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EXPERIENCE WITH (1

IMPLEMENTATION OF A
PROTOTYPE PROGRAMMING ENVIRONMENT

PART I

Bruce J. MacLennan
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract:

This is the first report of a series exploring the use of the {1 programming notation to prototype a pro-
gramming environment. This environment includes an interpreter, unparser, syntax directed editor,
command interpreter, debugger and code generator, and supports programming in a small applicative
language. The present report describes the interpreter, unparser, syntax directed editor, command
interpreter and debugger for a subset of the language, namely arithmetic expressions.

1. Introduction

Our goal is to explore in the context of a very simple language the use of the 1 programming notation
‘MacLennan83, MacLennan85} to implement some of the tools that constitute a programming environ-

ment. Succeeding reports will extend the tools described in this report*.

F\ N
The structure of this report is as follows: First we briefly review the 0 programming notation for ere.

bt 2 "7
describing transformations on relations. Second, we define a simple language — the language of arith- 2
metic expressions. An abstract syntax for this language is defined in terms of relations. Third, we dis- e
cuss abstract interpretation of programs in this language. Fourth, we modify the interpreter to accom- El
!
plish unparsing. Next, we look at error recovery and interactive debugging. Finally, we consider syntax ]
. —
directed editing of abstract programs. it
P —

* Support for this research was provided by the Office of Naval Research under contract N00014-85- WR-24057.
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2. OVERVIEWOF 0
2.1 Requirements for a Programming Enviranment Database

To understand the relevance of {1 to programming environments we begin by stating the requirements
for a software development database. It will be required to store and interrelate many kinds of infor-

mation:

— Programs

— Specifications

— Documentation

— Version Information

— Comments

— Object Code

- Implementation Hints

— Test Data

— Test Results
— Reports
— Runtime Structures

In prototyping tools and environments, we want to make a minimum of implementation commitments.
Hence, it is convenient to take a relatwnal view. This is because relations are a well-understood,

implementation-independent way of viewing databases.

S 2.2 RELATIONS

-

e We will view the computer system (or network) as containing a (possibly large) number of (finite) rela-
.--".

t_! tions. The number of relations is not fixed; new {empty) relations can be created by direct (user) or
. . , ,

;.;—;. indirect (program) request. The tuples in relations can contain:
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¢ Values: For example. numbers, Booleans, characters. strings. ‘‘pure’’ lists.

¢ Objects: Essentially unique IDs; their only properties are the relations in which they participate.

Relations are themselves objects.

2.3 Notation
We use the notation ‘R{z,y,...,z)" to mean the tuple (z,y,...,z) is in R. Similarly,
‘~R(z.y,...,z)" means that there is no such tuple in R.

Operations on the database are described by a kind of production rule:
cause = effect

The effect part is composed of a series of transactions. There are two forms for a transaction:

e Rlz,y,...,z) means add the tuple (z,y,...,2) to R.
e —R(z,y,...,z) means delete the tuple from R.
The arguments z,y,..., z can be any applicative expressions. They can also be procedures, ie.,

parameterized database transformations.
The cause part has the form:
condition ,

The cause is a sequence of conditions separated by commas. Each condition asks whether certain rela-

tions hold certain tuples.

The condition ‘R(z.,y, ...,z)’ succeeds if there is a tuple (z,y, ...,z) in R. On the other hand,

‘~R(z,y,...,z) failsif there is such a tuple in R. The arguments z, y, ..., z have the forms:

¢ a constant matches itself;

o a free variable matches anything, and becomes bound to value it matches.

an applicative expression matches its value.

We consider several examples of conditions. R(2,3) succeeds if the pair (2,3) i in R. -R(2.3)

succeeds if the pair (2,3) @n’tin R. If ‘y’ is free (unbound}, then R(2,y) succeeds if there is a pair of

.3.
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the form (2.v} in R; variable ‘y’ becomes bound to v. -R(2.y) succeeds if there is no pair of the
form (2,v) in R. If ‘y’ is bound to v. then S(y.3) succeeds if the pair (v,3) is in §. -5(y,3)

succeeds if the pair (v,3) is notin §.

An implicit join is a rule in which the same free variable appears in several conditions. For exam-

ple,
R(2,y), S(v.3)
succeeds if:
1. There is a pair of the form (2,v) in R
2. The pair (v,3) isin §

It fails, otherwise. Note: There may be many pairs of the form (2,v) in R. The join succeeds if for

one or more of them (v,3) is in S. Any conjunction of conditions is allowed in the cause.
2.4 Stack Example

To illustrate these ideas we show the 2 definition of a stack manager. First we introduce the relations

and their intuitive meanings:

e Stack(s) — object s is a stack

s Contents(z,s) — the list z is the contents of aA
» Push(a,z,s) — a pushes z on s

e Pop(a,s) — a pops s

+ Receives(a,z) — a receives z

The domains of these relations are described by the following assertions {second order relations). Thus
‘Degree {Contents, 2)’ means that all the tuples in Contents have two elements; ‘Domain (list, 1, Con-
tents)’ means that the first elements of the tuples in Contents satisfy the ‘list’ predicate; and ‘Indexed
(Contents, 2)’ means that the second elements of the tuples in Contents are all unique. Each assertion

is shown in two notations: the usual predicate notation and a pseudonatural notation (1 supports

several semantically equivalent notations; see [MacLennan84. Ufford85)).
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o Degree (Stack, 1)

‘Stack’ has degree 1.

« Degree (Contents, 2),

‘Contents’ has degree 2.

o Domain (list, 1, Contents)

‘list’ is domain 1 of ‘Contents’.

+ Domain (Stack, 2, Contents)

‘Stack’ is domain 2 of ‘Contents’.

o Indexed (Contents, 2)

‘Contents’ is indexed by domain 2.

o Degree (Push, 3)

‘Push’ has degree 3.

o Domain (Stack, 3, Push)

‘Stack’ is domain 3 of ‘Push’.

¢ Degree (Pop, 2)

‘Pop’ has degree 2.

¢ Domain (Stack, 2, Pop)

‘Stack’ is domain 2 of ‘Pop’.

o Degree (Receives, 2)

‘Receives’ has degree 2.

The pop rule describes how to pop a stack:

Stack (s), Pop (a,s), Contents {z,s)

= ~Pop (a,s),

—Contents (z,s),

Receive (a, first |z!),
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Contents (rest |z, s)
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It can be read as follows: ‘‘If s is a stack. a is popping s. and 1 is the contents of 5. then a is not pop-

ping 8. z is not the conients of s, a receives the first element of z. and the rest of z is the contents of

The push rule is analogous:

Stack (s}, Push (a,z,8), Contents (y,s)

= —Push (a,z,8},

L on

’

—Contents (y,s),

!‘71'—11r ’_ 1]

Receive (a,s),

Contents (cons |z,y}, s)

- If s is a stack, a is pushing z on ¢, and y is the contents of s, then a is not pushing z on s, y is not

the contents of s, a receives s, and the result of consing z on y is the contents of s.

2.5 Further Notational Conventions

Notice that in the push and pop rules, conditions found to hold in the cause parts of rules are often

canceled in the effect parts. Since this is a very common situation we introduce the following cancella-

»

tion convention: When a tuple found in the condition is removed by the effect. i.e., a relation that holds

v
Pl
PR
RO
‘,‘- r L]

in the condition is canceled by the effect, we can indicate this by an ‘* before the condition. For

1
t 1

it 2R A0 4
f
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example, the pop and push rules can be written:

Stack(s), *Pop(a,s), *Contents(z,s)

=> Receive(a, first/z]), Contents(restiz}, s)

Stack(s), *Push(a.z,s), *Contents(y,s)

'.~ =s Receive(a,s), Contents{consiz,y]. s)
o
o It is often useful to limit the application of rules by constraints, which are implemented as follows. The A

relation called ‘if contains the single value true. Hence. an applicative expression that evaluates to a
g PP P

Dl
>

Boolean value can be used to constrain rule application. For example:
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Sched (z.t), Clock (t).if (t>t) =

For convenience we often omit the if and write:

Sched (z,t), Clock (t), t2t =

We can summarize all that we've seen in the following (simplified) grammar for the 11 language:

Simplified @ Grammar

rule = [cause = effect
cause = cond ,

#|
cond = rel args

-
args ={ezpr, - )
effect = trans ,
trans = i rel args

A complete  grammar can be found in {MacLennan85,.

2.6 Pseudonatural Notation

We have experimented with several pseudonatural notations for {1 rules. The notation used in this
report is a variation of that described in MacLennan84) and ;Ufford85 . Relations can be named by

templates, for example:

~ is stack

e
- — is contents of —
[ - pops —

od
. ~ pushes - on -
L — receives -
. ,
- Rules are written:

®
3
b- s
b, If - then -
o
- with ‘. or ‘, and’ for *,". The word ‘given’ represents the cancellation convention ‘*'. Hence the pop
L
= -7-
v
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.- rule can be written:

If S is stack, given A pops S. and given X is contents of §

ther A receives first of X. and rest of X is contents of .
The push rule is:

- If S is stack. given 4 pushes X on §, and given Y is contents of §

then A receives £ and catenation of X and Y is contents of S.
Allowing ‘a’ ‘an’ and ‘the’ as noise words and using words for variable names we have:

If an object is a stack. given an agent pops the object, and given a list is the contents of the object

then the agent receives the first of the list, and the rest of the list is the contents of the object.

o If an object is a stack, given an agent pushes a thing on the stack, and given a list is the contents of

) ft: the stack then the agent receives the stack, and the catenation of the thing and the list is the con-

E.-'_".. tents of the stack.
]

AN ..tli.:.'.j
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3. Abstract Structure

For our example programming environment we will use a very simple language of arithmetic expres-

sions composed of —. —, =, +. parentheses and literal integers. A typical program is:

(3-5) ~ 6
First we must define an abstract structure for representing programs. There are two kinds of nodes:
o Constant Nodes: correspond to literals.

e Applicaton Nodes: correspond to the application of an operator to its operands

These nodes and their interconnections can be represented by the relations:

« Con (E)

E is a constant

« Litval (V. E)

V is the literal value of E.

e Appl (E)

E is an application.

« Op(F.E)

F is the operator of E.

e Left (X, E)

X is the left_argument of E.

¢ Right (Y, E)
Y is the right_argument of E.

For example, the program
3-5) » 6

would be represented by the database:
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Appl (nl1)
Op (“X”, nl)
Left (n2, nl1)

Right (n3. nl1)

Appl (n2)
Op (u__ 7’, n2)
Left (n4, n2)

Right {n5, n2)

Con (n3)
Litval (6, n3)
Con (n4)
Litval (3, n4)
Con (n5)

Litval {5, n5)

Meaning (sum, ‘‘+ )

Meaning (product, ¢ x"’)

We have given the objects names {‘nl’, ‘n2’, etc.) only so they can be referred to in our example; nor-
mally they would be anonymous since the tree would have been constructed by an editor. This data-

base is portrayed in Figure 1.

In defining the domains of the various relations. it will be convenient to make use of the following

function abbreviation. Let ‘Function(F,D,R)’ mean

s Degree(F,2),

¢+ Domain(R,1,F),

e Domain(D,2,F),

¢ Indexed(F,2).

In the pseudonatural notation we can say:
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Right
n3

LES Litval

Litval Litval

. 3 5
Figure 1. Database Representing Abstract Program

‘F is a function from D wo R’ means

‘F has degree 1, R is domain 1 of F, D is domain 2 of F, and F is indexed on domain 2’.

Hence, if we know that Function( F,D,R}, that is, that F is a function from D to R, then we know

that given any z in D there will be at most one y such that F(y,r).

The domains of the abstract program structure relations (in the pseudonatural notation) are as fol-

lows:
e« ‘constant’ has degree 1.

s ‘literal value’ is a function from ‘constant’ to ‘integer’.

- ¢ ‘application’ has degree 1.
: . _— .
:__! e ‘operator’ is a function from ‘application’ to ‘string’.

8 o ‘left argument’ is a function from ‘application’ to ‘expression’.

o e ‘right_argument’ is a function from ‘application’ to ‘expression’.
]

E.'- In the predicate notation this is:

-

;:: Degree (Con, 1)

Function (litval, Con, integer)

K

Degree (Appl, 1)

I

WP
S e Ty T

Function (Op, Appl, string)
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Function {Left, expr. expr)

Function (Right, expr, expr)

Here we have assumed that

expr = Con U Appl

LR AR 23
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4. Evaluation
4.1 Relations

The preceding relations define the abstract program structure: they are static (with respect to program
evaluation). We need additional relations to control program evaluation: they are dynamic (with respect

to program evaluation). The evaluation relations are:

« Eval (E)

E is evaluated

e Value (V. E)

V' is the value of E

e Meaning (F, V)
F is the meaning of V.

The domains of these relagdons are:

¢« Degree(Eval 1), Domain{expr.1.Eval).

‘evaluated’ has degree 1. and "expression’ is domain 1 of ‘evaluated’.

o Function {Value. expr. integer)

‘value’ is a function from ‘expression’ to ‘integer’.

Function (Meaning. string. function)

‘meaning’ is a function from "string’ to "expression’.

Eval and Value can be thought of as attrdutes that at various times are attached to various nodes in the
tree  In particular. the Eval atiribute on a node means that the evaluation of that node has been
requested, but not serviced. The Value attribute associates a value with a node until such time as that
value is used. The Meaning relation is a table that maps the names of operators into functions for per-

forming the operations.

D B
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4.2 Evaluation of Constant Node
The transformation required to evaluate a constant node can be portrayed:

Con E Eval Con E Value

—

Litval --- - .. | = Licval - _

e

That is, if the Eval attribute arrives at a constant node, then we remove the Eval attribute (since the
request has been serviced), and use a Value link to bind the node’s literal value to the node. In other
words, when an Eval arrives at a leaf of the tree it is converted into a Value, which will travel back up

the tree.
The rule for accomplishing this is simply':
Hf given an expression is evaluated, the expression is a constant, a number is the literal value of the
expression, and a function is the meaning of “lit”’
then the function of the number is the value of the expression.
This is expressed in the predicate notation as:
*Eval(E), Con(E), Litval( V,E), Meaning(F,*lit"”) = Value(F: V],E)

The function that is the meaning of “lit” is the identity function, hence the following simpler rule

would also work:
*Eval(E). Con(E), Litvaf V.E}) = Value(V,E)

We have used the more complicated rule to display the symmetry between the evaluator and the

unparser (which is discussed in the following section).

1. The pseudonatural transcription of the rules was prepared by Robert Ufford; see Ufords5: .
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4.3 Evalustion of Application Node

Evaluation of application nodes is accomplished in two steps. First there is a downward analysis pass
when the Eval attribute reaches the node and is passed to its daughters. Later there is an upward syn-
thesis pass when the Values from the daughters arrive back at the node and are used to compute the

Value for the node. These steps can be visualized as in Figures 2 and 3.

Appl € ;V“',

; X o -] y
Figure 2. Step 1: Evaluate Arguments

| E A € yilue | = |
! Arpl ve | Vo & [, v ]

i cp i
! N© == N e |
| ) . |
| Koght Lesi \Rght |
, Qe vlue volve v . - |
Figure 3. Step 2: Perform Operation x Y

It is easy to transiate these diagrams into rules. First the analysis {downward) rule:

If given an expression is evaluated, the expression is an application, node 1 is the left_argument of

the expression, and node_2 is the right _argument of the expression

then node_1 is evaluated. and node 2 is evaluated.
In the predicate notation:

*Eval(E). Appl( E). Left(X.E), Right(Y,E)

== Eval(X), Eval(Y)

Notice that the Eval flag is passed to both daughters simultaneously; thus they can be evaluated con-

currently or in any other order. Hence, Eval is a parallel evaluator.

Next we consider the synthesis {upward) rule:

-15-
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If an expression is an application. a string is the operator of the expression. node_1 is the left argu-

ment of the expression. node_2 is the right argument of the expression, a function is the meaning
of the string, given number_1 is the value of node_l and given number_2 is the value of node 2

then the function of number_1 and number_2 is the value of the expression.

In the predicate notation:

Appl(E), Op(N.E), Left( X.E). Right(Y,E),

Meaning( F.N), *Value( ' X}, *Value(V,Y)
=> Value (F{U,V}, E)

This completes the paralle] evaluator for simple abstract arithmetic expressions.
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5. Unparsing

5.1 Relations

We will now use exactly the same approach as used for evaluation. but for a different purpose —
unparsing. Instead of computing an integer value for the abstract program. we will compute a string
value. which is the program’s concrete representation. That is we will unparse the abstract program.

This is accomplished by changing the interpretation of the literal constants and the primitive operators.

This is a quite general approach. From a single program such as the evaluator we can generate a
family of related programs. just by changing the domain of interpretation of the constants and operators.

Examples of tools amenable to this approach are unparsers. type checkers, symbolic evaluators.
The following relations are needed:

o Unparse (E)
E is unparsed

(corresponds to Eval)

e Image (S. E)
S is the image of £

(corresponds to Value)

¢ Template (T, V)
T is the template for N

(corresponds to Meaning)
Given our previous example. Unparse(nl) will eventualily result in
Image (““((3~5)<8)", nl)
For simplicity we have generated an image that is fully parenthesized
The domains of the relations are as follows

¢ Degree {Unparse, 1)

‘unparsed’ has degree 1.
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« Function (Image. expr. string).

‘image’ 1s a function from "expression’ to ‘string’

o Funcuon (Template. string. function}.

‘template’ is a function from “string’ to ‘function’
We also will make the following assumptions:
o Assume the function ‘string—int n ' converts the integer n into a string.
¢ Assume Template (string— int. ““lit”’).
e Assume s "t represents string catenation.
o For operator symbols N, assume Template (F, N). where

F UV =" "U "N "V
and Vis ‘‘+""or -7 or “x” or “*+”. Thus. if Template (F, ““~ ), then
F g (8 x2)” = (3~ (8x2)"

5.2 Unparsing Constants

When the Unparse attribute arrives at a constant node, the literal value is converted to a string and

made the image of the node. In the pseudonatural notation the rule is:

If given an expression is unparsed. the expression is a constant, a number is the literal value of the i
expression. and a function is the template of ““lit” !

then the function of the number is the image of the expression.
In predicate notation it is'

*Unparse{ E). Con{FE), Litval{ V. E}, Template( F.E)

= Image( F V . E)
5.3 Unparsing Applications

The arrival of the unparse attribute at an application node triggers its propagation to the daughter

nodes Hence the analysis rule in pseudonatural notation s
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If given an expression is unparsed, the expression is an application. node-1 is the left_argument of

the expression, and node_2 is the right_argument of the expression

then node 1 is unparsed, and node 2 is unparsed.

(g
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In predicate notation it is:

*Unparse(E), Appl(E), Left(X,E), Right(Y,E).

=> Unparse(X), Unparse{Y)

When images arrive at the daughters of the application, they are combined by the template function of

the operator into an image for the entire node. Hence the synthesis rule in pseudonatural notation is:

If an expression is an application, a string is the operator of the expression, node 1 is the
left_argument of the expression, node_2 is the right_argument of the expression, a function is the
template of the string, given image 1 is the image of node 1, and given image_2 is the image of

node_2

then the function of image 1 and image_2 is the image of the expression.

In the predicate notation:

Appl(E}, Op( N.E), Left{ X.E), Right(Y,E),
Template( F,N), *Image( U, X}, *Image( V,Y)

=> Image (F U,V E)

This completes the rules for the unparser.
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6. Information Hiding

The relations can be divided into three domains of accessibility on the basis of ““need to know "

Abstract

Programs

Con, Litval,
Appl, Op,
Left, Right

[\

Evaluator| | Unparser

Eval, Unparse,
Value, Image,

Meaning | { Template

That is, both the evaluator and the unparser need access to the abstract structure relations (read-only
access, actually). On the other hand, the evaluator needs access to its own dynamic relations, but not
to those of the unparser. Conversely, the unparser needs access to its own relations, but not the
evaluator’s. These access restrictions can be enforced by the capability mechanism described in

MacLennan85!.
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7. Error Handling

7.1 Error Detection

A real programming environment must be able to detect errors and allow the user to deal with them.
Let’s consider what happens when an error occurs. Suppose we evaluate ((3+0)+1). This leads to the

assertion
Value (quotient '3.0 . n)
Suppose quotient 3.0 = error. This will trigger that assertion
Value (sum :error,1;, m)
If we further assume sumjerror,l| = error, then the value returned for the entire evaluation is
‘error’. This result is not helpful — it doesn’t tell us where the error occurred, only that an error

occurred.

‘““error codes’’ when something

One possible solution is to suppose the primitive operations return
goes wrong, that the code indicates what went wrong, and that error codes are distinguishable from
integers and other ‘‘legitimate’’ values. Then we can incorporate error checking into our interpreter.

We do this by tentatively attaching the alleged value to the node {via a new relation called Check) until

it is determined whether or not the value is legitimate. This requires the following additional relations:

e Check (V, E)

V is the value to be checked for E

o Explanation (5, C)

S is the explanation of error C
e Display (5)
S is displayed

¢ CurrentNode (E)

E is the current node

The domains of these relations are:
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Function (Explanation. errorcode. string).
Degree (Display. 1}.

Domain (string. 1. Display)

3
N,

We then need to modify the second (upward or synthesis) rule for applications. It is replaced by these

three rules:

Appl(E). Op(NV.E}, Left{ X.E), Right { Y. E),
Meaning( F, V). *Value{ U'.X), *Value(V,Y)

= Check (FiU,V), E).

*Check{ W,E), if (integer; W) => Value( W ,E).

*Check( W,E), Explanation(§, W),
*CurrentNode(— ), if (errorcode{ W!)

== Display{S}, CurrentNode(E).

The first rule tentatively attaches F{ U, V] to the application node via Check. If the value of F U,V is
an integer, then the second rule converts the Check connection to a Value connection to reflect the fact
that the value is bona fide. On the other hand, if the value of F{ L,V is an error code, then evalua-
tion is stopped (since no Value is attached to the node), the offending node is recorded (in

CurrentNode), and an explanation of the error code is displayed.
In the pseudonatural notation these rules are:

If an expression is an application. a string is the operator of the expression, node 1 is the
left_argument of the expression, node 2 is the right argument of the expression, a function is the
meaning of the string, given number 1 is the value of node_ I, and given number 2 is the value of

node 2 then the fun-tion of number 1 and number 2 is the value to be checked for the expression.

" If given an alleged value is the value to be checked for an exp.zssion, and the alleged value is an

integer then the alleged value is the value of the expression.
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If given an alleged value is the value to be checked for an expression. the alleged value is an
error_code. a string is the explanation of the error code. and any node is the current_node then the

string is displayed. and the expression is the current node.

Thus. if an erro- value is detected. evaluation is suspended. an error message is issued. and the

offending node is recorded.

The alert reader will realize that with a paralle] evaluator there is the possibility of several errors
occuring concurrently. With the error checking method presented above. all the diagnostics will be
issued correctly, but CurrentNode will record only the last node to generate an error. A more elaborate

system would place all error nodes in a two place relation ErrorNodes such that
ErrorNodes (E,C)

means that node E generated error code C. It is then necessary to have a command for removing a
node from ErrorNodes and making it the CurrentNode. The detailed implementation is left as an exer-

cise for the reader.
7.2 Suspension

What is the state when an error message is sent? There may be parallel computations in progress. but
since no Value has been provided for E, the evaluation cannot complete. It is suspended. waiting for a

value for £.
There are several possible actions:
!. Supply a value for the offending node and let evaluation continue. E.g?°.
CurrentNode (E) = Value {0.E):
2. Unparse the offending node to find the problem:

CurrentNode (E) = Unparse { E):

CurrentNode (£}, *Image (S, E) == Display {S}

2. We show the rule that would be typed in (1 command mode 1o effect the desired error recovery action.
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3. Investigate neighboring nodes (e.g.. the divisor):

*CurrentNode (E). Right (Y ,E) = CurrentNode (Y):

— unparse as above

m 4. Reevaluate the dividend and supply a default value for the divisor. E.g.,

PR T

CurrentNode (E). Left (X,E) = Eval (X);

CurrentNode (E), Right (Y,E) = Value (1,7Y);

ot

. Abort evaluation by clearing out all Eval, Value and Check tuples:

*Eval (E) = ;
*Value (V,E) = ;

*Check (V,E) = ;

All these functions (and more) could be provided as commands in a programming environment. In the

next section we will investigate a command interpreter that permits debugging actions such as these.
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8. Command Interpreter

In this section we will describe a simple command interpreter in {1 rules. This command interpreter
will permit the interactive evaluation and unparsing of {already entered) abstract programs, in addition

to various debugging and error recovery activities.

We assume the existence of a relation called Command that contains the last string or keystroke (we
don’t care which) typed on the kevboard. We will use boldfaced identifiers such as evaluate to

represent commands: these identifiers could be bound to strings, key codes, menus coordinates. etc.

First we consider the evaluate command: its intended effect is to request evaluation of the current
expression. which might be the entire program or some subexpression of it. This command is imple-

mented by the following two rules

*Command (evaluate). CurrentNode{E) = Eval (E), Pendant (E).

*Pendant (E). *Value (V,E) = Display {string—int V'}.

The first rule detects the evaluate command and requests evaluation of the expression. That an evalua-
tion is in progress is recorded in the Pendant relation. When a value arrives at the pendant node, it is

displayed by the second rule.
The auxiliary relation Pendant can be eliminated by using Q ’s sequential mechanism:

*Command ({evaluate), CurrentNode (E)
= {Eval (E}):

*Value ( V,E) == Display {string—int V]}}.

The commands in the curly braces are evaluated in order. Thus the tuple is asserted to Eval before the

second rule waits for a tuple in Value.

The val command is used to explicitly attach a value to a node. This might be used during error
recovery to allow evaluation to proceed in the face of errors. The command makes use of an additional
relation Argument which holds a string value typed in from the keyboard. We can imagine this work-

ing as follows: The user types ‘254" and strikes the val key. This causes the string ‘254" to be put n




X h the Argument relation and the key val to be put in the Command relation. The rule for processing the
u val command is:
*Command(val). *Argument( V). CurrentNode(E)

A0 => Value (int—string V ,E).

v The show command requests the current expression to be unparsed and displayed. It is implemented

by:

*Command {show], CurrentNode (E)

== { Unparse (FE);

r *Image (S,E}] => Display {S}}.
[, It is also useful to have commands for moving within the abstract program structure. The in command
: ‘“zooms in’’ by focusing on the left-argument of the current expression:

*Command (in), *CurrentNode (E), Left (X,E)

= CurrentNode ( X).
Thus the in command shifts the focus from the current node to the left-argument of the current node.

The next command shifts the focus from the left argument of an application to its right argument.:

*Command (next), *CurrentNode (X), Left (X,E), Right (Y,E)
=
b = CurrentNode (Y).
.
F-"
e In the pseudonatural notation this is expressed:
L-*';:.- If given next is the command, node 1 is the current_node. node 1 is the left argument of an
Lo_".
! appl_node, and node 2 is the right_argument of the appl_node then node 2 is the current_node.
o
-
- Analogous commands are prev. which shifts from the right argument to the left argument. and out
C which ‘“zooms out” from either the left of right argument to the entire application.
r.. For debugging it is useful to be able to abort a suspended evaluation. This is accomplished by clear-
o ing out the Eval, Check and Value relations:
p
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Command (abort). *Eval (£) —

else Command (abort). *Check (V. E) =
else Command (abort). *Value (V. E) =

else *Command {abort} = Display {""aborted.”’}

Notice (by the absence of an "*') that the first three rules leave abort in command: hence they continue
firing as long as there are tuples in Eval. Check or Value. When there are no more such tuples. the last

rule cancels the abort command.

It could be argued that these rules would be more readable if the reassertion of abort were made

explicit. e.g.,

*Command (abort). *Eval (F) = Command (abort)
else *Command (abort}. *Check (V,EF) = Command (abort)
else *Command (abort}. *Value (V.E) = Command (abort)

else *Command (abort} — Display {‘aborted.’’}.

This is an unresolved stylistic issue.

To illustrate the operation of the command interpreter. we present an example session. showing the
keys typed and the responses of the system. Assume the program ({3:0)~1)' is already created and

the current node is the root of the tree. The transcript follows:

evaluate
zero divide error
show
(3+0)
in
evaluate
next

show

1 val
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Notice how the val command triggers completion of evaluation of the program.
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9. Syntax Directed Editing

9.1 Incomplete Programs

In this section we develop a syntax directed editor for this simple language Since for editing we need
to be able Lo represent incomplete programs we will add a new node type. "Undef". representing a part

of the program that either has not yet been entered or has been deleted:
ezpr = Con . Appl _ Undef
Next we must modify Eval and Unparse to deal with Undef nodes:

*Eval{E). Undef(E). *CurrentNode(- ) => Display{ Incomplete”}, CurrentNode(E).

“Unparse( E). Undef(E) = Image (‘< expr>"" E).

In other words, evaluating an incomplete program will lead to a diagnostic message and a suspended
evaluation. Unparsing an incomplete program will show ‘< expr> ' in place of the missing subexpres-

sion.
9.2 Editor Commands

What commands do we want?” We will want in to ‘‘z00m in’’ on a subexpression:

AA

We will want out to ‘‘zoom out” from a subexpression:

VARVANWA

We will want next to shift to the next (to the right) sube xpression:

VARWA

We will want prev to shift to the previoss (to the left) subexpression:
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It will be convenient to have root to shift to the root of the program tree:

Furthermore. we will want all of these movement commands to show us the new current expression by

unparsing it.

We will also need a begin command to initialize the editing session with an empty tree:

& = > Uneled

We will want to be able to delete a node:

-\s\/ - unm/

And we will want to be able to insert a literal value, by ‘n #':

Undef /
—_—

Finally we will need the operator commands, -~ . —, x. +. for creating application nodes:

undv ( "I'/

These are all simple to implement.

The predicate form for the in command rule is:

*Command(in). *CurrentNode( E), Left(X E)

=> CurrentNode(X), Command{show).

This is the same as the version discussed n the previous section, except that we have automatically
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issued a show command.
In the pseudonatural notation the in rule is

If given “in"" 1s the command. given an expression is the current_node. and a node is the

left_argument of the expression

then the node is the current_node. and ‘‘show’’ is the command.

The out command is analogous. except that there are two rules to handle the two possible paths back to

the parent:

*Command(out), *CurrentNode(X), Left( X E)

= CurrentNode( E). Command(show).

o
* *Command(out), *CurrentNode( Y), Right(¥,E)

= CurrentNode( E), Command(show).

The next and prev commands are similar.

The delete command is implemented by breaking the current node’s connections with its descen-
dants and changing its type to Undef. There are three cases depending on whether the node is a con-

stant, application or already undefined node:

*Command(delete), CurrentNode(E), *Con{E), *Litval{ V,E)

= Undef(E), Command(show).

*Command(delete), CurrentNode(E),

*Appl(E), *Op(N,E), *Lefi(X,E), Right(Y,E)

=> Undef(E), Command(show).

o
K-V.A‘-‘
t *Command(dslete). CurrentNode(E}, Undef( E)
h
h .
L~ = Display{‘already deleted"’}.
L.
2
,,. Note that subtrees are not disassembled: hence they could be reused (say by a move command)
[
:. There are two rules to implement the # command. The first one is to create a constant node with a
;- ' given literal value:
{.
- -31-
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*Command(*"=""). *Argument( V’}. if {integer( V}). CurrentNode(£}. *Undef( £}

=> Con(L). Litval( V' E£). Command(show).

The other rule handles the case where the current node is already defined: we require a node to be

deleted before it can he replaced:

*Command{"*=""), *Argument{ V). CurrentNode{E). ~Undef( E)

= Display{ defined node"’}.

.

Next we consider that commands for creating application nodes. If the user types ‘~ ' then we must

create an Appl node with two undefined daughters and a ‘~* for the operator:
*Command(‘‘+ "), *CurrentNode(E), *Undef(E), *Avail(X,Y)
= Appl(E), Op(‘‘+ ", E), Left( X, E), Right( Y, E},

Undef(X), Undef( Y), CurrentNode(X).

Here we have assumed that Avail contains an indefinite supply of unused objects; objects are allocated
by a system procedure in the McArthur interpreter. Also notice that the focus is automatically shifted

to the left argument of the new application.

It would be somewhat inconvenient to repeat the above rule for each of the four operators. Also we
would need four rules for detecting already defined nodes. Fortunately we can use the applicative

features of {1 to make one rule handle all four operators:

"Comma.nd(f), member !,’ {lu+ n’ u_n, cnxn’ u+n”1
*CurrentNode{ E), *Undef( E), *Avail( X, ¥)

=> Appl(E}, Op(f.E), Left{X,E), Right(Y,E), Undef(X). Undef( ¥). CurrentNode{X).
Already defined nodes are handled by:

*Command(f), member f, '*‘+ " =" “x" 2" CurrentNode(E), ~Undef(E)

= Display{‘defined node’’}.
The begin command is implemented by creating a tree containing a single undefined node:

*Command(begin), *CurrentNode(- ), *Avail{E} = Root(E}, Undef( £ .
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The root command is simple since the Root relation holds the root of the tree (set by the begin

command):

*Command(root), *CurrentNode{— ). Root(E)

== CurrentNode(E). Command{show).

A ypical session will illustrate operation of the syntax directed editor. Our goal will be to construct the
program ‘(3+0) ~1' and change it to ‘(3+1)~1'. We show commands on the left margin, and responses
indented:

begin

< expr>

S #
next
< expr>
0%
out
(3+0)
ocut
((3%0) - <expr>)
in
(3+0)
next
< expr>

1 #
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root

((3+0)-1)
evaluate

zero divide error

show

next

delete

1 #

root
((3+1)+1)

abort
aborted.

evaluate

This is, of course, a very simple system for a very simple language. But it illustrates the ideas of a pro-
gramming environment. A version of this system that executes correctly under the McArthur inter-

preter 'McArthur84 is shown in the appendices.
9.3 Permissions
We review the access to the various relations needed by the various tools:

« Editor — can read and update program structure relations {Con, Litval, etc.), CurrentNode. Root

and evaluator and unparser relations (Eval, Check, Value, Unparse, Image).

o Evaluator — can only read program structure relations, can read and update evaluation relations

(Eval, Check and Value); can update CurrentNode and Display: can read Meaning and Explanauon.
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e« Unparser — can only read program structure relations: can read and update unparser relations
(Unparse and Image): can read Template.
These rights can be enforced using the Q0 capability mechanism: see MacLennan82 or MacLennang5

for a description.

10. Condusions

We believe that this report has shown that major components of a programming environment, albeit in
a rudimentary form, can be conveniently programmed in . If this experience is typical. if a reason-
able programming environment can be prototyped in a few hundred rules, then we believe that our
ability to prototype software will have been much enhanced. Succeeding reports in this series will
further investigate this hypothesis by expanding the capabilities of the prototype programming environ-

ment.
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APPENDIX A: Prototype Programmi: ¢ Environment

Predicate Notation for (2

The following is a loadable input file for the prototype programming environment described in this
report. It is accepted by the McArthur interpreter ‘McArthur&4 . which differs in a few details from
the 2 described in this report {see MacLennan84 ). A transcript of a test execution of this environ- ]

ment is shown in Appendix C.

! Pl-1
Rules and associated definitions for

an arithmetic expression language.

define {root.
defire {root,
define {root,
define {root,
define {root,

define {root,

' Evaluation

define {root,
define {root,
define {root,
define {root,

define {root,

Relations

Program Structure Relations

"Appl" newrel{}};
"Op", newrel{}};
"Left" newrel{}}:
"Right", newrel{}};
"Con™, newrel{}};

"Litval", newrel{}};

Relations

"Eval", newrel{}}:
"Check" newrel{}}:
"Value", newrel{}}
"™eaning", newrel{}};

"Explanation", newrel{}}:

! Unparser Relations
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define {root. "Unparse"”. newrel{}}:
define {root. "Image". newrel{}}:

define {root. "Template". newrel{}}:

aand . am g aae an. av

- ]
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L {
[ ]

define {root,
define {root,
define {root,
define {root,

define {root,

define {root,
define {root,
define {root,
define {root,
define {root,

define {root,

Command Interpreter Relations

"Command", newrel{}};
"Argument". newrel{}}
"Root", newrel{}};
"Undef", newrel{}};

"CurrentNode", newrel{}};

"EvalPending", newrel{}};
"ShowPending", newrel{}};
"Create Appl", newrel{}}:
"CreateRoot", newrel{}};
"Seript™, newrel{}};

"PendScript". newrel{}}.

! Functions

fon Id x.: x:

fn Sum x.y
fn Dif x,y :

fn

CX -y

X -y

*

Product x,y : x *y;

» fn Quotient x.y :

i Xy

3 if y = 0-> ""error", 1.
o

?7 else x ' y;

&

4

b .

b . fn IsErrorcode w :

2

:

P-
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if IsList w w = Nil-> XNil

else first w = "error'
fooupSum xy """ - x = M- Mooy - N
fooupDif xy """~ x = "o "— y - M
fn upProd xy :"{"~ x -~ "x "~ y - mn
fn upQuot X,y : ("~ x = "/ M~ y - NN

' Butilt-in Tables

Meaning (Sum, "-");
Meaning (Dif, "-"™;
Meaning (Product, "");
Meaning (Quotient, "/");

Meaning (Id, "it");

Template (upSum, "~ ");

Template {(upDif, ™");

Template {upProd, "x"):
Template (upQuot, ""):

Template (int_str, "it");

Explanation {'incomplete program", ‘"error", 0'});

Explanation ('division by zero", "error", 11).

! the Rules

define{root, "PI1Rules",

< <

! Evaluator Rules

! Constant nodes

-
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if *Eval(e}. Con(e}. Litval{v.e}. Meaning(f. "lit")

-~ Value(f v . e):

' Appl nodes

if *Eval(e). Appl{e). Left(x.e). Right{y.e)

-> Eval{x). Eval(y}):

if *Value(u,x}. *Value(v.y). Appl(e). Op(n.e}. Left(x. e} Right(y.e}. Meaning(f. n]

-> Check(f u,v , e):

S ' Error Checking

if *Check({w. e). "IsErrorcode w_

-> Value(w, e}:

:l if *Check(w, e}, IsErrorcode w , Explanation(s, w), *CurrentNode(q)

-> displayn{s}. CurrentNode(e};

k ' Unparser

2

Lf' ' Constant Nodes

{'ﬁ-f

.

F. if *Unparse(e}. Con{e), Litval(v,e}. Template(f, "it")

: -> Image(f v . e);

. ! Identifier nodes

4

. ' Appl nodes

- if *Unparse(e), Appl{e), Left(x.e), Right(y.e)

[. -> Unparse(x), Unparse(y);

EL- if *Image(u.x}. *Image{v,y}. Appl{e), Op(n.e). Left{x.e). Right{y.e). Template(f. n)

"- -> Image(fiu,v , e);
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E- 3 ' Command Interpreter Rules
1

evaluate Command

if *Command{"evaluate"). CurrentNode(E)

b .- Eval(E). EvalPending(E).

8 if *Value(V.E). *EvalPending(E)
k -> displayn {V}

p

1 '

return Command

if *Command{'val"). *Argument{V). CurrentNode(E)

- -> Value(V.E};

' show Command

if *Command("show"). CurrentNode(E)

-> Unparse(E). ShowPending(E):

if *Image({S.E). *ShowPending(E)

-> displayn{S};

' abort Command

-'_:i if Command("abort"}, *Eval{E} -> ;

'. if Command("abort"), *Value(V,E} -> :

if Command("abort"), *Check(V,E) -> ;

if *Command("abort"). "Eval(E), “Value(V,E) -> displayn{"aborted"};

' Handle incomplete program

T Yy W, vy v W
v . .

- if *Eval(E). Undef(E). *CurrentNode(Q)
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displavn ("Incumplete”}. CurrentNode(E).

if *Unparse(E) Undef(E)

Image (" expr-" E}:

' Syntax Directed Editing

' 1n Command

if *Command{'in"). *CurrentNode{E), Left(X.E)

-» CurrentNode(X}. Command("show"}:

if *Command("out"). *CurrentNode{X). Left(X E)

-> CurrentNode(E). Command("show");

if *Command("out'), *CurrentNode(Y). Right(Y E)

-> CurrentNode{E}), Command{'"show"};

' next Command

if *Command{™ext"), *CurrentNode{X). Left{X.E). Right(Y.E)

-> CurrentNode(Y), Command("show"):
' prev Command

if *Command({"prev"), *CurrentNode(Y}, Right(Y.E). Left(X.E)

-> CurrentNode(X), Command("show"):
' delete command

if *Command('delete"”), CurrentNode(E), *Con(E), *Litval( V. E)

-> Undef(E), Command("show");

if *Command("delete"), CurrentNode(E). *Appl(E). *Op(N_E). *Left(X.E). Right(Y.E)

-> Undef(E). Command("show"):

41-
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if *Command{'delete”)., CurrentNode(E). Undef{E)

-> displayn("already deleted"}.

' 2 Command

if *Command("="). "Argument(V). Islnt V . CurrentNode(E). *Undef(E)

-> Con{E}. Litval{V.E). Command{'show"):
if *Command("="). *Argument(V). CurrentNode(E). "Undef(E)

-> displayn("defined node");

' -, -, x, ' Commands

if *Command(op), member ‘op, """, "" %" """ *CurrentNode(E), *Undef(E)

-> Create Appl(op. E. newobj{}, newob;j{});

if *Create Appl{op.E. X Y)

-> ApplE). Op(op.E). Left{X.E). Right(Y.E), Undef(X), Undef(Y), CurrentNode(X):;

if *Command(op). member op. "~ " "" "%" "/ CurrentNode(E), "Undef(E)

-> displayn("defined node");
! begin Command

if *Command('begin"). *CurrentNode(Q)

-> CreateRoot(newobj{}):

if *CreateRoot(E)

-> Root{E). Undef(E), CurrentNode(E):
! root Command

if *C >mmand('root"). *CurrentNode(Q). Root(E)

-> CurrentNode(E), Command('show");




' Test Driver

if *Script(Nil) -> displayn{"Script completed"}

else if *Script(L). {first L = "=" first L = "val")
-> {displayn {" ... " — first rest L - first L }

Command(first L }, Argument(first rest L ). PendScript(rest rest L ) }

else if *Script{L)
-> {displayn {"..." ~ first L };

Command({first,L ), PendScript{rest L) }:

if *PendScript{L), "Command(Q) -> Script(L)

>> }

define {root, "testscript™
"'begin", L1 '|’ "/,’". '[#"’ 3‘ "nextn. “#") 0, "ou[‘", "out",
"™ "mext" "&" 1, "root". "evaluate”, "show", "in",

"next" "delete", "#", 1, "root" "abort", "evaluate™ }.

! activate the rules

act{ PI1Rules }.
CurrentNode(Nil).

displayn{'PIl-1 System loaded"}.
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APPENDIX B: Prototype Programming Environment

Pseudonatural Notation for 2

This appendix displays the prototype programming environment of Appendix A in the pseudonatural

notation designed by Robert Ufford Ufford85 . Ufford also performed this translation of the Appendix

A program inte the pseudonatural notation.

Pl-1
Rules and associated definitions for

an arithmetic expression language.

'  Relations !

Program structure relations !

"A pplication" {procedure) is defined as a relation.
"Operator" (procedure) is defined as a relation.

"Left_argument"” {procedure) is defined as a relation.

"Right_argument" (procedure) is defined as a relation.

"Constant" (procedure) is defined as a relation.

"Literal value"” (procedure) is defined as a relation.

' Evaluation relations '

"Evaluated'" (procedure) is defined as a relation.
"Checked" (procedure) is defined as a relation.
"Value" (procedure) is defined as a relation.
"™eaning" (procedure) is defined as a relation.

"Explanation” (procedure) is defined as a relation.
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"Unparsed" ( procedure) is defined as a relation.

"Image" (procedure) is defined as a relation.

"Template" { procedure) is defined as a relation.

Command interpreter relations

1

"Command" (procedure) is defined as a relation.

"Argument" {procedure) is defined as a relation.

"Root_node" {procedure) is defined as a relation.

"Undefined" (procedure) is defined as a relation.

"Current_node" (procedure) is defined as a relation.

"Pending_evaluation" (procedure) is defined as a relation.

"Shown" (procedure) is defined as a relation.

"™ew_application" {procedure) is defined as a relation.

"New root" (procedure) is defined as a relation.

"Script" (procedure) is defined as a relation.

"Pending_script" (procedure) is defined as a relation.

! Functions !

function identity x': x.

function sum x.y : x ~ y.

function difference x,y : x -y.

function product x,y': x

function quotient x,yl:

if y = O then the list

else x / y.

function error_code | W::

L

*

y.

of the "error code" and |

v
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if W (predicate) i1s not a list W = Nil then N1l

else the first (function) of W = 'error code”
function sum template x.y :"{" - x - M- M-y - "
function difference template x.v - "(" - x -~ "-" -y~ "
function product template x.y : ™"~ x - "x"— y - ""
function quotient template x.y : "(" - x - " "— y - ""

' Built-in tables !

Sum is the meaning of "~ "
Difference is the meaning of "
Product is the meaning of "x".
Quotient is the meaning of "/".

Identity 1s the meaning of "it"

Sum template is a template for "+ "
Difference template is a template for "™
Product_template is a template for "x".
Quotient_template is a template for "/"

String_notation is a template for "it".

"Incomplete program"is an explanation for the list of error code and 0.

"Division by zero" is an explanation for the list of error code and 1.

' Noise words !

"™ust" (procedure) is defined as a noise _verb.

"Be" (procedure) is defined as a noise verb.

"Being" (procedure) is defined as a noise verb.
"Established" (procedure) is defined as a noise verb.

"Will" (procedure) is defined as a noise verb.
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"Another" (procedure) is defined as a noise prep.

! The rules !

"PI1 rules" (procedure) are defined as

Rules

' Evaluator rules !

' Constant nodes !

If given an expression is being evaluated,
the expression is a constant,
a number is the literal value of the expression, and
a lit_function is the meaning of "lit"

then the lit_function (function) of the number is the value of the expression;

! Application nodes !

If given an expression is being evaluated,
the expression is an application,
nodel is the left argument of the expression, and
node? is the right _argument of the expression
then nodel must be evaluated, and

node2 must be evaluated:

If given valuel is the value of nodel,
given value?2 is the value of node2.
the expression is an application,
a string is the operator of the expression.
nodel is the left_argument of the expression,

node? is the right _argument of the expression, and
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an operator function is the meaning of the string
then the operator function (function) of valuel and value2 must be checked

for the expression:

' Error checking !

If given an alleged value is being checked for an expression, and
the alleged ~walue (predicate) is not an error _code

then the alleged value is the value of the expression;

If given an alleged value is being checked for an expression,
the alleged_value (predicate) is the error_code,
a string is an explanation for the alleged value , and
given any node is the current _node

then the string {procedure) is displayed_with return and

the expression is the current _node;

! Unparser !

' Constant Nodes !

If given an expression is being unparsed.
the expression is a constant,
valuel 1is the literal value of the expression. and
a lit_function is a template for "lit"

then the lit function (function) of valuel is the image of the expression:
' Identifier nodes !

' Application nodes !

If given an expression is being unparsed.

the expressicn is an application.

-48-
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nodel is the left_argument of the expression. and
node?2 is the right_argument of the expression
then nodel must be unparsed and

node? must be unparsed:

If given imagel is the image of nodel.
given image?2 is the image of node2.
the expression is an application,
a string is the operator of the expression,
nodel is the left_argument of the expression,
node?2 is the right_argument of the expression, and
an operator_function is a template for the string
then the operator_function (function) of imagel and image?2

is the image of the expression;

! Command interpreter rules !

! Evaluate command !

If given "evaluate' is the command, and
an expression is the current node
then the expression must be evaluated. and

the expression is pending evaluation:

If given valuel is the value of an expression. and
the expression is pending evaluation

then valuel (procedure) is displayed with return:

' Return command '

If given "val" is the command.

given valuel is the argument, and

~
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an expression is the current node

then valuel is the value of the expression.

' Show command '

If given "show" is the command. and
an expression is the current_node
then the expression must be unparsed. and

the expression will be shown:

If given a string is the image of an expression. and
given the expression must be shown

then the string (procedure) is displayed with return:

' Abort command !

If "abort" is the command, and
given an expression is being evaluated

then !do nothing'

If "abort" s the command. and
given a value is the value of an expression

then 'do nothing! .

If "abort" 1s the command. and

given a value is being checked for an expression

then 'do nothing!

If given "abort"is the command,
.’ an expression is not being evaluated. and
a _value is not the value of the expression

then "aborted" (procedure) is displayed with return:
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Handle incomplete program

If given an expression 1s being evaluated.
the expression i1s undefined. and
given any node is the current_node
then "Incomplete" (procedure) is displayed_with _return. and

the expression is the current node;

If given an expression is being unparsed. and
the expression is undefined

then "< expr> "is the image of the expression;

' Syntax Directed Editing !

' in Command '

If given "in"is the command,
given an expression is the current node, and
nodel is the left_argument of the expression
then nodel is the current node. and

'show' is the command;

If given "out"1s the command,
given nodel is the current node, and
nodel is the left argument of an expression
then the expression is the current _node, and

'Show'" is the command;

If given "out"is the command.
given node2 1s the current node, and
node2 is the right _argument of an expression

then the expression is the current_node. and
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'show" is the command:

' next Command '

If given "next"is the command.
given nodel is the current node.
nodel is the left argument of an expression. and
node?2 is the right_argument of the expression
then node2 is the current_node, and

‘show'" is the command:

' prev Command !
If given "prev"is the command,
given node2 is the current_node,
node?2 is the right argument of an expression, and

nodel is the left_argument of the expression

then nodel is the current_node, and

'show" is the command;

' delete command !

If given "delete" is the command,
an expression is the current_node,
given the expression is a constant, and

given a value is the literal_value of the expression

then the expression is undefined, and

'show' is the command;

. If given "delete" is the command,
S an expression is the current_node,
T given the expression is an application,
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given a string is the operator of the expression.

given nodel is the left_argument of the expression. and
node2 is the right_argument of the expression

. then the expression is undefined. and

\ 'show" is the command:

If give "delete" is the command,
an expression is the current node, and
the expression is undefined

then "already deleted" {procedure) is displayed with_return;
q ! # Command ‘!

If given '"#"is the command,
given valuel is the argument,
- valuel (predicate) is an_integer,
an expression is the current_node, and
given the expression is undefined

then the expression is a constant,

8 .
-
; valuel is the literal_value of the expression, and
o "show" is the command:
)
[~
3 . e
L If given "#" is the command,
L‘,
= . .
L given valuel is the argument,
-
[ ] an expression is the current node. and
‘ﬁ the expression is not undefined
L .
LAh‘ . - .
b then "defined node" (procedure) is displayed with return:
S
L.
]
- ' 4,-, x, / Commands
o If given a strang is the command.
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the string is a member of the list of "= " "" "x" and """
given an expression is the current node. and
given the expression is undefined
then the expression is established as a new application with a string

and an object and another object:

If given «n expression is a new _application with a string and nodel
and node2
then the expression is an application,
the string is the operator of the expression,
nodel is the left_argument of the expression,
node?2 is the right argument of the expression,
nodel is undefined,
node?2 i1s undefined. and

nodel is the current node;

If given a string is the command.
the string 1s a member of the list of "+ " ™" %" and "/",
an expression is the current_node, and
the expression is not undefined

then "defined node" (procedure) is displayed with return;

' begin Command !

-~

If given "begin" is the command, and
given any node is the current_node

then an object is established as a new _root;

If given an expression is a new root

then the expression is a root_node,

the expression is undefined, and
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the expression is the current_node:

' root Command '

If given 'root"is the command.
given any node is the current_node, and
an expression is the root node

then the expression is the current_node, and

'‘show'" is the command.

' Test driver !

If given Nil is the script

then "Script completed" {procedure) is displayed with_return

Else if given a list is the script, and
(the first {function) of the list = "#™"!
the first (function) of the list = 'val")
then
begin
" . "(procedure) is displayed;
the first (function) of the rest (function) of the list
(procedure) is displayed;
the first (function) of the list (procedure) is
displayed with_return;
the first (function) of the list is the command.
the first (function) of the rest (function) of the list is the argument. and
the rest (function}) of the rest (function) of the list is the pending script

end block;,

Else if given a list is the script
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then
begin
... "(procedure} is displayed:
the first {function} of the list (procedure) is

displayed with return:

the first {function) of the list is the command. and

the rest (function) of the list is the pending script

end_block;
3
& If given a list is the pending script, and
P something is not the command
L—.
: then the list is the script;
L,
b
- end rules.

' activate the rules !

The PI1 rules (procedure) are activated.
Nil is the current_node.

"Pl-1 System loaded" (procedure) is displayed_with_return.
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APPENDIX C: Transcript of 1 Session

The following is a transcript of an {1 session illustrating the operation of the prototype programming
environment shown in Appendix A. The assertion 'Script (testscript)’ causes the commands in
testscript to be executed in order. Each command is printed on a separate line. followed by whatever
output is generated by the programming environment. This transcript was produced by the McArthur

interpreter McArthur84 .

OMEGA-1 11 30,84

&
{

t : Use Cntl-D or exit{} to quit.
;. For help, enter help{'”"}.

r

-

3 To report a bug, enter Bugs{}.
}-

L -

PIl-1 System loaded

> Script (testscript).
begin. ~, ;, #. 3. next, #, 0, out, out, in, next, #, 1, root, evaluate, show, in, in, next,

delete. #. 1, root. abort, evaluate

... begin

: L3

- .

::' . next

o
t' < expr>
.
- .0#
=
=
- 0
@

- ... out

- (3/0)
o ... out

- -57-
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((3/0) ~ <expr>)
.in

{3 - 0)

. next
< expr>
1#

1
... root

((3/0) + 1)

.. evaluate
division by zero
... show
(3/0)

. in

... next

... delete

< expr>

1

... root

((3 /1) + 1)

. abort

aborted

... evaluate

Script completed
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> exit{}.

Goodbye.
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