a weighted average of the indivi-

dual activity operating intentities and will have the interpretation of measuring the "progress" of

an aggregate activity.

In Section 4.2, we present two, classes of subnetworks for which we develop models of the

flow typef. associated with the aggregate activities within the subnetwork. In a manner similar to

how the flow types were modeled at the detailed level, the flow types for each aggregate activity

will be deterniined by the induced operating intensity. By an analysis of the inventory balance

constrainws associated with the flow types at the detailed level, the flow types so modeled will be

shown to be consistent, i.e., they satisfy the appropriate inventory bei.nce constraints, and rea-

sonable, i.e., the set Z induced from the models of the flow types contains collections of alloca-

tions to the aggregate activities which insure that there are schedules for the detailed activities

consistent with the allocations which are on time and within budget.

The models developed are determined from the indued operating intensity. Hence, they

are, in effect, dependent on the knowledge of the schedules for the underlying activities. To

allow the models to be Opendent on such knowledge would deary defeat Lhe purpose of aggre-

gation. Thus, as an absolute necessity, the models constructed must be independent of any

knowledge of the schedules for the underlying activities and therefore cannot be determined

from the induced operating intensity.

In Section 4.3, we abstract from models of the flow types for the-subnetworlc analyzed in

Section 4.2 to obtain models for flow types which are indepeadent. This is done by 7,jodeling

the domains of the induced operating intensities. Functions belonging to these domains are.

referred to as aggregate operating intensities and are not necessarily induced from a schedule for

the underlying activities. Hence, the models of the flow types given in this section are

"independento from the underlying network. It will be shown that these models are "reason-

able.' The definitions of the models given in Section 4.2 sve to motivate the general

definition for the aggregate network.

• ....• .' ,.. • . *.. o .•......".. .- .,. ."• .. .. ,; . ,.,"...,.,",. -,....... ...-.. . . . . . . . . ., . ° . .. . .. ., . •+ .-.



93

In Section 4.4, we introduce the technique of replication of detailed activities. This tech-

nique will enable us to identify classes of subnetworks which are, in fact, equivalent to subnet-

works already analyzed. Two additional classes of subnetworks are analyzed through this tech-

nique.

In Section 4.5, we present some concluding remarks. We show how the models of the

flow types can be approximated so that the constraints which define the set Z (of feasible allo-

cations to the aggregate activities) are linear. We then point out how a Linear Program could be

formulated to accomplish multi-project resource-use planning. Next, we give an examole which

shows that the models developed in Section 4.3 need not be *consistent.' The example points

out the need to further restrict the domain of the aggregate operating ,inti..nsitics. We also point

out how the anEJyses carried out for the specific classes of subnetworks treated in this chapter

can be extended for wider classes of networks. Finally, suggestions for future research are pro-

vided.

o. . -o •'
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4.1. The Operating Intensity of an Aggreate Activity

In this section, we delimit the class of aggregate production networks G' that we will

analyze. Within this class we can define an operatir~g intensi•y for each aggregate activity. The

operating intensity will be used to define the domains of the applications of exogenous resou-ce

flow types (the y,'s). In a manner similar to Section 2.4.4, we will also use the operating inten-

sity to define the domains of the other flow types.

Notation

To differentiate between activities at the detailed level from those at the aggregate level,

we use lower case letters (p(,ssibly with subscripts) to denote d-,tailed activities and upper case

letters (possibly with subscripts) to denote aggregate activities. The symbol which denotes an

aggregate activity will also be used to denote the set of detailed activities within the aggregate

activity.

The class of aggregate production networks that we will analyze must first satisfy the fol-

lowing property.

Property I

For each' aggrega:: activity A, there :xist numbers aA4, I E A such that if • bk, > 0 for
lEA

some k then

bk,aAl - b'kj I • k n . (4.2)

'(A,

Property I insists that each detailed activity within an aggregate activiy nvmu utilize the same

percentage of the total amount of each resource required to complete all of tfhe activities within

the aggregate activity.

The Application of System Exigenous Resources

. .'.'. " %...... .. :..* ......... " ,. ..
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Let S denote a feasible schedule of start-time for the activities in G and let A denote an

aggregate activity in G'. The application vector of system exogenous resources to A is easily

seen to satisfy

YA Y1* , bkjZ,. (4.3)
MEA IEA

(The last equality holds by (2.45). The definition of zisis given by (2.56).)

Definition (4.4)

The induced operating intensity for A 'derived from S, denoted by zs, is given by

dS EiVZAIZI.
1EA

If we let

au- bk (4.5)
lEA

then by 4.3-4.5 it is simele to verify the identity

J- .,,z2. (4.6)

Any application vector of system exogenc s inputs at the aggregate level satisfies the form

given in (4.6). This is precisely the usual restriction imposed on the application vector of sys-

tem exogenous inputs imposed by DLAAM (see Section 2.3.1). The interpretation of z! is that

the f zsdd6 expresses the fraction of the total resources required to complete .all of the detailed

activities within A up to time r. In effect, z! is a way of measuring the p,,gress of A towards

completing the detailed activities within it.

Finally, in order to insure that the, fow types at the aggregate level are not already deter-

mined it is necessary to insist that the class ,of aggregate production networks that we will

analyze satisfies the following property.

• ' •i .:i•'-.! +-•'.-..?+'?i ?.:-,':",-?,?•:•/:-• ?i~i'•:•. ?•-. ,?i??i..'•.:,'..?:'.i! ................ Y..."-.-..,-......"..-..-.......-..........,..-....
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Property II

For each aggregate activity A, z1' z.

We insist on Property 11 because if zj, the induced operating intensity ,erivecd from the early-

start schedule, were equal to zk, the induced operating intensity derived from the late-start

schedule, then clearly all flow types at the aggregate level associated with A would be deter-

mined.

,'-,.•. •.... :,-,-..-,,-. ,,-,.'.'..,•.- •- .,..- ..- ,.•,....",.-..•..,.,, ,-..;,.-..-,°-...,..-.• ..-. ,.-...-.".."..'....-.....-....- -..-..-..-....-.....-
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4.2. Developing Models of the Flow Types From the Induced Operating Intensity

In this section, models of tihe flow types associated with two classes of s,'bnetworks, the

Parallel A :B Subnetwork and the Parallel A :BC Subnetwork, are provided. The models of the

flow types cre shown to be consistent and reasonable as defined in Section 4.0. The models of

the flow types will be determined by the induced operating intensity which "ilso determines the

application vector of system exogenous inputs to an aggregate activity.

4.2.1. The Parallel A :B Subnetwork

The Parallel A:B Subnetwork is shown in Figure (4-2). Here, detailed activities

n*a2 ... aOM are aggregated into aggregate A and detailed activities bl,b 2,..., bm are

aggregated into aggregate B. 'In the aggregate subnetwork, there s.uld be one arc from A to

B.

In order to present our models, we first make two definitions.

Definition (4.7)

Let A denote an aggregate activiwy in G'. The set, of induced operating intensities for A

derived from the set of.feasible schedule of start-times for the detailed activities within A, denoted by

ZA, is defined by

T .zA L.* (• ) 3.a feasible schedule S such thatz- ZA - aAIZI}.

Definition (4.8)

The Parallel A :B itermediate product transfer functional is a map

f,:': Z., x x Ze., - Z8 defined oy

UIA:I&.,,, ..... ,z Y - (3h .,(Z).
I-i

....................................... ...............
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0-0

FIGURE (4-2)

THE PARALLEL A:B SUTBNETWOP•O

. .!
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See (2.45) in Section (2.3.4) for the definition c" the function fa, (2a,)-

The models of the flow types associated with the Parallel A :B Subnetwork are determined

by the induced operating intensity in the following manner. If, fo& 1 < k < ,7,

M

k

YA avzA where zA - e'Zaloz

Yj - ajza where zp• ,,,
I--i

then the flow types FA (YA , WA )VAB, and Wg associated with the Parallel A :B 3ubnetwork are

modeled by

M

i- I ,

M..

- .GBbza, (Z., 2.46)

VAB "fA:B(z.. .... ,,) (4.10)

M
- d aBb~f.,b (by 4.8)

M

Q- Vi.Ebe (by 2.51)

WO aft, Wb (4.11)

C. Bb, Z, (by 4.4)

i-I

_... __. __.. __._-...•.. , . . . -. , . . . - . . . . .. . . . . . . .. .. . . .. ... .. , .....
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It is clear by definitions 4.9-4.11 that we are assuming that only one intermediate product is

being "sent" to B. To assume that M products were being produced by A and sent to B would

defeat the whole point of aggregation. One would simply define, for k - 1,2 . M,

FA (YA, WA) FakYkWt J',.wa - fo. bko,.Wo) i!

V kB " b° , (Z,, ) -":i

which is just another way of describing the flow types at the detailed level.

We now argue that the models of the flow types defined in 4.94.11 -re consistent and [.

reasonable. For the Parallel A :B Subnetwork, there is only one inventory balance constraint

relevant to A which must be satisfied,

J(FA (YA, WA) VAB)dIL > 0, Vr E R,. 1  (1.12)

Fix z, E Z,, i- 1,2,... M. Substituting in (4.12) the defnitions for FA (yA,WA) and VAB we

obtain that, Vr E R,,

f(FA ?A,Woo)- VAB)dA a BbF.M, 0o,.W.,)- aRV.,b, d

0 fo

= tBb.f iF.,(.,,W.,) V.. ,Wd)
,- 0

o0.

The set on which &re integating includes the endpoints 0 and ,.
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Thus, we have shown that the models of the flow types FA (YA, WA ' and VAB are consistent.

For the Parallel A :B Subnetwork, there is only one inventory balance constraint relevant

to both A and B. This is the constraint

foVA,- W~dAL > O, Vr E R+. (4.13)

Substituting in the definitions for VAB and WB into (4.13) we obtain that, Vr E R+,

I V

f0 f01
"f 1Va,b-,-Zb,Id;L

>• 0. (4.14)

Constraint (4.14) imposeý a restriction on the choices for the induced operating intensities for

A and B. Since the cho ces for- the induced operating intensities for A and B determine the

application. of system ex enous inputs to A and B. constraint (4.14) is the model of the depen-

dence relationship between A and B for the Parallel A :B Subnetwork. Thus, the question of rca-

sonableness of the mod s of the flow types for the Parallel A :B Subnetwork reduces to the

question of how reasona le is (4.14) as a model of the dependence relationship between A and

B.

At the detailed 1ev , M inventory balance constraints

0V.,j,--b dj& ;0, V- R+, 1-I,2. M

I ,
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insure that the star-times for b,, i- 1,2, .... M, are consistent with the finish times for a,,

-1,2. M. At the aggregate end, only one inventory balance constraint (4.14) exists to

constrain the possible start-times for b,, i -1,2, . . M, given the finish times for a,,

"i- 1,2. . . (as reflected by zA ). Hence, with only one constraint it will not be possible to

model the dependence relationships exactl. But, for our models of tht flow types, it is

immediate by (4.14) that, for a fixed zA, all zg's whose start-times for the b,'s are consistent

with zA do satisfy (4.14) Thus, our models of the flow types are "reasonable' in the sense

described in Section 4.0.

We make two comments about the subnetwork just analyzed. First, this one example

illustrates that modeling the so-called dependence relationships between the applications of sys-

*l tem exogenous inputs to aggregate activities is encompassed by modeling the flow types associ-

. ated with the intermediate product transfers between aggregate activities. Second, for the sub-

network just analyzed, th2 production function FA (vy,WA) was not equal to the induced

operating intensity zA. This differs from the detailed case where F, (y., W.) -z,

S, 1,2, . M...

The reason why we cannot model FA (Y•A, WA) as zA is because zA is a measurement of the

rate A utilizes its resources, not a measurement of when the activities within A have been

completed. To illustrate this point, consider the following example of a Parallel A :B Subnet-

work with 2 activities:

(a) the duration of each of the 4 activities is one period,

(b) a., a@b .05 a,. ab i.95,

(c) z, 1- (0.1) s Z*2  1(23) .

Suppose FA (YA ,W ) were modeled as zA. In this example at r-2, ZA tells us that A has com-

' pleted 5% of its work. As measured by resource use, this is true. However, at r-2, a1 has

finished and we would desire to allow b, to start. If b, did start at r-2, then the following

.- problem would emerge:

2 2

A (YA, YA)4 - f adI

S0.. 0........ ...... ...... .....
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"* .05

2 2 2

> VA d,.L > f B zdjit- (a Bb~ +(z Iajb 2Zb2ldAL

- .95.

So, for no choice of VAR would it be possible to begin bI at time r - 2. This eliminates a possi-

bility for b, which is not desirable.

4.2.2. The Parallel A :BC Subnetwork

The Parallel A :BC Subnetwork is shown in Figure (4-3). Here, detailed activities

aja 2, aK, + .... , am were aggregated into A, detailed activities b1,b 2, ... bK were

aggregated into aggregate B, and c1,c2, .... CL were aggregated into aggregate C.

The flow types associated with the Parallel A :$C Subnetwork are FA (YA, WA), YAi • VAc,

WS, and Wc. The inventory balance constraints associated with these flow types are:

(fFAYA"W'WA-(VAs+VcA)) d#&• O, Vr'ER+, (4.15)
0

1 foo VAR V - WldA > 0, Vlr E R+, (4.16)
o0

S{ ,AC- WCldIL >. 0, Vr" f R+. (4.11)

Our analysis of the Parallel A :B Subnetwork motivates the following sunweue for the mcdels of

"the flow types:

* .For some d', ER+, d2 E R d, d+d,-1, if, for 4 k 4 R,

M

JtuU :A f(CC 2.4am fZe,

"p. %s
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THE*PARAL EL A:BC SUBNETWORK
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K
yj akBzB for, z - a B,zb,

I-|I

L

y- - akczc for zc - _ac z,

then

FA (YA ,WA) d dI aa bz4, + d a{ccZa,÷/+ (4.18)

VAR - d klaab fa,(.,Z)b (4.19)

VAC d2j aCcfa+,÷b A(z÷) (4.20)

W . djz5  
(4.21)

We - d2zc. (4.22)

It is easy to veiify that the models of the flow types defined by (4.18-4.22) satisfy (4.15.4.17)

and thus are consistent.

Let A1 denote the aggrepte activity comprised by a01,2 .. a4K and let A2 denote the

aggregate activity comprised of ax+. ..... aM. If FAs (y.A, WAJ), Ji 1,2, is defined by (4.9) and .......

f.4,8 f, 2C are defined by (4.8) then (4.18-4.20) become

FA(yA, W) - dFA (y ,IA1) + d2FA (4.23)

VAR - dlf,:a&.t ..... ) - d, VA :- (4.24)

VAC - djfA2 :C((,x 1# .... ,Z,.m) d2 VAC (4.25)

What 4.23-4.25 show is that the Parallel A :BC Subnetwork (K + L - M) is, in effect, a combi-

nation of a Parallel A I:B Subnetwork and an Parallel A 2:C Subnetwork. What 4.23-4.25 also

I.. -'
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shows is that it is not possible to arrive at independent models for the flow types VB and VAC.

This is because VAB (VAc) it determined only from the zA1 (ZA2) part of zA. Hence, we will

model this sum VA - VAR + VAC. It will be convenient for later purposes to introduce the fol-

lowing definition.

Definition (4.26)

The Parallel A :BC intermediate product functional is a map

fA:BC: Z., X ... X Z,, -- dZaB + d2ZC- d +za + d2zc zR E ZB Zc E Zc

defined by

fA:BC(z,. ....... m) -dA % .z.. , z.)" d2fA 2 C(zdl+ 1. z.. )

Of' Juls5, VA - fA:Bc(2. . ... )

The inventory balance constraint associated with VA, WN, and We is

0 O4f V 4-(WA+ Wc)idl&, V ER.,,
0

which reduces to

1.0 f d AB( ..... z,,) - z)+ d2VA, :c(;.,+,i...s zu-z. dj. (4.27)

0

I ., r ZA. It is immediate by (4.27) that all start-times for b 1 ..... bK, cl, ..... CL which

are consistent with the finish times for a,, ... a'm satisfy (4.27). Hence, our models of the

flow types are "reasonable in the sense described in Section 4.0. The appropriate choice for d,

and d 2 is deferred until the next section.
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4.3. Constructing Independent Models of the Flow Types

The models of the flow types in the previous section were determined by the induced

operating intensity and hence were not indepenC-ent. To construct independent models, we first

model the domain of the induced operating intensity. Functions belonging to this domain will

be referred to as aggregate operating intensitie;. The models of the flow types provided in this

section are determined from the aggregate operating intensities.

4.3.1. Constructing the Domain of the Aggregate Operating Intensity

L_., A represent an aggregate activity. As notation, let

EA min El, LA -max L, W, W- EA ,LI ]. (4.29)

IA IEA

(El is the early-start time for activity I and L, is the late-start time for activity I.) It is immedi-

ate by the definition of the induced operating intensity (4.7) that if zA E ZA then ZA would

satisfy the following boundary conditions:

zA is a step-function (4.29)

LA

:fzA d;mL 1(4.30)

dId•d, E W, (4.31)

fzAkd~t qdg ZA_ T. W
A A fA

Let DA denote the set of all functions iks L.' () satisf'ying 4.29-4.31. It is immediate by the

definition of ZA that DA : ZA. DA 'Will be taken as the model of ZA. Functions !*lunging to

DA are referred to as aggregate operating intensities for aggregate A. Clearly, the functions

belonging to DA. are independent (in the sense described in Section 4.0).

- - 5....' 5~*~'... '.v

__ _ _ ' . . . . .' . S* , ' ' .i -l ii ii it Ii -
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4.3.2. Constructing an Independent Model of the Application Vector of System Exogenous-

Inputs

In Section 4.2, yA, the application vector of system exogenous inputs to aggregate A, was

determined by an induced operating intensity for aggregate A, zA E ZA. We will model the

application vector YA in a similar manner. That is, if yA denotes an application vector of sys-

tem exogenous inputs to aggregate A then it is assumed that, for 1 4 k (n,

y- aOAAzA for some zA E DA. (4.32)

4.3.3. Constructing an Independent M-del of VA, for the Parallel A :B Subnetwork

For the Parallel A :B Subnetwork, the intermediate produc; transfer variable VA5 was

determined from the induced operating intensity via the intermediate product transfer func-

tional

fAJ:BZ.1x X ' X Z.,--ZA.

(see (4.8) for the definition of fA:,)., In this section, we will construct an independent model

for VA, which we wi9l denote by V 5n. The essential idea is to construct an f;:B:DA•- D-

which reasonably approximates fA:5 on Z,, x ... x Z,, and then define V; g f; B.(zA) for

ZA E DA.

An inspection of the definition for the intermediate product transfer functional fA:B

shows that it satisfies the foHowing boundary conditions, ¥•a .... 4Z.) E Z,, x . x ZiX ,

and WY E Wg:

L..Lnfh:&,):~..... ,IN)dMs Elm (4..33)

fA:A Q,(4.34)

f. ,:'(L ...... . .)d. 4 fa:(..... d t fJ (4..... )d. (4.34)
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It is also easy tc see that

fA: ..... M) -Z (4.35)

fA:,B.(z., .... z4) -4. (4.36)

Our goal is to construct an J.:/ on DA which' reasonably approximates fA:Re on

Z., x x Z... In view of the definition of DA (4.29-4.31) and the boundary conditions

4.33-4.36, it seems reasonable to insist that f;,.a satisfies the following boundary conditions, V

zA DA, and W WB:

: L O

,g:n(zA)dU-- 1 (4.37)

FA.ffR:(z.L1 .. z.L)dA < ff:aq(zA)djL fA: U(4 .... ,z.1dj (4.38)

which by 4.35-4.36 is equivalent to

fzjdOL ~ f;:B(ZI)di& <.fzfdj

f;:B(U hlfA :W(Z) - (4.39)

f•a(zk) fRL(Z)) zj.

Fix zA E DR. The only real information that we know about zA is given in the boundary

conditions 4.29-4.31 and this is not much. Since f;:A(zA) satisfies 4.37-4.39, an intuitively

appealing idea for the definition of f,:a(z.4 ) is that fR: (ZA) should satisfy the following pro-

perty:

• • . .. :.. .... , .-. . ,, .. -,,-,, . .... :.•.- ... •..- .; , .- ,... -7.-. S • .,.. *• ,*,: .' ..- ; .-. •. -.* .,* . "... . - . ...
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For some p:. W5 - WA, f:A(ZA) must satisfy the following equation:

;fA:B(ZA)--zj}dA(Z _ZA-_d

V7 E WB. (4.40)

4' z- zj) djA I~r VEWdg
4

A map p is required since WB P WA. Of course, to transform the idea of (4.40) into a well-

defined mathematically correct definitica for f;:B(zA) requires us to impose certain restrictions

on p and the right-hand side in (4.40)

To arrive at the restrictions, it will be convenient to introduce the following definition.]

Definition (4.41)

The reiatiw pr•gress functional for an agregate activity A is a map pA: DA x R,4 - [0, 1

defined by

0 if tf W4

PAZ, I n 'ZL I4'AP .. ..I ifIf A Z ; l

I if, C WA, Z. -m

pA (zA,t) is referred to as "the relative proeWss of at time t. "

Let us re-write (4.40) as

f;:AR Q,)dg -zidt + P A(ZA,(A)) (0 zI-:Id•. WE Wa. (4.4

First introducd in Lechman., [oys 2 11"21.

g , -. ,- . . ... ,. .. . . . . . .



Equation (4.42) is an implicit definition for f,:B(ZA). Since indefinite integrals of integrable

functions are absolutely continuous and hence differentiable 2, if p were differentiable then one

could differentiate both si-es of (4.42) with respect to T to obtain a definition for f;,:B(ZA).

The criterion of differentiability on p is not too restrictive. Equation (4.42) and the definition

for PA (A o (0')) suggest that it is reasonable to insist that p should be

continuous and increasing (4.43)

and satisfy the boundary conditions

S(E) -EA, p(LB) LA (4.44)

If so, then p would be automatically differcntiable. 3 Hence, to complete the definition for

f :B(ZA) as given in (4.42) and hence V 5,g it is sufficient to select a p which satisfies 4.43-4.44.

A natural choice for p which does satisfy 4.43-4.44 is to insist that

p(7)-EA -- E&
LA- EA Lp - E' Ws

which re-written becomes

(LA -EA)

p(r) - EA + (L,"E,) (- E.), Vr fE Wp. (4.45)

However, this wili not be a good choice for, p. To motivate why, consider the special case when

LA - EA -L& - E,. This would occur, for example, if the detailed activities within A and B

had equal durations. Under this special case, (4.45) reduces to the requirement that

p(r) -EA (,r- Ea) r - (Es- EA) , 'WE E WV.

2 almost everywhere.

SSee Royden p.96

X, ~vV~-~-.-- .~,.~..***.',**. ".'. .
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Hence, p would be a simple time Irg of lngth EB - EA. Since the d-finition for. p as suggested

in (4.45) does not in any way consider the boundaries z4, 4•. zj, and zj, it follows that under

the special case cited above, p would always be a time lag lengh E,- LA regardless of the

bouncdaries. In general, the boundaries z4 and z4 are not determined from z4 and z4 by a sim-

ple time lag. Thus, (4.45) should not be a good choice for p.

To illustrate further why the choice for p as given by (4.45) is not a good one and to

motivate our choice for p, consider' the example of a 2-Parallel A :B Subnetwork shown in Fig-

ure (4-4). The dotted line in Figure (4-4a) represents the curve z,, d generated from a par-

ticular zA E DA. The dotted line in Figure (4-4b) represents the curve. f,,(zA)dM as defined

by (4.42) with p defined by (4.45).

When we modeled VA, in Section 4.2.1, we motivated that it is through the inventory bal-

ance constraint

f {V~ -zl)dg ;P O, V7E W5

that the dependence relationship between the applications of system exogenous inputs to A and

B is modeled. Since we have modeled .Aja by Vn,' it is now through the inventory balance

constraint

Sf:,N(ZA)-zgldjt ;k 0, f WV (4.46)

that the dependence relationship -between A and B is modeled. Hence, for each T W,, the

restriction imposed on the choice for z2 given a choice for zA may be measured by the shaded

area shown in Figure (4-4b). In our example, for any r E Wa, the shaded area evaluated at .

in proportion to the total area evaluated at r is quite smQll. Ihis reflects the fact that by our

choice Of'f:. (2,), i.e., V;J constraint (4.46) is forcing :t to essentially 'run late.* On the
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aJ
1..4

.7. , Duration 5 2

-U . Early-start 0 4

Late-start

L d Resource use Q A& .25 a~ 2 .75
ZAd A A2

o0 1 2 3 5 2 7 9 11 1213.14 5 17 i

(a)

. bi b2l • dIdDuration 9 1

.7.

.5 0al~y-aturt S 6

.5 Late-start 610
.4Lesource use, 10 Bb -. 90
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FIGURE (4-4)

EXAMIPLE OF INTERMEDIATE PRODUCT TRANSFER CURVE

DERIVED FROM A SIMPLE TIME LAG

:'.t". ._. .. .'• " .. . . . .. . . . . .. . ..
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other hand, an inspection of Figure (4-4a) reveals that the shaded area e-ýaluated at p(7) in

proportion to the total area evaluated at p(-r) is fairly large. This reflects the fact that ZA is

essenjially "running early." So what we have is that 7A is "running early" but we are constraining

zE to run "late".

Based on this one example, let us insist that regardless of the choice for p, f;:I (ZA) must

satisfy the additional property that the shaded areas normalized by the total areas, evaluated at

the corresponding points in time, are equal. Mathematitally, we are insisting that f,:B(ZA)

satisfies the following criterion:

A 'A

"v p(v) , E W. (4.47)

ffzf-:-)k A& Z A)d;L dic
-FR •' A "A

It will be convenient to introduce the following notation: for an aggregate activitz 4,

hA (X) f(Zk)d;&. xER+ (4.48)

(Note that hA(x)-hA(LA),VY LA.)

Re-write (4.47), Vr E WB, as

•hD (Wde pA (zA~xhAW8 ~ fhZA dxAf&C( .. ..... (4.49)

"j:f n (zA)d/. dx -f A r, )

Propostdon (4.3.1)

%V

• ..... ~~~~~~~~~~~~~~...---.......-..-.-.-..."..-.-....-....%......•..-.. -..•-.. ... .,-,.'.,.......,.....~<*.,*.....-.......-.,
† † † † † † † † † † † † †
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If YzA E DA JIg:(zA) is required to satisfy (4.49) for some p satisfyiag 4.43-4.44 then
Jf;:B( Q) satisfies (4.42) VzA4 E DA for the same p if and only if p is the (unique) solution to the

equation

SW h(x) hA (x)x

" n(L 5 ) " hA(LA) , Vt E WB. (4.50)

Proof of Proposition (4.3.1)

Suppose VzA E DA and for some p satisfying 4.43-4.44, f;:B(zA) satisfies bcth (4.42) and

(4.49). Differentiate each side of the equation (4.49) ith respect toa to obtain the equation, V

-7E WaVZA EDA,

hi'..h(x)dx

f;fia(ZA)dg~ zkdlA + pA QA ,(P (0))hA (P (T))pW (7)

""fhA ( xdx

p(,) ha UfhA(x)dx- hA (P())p'() ha(x)dx

"+ PA (zA Vx)hA (x)dx [f, (,) ',(4.51)

Since f5:B(ZA) also satisfie (4.42). if we sabtac.(4.42) from (4.51) and rea.range tems we

obtain the equation, Vr fc WO, YZA E DA,

PAfhAXxA xdxSO heB (,r)-h , (p (r))p'()' PA (,,(P (4.52)

4.4 (~dx h Wdt
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" Since hA (x) > 0 (except at x -EA) then it is clear that
," v)

PA (ZA ,x)hA x)d

PA,(ZA,P(t)) p(?) 0, VrE WB (4.53)

4hAx d&r

PA (zA ,x) is strictly increasing. Clearly, DA contains ZA's sticb that PA (ZAx) is strictly increasing

(by Property 1, Section 4.1). Since (4.52) holds VzA E DA and since the expression

- A-" v)p(v hA(x)IrtxShA (10 - hA (P (r))P'(7)

,; ~hA (W),

TA

is independent of zA, it follows by (4.53) that

0- h- () hA (P r)(

:kA (x)&c

or, equivalently,'

hE) we. (45(p4))p'("))S' ; " ,-(,) .... , V E W3 ,(44

jh a(x)dr .fhA ()-df

*: Since

ho (7) d d* w

.jnfh.(x,, j. .i .
dr

* hg W d*" r .¶,.RS,..*.•) ** . .*S •*.,-..*~*~ *****~*,.**
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hA (Pr) ) d & ITT, - iln AhA (X) ,V'r E WB
rh (x) 1

W

then by integrating both sides of (4.54) we obtain the equation

fhB(x)dx c.f hA,(x)&c, V E Wg, (4.55)

A

h8 (L,)

for some constant c. Evaluating (4.55) for i.- L8 shows that the constant c equals hA (L)-- '•

Thus, p must satisfy the equation

hB (x)dx hA(x)dx
"h,(La) - A "h( , ..,,

which proves the desired result. 0

To prove the converse direction, suppose p satisfies (4.50). Clearly, p is continuous,

increasing, unique and satisfies p(E,)-EA, p(Lu) LA. Since p satisfies (4.50), (4.49)

becomes, V•tE W5 ,

s x'd hL 4PA (ZA A)hA (x) d

(AAL .. . (4.56)

Differentiating each side of (4.56) with respect to t we obtain the equaton, Vt f We,

f;:(2,)d,- zidst + h P(LA) (Zj$(7))hA W(T))p'(r)" (4.57)

, ~~k MI 5',',
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Differentiate each side of (4.50) with respect to r', we obtain the identity

h, (L-5)

hB(r) hA (LB) hA (p(vr))p'(,r), VrE W- . (4.58)

I Substituting (4.58) into (4.57) we have that

f;:B(zA)dA " A +d PA+P (zA P(0)) ff'-zjld.t, w'C'WB

which is equation (4.42). This concludes the proof.m

Our model of VB is now complete. We define f:..(zA) implicitly by. equation (4.42)

with p chosen to satisfy implicitly the equation (4.50) and then set V;--fB(ZA). As a result

of this choice for f;:a(zA ), we know by Proposition (4.3.1) that it also satisfies (4.49).

We make one final comment. Consider the restriction imposed on the choice for z5 given

a particular choice for ZA. As we have stated before, this restriction is reflected in the iuven-

tory balance constraint

fzVdo& 4 Vfadi&, Vr f WV. (4.59)

Substituting in (4.59) the definition for V;, we have that, V" E Wg,

• .dsdg 4 V;adA- 4 .f(z4)diL- fzjd + PA,, QAP) -zi zitdi
IAt

or, after rearranging terms,

PI -UPm .0' 4 PA (Z4 ,,o(,0)) (4.60)

. Essentially, Leachman and Boysen's method for modeling the dependence relationship between

A and B for a Parallel A:B Subnetwork was to require that te choices for :4 and o 3atisfy

a.

1"
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4w(4.60). '

4.3.4. Constructing an Independent Model of VA for the Parallel A :BC Subnetwork

For the Parallel A .BC Subnetwork, the intermediate product transfer variable VA was

determined from the induced operating intensity via the intermediate product transfer func-

tional

fA:c: Z., x ... x Z.,- d1ZM+d2ZC

(see 4.26 for the definition of fA:ac). In this section, we will construct an independent model

of VA which we denote by V;. The essential idea is to construct anf,;:Bc: D.A - dDg + d2DC

which reasonably approximates fA jc on Z,, x ... x Z.A and then define VAifA:IC(ZA) for

ZA E DA.

An inspection of the definition for the intermediate product transfer functional fA:,C

shows that it satisfies the following boundary conditions, V(z. ... .Z'M) E Z., X ... X ZA,,

and min(E,,Ec) 4 r 4 max(L 5 ,Lc),

UDB/1 a.Lc)

J f*.c U, (4.61)

t V)

fA:C(:Ll, xfmd;L14 fA:B(14...u z.'v)djt

C)(.

For notational convenience, let EKc-min(EE<) 'and Lwa-max(L.Lc), and

W - EscLf), It is easily verified by the definition of/A:KC that

/,:D (z.... ) djnh+d24 (4.63)
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fA :N (Z.E, ... Z.E- dI:+ d24

Of course, boundary conditions 4.61-4.62. are exactly analogous to the boundary condi-

tions for fA.B given in 4.33-4.34. Based on the motivation and explanation provided for the

development of the definition for f;:B, we define f;.:X implicitly by the equation, V7- E W2c,

f f .BC (ZA )du •f A:BC (ZA , dtA +t PA (Z• "P (7r) ) VA:D{ C ('A -hf & (ZA •'.'#
ffac zAad I ffA.izcd

-f(djzj +d 2Zbl dIA + PA (ZA P ())f(dj(zf-zI)+d2(zj-zý))dAL

for some p:.Wac WA which satisfies

p (Eod EA, P p(K) LA

and which is

continuous and increasing.

Analogous to the additional requirement imposed on fg: (see 4.49), We us insist that, V

IA E DAI f;, D also satisfies the equation, Vi' E Wk,

{ ( (ZA - 'A'dus d r(jz-J+d(j 4)j

SCIJ
By a proof similar to the proof of Proposition (4.3.1) it mnay be readily verified that p must

satisfy the equation

f (djhs W)+ d2hC x))dt 4hiAxWdr
___..........._____(4.64) .

dlhi(Lg)+ djhC UC) AA (LA)

-- . ..... .. ~....................... .. .. ... ... .... ... ... ... ...
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To complete the moJel of V; requires us to select the weights d, and d2. To motivate

our choice for d, and d2, let us first consider the restriction imposed on the choices for z2 and

:C given a particular choice for zA. As we have stated before, this restriction is reflected in the

inventory balance constraint

(d-zB + d 2ZjdIL 4 VdIs'- f;:Bc(zA)diA, VT E W (4.65)

Substituting into (4.65) the definition for fc(ZA)dgs we obtain, after re-arranging terms,

the inequality

"" IPA(ZAP(0)), V E WxC . (4.66)

I(di(zf-zk) +d2(z4-z~)d;L

(4.66) is equivalent to the inequality

I h, (r) +d; 10

+. d ldh( d() ¢(Zc,2)h V()E Wc. (4.67)

Let A denote the set of activities in A 'which precede the ctivities in B, let A2 denote

the set of activities in A which precede activities in C. and define

EAf

aAA J- 1.2. (4.68)

ICA
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It may be easily dedived algebraically that if zA - zA for some feasible schedule S, then

PA (ZAP() -P CXIAjc (p A ('r)+ W~ () 'PA 1 (
4
1 ,rIC1 , hA (p( 0))

+ aAA oAA h~1(p ( M))+a.dhA2 (p(,)) PA (ZAZIp(0)). (4.69)

To motivate our choice for d, rnd d2, consider the special case when, for some I > 0,

zR() zAE, (7- n- ZAE, (T - Z5 :(7), V? Wj (4.10)

zj(r) -A IJ (r.i - zAL,2(r- - z(,), v'r Ewic.

In this case, an inspection of (4.64) shows that p () -, - I (which is intuitively dear). Furth-

ermore, p(7)-.-l and (4.70) imply that

p(0) - ha(p()) "- ,(p (M,)) - (r),. V'E WI.. (4.71)

Substituting the identities found in (4.69) and (4.71) into the inequality (4.67) gives us the ine-

q wity, Vr E Wx,

0 > {djp(z5,r)-aA,APA,(zA, 0(0)) + d2pc(zc.,?)-ea pA2(zApo(i))I. (4.72)

Since the subnetwork associated with A, and B (resp., A3 and C) comprises aPrallel A1 .:B

S bnetwork (resp., a Parallel A 2:C Subnetwork), it follows from our work for that subnetwork

t at we woui. like to constrain zg and zc by the inequalities

pp (zjr) 4 pA, s, p(0)), CE WMC (4.73)

PC(Z.,) P•,(:sAp(r)), ,r Wjr.
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Hence, if we set

dii - AA, j- 1,2 (4.74)

then any z# E Dg, xC E Dc which do 'satisfy (4.73) will satisfy (4.72). Hence, for this choice of

d, and d 2 (and for this special case), we will not eliminate any reasonable choices for zB and zc.

Therefore, we specify d, and d2 by (4.74).

We make one final remark about the model for V; and hence our model for the depen-

dence relationship between A, B, and C. Leachman and Boysen's method for modeling the

dependence relationship between A, B, and C is to insist that z4, zr, .and zC satisfy the ine-

quality

UaAAPI (z,,pj'(r)) + aAAPC(ZC,P•'(?')) PA (zA,r), r , E (4.75)

where, for i -B,C, p,'0) satisfies

ShA, (x ) dx h (x ) d

4 A
)A(LA) h,(L,)

An inspection of the relationship' between (4.75) and (4.72). reveals that, except for the

'differences in the definition of p(r), Leachman and Boysen's method for modeling the dependence

relationship is our method undr the special case cited above. For more general cases, we feel our

approach is more sensible since it will weight A,1 and aAA2 by time-varying factors. Ultimately,

it will have to be tested to see if it performs better. (See Section (4.5.4) for a discussion con.

cerning testing of the approach for modeling the flow types.)

___.___._____ ?.::....:: , .:o -.:-:.: .-.:.:.:..-.:.:.:....:...:... .:.*..-.:..:.-.:: .:. :.:!. :?. .:,,, ,. .. * : :.'.*'' .*.. * . ... : ......- : ....-. :...:.. . .. *' . , . . , : ': '
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4 A.S. Constructing an Independent Model of the Production Function,

For both subnetworks analyzed, FA (YA , WA ) does satisfy the usual boundary conditions. It

would therefore be appropriate to model it in exactly the same manner as we modeled V;8 or

V;. Since V;, and V; were modeled in detail, we omit the analysis.
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4.4. Analyzing Subnetworks Through the Technique of Replication

In Section 4.3, we developed models of the flow types for the Parallel A :B Subnetwork

and the Parallel A :BC Subnetwork, This section introduces the technique of replication of

detailed activities and uses it to develop models of the flow types for two further classes of sub-

networks. We proceed to develop models of the flow ,ypes for two classes of Non-Parallel

A :BC Subnetworks.

4.4.1. The Complete Precedence Non-Parallel ABC Subnetwork

The Complete Precedence Non-Parallel ABC Subnetwork is shown in Figure (4-5). Here,

detailed activities al,a 2,... am were aggregated into aggregate A, detailed activities

b,b2... bM were" aggregated into allregate B, and detailed activities C,c 2, .... I CM were

aggregated into aggregate C. Let G denote the underlying production system and let G

denote the production network associated with G. We will construct a production system H

which is,, in effect, "equivalent" to G and analyze H to arrive at models of the flow types for

the subieetwork shown in Figure (4-5).

To construct H, let us first construct the production networkH" associated with H:

Step 1: Add nodes a ..12, . a2 to G. Re-label node a, to a,, i -. 1,2, .... M.

Step 2: Add arc (d,a,2) to G" if there is an arc (d,a1 ) in G, i-1,2, ... ,M.

Add arc (a,.2,d) to G" if there is an arc (a,,d) in G, i - 1,2 . M.

H' is the network obtained from G from Steps I and 2. The subnetwork in H which

corresponds to the Complete Precedence Non-Pa"Iael A :BC Subnetwork in G is shown in Fig-

ure (4-6). As notation, we have let the symbol Aj, J - 1,2, denote the aggregate activity in H

comprised of activities auj, -1,2.... M. Essentially, H" is G with nodes at,..... am

"replicated.'

The production system H whose production network is H" is defined as follows:

;-. .< . . , .... . .•.. .. .. ..., ,. .,- -...*......% *, .. . . . .. . ... . . . .. . . . .. . .*. . . .
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c 2

FIGURE (4-5)

THE COMPLETE PRECEDENCE, NON-PARALLEL A:BC SUBNETWORK

p
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(i) The duration and resource requirements of activity aj in H are identical to

the du;ation and resoutce requirements of activity a, in

G, i-1,2 .... M,j-1,2.

(ii) For an activity in H other than some aj,, the duratU3n and resource require-

inints are identical to the duration and resurce requirements of its

corresponding counterpart in G.

(iii) It is required that the operating intensities z.,3 and Z,2 are equal.

-1,2. .... M.

Since the subnetwork pictured in Figure (4-6) is comprised of two Parallel A :B Subnet-

works, it follows that for the production system H, the variables FA,(zA,), F,2(zA2), VA 1 ,,

VA 2c, WB, and Wc are determined from the induced operating intensities zA1 and :A,2 exactly as

described in Section 4.2.1. Given ZA E ZA,, j" 1,2, the restrictions imposed o3 the choices for

;y, and zC are modeled by the constraints

(V4,,,-zB)dl 0, rE WB (4.76)

f(VAc,--z¢]d,)d 0, rE Wc (4.77)

It' ii immediate by our construction of H and (ii) above in particular that ZA, the set of

induced operating intensities for alregate A in G, is equal to ZA j - 1,2, the set of induced

operating intensities for agregate As in H. J - 1,2, when these sets are viewed as sets of func-

tions. If one identifies Z, with ZA,., j - 1,2, then it is immediate by our method for modeling

the intermediate prod..;ct t-ansfers presented in Section 4.2 that

VA." VAB, VAC ",c. (4..78)

Hence, it is appropriate to view aggrepte A in G as producing t"o identical products, i.e., to

%*.*. • * .* - * . * '. ** . .'t . 4 . . .
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define for z4 E ZA

FA(AW) [FTeA w)~y w ) FA, (YA. WA),FA2(YA' A(A A B(A A,6VA, W))I (4.79)

(where FA, is defined by (4.9)) and, in view of (4.79), :o define for zA E ZA

VA5 " fA,:( (2.,.. .. z.,,)-"V , VA C "fAjC (Za 1..... Z,,) "A 2C. (4.80)

The restrictions on the choices for zg and zC given zA would be modeled by constraints 4.77-

4.78 (with the substitution of the ideatities given in 4.81).

Since the models of the flow types determined from the induced operating intensities for

these two subnetworks are identical, it seems reasonable to insist that the independent models

of the flow types determined from the aggregate intensities also be identical. Thus, we define

V;B, V;c, and F; (yA , WA) to be

v;,- v;,

F;(VA WA)U tI(VA WA)F,F2 (YAWA))

The variables F,, (y,,,WA), 1,2, VYIp,g and V; were defined in Section 4.3.2. This con-

cludes our analysis of this subnetwork.

4.4.2. The Patal Precedence Non-Paralel A:BC Subne work

The Partial Precedence Non-Parallel A "AC Subnetwork is shown in Figure (4-7). Here,

detailed activities a, ... aM were aggregated into aggregate A, detailed activities b, .... bM

were aggregated into aggregate B, and detailed activities cl,... CL were aggregated into aggre-

gate C. Let G denote the underlying production system, and let G denote the production net.

work associated with G. We will construct a production' system H which is, in effect. equivalent

•'•..,.•,. .~~~~........ ..... ........ .. - ,.... .•....-....-.. '..9 -. t.*



130

%0-

'02

.1'1

c 2

. LN.-nlV

4~

* ~ ~ .* p ~ *



!/

S 131

IM

to G and analyze H to arrive at models of the flow types for the subnetwork shown in Figure

(4-7).

To construct H, let us first construct the production network H" associated with H:

Step 1: Add nodes a(k,÷)2 ..... aM2 *-o G*, Re-label node a, to a,3,

i-K+tp...., M.

-Step 2: Add arc (d,a,2) to G if there is an arc (d,a,) in G, i-K+1. M.

•' Add arc (a, 2,d) to G"* if there is an arc (aj,d) in G, i .K + 1,... M.

H' is the network obtained from G" from Steps I and 2., The subnetwork in H which

corresponds to the Partial Precedence Non-Parallel A :BC Subnetwork in G is shown in Figure

(4-8). As notation, we have let the symbol A,, J-1,2, denote the aggregate activity in H

comprised of activities a,,, i-K+I... ,M. Essentially, H' is G" with nodes a+I, • am

"replicated."

The production system H whose production network is H" is defined as follows:

(i) The duration and resource requirements of activity aij in H are identical to
r'.

the duration and resource requirements of activity a, in G,r-.

r i-K+1, ... M,j-1,2.

(ii) For an activity in H other than some aij, the duration and resource require.

ments are identical to the duration and resource requirements of its

* corresponding counterpart in G.

(iii) It is required that the operating intensities r,, z*,, are equal,

-. ~i--K+I ... M

It is immediate by our construction 'of H that ZA, the set of induced operating intensities

for aggregate A' in H, equals ZA, the set of induced operating intensities for aggregate A in G,

"and that ZA 2. the set of induced operating intensities for aggregate A 2 in H, equals ZA,, the set

* of induced operating intensities for A1 in G (when all sets are viewed as sets of functions). If

one identifies Z•. with Z. and ZA, with ZA, then it is'immediate by our modeling of the inter.

"mediate product transfers presented in Section 4.2 that, for z, f ZA,

* -,.. . .
S..-... • S " m
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VAB --fA ',.(Z.,- . .,Zet.,..... Z#•v1)

VAC VA IC fA 2:C(ZO* 9 .2.. .ZaM2)

i-K M
FA(YA,WA)" I fZ. + a X CZý,.

i--I i-

Since the models of the intermediate product transfer flow types determined from the

induced operating intensities for these two subnetworks are identical, it seems reasonable to

insist that the independent models, of these flow types determined from the aggregte operating

intensity also be identical. When A2 and A' have been aggregated, the subnetwork pictured in

Figure (4-8) is a Parallel A:BC Subnetwork. From having studied this case in Section 4.3, we

know that while it is not possible to arrive at an independent model for either VA., or VA 2c we

do know how to constrain' the choices for z5 and zc given zA- by modeling the sum

VA U- VAj'+ VA . That is, z5 and zc must satisfy (see 4.67)

d, hB (7)

djhB (r) + d2h-) J-

+ d2i• () lpc(c'r) VWE WBc (4.81)dI ih, (r)+d2/c(v)

where

aEA'dl~ ~ 1 a l,.m•,OA'i

iEA"

lEA2 j

d2 aAA , L Ai

4*A*

" .• •OA,. - . . . .+ CIA 3A,. . . -

aAZ 5+ + O A 2 .4,

-% %r %.- . * . .
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ZA- aAA-ZA',+aA2 A2A 2

and p (7) satisfies the equation, V7 E WK,

(d, x) + d~h Wx)) & rid~hA(x) +d2hA 2 (x)ldx

d1ho (LS) + d I hC ( d,hA,(LA') + d2hA2(LA'2

T (dI x) + d2hA (x)') dx

djhA (LA)+d 2hA2(LA)

Note that if zA--z4 - for some feasible schedule S in H then by (4.69) we would have that, V

C WBC,

pA-(z -p7) dif dlhA.(p(?r);+ dlhA2(p(7))IP A ()

+ d21 d h A(4ph;P(T)) [AZ 2 (1)

hA, (P )

+ di djhA (p6r)) +d2h1 (,p6r))I

Intuitively, ps and pC are being construinad by pA and.p which makes sense basd on our

analysis of Parallel ASB Subnetwofts
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If one used zA-, then (4.81) would serve to model the dependence relationships. Unfor-

tunately, it is YA not YA - that models resource use for A. Without knowing zA, we could not

easily transferm from yA - to •j. However, if we made the simplifying assumption that

ZA- -ZA,- ZA 2 Z•,A ZA) (4.82)

then

YA- YA and PA- PA.

Essenfially, Leachman and Boysen's method for modeling the dependence relationships for this

subnetwork is to use (4.82) with the simplifying assumption (4.83). While (4.83) is intuitively

appealing- without additional information, 'it assumes all activities within aggregate A progress

at the same rate-- it is restrictive. More than anything else, it points out the fact that modeling

dependence relationships for complicated (i.e., non-parallel) subnetworks is difficult.

, , •• • .' .? o .. , * - .- - * *,."-. - . -• .%o
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4.5. Concluding Remarks

4.5.1. Extensions

The development of the models of the flow types for the Parallel A ., Parallel A :BC,

Complete Precedence Non-Parallel A:BC, and the Partial Precedence A'BC Subnetworks

presented in Sections 4.1-4.4 may be repeated for similar classes of subnetworks. For example,

it is easy to see by "symmetry" how one would model the flow types for the Parallel BCA Sub-

network (see Figure (4-9)), the Complete Precedence Non-Parallel ,CA Subnetwork (see Fig-

ure (4-10)), and the Partial Precedence Non-Parallel BCA Subnetwork. The subnetworks

shown in Figures (4-9), (4-10) and those analyzed in detail in this chapter include all of the

subnetworks presented in the Leachnan and Boysen 119831 paper.

4.5.2. Constructing Tractable Models

In order to develop a convenient method for accomplishing multi-project resource-use

planning, it is desirable to construct models of the flow types which ae mwaable. That is, the

constraints which define the set Z of feasible choices for the allocations of resources to the

aggregate activities induced from the models of the flow types are linear. An inspection of the

models of the flow types developed in Section 4.2,4.4 reveals th$ only the indefinite integrals

of the flow types and not the flow type* themselves, are required to deternine the constraints

which define the set Z. To define models of the flow types which are tractable we simply con-

struct a piecwise-inear apprffdmation to the indefinite integrals of the flow types

Defiatimo (4.83)

Let : E (j). The piecewise-linear approximation to 'd#&, denotec by j:dis, is

defined by

d Idol + X IXD S .,

0 00.

"":"" ""'"e "'"J'"°'" €" "ca'.°...•~~~~~~.....................o~......... "."."". " .".".'.. ". ". ..... . ,..... •a. . • ...•..., ..... ,...'...'..~~~~...:. ....... ,....,...:...........'..' ..."..'..'..'.B'..""..""........ ..........
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(where [x] equals the greatest integer of x).

The models of the flow types are now understood to be the piecewise.linear approximations to

the previous models of the flow types. (Since the aggregate operating intensities wt e con-

strained to be step-functions, the indefinite integrals of 'such flow types are already piecewise-

linear.)

An inspection of the constraints which model the dependence relationships between

aggregate activities given in Section 4.3 clearly shows that they now become linear constraints.

Since all flow types and hence all constraints which model dependence relationships are deter-

mined from the aggregate operating intensities, a Linear Program which accomplishes multi-

project resource-use planning may be formulated by having the indefinite integrals of the aggre-

gate operating intensities as the decision variables. A suitable objective function (one for which

minimizes cost, for example) is all that is required. See Leachman and Boysen [19831 for their

choice for an objective function.

4.5.3. Lack of Consistency for the Medels ot the Flew Types

The constraints which model the dependence relationships are required to be satisfied and

appear in the Linear Program discussed in Section (4.5.1). However, it is possible that the

inventory balance constr-_ints which link the production variable to the intermediate product

transfer variables are not satisfied.

Consider the example of a Parallel A :BC Subnetwork (whea A has two activities) shown

in Figure (4-11). The inventory balance constraint

(IF; (yA. WA))- V;)d; ;k 0 (4.84)

A

is not always satisfied. Furthermore, the indefinite integral of V;,

A4 v*d, (4.85)
A E

• d...r : ., . .e',,.".* .' ... '-"'".. -- . . . . . . ..,..- - ", .-. '.. :•,• - ' .' ":. ','''....- ... . ."-"- ... ."
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is not always increasing, i.e., Y; is negative at some points in time.

The main reasons why such an example can be constructed are twofold. First, the domain

DA is too large, i.e., additional constraints must be imposed to insure that the variable zA is

close to an induced operating intensity (the particular zA in Figure (4-11) is not).1 Second, the

boundaries zj and z4 are completely different in "shape than the boundaries z4 and z4. Perhaps

such inconsistencies point to the fact that the underlying activities should not be aggregated.

In any event, models of the flow types associated with the production functions and the

intermediate product transfers should satisfy the inventory balance constraints similar to (4.85).

In addition, an inconsistency such as (4.86) should not occur either. As a test for the construc-

tion of the models, these criteria could be employed.

4.5.4. SUgestions for Future Researmh

It is desirable to extend the analyses provided in Sections 4.2-4.4 to wider classes of more

complicated networks. In addition, the approach to constructing independent models (Section

4.3) which is the key to modeling the dependence relationships should be tested. Results of a

preliminary test of the approach may be found in Dalebout's (19831 Master's thesis. Based on

her results, the approach due to Leachman and Boysen, extended in this chapter, seems to

work well. Lastly, further study into methods for restricting the domains of the agregate

operating intensities so as to insure consistency is desirable and might be the key to more real-

istic models of the dependence relationships.

,S e m W,.Bh,,• y ,, m 115631 fotr ** r opoa (of runit auhtiom an ft doman DA.

7.. . • -a • ' • • • • . a • • . '

. ... .. . e, _.. . .
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