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Introduction

There is a close relationship between problems of structural

optimization and the analysis of media with microstructure. The

optimal design of variable thickness plates is a case in point: for

certain problems, plates with "stiffeners" formed by rapid thickness

variation can be stronger per unit volume than any traditional, uniform

or slowly varying plates. To resolve such a design problem one must

introduce a "generalized plate model," representing the overall effect

of a microstructure of stiffeners on the behavior of the plate.

One Idea would be to substitute a rapidly varying thickness

function Into the fourth-order equation of Kirchhoff plate theory and

perform some kind of "homogenization". There is, however, a physically

more correct approach: it appeals directly to three-dimensional linear

elastostatics on thin, rapidly-varying, plate-like domains. There are

two small parameters -- the mean thickness e and the length scale of

thickness variation 6 -- and one can study the asymptotics of the

solution as they both tend to zero. This was the focus of our recent

papers [13,14]. We showed that it makes a difference which parameter

tends to zero faster. Use of the Kirchhoff plate equation with a WrC

rapidly varying thickness corresponds to the case c << 6. The other

extreme, 6 << c, corresponds to averaging the effect of the thickness

variation first, then applying Kirchoff theory to the resulting

anisotropic plate. Intermediate between these Is a third case, c - 6,

which has no such simple interpretation. For applications to optimal

design it is natural to ask which alternative gives the strongest

structure, and that was the focus of our most recent paper [151. es

The present article is an expository review of this work and its

iA-')I
~ v. p f
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relevance to optimization. Special attention is focused on plates with

"one family of stiffeners," for which the theory is relatively

complete. Much remains to be done for more general thickness

variation; various open questions will be indicated as we proceed, and

especially in section 6. We shall refer only to the most recent

relevant articles, without any attempt at a complete survey of the

extensive literature. More references on homogenization and plate

theory can be found in [6,13,24] and an extensive bibliography on

structural optimization is given in [3]. Recent surveys on plate

optimization include [2] and [20).

1. An Optimal Design Problem

Kirchhoff plate theory models the behavior of symmetric, variable-

thickness plates under transverse loads. It specifies the vertical

displacement w0 as the solution of an elliptic equation

32 (M 2w0
(1.1) aX Y6 ax )=

on the midplane domain w, with appropriate boundary conditions at the

plate edges aw. The tensor Masy6 relates bending moment to midplane

curvature; it depends on the plate's thicknss 2h and on the constant

elastic moduli Bijkl of the material from which the plate is made,

through the formula

(1.2) My - h3 BSO6

where



SOOY6 " BMWV6 - B 033 BY6 33 / B3 33 3

(The Hooke's law tensor Bijki is assumed to satisfy the usual

symmetries Bijkl - Bjikt - Bktij, and to have the midplane as a plane

of elastic symmetry.) For an isotropic material, A is given by

911 1 1 u B22 2 2 m E/(1-v
2 )

112 2 - B22 1 1 - Ev/(1-v 2 )

B12 1 2 m B12 2 1 - 92112 - 92 12 1 - E/2(1+v)

where v devotes Polsson's ratio and E is Young's modulus. The right

side of (1.1) is the load per unit midplane area.

For simplicity, we shall discuss only plates that are clamped at

the edges; this means that

aw0

WO M nO 0 at a.
0 5n

The principle of minimum energy gives an alternate characterization of

w0 as the minimizer of

(11) f M. 2 w 2w - JFw
23 J ax ax awxyN

in the Sobolev space 02(w). The compliance L is the work done by the

load,

- -4q r' - ;..-,,- 2 .. , , €,.*.,. ,*.-.-.-%,
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L f wO M 2wo  a2w WO

w ww
L~JFWO~J BP T ax, ax8 axax

By (1.3), it has the variational characterization

32w 0  32w 02 2

L- f MOMy6 .xa~x B+ 2 J Fw0
W yW

(1.4)

max c-f M2 a aa2wa+

02 (W) M x W + FweH2 ('a)

For a given load F, we think of L - L(h) as a functional of the

thickness h. It represents an overall measure of the plate's rigidity

under F. Therefore it is natural to consider the problem of

optimization for minimum compliance: we seek to minimize L(h) among

all plates with prescribed volume and specified minimum and maximum

thickness, i.e. among all h such that

(1.5) h c LO(w) , hmin < h < hmax and hdx - c.

It is now widely recognized that for some choices of F and

hmax/hmin this optimal design problem will have no solution. The

difficulty is easy to understand physically. We anticipate that

formation of "stiffeners" by means of an oscillatory thickness could

improve the strength of the plate. Since tall, thin beams are stronger

than short, fat ones, the strength should increase as the stiffener

width tends to zero. If there is no optimum scale for the oscillation,

then there will be no optimal h. (A more precise version of this

argument will be presented in section 2.)

Numerical manifestations of this phenomenon have been observed in



[1,9]. For certain loads F and sufficiently large ratios hmax/hmin,

numerical methods for minimizing L(h) are seen to display

instabilities. The computed solutions become strongly mesh-dependent,

with "stiffeners" (oscillations of the thickness between hmin and hmax)

forming on the same scale as the mesh size.

Mathematically, the point is that L(h) is not weak* lower

semicontinuous on the space (1.5) of admisible h's. There will surely

be a minimizing sequence [hn } which approaches the optimal behavior,

and (after passage to a subsequence) it will have a weak* limit h,.

But he compliance can jump up in the limit, and in that case h. will

not be an optimum.

Clearly there is something unsatisfactory about the formulation of

a design problem that has no solution. One way out is to restrict the

design space by imposing a pointwise or integral bound on IVhI

(cf. [5]). The other, we think more natural alternative is to extend

the design space by allowing plates with stiffeners or rapidly varying

thickness E4,10,17]. This entails introduction of a class . of

"generalized plate-thicknesses" and an extension L of L to 9 such that

(1.6a) For each E 6-C" the generalized compliance E(h)
is realizable by a limit of ordinary plates.
In other words, there exists a sequence {hni
satisfying (1.5) for which E(R) - limnL(hn).

(1.6b) The functional t attains its minimum value on

The first condition assures that the stiffeners have been modelled

correctly, and hence that the underlying problem has not been altered.

In particular, it implies that inf L - inf L. The second condition
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says that the class .4of generalized thickness variations is "large

enough". It promises that nothing would be gained (for this design

problem) by considering further extensions of the design space.

The new problem of minimizing E on is sometimes called a full

relaxation of the original design problem. (The reader is warned,

however, that this term is used slightly differently in the calculus of

variations, for example in [12].) An extension to some intermediate

class of plate models satisfying (1.6a) but not (1.6b) could be called

a partial relaxation. Finding a partial relaxation requires the

correct modelling of a particular class of plates with rapidly varying

thickness. Finding a full relaxation is more difficult: it requires

understanding just which types of stiffeners or rapidly varying

thicknesses can occur in an optimal structure. This remains in general

an unsolved problem, but the easier case of plates with a "single

family of stiffeners" is fairly well in hand. We shall discuss it in

the next section.

As if finding a relaxation of the original design problem were not

trouble enough, there is also the further difficulty of its relation to

three-dimensional elasticity. This will be treated in sections 3 and

4, where we describe a class of three-dimensional "plates" with

rapidly-varying thickness which are correctly modelled by

homogenization of the Kirchhoff plate equation (1.1). The analysis

shows, however, that use of the Kirchhoff theory above represents a

loss of information: plates with more rapid thickness variation require

a different model. Section 5 discusses the implications of this for

structural optimization.

Though our discussion of the need for relaxation has focused on



questions of existence, the relaxed problem is as important for

computation as it is for the theory. Even partial relaxation may be

advantageous for numerical use. Numerical minimization of a fully

relaxed E will be free of the instabilities experienced using L; also,

experience suggests that t will have fewer local minima than L.

Finally, since E is known to achieve its minimum, one can obtain

qualitative information about extremal designs by studying the first-

order optimality conditions for t.

2. Rapid Variation and Relaxation of the Compliance Functional

In order to relax the design problem, we must consider how rapid

variations in h affect the compliance. There is a general theory of

homogenization of periodic structures, which addresses precisely this

sort of question [6,241. It characterizes the vertical midplane

displacement O - in the limit as the length scale of the oscillation

tends to zero - a the solution of (1.1) with a new, effective rigidity

Rsy 6 . The limiting compliance is correspondingly fF;0 .
W

The simplest case is that of a plate made from an isotropic

material using "stiffeners in the x2 direction." This means that h is a

function of x, only, independent of x2. We obtain oscillations on a

length scale 6 by taking the particular form

(2.1) h6  - H(xI , xi/6)

where H(xl,nl) is periodic in the second variable with period 1, and

sufficiently smooth in the first variable. If w6 is the solution of
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1.1) with h h6 , then it is an exercise in homogenization to see that

5 tends, as 6 0 0, to the solution Q0 of

a2  92;0-.2) @x~8(A y x~x

Lth

F1 11 1 = 3 T- H(x 1 ,.)- 3 -1

.2 EHx 3,2E2Hx,)3-A2 22 2 = E 3 i_v2

?.3)
2 E (H(xI , . )- 3 ) -1

-112 = "2211 3 2

E HX,.3

A12 12 ' A2 1 12 = A12 2 1  A A2 12 1 = 3(HI(x,.)
3 (1 +v) 1

;re H(x1 ,.)
3 denotes the average of the periodic function H(xl,.) 3

Lth respect to its second variable, and similarly for H(x1 ,.)-
3. If

- H(xI ) is independent of nI, i.e. if there is no rapid variation,

ien (2.3) naturally agrees with (1.2). The convergence of w6 towards

is in the weak topology on H it follows that the compliances

)nverge

).4) L(h6)- F w6  -> fF =0

Wi W

id also that w, + Wo uniformly on w.

To see the advantage of rapid thickness variation, we consider

3cillatory perturbations of a smoothly varying H:
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olds for the elastic law (5.5) (and more generally whenever

1112 - 0), this gives an example in which Ma 1 - Ma<1  is indefinite.

a note that (5.5) is only a minor modification of the isotropic law,

hich corresponds to the choices

5.8) A - Ev, E
(1+v)(1-2v) 2('+V)

We hoped at first that this would lead to examples of practical

ignificance. If the difference Ma11 1 were large, then use of
1 1 11 ee agthnueo

ie a - 1 plate (with stiffeners in the direction of greatest bending)

)uld be advantageous for some design problems. However, practical

merical examples of (5.7) are exceedingly hard to find. For the

aometries of figures 1 and 2, our calculations give Ma-1 < Ma<1 for

ie elastic law (5.5). The best example we found - and it's not a good

ie - is shown in Figure 3. With A and U chosen by (5.8) with E - 1.0

id v - 0.25, one obtains easily that

5.9) ma< 1 - .192901 x 10- 2

Fhe a < 1 model does not depend on the value of p'.) On the other hand

1 /2

5.10) M f (.-- - t )3dt1111 T5 0 32 160

lere Is the strain energy of the cell problem (5.5) - which

apends, of course, on 0'. For the isotropic material with E - 1.0 and

- 0.25, U' Is equal to 0.4; for the calculations reported here we

)ok a' - 5.0. (Larger values of V' did not increase the significance



-22-

strictly speaking apply. However, the arguments presented there are

easily modified to include this case.)

The data in tables 1 and 2 naturally satisfy (5.2). More

interesting is the observation that Ma-1 and Ma>1 are quite close,

while M1 2  is much greater than ai in each case. It is not

surprising that figure 2 is much stiffer than figure 1; we understand

that N. Olhoff and his collaborators are currently studying the use of

geometries such as that in figure 2 for compliance optimization.

Our assertion (5.4) concerning the anisotropic case is based on an

explicit couriterexample: for an elastic law of the form

Biiii = I + 20

(5.5) Biijj - i j

B1 2 1 2 = P , B1 3 1 3 - B2 3 2 3 =

with p' sufficiently large, and for a thickness profile of the form

(5.6) H(nI ) = ho(1 + a.cos2rrii)

with h0 and a sufficiently small, we showed that

(5.7) Ma<1 < Ma=l and Ma<1 < Ma-1
1111 1111 2222 2222

Since the inequality

Ma-1 < ma<11212 - 1212
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(5.2) Ma> 1 < Ma-1 < Ma<1 for an isotropic elastic law.

The left inequality in (5.2) holds even for anisotropic materials:

(5.3) Ma>1 < Maoi in general (for one family of stiffeners).

However, the right inequality in (5.2) can fail for some anisotropic

laws and some choices of the profile H:

(5.4) Ma>1 I Ma'1 in general (even for one family of stiffeners).

The proofs, presented in [15], make use of variational principles for
each of the three effective rigidity tensors Ma< 1, Ma-i and Ma > 1

More quantitative comparison requires numerical calculation of the

effective rigidity tensors. Figure 1 shows the rescaled cross-section

(the graph of H) for one of the examples presented in [13]. By cutting

along the horizontal midline and glueing together opposite ends of the

stiffeners we get a new cross-section with the same amount of material,

Figure 2. Tables I and 2 list the effective rigidities for these

geometries, using an isotropic material with Young's modulus E - 1.0

and Poisson's ration v - 0.25. The cases a < 1 and a > 1 were done

using explicit formulas, which are easily derived as in [13].

Calculating Ma '1
n a6 requires finding the energies of a pair of two-

dimensional cell problems, one involving plane strain and the other

antiplane shear. This was done using the FEARS finite element code,

developed at the University of Maryland. (Since the cross-section in

figure 2 i., not of the form (5.1), the analysis of [13,14,15] does not



-20-

the quadratic forms defined by their rigidities M and R. We say that M

is weaker than R if M < R, in other words if

May6 tas tys 8 OY6 tao tY6

for every symmetric 2x2 tensor ta. By the variational

characterization (1.4), the weaker plate has the greater compliance

under any load. It may happen, of course, that neither plate is weaker

than the other; in that case the ordering of the compliances will be

load-dependent.

We shall suppose for simplicity that the thickness h is periodic

and depends on x, alone:

(5.1) h(x) - e H(x 1 /ea)

As remarked in section 2, the generalization to slowly varying

stiffener geometry or direction - e to axisymmetric plates with

circumferential stiffeners - is immediate. Since we wish to compare

the different scalings a < 1, a - 1, and a > 1, it is convenient to fix

the choice of H in (5.1). The corresponding effective rigidities Ma<1

Ma- 1, and Ma> 1 are as discussed in section 4; notice that all three

plates have the same average thickness cH.

Surprisingly, the ordering of the strengths of these structures

depends on the three-dimensional elastic material used to make them.

For plates made from an isotropic elastic material using one family of

stiffeners, the a > 1 scaling is weakest and the a < 1 scaling

strongest:
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regular H - H(n), taken for simplicity not to depend on the "slow"

variable x. We established, among other things, that the relative

energy error is of order Ic as E * 0. The main ingredients of the

proof are a pair of integral estimates, an averaging lemma, and lots of

integration by parts. The first integral estimate is a version of

Korn's inequality for thin domains with mean thickness c and thickness

variation on length scale > c, making explicit the dependence of the

"constant" on c. The second inequality asserts a weak form of

Kirchhoff's hypothesis for the elastostatic displacement ue, as a

consequence of the symmetries of the problem (3.1). The averaging

lemmas serve to replace certain rapidly-varying expressions by their

mean values; they quantify the rate at which a periodic function

converges (weakly) to its mean as the period tends to zero. A

convergence proof could probably be given for the a < 1 case using

similar methods, but new ideas seem required to handle a > 1. A

particular stumbling block is Korn's inequality for QC: as c + 0, the

"constant" blows up faster when a > 1 than it does for a < 1.

5. Comparison of the models for one family of stiffeners.

We have seen that three-dimensional elasticity supports several

different models for thin plates with rapidly varying thickness,

depending on how the length scale of thickness variation compares with

the mean thickness. For applications to structural optimization, it is

natural to ask: which scaling gives the strongest structure? A rather

complete answer is available in the case of plates with "one family of

stiffeners in a specified direction."

One way of comparing the "strength" of two plates is to compare

-. . . ... * -. - -- - - - -, .- ., o.t' . - '. ... - . . *-'*","" " .' "e , '' ** r '% % .S • U -% . .. .*', ,. 5 *" . -S \'* - * *
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Ejj (1cB) 0 0 in Q(x)ani

(4.4) 3) a 1 yavy 1-1,2 on B+Q(x)
0 1-3

sB periodic in D

Here Q(x) denotes the rescaled period cell

Q(x) - 'D" 31 < H(X;)},

rij(4) is the stress Bijkt Eki(±) associated to the strain

Ekt) - '(3fk/ant + 4/n k ) and v is the outward normal to Q; notice

that x enters (4.4) only as a parameter. The formula for Maml is

(4.5) 2 3 J(45) QY6 0 B QaBy6 - _ f')Elj(.tYd)dn3

-H

where as usual the overbar denotes an average over (10,2). In most

cases the actual calculation of Ma. 1 must be done numerically, by

solving a finite element or finite difference approximation of (4.4).

There is a sense in which the a 1 1 model includes the other two.

For any A > 0, one can apply (4.4) - (4.5) to the A-periodic function

HA(x;D) - H(x;D/A); this amounts to taking 6 - Ac in (4.1). The tensor

so obtained converges to Ma<l (rigorously) as A - *, and to Ma>l

(formally) as A + 0; see [14] for details.

The convergence of three-dimensional elastotatics to our

generalized plate model has been proved with mathematical rigor only

for the intermediate case a - 1. In [14] we considered a sufficiently

... N % %"q ,.~%~
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Rapid variation of the thickness of the "three-dimensional

plate is correctly modelled by homogenizing the Kirchhoff

(Al) plate equatio (only) if it occurs on a length scale larger

than the average thickness.

There is an equally simple interpretation for Ma>1 , involving

homogenization of a rough boundary. Consider the system of elasticity

on the domain (4.1) with c fixed, as 6 + 0. The limiting displacement

will solve a new elasticity problem on the "smoothed" plate domain

[(~3:x e w .Ix3I < c max~ ~;)

with non-constant, effective elastic moduli Bljkt(-x) (see the appendix

of [13) for details). Applying Kirchhoff plate theory to this

"smoothed" structure corresponds to taking the limit c + 0, and it

yields precisely the rigidity tensor Ma>1. (This calculation remains

at present merely formal. The homogenization of rough boundaries was

made rigorous for a scalar equation in [7), but the system of

elasticity presents additional difficulties.)

The intermediate case a - 1 has, unfortunately, no such simple

interpretation. The tensor Ma ' depends on auxiliary functions

.JO(x;D), obtained by solving the elastotatic boundary value problem
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We are convinced that (4.1) and (4.2) represent no less of generality

toward the problem of characterizing the limiting compliances.

The asymptotics of uE as e + 0 can be studied using the method of

multiple scales [13,14]. (A closely related problem, involving

smoothly varying thickness but rapidly varying elastic moduli, was

analyzed simultaneously and independently by Caillerie [8].) The main

conclusion is that the energy of the elastic displacement ue approaches

that of a fourth-order equation

a2 _ 2w F in
axoax8 (Maw 6  xy- i

(-.3)

w -L 0 on w.
an

Since the compliance is -2 times the energy, the compliances also

converge. The solution w of (4.3) is the limiting vertical

displacement; therefore MY8 ,6 represents an effective rigidity tensor,

relating midplane curvature to bending moments in the limit as c-60.

It depends not only on H(x;D) - corresponding to the geometry of the

variation - but also on the choice of scaling, specifically on whether

a < 1, a - 1, or a > 1. Formulae are given in [13] for each of the

rigidities Ma< 1, Mawi, and Ma>1 , in terms of the solutions of certain

periodic boundary-value problems.

The tensor Ma< 1 has a simple interpretation: it is precisely what

one obtains by homogenizing the plate equation (1.1). Thus for "one

family of stiffeners" and an isotropic elastic law, Ma<1 is given by

(2.3). In particular, this analysis yields an answer to our first

question (QI):
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question is that (2.2) correctly models plates whose thickness varies

on a length scale that is large compared with the mean thickness but

small compared with the plate diameter. We do not have a complete

answer to (Q2); however, we are able to compute the effect of thickness

variation on a length scale comparable to or shorter than the mean

thickness. These lead to different results than those predicted by the

Kirchhoff theory.

4. Summary of our generalized plate models.

The first important step towards answering the questions Q1 and Q2

is to understand the influence of rapid thickness variation on the

(rescaled) compliance of a "three-dimensional plate",

1 f F~ncluc - £-3(E 3 f FIncIuc - J a~uc).e( UE)3 3 f 3

where 3+9 denotes the upper and lower surfaces of the plate. We shall

assume that the thickness is locally periodic with period 6 - 6(c); in

other words

(4.1) fe- ((x,x 3): x E w, 1x31 < cH(x;x/6) ,

where H(x;D) is periodic in its second variable with period 1. Though

the dependence of 6 on c could in principle be arbitrary, It is

convenient to choose

(4.2) 6 - Ca OP 0 < a < -
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lirn C-3(1 o(uI.e(ul) - E3 f FInFIue)
CO x3 -+ch

(3.2) a2w0  2wo JF wo
I fJ MOBY6 i xa

I')9 a 0Y6

where w0 solves (1.1).

The convergence (3.2) holds provided that h and F are fixed and

sufficiently smooth. However, we have seen that relaxing the design

problem requires introduction of "generalized plate models" based on

rapidly varying thicknesses. Since this appears to violate the

hypotheses on which (3.2) is based, it is important to ask:

What is the relation between the homogenized plate

(Q1) equation (2.2), its relaxed compliance L, and

solutions of the equations of three-dimensional elasticity?

This leads naturally to a second, much harder question:

Consider linear elasticity on the three dimensional plate

domain Ix 3 I < E h,(xl,x 2 ), (xl,x 2 ) c w, with

vertical load c3F per unit midplane area. Can one

(Q2) characterize (in a simple way) the lowest limiting

point that may be obtained for the compliances, as

+ .0, by letting hc vary with c subject to

hmin < h hmax, h - c?

These issues are the focus of our recent work [13,14,15] which

will be summarized in the next two sections. Our answer to the first
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also [23). One route to a full relaxation involves seeking "optimal

bounds" for the effective rigidity of a plate in terms of hmin, hmax,

and the mean thickness h; another involves the study of lower

semicontinuity and the calculus of variations. Both approaches havep
successfully treated related problems [12,17,19,21] and it seems

reasonable to hope for further progress soon.

3. An Apparent Physical Contradiction.

The primary Justification for the plate equation (1.1) is that it

follows from the equations of linear elasticity on the three-

dimensional plate domain in the limit as the thickness tends to zero.

Specifically, let 9. denote the plate domain

OL M ((x1,x2'x3): (xl,x 2 ) c w I Ix31 < c h(xl,x 2)}

and let uc be the linearly elastic displacement, satisfying:

div a(u£) = 0 in 0.

(3.1) (u£)-nc- 1 c3(0,0,FIn l) for Ix31 -.t ch

uc 0 for (x1 ,x 2 ) £ 3w .

Here o(u) denotes the stress BijkZ eki associated to the strain eki =

1( uk/axI + ,uL/axk) and nc is the outward unit normal to Cc. Using

either the dual variational principles [18] or a direct asymptotic

expansion of uc [11], one can show that the (rescaled) energy converges

as c * 0 to that given by the Kirchhoff model:
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following the ideas of [10). The space.& of "generalized thickness

variations" consists of pairs R = (g,e). The first element is

restricted by hmin < g(xI) < hmax; it represents the "minimum height of

the stiffeners." The second is constrained by 0 8(xI ) 1 1, and plays

the role of the stiffener density. Both g and 8 are assumed to be

measurable, but not necessarily continuous. The rigidity tensor QOS6

corresponding to Ii is defined by (2.3) with

hmax 0 < nI  e(xI)
' H(Xl ;n1 ) =

.g(x1 ) e(x1) < n1  1

and the corresponding compliance E(fi) is obtained by solving (2.2).

This defines at least a partial relaxation, by virtue of (2.4). We

believe that it is the full relaxation, though this has not yet been

established with mathematical rigor. Optimality conditions for the

analogous relaxation of axisymmetric plates are presented in 10]; they

determine the circumstances under which "stiffeners" occur in an

optimal structure.

The situation becomes much more complicated if more general

thickness variation is allowed. For "two or more families of

stiffeners" the effective rigidity can only be expressed in terms of

the solutions of certain fourth-order equations on the period cell (see

e.g. [13)). For a "single family of stiffeners" w'th unspecified

direction, there is the possibility of the direction itself becoming

oscillatory. And there are more general geometries to consider,

analogous to he composites of rank two or more considered in [16), see
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2 2 +2fFwA
axoaxB axyx 6  W

2 2
<- Ma8Y6  a A ax x- + 2 f Fw,

W axN x

< L(H)

and therefore the oscillations have improved the compliance.

Intuitively, deformations of the desired type are expected (at least

away from the edge of the plate) whenever F oscillates rapidly enough

with respect to x2.

The preceding discussion is easily extended to a "single family of

stiffeners" with smoothly varying profile and direction. This
'o

corresponds to choosing

h6 = H(x; e(x).x/6) , Ie(x)12 = 1

in place of (2.1). The stiffeners are then orthogonal to the field of

unit vectors e(x); their profile is determined by H(xl,x 2 ;n), which

should be periodic in the real variable n with period 1. Since

homogenization is local, the effective rigidity at any x c w will be

given by (2.3) in the orthogonal coordinate system which takes the x,

axis parallel to e(x). The case of axially symmetric plates with

circumferential stiffeners is an especially natural one. It was

* treated in [9,10), and rapid thickness variation was found to be

advantageous for loads of the form F - cos kO when k > 4.

Returning for simplicity to plates with stiffeners in the x2

direction (i.e. h a function of x, alone), we formulate a relaxation by

4
a
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HA(xl n 1 ) T H(x1 ) + A*(nI1 ) t(n 1 )d n 1 - 0

If hmi n < R < hmax then the same will be true for HA when A is small

enough. Calculation gives that

d _- 0 -H 6H 2
dA A

H3 . 0 -L H3 - 6 H #

dA2

( )--(H)-l -12

dA dA2

at A 0 0. We see from (2.3) that a small, oscillatory perturbation

always decreases All,, and R11 22, while it increases R12 12. In the

physical range 0 < v < it 0 < E, it also increases R2 22 2. This is

entirely reasonable, since stiffeners should resist twisting and

lengthwise bending, but should be rather weak under bending in the

orthogonal direction.

We assert that for suitable loads F, the compliance Is decreased

by such perturbations. Indeed, let RaY6y be the effective rigidity of

the (oscillatory) perturbed geometry, MaBy6 that of the (smooth)H, and

*suppose that the solution w, of (2.2) satisfies

a2wA 12 < 2 12 + I 2

i.
Tx2 1211 a

Then the perturbed compliance E satisfies
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of the findings, but only served to increase the numerical error.) The

value of computed by FEARS was 0.7119 x 10- 4 , using 574 elements In

a subdivision based on just 1/4 of the unit cell. The code has a

built-in error estimator, which says in this case that the energy is

off by at most 0.95%. Extensive practical experience with FEARS

indicates that the true error exceeds the estimated error by at most

75%. We are thus convinced that the correct value of ? in (5.10) is

bounded above by .7244i0 - 4 , which yields

M11 1 > 0.192951 , 10-2

In view of (5.9), this gives a numerical example of (5.7) - but hardly

one of any practical significance!

The implications of these results for structural optimization are

clear: for the design of plates made from an isotropic material using

one family of stiffeners with a specified direction, attention may be

restricted to the a < 1 model (obtained by homogenizing the Kirchhoff

plate equation). For plates made from an anisotropic material this is

not true, but our numerical experimentation suggests that even so

little will be lost in practice by a restriction to Kirchhoff theory.

Care is advised in extending these conclusions to more general

situations, such as plates with two or more families of stiffeners. We

proved in [15] that Ma<1 is strongest and Ma> 1 weakest if the elastic

law satisfies B 033 - 0 - which includes the Isotropic law with

Poisson's ration v set equal to zero. But in general the relative

strengths appear to depend on both the elastic moduli and the form of

the thickness variation.
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6. Directions for the future.

We indicate some of the areas in which further work is needed.

a) The correctness of our a > 1 model as a limit of three-

dimensional elasticity has yet to be proved.

b) We still hope for an example (perhaps using two families of

stiffeners) where the a - 1 model leads to a significantly stronger

structure than does homogenization of the Kirchhoff theory.

c) Section 2 described a relaxation of the compliance

optimization problem for Kirchhoff theory with "one family of

stiffeners in a specified direction." It remains to prove an existence

theorem, i.e. to establish that this is the full relaxation. The

corresponding problem without the restriction to "one family of

-stiffeners" is more difficult. A relaxation (partial or full?) has

been proposed in [23]; we understand that Lurie and Cherkaev also have

made progress In this direction.

*0 d) We have shown that Kirchhoff theory suffices for the

optimization of plates made from an isotropic material with one family

of stiffeners. This result seems likely to fail, however, for more

general geometries. Therefore the best relaxation would be one based

not on Kirchhoff theory but instead on three-dimensional

elasticity - i.e. on our generalized plated models.

e) We have discussed only the compliance optimization of linearly

elastic plates. In plasticity, the analogous problem is to maximize

*the limit multiplier of a given load. Rapid thickness variation arises

naturally In that context, too, and relaxed formulations have been

proposed in [22,25). It remains, however, to prove that the models

used there correctly represent the asymptotic behavior of three-

* * - - * - -* ' - --+*
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dimensional plastic structures. It also remains to check whether a

full relaxation has been achieved.
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a<l a-i a>1

Milli .015 .012 .011

ml 1 22  .0014 .003 .003

M2222  *3314 3314 *3314

M12 12  .133 .006 .004

Table 1: Effective rigidities for figure 1.

a<1 a-i a>l

Milli .777 .687 .678

112.1914 .172 .169

t42222 .851 .8145 .8414

122.321 .262 .2514

Table 2: Effective rigidities for figure 2.
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