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. ABSTRACT

The paper is the third and final part in the series of three devoted

to the detailed analysis of the three basic versions of the finite element

Mt

method in one dimension., The first part [l1] analyzed the p—version,/the
second part [2] concentrated on the h and h-~p version,and the present

third part addresses the adaptive h-p version.
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L. INTRODUCTION

This paper is the third and final part in the series of three which
analyzes the h, p and h-p versions of the finite element method in one
dimensional setting. It has been shown in Part 1 and 2 that the selection
of the mesh and degree of elements is essential for the performance of the
method. We have shown that the proper selection of the h-p version leads
to the exponential rate of convergence while the h-version with improper
mesh, e.g. uniform mesh, gives very low algebraic rate when a singularity
is present. The adaptive approaches are essential for solving complex
problems, because the structure of the solution is not known a-priori.

In recent years the adaptive methods came to be in the focus of
interest. Various papers, see e.g. [3] [4] [5], address the question of
adaptive approaches in the Finite Element Method. In two dimensional
adaptive research code FEARS (see [6]) and PLTMG (see [7]) are avail-
able. Both codes deal with the h-version and linear (p = 1) elements.
However, there is no adaptive h-p version code and only little work has
been done addressing this question. See [8] [9].

In this paper we analyze;a theoretical frame of the adaptive h-p

version and based on it we provide concrete algorithm for the one dimen—i
~-f,

sional problem. It is proven that in the case that the solution has x¥-

/
type singularity, the adaptive algorithm give an exponential rate of con-

vergence, very close to the optimal one analyzed in the second part of the

- .

.

paper. : - ) . R

We expect that the principles used here in the one dimensional set-
ting could be successfully applied also in the higher dimensional case.
Although above we used the notion of an adaptive approach in broad sense,

we will later distinguish in a more precise setting between feedback and
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adaptive approach (cf. [10} [11] ([12] [13]). By feedback approach we
understand the approach when previous (computed) information are sequen-
tially used. The adaptive approach is in a feedback which has well
defined optimal properties. The distinction between the feedback and
adaptive approach is often worthwhile in a more precise analysis,

We will develop in this paper an abstract frame of the adaptive
approach and its theory. We are concerned here only with the convergence
and its rate in the energy norm, Section 2 focusses on the algorithm,
Section 3 deals with its convergence, and Section 4 analyzes its rate of
convergence. Section 5 gives some numerical and a short discussion of
implementational aspects. Section 6 summarizes the major properties of

the three basic versions of the FEM.

2, THE ABSTRACT SETTING OF THE ADAPTIVE h—p VERSON ALGORITHM OF THE

FINITE ELEMENT METHOD.

First, we will make some definitions. A mesh A 1is a partition of
interval [0,1]. For convenience, a mesh A may be regarded as a set of
nodal points or a set of non-overlapping closed intervals, the union of
which is [0,1]. The number of intervals contained in a mesh A is
called the cardinality of a mesh is denoted by m(A). To each mesh inter-
val Ig we assign a positive integer pi, which is called the degree of
the mesh interval. These degrees constitute the degree vector EP' The
superscript A 1indicates its relation to the mesh 4A; if there is no

confusion it will be often omitted.

Definition 1. S 1is the set of mesh-degree combinations. Its element

I = (A,RA)




-

is called the pair, where A 1is a mesh and ‘RA is its associated degree
vector.
I is also regarded as a set of the pairs (I,p) where I € A

and p 1s the degree of 1.

Definition 2. Let I € S, the number of degrees of freedom of I is

m(A)
(2.1) N = deg(f) = ) p

A
j=1 I

We can make S a partially ordered set by defining the following

partial ordering om S.

I, €8 5 = (a,ph), 5, = (8,0, then

Zl < 22 if and only if:

Definition 3. Let L

1) 4, 1is a refinement of Ayy i.e., as sets of nodal points one

has

1 2
and we will write
Al < A2;
2) 2? is a refinement of 21, i.e., A1 < AZ’ and if
Igl) €A, 1§2) € 4y, Igz) < Igl), then pil) < p§2). In
this case we write
KOS PN
(pgl) and p(z) are the degrees associated to the intervals
I(l) 1(2) resp.)

S




We will call 22 a refinement of 21.

Definition 4. The local error function

E([a,b],p)
is a non—-negative real valued function defined on the set
{0 < a < b <1, p » 1, p 1is integer},

which satisfies the following hypotheses:

(E1) E([a,b],p) 1is continuous in a, b. It is non—increasing

in a and p, and non-decreasing in b,
(E2) E([a,al,p) =0 for 0 <ac<l, p>1.

(E3) (p-approximability). For any fixed [a,b) & [0,1]

1im E([a,b],p) = O.

p-bco

For some given A, 1 € A < o

(E4) (reverse sub-additivity). If ¢ ¢ [a,b], p > 1, then

x}llx

{(E((a,c],p) + E(le,bl,p) < E([a,bl,p).

(ES) (h-approximability). Let {An}w

n=1 be a sequence of meshes

for which

lim max {|I|} = O
n+o IéAn

then

L/

lim { § E(L, 1)
n+e IEAn

0.
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T A1/
(if A=, a, » 0, we define { )} a}} = max a,).
i i
i=1 1<i<m

The number A 1is called the index of the local error

function.

Remark l. These hypotheses are very natural if we consider the error
function to be the local error of the best approximation in a certain

function space. For example, let u € Ly(0,1) and

E([a,b],p) = inf  fu-vli

;]
vep Ly(a,b)
p-1

then it is easy to check that all hypotheses are satisfied for X = 2.

We have the following simple corollaries which follow immediately

from the definition:
Corollary 1. 1If I, & I,, then
Corollary 2. If a = x5 < x) < *e¢ <% =b, p>1l, then

k
(2.3) (1 Exg_px],0M0
i=1

< E([a,bl,p).

Proof. (2.2) follows from (El). (2.3) follows from (E4) by induction. @B

Definition 5. A local error indicator e([a,b],p) is a non-negative real

valued function defined on the same set as E([a,b],p). And there is a

constant 0 < C ¢ 1, independent of a, b and p, that

(2.4) ce({a,bl,p) < E([a,bi,p) < C le(la,bl,p).
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It is obvious that for the local error indicate we have:

Corollary 3. The following properties hold:
(E2)" e([a,al,p) =0 for all 0<ac<1l, p>1l.

(E3)” 1lim e([a,b],p) = 0 for any [a,b] & (0,1].

p"@
(E5)” Let {An}:=1 be a sequence of meshes, 1 ¢ ) < =, and
lim max {|I|} = ©
n+w I€A
n
then
. A 1/
im { §  o(I,1)% = 0.

nr*® I¢€A
n
(A 1is the index of local error function).

Definition 6. The global error based on the pair I = (A,p) is given by

A 1/X
(2.5) 5 = (I Ea,epMY

IiEA

where 1 € A € =, p; 1is the degree of 1I;.

Similarly, the global error estimator based on the pair I 1is given

by

B A1/
(2.6) eA(Z) = {3 e(I;p)

I.€A
i

Clearly we have

Corollary 4. Let C be given (2.4), 1 < X <w®, I be any pair, then

-1
(2.7) Cex(Z) < EA(Z) < C eX(Z).

We now define the feedback h-p version algorithm (we will call it




the algorithm below).

First, let the local error indicator e([a,b],p) be given. We will

divide the intervals of any mesh into two categories, called the h-—

intervals and the p-intervals. We will also say that an interval is

of h—-type or p—type. The type of an interval is defined by

Definition 7. Let O € y < » be given. Let I = (A,p) be a given

pair, I ¢ A and p the degree of I, let

R = %‘%l (R =0 if e(I,p) = 0).

Then if R » v, 1 is said to be an h-interval; if R <y, I is said to
be a p-interval (with respect to vy and I).

The number Yy 1s called the type-parameter, Usually, we are

interested in the case 0 < y < 1,
The feedback algorithm is now defined in a recurrent way:

Let 0 < 8 <1 be a given number, called the refinement-parameter

n

Zn-—-(An’R)) and
eéZi = max e(Ign),pﬁn))
1<i<m(A )
n
with (IS“),p(“)) € T . (The interval 1?“) € A on which e(n) is
i i n j n max

realized will be called the critical interval.) Denoting

ein) = e(1§n),p§n))

(n)

(n) € A with e?“) <8 e will stay the same
n i max

then all intervals Ii
in the mesh An+1 of the new pair Zn+1 and the degrees pgn) will be

also kept., If for some interval Ign) € A, on which ein) 3 0 . e;:i,

.
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- then there are two cases:

R PN b
. o
v o s

1) if Ii“) is an h-interval, then it will be bisected, and the
degree pgn) will be inherited by both the bisected intervals;
2) If Ign) is a p-interval, then Iin) remains an interval of
An+l but its degree is assigned to be pgn) + 1,
We write
Zn+1 = T(Zn) = T(Xn,e,Y,e)

where e stands for the local error indicator, Yy the type-parameter

and 8 the refinement-parameter,

Definition 8. The above rule T of constructing the pair Zn+1 from an

existing pair Zn is called the transition operator of the algorithm,

The subset {I }

o} n=0 of S, where En = T(Zn_l) for n=1,2,.0., 1is

called a trajectory of the tramsition operator.

It is obvious that we have

Corollary 5. A trajectory {Zn} is a monotone increasing sequence in

S, namely, L, ¢ I,y forall n-= 0,1,2,000 &

Remark 2. There are two degenerated cases for the algorithm: if Yy =
0, then all intervals are of h-type and this algorithm gives a feedback
h~version. If vy = o, then all intervals are of p-types and will never

be bisected; in this case we will obtain a feedback p-version,

Remark 3., We are speaking about feedback algorithm because the current
information steers the flow of algorithm. Often such algorithm is called

also adaptive (see e.g. [10], pp. 49-50, [1l]). We shall distinguish

.
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between a feedback algorithm and an adaptive algorithm in the sense that

the adaptive algorithm is a feedback having well defined optimality
properties (see [12], [13], [4]). 1In the next section we will prove that
the algorithm is convergent and hence it is adaptive with respect to the

convergence measure,

3. THE CONVERGENCE OF THE ALGORITHM

Definition 9. If for any trajectory {Zn};=0 of the transition operator

lim E (£ } = O,
A n
n+e
then the algorithm is said to be convergent.

We will prove the feedback algorithm defined above is convergent.

First we observe that the (ES5) implies:

Lemma 1. Let {m )} be a sequence of sets of non-overlapping closed

n n=0

intervals (not necessarily covering the entire interval [0,1]). If
lim max {|I|} = o0,
n>e I€w
n
then

1/

lim { } E(L, 1)) 0.

n*o  T€T
n
Proof. There is An such that

1) as sets on non—overlapping closed intervals,

2) max {]I]} max {|I]}.
I1€A Ién
n n

PR S [N
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Applying (E5) to the mesh sequen-e

{1

I€n
n

E(L,L1)

as +>

A}I/A

)

n’n=0"’

<

{1

IGAn

E(I,1)

As consequences, it is easy to obtain:

X}I/X

>

o

we obtain using (ES)

0

an integer

Corollary 6. If {I(n)}:=0 is a sequence of closed intervals,
o™ 5> 1 and 1im (1™ = 0, then
n+e
lim e(I(n) (n)) 0.
N>
Corollary 7.
, (n)
Let {wn}n_ be given as in Lemma 1. Assign I €m
pﬁn) > 1 and assume that
lim  max {IIin)|} = 0
n>e I(n) T
i E
then
e § e p{MNA Lo,
e Ign)éw
i

We now prove

Theorem |.

.-
Proof. Let (I }
—— n n=0
Corollary 5
T o T

The feedback algorithm is convergent.

) -,- LN
o R ‘-‘-' - e .
LW AR A;A".r.

be a trajectory of the transition operator

- . ..
n‘..: _'-‘

T-
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j A
(3.1) Ip € I} & I, eee .,
First we show that
(3.2) lim max {E(I(n),p(n))} = 0

wre y(n)e,
n

where An is the mesh of Zn, and p(n) is the degree of I(n) € 8.

By (2.4) it is enough to show that

(n)

(3.3) lim max {e(I ,p(n))} = 0,

n+o I(n)EA

Suppose this is not true, then there is a subsequence {nk} and a

number € > 0 such that

(n) (n,) (n;)
(3.4) e K max {e(I ™ P k ) P -
max
(o)
1 €4
M
(ny) (nk)
Furthermore, let 1 € 4, Dbe the critical intervals, i.e. e is
(n,) k max

realized on IC . Corollary 6 implies that there is another subsequence

of {m,}, we still denote it by {mn.}, such that

(nk)
1“1 > n
(nk)
for some h > 0, for otherwise e + 0, Since I < I , two
max n n
k k+1
(nk) (nk+1)
intervals Ic and IC are either non-overlapping or
(n,) (ny ) (n
1 k5 1 ktl . Because 1 k ¢ [0,1], there can only be a finite
c i ¢

number of non-overlapping intervals with length > h > 0. Thus we

conclude there is again a subsequence of {nk}, we again denote it by

R . ST e TR ., .
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{nk}, such that for some k > 0

(n,) ( ) ( )
e e MR 2 A

bd c bt c ot
C (n,)
Each Ic is either a result of several bisections of Ic s Or
(n,,,) (n.) (n,)
k+

Ic LA Ic k . Because by our assumption |IQ k | > h, there is
(ny) (,-)

k“ such that Ic k is never bisected for k > k® and hence Ick is

n
the p—-interval. Because Ic k are critical intervals, we conclude that

(n,)

lim p Koe b a
ko €
(n,) 0&) hi)
k - =
where p_ is the degree of Ic . By (E3)7, 1lim € ax
kv
(n,) (ny
lim e(I P Y= 0. This contradicts (3.4).

’
k> ¢ ¢

For A = » theorem follows immediately.

Assume now that 1 < A < =, Since (3.1) implies
Ex(zo) > Ex(zl) ? Ex(zz) > e

(E1) and (E4), it suffices to show that for each € > 0, there is
N(e) » 0 such that

EA(ZN(e)) { €.

For each h > 0 we define

"= (re U0 oag it o> o
k=0 n=k
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where A, are regarded as sets of intervals. Then for each h there

is No(h) > 0 such that if n > No(h), then

contaids no interval I with |I| > h. Let hy ¥+ 0 and choose

corresponding ny = No(hj) to be such that ny 4+ », Then the sequence

0 ;=0 satisfies the condition of Corollary 7 and thus

(n) (o A} 2
lim ) e(Ii ] Py ) = 0,
jeo } (n,)

Therefore there is j; = j(e) such that

(n, ) (n,) 1/
) 0 3o~ A 1/
(3.5) (n. ) E(I P ) < €f2 .
j i i
1 0 én
i .
Jo
h, h
ig Jo
If = = ¢, the proof is finished. Suppose L # 0. Let M be the
h
h|

number of intervals contained in I O. By the first part of the proof,

there is j| 2 Jo such that

(nj ) (a; ) )
1/X
E(Ii L D ! Yy < e/(2M)
i
(n, ) h, h,
for all I €z (recall that ¢ contains the intervals which

i

are never bisected againt). Therefore we have




h
Furthermore, the intervals contained in An \I 0 are either inherited
3
from "n or the results of several times bisections of the intervals of
Jo
T (3.5) and (El1), (E4) imply that
Jo
(ny ) (ay ) a) M2
1 1 1/
(3.7) (ny ) L BIy ey ) < ez
1
I €8 \I,
By
and (3.6), (3.7) give
Ek(zn ) < e
3
Thus the proof is complete. .

Remark 4. Since in the proof we did not use any information of the

parameter Y, we have shown a convergence of all feedback h, p and

h-p version algorithms.

Remark 5. We introduced a family of feedback algorithms which create
trajectories {Zn}. We define the performance measure u; of the
algorithm so that if EA(Zn) » 0 for any trajectory {Zn} of the algo-
rithm, then Mg = 1, otherwise Hg = 0; and we define the optimal
performance measure to be with maximal value (1 in this case). Thus we

can say that our feedback algorithm is adaptive with respect to the per-

formance measure yu; (called convergence measure, see (121, pp. 7-8).
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4. THE RATE OF CONVERGENCE OF THE ALGORITHM

In order to study the rate of convergence of the algorithm it is
necessary to have more knowledge on the local error function. Motivated
by the results of Part 1 [l], we will study the algorithm on the class of

local error functions which satisfy the following hypotheses:

(Al) There is a point £ € [0,1], called the singular point. If

g €1 €[0,1], then
E(I,1) < c0|1|°,

where o > 0, C0 > 0 are constants independent of 1I.

(A2) There is a non-increasing continuous function ¢ : (0,=) + (0,1)
with

lim ¢(t) = 1
t+0

lim #(t) = 0

tem

such that for any € »0 , p»>1, IZ [0,1], £¢ I, and
dist(g,1) N

t = ———TTTL—— e, there is C{e) > 0 such that

E(L,p) < C(e)[o(t)]P.

(A3) If £ ¢1, 1 :Z(0,1], then there is r = r(I) > 0, such that

E(I,p) > 0, p > 1

E(L,p+1)
xr < E(I,p) < r

the constant O < x ¢ 1 {is independent of I, and p.

Observe that the hvpotheses (Al), (A2) are the characterisics of the

best Lz-approximation error of the analvtic function with an xg—type




singularity at &. In Part 1 [1] we have shown that if the local error

1
represents the L,-error, then 0 = a + 3, and

o(t) = 1/(1+2t+2/ct(l+t) ). The results of Part | also show that for the

function E(I,p)

function (x-s): the hypothesis (A3) is satisfied.

Lemma 2. Let the local error function E(I,p) satisfy (Al) ~ (A3),
e(1,p) be the local error indicator of E(I,p), then e(I,p) also

satisfies (Al) ~ (A3) with different constants. More precisely, we have:

(Al)” If g €I ¢ {o,1},

(A3)” 1f £ ¢ 1,

with p > 1, 0 < «~

Ic [O’I]’

then

1710
e(1,1) < C0|I| ,

where o 1is the same as in (Al), C6 > 0 1independent of 1.
(A2)° If ¢ ¢1, 1 < {0,1], t= 215%%%L£l » € >0, then there is
C°(e) > 0 for which
e(1,p) < C(e)&()]P
where p » 1, ¢ 1is the same as in (A2).

then there is r” = r“(I) > 0, such that

e < e(I,p+l) <

e(l,p)

<1, x° 1is independent of I and p.
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Proof. (Al)”, (A2)” are obvious. Suppose (A3) holds, then by (2.4) we
have

e(1,p+1) ¢lE(T, ptl) ¢ 2

e(l,p) CE(IL,p)

e(l,p+l) CE(I,p+l) 5 C2<:

e(l,p) cTlecr,p
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where r = r(I) >0, 0<C<1l, 0<k < 1l., Let

- (1) = ¢ ’r(D),

la)
[}

and (A3)” is satisfied. .

By the hypothesis (El) it is easy to see that (Al) thus (Al)” may be

extended to p > l:

Corollary 8. If ¢ € 1< [0,1], p > 1, then
E(I,p) < c0|1|°

. c
e(1,p) < c0|1|
hold uniformly with respect to I and p.

Lemma 3. Let E(I,p) satisfy (A2) and (A3). Then we have

where r, x are defined in (A3), q = 4(t) 1is given in (A2) and ¢t =

dist(£,1)

—_—TTTJ__

Proof. By (A3) there is r such that

E(I,p+l)
«xr < E(I,p < T,

This implies

E(I,p) > cC(<m)P
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with p > 1, C being a constant independent of p. Comparing with (A2)

we then obtain for any p » 1

with t = Qlif%%&il. Thus

Corollary 9. If E(I,p) satisfies (A2), (A3), then
(4.2) r’ < k
with ", «° given in Lemma 2, q = ¢(t) as before.

Proof. Obvious. .

Lemma 4. Let E(I,p) satisfy (A2), (A3), 0 < y <1l {is the type-

parameter (as defined in Section 2), and & > 0 be determined such that

$(8) = K’Yl

-

where 0 < Y, <y <1 and « is the constant in (A3)", If =x € 1%
(0,11,

X # £, and

Ix-el
(4.3) 1] < e
then
(I,p+l)

R S <

where p » l. Therefore, 1 1is a p-interval.

Proof. Recall 0 < k" <1 (see Lemma 2). Since 0O < Y <y <1, there

exists 8§ > 0 satisfying 4(8§) = K’Yl. (4.3) implies

- FLATA . PR - o - . S
WCIRIE T SV S S-SR, ke P N Y ga e ce oy Sa e e e e Sa
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dist(e,1)  [x=gl-[1] |
1] 1] ’

therefore &(t) € ¢(8) = «”y and by (A3)” and (4.2)

l’

R = ——J-L—eél(:l’;;) < (K’)-I(K’Yl) = Yl < v,

thus I 1is a p-interval, .

We now study how the algorithm does if the hypotheses (Al) ~ (A3)

are satisfied. For simplicity we assume the trajectory {Z )m starts

v’/ v=0
with the mesh Ay = {{o,11}, andlg? = (pg)> Pg > 1. In this case, any

meshes of the trajectory can only contain the interval of the form

(4.4) (=l &, 1 <k <2 n=0,1,2,000 «
2" 2

Definition 10. An interval of the form (4.4) is called a binary interval

gi_level N.

Lemma 5. Let the local error function satisfy the hypotheses (A2) ~ (A3).
Let Y be the type-parameter 0 < y < 1. If x ¢ [0,1], x # g, then
the algorithm will generate a binary interval I such that x €¢I, I 1is

a p-interval and it remains to be a p—interval in the further process.

Proof. By the proof of Theorem 1 we have shown (without (A2) ~ (A3))

lim max {e(1§v),p§v))} = 0.
vre (Ve
j v
Therefore, if x ¢ Igv) € Av’ X # £ and e(I§v),p§v)) > 0, 1in the
(v) ]

further process either Ij will be bisected or p§“) will go up. By

PN I N W DU DU T VAN Y S B RSP
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Lemma 4 the bisection must stop if the size of the interval is small

(vq)
enough, in other words, there is Yo such that if x ¢ I, 0 , then
(vg) ]
Ij is a p-interval and lies in all Av’ v 3 Vg l.

Lemma 6. Let the local error function satisfv (A2) -~ (A3), and 6 > 0 be
defined in Lemma 4., Suppose that the pair I 1is generated by the algo-
rithm and it has its smallest interval which is of level n, then the

total number of intervals in the mesh A of £ 1is bounded by

(4.5) M = 2(n+1)(L+1) + 1

where L = [1+§].

Proof. By Lemma &4, if x € I, x # £ and

then I 1is permanentlv a p-interval (i.e., it remains as a p-interval

in further process)., This is true if

where L = [1+§].

If this interval is of level k, then |I| = lE and
2
(4.7) lx-g| > L,
zk

Without loss of generality we can consider the interval which is
right to &. Denoting d = dist(£,I), (4.7) implies that for each k

there are no h-intervals of level k with




Because each p-interval, except [0,l], is obtained by bisecting

an h-interval, the above implies that there are no p-intervals of

level k with

WL, 1 _ 2L43
k17 Tk Sk

(4,9) d

+ +
Now within a distance from £ between L and l—E, one can at
2k+1 2k

-+
most put in [EEE] h-intervals (of level k) or (1+L) p-intervals.

Either way, the number of intervals within above range is bounded by
(1+L). This is true for all 0O < k < n, Within a distance ranging from

1+L .
0 to ——, there can be at most (1l+L) intervals since the smallest

0
interval is of level n. Hence the total number of intervals to one side

of £ will not exceed (n+1)(1l+L). Including the interval containing

£, total number of intervals in the mesh then will not exceed

M = 2(1+4L)(n+l) + 1.

Lemma 7. Let the local error function satisfy (Al) -~ (aA3), 0 <y <1,

0<6 <1, and let {zv}”

v=0 be a trajectory starting with

I, = ([O,l],po), pp > l. 1In addition, let the local error indicator

e(I,p) satisfy the hypothesis:

(ED)” if T1,1y,I, = (0,11, I, =1,, p>1, then

e(Il,p) < e(Iz,p)

e(Il,p+l) < e(l,p).
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Then we have
deg(Z )
1/x 2 m(a,)
(4.10) E)\(Zv) < Cl[m(Av)] e

where A  is the mesh of Z,» m(Av) is the number of intervals in
Av’ deg(zv) is given by (2.1), and Ci{s C, are positive constants

independent of wv.

Proof. First we claim that there is a constant C independent of Vv such

that if (I,p) € L,» then
(4.11) e(I,p) < cyP.

We prove this by induction on p 3> Pye Note that the trajectory is an

increasing sequence of pairs

(4.12) z

Let I[p] denote an interval which has degree p. Suppose for some v,

€ Av’ and p > Py e Let

Ipgy 2 Tpg#1l 2 °°° 2 Ip-11 2 1)

be the sequence of the successsive ancestor intervals of I[ each of

pl’

which has corresponding degree as indicated by the subscript. By the

hypothesis (El)” we have

cy PO,

4.13 (I 1, 0,11,
( ) e [pO] PO) < e({ ]PO)

We not let p > Pge Suppose

L NP PP P a A P S




- p-1
e(I[p_llgp 1) < CY .
1t I[p] = I[p_l]’ then I[p-l] is a p-interval. Thus

e(I[p]ap) < Ye(I[P]’p_l)
= Ye(I[p—l]’p—l) < CYP.
1f I[p] # I[p-l]’ then there is pr] = pr-ll such that I[p] -

ITP] < I[p-l] thus by (El)~

e(I[p],P) < e(l*[p],P)

* - P
< ve(l [p-1]P 1) < cyP.
This proves (4.11).
Let e;:i be the maximal local error indicator for Zv. For
0 <8 <1 we define ﬁ(v) by
(V). -
(4.14) cyP Lo gelv-D) v=1,2,3.0.

max

where C 1is given in (4.11). By the hypothesis (El)” and (4.12) it is

easy to see that

(vy) (vy) .

e 5 e 2 if < =

max max °’ itV V2o iﬂ

;

and it follows immediately that ‘1

]

L)) (v,) .

(4.13) ) < p if vy € vy R

n

R

. . »

Wwe now claim that J

L

~

- - . - -;
o m . al .A_. - RIS L.;.‘i‘ .A.‘.\ LIS > g




for all v » 1

(v)
pmax

(4.16) sV

(v)

where Phax is the maximal degree of the intervals of Zv. We will prove

this by induction. Observe that (4.11) and (4.14) imply that

p
cy 0 s e(10,11,p) > eeig}){

(1)
-1
= cyP ,

thus

~(1
po < p()-lc

Since p;;i equals either py or pg + 1 we obtain

D) < 5(1).

max
Suppose we have

(v-1) < a(v-1)
max P *

-1 -1
Now for pé:i, either pé:i = p(v ) or p(“) = p(“ ) + 1

« In the first
max max max

case

alv-1 -
p;:i < p(v ) < p(v);

v)
and in the second case the interval I having degree péax was a p-

interval of £ Hence according to the algorithm we have

v-1"*

5(\))_1

p(v—l)) > ae(“'l) Cy .

e(1,
max max

By (4.11) this gives
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(v-1) < a(v) _

1,
max

thus
(V) s,

max

Therefore (4.16) is true for all v > 1. From (4.14) and (4.16) we obtain

p(v)
e(v) < e(v--l) < . 4 max
max max 8y
deg ZN
C m(A)
< oy Y .
Then
m(a,) A, A XL/A
e, (Z) = .Z e(I,”,p; )
i=1
deg ZV
ZA 5
¢ So(ma iy Y
6y v
. 1
and (4.10) follows. In particular CZ = 2n-?. Il

We now prove the main theorem.

Theorem 2. Let hypotheses (Al) ~ (A3) and (E1)” hold, 0<y<l,

0<8 <1l. Let {Zv}m

v=0 be a trajectory starting with I, = (1o,11,p9)>

Py ? l. Then there exist positive constants C, and Co independent

of v such that 1

1/, .
-CZ(G deg Zv)-

(4.17) E. (£ ) < C.,e
v

(where 1 € A < ®» 1is the index of error function (see Definition 4) and
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¢ 1is the exponent in hypothesis (Al)).

Proof. First if m(Av) is bounded by a finite number, then by Lemma 7 we
-C,deg L,

will have an estimate Ce which is better than (4.17).

Therefore we can assume m(Av) +» for v + o,

Suppose that the smallest interval I of Z, has a level n,

thus {I| = 277, Let eé:i te the maximal local error indicator.

Furthermore, let J be the parent interval from which I was obtained by

bisecting J in I _, v
Vi

level n - 1, and by (4.8) we must have

1 < v~- 1. Therefore J 1is an h-interval of

L+1

(4.18) dist(g,J) <

where L 1is given in Lemma 6.

~

Let I be such an interval that £ € I and J € I, it is easy to

~

~

obtain I with

By (Al)7, we obtain

L+2 )O’

I(i,p) < Co‘ilc < CO(Zn-l

where p is the degree of J in I , and by (E1l)” we get
)\

rL+2 )G

e(J,p) < e(l,p) < Co'\,,n-l

Because J was bisected, we must have
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(vp)
e(J,p) » 8 € ax®
Using (El)” we derive
(v,) n
(\)) 1 -.l (L—
(4.19) et ¢ Cpax ¢ ° e(J,p) < o)

2

where C = 9_1C0(2L+A)0. On the other hand Lemma 6 shows that
m(Av) < 2(o+l)(L+l) + 1

because the smallest interval of Av is of level n. Thus

m(Av)-l
"2 T T b
and (4.19) shows that
m(Av)-l .
(v) IRVICEI0 I . 1Ty ey
e < c(=—=) c°(x)
max 20 2

for some constant C° > 0, independent of v. Therefore

g in 2

/A e- 2(L+1) m(Av)

. 1
(4.20) ex(Zv) < C (m(Av))

In Lemma 7 it has been shown that

deg Zv
m(A )
v

1
-(in =)
/x v
e

(4.21) e (£)) < clm(a N’

(4.20) and (4.21) give
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deg(Z )
lro &n 2 v
N T M )He § ECRE

e, (£) < C(m(A“))l e

-QiZ——g—n—l_él - '/c' deg(zv)

< C(m(AU))l/A e 2(L+1) .

Noting that m(AV) < deg(AV), the above inequality implied (4.17) by

taking C2 = //13(§+§? Ly - € (e small enough so that Cy > 0), and

then choosing Cl' .

In (Al) we assume £ € {0,1]. Suppose £ ¢ [0,1] but (A2), (A3)

hold, then we have

Theorem 3. Let hypotheses (A2) . (A3), (E1)” hold with ¢ ¢ [0,1], O K

y<l, 0<6<1, and let (I }

v} v=0 be a trajectory starting with

ZO = ([O,l],po), pg > 1, then the number of intervals m(Av) is bounded

by a finite number when v + =, Therefore

-Czdeg(Xv)

(4.22) Ex(zv) < Cle

with Cl’ C2 > 0 independent of wv.

Proof. By Lemma 5, since in this case x # &, the algorithm will generate
a permanent p-interval containing each x € {[0,1] (these intervals will
never be bisected again). Clearly there are only finitely many such inter-

valss The rest of the part of the theorem foliows from Lemma 7. 'l

We now discuss the adaptivity of the algorithm. Recall in Part 2 we

obtained for the model problem that the optimal rate of convergence in the

. e e R - .. . I - . < Ce s . .t w
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energy norm of arbitrary mesh-degree combinations (the pairs) when &£

{0,1] 1is bounded below by

Y (a- 1/2 IN

1

cla) (/T - D)

'/E a- 1/2
where N 1is the number of degree of freedom. This is the case that the
local error function was given by

E([a,b},p) = inf ne’ﬂL

vePp_1 2

(a,b)

and A =2, o0 =a -1@ . We see that this rate of convergence is of the

-C,/oN _ -
form Cle with C, = nf{(v¥2 - 1) °].

It can be shown under the assumptions of Theorem 2 (with certain

¢.>o0

condition on ¢) that there are constants 51, 2

-CZ/cN

(4.23) ¢(s,N) = C, e

1

is the best possible estimate. Therefore we define a performance measure

Y as follows:
e

I1f there are constants C > 0, p » 1, such that

E.(5) < clo(o,deg(z N1MP

for v =0,1,2,..., then wu, = 1, otherwise u, = 0. We then can sayv:

Theorem 4. Under the conditions of Theorem 2, the algorithm is adaptive

with respect to the performance measure Hao

P SR S, BT VLI WP WL, T
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Remark 6. The notion of the adaptivity (as the optimality of the feedback)
can be defined in various ways here. It directly relates to the question
of comparison of feedback algorithms. 1In [10] {l1] it is shown that if one
considers only the worst case problem from a class F, then for many

classes F the nonadaptive approach is as good as any adaptive one.

In [12] [13] [4]) the optimality is defined asymptotically (for high
accuracy and the performance of a trajectory created by an algorithm (for
every particular problem) is compared with the performance of the best
trajectory {(for a given particular problem). In [4] the set F of pro-
blems is characterized for which as class of feedback algorithm create
trajectories with comparable performance as the theoretically best trajec—
tory and hence the feedback algorithm is an adaptive one.

In this paper we judge the algorithm how it performs with respect to
a worst case in a narrow class of solutions having a singularity of the
type x* inside or outside of the interval I. It is clear that not a
single non-feedback algorithm can perform better than our feedback algo-

rithm for this class of solutions.

Remark 7. It 1s possible to obtain the results of this section only on the
base of the hypotheses (Al)” ~ (A3)” and (E1)” of the local error indicator
without the assumptions of local error function E(I,p). In fact, the only
statement in the section which required the property of E(I,p) was

() {v)

(4.24) lim max e( { Py

v (Vs

) = 0

where A is the mesh in the trajectory (I }on .
v v v=0

Now we prove this directly based on (Al)” - (A3)” and (El)7.
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Let IiV) € Av be the critical interval, and xiv) be the middle
. - (V) . (v) . P
point of IC « Since 0 < x_ °" <1, there is a subsequence {v7} ¢ {v}
lim x(v ) . X .
. c
Vv o
Also let h, = ]Iiv)l, since 0 < h, < 1, we can assume for the same sub-
sequence {v”}
lim h . = h.
p v
VvV >

RN
)

If h > 0, there can be only finitely many Iév which are different.

. < ~
Therefore, there is Vg if v’ > Coo then Iiv ) = Ic will be fixed as

a permanent p-interval, therefore pﬁv ) + ® gand the algorithm gives
(1 )y < e(l_,p ) oy + 0
€4 tePe c’fe

-

as v~ + ®», By (El)” the maximal local error indicator is non-increasing,

therefore (4,.29) holds,

?f We now assume h = 0, First, ohserve in this case we cannot have Xe
L # £. Form (A2)” and (A3)7, the argument in proving Lemma 4 shows that if
an interval does not contain £, then it cannot be bisected infinitely
o~ . (v) . c (v)
many times. Thus there are no invervals I with dist(g,I ) > e >0
® and 1I(v)l + 0,
™Y 3 - (\)’) <
This shows we can assume X, = E. For each a IC , let the inter-
A(v” . v a(v”
val I( ) contain both & and Ié ). Clearly, we can choose 1 ) to

be such that




< lg - xiv )I +h. » 0 (as v + 0).

Therefore by (Al)” and (El)

(v7) (v7) 2(v7)
e(Ic »P, ) < e(l 1)
(v7),0
< C0|i | 0.
This completes the proof of (4.29). |

As a last remark we indicate that the above results are all valid if
we increase the degree uniformly on all intervals. 1In fact, the proofs are
concerned with the worst possible degree distribution made by our algo-
rithm, If, instead only increasing the degree on sone —intervals as
described in Section 2, we increase all degrees by | whenever there is
p-interval on which degree is supposed to be increased (cf. Definition 8),
then we will obtain an adaptive h-p version algorithm which produces uni-
form degree vector, and this modification does not cause any change in our
original proof,

The case having uniform degree vector is important because it is much

easier to make implementation in 2 and 3-dimensional case.

5. NUMERICAL RESULTS
Table | and Figure 1 are the numerical results obtained by using the
adaptive h-p version algorithm described in Section 2. The problem is the

model problem

u(0) = u(l) = 0

SIS T T B At s 9 Aeand ~ >~
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with the solution

u(x) = (x-8)7 = (1=£)%ex = (=£) T(1-x)

and we compute for the case a = 0,7, o =1.,1, & =0, ¢ = 0.3,
respectively. The local error indicators are exact local error of the
finite element solution. According to the theory, we will obtain an
exponential rate of error reduction.

-</N

(5.1) Ey = Cr

where N 1is the number of degrees of freedom and r = 10.

We use linear regression to find the constants C and «. Comparing
with the theoretic values «° for the h-p extension with geometric mesh
and linear degree vector when qopt = 0.1715 (the optimal one), q = 0.5

with corresponding optimal s, we obtain the following table:

TABLE 1

' ' /V o= 1/2

=1715 q=0.5 q=0.1715| q=0.5

a £ c < K//a—lé

Qopt

0 2,458 | 0.3174 | 0.7097
0.7 0.3424 0.3036
0.316.280 | 0.3566 { 0.7974

0.7656 | 0.6789

0 | 0.61061 0,5563 | 00,7181
1.1 0.5930 0.5259
0.3}6.115 | 0.6642 | 0,8575

Figure 5.1 shows that the error reduction curves are near to straight lines

in the ¥N ~ logtel scaled graph, as expected. The slopnes shown in Fig.

E
5.1 are the theoretical ones for dopt and q = 0.5.

For the implementation of the algorithm, as mentioned before, the

assumptions of the theory are satisfied for the model problem, =~u" =

h
-




R —— Mg e St Jese S e 1

35

when the solution can be obtained on each mesh interval separately. In the
general case, the local errors are affected by global error and the assump-
tions are not to be satisfied. Furthermore, there is a problem in finding

an effective local error estimator for large mesh intervals and high

degrees. Although there are difficulties in both theoretical and practical

N
Kfz- \Th§§b;, (a)

: (b)X\

1074t \\
ol N
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s 10.5524
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Figure 5.1.

aspects of the adaptive h-p version of the FEM, a program was written for 1
the one-dimensional two-point boundary value problem: ;
—
=(a(x)u”)” + b(x)u = f£(x) x ¢ (0.1) o
A
=
u(@) = wu(l) = 0 Y
-9,
R
Figures 5.2(a), (b) are the results obtained by using the adaptive ]
h-p version FEM program to solve the following problem -]
. -4
R
-u" + xu = f i
u(0) = uw(1) = 0 )
_
®
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with the solution

u(x) = (x-0)§ - (1-9)%

for a =1.1, £ =0 and & = 0.3. The graph is in /N - logllellE scale,
(a) shows the error. (b) (the dotted curves) are curves of estimated error
(by the global error estimates).

We also use linear regression to obtain the constant « defined in
formula (5.1), which is shown on the figures.

Our results show the program also performs very well on this
problem. The global error estimator is very reliable. When & = 0.3 the
singular point will never be a nodal point during bisection. In this case
the curve, although oscillating, still gives the expected exponential rate,
with the rate of convergence and the error itself better than when £ # O.

The program basically agrees with the algoritim as described in Sec-
tion 2, There are nevertheless some different features in the program:

1) We not only increase the polynomial degrees but also allow lower-
ing them. The reason for doing this is to make the local error more equi-
librated so that we can avoid unnecessarily increasing the total number of
degrees of freedom. This is done in the following way.

For each v = 1,2,,.., we let pO <Ky be given,

(5.2) o, = min{p\)_l,R(v)}, v=1,2,...
with
v - el,ptl)
R = min{R|R = e(1.p) (1,p) Ev}°
) ) _(v) N SY. (v) _ (v)
If e e(Ij P ) < Py Cnax (emax 1<j2:?A ) {e, "}), then the
AV
(v)

(v) (v)
degr ) f I,
gree pJ o j

will be lowered by 1 (but keep P > 1.
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In general, lowering the degree could be dangerous. Consider the

following situation: Let e, ep be two local error indicators, and

p =0 is given a priori. Suppose that the two intervals are of p-type

v
and
(v)
el < pemax
N %))
ey = ez

By our algorithm, the degree of first interval will be lowered by | and
its local error indicator will change to eI > e . Meanwhile the degree of
second interval will be raised by 1 and its local error indicator will

change to ei < 5. However, it may happen that in the next step we have

e7 = e(v+1)

1 max

. (v+l)
€2 < Pernax °

Then everything will be back to the original state and the program will run

}
fl

]

into a viscious circle, o
Observe that the conditions for this to happen are ~"j

)

e, < pe,, e, < e} :1?

thus :i?
e e e, e’ °

2 1 R

-9

. 2 ] _

where R, = ez/ez. Therefore o~ > RyR,. 1If we choose o as in (5.2), ;ia

the vicious circle can be prevented.

2) To find a good local error indicator is not a simple problem,
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since the h-p version program produces large elements and high degrees.

We are using the following method:
On the interval I (which has degree p), the finite element

solution can be written as

a0 = cgatfieo + et + cyafPo + e v e qiPo

1 2

where qi %(K) and q(I)(x) are linear such that

qglg(x y = 1, qilg(x ) = 0
(I)(x ) = 0, qgli(xi) = 1

and ay (x) (i > 2) are integrals of Legendre polynomials (transformed

to 1 = [xi_l,xi]). We predict C by solving a local stiffness matrix,

ptl

and the local error indicators are defined to be

()
1

(1),2 @
p=19p- 1)}

1 + 1IC o9p

= 1l 2
e(l,p) = {2 (e E
There is no theoretical analysis available which shows how good is this
error indicator. Our numerical computation shows that for our examples it

performes well, but on the interval with singularity in it, this error

indicator is low quality,
6. THE PERFORMANCE OF VARIOUS VERSIONS OF THE FEM, THE CONCLUSIONS

In this section we will compare and summarize the performances of all

versions of the finite element method in a concrete setting of an example.
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Let us consider the problem

-u = f

u(0)

]
[=
~
—
~

]
o

with the exact solution

u(x) = x =~ x, a=1,7

having a relatively strong singularity at the origin.

As before, we are interested in the performance measured by the
energy norm of the error. The graphs plotted in the double logarithmic
scale will show the dependence of the error on the number N of degrees of
freedom,

Fig. 6.1 shows the performance of the h-version (p = 1,2) for the
uniform, the optimal radical and feedback h-version. For comparison, we

also show the performance of the optimal h-p version (i.e., the geometric

h version uniform mesh p=l
~— \
0™ =3 ﬁé‘:z
feedback h version
Y

AN
AN

)

optimal h-p version/)\

Icy'3 N
TN

- h version optimal radical mesh \

a=0.7

L1 1 1 L1lll | L L 1111l | L1 1111

| 10 100 I000
N

Figure 6.1.
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mesh with the ratio g = /2 - 1)2 = ,1715 combined with a linear slope of
degrees s = 2a - 1 = ,4),

The figure clearly indicates that the h-versicn with uniform mesh is
not acceptable. The h-version with optimal mesh performs relatively well
but strong refinement could cause round-off problems, For p = 2 the
relative accuracy of 1% is achleved with N = 40 and the ratio of the
sizes of the maximal and minimal elements is 1015. The h-p version
requires N = 35, maximal degree 5 and the ratio of the series of
elements 109 for achieving the same accuracy of 1%. Fig. 6.1 also shows
the performance of the feedback h—-version for p =1 and p = 2. The
feedback method is here adaptive with respect to the rate of convergence
u. The rate is the same as the rate of the h-version with optimal
mesh., (The feedback approach is more expensive than the computation with
a-priori given radical mesh., Nevertheless the cost is not too high.) The
figure shows clearly that when higher accuracy is required, then the dif-
ference between the performances of various versions increases,

Figure 6.2 compares the performance of the h, p and h-p versions.
It shows the performance of the p-version (uniform p < 10 with the geo-
metric mesh (q = 0.15) and m = 2,5,10 elements. We also show the per—

formance of the p-version (with the same number of elements m) when the

degrees p are chosen in a feedback way. For m 1 and m =5 the

e

p-version fails to achieve accuracy of 1%4. If m 10 then the size of the

JwaTs

smallest element is of order 10-8 and the accuracy of 1% 1s achieved

'
J

for p = 4, We see that here (i.e., for m = 10) the p-version performs

in the certain range of accuracy similarly as the hp-version. This

clearly indicates the importance of the selection of a proper mesh. We

also see here the typical shape of the curve (the S-shape) when in the

1@ *

s )
' o
.
y s "¢
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first phase the error decreases exponentially and in the second phase

N—Z(a— 1/2 ).

algebraicaly with the rate

— h version
uniform mesh p=I
p version

geometric mesh
q= OS5

- feedback
p version
q=0.5

optimal h-p version

- \ h version

3

10 A\ optimal mesh ]
~ \ p=l

a=0.7
| 1 1 L1ttt 1 {1ttt ] ! Lt

J 10 100 1000
N

Figure 6.2,

Fig. 6.3 shows the performance of the optimal h-p version with

optimal mesh and uniform and nonuniform (optimal) distributions of the

degrees of elements. We see the exponential rate of convergence in both

cases. The accuracy of 1% is achieved with N = 35 for the optimal non-

uniform p-distribution and N = 50 for the optimal uniform distribution

of the degrees of the elements. Fig, 6,3 also shows the performance of the

feedback bh—p version. We see the same rate although the error is slightly

larger. It is clear that the h-p version is expecially effective when

higher accuracy is required.

.......
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In summary we conclude
o 1) A uniform mesh cannot produce accurate results for a reasonable
@)

ol cost if the solution has a singular behavior.

2) The proper selection of the mesh is essential for the perform-
ance. The mesh can be constructed a-priori if the structure of the solu-
tion is known or it can be constructed in a feedback way. The under=
refinement of the mesh has to be avoided. The overrefinement does not
influence too negatively the performance.

3) The higher degree elements with properly designed mesh perform
better than elements of low degrees for both smooth and nonsmooth solu-

tion. If high accuracy is required then, especially, the high order

element perform well.
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4) The p-version is in practical computations effective provided
the mesh is properly designed and the required accuracy is achieved in the
exponential phase. If the mesh is not properly designed then the
p-version does not perform well for singular solution although better than
the h-version with uniform mesh.,

5) The feedback methods can be designed so that they are adaptive
with respect to the convergence and to the convergence rate wu. They per—
form comparably as the optimal meshes.

Although our conclusions are based on the one dimensional case, our
results and computational experience related to the two dimensional pro-
blems indicate that the conclusion are valid also in two dimension case,.

Let us mention that we did not address various aspects of computa-
tional complexity as number of operations, data flow problems, etc. These

aspects will be addressed in detail in [12] in the two dimensional setting.
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