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Abstract

In designing a distributed system it is useful to distinguish two
types of system service: those services provided to end-users and those
provid(.d to programs. The first type of service is provided by the user
interface, or user-system interface. The second type is provided by the
system interface, or program execution environment. Both user and sys-
tem interfaces should gracefully extend the local (single-machine)
computing environment to embrace remote resources; they should provide
a coherent view of the distributed system. This thesis presents several
mechanisms and paradigms for building distributed systems with uniform
interfaces.

These techniques are discussed in the context of a multiple-
machine, multiple-network distributed system, called RIG, developed at
the University of Rochester over the last six years. Logically, RIG can
be thought of as a collection of independent processes running on vari-
ous computers and cooperating via messages. Typical operating system
functions, such as file access, terminal communication, and printing,

* are provided by server processes associated with each system resource.
Each server is responsible for maintaining its own resource-specific
communication protocol with its resource and for providing a standard
message interface to other RIG processes. Thus, the distinction made in
traditional systems between operating system services and user processes
has been abandoned in favor of a uniform message interface.

Building on this foundation, this thesis presents four
contributions to research in distributed systems:

1. Virtual Terminals are presented as the means for managing a
large number of application programs per user. Any number of
Virtual Terminals may be mapped to a physical device simulta-
neously, and each Virtual Terminal may be written to or queried
for user input. In addition, the Virtual Terminal Management
System provides extensive facilities for editing text, the
ability to save all output on stable storage, and sophisticated
mechanisms for the management of screen space. Virtual Termi-
nals allow application programs to remain unaware of the spe-
cific physical device through which they are communicating.

2. Principles of command interaction that facilitate the use of

distributed resources are outlined. Tools are logically (and
physically) separated into user interface and service pro-
cesses. Table-driven command interpreters enforce a consistent
command interaction discipline, isolating the user from the
idiosyncrasies of each tool. Together with the Virtual Termi-
nal Management System, the command interface presents an

* elegant, robust, and consistent interface between RIG and the
user.

0 ,,, .. . . -
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3. Because most traditional operating system services are associ-
ated with server processes, resource management is viewed
fundamentally as a problem of process management. Processes
may be created "by name," and registration facilities enable a
process to register its interest in, for example, the death of
any other process (see contribution 4). An explicit process
tree is used to group processes created in response to partic-
ular user requests or jobs. The process tree, together with
the registration facilities, simplifies the deallocation of
resources associated with terminated jobs.

4. Paradigms are presented for how processes should be written and
communicate. Distinctions are drawn between dedicated and
multiplexed servers, and between three modes of interprocess
communication -- atomic transactions, connections, and
asynchronous emergency messages. Emergency messages, in par-
ticular, provide a simple yet powerful mechanism for handling
inter-process exceptions: Registration facilities and event
handlers enable a process to register its interest in excep-
tional events that occur with regard to any other process;
notification of the occurrence of an event is by emergency
message.
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Fore word

RIG has been developed over the past six years by a team of as many
as ten designers and implementers. The original design was proposed in
1974-75 by Eugene Ball, Jerome Feldman, Janes Low, Paul Rovner, and
Richard Rashid. I became involved with RIG in the summer of 1975, and,
since then, have been involved to varying degrees in every aspect of its
development.

It is sometimes difficult, therefore, to separate my work
distinctly from that of others in the RIG Working Group. Parts of this
thesis were, in fact, written with the assistance of other members of
that group. Much of Sections 2.2, 6.2, and 6.3 was written with Eugene
Ball, Edward Burke, Ilya Gertner, and Richard Rashid and presented at
the 1979 Computer Networking Symposium [12]. Much of Sections 2.3.1 and
Chapter 3 was written with Richard Rashid and presented at the 7th Sym-
posium on Operating Systems Principles [129]. Pieces of the remaining
text were adapted from a variety of internal memos written with Eugene
Ball and Richard Rashid. In all instances I was both a principal author
and an architect of the ideas presented.



CHAFTER 1

Introduction

A single computer system cannot be all things to all users. Some
systems are better suited for numerical applications, some for symbolic
manipulation, some for parallel computation. Some systems provide a
better user environment. (Here, a computer system is composed of the
machine and all attendant software.)

If a user wishes to use different computer systems for different
tasks at different times, it is desirable to provide him with a coherent
interface to his available pool of resources, that is, to isolate him
wherever possible from the idiosyncrasies of individual computer sys-
tens. Alternatively, given an application program that requires a mix
of features or that can perform certain actions in parallel, it may be
most effective to employ more than one computer system. These two con-
siderations have served as the primary motivations behind the develop-
ment of computer networks and distributed systems.

At the University of Rochester we have had six years of experience
in the design and implementation of a multiple-machine, multiple-network
distributed system called RIG. RIG was built to serve as an
intermediary between the human user (working through a display terminal
or personal computer) and a variety of computer systems. The bulk of
the user's computational requirement is met by these systems, which are
either partially integrated into the RIG system through a fast local
network or loosely coupled to it through the ARPANET. RIG also provides
a number of basic services such as printing, plotting, local file stor-
age, and text-editing.

In designing RIG, it was useful to distinguish two types of system
iervice: those services provided to end-users and those provided to

'ograms. The first is provided directly to the user through a user
in orface, or user-system interface. The user obtains these services by
typing commands or requests that are satisfied by actions initiated by
the user interface. The second type of service is provided by programs
or processes executing on behalf of the user. The user's program
obtains these services by executing "system calls." The system software
that interprets and satisfies these calls implements the system
interface, or program execution environment [214 ].
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a base-level NOS is distributed operating system (DOS) C1091.

3. meta-resources

Functions common to a broad range of applications should be
made available in a fashion that eliminates their being
designed and implemented again and again. What are the common
attributes that can be abstracted from different
implementations of similar objects in order to permit
interchangeable use of resources? Should the NOS provide

access to both meta- and local resources separately?

4. visibility of distribution

Inherently, it appears to be a good idea to remove the burden
of distribution from the user, but in currently available sys-
tems, performance frequently decreases when access to remote
resources is required. Furthermore, certain NOS operations may
be supported only for entities that reside on the sane host.
The most appropriate design may be to provide users with
mechanisms to influence, if not specify, resource patterns.

5. reliability

Reliability measures are expensive, but replication of critical
system data bases can allow continued operation in the presence
of localized failures. Application programs should be provided
with mechanisms that can be used to build reliable services for
an environment where the system configuration can change
dynamically due to failures.

6. resource allocation, management, and access control

What entities are authenticated, who performs the
authentication, and how often? Who makes the resource selec-
tion: the user, the system, or a combination? Is the decision
made on the basis of dynamic network conditions, or on the
basis of static user profiles? At what point does the NOS
relinquish control to the local host mechanisms? If resource
management is logically and physically centralized, the imple-
mentation is simplified since the effect of the distributed
environment is minimized, but the system is vulnerable to
failures of the site supporting the control function and per-
formance may be degraded due to the necessity for interhost
communication each time the function is needed. By replicating
the sane control function at many sites both of these problems
are reduced. For fully distributed control each entity needing
a control function has its own implementation of the function,
thus breaking the dependence of one host on another and pro-
viding better performance, but adding to the expense of design,
implementation, and operation.
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equipment and the system-de pendent protocols that complicate interaction
with distributed resources.§

Network access machines are intended to improve the user interface
by automating the access functions. This is typically done by
associating executable command files with each accessible resource;
when an attempt is made to access the resource, the NAM reads the file
to generate the appropriate system-dependent commands to the remote
host. A NAM is meant to provide user access to remote hosts without
necessitating any change- in the hosts' hardware or software. It can
interact with the constituent hosts at the user interface only.

2. 1.2 Network Operating Systems

A network operating system, on the other hand, extends remote
access to the programming environment. Both users and programs are
allowed to access resources without regard to their physical location.
The intent is to provide a view of the network similar to that provided
by a traditional operating system for a single computer, that is, the
entire ensemble of machines appears as a single entity.

A NOS requires that additional hardware or software be provided for
each host. Important issues to be addressed when designing a NOS
include (after [214, 228]):

1. mission-oriented vs. general-purpose system

Is the system meant to solve a given, well-defined problem
formulated in terms of specific control and data requirements
with real-time or reliability constraints? Or is it meant to

be an "open ended" information processing utility that supports
a wide variety of application domains?

2. base level vs. guest level implementation

Can the system be built from bare hardware components such that
the NOS can be specifically designed to function effectively
and efficiently together? Or is it necessary to utilize
existing operating systems, or minor variants thereof, such
that the NOS acts principally to coordinate the activity of the
operating systems to provide an integrated computational fa-
cility? If the guest-level approach is taken and application
processes a,-e allowed to run programs without regard for the
expanded accessibility to NOS resources, an encapsulation
interface must be provided that can examine host system calls
to redirect calls to NOS modules. Alternatively, programs may
be programmed to run in the NOS environment and to use the set
of primitive operations supplied by the NOS for accessing
network resources. If a base-level approach is taken, access
to local services should be as efficient as on existing
non-distributed operating systems. A more reasonable term for
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The gateway machines also provide a number of basic services such
as printing, plotting, local file storage, and text-editing. Devices
supported include a 256x512 color raster graphics display, a tape drive,
an electrostatic printer-plotter, a drum scanner, and various display
terminals. Together, the Eclipses provide 600 MBytes of primary disk
storage.

In general, the user accesses these facilities through a display
terminal connected to the gateway machines or through a personal com-
puter. Certain functions (such as file transfer) are provided directly
to users on the two time-sharing systems. RIG thus provides many of the
functions attributed to gateways, network access machines, and network
operating systems. To better understand the functions RIG(ITS) is
intended to provide, I will first present a taxonomy of distributed
systems, followed by an overview of RIGITS.

2. 1 A Taxonomy of Distributed Systems

Distributed systems may consist of tightly coupled (shared memory,
centralized resource management) or loosely coupled (no shared memory,
completely autonomous) functional units. Examples of the former are
multi-processors such as the CRAY-I and Illiac IV; examples of the
latter are heterogeneous networks such as the ARPANET. In between are
multi-processors such as Hydra and Oa*, homogeneous networks such as
MININET, and systems such as RIG.

RIGITS is concerned with computer networks, which come in several
forms. Remote-communication networks simply move information from one
place to another. Resource-sharing networks allow resources on one
computer system to be shared by other systems in order to reduce costs
and provide remote access. Distributed-processing networks allow
several autonomous computer systems to solve problems by division of
labor or functional specialization. As such, distributed-processing
networks are a natural extension of real-time multi-programming systems.
Distributed-processing networks are built (logically) on top of
resource-sharing networks, just as resource-sharing networks are built
on top of remote-communications networks (typically referred to as com-
munications subnetworks).

Networks may be homogeneous (all hosts of the same type) or
heterogeneous (hosts of different types). They may be geographically
close (all machines near each other) or distant (geographically distri-
buted).

2. 1. 1 Network Access Machines

Resource-sharing and distributed-processing networks provide the
basis for network access machines (NAM) and network operating systems
(NOS), respectively. Both NAM's and NOS's are intended to isolate the
user as much as possible from the idiosyncrasies of the physical

"" ~~.. . . -. . -. .. -< . . ..-- . . , i



CHAPTER 2

An Architecture for Distributed Systems

Distributed systems may be built on a number of bases: traditional
multi-processing operating systems, multi-processors, networks, and
networks interconnected by gateways. RIG, in particular, connects three
networks via a dual-processor gateway (see Figure 1).

ALTO ALTO ILT
Ethernet

2 300 Y".yte disks -

tape driveteins

electrostatic printer-.1 ECIS ECLIPSEtemnl

color display processor-4 "

drum scanner

D-ARPAflCT
D3032

Figure 1. The RIG environment.

The bulk of the user's computational requirements is met by two
time-sharing systems (DEC-lO/TOPS-10 and VAX/UNIX) and four personal
computers (Xerox Altos -- 16-bit 64 KW minicomputers with 606x808
frane-buffer raster-scan displays [212)). The Altos, gateway machines
(Data General Eclipses) , and the VAX are connected via a 3 MHz broadcast
network (Ethernet [149)). The DEC-10 (campus network) communicates with
the gateway over 9600 baud asynchronous and 50 KHz synchronous lines.
The gateway is connected to the ARPANET as a Very Distant Host via a 50
KHz synchronous line.

- 13-

..x1
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nal Management System was inspired primarily by Swinehart's work on
debugging [207). NLS/Augment and related work was the primary
contributor to the RIGITS command interface [6, 63, 64, 105, 226).
Related work at the Augmentation Research Center on the Command Meta

Language and a proposed Frontend for the National Software Works is also
important [7, 8, 9, 106). RIG(ITS) is further described in [12, 13,
125, 128, 129, 184, 185]. Related research at Rochester in distributed
systems is described in [14, 71, 72, 73, 82, 83, 161).

Notable single-processor multi-process operating systems include
the RC4000 [29, 30] (perhaps the first operating system to employ
message-passing), the GEC4000 series [80), Cal [124, 205], SUE [99),
TENEX [24) (and its son, TOPS-.20), UNIX [21), Elf [179), MERT [140],
DEMOS [17), Thoth [39, 40), NLTSS [61), and Pilot [175).

Much of the important work on distributed systems has involved Bolt
Beranek and Newman Inc., including the ARPANET [186), RSEXEC [46, 213),
and the National Software Works [66, 81, 96, 151, 162, 195, 196].

Although the RC4000 may lay claim to being the first
message-passing operating system, DCS wins the sweepstakes for one of
the first, best, and most long-lived message-based network operating
systems [67, 68, 69, 70). Watson and Fletcher present a design for a
network operating system (hereafter called LLLNOS, for Lawrence
Livermore Laboratory Network Operating System) which comes as close as
any to RIGITS [77, 227, 228, 229, 230]. Other systems include DCN
[150), DPS [231, 232), Hydra [42, 134, 235), DCCS [60), MININET [138,
145), XNOS [115, 116, 117, 118), the Honeywell Distributed Processor

[107), Roscoe [199, 200), MARS [119), StarOS [112), and Medusa [163).

Network access systems include NAM [76, 188), ANTS [27), REX [22),
Elf [178), RITA [4, 5), and various adaptations of UNIX [41, 144].

Virtual Terminal-like facilities are provided by such varied sys-
tems as ITS [62), ZONES [139), TTDL [120), the TSO Job Session Manager
[147), and Virtual Terminal UNIX [159]. Model [154) has recently
extended Swinehart's work by employing DLISP [201, 210]. Representative
network virtual terminal protocols are discussed in [15, 18, 19, 49, 53,
54, 65, 104, 142, 157, 192, 193).

USC/Information Sciences Institute has done important work in user
interfaces, initially under the title of the Information Automation
Project and now known as SIGMA [1, 88, 89, 189, 203, 204). Sophisti-
cated command languages have also been provided by UNIX, TENEX, TOP-20,
VAX/VMS, and numerous other operating systems.

Two of the best references on distributed systems architecture and
distributed operating systems are [121, 214]. Other relevant tutorials
include [2, 23, 51, 52, 146, 148, 215).

- •-.. ~ ~ t . .. .
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Each of the four chapters constituting the body of the thesis
addresses one of the four major contributions presented in Section 1.4,
and are relatively independent. Chapter 3 discusses virtual terminal
management. The concepts presented are applicable to any computer sys-
tem, whether or not it is distributed or based on processes communicat-
ing via me sages. The particular implementation for RIG is presented.

Chapter 4 discusses the use of tools (application programs) and the
command interface. The principles of command interaction, command pro-
files, and user profiles are independent of the implementation and
computing environment. The abstract notions of tools and their associ-
ated Tool Interface Processes are, however, inspired by a distributed
environment where tools may run on distant hosts. Much of the command
interface has not yet been implemented, but the basic principles are
evident in the work that has been completed (Chapter 7).

Chapter 5 discusses resource management. Since all RIGITS re-
sources are managed by processes, the fundamental problem is one of
process management. The techniques for process management are
applicable in any process-based environment. Authentication and network
job control are briefly discussed.

40
Chapter 6 presents some conventions for process structuring and

intercommunication that have proven invaluable in RIG. These include
the various protocols employed for handling connections and exceptional
conditions. These protocols correspond to Levels 5 and 6 of the ISO
Reference Standard for Open Systems Architecture [58, 236), and are
recommended for any RIGITS-like system.

Chapter 7 comes back to earth to discuss RIG, an example of a sys-
tem built on the RIGITS abstraction. The differences between RIG and
RIGITS are discussed and an extended example is presented, involving
concepts from the preceding chapters.

Chapter 8 concludes the thesis with a discussion of successes,
failures, and future work.

1.6 Related Work

Many of the ideas embodied in RIGITS derive from, or parallel,
experience gained by the Computer Science community with user
interfaces, command languages, operating systems, distributed computing,
and network protocols. Historical perspectives in each of Chapters 2
through 6 will indicate the influential and related work in particular
areas. Here I will briefly list the appropriate references for each
system, in order to eliminate the clutter in subsequent sections. A
more comprehensive version of the bibliography contained in this thesis
may be found in [126).

The RIGITS message-passing paradigm grew out of experience with
interprocess communication facilities developed for the Stanford
Hand-Eye Project [75] and the work of Walden [221). The Virtual Termi-



P,.-- 9-. . . . . . . . . j
7, 7- 77]

4. Paradigms are presented for how processes should be written and
communicate. Distinctions are drawn between dedicated and
multiplexed servers, and between three modes of interprocess
communication -- atomic transactions, connections, and
asynchronous emergency messages. Emergency messages, in par-
ticular, provide a simple yet powerful mechanism for handling
inter-process exceptions: Registration facilities and event
handlers enable any process to register its interest in excep-
tional events that occur with regard to any other process;
notification of the occurrence of an event is by emergency
message.

The above contributions are not as disparate as they may appear. I
was first concerned with the user interface - command interaction and
Virtual Terminals. Given the distributed computing environment, that
interface had to be implemented with processes. Moreover, any tools
with which the user might interact were also implemented as processes.
Because a large collection of processes and other resources are associ-
ated with each user, it was necessary to provide facilities for resource
management and to develop a practical methodology for distributed
computing (multi-process structuring).

In addition, RIGITS demonstrates the importance of declarative
profiles as a means of tailoring the system at run-time. Many system
entities, such as process types, terminals, hosts, tools, and users, are
defined via profiles. A process that deals with such an entity is not
written in terms of a specific instance of the entity (such as a par-
ticular terminal), but rather in terms of a generic prototype whose
characteristics may be "bound" at run-time by a profile (such as a Vir-
tual Terminal). While this technique seems an obvious extension of
table-driven parsing, parallels to artificial intelligence techniques
are also apparent: Profiles are declarative knowledge; processes
represent procedural knowledge. Processes are written in terms of
generic objects, and manipulate (or are driven by) instantiations
thereof. It is fitting that an "intelligent" software system should
benefit from (and contribute to!) work in the representation and use of
kn owl ed ge.

1.5 A Roadmap

Chapter 2 presents an overview of RIGITS and, in the process, sets
forth most of the terminology used in the remainder of the thesis. The
system architecture and user interface are discussed. The notion of
declarative profiles for run-time tuning of the system is introduced.
Should the reader become overwhelmed by the terminology, he might do
well tc glance through Chapters 3 through 7 (particularly Chapter 7) as

he reads Chapter 2.

0.
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Modular decomposition into processes communicating solely via mes-
sages centralizes the access to each resource and leads to a high degree
of security. Messages provide a wide range of synchronization
strategies and a uniform mechanism for conveying control or data infor-
mation and signaling exceptions. Semaphores, by comparison, can
distribute both access and synchronization throughout the code executed
by many processes. Monitors centralize the access to a resource but
distribute the use of these functions over all processes. Neither
monitors nor semaphores allow the resource to do its own scheduling.
Lastly, even if a monitor model is used in a distributed system, the
reality is that messages are being exchanged (between machines).
Therefore, distributed systems research at Rochester adhers to a strict
message-passing view. (The pros and cons of message-passing versus
monitors are discussed at length in, for example, [130].)

1.4 A Summary of Contributions

Many people have been involved in the design and implementation of
RIGITS (see the Foreword). This thesis describes four contributions for
which I was largely responsible:

1. Virtual Terminals are presented as the means for managing a
large number of application programs per user. Any number of
Virtual Terminals may be mapped to a physical device simulta-
neously, and each Virtual Terminal may be written to or queried
for user input. In addition, the Virtual Terminal Management
System provides extensive facilities for editing text, the
ability to save all output on stable storage, and sophisticated
mechanisms for the management of screen space. Virtual Termi-
nals allow application programs to remain unaware of the spe-
cific physical device through which they are communicating.

2. Principles of command interaction that facilitate the use of
distributed resources are outlined. Tools are logically (and
physically) separated into user interface and service pro-
cesses. Table-driven command interpreters enforce a consistent

interaction discipline, isolating the user from the
idiosyncrasies of each tool.

3. Because most traditional operating system services are associ-
ated with server processes, resource management is viewed
fundamentally as a problem of process management. Processes
may be created "by name," and registration facilities enable
any process to register its interest in, for example, the death
of any other process (see contribution 4). An explicit process
tree is used to group processes created in response to partic-
ular user requests or jobs. The process tree, together with
the registration facilities, simplifies the deallocation of
resources associated with terminated jobs.
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user cited above, as well as a language-oriented "programing environ-
ment." To the programmer as implementer, distributed computing becomes
attractive only if it gracefully extends the local program execution
environment to embrace resources on other machines.

In particular, a sophisticated distributed system should:

1. encourage the use of separate modules for distinct modules with
well-defined functions (modular decomposition);

2. allow for incremental addition of new processors, devices, and
services;

3. place no a priori restrictions on which modules can communicate

with each others;

4. provide for location independence;

5. provide uniform access to basic resources such as file systems,
printers, and terminals;

6. support resource simulation and encapsulation;

7. provide convenient mechanisms for handling errors and other
exceptions, both within a single module and between modules;

8. support both centralized and decentralized services.

The goal is to create an environment in which modules may communicate
without concern for the topology of the system as a whole, using as few
mechanisms as possible.

Logically, RIGITS can be thought of as a collection of independent
processes running on various computers and cooperating via messages.
Each process has a distinct logical address and performs a specific set
of functions, as defined by its interface. Typical operating system
services, such as file access, terminal communication, and printing, are
provided by server processes associated with each system resource (such
as files, terminals, and data bases) (111]. A server defines the
abstract representation of its resource and the operations on this
representation. A resource may only be accessed or manipulated through
its server(s). Because servers are constructed with well-defined
interfaces, the implementation details of a resource are of concern only
to its server(s).

All communication between processes takes the form of messages. A
message is the smallest unit of data that must be exchanged for a
meaningful action to take place. No local variables can be directly

* examined and no procedures directly invoked by another process without
an explicit message request. Because shared memory is not used, there
is no distinction between local (intra-host) and remote (inter-host)
communicat ion.



being debugged and an editor without destroying the state of either
program. For systems programmers, the ability to display simultaneously
the state of programs running on different machines is indispensable in
debugging network software.

In short, a sophisticated d.stributed system should provide:

1. a consistent command interaction discipline across all availa-
ble application programs;

2. support for the creation and handling of a large number of
application programs per user, and facilities for managing

• "their input and output;

3. a terminal input/output interface to application programs which
is independent of particular physical devices;

4. fast response to user interaction;

5. facilities for tailoring the user interface to each user's
* preferences and needs.

Traditional systems fail to satisfy these goals. Typically, the
user has only one logical line of communication. Input and output are
both multiplexed in time, forcing the user periodically to look in on
each program to assess its state. His working context is at best a long
scroll of paper, and at worst his fragile short-term memory. Moreover,
each tool (subsystem) employs its own special-purpose facilities to
interact with the user in idiosyncratic ways.

RIGITS, on the other hand, gives its users the freedom to perform
any number of activities simultaneously. A user sitting at his display
terminal may view the output of various application programs on differ-
ent areas of his screen. He may rearrange his display, edit or save its
contents, or direct keyboard input to any of the programs under his
control. Table-driven command interpreters serve to isolate the user
from the idiosyncrasies of each tool. User profiles allow him to tailor
the interface to his own needs. To ensure fast response and support the
encapsulation of existing services, tools are separated into user
interface and service components. These facilities combine to present
an elegant, robust, and consistent interface between RIGITS and the
user.

1.3 The System

Just as computer systems should respond to the needs and desires of
end-users, they must also provide an environment that encourages and
facilitates the work of the programmer. To the programmer as user, this
means that he should be provided with all the amenities of the turn-key

• ------ --
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It is advantageous to remain faithful to the current
design and implementation of [RIG] in our discussion so
that remarks are supported by implementation, testing,
and experience. It is also advantageous to include how
we now believe the system should have been done, drawing
on the benefit of hindsight and experience. It is
equally advantageous to abstract the discussion with a
particular system to provide wider applicability of our
conclusions. All three of these competing goals govern
this report; we trust the reader will recognize the
different tacks in the course of the discussion. [39,
p. 3)

1.2 The User

Computer systems, distributed or not, should respond to the needs
and desires of their users. They should provide a working environment
tailored to the methods and habits of the individual, one in which the
computer serves to expand rather than restrict the freedom to think,
create, and act.

The user's primary concern is to get a job done, as simply as pos-
sible. The user has little or no interest in the peculiarities of the
different systems to be used, such as the syntax and semantics of the
various command languages. Naming, protection, accounting, and access
procedures should be as uniform as possible. Standard error diagnostic
and recovery services should be provided to isolate the user from
system-dependent error messages. On-line assistance should be easily
accessible. At best, the command language provided should allow maximum
access to the features of all the systems available with minimum
system-dependent interaction [76].

Moreover, the user should be allowed to perform multiple tasks
simultaneously:

Being able to switch back and forth between tasks
results in a relaxed and easy style of operating more
similar to the way people tend to work in the absence of
restrictions. To use a programming metaphor, people
operate somewhat like a collection of coroutines corre-
sponding to tasks in various states of completion.
These coroutines are continually being activated by
internally and externally generated interrupts, and then
suspended when higher priority interrupts arrive, e.g.,
a phone call that interrupts a meeting, a quick question
by a colleague that interrupts a phone call, etc. .. .it
is of great value to the user to be able to switch back
and forth quickly between related tasks. [210, p. 3)

It is invaluable, for example, to be able to switch between a program

•~. .......- " . .... ". "
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These deficiencies derive from the fact that traditional network

architectures do not support (the evolution of) a network or distributed
operating system. The ideal distributed operating system would provide
uniform and controlled access to distributed resources; it would act to
mediate incompatibilities among the resources so that they can be used
together; and it would provide an enviroi.ment for uniform accounting
and administration. In short, a distributed operating system should
provide the same sort of interface to the network as a traditional op-
erating system provides to its computer.

The key to a successful distributed operating system is a modular
: - and layered design [16 4, 2281. Associated with each layer N are two

interfaces defining the set of services provided to layer N+1 and the
set of services required of layer N-I. Layers only interact through
their interfaces. The services of layer N may be further decor,pcsc
into modules (processes). Modules, like layers, provide at their
interface a well-defined set of services, and their internal implemen-
tation is not visible on the other side of the interface.

An interface, then, can be defined as a set of conventions for the
exchange of information between two entities [228]. It consists of

* three components:

1. A set of visible abstract objects (such as files or virtual
terminals) and for each a set of allowed operations and asso-
ciated parameters.

2. A set of rules governing the legal sequences of these
operations.

3. The encoding and formatting conventions required for operations
and parameters.

In the literature, distinctions are often drawn between the terms
- protocol and interface. In general, this thesis follows Watson [228) in

regarding these terms as synonymous.

The use of layers and modules communicating only through well-
defined interfaces allows complex systems to be broken down into more

* easily understood pieces. The correct operation of these pieces may in
turn be more easily verified. Alternate services provided by one layer
(module) may share the services provided by other layers (modules). The
system can evolve more easily because the algorithms and mechanisns
implementing a given layer (module) can be changed without affecting the
service offered, providing the service off,-red at the interface remains
unchanged.

The body of this thesis is based on a distributed system
architecture known as RIGITS, for RIG In The Sky. I will return to the
current implementation, RIG, in detail in Chapter 7. Any attempt to
discuss both an abstraction and an implementation can lead to
difficulty; in discussing Thoth,.Cheriton phrased it well:

0
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6. the ability to handle increased complexity - achieved by
decomposi' .^n of the problem-solving task into subtasks, each
reduced in the range of possible activity as compared with the
overall task.

However, at present the amount of resource sharing and distributed
computing occurring on computer networks falls far short of that which
is possible. Traditional network architectures consist of a set of
function-oriented protocols, such as virtual terminal and file transfer
protocols, built on top of an interprocess communication protocol 135,
44, 47, 48, 170, 171 ]. The full potential of computer networking cannot

be realized with such an architecture for the following reasons (after
[214, 228]):

1. The mechanics of access are difficult.

To make effective use of the network resources a user must
* master network access mechanisms as well as the operating sys-

ten for each host providing a resource he wishes to use. He
must log in to his local host, use a network access program,
and then log in to his target host(s), each possibly using
different conventions. There is generally no single source
that can be consulted for information about available re-
sources. Consequently, users are often unaware of the re-
sources available to them. Even after learning that a partic-
ular resource exists and even if the resource is well
documented, a user must often rely on word-of-mouth folklore
from other users to learn how to use it.

2. The resources provided by the various hosts are generally
incompatible with Lach other.

A user often encounters great difficulty in attempting to use
individual resources for the various hosts together in an
integrated fashion. To use the output of a program on one host

* as the input to a program on another host, the user must
manually invoke the appropriate data transfer and
transformation functions. No basis is provided for easily
creating, in a layered fashion, new resources or services out
of existing ones. Each programmer desiring to provide or use a
new network-sharable resource must face anew all the issues of

* data type translation, command and reply formatting and
parsing, naming, protection, and interfacing to the transport
protocol layer.

3. Accounting and other administrative procedures are awkward.

* A user must deal with each administration controlling a host
that manages a resource he plans to use.
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In RIG equal emphasis was given to user and system interfaces.
Each was designed to gracefully extend the local (single-machine) envi-
ronment to embrace distributed resources, that is, to provide a coherent4 view of the distributed system. This thesis presents several of the
mechanisms and paradigms developed for building distributed systems with
uniform interfaces.

1.1 Motivation

The area of distributed systems is new, and, as in any new field,
there is a lack of agreed upon terminology. Because distributed systems
have been built on so many bases -- multi-processing operating systems,
multi-processors, networks, gateways -- I will loosely define a distri-
buted system to be any computer system (or collection of computer sys-
tems) that allows a program to be written as a collection of cooperating
processes. A process is a self-contained collection of code and data
segments; it may be understood informally as a procedure running on a
real or virtual processor. These processes may be spread out among a
variety of processors, which may in turn reside on a variety of net-
works. (Using this definition, a multi-processing operating system is
simply a degenerate case of a distributed system.) RIG, in particular,
is composed of three networks connected by a single gateway (see Chapter
2).

At their best, distributed systems can provide (after [1311):

1. lower commnunication costs - achieved by abstracting
(preprocessing) data for transmission (lowering communicating
bandwidth requirements) and by placing processing elements near
the data (reducing the distance data must be transmitted);

2. lower processing costs - achieved through the use of cheaper,
less complex processing elements which can be mass produced and
through load-sharing (allowing relatively idle processing
elements to handle some of the work of a busy processing
element);

3. an increased repertoire of resources -- achieved with the
addition of new host types;

4. enhanced performance -- achieved through parallelism, load
balancing and functional specialization, and through the
placement of processors near sensing devices and devices to be
controlled;

5. increased reliability and flexibility - achieved through
redundancy in communication paths and processing elements, and
through modularity of design;

" . -. .i - . -. ,- .". i ... .2 . . . i.. . . ,.- i - .
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7. extensibility

Is it possible to write user programs without intervention by
systems programmers, or must the user make do with the services
provided? If users can build new services, an NOS can start
w.th a few services and evolve from there. New resources can
be constructed out of existing ones without introducing new
privileged (systems) programming. Systems desiring to
participate in the NOS can do so with minimal implementations.

8. interference between NOS and non-NOS activity

If the NOS is implemented as a base-level system, all activi-
ties are NOS activities. However, a guest-level system should
not conflict with non-NOS activity on autonomous hosts.

9. administration

Either a centralized authority or increased user sophistication
is required.

2.1.3 Gateways

The interconnection of networks is a topic of increasing importance
(see, for example, [36, 206]). Networks are connected via gateways that
provide the necessary protocol transformations. In RIG, for instance,
the gateway Eclipses perform protocol transformations to enable Altos on
the Ethernet to communicate with the DEC-10.

I
Building an operating system that spans gateways is facilitated by

current work on internetwork protocols [25, 168, 169]. Violet, for
example, is a decentralized application program spanning an internetwork
[123].

0

2.1.4 The Place of RIGITS

Following the taxonomy outlined above, RIGITS possesses the fol-
lowing characteristics:

1. general-purpose system composed of loosely coupled,
heterogeneous components

2. base level implementation on the gateway Eclipses, with
guest-level extensions to the Ethernet environment and the
DEC-I0

.4
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3. meta-resources across the Ethernet

- 4. visibly distributed file system; transparent access to gateway
serv ices

5. reliability based solely on mutual suspicion -- no replication

6. decentralized resource management with user and system resource
selection

7. extendable program set

8. only DOS activity on the gateway machines; NOS activity on the
DEC-10 impacts upon the performance of TOPS-10

9. decentralized administration

RIGITS is first and foremost a system meant to provide access to
all available resources through a single terminal. Where it cannot

4 encapsulate particular hosts or networks RIGITS attempts to provide more
limited network access services. Where these mechanisms cannot be pro-
vided, the user and programmer must fall back on system-dependent
interaction (although the Virtual Terminal Management System is always

* .available). Most of this thesis discusses RIGITS from the viewpoint of
the gateway machines, that is, as a distributed operating system.

2.2 The RIGITS System Architecture

2.2.1 System Superstructure

Logically, RIGITS can be thought of as a collection of independent
processes running on various computers and cooperating via messages.
The software on a given RIGITS machine, or host, is organized in two
logical layers: a Kernel and a set of processes. The Kernel provides
the support functions of message-passing, process scheduling, physical

U memory management, and interrupt handling. At the interface to the
Kernel there is no concept of a connection or link, only the ability to
send and receive messages. The basic process synchronization mechanism
is provided by the Kernel, where a process can wait or not, at its
option, for a particular send or receive to complete.

Processes provide both system and user (application) services.
Although some processes are servers, they are no different than any
other (application) process in terms of protection or access to system
calls. Indeed, a given process can operate in either or both server and
user roles at different times: A server, PA, may require the service of
another server, PB, in which case PA is operating effectively as a user
process. Resource naning, connections, and message semantics are pro-

vided at the process level.

0
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Each host supports its own complement of server and user processes.
These processes typically include:

1. a Process Manager

2. a Job Manager

3. servers for local file systems, networks, printers, terminals,
spoolers, and so on

4. a collection of Virtual Terminal Controllers, Monitors, Execu-
tives, tools, and Command Interpreters on a per user basis

Servers need not be permanently associated with a particular host.
A host typically provides a fixed set of services, determined when the
system is initialized, but can be dynamically reconfigured under certain
situations. RIGITS does not support process migration; when a server
is moved to another host, any state (old connections) associated with

6 the old server will not be carried over to the new instantiation. How-
ever, services are requested by name (see Section 2.2.3.3), so new
connections will be opened with the appropriate process. The services
provided by a given host are indicated in its Host Profile (see Section
2.4).

2.2.2 Resource Management

Because all resources are managed by processes, the fundamental
problem of resource management is process management. On each RIGITS
host, a Process Manager provides for the creation, destruction, and
registration of processes. Processes may be created "by name" -- given
a name like "Executive," the Process Manager will create an instance of
the Executive based on a Process Profile. Registration facilities allow
a process to learn of exceptional events that occur to any other pro-
cess.

The Job Manager is responsible for managing the terminals and users
-. "connected" to the host. It also provides authentication and access

control services where necessary.

* Resource management is the subject of Chapter 5.

2.2.3 nterprocess Communication

* RIGITS processes communicate with each other solely by sending
messages. A message consists basically of:

0 .d, " ' I i - - i '- , ' - ,i - -" ' o
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- source address
- destination address
- message id
- typed data

Message ids are defined system-wide and indicate the function to be
performed by the receiver. Messages are variable-length and may be
uniformly represented by name-value slots as in PLITS [71].

Messages are queued separately by the Kernel for each destination
and passed to the receiving process as they are requested. A destina-
tion in RIGITS is specified by a process-port pair, where a port is
simply a sub-address within a process. Although the Kernel places no
restrictions on access to ports, most server processes employ specific
ports to communicate with specific customers. A process is free to
assign different priorities to each port, to select a specific port on
which to receive messages, to change the message queuing capacity of a
port, or to lock a port such that messages destined for that port will

* be queued but not returned in response to a receive. In short, a pro-
cess uses ports for selective message reception, flow control, and
multiplexing.

An important variant of ports has been used in several systems,
including a descendant of RIGITS for UNIX [174]. Ports are
disassociated from processes, providing for process migration. Pro-
cesses access ports via capabilities, providing increased protection
[110].

Three aspects of the communication techniques used in RIGITS elim-
inate the need to know the actual location of services in the distri-

buted system:

1. all basic services are provided by RIGITS processes through the

use of messages (no shared memory);

2. message transmission is transparent between machines;

3. inter-process communication can be initiated by name.

The following three sections discuss each point in turn.

2.2.3.1 Access to Basic Services -

Standardized message protocols provide independence from the
location and idiosyncrasies of each resource. They allow processes to
treat message-passing as remote procedure calls or pipes, and provide
for asynchronous event handling. These protocols include consistent

I.
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mechanisms for opening, closing, reading, and writing entities such as
files, virtual terminals, and line printers.

Since message primitives are indivisible from the standpoint of the
process, they behave like procedure calls. Together with reliable
transmission and flow control t:,is approach relegates to the transport
level much of the need for message sequencing and completion signals
employed in systems such as MSG [162). Moreover, indivisibility further
encourages a separation of the semantics of an operation from its
implementation. Each service can be specified to the outside world
simply by giving the virtual operations it provides. A complete set of
message primitives is given in Appendix A.

Process structure and message protocols are discussed in Chapter 6.

2.2.3.2 Interhost Communication -

Interhost communication in RIGITS is provided by processes called
network servers. Each RIGITS machine has at least one network server
that handles the flow of messages to and from other machines. The
function of a network server is to act as a local representative or
liaison for remote machines, and to use the resources of the local
machine on their behalf.

Figure 2 shows the path taken by messages over a network. A mes-
sage sent from a local process, PA, to a process, PB, on a remote host
is diverted by its Kernel to the appropriate network server process.
The local server is responsible for routing and reliable transmission to
the corresponding network server on the remote host. The network server
is also responsible for any data conversion within messages required
between the machines involved. The remote network server, upon receipt
of a message from PA, forwards the message to its final destination, PB.
PA and PB remain unaware that the message was routed through the network
servers.

In order to ensure transparent communication between hosts, remote
addressing must be provided. Typically, a hierarchical addressing
scheme is used where each process address specifies a network, host, and
local process number within that host. The Kernel routes messages to
the appropriate network server on the basis of the network field. This
approach requires that the Kernel know the address of the network server
associated with each network.

A more general approach, adopted in RIGITS, is to allocate a local
alias for the remote process. The alias is allocated from the pool of
available local process numbers. With each alias, the Kernel associates
a local process to which outgoing messages will be routed. Typically,
an alias is created in cooperation with a network server when a local

4 process attempts to communicate with a remote process on that network.
Aliases eliminate the need for the Kernel to know all possible network
addresses (so that it can route outgoing messages to the appropriate
server), increase the local process address space (by eliminating the

K L - .. m a"d i O lmm h i m m . .". . ..
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Figure 2. Inter-host communication.

need for multiple fixed-fomat fields), and provide the mechanism

whereby any process can be interposed between any two communicatingprocesses.

However, if an alias is embedded in an outgoing message, that alias
must be translated into an address accessible by the remote process.
This problem does not arise if global names are used. Address
translation and related issues are discussed in, for example, [174, 190,
229).

2.2.3.3 Name Service -

A remaining question is how a process initiates communication with
another (possibly remote) resource. RIGITS services are requested
symbolically, such as a resource path name. Processes that are willing
to provide services make themselves known to the rest of the system by
registering with a name-server (or directory server) process.
Subsequently, when the name-server receives a symbolic request for
service, it can return the address of a process that provides the serv-
ice (see Section 2.2.3.2). At the time a service is requested, the
right of the requesting process to use that service can be verified, or
a selection from a set of equivalent services can be made. If no pro-
cess is currently willing to provide the service, one can be created (as
in MSG).

A process making a name request may specify on which RIGITS network
or machine the process should be found, but typically "broadcasts" the
request. This allows the requesting process to ignore the location of
the service. The local name server notifies each network server that it
should broadcast the request on its associated network. The remote
network servers comunicate with their respective name servers to
determine which host, if any, provides the service.

....., -, , ..... o _ I
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Usually, if the service is found on the local host it is accepted.
If local service is unavailable and more than one host offers the serv-
ice, all "bids" but the first are ignored. A more sophisticated Job

Manager would consider the bids and use the most effective service.

Name service is necessary only at the initiation of comunication.
Thereafter, the specific address of each process is known to the other.

2.2 4 Exception Handling

Distributed programming imposes a heavy responsibility to handle a
multitude of error conditions. Message activity can be pipelined or
multiplexed, and the relationships between incoming and outgoing mes-
sages are much richer than in a conventional programming environment. A

faulty process can conceivably crash many other processes by sending
illegal messages, making it very hard to identify the process that
caused the problem.

Because there is no shared memory, protection cannot be enforced by
* hardware. Because there is only one level of co-equal processes,

protection is not enforced by layering. Instead, processes must first
be designed with the principle of mutual suspicion firmly in mind [194]:
Because the interfaces between processes are well-defined, it is possi-
ble for a process to validate the requests made of it and to check that
other processes it calls upon have performed as expected. Connections
can be used to provide a capability-like protection mechanism (see Sec-
tions 5. 1. 4 and 6.2.2).

In addition, RIGITS provides two fundanental mechanisms for
handling exceptions. The term exception is chosen because, unlike the
term "error," it does not imply that anything is wrong [84].
Intra-process exception handling is supported by a
procedure-call-oriented mechanism that allows an error notification to
propagate back up the "calls" hierarchy £1652 to a designated point.
Inter-process exception handling is supported by the use of asynchronous
emergency messages. Emergency messages are delivered with highest
priority - ahead of any other messages queued for the receiving process
- and will cause a blocked process to be awakened. When an emergency
message is received, the emergency handler associated with the process
is invoked.

Emergency messages provide the means for more general event
notification. The process registration facilities mentioned in Section
2.2.2 are supported by emergency messages. More general registration
facilities are possible, whereby a process may notify an event handler
that it wishes to be notified whenever a particular event, or combina-
tion of events, occurs. Notification is by emergency message.

* Exception handling is discussed in Chapter 6.
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2.3 The RIGITS User Interface

RIGITS attempts to provide the user with access to all available
facilities through a single display terminal. In doing so, RIGITS pre-
sents a coherent interface that minimizes the confusion inherent in
dealing with many different computers and tools simultaneously.

At any instant the user may be engaged in multiple, concurrent
activities. The user must be able to have any number of his activities
displayed on his terminal simultaneously (typewriter terminals are not
supported). These activities all use Virtual Terminals to communicate
with the user. Moreover, across all activities the command interaction

discipline is made as consistent as possible.

The user interacts with three types of process:

- the Monitor
- Executives
- tools (application programs)

40
When the user enters RIGITS he is talking to the Monitor, which is
responsible for managing the user's display terminal and maintaining
state as to the user's activities. At the user's request, the Monitor
allocates portions of the screen to particular jobs, groups jobs into
screen images, and tells the user where everything is.

Each user job is associated with an Executive, which is the process
to which the Monitor initially allocates regions of the screen. An
Executive serves much the sane function as a TOPS-10 monitor or TENEX
executive (fork). Each Executive can perform at most one job at a time.
The user may, however, have as many Executives (and hence jobs) running
simultaneously as he desires. At his request, any combination of Exec-
utives may be mapped to the screen.

Some jobs, such as file management functions, are performed by the
Executive itself. Other jobs involve the instantiation of a tool,
consisting of a Tool Interface Process and one or more Tool Service
Processes. The Tool Service Processes provide the requisite processing
function, while the Tool Interface Process provides the interface to the
user. Tool Service Processes and Tool Interface Processes are separated
primarily to guarantee fast response to user input when the tool resides
on a remote host.

Thus, the basic logical flow of RIGITS, to a single user, appears
as follows:

1. When the user sits down at his terminal a Monitor is created
for him. The Monitor processes commands for managing Execu-
tives and allocating screen space. If the "Quit" command is
issued, all resources associated with the terminal are
released. Assuming an Executive is given control-- via corn-

| " | " " u " " ' o " • " " " : -J
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mands or screen management keys -- the screen is remapped to
contain an instance of the Executive and...

2. The Executive processes commands for file management and the
like. If the "Quit" command is issued, the Executive
disappears and the screen is remapped to activate another
Executive or the Monitor. If a request is made, for example,
to edit, or talk to the DEC-10, a tool is spawned. The tool
will run in the same window allocated to the Executive.

3. The tool executes: The Tool Interface Process interacts with
the user as necessary, and dispatches requests for services to
the Tool Service Process(es). Upon satisfactory completion,
the tool dies, whereupon control is returned to (2). .,

4. At any time the user may turn his attention to a different
tool, Executive, or Monitor. (The Monitor may be thought of as
a higher-level Executive, and Executives as special-purpose
tool s!)

2.3.1 Virtual Terminals

A Virtual Terminal is roughly equivalent to an independent physical
display device. Each Virtual Terminal may be associated with an area of
the user's display. The Virtual Terminals associated with dormant
activities may occupy only a small amount of screen space (or none at
all), while those of current interest may occupy a large amount of the
display. The contents of a Virtual Terminal are in no way affected by
the amount of screen space allocated to it. If a dormant process
becomes active and the user requests that a larger area be used to dis-
play its Virtual Terminals, the effect perceived by the user is that
previously invisible text becomes visible. Although all Virtual Termi-
nals may accept output simultaneously, only one Virtual Terminal can
accept user input at a time. Special keys and commands permit the user
to switch his attention from one Virtual Terminal to another. (In the
sequel, key means any distinct signal from any input device - e.g.
keyboard, mouse, or chordset.) The control functions and layout for the
RIGITS keyboard are given in Appendix B.

At any time a user may:

1. suspend or discard output to a Virtual Terminal;

2. abort or suspend the process associated with a Virtual Termi-
nal ;

3. scroll back and forth within a Virtual Terminal to review pre-
vious material;
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4. specify a file or select previous text as current input;

5. rearrange his display by moving or changing the size of a Vir-
tual Terminal.

At all times the user has control over what he sees and how he sees it.

For example, consider the typical program development cycle of
editing, compiling, and loading. Figure 3 presents an image of the RIG
screen editor: The editor has four Virtual Terminals, one each for the
banner, status, command interaction, and text-editing. The " " cursor
identifies the Virtual Terminal expecting input. The user may switch
between the command and text Virtual Terminals via the CHANGEVIEWPORT
key (see Section 3.2).

Zxoc2/.d I t/Ed I tor Directory:<200)>kal
Lot vte File: (2@gk- 1:novsrc_.,aa
Change: Mode: Insert

Cnmomnnd?

require "ALL:GlUTS.HDiFi 170,166": aoureelfiIle;"
require 'CS:DATES. rt" sorceflle I

1 require *SUB360[170.1661" loadfmodulel
1 external proc List360 (atring filename)"

require 2000 llewJLtems:
require 2000 PNamest

I Tuning pmremetert p
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rrEADEl!FILLCBARACTER * *55.
PACF LENCTI • 5.
PACE! WIDTB - 132.
rOMlAND!PROMPT - I CALF 8 Coinand? "]i

I Dump file info$

Figure 3. Editing a file.

In order to compile a program and correct errors while the compi-
lation is in progress, it is useful to allocate one area of the screen
to an editor and one to the compiler. Compilation is halted at each
error, the necessary correction is made in the file, and compilation
proceeds. Figure 4 presents this arrangement: In addition to the four
Virtual Terminal associated with the editor, two Virtual Terminals for I

the SAIL compiler (running on the DEC-10) are shown, one for the banner
and one for user interaction. The user directs his attention to the
appropriate job via the CHANGEREGION key. Although the editor's Virtual
Terminals are mapped to the entire screen in Figure 3 and only a portion
of the screen in Figure 4, this has no influence on any of the
properties of the Virtual Terminals.

9
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Figure 4. Two activities sharing the same terminal.

Virtual Terminals are device-independent. If an application

program needs to be aware of the particular device through which it is
conmunicating, the program can be provided with the Terminal Profile for
that device. The Terminal Profile defines, for example, the dimensions
of the display and the control functions provided.

Virtual Terminals are the subject of Chapter 3.

2.3.2 Command Interaction

The user would like to interact with his various activities in a
coherent fashion. Across all jobs he should be able to type the same
control keys and issue similar commands to get help, rearrange his
screen, and the like. Moreover, he should be able to tailor the user
interface to his own preferences -- disable prompting or redefine con-
trol keys, for example. User tailoring is provided by User Profiles.

The command interaction discipline is discussed in Chapter 4.

2. 4 Profiles

To provide dynamic configurability, RIGITS relies heavily on
declarative profiles. Profiles are associated with entities such as
terminals, hosts, tools, processes, commands, and users. A process that
deals with such entities is written in terms of a prototype whose char-
acteristics may be bound at run-time by a profile.

. . - - .



-28-

This principle is most apparent in the use of Virtual Terminals:
Application processes deal only in terms of Virtual Terminals. The
Virtual Terminal Management System, which sits between the user and the
application program, must provide different input and output facilities
corresponding to the capabilities of the user's terminals. The Terminal
Profile provides the necessary information (see Section 3.3.3).

Similarly, the User Profile defines the access rights of the user

(for the Job Manager) and his desired command interaction environment.
Command Profiles define the characteristics -- keywords, parameters,
help text, and executable code -- for individual commands. Process
Profiles are used by the Process Manager to create processes. Host
Profiles specify the services (resources and tools) provided by partic-
ular hosts, and login/out sequences for network access purposes.

Profiles may be represented in a general, variable-field, syntactic
format, namely, the PLITS message. Tools must be provided for creating
and editing profiles, and, possibly, for "compiling" them into more
machine-amenable forms.

2.5 Historical Perspective

The RIGITS message-passing paradigm grew out of experience with
interprocess communication facilities developed for the Stanford
Hand-Eye Project [75] and the work of Walden [221]. Systems that bear a
resemblance to RIGITS include DEMOS, Thoth, RSEXEC, NSW, DCS, DCN,
MININET, Roscoe, StarOS, Medusa, and LLLNOS.

DEMOS and Thoth are single-processor, message-passing systems.
DEMOS provides rudimentary process registration and name service facil-
ities, as well as capability-like access control to communication paths
[172. A link is created by the task (process) to which it points and
then passed to the potential sender task. The creator may specify
attributes of the link in order to identify incoming messages and to
protect against unexpected or unauthorized messages. Links are used in
conjunction with channels (RIGITS ports). Data segments may be associ-
ated with links such that memory can be shared between tasks; this
provides the primary tool for communicating blocks of data.

Thoth was designed to be portable [392. It emphasizes the use of
many inexpensive processes, efficient process addressing, inexpensive
interprocess communication, and dynamic configurability. Data sharing
is effected via teams of processes (similar to Extended-CLU guardians
[1362 and the task forces of StarOS and Medusa); teams communicate via
messages. Message-passing is fully synchronized; a message is not sent
until a request for the message is outstanding. Services are typically
provided by remote procedure call, and processes cannot block on the
availability of resources. Thoth distinguishes between system processes
(which access kernel services via system calls) and user processes
(which access system processes via message passing). "1
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RSEXEC was an early network operating system designed to provide
access to a collection of TENEX hosts [213]. It is implemented in a
manner similar to the RIGITS network servers: Requests for remote
access are directed at 9 server process (RSSER) on the appropriate host.
A distributed file system allows uniform accessibility via a file-naming
syntax that has simply been extended to include a host field.
Convenient access to frequently used files is provided by partial
pathnames that are interpreted in the context of the user's "working
directory." The working directory spans host boundaries and includes
those directories the user normally access. RSEXEC is completely dis-
tributed in concept and implementation, and the distribution is visible
to the user. Distributed file storage with the possibility of multiple
copies gives rise to problems of consistency and protection that are
still unsolved.

The National Software Works is fundamentally a system for software
production [96]. It is intended to provide programmers with uniform
access to a wide variety of software production aids, and managers with
access to a collection of management tools for monitoring and
controlling project activities. It is implemented as a collection of
processes for user interaction, resource management, and file movement
and translation, built on top of a fairly sophisticated interprocess
communication facility, MSG [162]. In comparison to the uniform RIGITS
message interface, MSG provides three primitive modes of interprocess
communication - messages, connections, and alarms - together with
asynchronous mechanisms for signaling message reception and the ability
to dictate the sequencing of messages. The distribution of the NSW is
totally invisible to the user; neither the syntax nor the semantics
associated with the user interface includes any provision to specify
actions directly relating to the distributed nature of the system.

DCS was one of the first and best distributed systems [67]. Pro-
cesses distributed across a (ring) network communicate by messages.
Messages are sent to ports, several of which may be owned by a process.
Communication is initiated by name, and the physical location of a pro-
cess is irrelevant. The file system is distributed among all the
machines, and is designed for fail-soft performance. The ring
architecture allows resource allocation based on bidding: Messages may
be broadcast to every processor soliciting bids for a desired resource.
This feature, however, was never implemented.

DCN is basically DCS with a point-to-point communication network
rather than a ring- [150]. MININET consists of a packet-switched commu-
nications subnetworx interconnecting message-switched host operating
systems [145]. Inter- and intra-host communication meet the goals of
uniformity, but communication is transaction-based, the hosts are
homogeneous, and the entire system is implemented directly on the
hardware.

Roscoe is a RIGITS-like syst- for a physically and functionally
homogeneous, close network of LSI-11's [200]. All traditional operating
system functions are performed by utility processes (RIGITS servers).
All communication among processes takes the form of messages across
links 'as in DEMCS). Roscoe supports a hierarchical, distributed file
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system similar to that of DCS. Global resource management is achieved
via an interconnected set of resource managers (RIGITS Job Managers),
one per host.

StarOS is a message-based, object-oriented operating system for Cm*
[112]. It was specifically designed to support task iorces, large
collections of concurrently executing, small processes that cooperate to
perform a single task. All information in StarOS is encoded and stored
in typed objects, which are accessed via capabilities. A process never
suspends execution as a side-effect of a message send or receive. The
TASK programming language £113] is used to construct task forces. Var-
ious dependence relations between the processes in a task force are used
for process suspension and abnormal termination, and for responsibility
chaining.

Medusa is another operating system for Cm* [163]. It too relie, on
the use of task forces containing many concurrent, cooperating
activities. Activities within a task force may share memory and other
objects, while communication between task forces is achieved only
through messages. The sharing of control within a task force has led to
the notion of a buddy, by means of which one activity may handle an
exception on behalf of another activity in its task force.

LLLNOS is one of the most complete designs for a distributed oper-

ating system C230]. As befits a recent design, it contains most of the
best features of other major systems and has made a serious attempt to
formalize a distributed system architecture. Processes communicates
solely via messages; resources are associated with server processes;
name service is provided. Protection is based on capabilities and a
partitioning of the network into domains of trust; systems within a
domain cannot pose as sources of messages from systems in another
domain. The protocol structure is layered and transaction-oriented
(with provisions for sessions or connections). The service support
layer, in particular, provides uniform mechanisms for resource naming
and protection, data translation, message formatting, and sessions [77].
Although Watson was a principal contributor to the NLS system [226],
LLLNOS has not yet seriously addressed the principles of use interfaces
for distributed systems. Some of the ideas in LLLNOS have been imple-
mented in NLTSS, a single-processor operating system for the CRAY-
rL51 ].

Lastly, the ANSI/ISO reference model for open systems architecture
is designed to enable structured dialogues to be established, main-
tained, and terminated reliably between any two processes in any two
workstations located in any two open systems anywhere in the world [58,
236 E. Each workstation is a cluster of activities or processes, each
able to perform a defined set of functions according to the set of
procedures established for the workstation when it was defined. When
two workstations wish to communicate they must first establish a message
path or session through intervening communication networks. The pro-
cesses may then exchange messages in agreed-upon languages (presentation
fornats, according to established protocols. The ISO standard provide 7
layers: physical control, link control, network control, transport
end-to-end control, sessicn control, presentation control, and
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editor process. If, for instance, a "?" was struck, indicating
that the user required assistance, the editor process would
then issue commands to the Pad Handler to output various help
information. If a screen management key is struck, the Line
Handler communicates with the Screen Handler to activate a
different Virtual Terminal. Subsequent input will be

interpreted in the context of the new Virtual Terminal.

5. Eventually the editor process makes another request for input
and control returns to step 1.

The division of effort within a VTC is based on a desire to
maintain functional modularity and to distribute components among vari-
ous processors. Using the Virtual Terminal Protocol, application pro-
cesses deal uniformly with Screen, Line, and Pad Handlers, which

conmunicate in turn with device-specific Terminal Input and Output Han-
dlers. The protocol between Terminal Input and Output Handlers and the
terminal varies with the terminal. For example, the initial version of
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terminal at run-time on the basis of the Terminal Profile. This leads
to reliability, flexibility, and maintainability across a potentially
wide range of devices.

3.4.1 An Implementation Approach

In RIG the VTC is implemented as a collection of five or more
cooperating processes. Each RIG terminal has its own Terminal Input and
Output Handlers, created at system generation time. When a user first
accesses RIG, a Screen Handler and a Line Handler are created. The
Screen Handler is responsible for managing screen space (i.e., Windows).
The Line Handler satisfies all subsequent user input requirements by
communicating with the Terminal Input Handler and directing characters
to the user's various Lines. Typically, one Pad Handler is associated
with each Virtual Terminal's Pad and satisfies that Virtual Terminal's
output requirements by sending display commands to the Terminal Output
Handler.

Figure 9 diagrams the flow of information within a VTC. The Ter-
minal Input Handler collects input characters from the keyboard, and
passes them on to the Line Handler for interpretation. To echo a char-
acter, the Line Handler passes it to the appropriate Pad Handler, which
stores the character in a Pad and passes it to the Terminal Output Han-
dler for echoing on the display. Editing keys result in appropriate
commands being sent to a Pad Handler, which performs the edit on a Pad
and issues the appropriate display updates to the Terminal Output Han-
dler. If a character is typed that causes a new Virtual Terminal to be
activated, the Line Handler notifies the Screen Handler; the Screen
Handler in turn notifies the appropriate Pad Handlers to start/stop
mapping their output to the display, and tells the Terminal Output Han-
dler which Pad is in control of the input cursor. Application processes
make requests to the Line Handler for input, to Pad Handlers for output,
and to the Screen Handler for formatting. The various components are,
however, transparent to the application process, which regards them
collectively as one or more Virtual Terminals.

In Figure 5 consider the case where the user was typing the "open"
command to the editor. The input loop proceeds as follows:

1. The Input Handler receives the "o" and passes it to the Line
Handler.

2. The Line Handler sees that "o" is not a break character and
passes it to the appropriate Pad Handler.

3. The Pad Handler updates its Pad and passes the "o" on to the
Output Handler for echoing.

4. Steps 1-3 occur for "p", "e", and "n". When an appropriate
break character (e.g., carriage return) is input, the Line
Handler recognizes tnis and returns the collected input to the I
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alert (ring bell)
clear screen
clear to end of line
delete character
delete line
insert character
insert line
move cursor
(over)write character
(over)write line

3.3.3 Terminal Profiles

A Terminal Profile is constructed by the VTC when the user first
accesses RIGITS. The Terminal Profile contains, for example, the
dimensions of the display and its contrast characteristics. It also
contains a "map" of signals generated by the keyboard into the Virtual
Terminal control functions that they represent - octal 10, for example,
is mapped to the function DELETECHARLEFT. Each character may have at
most one control function; a control function may, however, be gener-
ated by more than one character. Characters not mapped are given no
special interpretation by the VTC. An application program must not rely
on a particular signal (e.g. 8-bit code) representing a particular
control function; that is, signals have no pre-assigned logical func-
tion. S

The Terminal Profile is provided, at run-time, to application
programs that wish to tailor their actions on the basis of the physical
device through which they are communicating with the user. It serves a
function similar to the "terminal mode word" features of systems like
TENEX.

3.4 The Virtual Terminal Controller

Virtual Terminals isolate users and application programs from the
characteristics of particular physical terminals. The set of Virtual
Terminals associated with a particular physical terminal (or user) is
managed by the Virtual Terminal Controller for that terminal.

Users and application programs are not concerned with the internal
structure of the VTC. Users need only concern themselves with the con-
cept of a Virtual Terminal that provides them with uniform access to
input and output devices such as keyboards and displays.

Application programs communicate with the VTC via a Virtual
Terminal Protocol (VTP). The VTP is invariant to the type of physical
terminal through which the program is communicating. The protocol
between the VTC and the terminal varies with the terminal. Where nec-
essary, application programs may tailor their actions to a particular
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Figure 8. AnOther Configuration.

3.3.2 Output

A display is considered to be any device on which some bounded
number of text-lines may be shown simultaneously. A display may provide
many different contrast or highlight characteristics, such as color or
reverse video, intensity, blinking, underlining. Each characteristic
may be represented by a field in a "contrast" mask; thus, Virtual Ter-
minals may specify any combination of characteristics, while a particu-
lar display employs those characteristics for which it is designed. As
with graphical input devices, the integration of graphical or audio
output modes into VTNS is an open research question. See £6, 105] for
some valuable conments about the requirements for an effective display
terminal.

The format of VTC display commands has evolved out of a desire to
minimize the amount of state information maintained by the VTC, and to
make them terminal-transparent, that is, independent of any particular
physical terminal. The commands attempt to incorporate the features
provided by most (page mode) terminals, while leaving out some provided
by more intelligent terminals. The commands include:
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mand and text Virtual Terminals. Figure 7 shows an Image containing a
single Region to which this Configuration of the editor is mapped.

ComWndl'op*n (file) novare.sasi...open
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Figure 7. An alternative Configuration.

On the other hand, the user may want all the available editor space
devoted to text-editing. Yet another Configuration composed of the
single text Virtual Terminal provides this (Figure 8). Successive Con-
figurations are activated via the CHANGECONFIGURATION key. In sum, the
editor manage; four Virtual Terminals grouped into three different Con-
figurations.

3.3 Physical Terminals

Lines and Pads represent logical keyboards and displays, respec-
tively. Their physical counterparts constitute a terminal. Particular
keyboards and displays are defined by a declarative profile available at
run-time to application programs.

3.3.1 Input

A keyboard is considered to be any device capable of generating
distinct signals in response to user input. Input devices such as mice,
joysticks, or lightpens might be considered components of a keyboard in
this generic classification, but their use presents several problems.
Integration of such devices into VTMS is an open research question (see
Section 8.1). j

-.- - ~~ - . --. - -- - - -
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A Configuration is a description of the way in which a subset of a i1

Superwindow's Windows (program's Virtual Terminals) should be displayed;
it specifies the relative positions of the Windows, their relative sizes j
as a percentage of the whole, and actual viewing conditions. Each Win-
dow in the Configuration may h'ave a size and contrast independent of the
defau t size and contrast specified when the Virtual Terminal was
created, although bounded by the Window limits. Processes may configure
their Virtual Terminals in as many ways as they desire, but are not
aware of which Configuration is currently active. The user changes
Configurations via a special key.

Finally, because any realizable text display is limited in size,
the entire context of the user's activities cannot always be visible on I
a single screen. For example, the user may wish to allocate the entire

screen to a particular program while allowing other programs to continue
in the "background;" the background programs may then be mapped to the
screen at a later time. This facility may be provided in one of two
ways: For raster displays, the capability of overlapping Regions can be
provided. For typical display terminals, however, it is easier to use
multiple screen Images. Literally, an Image is "what a screen might
look like." It is composed of a set of Regions containing a subset of
those Virtual Terminals associated with the user. The user may define
any number of Images, swapping between them through the use of a special
key.

In summary, for raster displays, Windows and Viewports suffice, but
the remaining abstractions are recommended. Superwindows, Regions, and
Configurations provide means of grouping the Virtual Terminals associ-
ated with application programs into logical entities. Images provide a
fast way to "flip" the screen.

3.2.1 An Example

By way of further explanation, consider the following example: A
user wishes to allocate half of a 25-line terminal to one program, say a

DEC-TELNET, and the other half to an edit session. Through his Monitor

the user creates an Image with two Regions - one for the Superwindow

associated with the Telnet and the other for the Superwindow associated
with the Editor. He then asks the Monitor to swap that new Image to his
screen. The resultant display looks like Figure 4 (Chapter 2). In the
top Region are two Viewports displaying respectively the banner and

command Virtual Terminals of the Telnet process. In the lower edit

Region there are four Viewports. The sizes of the Viewports (1, 9, 1,
3, 1, and 10 lines) are determined by the actual size of the Regions (10
and 15 lines) and the relative size information contained in the cur-

rently active Configurations of the associated Superwindows.

The default editor Configuration allows only one line for command

interaction -- in order to maximize the space available for text-
editing. If, however, the user needs assistance in specifying a com-
mand, he may require more lines for the command Virtual Terminal. This
is provided by creating another Configuration containing only the corn-
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A Viewport is the 2-D area of the screen within which the contents
of a Window are actually viewed. The size and video characteristics of
a Viewport depend, in part, on the attributes defined for its associated
Window. A Window may be mapped to more than one Viewport (on more than -

one screen - see Section 3.1.2).

In the most general case the abstractions of Window and Viewport
suffice. The user allocates Viewports on his screen and specifies which
Virtual Terminal (i.e., Window) should be mapped to which Viewport.
This may be the best approach for raster displays where Virtual Termi-
nals can be used for menus and graphics, and can be overlapped quiteeasily.

Nevertheless, an application program often wishes to use several
Virtual Terminals. From the user's viewpoint it is usually desirable to
display all output pertinent to a particular program in a contiguous
area of the screen. To ensure contiguous display all Windows associated
with a program are logically grouped into a Superwindow, which may then
be mapped to a Region (or Superviewport) of the screen. Only Windows
associated with that Superwindow may be mapped to the Region. A Region,
then, consists of a collection of contiguous Viewports. Just as a Win-
dow may be mapped to more than one Viewport, a SuperWindow may be mapped
to more than one Region. Regions have fixed sizes and are created by
the user. The VrC has the responsibility of allocating portions of the
available Region to its constituent Viewports.

Given the additional abstractions of Superwindow and Region, it may
now be sufficient for the user to allocate Regions on his screen and
specify which Superwindow (collection of Virtual Terminals associated
with a program) should be mapped to each Region. The application
program could specify a fixed topology of Windows, that is, how its
Virtual Terminals would be arranged in any Region.

However, it is not always desirable to observe all Virtual Termi-
nals associated with a particular program. In the editor, for instance,
it is useful to be able to eliminate the banner, command, and status
Windows, and deal only with a (larger) text-editing Window. The most
general solution to this problem is to provide the user with the
capability of creating, rearranging, and deleting his Virtual Terminals
at will; that is, we fall back to the simplest level of abstraction --
Windows and Viewports. Given the concept of inter-related Virtual Ter-
minals that should be displayed together, an alternative approach is to
have the VTC cycle through all

0n

(n-i)!
i=I

possible permutations of n Virtual Terminals on user command. VTMS
compromises the user to some extent by allowing the application program
to specify what it considers to be a reasonable set of Configurations.
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3.2 Managing Screen Space

A multiple process environment in which simultaneous activities
"l compete for a user's attention presents a number of problems for a

screen management system:

1. A physical display may not be large enough to accommodate all
the information important to all concurrent activities.

2. The user must be able to organize his work visually so that

related information is arranged logically on his screen.

3. A given program may wish to provide various viewing options
(e.g., contrast, or "optimal" sizes) without wanting to
complicate its internal state with elaborate screen state in-
formation.

VTMS solves these problems through a hierarchical decomposition of
screen space reminiscent of the way computer graphics systems divide and
map data onto graphics output devices (see [160J). There, portions of
pictures termed windows are mapped onto areas of the display termed
viewports. Similarly, in VTMS Windows on a Virtual Terminal's Pad are
mapped onto Vieworts of the screen. See Figure 6.

SCREEN

* IMAGE

SUPERW:I NDO 6 REG I ON

WINDOW 0V I EWPORT

logical ohysica!

Figure 6. The dual hierarchy of screen primitives.

A Window represents a potential mapping onto a display of the out-
put contained in a Pad. Its attributes include preferred contrast (such
as inverse or blinking) and limits on its size when displayed. The
Window definition does not specify where in the Pad it is. Rather, the
Window is always implicitly located over the viewing cursor associated
with its Pad (see Section 3.1.2).

0,
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SCRATCH FILE 2

N LINES OF TEXT..

SCRATCH C.LE 1 IIPUT FIE

Figure 5. A Pad bein; used to edit a file.

A given Pad may be shared by more than one Virtual Terminal. This
feature can be useful when a Pad contains status information updated by
a single program but of interest to many system users. For example, the
RIG "banner" process makes a Pad containing the RIG system version num-
ber, date, and time available to all users. Mapping the same pad to
multiple Virtual Terminals also provides the means for two or more users
to "link" or "share" screens - for teleconferencing and the like.

A Pad's output cursor is under the control of the program that owns
it. On write operations its position is updated in a fashion analogous
to that of a physical terminal. Normally, movement of a Pad's output
cursor also changes the mapping of Pad lines onto the user's display,
resulting in a scrolling action; that is, the "newest" data is always
displayed. Alternatively, these mappings may be defined to follow a
second type of cursor, the viewing cursor. There are as many viewing
cursors as there are Virtual Terminals for a given Pad, each under the
control of the user viewing that Virtual Terminal. Viewing cursors are
usually linked to the Pad's single output cursor in such a way that
movement of the output cursor also moves the viewing cursors. However,
the user may detach a Virtual Terminal's viewing cursor for the purpose
of reviewing past text and perhaps selecting it as input.

Output to a Pad may also be suspended or discarded. When suspend-
ed, the Pad refuses to handle any further requests from application
programs until told to resume output by the user. In autoblock mode the
Pad will automatically suspend whenever new text has filled the smallest
area of any screen to which the Pad is mapped. (If the Pad is not
mapped to a screen, it suspends output until it is mapped.) Special keys
control suspension, discarding, and autoblock mode.

L--
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vious text. If that text has already been parsed (by a command
interpreter, for instance), the results returned from the VTC must
indicate that such text has been changed. The calling program may then

£ reparse the complete text.

3.1.1.2 Indirect Input -

When processing commands it is often useful to specify indirect
sources of input, such as programmable function keys or macro files.
The processing of such input is distributed between the low-level key-
board driver, the VTC, and higher-level command interpreters. See Sec-
tion 4.4.2 for details.

3.1.2 Virtual Output

The output capabilities of a Virtual Terminal are provided by an
extensible data structure called a Pad. The pad represents the "store"
of a Virtual Terminal. -

Logically, a Pad is a cursor-addressable, two-dimensional,
right-ragged array indexed by line number and character position. Each
line may have a contrast type such as reverse video or blinking. The
Pad maintains a fixed number of text lines in memory and uses two
scratch files (or an equivalent stable medium) for temporary storage. P
In the event of a system crash, these files provide the means for
recovering all but a Pad's most recent contents. The maximum amount of
text storable in a Pad is therefore determined by the maximum file size
on a particular RIGITS system.

4VTMS provides a range of text-editing features through the use of
Pads. These features may be initiated either by the application program
or by the user and include:

- cursor motion by characters, words, lines, or pages
- deletion of characters, words, lines, or pages
- joining and splitting lines
- character overwrite or insertion
- string location and substitution
- text selection and transfer (copy)

Further, the contents of any RIGITS text file may be inserted into a
Pad, or some or all of a Pad may be copied into a file at any time.
Together with the ability to select arbitrary portions of text, these
features allow the Pad to be used both for the editing of files (see
Figure 5) and for the management of temporary text buffers. The latter
facility provides the ability to use the output of one Virtual Terminal
as input to another (similar to UNIX pipes).
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correct Virtual Terminal.

The user may type a control key at any time. Control functions are
4 related to particular keys via a lookup table, allowing different char-

acter codes to be used with different types of keyboards (see Section
3.3.3). This also permits the user to specify control functions
himself, perhaps through his User Profile (see Section 4.4.1). Control
functions are identical across all application programs.

The actions associated with control characters may be circunvented
by including them in a set of break characters either at the time the
Line is created or on any request for input (see the following section).
Alternatively, any character prefaced with a PASS character will be
treated as a normal character to be queued for the line in question.

3. 1. 1. 1 Input Modes -

The program owning a Virtual Terminal may request that input be
collected in one of three modes: In character-at-a-time mode a single
character is returned in response to each request. Echoing is optional.

In page-edit mode characters typed by the user are allowed to
modify the contents of the Virtual Terminal until a program-specified
break character is typed. A program may also specify the set of
"acceptable" characters such that any characters not in that set will be
ignored. Page-edit mode is used primarily for editing files; indeed,
it is simply a driver for the editing facilities of the VTC (see Section
3.1.2). All editing takes place within the VTC; the requesting program
is not aware of any input/output until a break-character is typed.

Line-edit mode is used primarily for processing commands. All of
the intra-line editing facilities of the Pad are available.
Line-editing continues until a break character is typed. Entire text
lines or single tokens may be line-edited. A text-line logically con-
sists of three parts: 1) prompt; 2) previous text; and 3) current
input (field). This is similar to the partitioning in TOPS-20 (COMND

and TEXTI JSYSes). For example, if a command is being typed, previously
parsed fields constitute the previous text; the current field consti-
tutes the current input; and the prompt is the command prompt. Hence,
the following partitioning may result (user input in upper-case):

Command? COPY OLDFILE:TEMP1 NEWFILE:

'prompt text input

The user may inquire about the current input field at any time, e.g.,

ask for all options for which the current input is a prefix (see Secticn
'.1.5). His inquiry will be fielded by a process external to the VTC.
it is therefore possible to pass partial input back and forth to the
VTC. editing it as necessary. It may also be possible to edit the pre-
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any number of Virtual Terminals, thus allowing it to manage different
kinds of output separately. A Virtual Terminal may be written to or
queried for user input in much the way a physical terminal can be used

C in a single-job-per-terminal system. In addition, a Virtual Terminal
provides its owner with extensive facilities for editing text and the
ability to save all output in data str'.ctures on stable storage (such as
disk).

The Virtual Terminals associated with a particular user (i.e.,
rM display terminal) are all managed by a single Virtual Terminal Control-

ler (VTC). The implementation of the VTC is transparent both to the
user and to application programs.

4 3.1 The Virtual Terminal

A Virtual Terminal consists of three logical components:

1. Line - A Line serves as the Virtual Terminal's source of input.

2. Pad - A Pad is a stable-storage-based data structure used for
storing and editing Virtual Terminal output.

3. Window - A Window is a potential mapping of a Virtual
Terminal's Pad onto a display.

. Lines and Pads will be discussed in the following sub-sections. Windows
are the subject of Section 3.2.

3. 1.1 Virtual Input

When multiple simultaneous activities share a single physical ter-
minal, input from and output to that terminal must be multiplexed.

J* Output can be multiplexed in both space and time by using the
two-dimensional features of a display terminal. Input can be
multiplexed in time only, through the use of virtual input devices
termed Lines.

Any number of Lines may be creaLu - in the course of a RIGITS
session, but only one Line may be "active" at a time, that is, receiving
characters from the user's keyboard (or other input device). A Line is
activated in response to some action by the user, such as typing a spe-

* cial function key or issuing a command. From the moment the Line is
activated, subsequent user input is directed to it. Whenever a Virtual
Terminal's Line is active a cursor appears in the associated Window to
distinguish it from all others. Characters are echoed only when they
are extracted from the input queue in response to a program request for
input. This prevents characters from appearing in the wrong place on
the user's display by ensuring that type-ahead always goes to the



CHAPTER 3

Virtual Terminal Management

RIGITS gives its users the freedom to perform any number of activ-
ities simultaneously. The management of these activities is made pos-
sible by the Virtual Terminal Management System (VTMS) [127, 128, 129].
VTMS allows a user sitting in front of a display terminal to view the
output of various application programs on different areas of his screen.
It provides him with commands to rearrange his display, edit and/or save

* its contents, and direct input to any of the programs under his control.

The evolution of VThS from a vague notion of "multiple windows"
into a working system was directed by four key beliefs:

1. The user must have complete, preemptive control of his terminal
at all times. He should be able to allocate and arrange the
space on his display device at will, selecting which Virtual
Terminals to view at any one time. He should be able to tailor
what he sees to his own preferences and needs.

2. Processes should never depend on the actual mapping of their
output onto the user's display. A program may stipulate
preferred viewing conditions, but these are applicable only as
long as they do not interfere with the user's control of his
terminal.

• 3. The output of a program should not be thrown away unless
specifically requested by the user. The user should at any
time be able to examine the past activity of his programs,
possibly forming new input from data displayed on the screen.
He should be able to save the output of any program as a

* transcript file.

4. Related output should be kept together on the user's display.

* The fundanental element of the VTMS design is a powerful program-
ming abstraction called a Virtual Terminal. Virtual Terminals permit
application programs to remain unaware of the specific physical de-ice
through which they are communicating. An application program may .wn
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applications. The work described in the thesis spans levels 5 through

7.

r Begun in 1974, the basic RIGITS distributed system architecture
pre-dates most of the above systems (the most noteworthy exception being
XS), and has been applied to a system that has been in everyday use
since the summer of 1977. Although interprocess communication was well
understood when the initial design for RIGITS was formulated (and had
been implemented in a number of major operating systems -- RCJ4000, Cal,
Elf. Hydra, TOPS-IO, TENEX, B6700 MCP), such a total dependence on
message-passing was a considerable deviation from the norm. Moreover,
none :f the above systems (with the possible exception of the National
Scftware Works) has placed as much emphasis on the user interface as
P:73S. 3verall, RIG(ITS) provides more facilities in a substantially
more conerent fashion than other major distributed systems.

0

a



.@ - 46 -

VTMS for the Altos consisted of Terminal Input and Output Handlers
running on the Altos, and the remaining components of the VTC running on
an Eclipse (see Section 8.1).

When a new terminal is brought into the system, a Terminal Input
Handler and Terminal Output Handler must be provided for it. T,-he
remaining components of the VTC tailor their actions, at run-time, on
the basis of the resulting Terminal Profiles, and need not be changed.

Moreover, the base functions of the Input and Output Handlers do
no change. For example, all Terminal Output Handlers must handle line
deletion and insertion: only the specific control signals for the ter-
minal at hand must differ. Thus, the source code consists of a general
handler that is combined with a terminal-specific set of support rou-
tines.

3.5 Historical Perspective

Development of VTMS began in the fall of 1975. Inspired primarily
* by Swinehart's work on debugging [207], it was an attempt to provide a

much more versatile user interface than that available in any existing
time-sharing system.

* TENEX and TOPS-20, for example, provide for the creation of multi-
ple executives, eac of which may execute an independent program. How-
ever, the executives are stacked such that all lower-level executives
must be killed in order to return control to a higher-level executive.
UNIX provides the facility for "forking" multiple concurrent processes,
but all processes expecting user input must type prompts to the same
output stream, resulting in an indecipherable mixture of echoed input
and program output. (The same characteristic is true of most systems,
including TOPS-20 and TENEX, which provide the capability of running
multiple processes from a single job.)

To correct these deficiencies, many systems provide a top-level
control process that spawns a tree of independent sub-processes (execu-
tives) that do the actual work. Any given sub-process may be killed

. without affecting the operation of the others. In systems such as ITS
and the National Software Works a form of "tty-passing" is implemented
whereby the user's terminal always belongs to one process; this avoids
the problem of mixed output from multiple processes. However, it is
difficult for the user to remember the state of his various programs,
and it is difficult for the system to provide the user with coherent
information about important program activities.

Many of these difficulties (or features) arise from reliance on
"typewriter" terminals. By taking advantage of 'he two-dimensional
nature of available display terminals it is possible to allocate

• separate "windows" on the screen to different programs. This not only
permits a user to view the output from many programs in a comprehensible
fashion, but also allows him to suspend an operation, perform other
operations, and then return without loss of context. This facility has



@ - 47 -

been incorporated into several computer systems - e.g., NLS/Augment,
ZONES, POCCNET, TTDL, the TSO Job Session Manager, and Virtual Terminal

1. UNIX - but has more typically been restricted to applications
subsystems such as Copilot, Smalltalk, DLISP, SIGMA, and Nexus [74].

Compared to VTMS, few of these systems a *e as deeply ingrained in
the infrastructure of the associated computer system, or offer an
equivalent range of function. The fundamental difference is that VTM.S

*concentrates on providing a complete Virtual Terminal in every window on
the screen, whereas most other systems restrict each window to a speci-
fic sub-task. Few systems provide the extensive line- and page-editing
features, or the ability to save terminal output on stable storage.
Lastly, the techniques for screen management (beyond the concepts of
Windows and Viewports) are unique to VTMS.U

0i
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CHAPTER 4

Tools and the Cornand Interface

The Virtual Terminal Management System described in Chapter 3
becomes most useful when employed in the execution of application
programs, or tools. These tools may be located on any host accessible
through RIGITS. In order to ensure sufficiently rapid response the user
interface processes should be as close to the user as possible, while
the tool service routines possibly reside on a remote host. This leads

* to a logical and physical separation between tool interface processes
and tool service processes.

Moreover, the user should be able to interact with any tool in a
consistent manner. Because RIGITS does not intend to integrate all
available hosts into its process environment, many tools will maintain
tool- and host-specific styles of interaction with the user (within the
context of a particular Virtual Terminal). However, wherever possible
the user should be buffered from the idiosyncrasies of each tool. The
guiding assumptions are:

1 1. The command language should be transparent. The user should
not need to be aware of any system peculiarities, but should be
able to capitalize on those peculiarities if desired. In the
latter case the language should permit invocation of an arbi-
trary, named service implemented by a local or remote resource.

70 2. The command language should be simple and uniform. The com-
mands should perform the actions their names imply, and should
be simple in format and machine-independent. Default
parameters should be supplied and an arbitrary number of
parameters should be allowed.

3. The interface must provide enhanced, consistent "help" and
error recovery facilities. Standard mechanisms should be pro-
vided for- presenting status or error conditions to the user,
independent of the host generating the error.

4. The interface should be amenable to various grades of user
proficiency.

- 49 -
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5. The user must be able to tailor the interface to his own pref-
erences, carrying on the tradition from VTMS. He must be able
to write various types of command programs, from simple macros
to command programming languages.

6. The command repertoire should be easily modified and extended.
Builders of new interactive application programs must be pro-
vided with facilities for easily creating the user interfaces
for their programs.

7. Application programs should be provided with well-formed com-
mands. In general, once a command is dispatched, further
interaction with the user should be unnecessary, although it is
not prohibited.

*8. The command interface must provide fast response to user
interaction.

4.1 Principles of Command Interaction

A command interface should allow the user to "express his need"
with constructs that are similar to his thought processes, natura..
problem-solving vocabulary, and language forms" [226, p. 357]. Such an
interface might include a textual command language, graphical input and
output modes, menus, and any other input/output modalities suited to the
task and the user.

4. 1.1 Language Forms

Command languages take two forms: 1) command interpretation
languages (or interactive command languages); and 2) command
programming languages. I will not discuss command programming languages
in any depth (see Section 4.4.2), but it is important to design command
interpretation languages that may easily be extended to command pro-
gramming languages (see, for example, C217]).

Typical command interpretation languages take one of three forms:
1) positional; 2) keyword; and 3) natural language (English-like).

* For example, assume the user is making a copy of a file. In a keyword
language the user might type:

COPY OLDFILE-FILE1 NEWFILE=FILE2

3LDFILE and NEUFILE are keywords. FILEt and FILE2 are the values of the
keywords, i.e. , two specific files from the class. Each (keyword,
value) pair corresponds to an operand or parameter. The order in which

t
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the parameters are given is of no consequence since their values
immediately follow special keywords. Keyword languages are attractive
for novice users since the user need not remember the order of operands.

The corresponding input in a positional language (e.g. TENEX)
might te:

COPY FfLE1 FILE2

Keywords do not appear. The source and destination files are understood
from the order in which they are typed, and the order is paramount!
Positional notation is preferred by experienced users (and quick
typists), yet can prove dangerous - consider the obvious case where the
user accidentally confuses the order of the files in the above command.

In an English-like language (such as one constructed using LIFER
[90, 91 ]) the equivalent input might read:

PLEASE COPY FILE1 TO FILE2.
or:

PUT IN FILE2 A COPY OF FILEI.

The same command can be specified in many ways in an English-like
language. Noise words must be recognized and ignored. Although
English-like interfaces are attractive, the supporting grammars are
frequently ambiguous for a number of well-known reasons (see [100]).
For many applications this may be permissible, but ambiguity can be
rather dangerous when issuing file management commands. Moreover,. in
current systems, what appears perfectly "natural" may have many equally

natural equivalent expressions that the command interpreter can not
recognize; this can be quite frustrating for the novice user.

4. 1.2 The RIGITS Command Interpretation Language

The approach taken in RIGITS is a synthesis of the three forms. It
is based on Treu's realization that, in spite of surface
dissimilarities, it is possible to characterize all types of user
interaction by means of "action primitives" -- basic elements and their
interrelationships that must be conveyed [216]:

- action verb
- action qualifier(s)
- object(s) of the action
- object qualifier(s)

4i
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No matter what (meaningful) action is conceived in the user's mind, the
nature and object(s) of the action as well as any associated qualifiers
must be produced. Therefore, stripped of extraneous words and other
embellishments, a command can be represented by means of a general,
variable-field, syntactic format. This becomes important when thinking
about how to pass commands back and forth between processes. In RIGITS,
that format is provided ideally by the PLITS message structure [71]:
Each action primitive or command parameter is represented as a (name,
value) slot.

In keyword languages, the action verb corresponds to the command
name, objects are specified by the (keyword, value) pairs, and
qualifiers are given by global and local switches. In English, the ac-
tions and objects are explicit, and qualifiers are given by adverbs and
prepositional phrases.

The RIGITS command interpretation language is an attempt to provide
what Treu refers to as a "user-oriented artificial language." The prime
consideration is power and flexibility within a construct that is easily
understood (and in some instances reads like natural language), and
amenable to various grades of user proficiency. The basic command
syntax is:

<command> <operator> {<operand>}*
<operator> :: <verb> (<noun>]
<operand> ::[ [ <keyword> = ] <value1>
<valuel> <value> [ ({<operand>}*) I
<verb> command action
<noun> :: <verb>-dependent qualifier
<keyword> <operator>-dependent object-specifier
<value> :: <keyword>-dependent object

0
Here <verb> is the action verb, possibly qualified by the <noun> and
(keyword, value) pairs (representing global switches). Objects are
specified by (keyword, value) pairs, possibly qualified by additional
(keyword, value) pairs (representing local switches).

Operands may be specified as (keyword, value) pairs or
positionally; if a keyword is not specified, the position of the value
determines the operand based on the structured definition of the command
(see Section 4.2.2). The user typically will not mix positional with
keyword arguments. Experienced users will tend to use positional
notation whereas novices find keyword notation more helpful.

Each parameter has many characteristics:

1. type

Typically, the value of a parameter is typed -- e.g. filename,
string, or integer. If the input value does not pass the type
check, the user is informed of his error. A "literal" type is
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provided in order to circumvent type-checking.

2. optionality and default

A parameter may be optional, and therefore must have a default
value. 'f no value is supplied for the parameter and a default
is available, typing a termination character as the first input
character will result in the default being accepted. The user
can display the default without accepting it by asking the
command interface to EXPAND a null string (see Section 4.1.5).
Alternatively, the default may be specified as a "constant"
value, such that the parameter will not be prompted for and can

not be specified.

3. prompt and feedback (post-prompt)

Each parameter may have a prompt associated with it which can
assist the user in typing the value. Once the value is speci-
fied, a post-prompt may be issued as feedback.

4. lists

A parameter may specify that a list of values is expected.
Values are separated by a user-definable delimiter (e.g. ",").

5. wild-carding

When the type of a parameter is a file (or other appropriate
object), an additional indication should be made as to whether
wild-carding is allowed. For example, IIFOO*.*" means all

filenames beginning with "FOO". (Services similar to TENEX
GTJFN/IGNJFN, TOPS-20 GTJFN, and UNIX inspired the sophisticated
file iteration facilities currently provided in RIG.)

More than one word (external keyword) may be used to represent the same
keyword. External keywords are user-definable and spelling correction

is provided.

For example, the above COPY command might be specified in RIGITS as
any of the following:

COPY FILEt FILE2
COPY FILE1 NEWdFILE2

COPY NEdFILE=FILE2 OLDFILE=Ff.LE2

depending on the definition of the COPY tool (see Section 4.2). If data
transformation or a similar operation was desired, this would be indi-
cated by qualified values:

COPY OLD ILE1 NFd:FILE2(BLOCKSIZE=132)
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4. 1.3 Command Input

A command may be specified using a variety of methods. Textual
input is the typical input mode. Menus can be used to display all
options for possible command verbs, keywords associated with a particu-
lar command, or va-ies possible for a particular parameter; the appro-
priate option is selected with, for example, a mouse or chordset.
Alternatively, once the command verb is specified, a "form" for the
command can be displayed and the appropriate parameters specified.

When typing any parameter - command verb, keyword, or value --
that can take a fixed set of values, it is possible to expand (complete
or recognize) an input as if it were a prefix of the value(s). If a
delimiter is typed and the input is not a prefix of the values, the user
is informed (via a bell, for instance) that further input is expected.
If a special EXPAND key is typed the input is expanded to match the
greatest common prefix of the values it matches (see Section 4.1.5).

Feedback is provided on a per-parameter basis. The user does not
have to wait until the command is completed to discover that he mistyped
the first parameter. When an error is encountered, the user has the
option of correcting it. A command is never aborted except by explicit
user request.

4.1.4 Context

Many of the problems with man-machine communication arise from the
lack of machine-maintained context. People maintain dialogues and
pursue goals, but often in command interpretation each command is con-
sidered independently of any previous user input. The machine simply
does not grasp the intent of what the person is doing.

At the very least it is important to maintain a history-list for
previous interactions. This provides a context for "redoing" and
"using" previous commands (as in INTERLISP [211J).

4. 1. 5 Help

Much of the power of a command interface resides in its help
facilities. At any time a user must be able to find out what he has
done, is doing, and can do with respect to the parameter or command he
is typing or the tool he is using -- that is, in parameter, command, or
tool space. Assistance may easily be rendered during parameter or com-
mand specification by providing keyword completion and spelling
correction, help features to remind the user of syntax, and

0
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user-oriented diagnostics to facilitate identification of errors. Help
facilities in tool space include semantic data bases, tutorials, and
expert assistance. Ideally. all documentation should be accessible
on-line, both as a complete tutorial and as small sections chose in
arbitrary order.

In the context of Chapter 3, at least three special keys seem
important :

1. The PROMPT key will always display an appropriate prompt

followed by a list of options. If typing a command verb (in
tool space) or keyword (in command space) the PROMPT key will
result in a display of all commands or keywords matching the
current input. If typing a value (in parameter space), either
the available options are displayed, or, in cases where the
value does not come from a fixed set, the syntax for the value
is displayed.

2. The EXPAND key is used for completion and recognition. Whether
typing a command verb, keyword, or value, EXPAND will always
expand the current input to match the greatest common prefix of
the available options.

3. The HELP key provides for semantic help in the appropriate
space. This may involve display of BNF syntax, suggestions for
proceeding, tutorials and the like.

In addition, all errors require precise description and suggestions
for corrections. The simplest form of error detection is to check the
user's input for spelling and syntactic errors. Logical errors, such as
specification of conflicting parameters, should also be detected.
Distinctions may be drawn between "warnings" (where the user may
continue with the command as specified, or correct it) and "errors"
(which require user intervention).

4.2 Tools

Each task the user performs is typically associated with an
application program, or tool. A tool must perform two functions: 1)
interact with the user to determine what needs doing; 2) perform the
requisite function(s). These services may be physically as well as
logically separated for four reasons:

1. In a distributed environment such as RIGITS the service rou-
tines may be located on a host quite distant from the user. in
order to guarantee fast response to user input, however, the
interaction services should be as close to the user as possi-
ble.

0mmm m m bm Nmmmm ml mm mm lm m
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2. The RIGITS environment does not provide for the encapsulation
of all existing tools. It is therefore appropriate to access
the computational services directly, while handling the user

interaction through RIGITS facilities.

3. The tool. service routines may be o.' use to more than one
application program. For example, both the COPY and ARPA-FTP
programs may want to access FTP services directly. This is
possible by providing two different interaction modules which
access the common FTP services.

4. Tailoring the interface to a particular user becomes much

easier - he need simply supply his own interface routines or
provide a different Command Profile (see Sections 4.2.2 and
4.4.1.)

In short, for any tool there is exactly one interface module, and one or
more service modules.

4.2. 1 Tool Interface Processes

A tool-specific Tool Interface Process (TIF) is responsible for
interacting with the user and presenting a standard interface to the
Tool Service Process(es) (TSP). By performing semantic checks on user
input the TIF minimizes interaction with the possibly distant service.
By handling responses from the TSP, it can present standard representa-
tions for errors rather than the obscure messages generated by
traditional time-sharing systems.

One primary function of the TIF is looking for inconsistencies

between parameters. For example, if the user is specifying arguments to
a text-formatting system, the TIF should detect if the left margin is
greater than the right margin before dispatching the request to the
formatter. Specification of a particular set of parameters may
necessitate that another (dependent) parameter be specified. In both
instances the TIF requests the user to correct the command specifica-
tion. Another approach is to define a language for validity checking
and incorporate an appropriate "check definition" for each parameter in
the Command Profile, such that the Command Interpreter could perform the
checking (see Section 4.2.2).

A TIF must also handle responses from the TSP in an intelligent
manner. The TIF itself can incorporate a Response Handler for the TSP
in question, or the TIF could interface between the TSP and a general
Response Handler. The Response Handler is responsible for providing a
machine-independent RIGITS diagnostic to the TIF. Based on the context
provided by the Response Handler and by the previously specified com-
mand, the TIF must be able to guide the user in recovering from errors.
Rather than abort the request, the TIF determines those parameters that
were in error, and requests their re-specification. It then
re-dispatches the request to the TSP.

• "- "" " ".-
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4.2.2 Command Profiles

It would be a frustrating and expensive task to replicate the com-
mand interaction discipline discussed in Section 4.1 in each TIF. In
R:G:TS the natural approach is to relegate much of this interaction to
another process, a Command Interpreter. If, however, the Command
Interpreter is to be TIF-specific, it must know the requirements of the
TIF. This information is provided by Command Profiles. (As noted
above, a particular command may result in multiple Tool Service Pro-
cesses being invoked. Hence, the Command Profile does not describe a
Tool Service Process, but rather the syntax of a particular command.)

A Command Profile describes the parameters to the associated tool
(see Section 4. 1.2) and specifies the program (TIF) to be run to process
the command. In addition, the Command Profile specifies whether or not
the command should be confirmed, whether literal parameters are allowed,
and the like. A semantic help data base may also be referenced. The
template for a Command Profile is given in Appendix C.

A consistent command interaction discipline is enforced by the
Command Interpreter. For a given command, the Command Interpreter uses
the associated Command Profile to control validity checking and
prompting. Prompting includes the identification of parameters,
defaults, and valid values, and can be requested at any time during
command entry.

Each user may have his own set of Command Profiles for the tools at
his disposal. Command Profiles may be altered either permanently or for
the duration of the session by the user.

4.2.3 Summary

In summary, a tool is composed of:

- a Tool Interface Process
- Tool Service Process(es)
- a Command Profile
- optionally, a semantic help data base

4.3 Command Interpretation

Tool Interface Processes, Command Profiles, and Command Interpret-
ers combine to perform the act of command interpretation. Each Command
Interpreter has a fixed repertoire of commands, corresponding to the
various tools (sub-tools, sub-sub-tools) available. Once a command verb
has been recognized and authenticated (i.e., the user has authorization
to use the associated tool), the Command Profile associated with that
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tool is accessed. The Command Interpreter attempts to parse the command
to completion before dispatching the command to the associated TIF. If
the Command Profile indicates that particular slots are required, such
slots must be filled, i.e., values specified by the user. Any optional
slots may also be filled at this time.

When the command is completed, it is packaged into a PLITS-style
message and given to the TIF. If the TIF or TSP notes that a semantic
error has occurred, the TIF requests the Command Interpreter to interact
with the user in order to correct or complete the command.

Command Interpreters interact with the user via Virtual Terminals.
The Virtual Terminal Controller associated with the user's terminal
provides the necessary input and output facilities. The Command
Interpreter provides type checking, defaulting, prompting, and the like.

The appropriate Virtual Terminal may not be mapped to the screen
when an error is encountered. When this occurs, the error message is
normally posted to a Status Server as well as being displayed on the
Virtual Terminal. The Status Server alerts the user to the error (via a
bell, for example) and the user may respond accordingly.

It is important to remember that a tool may have subcommands. The
TIF then has its own sub-Command Interpreter that interprets
sub-commands on the basis of sub-Command Profiles. This hierarchy may
extend indefinitely. In a RIGITS environment the most straightforward
implementation approach is as follows:

1. The Executive starts its Command Interpreter. The Command
Interpreter will take care of most user interaction; that is,
TIFs will communicate with the Command Interpreter, which
communicates with the Virtual Terminal Controller.

2. When the Executive Command Interpreter has recognized and
parsed a command, it instantiates a TIF process for the tool
(see Section 5.1.1), passing it the name of the Virtual Termi-
nal through which it is communicating.

3. If the TIF has subcommands, it may instantiate its own Command
Interpreter with the appropriate Command Profiles. That Com-
mand Interpreter is then given control and executes commands in
the same way as the Executive Command interpreter. The TIF can
proceed with any other actions. In fact, if it has several
types of interaction with the user (i.e., several Virtual Ter-
minals), the TIF :nay spawn a Command Interpreter for each Vir-
tual Terminal.

This approach results in the process structure shown in Figure 10. A
given Command Interpreter is always one level above its tools in the
hierarchy; that is, the Command Interpreter associated with the Execu-
tive manages the base-level tools, while the Command Interpreter asso-
ciated with a tool manages sub-tools, and so on. The Executive may be
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considered as a special-case tool with subcomands.

7
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Figure 10. The command interface.

P

In more detail, a typical Command Interpreter might function as

follows:

1. Get a command verb from the user and access the corresponding
Command Profile.

2. Interpret the Command Profile, interacting with the user until
either:

a. he aborts the command, in which case goto (6.0; or I

b. he accepts the comand, in which case goto (4...; or

c. the input must be checked against an authentizat-. in

which case proceed to (3.0).

I

3. Dispatch the request for authentication and wait for a re-

sponse:

a. success -- > goto (2.0)

b. failure -- > display some help and interact with the user,

perusing the help data base as in step (2.0). If the help
session terminates successfully goto (2.0), otherwise gcto
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(6.0).

Note that authentication can proceed in parallel with further
comnand interaction; that is, the request for authentication
can be dispatched, the slot in question marked, and control

returned to (2.0). If a negative answer comes back from the

authenticator, the user will be notified when he next finishes
a slot.

4. Spawn the appropriate TIF, giving it the command as an
argument. Wait for a response from the TIF:

a. CCMMAND COMPLETED (start a new command) -- > goto (5.0)

b. COMPLETE COMMAND (the last specified command was not

complete) -- > goto (2.0)

c. CORRECT COMMAND (a semantic error was detected) -> reset

the current command state to the state indicated in the
request and goto (2.0)

5. Store the command on the history-list.

6. Release all state associated with the command and goto (1.0).

'.'4 Tailoring the Interface to the User

A fundamental goal of RIGITS is to allow the user to do anything he
wants in the way that he wants. In Chapter 3 1 described how the user
may rearrange his display at will, organizing output from related tasks
in ways that best suit his needs. He must also be able to affect the

manner in which RIGITS interacts with him, and to write his own
executable ' command programs.

.ser Profiles

7he 'iser Profile defines the user to RIGITS. It contains, for

e3a-. l e, to passwords, access rights, mailing address, default
3 a specification of his desired command environment.

Ac-ess -,: i'S ..include his available machines, tools, devices, and files.
.ser ?r file provides the means for automatically logging a user

7"; tstens.

e -ser Profile also contains a specification of the user's
cr; .3 environment. He may, for example, specify the degree of

- :r :feed~ak, the control characters he wishes to use for

r ... f'rotr.s, and programmable function keys. For each
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In R1GITS, the emergency message provides the means for one process
to alert another to the occurrence of an exceptional or unusual event.
Emergency messages are implemented almost entirely with the same
message-passing mechanisms as ordinary messages. By convention, an
emergency port (-1, say) is reserved in each process for emergency mes-
sages. essages delivered to that port are simply received with tne
highest priority, that is, delivery is independent of any outstanding
messages to the receiving process. The only exceptions to normal
message-passing are: 1) the queue for the emergency port is infinite,
and thus a sending process will never be blocked when trying to send an

emergency message; 2) the receiving process will receive the emergency
message even if he is currently trying to send. Because a standard
message is used, more data may be transmitted than just an interrupt
signal. Moreover, because emergency messages are only delivered at
"clean points" (when the process attempts to send or receive messages),
the problems of synchronization between interrupt and data channels are
simplified.

When a emergency message is received, the emergency handler asso-
ciated with the process is invoked, and is responsible for processing
the event. This leads us to a discussion of exception handling.

6.3 Exception Handling

Distributed programming imposes a heavy responsibility to handle a
multitude of exceptions. Message activity can be pipelined or
multiplexed, and the relationships between incoming and outgoing mes-
sages can be much richer than in a conventional programming environment
(i.e., one in which subroutines are used as the primary structuring
mechanism). A faulty process could conceivably crash many processes by
sending illegal messages, making it very hard to identify the source of
the problem. As a practical matter, it is difficult to ensure complete
compatibility between similar programs written by different individuals
in different languages. Supposedly interchangeable processes may differ
in subtle, difficult-to-detect ways. Therefore, in order to provide an
adequately robust program, the programmer of a distributed computation
must give more thought to the problem of dealing with errors and
exceptions.

Exceptions can be divided in two dimensions: 1) synchronous vs.
asynchronous; 2) those that arise within a process and those that are
external to the process. Typical intra-process exceptions include
attempts to send incorrectly addressed messages or memory faults.
Intra-process exceptions are invariably synchronous. Typical
inter-process exceptions include the invalidation of previously sent
requests or the death of a communicating party. Inter-process

exceptions may be signaled synchronously or asynchronously.

A procedure-call-oriented mechanism provides for intra-process

exception handling. Error messages provide for synchronous
inter-process exceptions. Emergency messages are the kev tc
asynchronous inter-process exception handling.
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Streamed connections allow the originator of data to transmit the
data to the receiver without waiting for either input requests or output
acknowledgments. If the sending process can produce data faster than it
can be consumed by the receiver, system-defined flow-control mechanisms
are employed to prevent the creation of Large message queues [184]. A
typical example of streaming in RIG is copying files from one machine to
another.

Streaming can be used in any situation in which a synchronous re-
sponse to input and output requests is not necessary. The advantages of
streaming are its low message overhead and higher bandwidth. The major
disadvantages are that errors must be signaled asynchronously to the
flow of data, and state at both ends must be synchronized in the event
of transmission failures.

Four standard procedures are conventionally used for manipulating
connections - Open, Close, Read, and Write. These procedures define
the four basic operations on meta-resources or virtual devices. Open
and Close deal explicitly with connections (they open and close them).
Read and Write may be used for atomic transactions as well. A complete
set of message primitives is given in Appendix A.

6.2.3 Asynchronous Messages

Because some catastrophic error situations (such as the death of a
process or remote machine) or other exceptions (such as a request from
the user to block output to a Virtual Terminal) can occur at any time
during a communication, mechanisms must be provided to deal with
asynchronous events. Such mechanisms are particularly important for use
in conjunction with streamed connections, where the originator of the
data does not wait for synchronous responses.

Experience with communication line protocols suggests a polling
strategy using timeouts on message primitives as a way to prevent
deadlocks in such situations. However, in some cases it is infeasible
to place any upper limit on the duration of a transaction, so any
timeout-based action will sometimes be invoked when no error condition
has occurred. Moreover, in order to avoid the expense of continually
checking on the state of a transaction, timeout periods must be
relatively large, which makes the prompt detection of errors difficult.

In traditional communications protocols asynchronous events are
signaled on a separate interrupt or "out-of-band" communications channel
that parallels the data channel [18, 19, 49, 192]. Only very small
messages may be transmitted on this channel, typically one byte. More-
over, it is necessary to synchronize the flow of data with the inter-
rupt. For example, if an "abort output" interrupt is sent, a data mark
must be inserted into the data channel to delineate data to be
discarded.
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6.2.1 Atomic Transactions

For atomic transactions, the link between the communicating pro-
cesses is set up and expires on a message-to-message basis. Process PA
simply composes and sends a message to process PB, without PB having to
know anything about PA. Depending on the particular request, PA may or
may not wait for an acknowledgment from PB. PB retains no information
about PA between transactions. Examples of atomic transactions are a
request for the time of day, a request for name service, or a request to
delete a file.

Atomic transactions have also been used as the base for several
distributed file systems and data base management systems [122, 123,
166, 208].

6.2.2 Connections

Any prolonged interaction between two processes may make it neces-
sary for each process to remember the current state of the interaction.
In such cases, the processes can create a connection (or session [77,
236]). The primary function of a connection is to control access to a
open communication channel. For example, any two processes may read a
file simultaneously, but the file system must prevent one process from
changing the file position at which the other process is reading.
Typically, a server allocates a separate port to each open connection,
and associates a state table (connection record) with that port. An
incoming request is validated against the table associated with the port
on which the message was received, the simplest check being that the
sender is the same process that opened the connection.

The amount of state associated with connections varies with the
processes involved. Moreover, each end of a connection need not
maintain the same state. Where a server typically maintains a good deal
of state (the file system, for example, maintains the file position,
read/write mode, and other attributes for each open file), the customer
process usually remembers only the process and port to which it must
send requests, and the port on which it receives replies.

Connections can support two data-flow modes: 1) full hand-shake,
or request-driven; and 2) streamed, or data-driven. Full hand-shake
means that every data message must be preceded by a request for input
and every output message is acknowledged by an "output done" message.
Full hand-shake connections are typically manipulated with remote
procedure calls. For example, application programs usually maintain
full hand-shake connections with their Virtual Terminals so that termi-
nal input and output will be synchronized with respect to program
requirements. Full hand-shake has the advantages that the cooperating
processes are always synchronized and that the initiator of the connec-
tion has complete control of the data flow. However, full hand-shakes
are expensive and can easily lead to deadlock (see Sections 6.1 and
6.5).
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interface routines and the server itself need be changed. Thus, inter-
face routines further encourage the separation of the semantics of the
service from its implementation. Moreover, they enable the service to
be documented in the same manner as built-in functions, that is, the
name of the request (command), the parameters passed, and the parameters
returned.

Typically, a request for service is handled as a remote procedure
call [232]. The requesting process initiates a request upon the server
and waits for a reply from the server that indicates that the request
has been processed (successfully or not) and returns any results. A
remote procedure call allows one process to invoke an arbitrary, named
(by message id) function in a remote process. Remote procedure calls
encourage and facilitate the work of programmers by gracefully extending
the local program environment to embrace other processes and machines,
thus reducing the cost of adapting existing resources for network use
and encouraging the construction of new resources built expressly with
remote access in mind.

However, remote procedure calls take away much of the computing
power of a distributed system. They impose a strictly sequential exe-
cution environment on an inherently parallel system. If used in
situations where server replies are unnecessary, they incur an unneeded
expense. Moreover, remote procedure calls can easily lead to deadlock
(see Section 6.5).

A straightforward alternative is to divide each server call into a
request for service (ROS, or simply request) and an optional completion
of service (COS, or simply reply). Separate procedures can be associ-
ated with each phase. The request is formatted and dispatched by an ROS
procedure, whereupon the sending process can continue. If a response is
received, the appropriate COS routine- is called (synchronously or
asynchronously). Such a scheme is typical of multiplexed processes, and
is often more difficult for programmers to master (see Section 6.4 ).

6.2 Communication Styles

When two processes wish to communicate they are free to do so in
any mutually convenient manner. Experience with RIG indicates that
three fundamental styles of message communication may be suffici-nt:

1. atomic transactions

2. connections

3. asynchronous messages
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CHAPTER 6

Multi-process Structuring

Previous chapters have concentrated on the architecture for RIGITS.
Fairly precise definitions have been given for functions that several of
its components -- VTMS, the command interface, the Process Manager --

must perform. This chapter discusses methods whereby those functions
are implemented.

In RIGITS modular decomposition via processes and messages has
eased the writing of new processes, but forced them to obey a
substantially different set of rules than in a typical sequential
program execution environment. Various styles of intercommunication
must be supported. Because of the "open" environment, each process is
fundamentally responsible for protecting itself. Providing convenient
mechanisms for both intra- and inter-process exception handling relieves P
the individual programmer of providing his own. In sum, principles of
multi-process structuring [39] are crucial to the success of a distri-
buted system.

I

6.1 Server Calls

A server provides access to a type of resource, such as the file
system. If the particulars of the resource change, such as the disk
drives supported, the server must be modified. However, the interface
presented to the rest of the world should not change unless the
fundamental characteristics of the resource change (random access is now
provided). Therefore, it is generally unnecessary to alter any code
outside the server when the server itself is modified.

Customer processes may also be isolated from syntactic changes in
the formats of messages sent to servers. This buffer is provided by the
use of a run-time linkable interface package for the server. In
general, each server process will provide at least one interface routine
that accepts a request with data, formats an appropriate message and
sends it to the server, and returns results from the server.

If processes access a server only through interface routines,
rather than generating their own messages, it is much simpler to change
the protocol for that service. Whenever protocol changes, only the
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build a robust distributed system, and various levels of protection have
i been a'ded (see Chapter 6). Capabilities, in particular, are being

employed in various descendants of RIGITS [32, 174].

The primary contribution of RIGITS is its mechanisms for process
management. Creation of processes by name and registration facilities
were relatively simple embellishments that are infrequently found in

other systems (Thoth, DEMOS, and StarOS provide similar facilities).
The registration facilities, in particular, have been invaluable for
managing distributed jobs and are discussed further in Chapter 6. The

RIGITS Job Managers collectively act to form a single resource manager

or executive for the whole system, as proposed by Jensen [108].

Sa

IfI
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in Section 4.4.2. The execution of a job step is managed by the Job
Manager associated with the particular RIGITS machine. When a job
involves resources distributed across multiple machines, the Job
Managers communicate with each other to manage the collective resources
and to determine the best distribution.

The Job Manager performs the following fundamental tasks:

1. maintenance of the state of all jobs associated with the local

machine, i.e., all services allocated to each job;

2. provision for recovering all resources when a job terminates;

3. authentication of requests for resources, based on the access
rights contained in the User Profiles;

4. resource selection on the basis of user-supplied requirements

and system-supplied information such as load;

5. maintenance of all user-oriented system state;

6. collection of statistics.

Recovering resources is simplified by the process management
strategies discussed in Section 5.1. All processes associated with a
particular job may be killed by requesting the Process Manager to
terminate the process sub-tree associated with the job. Any other pro-
cesses (typically servers) that were communicating with the job's pro-
cesses will be notified that the job has terminated (i.e.,- certain pro-
cesses have died), and can then release allocated resources.

Authentication and resource selection have received little atten-

tion in RIGITS. Much of the relevant information is provided by User
Profiles (see Section 4.4.1). The User Profile contains the systems the

user is permitted to access, and the types of interaction allowed. The
User Profile is accessed by the Job Manager when the associated user
logs in to RIGITS, and may be permanently changed only by the Job
Manager at the request of the user. Some additional remarks may be
found in £72).

5.3 Historical Perspective

In some sense, resource management has received relatively little
attention because the basic function of mutual exclusion is provided so
well by the intrinsic modularization. Also, RIGITS was originally

0 designed for an environment where programmers and users alike were
assumed to be kind, courteous and competent. Little effort was expended
on protection and the resulting system was considerably simplified.
However, chivalry has not proven a very firm foundation upon which to
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5.1.3 Process Registration

Any process, PA, may request that it be notified when particular
events occur with respect to another process, PB. In terms of process
management, these events include process suicide, crash, suspension, and
resumption. (If the Process Manager is forced to kill a process, this
is considered to be a process crash.) Presumably, a process will wish to
be notified about a death in the family. Process PA may also request to
be notified if a process PB not in the immediate family dies (or is
suspended), or to notify PB if PA crashes - if, for instance, PA is an
application process with open files and PB is the file system.

The Process Manager relies on the Kernel to notify it whenever a
process dies, is suspended, or resumed. The Process Manager then
distributes the appropriate emergency message to all interested parties.
Notification by emergency messages ensures that a process, PA, will not
sleep waiting for a process, PB, that may have died.

Further details of registration and emergency messages may be found
in Chapter 6.

0

5.1.4 Access Control

In order for a process, PA, to communicate with another process,
PB, PA must obtain PB's address. PA may obtain the address by
broadcasting a request for service to which PB responds (generally via a
name-server - see Section 2.2.3.3). Alternatively, a process, PC, may
send to PA the address of PB in a message. This latter method presents
a problem of access control: PB may not want to communicate to any
process that does not specifically request its services.

To provide access control, process addresses must be protected.
Using capabilities, PA may only communicate with PB if PA has been
granted an explicit capability to do so. Capabilities are being
incorporated into the interprocess communication facilities of UNIX
[174], an effort that is a direct descendant of RIG. Capability-like
functions are currently provided by connections (see Section 6.2.2).

Additional access control facilities are provided in terms of user
jobs.

5.2 Job Control

Satisfying a user request entails performing a job. A job
represents an encapsulation of all the resources associated with a par-
ticular user activity. These resources may be distributed throughout
the network. It is necessary, first, to provide a job control language
that allows the user to specify a collection of job steps, each of which
may be executed on a different machine, and second, a means of executing
the constituent job steps. Job control languages were briefly discussed



-67-

call. The Process Profile is used to fill in any parameters not speci-
fied in the call. The resulting Process Definition Table is passed to
the system Kernel, which allocates the virtual address space for the
process, reads in its code segments, and starts the process.

It is possible to download a process onto a remote host by
specifying a particular host in the Process Profile. When the PDT is
passed to the local Kernel, the request will be routed to the Kernel on
the remote host (see Section 2.2.3.2).

5.1.2 Process Termination

Processes may die in one of three ways: suicide, accident (crash),
and homicide. When the local Kernel notes the death of a process, that
information is passed to the Process Manager. Network servers are
responsible for notifying the Kernel of the deaths of remote processes.

A process, PA, or ancestor thereof, may request, at any time, that
PA, or PA's descendants, or PA and its descendants, kill itself
(themselves). Such deaths are termed "clean" or "normal" in that the
process is requested to kill itself, thus giving it the chance to clean
up its world. If a process, once doomed by such a request, does not
kill or detach itself within an allotted time, the Process Manager is
responsible for murdering it.

Only the Process Manager has the authority to request a process's
death, or to murder it. Processes should protect themselves against
termination requests from any other process. No process may be murdered
without first giving it the opportunity to kill itself. This policy
guarantees that each process has an opportunity to clean up its state,
with a greater possibility that resources are deallocated properly.
(The policy reflects early experience with RIG. The process
registration facilities discussed in the following section and Chapter 6
may eventually eliminate the need for such chivalry.)

When a process dies, it is removed from the process tree and the
- care of its sons must be given to other processes. In particular, each

son is placed in the care of his godfather, or, if the godfather is also
dead, the system process. The father's godfather (or the system process
if that godfather is dead) becomes the new godfather for the sons.

After jeath, a process is left in the tree for a period of time,
although marked as dead. This allows an Executive or Monitor, for
example, to clean up the dead process's subtree, or to ask for the key
(name) of the dead process for logging purposes.
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5.1 Process Management

The Process Manager is responsible for the creation, registration,
and destruction of processes associated with a particular RIGITS
machine. There is one Process Manager per machine, and it may be a
separate process or a part of the Kernel. All (other) processes are
created via a request to the Process Manager. Any process wishing to
kill another process must make this request of the Process Manager.
Registration enables a process, PA, to specify that it would like to be
notified when an exceptional event occurs with regard to another pro-
cess, PB - e.g. PB dies or is suspended.

The Process Manager maintains an explicit tree of processes wherein
each process is regarded as the son of some other process, typically the
process that created it or the system process, namely, the Kernel. In
contrast to many systems, the process tree imposes no restrictions on
the ability of processes to communicate. The tree is used to group all
processes created in response to particular jobs. When the job is
terminated, all processes in that subtree are terminated.

When a process is created, a "godfather" may be specified that is
to assume responsibility for the process should its "father" die.
Godfathers are typically grandfathers. The notion of godfathers is
intended to provide a "responsibility chaining" mechanism, whereby
higher-level processes may institute administrative actions should
catastrophic events disrupt the normal process structure.

Sons of the system process fall into two groups: those that have
been detached, and those that have been orphaned due to the death of
their fathers. Detached and orphan processes are scavenged at regular
intervals to prevent them from tying up system resources.

Detached processes provide the ability for suspending user programs
for resumption at a later time. A process may request at any time that
it be detached. In particular, when asked to kill itself, the process
may instead ask to be detached. When the process is detached, its
entire subtree is grafted onto the root (system) node. The management
of detached processes in a distributed environment has not been

* extensively studied and remains an important research question.

5.1.1 Process Creation

* Associated with each process, PA, is a Process Profile describing
the generic process of which PA is an instantiation. In addition to
specifying the code segments to be loaded, the Process Profile contains
the default process attributes such as priority, stack size, free mem-
ory, and number of ports.

* A process is created by passing the appropriate process key (such
as "Executive") to the Process Manager. The Process Manager uses the
key to access the appropriate Process Profile. Any parameters intended
to override the default profile parameters may also be specified in the

0
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CHAPTER 5

Resource Management

Provided with the facilities to use any number of tools simultane-
ously, the user can build up quite a set of activities, or jobs. Each
job is allocated a dynamically changing set of resources such as
processors, memory, terminals, files, and processes. To protect users
from each other and the system from users, and to enhance performance,
facilities must be provided for managing these resources. "'Management'
refers to the decisions and actions involved in resource utilization --
how they are assigned and released, altered and consumed" [108, p. 11.

Resource management is a central design problem for any operating
system. In RIGITS, the basic resources include buffer space for mes-
sages and Kernel data structures, and processor cycles. By controlling
the allocation of these resources, the RIGITS Kernel controls the rate
of message flow between processes and guarantees that each process is
granted its "fair" share of processor time. The necessary flow control,
reliable transmission, and scheduling mechanisms are beyond the scope of
this thesis (see (185J).

q Above the Kernel, system resources -- such as disk files, printers,
terminals, tape drives, and network links - are associated with server
processes. When considering the integrity of a resource, it is unnec-
essary to consider any process other than the associated server(s). The
problem of resource management at this level is fundamentally one of

* creating, destroying, and granting access to processes. These functions
are primarily the responsibility of the RIGITS Process Manager. In
addition, each server process must protect itself against invalid
requests and manage its own data structures properly. Conventions and
paradigms for process structure and intercommunication are discussed in
Chapter 6.

4
Another aspect of the resource management problem is the ability to

provide services to user jobs and to recover those resources when the
job is terminated. These functions are provided in large part by the

IRiGTS Job Manager.

- 65 -

E



*0 - 63-

4.6 Historical Perspective

This chapter presents a design for a command interface originally("7 proposed in May 1977. Although largely a matter of personal preference,
it was greatly influenced by systems such as TENEX and TOPS-20, the work
on NLS and the Command Meta Language at SRI International, and PLITS.
Coincidentally, the command interpretation language is almost identical
to the System/38 Control Language [26], which was developed at roughly
the same time.

Man-computer communication has been a subject of major research at
several other institutions. The Language for Conversational Computing

* •(LCC) is an example of an early effort at defining a sophisticated com-
-.. mand language [153). PACE is an example of current efforts C31.

USC/Information Sciences Institute has developed formal methods for
"protocol" analysis of command languages £88, 89], and the concept of
"dialogue games" [143]. LIFER is an outstanding entry in the area of
natural language interfaces [90, 91].

The National Bureau of Standards has developed one of the most
sophisticated command languages extant for its Network Access Machine

* [188], and has been seriously involved in the problems of user interac-
tion for well over a decade. Rand's RITA and Exemplary Programming
Projects are designed to provide programmable network access services
that "learn" [4, 5, 223, 224, 225]. Both NAM and RITA make use of
unmodified constituent hosts and use string substitution to translate a
user's generalized command into host-specific commands. Both provide a
capability for analyzing the response to a command so that conditional
statements may be executed.

The primary contributions of the RIGITS command interface are its
command interpretation language and its (suggested) implementation. The
command interpretation language is amenable to various grades of user
proficiency and avoids the complexity and ambiguity of current natural
language interfaces. The implementation guarantees fast, event-driven
response to user interaction, and simplifies the task of writing user
interfaces for pre-existing tools. The separation of function between
the Tool Interface Process and the Tool Service Process(es) corresponds
to the distinction between Frontend and Backend processes in the
National Software Works. The combination of a Tool Interface and a
Command Profile corresponds to a Command Meta Language (CML) grammar
(which results from the compilation of a CML program) [106]. Whereas
CML provides limited error detection and recovery capabilities, the
RIGITS design provides the user every opportunity to correct his ways
when errors are encountered. However, having a meta-language with which
to define such interaction is an attractive feature.

0
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4.5 Implementation Caveats

The suggested implementation of the command interface requires that
( a large number of processes be created and destroyed in the course of

interacting with the user. Depending on the supporting operating sys-
tem, process creation and destruction may be expensive. If this is the
case (as indeed it is in RIG), each Tool Interface or Tool Service Pro-
cess need not be implemented as a separate process. Moreover, for
pre-existing tools, the TSPs may not be implemented as processes, yet
RIGITS must still be able to communicate with them.

It thus becomes more appropriate to refer to Tool Interface and
Tool Service Modules (TSM) as opposed to processes. TIFs in particular
may then be represented as subroutines. The resulting flow of control
(Figure 11) is quite different from that shown in Figure 10. TIFi, for
example, communicates with CII to determine which command to invoke. It
may then call TIF2 as a subroutine. TIF2 may require the same CI1 to
complete or correct the command. Only if TIF2 provides subcommand
would it require another Command Interpreter CI2. C12 could be
separate process, or CI1 could be multiplexed to act as C12 (see Sectio
6.4.1). In any case, when TIF2 returns control, TIFI initiates another

* request to CII.

TI FIU (EXECUTIVE)

PiC SERVICZ

Figure 11. An alternative command interface.

An orthogonal consideration regards Virtual Terminals. A tool may
employ different Virtual Terminals for different types of interaction.
It may therefore be appropriate to associate a Command Interpreter with
each Virtual Terminal, such that the TIF need only refer to a single
entity, the Virtual Terminal, when interacting with the user.

0
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accessible tool the user may specify his own Command Profile. The
template for a User Profile is given in Appendix D.

4. 4.2 User Programming

User programming allows the user to avoid tedious repetition of
commands. The available facilities should include programmable function
keys, macro files, and command programs.

4.4.2.1 Programmable Function Keys -

4 Programmable function keys are straightforward as long as symbolic
arguments are not allowed. The keyboard driver (microcomputer) simply
generates a continuous, uninterruptable stream of characters to the VTC,
just as if the user had typed them. If arguments are introduced, it
becomes necessary for the VTC to parse the programmed string and replace
symbolic arguments with actual keyboard input. In any case,
programmable function keys are processed whenever they are typed, and
can not be aborted.

4.4.2.2 Macro Files -

Macro files provide the capability of substituting a file for key-
board input. Two types of macro files may be of use. The first type
simulates a programmable function key by taking effective control of the
keyboard; this is useful for executing "transcript" files of previous
sessions or initiating a particular series of tools upon logging in.
The only keyboard function that can be fielded while the indirect file
is being processed is ABORTTASK.

The second type of macro file replaces keyboard input only for the
active Virtual Terminal. In addition to ABORTTASK, all keyboard func-
tions necessary for managing Virtual Terminals will continue to be
fielded.

In either case, the same difficulties with symbolic arguments carry
over from programmable function keys.

4. 4. 2.3 Command Programs -

Command programs require a comrnd programming language and command
language interpreter. Command languEzes are a topic of ongoing research

at Rochester [141 .
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6.3.1 ErrorSet and Error

Within a single process a procedure-call-oriented mechanism
(ErrorSet an Error) allows an error notification to propagate up the
"calls" hierarchy [165] to specified points. ErrorSet is a function
that accepts a severity level and a procedure as arguments. Error
accepts a severity and error code as arguments. ErrorSet calls the
procedure and traps all errors of the specified severity or lower: If
Error is called, the call stack is unwound to the point of the most
recent ErrorSet with a severity level equal to or higher than the
severity level of the Error. The er-cr code is returned to the caller
of ErrorSet, which can then attempt to recover from the error.

*Since a call to Error can occur deep within a set of nested
procedure calls, it may cause many procedure activations to be removed

from the stack. If the Error call is not trapped the process is
terminated. There is no notion of explicit responsibility chaining at
this level. If, however, the process is terminated, interested parties
can be notified via the process registration facilities (see Sections
5.1 and 6.3.4).

6.3.2 Error Messages

Many types of errors are generated synchronously in response to a
request. These errors are frequently reported back to the requesting

prccess via an error message -- indicated by an ERRM. message id. When
an error message is received, it is typically used to generate another
Error call, thus converting back to the intra-process exception

mechanism.

6.3.3 Emergency Messages and Handlers

Asynchronous inter-process exception handling is supported by the
RIGI.3 ,:mergency message. Because emergency messages are delivered

• asynchronously, and will "awaken" a blocked process, they provide for
event-driven, prompt error recovery. Emergency messages are fielded by
emergency handlers.

in RIG, only one emergency handler may be associated with a process
at a time. When an emergency message arrives for a process, the

* emergency handler will be called with the messaoe as its argument.
(Note that the handler is only invoked when the process is attempting to
send or receive a message.) The handler may process the emergency in any
manner it sees fit, including performing an Error call to some higher
level in the process's control path.

*• Typically, an emergency handler returns a Boolean value indicating
whether or not to abort the request in progress at the time the
emergency arrived. For example, if the process, PA, is awaiting a reply
from a process, PB, when an emergency message arrives telling of PB's

0
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death, the request should be aborted. A typical emergency handler is
shown in Appendix E.

rThis relatively simple approach to emergency handling is attractive
for several reasons. It is exceedingly cheap to implement. Because
only one emergency hai.dler is active at any time and the process
implementer must explicitly change it within the code, the implementer
rarely loses track of which handler will be invoked. Finally, the con-
text of a particular invocation is perfectly understood: The process is
performing a message send or receive primitive and has inadvertently
received an unexpected emergency. If the emergency is handled without
error, the send or receive is continued; otherwise the intra-process

Error facility may be employed as if the send or receive had failed.

6.3.4 Event Handlers and Spooling

Emergency messages may be generated by any process, but are
typically generated by event handlers. An event handler is a process
that is capable of detecting, or that will always be informed about, the
occurrence of a particular kind of event. In general, a process, PA,
must register with an appropriate event handler that it wishes to be
notified when a particular event, EPB, occurs with respect to process
PB. When EPB occurs, the event handler notifies PA via an emergency
messages.

0 One particular event with which all processes are concerned is the

death of other processes and machines with which they are communicating.
The RIGITS Process Manager provides for notification in the event of
process death, suspension, or resumption (see Section 5.1.3)

*Typically, a process might want to take a specific action when a
particular set of resources becomes available. The availability of each
resource may be termed a "simple" event. Sophisticated event handlers
should allow the specification of Boolean combinations of simple events.
These handlers might be termed spoolers since they buffer (spool) the
constituent events until the entire combination is completed. Spoolers

*O would themselves employ simple event handlers for each "simple" event.
The identical approach has been suggested by Cheriton [39], although he
relies on processes blocking until the desired events occur.

* 6.4 Process Structure

The mechanisms presented above facilitate process intercommunica-
tion. Because the internal structure of a particular process is trans-
parent to any other process it has not been necessary to discuss details
of process structure. This section presents some methods that have

* proven useful in building robust processes. A prototypical process iz
shown in Appendix F.

0
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6.4.1 Ephemeral vs. Permanent

Each RIGITS server process is designed to perform a particular
service. Either a new instantiation of the server must be created each
time the service is requested, or one server can be programmed to pro-
vide the service simultaneously to multiple requesting processes. The
two variations may be termed ephemeral and permanent. An ephemeral
process is typically created by the name server in response to a request
for service (see Section 2.2.3.3), or by a "higher-level" server that
wishes merely to dispatch a sub-task to another process.

A permanent server offers several advantages. In general, it uses
significantly less memory and requires less scheduling overhead than the
corresponding group of ephemeral servers. In some cases (such as the
file system) centralized control is required to synchronize and

arbitrate interactions among tasks that must share resources; here, a
permanent server solves the mutual exclusion problem (there is, after
all, only one disk channel).

However, a permanent server must ensure that it is never
deadlocked, and rarely suspended waiting for a sub-task to complete.

6 This suggests that a permanent server is typically multiplexed.

6.4.2 Dedicated vs. Multiplexed

In a multiplexed server, a single transaction may be partially
processed, then halted to wait for a sub-task to complete (or simply to
ensure "fair" access to the resource). This requires saving the
intermediate state of the current transaction so that work can continue
on other requests. Thus, a multiplexed server normally maintains, for
each outstanding connection, a data structure that characterizes the

S--current state of the connection. (This state is often associated with a
particular port of the server process, and that port is used for all
communications with the user process (see Section 6.2.2).) Multiplexed
servers are therefore larger and more expensive to swap in.

* Dedicated servers, on the other hand, process each request to
completion. A request for execution of a sub-task is typically executed
as a remote procedure call. Dedicated servers are usually much easier
to write than multiplexed servers.

6.4.3 Crash Protection

Error and emergency messages and the Error function are the
mechanisms whereby errors may be posted. Emergency handlers and
ErrorSet are the corresponding means whereby those errors may be

* fielded. Every process must specify an emergency handler to cope with
errors from external sources.
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In addition, every process should protect itself against all errors
generated in response to fulfilling a request from another process.
Insofar as possible, they should validate the requests made of them.

This is made much simpler by the fact that variables and procedures are
not shared between processes.

One approach is to code processes in hierarchical levels -- each
level performs an ErrorSet call on the level below it, usually with
different severities. In RIG, at least three levels are employed: The
third (lowest) level performs all message processing; the second level
initializes state, and receives and dispatches messages; the first
level serves merely to trap errors at all lower levels. If an error is
caused by an invalid request, the third level may perform an Error call
which will be fielded by the second level; the request will then be
flushed and the requesting process notified of his error. Memory and
stack errors, however, may evade this mechanism (due to their higher
severity), and pop to the first level, where cleanup is instituted and
the process aborted.

6.5 On Deadlock

Deadlock remains a perplexing problem in distributed systems. In
RIGITS the only foolproof way of preventing deadlock is to disallow
processes from blocking when they attempt to send messages, or to impose
mandatory timeouts. Although this approach guarantees that processes
will never go to sleep (or stay asleep) waiting for each other, they
might spend all their time in polling loops.

However, the Kernel can prevent certain deadlocks. The most
obvious deadlock is when each of two communicating processes is

*] executing a remote procedure call on the other. The Kernel can detect
this circumstance and prohibit the second party from initiating a
request on the first. However, if one of the processes is remote, the
Kernel must communicate with a network server, which can prove
expensive.

*Another type of deadlock results from flooding of message queues.
If process PA attempts to send a message to a full port (queue) of PB,
PA will be blocked, whether or not PA is attempting a remote procedure
call. If PB then attempts to send a message to a full port of PA, PB
will be blocked. Mechanisms for setting the queue capacities reduce the
likelihood of this type of deadlock, but do not eliminate it.

0

Deadlocks involving more than two processes present additional

complexities. The interested reader is referred to [37, 39, 981.

0
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6.6 Historical Perspective

In the best of all worlds the programmer of a distributed system
would be provided with a language for distributed computing. The prim-
itives of such a language would include processes, messages, clocks,
transactions and the like. PLITS [71], ZENO [14], *MOD [45], LIMP
[103], and TASK [1132 are representative of current efforts in this
direction. Note that effective programming languages for distributed
computing should have much in common with the network job control
languages mentioned in Chapter 5. See Mohan [156] for a survey.

Such languages were not available when we began to implement RIG.
It was necessary to build up from an existing base language to provide
the distributed programming environment. The mechanisms we have
outlined above reflect in part the environment imposed by BCPL [181].

The mechanisms presented here fit under the rubric "mid-level"
protocols. They would be implemented, for example, iii levels 5 and 6 of
the ISO Standard for Open Systems Architecture 158, 236], or in the
Service Support Layer of LLLNOS [772. The Distributed Processing System
employs remote procedure calls to extend the local programming environ-

* ment to remote machines [231, 2322. Multi-processing structuring in
general is the subject of numerous papers, including [11, 39, 102, 164,
183, 219]. RIG reinforces many of the ideas presented in these papers
with a great deal of practical experience.

Levin has developed one of the few formal models of exceptionU handling [133]. For intra-process exception handling, Levin's
mechanisms would prove more flexible than the RIGITS ErrorSet-Error, or
similar mechanisms such as those provided in INTERLISP [2112. Because
they employ shared memory and contexts, his mechanisms are not easily
extended to a distributed environment. Extended-CLU is a step in this
direction [136, 137].

Since their inception, communications protocols have employed
asynchronous interrupt signals, but typically require that interrupts be
sync-onized with the parallel data channel. Similarly, MSG provides
"alarms" which arrive on channels distinct from the normal message
medium [162]. Streamed connections are quite common in network proto-
cols - such as MSG connections, the Ethernet Byte Stream Protocol, and
TCP [169].

The registration facilities provided by RIGITS, and exemplified by
their use in process management, are unique to RIGITS. Various systems,

* including DEMOS, provide the option of being notified when a "son" dies.
Cheriton proposes mechanisms similar to event handlers for Thoth.

S



CHAPTER 7

A Case Study: RIG

The preceding chapters have presented a design for a sophisticated
message-based distributed system, RIGITS. This chapter concentrates on
the current implementation, RIG, which represents roughly eighty percent
of the RIGITS design. I will first outline the major discrepancies
between RIG and RIGITS, followed by an extended example that will
demonstrate most of the concepts developed in the body of the thesis.

7.1 RIG vs. RIGITS

The RIGITS distributed operating system is supported primarily by
the gateway Eclipses. All other machines are loosely integrated in that
they currently run some version of a Kernel and represent various
degrees of RIGITS hosts. RIG is currently a user host, not a server, on
the ARPANET. As work progresses, the Altos, VAX, and DEC-10 will become
better integrated. In particular, the network access program currently
being used on the Altos (Nexus [74]) is being replaced by a new
multi-processing operating system [32], and a new interprocess communi-
cation facility is being incorporated into VAX/UNIX [174].

7.1.1 System Architecture

7.1.1.1 System Super-structure -

Each gateway Eclipse supports the following fundamental components:

- Kernel
- Process Manager
- Job Manager
- File System
- Name Server
- Ethernet Server
- Logger process
- Timer process
- Console Server for the system console
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- on a per user basis:
- a Virtual Terminal Controller
- a Monitor

"1 - Executives
- tools

Together, the gateway machines provide the following services:

- DEC-10 servers

- ARPANET servers
- Spooler
- Versatec server

- Tape server

- GMR (color display processor) server

The location of these services is invisible to users and processes

alike.

7.1.1.2 Resource Management -

Jobs are not currently managed in any coherent fashion. They are
implicitly associated with subtrees of processes maintained by the Pro-
cess Manager. The Job Manager's primary function is to activate termi-
nals associated with its host upon user request.

7.1.2 The User Interface

The user currently views distributed RIG in a manner similar to
RSEXEC. The file system is distributed in the sense that hosts have

been added to the naming hierarchy. "Connected" directories allow the
user to specify partial pathnames. Multiple copies of files are not

maintained, nor is there a master directory saying where the files
reside.

There has been no attempt to provide a distributed, multi-computer
access control and accounting system, nor is there any automatic
reconnection (login) mechanism. Many of these issues impact on the
definition and use of User Profiles.

7.1.2.1 Virtual Terminal Management -

Several editing features are not supported by the Pad: cursor
motion by words; deletion of words or pages; joining and splitting
lines; text selection and transfer; insertion of files at any point.
(The last three sets of functions are supported by the RIG screen edi-
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tor.) By default, Virtual Terminals do not save their output on scratch
files because the RIG file system currently can support only a limited
number of open files. Therefore, viewing cursors and scrolling are not
supported, nor can output be suspended or discarded, directly by the
Pad.

7.1.2.2 The Command Interface-

The RIG command interface is provided by a set of subroutines
rather than independent processes. As a result, the current command
language is strictly positional and token-oriented. Completion and
recognition, type-checking, and defaults are provided. An attempt is
made to provide on-line assistance (lists of options or syntax) at any

point during command input. Indirect input (programmable function keys,
macro files, command programs) is not supported. Context is not main-
tained.

Because there are no Command Interpreters, Command Profiles are not
used. TIFs are typically implemented as subroutines of the Executive.

7.1.3 Profiles

Profiles are currently supported for terminals and processes.

7.2 The User View

The basic logical flow of RIG, to a single user, appears as
follows:

1. When the terminal is inactive, it displays an appropriate mes-
sage. In response to any character it is "awakened".

2. A Monitor and Status Server are created for the user. The base
image appears, and the Status Server displays the system news
file.

3. The Monitor processes commands for managing Executives and
4 allocating screen space. If the "Quit" command is issued, all

resources associated with this terminal are released and con-

trol returns to (1). Assuming an Executive is given control --

via the "SpawnExecutive" or "ResumeExecutive" commands, or the
various screen management keys - the screen is remapped to

contain an instance of the Executive and...

4. The Executive processes commands for file management, and the
like. If the "Quit" command is issued, the Executive
disappears, and the screen may be remapped to activate another

-|



.o - 84-

Executive or the Monitor. If a request is made, for example,
to edit, or talk to the DEC-10, a tool is forked. The tool
will run in the same window allocated to the Executive.

5. The tool executes, interacting with the user as necessary.
Upon satisfictory completion, the tool dies, whereupon control
is returned to (4).

6. At any time the user may direct his attention to a different
tool, Executive, or Monitor.

7.3 The System View

The internal flow corresponding to a typical user session is as
follows:

* 1. The Job Manager listens to all "inactive" terminals. Each such
terminal has a Terminal Input and Output Handler associated
with it. When any character is typed, the terminal is
"awakened." It is also possible for a remote machine (e.g., an
Alto) to send a REQUESTFORLINEMSG. For each active terminal or
remote line, steps (2)-(6) are executed.

2. A Monitor is created for the user. The Monitor initializes the
Virtual Terminal Controller for the user, and spawns a Status
Server.

3. The Monitor processes commands for managing Executives, and
allocating screen space. For each Executive created, steps
(4)-(6) are executed. When the Monitor is killed, its entire
subtree of processes is killed as well. Any resources associ-
ated with the user are deallocated, the terminal becomes
inactive, that is, control for that terminal returns to (1).

4. The Executive interacts with the user to specify a command. It
then invokes the appropriate Tool Interface Module (TIF),
either as a subroutine or a process.

5. The TIF interacts with the user as necessary. When necessary,
the TIF may spawn one or more Tool Service Processes (TSP) or
initiate comunication with already existing TSPs. For file
management commands, the local file system and remote file
servers serve as TSPs. TSPs rely on the TIF to interact with
the user in order to correct errors or collect additional
input.

6. When the TIF finishes, typically by user request, any processes
created by it are killed and control returns to (4).

0
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7.4 An Example

When the user first accesses RIG, a Monitor and Status Server are
created for him and mapped to the screen as shown in Figure 12 (all
figures are Versatec plots of a Delta 4000 terminal screen). The Status
Server is mapped to the upper 5-line Region composed of a 1-1ine View-
port for the RIG tanner, and a 4-line Viewport for RIG status informa-
tion. The Monitor is mapped to the lower 20-line Region composed of a
1-line Viewport for the Monitor banner and a 19-line Viewport for Moni-
tor command interaction. Hence, the Status Server and Monitor each
possess two Virtual Terminals.

•*j

(20M n r, 3.6 Sundny lto ,mer 13. 19119 6:53 , L
-Te nor T -( 266T pa.k Is back? It Ta named "Uaer2". We tm y a t.1 I I rI
mysterious hardware problems. but none have cropped up in two weeks.
Protect yourselt. A new editor I& on SYS. -- KAL 11/7

Poni tor Line It U" r : KAi I Facks:<20O0>UserI.'<3O0>User2 ]

I'3gon (user) Cal (Conrlral Yen

AddFegion Create lage Dele telfegion Des troylmage Fork
Help Killl.,cutive Logo ff L0gon lene Exeecut l
Post Quit Reesmexeeut lve Show
Spaw.nExecutive StartEseettive SwapImage SyntemStetus

tIt

Figure 12. The base Image

At this point, exactly six additional processes have been created
for the user. The Monitor is the root of the tree of processes. For
each Virtual Terminal, the Monitor or Status Server maintains a logical
connection to the appropriate Virtual Terminal Controller. The logical
connection subsumes multiple connections with the appropriate Line, Pad,
and Screen Handlers. Similarly, the processes comprising the Virtual
Terminal Controller maintain connections among themselves,.

The available Monitor commands deal with Images, Regions, and
Executives. Note that the EXPAND and PROMPT keys discussed in Section
4.1.5 have been implemented. Because command interaction is currently
implemented as a set of subroutines, the CANCEL key results in an
intra-process Error call. ABORTTASK, on the other hand, results in an
emergency message being delivered from the Virtual Terminal Controller.
The typical way of starting an Executive is "SpawnExecutive;" this
creates the Executive, creates an Image for it, and swaps to that Image.

--I:" -. . .. " ... . , . ., - . n, - m .. . . . o - , . . . . . . . . .. . .
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This Image consists of one Region to which the Executive is mapped
. (Figure 13). The Executive, like the Monitor, possesses two Virtual

Terminals. The banner Virtual Terminal is mapped to the 1-line View-
port; the command interaction Virtual Terminal is mapped to the 24-line
Viewport. The available Executive commands manage files, and run vari-
ous tools, e.g., edit, and TELNET. Wherever a command verb is speci-
fied, the Executive sends an emergency message to the Monitor containing
an indication of the command to be executed. Thus, the Monitor keeps
track of what activities the user is engaged in.

EzecO2/edit/ DIrectory:<200>kni

ArpaTein .t ChangeAttrilbute domTpare Comp I le

Connect Copy CreateDirectory DecTelnet
Dri|te Directory DItplmy F4i t Fork

I1'p Load Poe*t Print Quit

Re moveDIrec tory Rename Run Set
Type

>connect (with directory) ka|
'edit-

Figure 13. An Executive

At this point, the Executive is added to the process tree as a son

of the Monitor. An additional Pad Handler is created to handle the
output requirements of the Executive's Virtual Terminals.

When the editor is run, it "replaces" the Executive's command

interaction Virtual Terminal with three of its own, one for status, one
for command interaction, and one for text-editing (Figure 14). Together
with the old banner, these four Virtual Terminals comprise a new Con-
figuration of the Superwindow associated with the Executive. The user
changes between the command and text Virtual Terminals via the
CHANGEVIEWPORT key.

At this point, the editor TIF is added to the process tree as a son
of the Executive. An additional Pad Handler is create- .o handle the
output requirements of the text-editing Virtual Terminal. No additional
Tool Service Processes are created. When a file is being edited, the
editor maintains a connection with the file system corresponding to the
open file. At the time the editor is created, the Executive registers
with the Process Manager that it wishes to be notified if the editor
dies.
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p4

rxec92/*dtt/E4Itor Directory:<200)ka!
Locate: File: <200>ksInovarc.aa|
Change: Mlode: Insert

"Cc, rw n

require "ALL':PUTS.HDR[170.166J" aourcelfire:
require *CS:DATES.[DR" eource!file;

t require SUB360(170.166). Ioad'module;
I external proc Liat360 (siring filen.ame);

require 2000 Ifewitems;

require 2000 PNames;

! Tuning parameters:

define 1XPIT PBUTER SIZ Z 256,
IIEA)ER!FLL'CHARACTFR a'5,

PACIE!LENGTU 5 ,

PAE1WIDTB : 132.
CCAND DPROMPT I CRLF 8 Command? "I;

t Dump file info;

Figure 14. The RIG screen editor

Assume the user has finished editing a program that will run on the
DEC-10. He wants to transfer it to the DEC-10 and compile it, but can
fix any errors in the local file maintained on RIG. To do so, he can
map DEC-TELNET and the editor to the same Image. He first returns to
the Monitor via the RESUMEMONITOR key. Using the "StartExecutive" com-
mand, he starts a new Executive from which to run DEC-TELNET.
"CreateImage" creates a 10-line Image containing it. The editor is
added to the Image with "AddRegion" -- a 15-line. Region for the editor
is added to the 10-line DEC-TELNET Region to create a 25-line Image.
See Figure 15. P

This Image may be activated with "SwapImage" or the CHANGEIMAGE key
(Figure 16). The user may change between DEC-TELNET and the editor with
the CHANGEREGION key. The user runs DEC-TELNET and transfers the source
file to the DEC-10. When compiling, an error is found. The necessary
change is made in the local file.

At this point, the DEC-TELNET TIF has been added to the process
tree as a son of the Executive. Figure 17 shows the tree of processe3
associated with the user. The link to the DEC-10 may be managed by
either of the gateway Eclipses; to find the appropriate server process,
the DEC-TELNET TIF broadcasts a request for service to the name-server
and opens a connection to the indicated process. The DEC-TELNET server
registers with the Process Manager that it wishes to be notified if the
TIF dies.

After the compilation is finished, the user closes the file and
transfers it to the DEC-10 again. There it is recompiled without
errors.

I
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<200) RIG 3.6 Suday lovenber 18. 1979 6:48 pm
The normal <30@> pack is back? It I named 'User2. We my still have

av terlou_9 harduare problem . but none hnve cropped up in two weel.s.

Protect yourself. A new editor is on SYS. - KAL 11/7

7"--iIor Line It User:l..al Pseks:'20WUserl,<300>User2
SpownExecutive StartExecutive Swaplmage SystemStatus

>spawnExecutive (name) edtt...working
> xec02

Show SpawnExecut ive StartExecut le Suaplmnge SystemStatus

>StartExecutive (name) compile...workinc
-) ExecO3

>createlo~ge (executive) Exec0
3 

(lines) I0
=> Image 2

>addRegion (executive) e?
Exec02 Exec03 edit EdItor225
(executive) Edit (image) 15 (lines) 2 (region Index)OO(

>addRe;ion (exccutive) edit (image) 15 (lines)

)addRegion (executive) edit (Im age) 2 (lines) 15 (region Index) 2

Figure 15. Creating an Image.
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"lYtiTh.il)RL 170, 1661 1

SCITTS.R11 170. 1661 1
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DkTYS. EKDR I

IMNZERTING FORGOrTEN SMFI-COLOIN.
TEST. PAGE I
0-!000 require 2000 NewItemes

ExecO2ied it/Fditor Directory;<200)kn1
o"- c ate File: <2CO>kal:novsrc.sai

Change: lode: Insert

Co-cand?
re quire 'ALL:CNUqThS. DtIt I70. 166) sourcefIle:
re u ire *.ALL:GPUTS.ffDnr 170.1661 ' sourceIfIle;
reqtire *CS:DATES.fDR" wource'file;

I require *SUB 601170.166]
" 

load!module:
? external proc List360 (string fillename):

require 2000 Ne.flteem
require 2000 PNamen:

Figure 16. Editing and compiling simultaneously.

PAD STATUS
HA .q HANDLER HANZ...Eq SERVER EXECUTIVE
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HIAN L Q HANDLER EANILOR DEC-TELNE-
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Figure 17. The user's tree of processes.
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At this point, the user wants to go home. He returns to the Moni-
tor via the RESUMEMONITOR key and displays his current status (Figure
18). Having decided that there is nothing he need specifically clean
up, he "Quits."

(20 RIG 3.6 Snday Ne-,emer 18. 1979 6:49 pm
The normal (300> pock. Is 'bck! It In named "User2'. ,e may still- bave
myteriou hardware problems, but none have c ropped up In tv-o weeks.
Protect yonraelf. A now editor Is on SYS. -- KAL 11/7

Mon I t or Line -1 User:KaI Fack.s;<200>Uaer1,<300>C.ser2
"create nmge (execcutive) LxecO3 (I ines) 10

Z> li=ge 2
>.ddltegion (executive) a?
Exec32 ExecO3 edit EdItor223

(executive) Edit (image) 15 (lines) 2 (region Index) )OI

>sddFtegton (executive) edit (image) 13 (lines) )OO

)wddRegion (executive) edit (image) 2 (linen) 15 (region index) 2
)uIhow status

Super indow
Name rroceu User-Name Subsystem (Procees)

Monitor 213
Stoner 216
EzecO2 223 edit Editor (225)
Exec03 227 compIle TenTelnet (231)

)quit (Contirml

Figure 18. Finishing up.

The Monitor tells the Process Manager to kill its tree of pro-
cesses. Each process in the tree is sent an emergency message asking it
to kill itself (in post-order). As each process dies, all interested
(registered) parties are notified by emergency message. Thus, if a
process fails to clean up its own state -- fails to -lose its open
connections, for example - the emergency notifications will enable
servers to release resources allocated to the dead processes.

When the Monitor dies, the Job Manager is notified. It
reinitializes the terminal and waits for tht next user.
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CHAPTER 8

"The Past Through Tomorrow"

RIGITS was designed to provide a distributed system encompassing
all available computers. First, we wanted to provide the user with
uniform access to all the tools at his disposal, that is, with a single,
coherent computing environment that he could tailor to his own prefer-
ences and needs. Second, we wanted application programs to be able to
communicate with all computers in a consistent manner, that is, pro-
cesses communicating via messages.

The modularity and flexibility offered by a message-based approach
to network communication are an enormous aid in the construction of
distributed systems. The introduction of additional system capabilities
is easily handled - a process is defined that can perform the new
functions and interface to the rest of the system by well-defined
interfaces. The dynamic nature of name-service allows new machines,
processes, resources and services to be introduced to a running system.

Much of RIGITS has yet to be implemented. I will not repeat each
point here (see Chapter 7), but emphasize areas of particular concern.

8.1 Virtual Terminal Management

VTMS is an attempt to provide relatively direct, but sophisticated,
access to computing power. It was designed under the assumption that
users should be able to communicate with the computer systems at their
disposal in as easy and natural a fashion as possible. On the other
hand, VTMS facilities must be readily available to application programs.

VTMS has been well received by both sophisticated and
unsophisticated users. Although the underlying system contains a number
of abstractions that can be difficult for a non-computer scientist to
understand, the way in which the system is used to perform multiple
tasks and manage screen space is easily demonstrated. One drawback of
the current implementation is that VTMS requires a large keyboard with
many special function keys (Appendix B). It is not easily adapted to
standard terminals. A further factor in the utility of VTMS is the time
required to refresh the screen completely; the shorter the time, the
more apt the user is to manipulate his screen whenever his display needs

- 91 -
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to be changed. A 9600 baud terminal is adequate; 1200 baud terminals
cannot easily be used.

We are attempting to add several new facilities to VTMS. Different
screen management facilities, based on the "sheet of paper" approach
(introduced at the Stanford Artificial Intelligence Laboratory, used in
Smalltalk, and extended in DLISP) are being implemented for our Altos.
The current implementation of the VTC for the Altos consists of Terminal
Input and Output Handlers on the Altos, and the remaining components on J

the Eclipses, demonstrating the advantages of modular decomposition. It
will also be possible to offload much of the VTC into the microcomputer
installed in our future keyboards - similar to the Line Processor for
NLS [6]. It might also be possible to further extend VTMS to handle
audio/video by extending the definitions of virtual input and output
(see (15, 33, 59)).

*Graphical input/output has been excluded from VTMS for reasons
cited by Irby [105). There are, however, no fundamental inconsistencies
that would prevent its inclusion. The Terminal Input Handler could be
extended to allow, for example, the use of pick devices, keysets, and
menus. On the other hand, a different Input Handler could be associated
with each input device, which would allow the user to specify different
types of input simultaneously (more than one Line would be active -- see
Section 3.1.1). In either case, the data sent to the Line Handler would
have to be marked appropriately. Conversely, the Terminal Output Han-
dler could be extended to handle all modes of output, or a different
Output Handler could be associated with each attached output device.
However, to include the Pad in the graphic output loop would require a
great deal of re-design. (See [56, 85, 160, 201, 202, 218, 222).)

Graphical input/output implies that it may be useful for some tools
to gain more direct control of the Terminal. For example, when talking
to a remote system via a TELNET-like protocol it may be possible to use
a full-screen editor; since the remote system does not know about Vir-
tual Terminals, it assumes it has control of the terminal. The user can
easily create an Image containing only the desired tool, but unless the
Virtual Terminal Controller is circumvented, control characters will
still be fielded locally. One possible solution is the introduction of
"transparent" data about which the VTC makes no further assumptions.
Another implication is that it may be necessary after all to allow pro-
cesses to find out if and how their Virtual Terminals are mapped to thescreen, contradicting the second "law" of Virtual Terminal management

cited in Chapter 3.

Although Terminal Profiles currently allow an application program
to tailor its '-ctions on the basis of the available terminal,
negotiation of terminal options might also prove useful. Rather than
developing separate, but similar, tools for different terminals,

negotiation would lead to the development of tools with augmented or
restricted capabilities dependent on the terminal. It should also be
possible to augment autoblock mode (see Section 3.1.2) to allow the user
to specify the amount of output a program may produce before it blocks.
Some rsers would also like to see exactly what they type before the
systen. ,jtifies them of errors; this might be achieved by echoing input

1
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immediately in "light face" (for example) and overwriting that input in
"bold face" when the system interprets the input. Negotiation of
options is a standard feature of network virtual terminal protocols
(see, for example, (181).

8.2 The Command Interface

The principles of command interaction presented in Chapter 3 have
proven themselves in actual use. The suggested implementation of the
command interface is elegant but potentially expensive. It is unlikely
that current minicomputers can adequately support the vast number of
ephemeral processes required for even the simplest activity. However,the functional decomposition of interface modules from service modules
allows for many alternative implementations. L

Further attention should be given to semantic data bases, expert
assistance, and user programming. The best work in these areas includes
SIGMA [1, 189], ZOG £187), NLS [63), SPEAKEASY [43), IDA £135), and
RITA/Exemplary Programming [4, 5, 223, 224, 225]. Several graduate
students at Rochester are pursuing theses in these areas [141, 198].

8.3 Resource Management

The process management facilities of RIGITS have proven quite
successful. The basic notion of associating each resource with its own
server(s) cannot be faulted. Creation of and access to processes by
name allows the system to be dynamically reconfigured. Registration
facilities provide for event-driven, prompt error recovery.

The advantages of capabilities cannot be overestimated.
Capabilities have been employed successfully in several major
message-passing systems, notably DEMOS, Roscoe, and DCCS. Hydra also
made extensive use of capabilities, as does LLLNOS. In RIG, connections
provide a certain amount of protection, but it is the responsibility of
each process to guarantee its own integrity. The individual protection
features required in each process are redundant and would be better
handled by a central protection mechanism (see Section 8.4).

RIGITS has also paid little attention to authentication, access
control, and job control. The concept of a single Job Manager per host
that provides these services should prove to be a useful compromise
between centralized and decentralized control, but much work is needed,
particularly in the areas of job control languages, resource selection,
process migration, and distributed control [108].

There have been several attempts to provide effective mechanisms
for network job control languages (equivalent to the command programming
languages of Chapter 4), including work at UCLA [34, 86, 87] and for the
European Informatics Network [191). The National Bureau of Standards is
extending the principles of its Network Access Machine into this area

, .
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[76, 118). Other examples include PCL [132), NSL [209), and PACE [3).

General job control issues are discussed in, for example, [78, 156).

With regard to access control and authentication, computer security

is an important topic. See, for example, [28, 38, 50, 57, 114, 158,
167, 234).

Sophisticated resource selection and management necessitates the
use of distributed data bases. Surveys of current work are contained in
[97, 155).

8.4 Exception Handling

Intra-process exception handling, as currently implemented, is
insufficient for a sophisticated system. Provisions should be made for
associating handlers with particular exceptions, similar to Levin's
mechanisms [133) or those of CLU [137).

The emergency message provides a particularly elegant mechanism for
asynchronous, inter-process exception handling. As with intra-process
exceptions, it should be possible to associate different emergency han-
dlers with different emergencies. Some relevant remarks may be found in
[71).

Event handlers and spooling agents will be particularly important
in the future. The key problem here is the development of "eventlanguages" that can be used to define events. Particularly difficult

problems are negations (what exactly is a non-event) and the cessation
of one event while waiting for others to complete.

General issues of fault tolerance and error recovery are discussed
in, for example, [55, 101, 177, 195, 196).

8.5 Distributed Computing

There is not yet agreement on the appropriate mechanisms
for parallel programing. This results from the rapid
changes in the field, the lack of a widely recognized
set of criteria, the immense variety of applications and
hardware architectures, and the diversity of
philosophies about how systems should be structured.
[156, p. 2, quoting G. Andrews]

Formal paradigms for distributed computing include communicating
sequential processes [95), Actor systems [92, 93, 94), distributed pro-
cesses [31), LIMP [103), DREAM [183). synchronizing resources [10),
Flowgraphs [152), PARLANCE [180), and PLITS [71).

V
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Some of the important questions include: How should processing be
distributed -- to achieve functional separation, closeness according to
some measure, a given level of fault tolerance? How should processes be
organized for control and communication? Is the control distributed or
centralized? How is synchronization maintained? How should data be

*- distributed -- replicated at each processing node, partitioned so that
only some of the data exist at given nodes? How many of the distributed
system naming, error control, resource management, and other mechanisms
should be visible and under user control or handled automatically?

RIGITS and related work at RochLter has proposed some relatively
straightforward answers to some of these questions, but much work
remains before a standard can be achieved.

8.6 Software Engineering

Lastly, new advances in software engineering, methodology, and
management are required before distributed systems can be built,
documented, and maintained with the ease of traditional single-processor
systems. Relevant work includes [79, 172, 173, 176, 182, 197, 220,
233].

8.7 Crescat Scientia Vita Excolatur

RIG, the implementation, has been acclaimed and abused, and
deserves both. RIGITS, the design, has met with notably few objections.
In fact, RIGITS is having considerable impact on such diverse projects
as *the DARPA/DMA Image Understanding Testbed [162, Carnegie-Mellon's
personal computing environment [33], and interprocess communication
facilities for UNIX [174]. These systems, as well as new versions of
RIG, will further test the concepts of RIGITS and certainly lead to new
and better ideas.

6
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message pointer to a message
(default: @PGL)

dontfree = false -- > release the data portion of the message after
sending the message;
= true -- > don't release the data
(default: false)

=> response = SENDOK;
= SENDFAILED, send failed
= SENDWITHSECONDQ, message placed on secondary queue

A.1.2 Port Management

HowMany ([port]) -> messagecount

Return the number of messages waiting on a given port if a
port is specified. If no port is specified then return the
total number of messages waiting for the current process.

port = port to check
(default: check all ports)

=> messagecount = number of messages waiting on specified port or
total number of waiting messages

IsOpenPort (port) -- > open

Check to see if a port is open (i.e. not locked).

port = port to check

=> open = true, if the port is open;
= false, otherwise

LockUp (port)

Lock a port so that no more message will be accepted from it.
Incoming message will still be queued, however.

port = port to lock

NumPorts () -- ) numports

Return number of ports possessed by current process.
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Send ([message, dontwait, dontfreel) -- > response

Send a message from one process to another.

message = pointer to message (default: @PGL)

dontwait = false --> suspend the sender if the receiver's port is
full;

true --> don't suspend the sender
(default: false)

dontfree = false -- > release the data portion of the message after
sending the message;
= true --> don't release the data
(default: false) L

=> response = true, if everything ok;
false, if dontwait was true and message could not be sent

SendAck ([message, timeout, dontfreeJ) -> messageacked

Send a message to a process-port and wait for an acknowledging
message from the same process-port. The acknowledgement must
be sent to the same port used to send the original message.
The acknowledgement message will be contained in the memory
block pointed to by message.

message = pointer to a message

(default: @PGL)

timeout = number of seconds to wait for a reply before giving up
(default: wait forever)

dontfree = false --> release the data portion of the message after
sending the message;
= true --> don't release the data
(default: false)

=> messageacked = true, acknowledgement received;
false, timeout occurred

SendDontWait ([message, dontfree]) -> response

Send a message. If the receiver's port is full, place the 1
message on a secondary queue of message. Notify sender via a
system message when the message is finally put on the primary

queue for that port. Note that it is an error for a single
process to place more than one message on the secondary queue

of another process.
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port will be received.

message = pointer to a message; MyPort field must contain a valid
port number for receiving a message R
(default: qPGL)

timeout = number of seconds to wait for a message before timing out
(default: wait forever)

:> messagereceived = true, message received and placed in memory block
pointed to by "message;"

false, timeout has occurred

ReceiveAny ([message, timeout]) -> messagereceived

Receive a message on any port.

message = pointer to a message
(default: @PGL)

timeout = number of seconds to wait for a message
(default: wait forever)

=> messagereceived = true, message received and packed in memory block
pointed to by "message;"

false, timeout has occurred

ReceiveSpecific ([message, timeout]) -> messagereceived

Receive a message from a particular sending process-port which
has been sent to a particular port of the calling process.
ReceiveSpecific can be used in conjunction with Send to
simulate SendAck.

message = pointer to a message; the OtherProc and OtherPort fields
of message must refer to a valid process-port; the MyPort
field of message must refer to a valid port of the calling
process
(default: @PGL)

timeout = number of seconds to wait for a message p
(default: wait forever)

=> messagereceived = true, message received and packed in memory block
pointed to by "message;"
: false, timeout has occurred

1
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APPENDIX A

Message Primitives

The routines presented here are variants on those currently used in

RIG. The first line of each routine contains the calling sequence, with
optional arguments contained in square brackets, and results indicated
by "-->". In the list of results, "@<parameter>" means the associated
parameter is a pointer, and the routine modifies the contents of the
location pointed to by that parameter. Following this definition is a
discussion of what the routine does, then the definition of the argu-
ments and results, demarcated by "=>".

@PGL refers to the "process globals" associated with each process.
They are initialized by the Kernel when the process is created and
define the "working environment" of the process.

A.1 Kernel Calls

A.1.1 Message-passing

PriorityReceive (prioritylist [, message, timeout]) -> messagereceived

Receive a message on any port but in the order specified by a
priority list of port numbers. The message received is
determined by "prioritylist" in the sense that it will come
from the port of highest priority which has a message at the
time of the call. If no message is present, the first message
received during the timeout period will be returned.

prioritylist = a list of port numbers

message = pointer to a message
(default: @PGL)

timeout z number of seconds to wait for a message
(default: wait forever)

=> messagereceived = true, message received and packed in memory block
pointed to by "message;"
: false, timeout has occurred

Receive ([message, timeout]) --> messagereceived

Receive a message on a particular port
(message>>Message.MyPort). Only messages destined for that
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=> numports : number of ports owned by current process

SetBacklog (backlog, port)

Change the size of the primary queue for a port.

backlog = new queue size

port = port to change

Unlock (port)

Unlock a port so that messages can be received from it again.
This routine is the complement of LockUp.

port = port to unlock

A.1.3 Emergency Messages

DisableEmergencies ()

Disable processing of emergency messages. This is done auto-
matically by the Kernel whenever an emergency handler is about
to be called, thus disallowing recursive handling of
emergencies while in the handler.

EnableEmergencies ()

Enable emergency processing. This is useful, for instance,
when a process wants to handle recursive emergencies; to do
so, he must perform an EnableEmergencies within his emergency

handler(s).

SendEmergencyMessage ([msg, dontfree]) -> sent

Send an emergency message -- i.e., a message to the

EMERGENCYPORT of another process.

msg = message to be sent

dontfree = false --> release the data portion of the message after
sending the message;
= true -- > don't release the data
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(default: false)

SetupEmergencyHandler (handler)

Set the emergency handler for the calling process.

handler procedure to be used as handler

A.2 Second-level Primitives

A.2.1 Dynamic Port Allocation

AllocatePort C) -> port

Allocate a "free" user port, i.e., one that is not currently
41 being used for another connection.

=> port port allocated

DeallocatePort (port)

Deallocate a user port.

. port port to deallocate

ReservePorts (pl [, p2, ... ])

Reserve ports such that they will not be dynamically
allocated.

pl ... ports to be reserved

A.2.2 Message Management

ReleaseMessage (msg)

Release any buffer arguments associated with message (strings
and actual buffers).

msg = message whose argument to release

0m
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UnexpectedMessage (msg)

Generate an Error call of severity UTILITYERR in response to
an "undesirable" message. If that message is an ERRMSG, then
the error code will be the code from the ERRMSG; otherwise,
the code is UNEXPECTEDMSG.

msg : the unexpected message
I

ValidateMessage (msg, id) -> valid

Validate a message as being of a particular type.
I

msg = the message to validate

id = message id

=> valid = true, message ok;
: false, otherwise

ValidateSender (msg, sl [, s2, ... )

Assure the a message was from one of a set of processes. If
not, generate an Error call with error ILLEGALSENDER.

sl .... valid processes

:> if invalid sender, Error call: severity SYSERR, code ILLEGALSENDER
S

A.2.3 General Message-passing

Call ([msg, dontfree, allocateport, timeout]) -> response

Perform a remote procedure call - i.e., send a request to a

process, wait for a response, and return that response.

msg : message template to use for communication

(default: @PGL)

dontfree = false -- > release the data portion of the message after
sending the message;

= true -- > don't release the data
(default: false)ID

allocateport = false --> don't allocate a free port, use the one in

msg
= true -- > dynamically allocate a port (via AllocatePort) for

• " - " • ' - - " " "' ' 'L _ " -__ _ _
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the transaction
(default: false)

timeout = # seconds to wait for completion of request
(default: forever)

=> response = data of the callee's response message, if the response
is not an ERRMSG;
otherwise, Call generates an Error call of severity CALLERR

,. Decline ([msg, error, dontwait]) -> sent

"Decline" a request -- e.g., process A has sent a message to
process B which B doesn't understand, so B rejects the request
with an ERRMSG containing an appropriate error code.

msg request message template
(default: @PGL)

40

error = error code for reply
(default: UNEXPECTEDMSG)

* dontwait = false --> suspend the sender if the receiver's port is
full;
: true --> don't suspend the sender

" *- (default: false)

:> sent = true, message was sent

= false, message was not sent

Reply ([msg, data, dontfree, dontwait]) -> sent

Opposite of Decline - i.e., having processed a request to
completion, now reply.

msg = request message template
(default: @PGL)

data = reply data
(default: none)

dontfree = false --> release the data portion of the message after
sending the message;
: true --> don't release the data
(default: false)

dontwait = false --> suspend the sender if the receiver's port is
full;
= true --> don't suspend the sender
(default: false)
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=> sent = false, message not sent;
= true, message sent

A.2.4 Connections

Close (connection [, dontfree, timeout]) -> closed

Close a connection.

connection = connection template

dontfree = false --> release the data portion of the message after
sending the message;

true --> don't release the data
(default: false)

timeout = # of seconds to wait for completion of the close
(default: forever)

=> closed = true, if connection closed
false, if, for instance, the request timed-out

O

Open (server [, openargs, dontfree, timeout]) -> connection

Open a connection.

server service identifier (usually a string)

openargs = argument buffer
(default: NULL -> no arguments required

dontfree = false -> release the data portion of the message after
sending the message;
true -> don't release the data

(default: false)

timeout = # of seconds to wait for completion of open
(default: forever)

:> connection = message template for connection, if opened
= 0, if connection not opened

Read (connection, lvnumbytes [, buffer, timeout]) -- > buffer,

@lvnumbytes

Read a block of data.
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lvnumbytes address of the word containing the number of bytes to
read. The address is used so that the actual number of bytes
read will be stored back into the location.

buffer = buffer into which to store the data. If 0, storage will
be allocated.(default: 0 -> allocate storage)

timeout = # of seconds to wait for completion
(default: forever)

=> buffer = data buffer, if data read
= 0, if no data read

@lvnumbytes = actual number of bytes read

Write (connection, buffer [, numbytes, dontfree, timeout]) -> written

Output a block of data.

connection = process connection

buffer = data block

numbytes = number of bytes to output
(default: SizeMem(buffer)*2)

dontfree = false --> release the data portion of the message after
sending the message;

true --> don't release the data
(default: false)

timeout = # of seconds to wait for completion
(default: forever)

=> written = true, data written
S false, not written (e.g., timed-out)

A.2.5 Process Synchronization

ReceiveSynch (sender [, timeout]) -- > data

Send a request for process synchronization and wait to receive
it.

sender = process sending arguments

timeout = seconds to wait for data

(default: FOREVER)

.. ..0;; - -
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=> data : data contained in process synchronization message

SendSynch (receiver [, data, dontfree, timeout]) -> sent

Wait for a request for synchronization and then send the data.

receiver = process to receive arguments

data = data to send

(default: no data, just synch)

dontfree = false -> release the data portion of the message after
sending the message;
= true --> don't release the data
(default: false)

timeout = # seconds to wait for synch-request
(default: forever)

=> sent = data sent

A.2.6 Name Service

AssertName (name [, machine, procno])

Declare a process to the local name server.

name = name of process

machine = machine on which process resides

(default: machine on which calling process resides)

procno = process

(default: calling process)

Locate (procname [, lvmachine]) -> procno, @lvmachine

Locate a process given its name.

procname = name of process to be found

lvmachine = address of word into which to store machine of found
process. If non-zero and contents non-zero, restrict the
search to the specified machine.
(default: 0 -- > don't save)

0
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"I => procno process address, if found;

0, if server not found

@lvmachine = machine address of server, if found;
=0, if server not found

* .1t
U -x
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APPENDIX B

Keyboard and Control Functions

B.1 Keyboard

The Keyboard being designed will have a layout as depicted in Fig-
ure 19.

B.2 Control Functions

Four classes of' control functions are of interest:

-screen and task management keys:
ABORTTASK
ALPHALOCK
AUTOBLOCK
BLOC KQUTPUT
CHANGE CONF IGURATION
C HA NGEIMA GE
CHANGEREGION
CHANGE VIEWPORT
DELETEIMAGE
DELET EMARK
DELETEREGION
DISCARDOUTP UT
INDIRECTINPUT
MARK
PASS
PICK
PUT
REFRESHSCREEN
RESUME
RESUMEMONITOR
RESUMESTASER
SUS PENDTASK
VIEW

-line-editing keys:
C URSORLEFT
CURSORRIGHT
C URSORTOENDOFLINE
CURSORTOSTARTOFLI NE
C URSORWORDLEFT
CURSORWORDR IGHT
DELETECHAR LEFT
DELETECHARRIGHT
DELETETOENDOFLINE

-127-
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DELETETOSTARTOFLINE
DELETEWORDLEFT
DELETEWORDR IGHT
INSERTMODE

- page-editing keys:
CURSORDOWN
CURSORLEFT
CURSORRIGHT
CURSORTOENDOFLINE
CURSORTOSTARTOFLINE
CURSORUP
CURSORWORDLEFT
CURSORWORDRIGHT
DELETECHARLEFT
DELETECHARRIGHT
DELETEPAGEDOWN
DELETEPAGEUP
DELETETOENDOFLINE
DELETETOSTARTOFLINE
DELETEWORDLEFT
DELETEWOR DR IGHT 

..

INSERTMODE
JOINLINE
PAGE DOWN
PAGEUP
SPLITLINE

- command-input keys:

ASSIGNSLOT
CANCEL
COMMENT
EXECUTE
EXPAND
HELP
PROMPT

In the sequel, the syntax for control functions is <function> .
[<default Keyboard key>].

ABORTTASK [shift-CANCEL] - abort the task associated with the active VT
0

ALPHALOCK [ALPHA LOCK] - software shift-lock for the active VT (toggle)

ASSIGNSLOT [=] - assign a value to a command slot

AUTOBLOCK [AUTO BLOCK] - toggle the auto-block feature for the active VT

BLOCKOUTPUT [BLOCK OUTPUT] -block/unblock output to the active VT
(toggle)
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CANCEL [CANCEL] - "cancel" the current input

CHANGECONFIGURATION [CHANGE CONFIG] - change active Configuration

CHANGEIMAGE [CHANGE IMAGE] - change active Image

CHANGEREGION [CHANGE REGION] - change active Region

CHANGEVIEWPORT [CHANGE VIEWPORT]- change active Viewport

COMMENT [!) - in line-edit mode, treat remainder of the line as a
comment

CURSORDOWN [down arrow] - move cursor down one line

CURSORLEFT [left arrow] - move cursor left one character

CURSORRIGHT [right arrow] - move cursor right one character

CURSORTOENDOFLINE [END OF LINE] - move cursor to end of current line

CURSORTOSTARTOFLINE [START OF LINE] - move cursor to start of current
line (or field)

CURSORUP [up arrow] - move cursor up one line

CURSORWORDLEFT [WORD LEFT) - move cursor left one "word"

CURSORWORDRIGHT [WORD RIGHT) - move cursor right one "word"

DELETECHARLEFT [BS or shift-left arrow] - "backspace" one character

DELETECHARRIGHT [shift-right arrow] - delete the character at the cursor

DELETEIMAGE [shift-CHANGE IMAGE] - delete the active Image

DELETEMARK [shift-MARK] - delete a "mark"

DELETEPAGEDOWN [shift-PAGE DOWN) - delete a "page" of text downwards

DELETEPAGEUP [shift-PAGE UP) - delete a "page" of text upwards

DELETEREGION [shift-CHANGE REGION] - delete the active Region

DELETETOENDOFLINE [shift-END OF LINE] - delete to the end of the current
line

DELETETOSTARTOFLINE [shift-START OF LINE] - delete to the start of the
current line or field

DELETEWORDLEFT [DEL or shift-WORD LEFT] - delete one "word" to the left 1

DELETEWORDRIGHT [shift-WORD RIGHT]- delete one "word" to the right

-1

* * * -~. -. . . . *
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DISCARDOUTPUT [DISCARD OUTPUT] - discard/don't-discard output to the

active VT (toggle)

EXECUTE [EXECUTE] - "execute" a command; or confirm; or answer "yes"

EXPAND [EXPAND] - "expand" the current input

HELP [HELP] - display some tutorial help related to the current input

INDIRECTINPUT [@] - take input from a file

INSERTMODE [INSERT MODE] - toggle "insert" mode

JOINLINE [shift-up arrow] - DELETETOENDOFLINE, then append following
line

LOCAL [LOCAL] - go into "local" mode in order to communicate directly
with the Terminal

MARK [MARK] - place a "mark" in a pad (for pick and put)

PAGEDOWN [PAGE DOWN] - scroll a "page" down.wards

PAGEUP [PAGE UP] - scroll a "page" upwards

PASS [PASS] - pass the next character as a "normal" character; i.e.,

don"t interpret it as a control function

PICK [PICK] - select the "marked" text

PROMPT [PROMPT] - display options, etc., related to current input

PUT [PUT] - place the last selected (picked) text into the Pad

REFRESHSCREEN [REFRESH SCREEN] - refresh the screen

RESUME [RESUME] - resume the last active Virtual Terminal

RESUMEMONITOR [RESUME MONITOR] - resume an instance of the Monitor

RESUMESTASER [RESUME STASER] - resume an instance of the Status Server

SPLITLINE [shift-down arrow] - split the current line, appending it to
the following line

SUSPENDTASK [SUSPEND TASK] - suspend/resume the task associated with the
active VT (toggle)

VIEW [VIEW] - detach/attach the viewing cursor from the output cursor
(toggle)

I1



APPENDIX C

Command Profiles

tool (command) id

login mode -- MUSTBELOGGEDON, in order to execute
the command

NEEDNOTBELOGGEDON

confirmation mode -- TRUE, confirm command
FALSE

slot mode -- INTERPRETED, allow only those slots
specified in the CP

UNINTERPRETED, allow literal slots (raw data)

help-text

# slots
slots:

has-value flag -- FALSE -> no value;
name sufficient

needs-value flag -- e.g., switches may not 0
confirmation flag
required flag "

value-is-constant flag
default
prompts:

verbose prompt

terse prompt

help-text

internal slot name (code)
external slot names (chain)
type -- CHARACTER p

WORD, string bracketed by control or

break characters
STRING, string bracketed by quotes
INTEGER

BOOLEAN

OLDFILENAME
FILENAME
NEWFILENAME
PASSWORD

LISTs of the above

radix

# sub-slots (switches)

- 133 -
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dictionary for subslots

subslots : just like slots...

dictionary - external slot names, with references
to internal slot names

TIF - name of (disk) Process Profile for TIF

UI

Se

ai

r

0

0e

0o



APPENDIX D

User Profiles

creation timestamp
modification timestamp

expiration date

protection status
user id (unique text string)
user number (unique integer)

RIG password

mailbox address

accounting info

access rights:
tool list -- list of tool ids, the first entry

being that tool to which the user is
given access when he logs in

site list - list of (site, password) pairs
resource rights -- list of

(resource, max, remaining) triples

bound devices -- list of
(device code, specific-device) pairs
(e.g., (LPT, SUMEX:LPT))

default directory
file scopes and naming hierarchy (i.e., search

order and composite directory)

command environment:
case mode -- UPPER, ignore case

UPLOW, treat cases as different

herald (Exec prompt):
mode -- VERBOSE

TERSE
verbose herald

terse herald

prompting:
degree -- OFF, do not prompt

PARTIAL, prompt only for
required slots

0 FULL, prompt for all slots

mode -- VERBOSE

TERSE
indentation -- > 0 -> go to next line

- 135 -
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and indent prior to prompt

feedback (expansion of keywords) mode -- VERBOSE
TERSE

confirmation string (e.g., "[Confirm]")

control characters - list of
(function, char-string, echo-string) triples
specifying defaults for control keys noted

above

(list of (device, list of (function...)) pairs
may also be useful)

programmable function keys -- list of
(character, program-string) pairs

for each accessible tool (indexed by tool id):
autostop mode --

ON, wait for SCROLL confirmation

to scroll
OFF

command profile address --

NULL -> use system default profile
otherwise, disk address of Command Profile

for this user

0 "" "



APPENDIX E

A Prototypical Emergency Handler

let Handler (msg) = valof
[

/I "msg" is the request in progress at the time of
// the call. The emergency message is contained in

// the process globals (accessed here by Emergency).
// The handler should return a Boolean value
// indicating whether or not to continue the request
// in progress - false means abort the request.

let event = Emergency>>Message.ID
switchon event into

[

case TERMINATEMSG:
6[

// Clean up state and terminate the process...
]

endcase

case PROCESSCRASH:

case PROCESSSUICIDE:

let deadproc = Emergency>>Message.Datal

test event eq PROCESSSUICIDE
ifso
[

// died naturally.. .do whatever

]
ifnot

[
// died horribly ... do whatever

let howdied Emergency>>Message.Data2

// Trying to communicate with dead process?

I/ --> abort the send or receive in progress.

if (deadproc eq msg>>Message.OtherProc) then
resultis false

]
endcase

resultis true

- 137 -
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APPENDIX F

A Prototypical Process p

let <Ist-level-proc> (<initial-parms>) be
[

InitializePorts ()
SetupEmergencyHandler (<emergency-handler>)

let error = nil
ErrorSet (SYSERR, lv err, <2nd-level-proc>,

<initial-parms>)
<quit-process> (error)

and <2nd-level-proc> (<initial-parms>) be

// Initialize process with <initial-parms>.

let

let msg = vec MESSAGESIZE
let msgcopy :vec MESSAGESIZE
let error = nil

[S

ReceiveAny (msg)

// The copy is made so that lower-level routines may
// munge the message template without losing track
// of the initial arguments.

BlockMove (msg, msgcopy, MESSAGESIZE)
let ok = ErrorSet (PROCERR, lv error,

<3rd-level-proc>,
msgcopy)

// Release the message arguments --

// e.g., strings and buffers.

ReleaseMessage (msg)

// If we had an error and the message id indicates S
// the process expects a response, "decline" the
II request.

- 139 -
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unless ok % <is-known-not-to-want-a-reply> then
Decline (msg, error)

2 repeat

and <3rd-level-proc> (msg) be

switchon msg>>Message.ID into i-
case <id1>:C

// ValidateSender will perform an Error call if
// the sender of the message is not one of those
// specified.

ValidateSender (msg, <sender1>, <sender2>,...)

II Process the request.

/Send an appropriate reply if necessary.

Reply (msg, ....
]

endcase

default:

// Avoid infinite ERRMSG loops -- i.e., I send
// an ERRMSG to process B, who doesn't know what
,/ it means, so he sends an error message to me!

[ •unless (msgid eq ERRMSG) do
Error (PROCERR, UNEXPECTEDMSG)

2.,':

6~ 
-I
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and <emergency-handler> Cmsg) =valof

IISee Appendix E.

switchon Emergency >Message. ID into

case TERMINATEMSG:

(quit-process> (NOERR)

endcase

case PROCESSSUIC IDE:
case PROCESSCRASH:

Iprocess with which you have registered has died
1/-> do something

endcase

resultis (whether-want-to-abort-request-in-progress>

and <quit-process> (error) be

/Clean up state -- e.g., close open files and
IVirtual Terminals, or kill your descendant processes.

IIKill yourself'.

KillProc (NyIDO, error)
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