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Introduction

There is a close relationship between problems of structural
optimization and the analysis of media with microstructure., The
optimal design of variable thickness plates is a case in point: for
certain problems, plates with "stiffeners” formed by rapid thickness
variation can be stronger per unit volume than any traditional, uniform
or slowly varying _plates. To resolve such a design problem one must
introduce a "generalized plate model," representing the overall effect
of a microstructure of stiffeners on the behavior of the plate.

One idea would be to substitute a rapidly varying thickness
function into the fourth-order equation of Kirchhoff plate theory and
perform some kind of "homogenization", There is, however, a physically
more correct approach: it appeals directly to three-dimensional 1linear
elastostatics on thin, rapidly-varying, plate-like domains. There are
two small parameters -- the mean thickness ¢ and the 1length scale of
thickness variation 6 -- and one can study the asymptotics of the

solution as they both tend to zero., This was the focus of our recent

pépers [13,14]. We showed that it makes a difference which parameter

tends to zero faster. Use of the Kirchhoff plate equation with a

rapidly varying thickness corresponds to the case ¢ << §. The other
extreme, § << g, corresponds to averaging the effect of the thickness
variation first, then applying Kirchoff theory to the resulting
anisotropic plate. Intermediate between these is a third case, ¢ -~ §,
which has no such simple interpretation, For applications to optimal
design it is natural to ask which alternative gives the strongest

structure, and that was the focus of our most recent paper [15].

The present article is an expository review of this work and its
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relevance to optimization, Special attention is focused on plates with
"one family of stiffeners," for vwhich the theory 1is relatively
complete. Much remains to be done for more general thickness
variation; various open questions w;ll be indicated as we proceed, and
especially in section 6. We shall refer only to the most recent
relevant articles, without any attempt at a complete survey of the
extensive literature. More references on homogenization and plate
theory can be found in [6,13,24] and an extensive bibliography on
structural optimization is given in [3]. Recent surveys on plate

optimization include [2] and [20].

1. An Optimal Design Problem

Kirchhoff plate theory models the behavior of symmetric, variable-
thickness plates under transverse loads. It specifies the vertical

displacement Wy as the solution of an elliptic equation

(1.1) 2 _ (v ¥ ) = F
1.1 ——————— ———————— =
ax,0xg  *BY8 3\ dx,

on the midplane domain w, with appropriate boundary conditions at the
plate edges 3w. The tensor MaBYG relates bending moment to miQplane
curvature; it depends on the plate's thicknss 2h and on the constant
elastic moduli Bijkz of the material from which the plate is made,

through the formula

2.3
(1.2) Magvs = 3 17 Bagrs

where




-y~

Bysvs = Bapvs ~ Bap33 Bys33 / B33zz -
(The Hooke's law tensor Bijkl is assumed to satisfy the usual
symmetries Bijkz = BJikz = Bkzij' and to have the midplane as a plane

of elastic symmetry.) For an isotropic material, B is given by
-2
By111 = Baagp = E/(1-V%)
—u2

Bi212 = Bi221 = Bay12 = By = E/2(1+v) ,

where v devotes Polsson's ratio and E is Young's modulus. The right
side of (1.1) is the load per unit midplane area.
For simplicity, we shall discuss only plates that are c¢lamped at
the edges; this means that
awq
Wg == =0 at 3w .
]
n
The principle of minimum energy gives an alternate characterization of

Wy as the minimizer of

(1.3) J Gl - IFw
asvs ax axs 9%y 3x;5 ’

o
in the Sobolev space Hz(m). The compliance L is the work done by the

load,
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32

2
o°W, w
0 0
L= IFH = IM
0 ()
A A aY 39X, Xy Xy 3xXg

By (1.3), it has the variational characterization

32

2
0w w
0 0
L= - I M + 2 I Fw
2 "oBY8 3xydxy 3xy3xs a0
(1.”)
2 2
I°w 3°w
- max (- J M + 2 I Fw) .
o, aBYs 3%, 9% 3%y dXg
weH*(w)

For a given 1load F, we think of L = L(h) as a functional of the
thickness h. It represents an overall measure of the plate's rigidity
under F. Therefore it 1is natural to consider the problem of

optimization for minimum compliance: we seek to minimize L(h) among

all plates with prescribed volume and specified minimum and maximum

thickness, i.e. among all h such that

(1.5) h € L%(w) , hyyy < h < hy, . and Ihdx =c.
W

It i1s now widely recognized that for some choices of F and

hmax/hnin this optimal design problem will have no solution. The

difficulty is easy to understand physically. We anticipate that
formation of "stiffeners" by means of an oscillatory thickness could
improve the strength of the plate. Since tall, thin beams are stronger
than short, fat ones, the strength should increase as the stiffener
width tends to zero. If there is no optimum scale for the oscillation,
then there' wil; be no optimal h. (A more precise version of this

argument will be presented in section 2.)

Numerical manifestations of this phenomenon have been observed in
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(1,91]. For certain 1loads F and sufficiently large ratios h___/h

max’ “'min’

numerical methods for minimizing L(h) are seen to display
instabilities, The computed solutions become strongly mesh-dependent,

with "stiffeners” (oscillations of the thickness between hmi and h

n max )

forming on the same scale as the mesh size,

Mathematically, the point is that L(h) 1is not weak' lower
semicontinuous on the space (1.5) of admisible h's, There will surely
be a minimizing sequence'{hn} which approaches the optimal behavior,
and (after passage to a subsequence) it will have a weak* limit h_.
But he compliance can jump up in the limit, and in that case h, will
not be an optimum,

Ciearly there is something unsatisfactory about the formulation of
a design problem that has no solution., One way out is to restrict the
design space by imposing a pointwise or integral bound on [Vhl
(cf. [5]). The other, we think more natural alternative is to extend
the design space by allowing plates with stiffeners or rapldly varying
thickness [4,10,17]. This entails introduction of a class 457 of

"generalized plate-thicknesses" and an extension L of L to.[T such that

(1.6a) For each fi € £J the generalized compliance L(R)
is realizable by a limit of ordinary plates.
In other words, there exists a sequence {h.}
satisfying (1.5) for which L(R) = lim , , L(h)).

(1.6d) The functional L attains its minimum value on ,CT .
The first condition assures that the stiffeners have been modelled

correctly, and hence that the underlying problem has not been altered.

In particular, it implies that inf L = inf L. The second condition

I TR Y 0 N TR e T T T M T e T e e
.(.’J.-.-\.-\{,‘- NSO 2 .'(‘ . :

" T T T e T S s

AN R e
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says that the class Aﬂ’of generalized thickness variations is "large
enough". It promises that nothing would be gained (for this design
problem) by considering further extensions of the design space.

The new problem of minimizing L on 13’13 sometimes called a full
relaxation of the original design problem. (The reader 1is warned,
however, that this term is used slightly differently in the calculus of
variations, for example in [12].) An extension to some intermediate
class of plate models satisfying (1.6a) but not (1.6b) could be called

a partial relaxation. Finding a partial relaxation requires the

correct modelling of a particular class of plates with rapidly varying
thickness. Finding a full relaxation is more difficult: it requires
understanding Jjust which types of stiffeners or rapidly varying
thicknesses can occur in an optimal structure. This remains in general
an unsolved problem, but the easier case of plates with a "single
family of stiffeners" is fairly well in hand. We shall discuss it in
the next section.

As if finding a relaxation of the original design problem were not
trouble enough, there is also the further difficulty of its relation to
three-dimensional elasticity, This will be treated in sections 3 and
4, where we describe a class of three-dimensional "plates" with
rapidly-varying thickness which are correctly modelled by
homogenization of the Kirchhoff plate equation (1.1). The analysis
shows, however, that use of the Kirchhoff theory above represents a
loss of information: plates with more rapid thickness variation require
a different model. Section 5 discusses the implications of this for

structural optimization.

Though our discussion of the need for relaxation has focused on
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questions of existence, the relaxed problem 1is as important for
computation as it is for the theory. Even partial relaxation may be
advantageous for numerical wuse. Numerical minimization of a fully
relaxed L will be free of the instabilities experienced using L; also,
experience suggests that [ will have fewer local minima than L.
Finally, since [ is known to achieve its minimum, one can obtain
qualitative information about extremal designs by studying the first-

order optimality conditions for L.

2. Rapid Variation and Relaxation of the Compliance Functional

In order to relax the design problem, we must consider how rapid
variations in h affect the compliance. There is a general theory of
homogenization of periodic structures, which addresses precisely this
sort of question [6,24]. It characterizes the vertical midplane
displacement QO - in the limit as the length scale of the oscillation

tends to zero - a the solution of (1.1) with a new, effective rigidity

ﬂaBYG’ The limiting compliance is correspondingly £F§0.

The simplest case is that of a plate made from an isotropic
material using "stiffeners in the Xo direction." This means that h is a
function of Xy only, independent of Xo. We obtain oscillations on a

length scale § by taking the particular form

where H(x1,n1) is periodic in the second variable with period 1, and

sufficiently smooth in the first variable., If Ws is the solution of

S AN R T T T e N
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l.1) with h = hd' then it is an exercise in homogenization to see that

; tends, as § » 0, to the solution ﬁo of

2~
2 9°w,
9 0
2.2) — (M — ) =F
ox, 9%z *BY8 dx 5x,
Lth
2 E -3 -1
i = 3 5 HO )
B 2§ Hoxy, 03 + 2 B gy, 073
2222 = 3 )7 3 ,
2 3 ! 3.2 !
2.3)

2 Ev - -1
M122 = Map1q = 5 — (Hxq,0) 3)
1-v

E
P21z = Par1z = Moot = Mayzy = gy Bk )

:re H(x1,-)3 denotes the average of the periodic function H(x1,-)3
ith respect to its second variable, and similarly for H(x1,-)_3. If
- H(x1) is independent of nqs i.e. if there i3 no rapid variation,
1ien  (2.3) naturally agrees with (1.2). The convergence of Wy towards
) is in the weak topology on gz; it follows that the compliances

mverge

) Ling) = [ F g

>IFa0’t,
w w

d also that wg = Wy uniformly on w.

To see the advantage of rapid thickness variation, we consider

scillatory perturbations of a smoothly varying H:
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olds for the elastic 1law (5.5) (and more generally whenever
1112 = 0), this gives an example in which M@=1 - M3<1 i3  indefinite.
e note that (5.5) is only a minor modification of the isotropic law,

hich corresponds to the choices

- Ev ' E
>-8) S cr=ry e ey B T Fevy S

We hoped at first that this would lead to examples of practical
ignificance. If the difference M?T}1 - M?f}1 were large, then use of
¢ a = 1 plate (with stiffeners in the direction of greatest bending)
>uld be advantageous for some design problems. However, practical
umerical examples of (5.7) are exceedingly hard to find. For the
sometries of figures 1 and 2, our calculations give M3=! < Ma<l for
ne elastic law (5.5). The best example we found - and it's not a good
ne - is shown in Figure 3. With A and p chosen by (5.8) with E = 1,0

nd v = 0,25, one obtains easily that

- a<1 -2

)-9) M1111 = 0192901 x 10 .

The a < 1 model does not depend on the value of u',.) On the other hand
1 1/25 1 3

)a’o) 1111 -Eé(ﬁ—ﬁt) dt - E ’

1ere 6 is the strain energy of the cell problem (5.,5) - which

spends, of course, on u'. For the isotropic material with E = 1.0 and

= 0.25, u' is equal to 0.4; for the calculations reported here we

ok u' = 5.0, (Larger values of p' did not increase the significance

N N N N N
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strictly speaking apply. However, the arguments presented there are
easily modified to include this case.)

The data in tables 1 and 2 naturally satisfy (5.2). More
interesting is the observation that Ma=1 and M1 ape quite close,
while M?é}z is much greater than M?E}Z in each case. It is not
surprising that figure 2 is much stiffer than figure 1; we understand
that N. Olhoff and his collaborators are currently studying the use of
geometries such as that in figure 2 for compliance optimization.

Our assertion (5.4) concerning the anisotropic case is based on an

explicit counterexample: for an elastic law of the form

Biggi = A *+ 2u

Bi212 = u » By3y3 = Bpzpz =’

with p' sufficiently large, and for a thickness profile of the form
(5.6) H(ny) = hy(1 + g-cos2wn,)

with hy and ¢ sufficiently small, we showed that

(5.7) M3y < MiTy and M35), < MB35, .

Since the inequality
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(5.2) M1 ¢ M1 < M3<! for an isotropic elastic law.

The left inequality in (5.2) holds even for anisotropic materials:
(5.3) Ma>1 < ma=1 in general (for one family of stiffeners).

However, the right inequality in (5.2) can fail for some anisotropic

laws and some choices of the profile H:
(5.4) Ma>1 1 Ma=1 in general (even for one family of stiffeners).

The proofs, presented in [15], make use of variational principles for
each of the three effective rigidity tensors M3<!, M3=1 ang @1,

More quantitative comparison requires numerical calculation of the
effective rigidity tensors, Figure 1 shows the rescaled cross-sect;on
(the graph of H) for one of the examples presented in [13]. By cutting
along the horizontal midline and glueing together opposite ends of the
stiffeners we get a new cross-section with the same amount of material,
Figure 2. Tables 1 and 2 1list the effective rigidities for these
geometries, using an isotropic material with Young's modulus E = 1.0
and Poisson's ration v = 0.25. The cases a < 1 and a > 1 were done
using explicit formulas, which are easily derived as in {13].
Calculating M:;}G requires finding the energies of a pair of two-
dimensional cell problems, one involving plane strain and the other
antiplane shear. This was done using the FEARS finite element code,

developed at the University of Maryland. (Since the cross-section in

figure 2 is® not of the form (5.1), the analysis of [13,14,15] does not
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the quadratic forms defined by their rigidities M and M. We say that M

is weaker than M if M < M, in other words if

Magvs tag tvs < Popys tap tvs

for every symmetric 2x2 tensor taB' By the variational
characterization (1.4), the weaker plate has the greater compliance
under any load. It may happen, of course, that neither plate is weaker
than the other; in that case the ordering of the compliances will be
load-dependent.

We shall suppose for simplicity that the thickness h is periodic

and depends on X4 alone:

(5.1) n(x) = e H(x,/e?) .

As remarked in section 2, the generalization to slowly varying
stiffener geometry or direction - e.g. to axisymmetric plates with
circumferential stiffeners - is immediate. Since we wish to compare
the different scalings a <1, a=1, and a > 1, it is convenient to fix

the choice of H in (5.1). The corresponding effective rigidities Ma<1,

Ma'1, and M®1 ape as discussed in section 4; notice that all three
plates have the same average thickness eH.

Surprisingly, the ordering of the strengths of these structures
depends on the three-dimensional elastic material used to make them.
For plates made from an isotropic elastic material using one family of

stiffeners, the a > 1 scaling is weakest and the a < 1 scaling

strongest:

i BT T SO P v ‘-J.\ AN \;.$;-";-\:-\:u\

v
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regular H = H(p), taken for simplicity not to depend on the "slow"
variable x. We established, among other things, that the relative
energy error 1is of order ve as € + 0. The main ingredients of the
proof are a pair of integral estimates, an averaging lemma, and lots of
integration by parts. The first integral estimate is a version of
Korn's inequality for thin domains with mean thickness € and thickness
variation on length scale > ¢, making explicit the dependence of the
"constant™ on €. The second inequality asserts a weak form of
Kirchhoff's hypothesis for the elastostatic displacement 25, as a
consequence of the symmetries of the problem (3.1). The averaging
lemmas serve to replace certain rapidly-varying expressions by their
mean values; they quantify the rate at which a periodic function
converges (weakly) to its mean as the period tends to zero. A
convergence proof could probably be given for the a < 1 case using
similar methods, but new ideas seem required to handle a > 1. A
particular stumbling block is Korn's inequality for QE: as ¢ + 0, the

"constant" blows up faster when a > 1 than it does for a < 1.

5. Comparison of the models for one family of stiffeners.

We have seen that three-dimensional elasticity supports several
different models for thin plates with rapidly varying thickness,
depending on how the length scale of thickness variation compares with
the mean thickness. For applications to structural optimization, it is
natural to ask: which scaling gives the strongest structure? A rather
complete answer is available in thc case of plates with "one family of

stiffeners in a specified direction.”

One way of comparing the "strength" of two plates is to compare

sl u el




_18..

9 af -
-a-rg Zij (1 ) 0 in Q(§)
138 vagVy i=1,2
(4.4) zij(ﬁaB)VJ - :8 13 on 3,Q(x) ,

98 periodic in g .
Here Q(x) denotes the rescaled period cell
Ax) = {p : |ng| < HOGYI ,
Iy4(¢) 1s the stress By, E,(s) associated to the strain

Epg(9) = %(a¢k/ang + 9¢y/9n,) and v is the outward normal to Q; notice

that x enters (4.4) only as a parameter. The formula for Ma=1 is

= 2
w.5) Ml -5 03 Bugyg - Iﬂzu(g"s)su(g‘“)du3 .

where as usual the overbar denotes an average over (n1.n2)- In most
cases the actual calculation of Ma~! must be done numerically, by
solving a finite element or finite difference approximation of (4.4).

There is a sense in which the a = 1 model includes the other two.
For any 1\ > O, one can apply (4.4) - (4.5) to the A-periodic function
H,(x;p) = H(x;p/1); this amounts to taking § = ie in (4.1). The tensor
80 obtained converges to ma<i (rigorously) as A + =, and to Ma>1
(formally) as A + 0; see [14] for details,.

The convergence of three-dimensional elastotaties to our

generalized plate model has been proved with mathematical rigor only

for the intermediate case a = 1, In [14] we considered a sufficlently
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Rapid variation of the thickness of the "three-dimensional

plate is correctly modelled by homogenizing the Kirchhoff

— ——— —————— ——— —
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than the average thickness.

There 1is an equally simple interpretation for Ma>1, involving
homogenization of a rough boundary. Consider the system of elasticity
on the domain (4.1) with ¢ fixed, as § + 0. The limiting displacement

will solve a new elasticity problem on the "smoothed" plate domain
{(x,x3): xew, |x3| <¢ max, H(x;n)}

with non-constant, effective elastic moduli Bijkm(i) (see the appendix
of [13] for details). Applying Kirchhoff plate theory to this
"smoothed" structure corresponds to taking the 1limit ¢ +» 0, and it
ylelds precisely the rigidity tensor Ma>1. (This calculation remains
at present merely formal. The homogenization of rough boundaries was
made rigorous for a scalar equation in [7], but the system of
elasticity presents additional difficulties.)

The intermediate case a = 1 has, unfortunately, no such simple

interpretation. The tensor ma=1 depends on auxiliary functions

Q“B(g;g), obtained by solving the elastotatic boundary value problem
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We are convinced that (4.1) and (4.2) represent no less of generality
toward the problem of characterizing the limiting compliances,

The asymptotics of 25 as ¢ » 0 can be studied using the method of
multiple scales [13,14]. (A closely related problem, involving
smoothly varying thickness but rapidly varying elastic modull, was
analyzed simultaneously and independently by Caillerie [8].) The main
conclusion is that the energy of the elastic displacement ge approaches

that of a fourth-order equation

32 82w

L My et ) = F ina
9%, 9%g aBY§ 3%y 3%

(4.3)
W= EE =0 on dw .
on
Since the compliance is -2 times the energy, the compliances also

converge. The solution w of (4.3) 1s the 1limiting vertical

displacement; therefore MuBYG represents an effective rigidity tensor,

relating midplane curvature to bending moments in the limit as ¢e-0,
It depends not only on H(x;p) - corresponding to the geometry of the
variation - but also on the choice of scaling, specifically on whether
a<il,a=1,o0ra>il, Formulae are given in [13] for each of the
rigidities M@<1, M@1 and M®1, in terms of the solutions of certain
periodic boundary-value problems.

The tensor Ma<1 has a simple interpretation: it is precisely what
one obtains by homogenizing the plate equation (1.1). Thus for "one
family of stiffeners" and an isotropic elastic law, Ma<1 is given by

(2.3). 1In particular, this analysis yields an answer to our first

question (Q1):
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question 1is that (2.2) correctly models plates whose thickness varies
on a length scale that is large compared with the mean thickness but
small compared with the plate diameter. We do not have a complete
answer to (Q2); however, we are able to compute the effect of thickness
variation on a length scale comparable to or shorter than the mean
thickness. These lead to different results than those predicted by the

Kirchhoff theory.

4, Summary of our generalized plate models.

The first important step towards answering the questions Q1 and Q2
is to understand the influence of rapid thickness variation on the

(rescaled) compliance of a "“three-dimensional plate”,

[ ringlug - 33 [ pingleg - [ owrewn)

3:95 3:96 Qe

1
2

where a+a€ denotes the upper and lower surfaces of the plate. We shall
assume that the thickness is locally periodic with period § = §(e); in

other words
(4.1) 9 = {(x,%x3): x € w, [x3] < eH(x;x/8)) ,
where H(x;n) is periodic in its second variable with period 1. Though

the dependence of § on ¢ could in principle be arbitrary, it |is

convenient to choose

(4.2) §=¢2, 0<Cace,
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lMe3%£ o(ue)ee(e) - 23 [ Fln§|uf)

€+0 e X3=teh
32w 22w
1 0 0
(3.2) -1 - fFwp
, 2 ) aBYS 3x, g IxyIxXg 4

where Wy solves (1.1).

The convergence (3.2) holds provided that h and F are fixed and
sufficiently smooth. However, we have seen that relaxing the design
problem requires introduction of "generalized plate models" based on
rapidly varying thicknesses. Since this appears to violate the

hypotheses on which (3.2) is based, it is important to ask:

What is the relation between the homogenized plate

(Q1) equation (2.2), its relaxed compliance [, and

solutions of the equations of three-dimensional elasticity?

This leads naturally to a second, much harder question:

Consider linear elasticity on the three dimensional plate

domain |X3| <e he(x1,X2)' (x‘]oxz) E W, !’_i_tll_

vertical load e3F per unit midplane area. Can one

(Q2) characterize (in a simple way) the lowest limiting

point that may be obtained for the compliances, as

€ + 0, by letting h. vary with ¢ subject to

Rpin £ Ne £ Dpays Ihe = o?
W

These 1ssues are the focus of our recent work [13,14,15] which

will be summarized in the next two sections. OQur answer to the first
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also [23]. One route to a full relaxation involves seeking "optimal
bounds™" for the effective rigidity of a plate in terms of hmin' hpaxs
and the mean thickness ;; another involves the study of lower
semicontinuity and the calculus of variations. Both approaches have

successfully treated related problems [12,17,19,21] and it seems

37 SRS PP F T L LT

N
)

reasonable to hope for further progress soon.

3. An Apparent Physical Contradiction.

The primary justification for the plate equation (1.1) is that it
follows from the equations of 1linear elasﬁicity on the three-
dimensional plate domain in the limit as the thickness tends to =zero.

Specifically, let Qe denote the plate domain

Cak b CL >0

ne = {(X1,x2,X3)3 (x1,x2) € w , |X3| € h(X1,X2)} ’

and let ge be the linearly elastic displacement, satisfying:

'_: div o(u®*) = 0 in @
o
E (3.1) o(u€)en® = % e3(0,0,F|n§|) for |xg| = + eh
u® =0 for (x4,%,) € 3w .
:
: Here o(u®) denotes the stress Bjjkg Skg @ssoclated to the strain e,y =

-

%(auﬁlaxz + dug/dx,), and n® is the outward unit normal to Q.. Using
either the dual variational principles [18] or a direct asymptotic
expansion of u® [11], one can show that the (rescaled) energy converges

as ¢ + 0 to that given by the Kirchhoff model:

s A e Yt e
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‘ following the ideas of [10]. The spaee.tr of '"generalized thickness
i variations" consists of pairs h = (g,8). The (first element |is
restricted by hy;, < g(x1) £ hpayi it represents the "minimum height of
the stiffeners." The second is constrained by 0 < e(x1) <1, and plays
the role of the stiffener density. Both g and 6 are assumed to be
measurable, but not necessarily continuous. The rigidity tensor ﬂuBY&

corresponding to h is defined by (2.3) with

max 0 <my < elx)
H(xyiny) =

. g(x)  e(x;) <ny <1,

and the corresponding compliance L(h) is obtained by solving (2.2).
This defines at least a partial relaxation, by virtue of (2.4). We

believe that it 1s the full relaxation, though this has not yet been

a'e e 4 K B

established with mathematical rigor. Optimality conditions for the

y analogous relaxation of axisymmetric plates are presented in [10]); they

determine the circumstances under which "stiffeners” occur 1in an
optimal structure.

The situation becomes much more complicated if more general

thickness variation 1is allowed. For "two or more families of

e 4 %

stiffeners” the effective rigidity can only be expressed in terms of

the solutions of certain fourth-order equations on the period cell (see

- _h

3 e.g. [13)). For a T"single family of stiffeners" w’th unspecified
direction, there is the possibility of the direction itself becoming
oscillatory. And there are more general geometries to consider,

analogous to he composites of rank two or more considered in [16], see

3 RS S AN LR TR CC CR A e
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;; and ;hererore the oscillations have improved the compliance.
) Intuitively, deformations of the desired type are expected  (at least
$€ away from the edge of the plate) whenever F oscillates rapidly enough
g with respect to X5

. The preceding discussion is easily extended to a "single family of
-? stiffeners" with smoothly varying profile and direction. This
§§ corresponds to choosing

5 hg = H(x; e(x)+x/8) , le(x)l2 -1,

>

N in place of (2.1). The stiffeners are then orthogonal to the field of
’é unit vectors e(x); their profile is determined by H(x1,x2;n). which
,; should be periodic in the real variable n with period 1. Since
i homogenization 1s 1local, the effective rigidity at any x ¢ w will be
§ given by (2.3) in the orthogonal coordinate system which takes the X4
4: axis parallel to e(x). The case of axially symmetric plates with
- circumferential stiffeners 1is an especially natural one, It was
; treated in [9,10], and rapid thickness variation was found to be

. advantageous for loads of the form F = cos ko when k > U.

‘ Returning for simplicity to plates with stiffeners in the X5

direction (i.e. h a function of X4 alone), we formulate a relaxation by

»
R o S WA T T e E A T e B AT g g L L A R ARG S IC TN
(8 ". s ’v.\s.s.‘; Wk ;,': Ty " n g R N gy "" NN oYy "‘ P fy ‘u- ¥
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Hx(x4|vn1) - ;{(x1) + XO(TH) ’ gh(n“ )dn1 =0.

If hmin < HKL hmax then the same will be true for HA when )\ 1is small

enough. Calculation gives that

. - 2 — - —
2 dud-o, w3 -6Hy
da T a
b I - J— - —
4 w3 -0, 8 w3 --12H42
: A 2 A
K dx
p at A = 0. We see from (2.3) that a small, oscillatory perturbation

always decreases H1111 and ﬂ1122, while it increases 91212. In the
1

; physical range 0 < v < 3 0 < E, 1t also increases 92222. This is
] entirely reasonable, since stiffeners should resist twisting and
. lengthwise bending, but should be rather weak under bending in the
] orthogonal direction.

We assert that for suitable loads F, the'compliance is decreased
. by such perturbations. Indeed, let naBYG be the effective rigidity of
: the (oscillatory) perturbed geometry, MaBYG that of the (smooth) H, and
‘
2 suppose that the solution w, of (2.2) satisfies
5 2 2 2
; [P R YL i ST

2 2 39X, OX )

. 8x1 3%, 19%2

Then the perturbed compliance [ satisfies

< g WS 5

&

-
DRI
e

: TR g - e ; o . e T A e N S T
N N T R G T TV ) e i T A Y RO X LR A
S e e Wad o St g W F0 YA A O Ys g « L RN L ¥ NN P s




el v e

A

“TaTas @

AP s s 2 2 »

_zu-

of the findings, but only served to increase the numerical error.) The
value of Z: computed by FEARS was 0.7119 x 10'”, using 574 elements in
a subdivision based on just 1/4 of the unit cell. The code has a
built-in error estimator, which says in this case that the energy is
off by at most 0.95%. Extensive practical experience with FEARS
indicates that the true error exceeds the estimated error by at most
75%. We are thus convinced that the correct value of 2; in (5.10) 1is

bounded above by .724ux1o‘“, which yields
a=1 -2

In view of (5.9), this gives a numerical example of (5.7) - but hardly
one of any practical significance!

The implications of these results for structural optimization are
clear: for the design of plates made from an isotropic material using
one family of stiffeners with a specified direction, attention may be
restricted to the a < 1 model (obtained by homogenizing the Kirchhoff
plate equation). For plates made from an anisotropic material this is
not true, but our numerical experimentation suggests that even so
little will be lost in practice by a restriction to Kirchhoff theory.

Care 1s advised in extending these conclusions to more general
situations, such as plates with two or more families of stiffeners. We
proved in [15] that Ma<1 is strongest and M2’1 weakest if the elastic
law satisfies Ba833 = 0 -~ which includes the 1isotropic 1law with
Poisson's ration v set equal to zero. But in general the relative

strengths appear to depend on both the elastic moduli and the form of

the thickness variation,
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6. Directions for the future.

We indicate some of the areas in which further work 1s needed.

a) The correctness of our a > 1 model as a 1limit of three-
dimensional elasticity has yet to be proved.

b) We still hope for an example (perhaps using two families of
stiffeners) where the a = 1 model leads to a significantly stronger
structure than does homogenization of the Kirchhoff theory.

¢) Section 2 described a relaxation of the compliance
optimization problem for Kirchhoff theory with "one family of
stiffeners 1in a specified direction." It remains to prove an existence
theorem, i.e. to establish that this 1is the full relaxation. The
corresponding problem without the restriction to "one family of
stiffeners" is more difficult. A relaxation (partial or full?) has
been proposed in [23]; we understand that Lurie and Cherkaev also have
made progress in this direction.

d) We have shown that Kirchhoff theory suffices for the
optimization of plates made from an isotropic material with one family
of stiffeners., This result seems likely to fail, however, for more
general geometries, Therefore the best relaxation would be one based
not on Kirchhoff theory  but instead on three“dimensional
elasticity - i.e. on our generalized plated models.

e) We have discussed only the compliance optimization of linearly
elastic plates. In plasticity, the analogous problem is to maximize
the 1limit multiplier of a given load. Rapid thickness variation arises
naturally in that context, too, and relaxed formulations have been

proposed in [22,25]. It remains, however, to prove that the models

used there correctly represent the asymptotic behavior of three-
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dimensional plastic structures, It also remains to check whether a

full relaxation has been achieved,
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Table 1:

a<i

77
<194
.851
.321

Table 2:

Effective rigidities for figure 1.

a=1

.687
172
.845

.262

Effective rigidities for figure 2,

a>1

.678
.169
844

.254
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