TR R T AN T W T AT L R TR e T T W W W TR NN e T T (e W e TR e iR T R e W e v W

DAVID W. TAYLOR NAVAL SHIP g{\
RESEARCH AND DEVELOPMENT CENTER ‘2

Bethesda, Maryland 20084

AD-A153 871

ZOG/VINSON TECHNOLOGY DEMONSTRATION PROJECT
SYSTEM DESCRIPTION
VOLUME 11

by
Donald J. Schmelter L-“' l IC

Ron Lupish ELECTE i
MAY 2 1 1985 .

¥ 5

\

; APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
&
r?-:.
— >..,7
: - S
.
Z ()
;3:55 Ly COMPUTATION, MATHEMATICS, AND LOGISTICS DLPARTMENT
=z —d DEPARTMENTAL REPORT
-
|- S
E .
==
E =
o >
[
Z N
A=
2=
= February 1985 DTNSRDC/CMLD=-85/02
Dorn
S _J

' 1
i /‘x‘ ! L n:v
_NDW-DTNSRDC 5602/30 (2-80) A .)
' (supersedes 3960/46) ’

-

B P e AP e) Minf it I T A TR DA N LR S - Bl M’ el il L L At i = IR e i o alAC A M e AR S A A

AR AR A I Ral Mal Al Kl Tabl Jal SaSLShl MLl Ade Bl |

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER
TECHNICAL DIRECTOF(!)1

00

OFFICER-IN-CHARGE
CARDEROCK

OFFICER-IN-CHARGE |
ANNAPOLIS 04 |

SYSTEMS
DEVELOPMENT
DEPARTMENT

SHIP PERFORMANCE

SURFACE EFFECTS
DEPARTMENT

AVIATION AND t
:

COMPUTATION,
MATHEMATICS AND
LOGISTICS DEPARTME!\%E

DEPARTMENT

15
STRUCTURES
DEPARTMENT

17

SHIP ACOUSTICS

DEPARTMENT

19

PROPULSION AND
AUXILIARY SYSTEMS

SHIP MATERIALS
ENGINEERING
DEPARTMENT

DEPARTMENT §

&

i ,

CENTRAL [
INSTRUMENTATION

DEPARTMENT)

JT—

GFO 867-440

e

[it] yYTYYTe

NDW-DTNSRDC 3960/430L (Rev. 2:80) F.

, P K I T e et A
T UG Ch O C A O, S SR T RO

Dol A i Ed b . Sl B A B AR A B i A A A A A A At S S N R AT D AL A i At i D A M i A

.
“u
“ UNCLASSIPIED
~ SETURITY CLASSITICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE
ta REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED - -
20 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
‘ APPROVED FOR PUBLIC RELEASE: -DISTRIRUTION

J 2b. CECLASSIFICATION / DOWNGRADING SCHEDULE UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZAYTION REPORT NUMBER(S)
DINSRDC/CMLD-85/02

NAME OF PERFORMING DRGANIZATION 6b OFFICE SYMBOL Ta. NAME OF MONITORING ORGANIZATION

*

] 6a
(If applicable)
David Taylor Naval Ship R&D Code 1826
- T
{ b¢ ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Bethesda, MD 20084-5000
{82, NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)-
Office of Naval Research Code 270
]| 8¢. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Arlirgton, VA 22217 ELEMENT NO. |NO NO. ACCESSION NO.
62763N RF63521 11826008

1

TITLE (Include Security Classification)
ZOG/VINSON TECHNOLOGY DEMONSTRATION PROJECT: SYSTEM DESCRIPTION, VOLUM” I1

PERSONAL AUTHOR(S)
Dzma d J., Schmelter, Ron Lupish

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [iS. PAGE COUNT

Final FROM Mar 81 to Oct 84 February 1985

16

SUPPLEMENTARY NOTATION

17

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP 5UB-GROUP

9

ABSTRACT (Continue on reverse if necessary and identify by block number)
The ZOG system is a user-modifiable, menu-oriented, rapid response human-computer

Interface on a network of powerful workstations, the PERQ Systems Corporation's PERG micro-

computers. This document describes how the ZOG system operates. This is not a user's guide

but a descript:ion of what is behind all of the menu creation and other standard features.
This document is divided into four separate and distinct volumes. It was written this

way to best describe the total system while keeping volumes apart so as to make each one

accessible without having to go through the others. The first volume is the ZOG System

Descriptioa. The system description includes a description of:

An overview of the Z0G system, the initialization process, basic system flow, how accessing

frames and subnets is accomplished, 20G utilities, 20G editors and ZOG agents.

The second volume 1is Z0G Structures. This volume lists all of the differenct structures

used within the code that makes up Z0G.

The third volume iz Z0G Files. 20G Files lists and describes all of the files that Z0OG

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATICN
3B UNCLASSIFIEDAUNLMITED [SAME AS RPT. Ol oric_useRrs UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
Donald J. Schmelter (202) 227-1622 Code 18256

DD FORM 1‘73, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

all o*her editions are obsolete
UNCLASSIFIED L.

(13

- .
. N

W F

A Al ndis b i et e il e e S A

[

— IFIED
SECURITY CLASSIFICATION OF THIS PAGE

ol diat Raltaiiat it ot

Sl il ol R o il B ol

(Block 19) Continued
needs in order to run.
files that make up the ZOG system.

describing what is going on.

Each of the four volumes has a different function.
for an overall view of how Z0G functions.
reference of what all of the ZOG records and types are.

These files are in addition to all of the 'source and executable

The fourth volume is 20G Modules. 206G Modules.goes through Z0G, module by module,

The structures volume is good for a quick

The system description is useful

The files volume is userful to

see exactly what files ZOG needs and what they are used for. The modules volume is
extremely useful for actually going into the pascal code and seeing how Z0G works on a
module level.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.
L RN - -

T T T T TRTE N, TRV Ry TR TR AT TR RATCO T ATRART T VAN TN T AT ANTRIE N NN Y

Z0G Structures

o

o A TR T TR R TR T T e TR RV ETRST FUTROTRT WO NI RGTT RGO ORST R RLTRST R RS R RO RO R

£0G STRUCTURES PAGE |

Table of Contents
1. Structure of a Z0G Frame
1.1. Pascal Record structure of ZOG frame : FTyp

' 1.2. 20G TypeDefs

" 1.2.1. Frame Pointer
1.2.2. Frame ID
1.2.3. User lds

1.2.4. Frame Protection
‘ 1.2.5. PosTyp = integer; For storing row and column information
1.2.6. SelPTyp
o 1.2.7. FsPTyp
1.2.8. Fs15PTyp and UsridPTyp
S 2. Backup Stack Structure
2.1. Pascal Definition of the ZOG Backup Stack
3. Window Structure
3.1. Pascal Definition of the ZOG Window Structure
4. User Display Text Buffer:
5. Canvas Structures
o 5.1. Canvas Type
b 5.2. Canvas Event Record
6. NetStack Record Structure
7. ZOGNet Server Related Structures
7.1. Hashed table of subnets .
7.2. Hashed Table of subnets (Local Subnet Index).
- 7.3. List of open frames
' 8. EtherNet Service Related Structures
8.1, List of available EtherNet Servers
8.2. ZOG Ethernet message and buffer types
8.2.1. ZOGMsgTyp

VDOOROONNNOODODONU D I2I2DODOOOWNONN = o

8.2.2. ZogBufTyp 10

u 8.3. Ethernet Request packet records 10
. 8.3.1. Open Frame Request Packet. 10
8.3.2. Open Frame Reply Packet 11

8.3.3. Close Frame Request Packet 1

8.3.4. Close Frame Reply Packet 1 12

8.3.5. Close Frame Reply Packet 2 12

’. 9. Editor Structures 12
2.1. Delete Buffar 12

9.2. Current text position 13

9.3. Item types 13

9.4. Types for maintaining selected text -- Not Currently Used 13

9.4.1. Strinfo = Record A structure to store selected substrings 13

9.4.2. Selections = Record The structure which hoids the entire selected string, 13
and related information
9.5. Back Room Editor Type for options

-t
H

£QG STRUCTURES PAGE 1

20G Structures

This subnet outlines the basic ZOG structures used throughout the ZOG system software.

g, ® Structure o; a ZOG Frame
@ Backup Stack Structure

©® Window Structure

¢ User Display text buffer

@ Canvas Structure

G ® NetStack Record Structure

® ZOGNeat Server Related Structures

Y

@ EtherNet Service Related Structures

—

L @ Editor Structures

1.Structure of a ZOG Frame

The information given here can be found in code form in ZOG Module NetDefs.

1.1. Pascal Record structure of ZOG frame : FTyp

X~ The ZOG Frame record structure is defined in Module NetDefs as follows:
NextFr FPTyp; Poirter to next frame

FramelD FidTyp; Frame id
Owners UsridPTyp; List of Frame owners
CrDate long; Creation Date of frame
Moditier LerldTyp; Last moditier of frame
. P ModDate long; Date of last modification
- ModTiine long; Time of last modification
| - Version integer; Frame Version number
R Prot ProtTyp; Protection code of Frame
f:': AgCrBit boolean; True if created by agent
AgModBit boolean; True if modified by agent
K Title SelPTyp; Pointer to frame title

Text SelPTyp; Pointer to frame text

Calia ol S A A A A A AR B AL AE A B BO S it S A A A A il Al A B i Bl MR Vi P Pl S R AR M S R0 LA TR 4

£0G STRUCTURES PAGE 2
Cptions SelPTyp; Pointer to frame options

LPads SelPTyp; Pointer to frame local pads

GPad h FidTyp; Frame ID of global pads frame

Comment FsPTyp; Pointer to comment strings

Accessor Fs15PTyp; Pointer to Accessor Frame Ids -- not used

1.2. Z0G TypeDefs
Many of these structures used in defining a ZOG Frame are also used throughout the ZOG system.

Some of these structures are accessed via pointers. These types are discussed below:

® FPTyp = tFTyp, Pointer to a Frame Record

® FidTyp = string[15]; Stores Frame ids

e UsridTyp = string[15); Stores user Names

® ProtTyp = integer; UnProt, ModProt, WrProt, RdProt

® PosTyp = integer; For storing row and column information
@ SelPTyp Pointer to a selection record

o FsPTyp Pointer 1o a linked list of strings

® F515PTyp and UsridPTyp Pointers to linked lists of short strings

1.2.1. Frame Pointer
The definition of a frame pointer is simply as a pointer to a frame record. Examples of frame pointer

variables used throughout ZOG are FPX, EdFP, and SledFP.
1.2.1.1 FPTyp = tFTyp; where FTyp is the yrame record definition

1.2.1.2 FTyp = Record
See Section 1.1, page p. 1.

1.2.2. Frame ID

The Frame 1D is defined within ZOG Pascal code to be a string of length 15. It is composed of the
concatenation of a Subnet Name with an integer in character iorm. Since the maximum length of a
Frameld is 15, this implies a maximum length (in characters) of a Subnet Name of 11 characters,
which will provide for a subnet of up to 9999 frames. Although this is the case, the SubnetiD type is

also defined as a string of length 15. The formal definitions are:
FidTyp string[15); Frame Id Type

Lt et m e L PR AP TN som
w, . - .

R R T N N ST N R N R R R I e R A Py A AR P A P P L

VAP, WP S U

RN A AR St R A A DRI et il A "B A el B A1 LA v LA AR S AT S A i W R ~al et Sk Wb Al 4 BRIl Akt B e g |

20G STRUCTURES PAGE 3

SidTyp string[15]; Subnet Id (name) Type

1.2.3. User ids
User IDs are variables used to store the name of the currently logged on user. The definition is a

string of length 15, which imposes a limitation on the length of the user names which can be added to

the PERQ user list via UserControl. User Ids are used to identify the creator and moditier of frames.

1.2.4. Frame Protection

Every frame is assigned a protection, the default being no protection at all. The protection variable
within a frame record is defined as an integer. Frames can be protected against modification, writing
and reading. Frames can only be protected by the owner against the "rest of the world": there is no

notion of group access/protection privileges other than multiple-owners.

Frame protection is coded as:

0 No Protection; UnProt = 0

1 Protection from being moditied; ModProt = 1
2 Protection froim being written; WrProt = 2

3 . Protection from being read; RdProt = 3

1.2.5. PosTyp = integer; For storing row and column information

1.2.6.SelPTyp
SelPTyp is a pointer to a linked list of item records within a frame. Its name implies a “selection"
record, although these structures are used for frame text and title as well. Items marked below with a

"*" are not applicable for frame text and title.

K char; * Selection character

NF FldTyp; * Next frame

Text FsPTyp; Pointer to linked list of item's text

Row PosTyp; Item Row Position

Column PosTyp; item's Column Position

Lo PosTyp; ltem’s Minimum Row Position - “top edge”

co PosTyp; Item’s Minimum Column Position - "left edge”
L1 PosTyp; Item’s Maximum Row Position - "bottom edge”
c1 PosTyp; item’s Maximum Column Position - "right edge"
Action FsPTyp; ltem's associated Action(s) (in text form)
Expand FsPTyp; Item’s associated Expansion Area, for misc. use

TN
Ada SoaNnt.al

ZOG STRUCTURES PAGE 4
ExtraFlds FsPTyp; Fields not currently used - possible later use

PrevSel SelPTyp; * Pointer to previous item

NextSel " SelPTyp; * Pointer to next item

1.2.7. FsPTyp

FsPTyp is a pointer to a doubly linked list of "frame" strings, although it is used throughout ZOG as
a pointer to a linked list of genzralized strings of (default) length 80. Its Pascal definition is FsPTyp =

tFsTyp, where FsTyp is a record defined as:

text string; string is default length of 80 characters
prev FsPTyp;
next FsPTyp;

1.2.8. Fs15PTyp and UsridPTyp
Fs15PTyp and UsridPTyp are pointers to short strings (i.e., strings of length 15, which are used
within ZOG for a variety of purposes). They are used throughout ZOG as general pointers to a linked

list of short strings. They are both defined as = tFs15Typ, where Fs15Typ is a record defined as:
text string[15]

prev Fs15PTyp
next Fs15PTyp

2. Backup Stack Structure

Z0OG maintains an ongoing list of frames visited on a stack structure while the user is traversing
ZOG nets. This stack is basically a doubly linked list structure, for which added storage is dynamically
allocated as necessary. Entries are removed (popped) from this structure as the user goes "back” up

the tree of frames.

This structure is defined in module ZWind, but is maintained by module ZBack. Its definition is:

2.1. Pascal Definition of the ZOG Backup Stack
BackPTyp = tBackTyp
BackTyp = RECORD

FramedId FidTyp; Frame ID of frame on the stack

SelCh char; Selection character that was used in departing from this frame
Nxt BackPTyp; Pointer to next record on stack

Prv BackPTyp; Pointer to previous record on stack

IR AR A 2 R N MRS~ T A e T She NS M P YA A Y e el W G S B ‘Rl VL A B A S b Al Aail e T it Ma it i AL Aad T AR S Sl A A

woT M W QN T T, W AT W

£0G STRUCTURES PAGE S

3. Window Structure

The ZOG Window Management Module, ZWind, keeps track of all the information necessary to
maintain the displays of frames in each of the ZOG windows. It does this by maintaining a record for
each window. These dynamically allocated records contain such information as current frame id and
version number, a pointer to current frame record, global pads frame id and pointer to GPads record.

it also keeps track of the top (i.e., the last or most recent) frames on the Backup and Mark stacks.

This record keeps track of which alternate global pads frame (if any) is being displayed.

3.1. Pascal Definition of the ZOG Window Structure
WindPTyp = tWindTyp; Pointer to the window structure

MEAR RS S S L A R A i e A A AN AL I A A A B e A

WindTyp = RECORD

Number integer; This window's ZOG Window number(1 or 2)
Canv integer; ZOG Canvas number for this window
BackpP BackPTyp; Pointer to top frame on Backup Stack
MarkP BackPTyp; Pointer to top frame on Mark Stack
Frameld FidTyp; Frame ID of current frame

Version integer; Version number of current frame
SelChar char; Char selected to get to current frame
GFrameld FldTyp; Frame ID of current Global Pad Frame
DisFrameld FidTyp; Frame ID of frame currently displayed
FPX FPTyp,; Pointer to current frame record

GFPX FPTyp; Pointer to current GPad frame record
SecSig boolean; True if secondary copy read for display
AltGPads boolean; True if alternate global pads in use
AltGpadFid FidTyp; Frameld of alternate global pad frame
MarkCnt integer; Number of frames "marked"

4. User Display Text Buffer:

The (full-screen) User Display Text Buffer is a dynamically allocated array of strings. At the current

time, the number of elements (i.e., lines of text) in this array is 77, as defined by the local constant,
FullSz. This array is pointed to by local pointer variable, UsrDspP, which is created with a call to
"new" in InitUser. All accesses to text in either the short or full-length user display are referenced via

this variable.

Ty TR N N T T N N N U W Y Y T T W TN TN T R U UV T T U T U T WY

TRUCT PAGE 6

PASCAL definitions are given below:

e UsrDspP : UsrDspPTyp;
e UsrDspPTyp = tUsrDspTyp;

e UsrDspTyp = Array{C..FullSz] of string;

5. Canvas Structures
These records are used to keep track of window types and "events" within a window. These

structures are defined in ZCanvas.Defs.

5.1. Canvas Type
This is used to monitor which canvas is the current one.

ZOG 1Canvas 1; Canvas for the top frame display window
Z0G2Canvas 2; Canvas for the bottom frame display window
UserCanvas 3; Simall user display window, at bottom of screen
FullCanvas 4; Fuli screen user display window

DoubleCanvas 5; Double-sized canvas for displaying big frames

CanvasTyp ZOG1Canvas..DoubleCanvas;

5.2. Canvas Event Record
CanvEvPtr = tCanvEwvtyp
CanvEvTyp = record

Ch char; Input character, from keyboard, or mouse char

X,y integer; X,Y Mouse coordinates in pixels (768 x 1024)

Row, Col integer; Mouse coordinates in chars, relative to window

KeySig boolean; True if keyboard or mouse input, false otherwise (i.e., if only mouse
movement)

Canv CanvasTyp; Canvas from which the event aruse

ChgSig boolean; True if a change of windows occurred

NextEv CanvEvPtr; For queueing up canvas events

-t At ety . R S . - " v"‘...'
S T i

- T e T e
. SN V. W . AR P T WP, SUVGE SRR VI, W P

T PO, L. WV W W WU W W WA S SRR SO SR W S U U VR W WA R S WL R U WD R W U NPT

Rt A AN A I B A Ak i e i A i) ae Bostell il M A S RS S i e M Al S Al e S At b an Wb il Ao S8 1]

PAGE 7

-

6. NetStack Record Structure
FStkTyp = record

m This structure was used extensively throughout ZOG ftor keeping track of frames traversed, -
particularly in agents which need to traverse trees exhaustively. However, since it doesn't stack
frame records, popping the stack requires re-reading previously read frames. Since this requires disk

. 170, it proved to be much faster using the stack declared in StackLib.

Y Yy
e A

NetStack exports record variable FStkX as a global frame stack for use in 20G with pointer variable
FPX for the pointer to the current frame. Routines in NetStack read frames into this record, and use

FPX as the default frame record pointer. o
- Frameld FidTyp; Frame iD of top frame on stack :

FidpP Fs15PTyp; Pointer to list of saved frame ids

FP FPTyp, Pointer to frame record of top frame on stack '~;..

7. 2Z0GNet Server Related Structures

. 7.1. Hashed table of subnets

' This table is EXPORTed from Module ZOGNetServer. It is used to see if a subnet reqiiested by a
user already exists and to hold entries for new subneis created.
Subnets : Array[0..MaxHashindex-1)] of pSubnetTyp
pSubnetTyp = tSubnetTyp

! SubnetTyp = record .
) NextSubnat pSubnetTyp; Pointer to next hashed subnet name ‘

SubnetiD SIDTyp;

MatchiD SIDTyp; SubnetiD converted to all Upper Case
PrimeNode NodeTyp; NodeTyp is an integer

SecCnt integer; Count of number of secondary nodes

SecNodes SNodesTyp; Array[1..MaxSecondary] of NodeTyp where MaxSecondary = 5 .
(NetDefs) : o

Opened boolean;

L ey T T : B e T
e et N TR R e R e e T T e T e
i PO, WSS P § -L.-" -_A -\}\ ‘ LJ‘".A ‘I\‘:‘ W S N O S N ST T VPR

RS ARt Al M hac Al At el Vet a s i Vol 0 AL SO At Al ob B A Srabi Al Al gl gea hade R NI ke i) v aa o e i h S R A TS audd ardh St S 2l Aok Sul Bt nob

£0G STRUCTURES PAGE 8 .

7.2. Hashed Table of subnets (Local Subnet index).
SnTable represents the local subnet index which is private to module NetServ. This second subnet

—

index cortains low level inforniation necessary in accessing subnet files.
tn

SnTable : Array [0..SnHashMx-1] of SnRecPTyp
SnRecPTyp = t3nRecTyp
SnRecTyp = record

UpSid SidTyp; Subnet ID converiad to upper case -

Sid SidTyp, Subnet ID with true case(tor CrF,CrFr) =
PrimeSig Boolean; If true the record is fcr a primary subnet. o
Nxt; SnRecPTyp; Fir to the next subnet record ‘
FillD FileiD; file system file ID o
SzPg Long; size of the file in pages :

7.3. List of open frames \'-

The list of open frames is private to moduie NetServ, thus each machine has its own list of open
frames which will consist of the frames opened on that particular machine. These frames can be

opened locaily and from a remote machine.

OpnTopP : OpnRecPTyp Ptr to open frame record list

OpnRecPTyp = tOpnRecTyp N
OpnRecTyp = record
UserPort EtherAddress; identifies user that opened frame s
UpSid SidTyp; Subnet ID of opened frame(string15) =
Fnr integer; Relative frame number of opened frame

SnRecP SnRecPTyp Ptr to subret record, used by ClsF -

BodySzPg integer,; size of frame body in pages e
Nxt OpnRecPTyp; Ptr to next open frame T

8. EtherNet Service Related Structures bt

8.1. List of available EtherNet Servers o
This structure holds the list of PERQs on the current ZOG distributed network. There is room on
this list for MaxZOGServer (currently 256) EtherNet Servers (i.e. remote PERQs). This structure is -

EXPORTed from Module ZOGNetServer.

e .. . - . Lt -
S T Vo Gt B R e S . S
ALY P WL PG ST PO P AP, N P S A T P S AP L AP N ST AR SO YO SR TN

Servers : arrey[0..MaxZOGServer-1) of pServerStatus
pServerStatus = tServerStatus
ServerStatus = record

ServerAddr EtherAddress;
Serverlp bonlean;
ServerName string15; Name of machine from Net.Servers

8.2. Z0G Ethernet message and buffer types

This type is used in ethernet communication when the machines are sending or receiving records to
one another, and when the machines are sending buffers of information to one another. The actual
request and reply packets are recast as ZOG ethernet message types to bz sent over the ethernet.
These declarations can be found in Module ZogMsg.

These types were created to allow requests and replys to be sent over the ethernet using only one
type of record. Recasting a request or reply packet to a message or buffer type means that only one
routine is necessary for sending and receiving the various record types used for ethernet
communication, even though different processes (reading, opening, closing, etc.) require different
information. The message and buffer types can be viewed as a black box of information where the
sending and receiving routines kinow the structure of the information contained, but the actual packet

carrying that information does nct know of its structure.

8.2.1.Z0GMsgTyp

ZOGMsgTyp's are used in sending and receiving records.
ZOGMsgPTyp = tZOGMsgTyp
Z0GMsgTyp = packed record

id integer; Message ldentifier

LocalAddr EthernetAddress;

RemoteAddr EthernetAddress;

RemoteName String15; Name of remote Ethernet machine. Used only when receiving
messages.

Gh GeneralReturn; Used only i reply messages to return a possible error message

Body packed array [0..ZogMsgBodySiz-1] of integer;

%

—r o«

a-

MEROY |

LI

:“f

RS A AN M AT N R W W Y T W W W T T YO N W VWUV Y WY BTN Y RO S Y T T g g T g T T T W

£0G STRUCTURES PAGE 10

8.2.2. ZogBulTyp

When buflers are sent or received over the ethernet they are recast as BufPTyp. This is a generic
pointer (a PERQ Pascal extension), which can be used to paint at anything (there are restrictions on
its use, refer to the section on Pascal extensions in the PERQ Software reference manual), and is

used here to point to a ZOG page buffer.

BufPTyp = pointer; Ptr to Zog page buffer
20GPagePTyp = 1ZogPageTyp
ZOGPageTyp = packed array [1..PageWordSize 256] of integer
ZOGBufPTyp = tZOGBufTyp
ZOGBufTyp = packed record Zog Message Buffer type

LocalAddr EthernetAddress

RemoteAddr EthernetAddress

RemoteName String15; name of remote ethernet machine
Size integer; 1 indicates a single page, 2 = 2 pages
PgNum integer; counts pages for multiple pg. transfer |
Page1 ZOGPageTyp

Page2 ZOGPageTyp

8.3. Ethernet Request packet records) !
Module ZogMsgDefs contains the declarations of all of the Ethernet request and reply packets. For |

the most part the types contained in this module are the same with small variations in the records, due

to the function of a particular type. Only two of the types will be shown here. The information

contained in these records allows the sending and receiving routines to accemplish their purpose (i.e.

opening, closing, etc.). This information is loaded into the appropriate record, recast to a message or

buffer type and sent over the ethernet. On the remote machine, the appropriate receiving routine

knows the structure of the information in the request or reply packet, so it knows where to get the

information it needs. -

8.3.1. Open Frame Request Packet.
OpnFOPTyp = tOpnFOTyp
OpnFOTyp = packed record

Id integer; Constant identifier in ZogMsgDefs
LocalAddr EthernetAddress;
RemoteAddr EtherNetAddress;

et T S
- i PR} P - M .
o st . o

~ R [P U
R LS % L W S i s S, SR S Y I I PR N S S "

ML Andl bl A AaBbNh i A MK el it Bl AN A I At At 4 S b M AL AR AL B A ACE A AT i e AT At © s MR~ o Rt Tl S A N R * o oA At et it I MO Sl Bt et J

&0G GTRUCTURES PAGE 11 __
i
RemoteName String15; "
GR GeneralReturn; used in return packet
Name N UsridTyp; ;
AgentFlag Boolean;
sid SidTyp; Subnet ID
PrimeNode NodeTyp; u-
SecCnt integer,; *
SecNodes SNodesTyp: N
FrNum integer, L
8.3.2. Open Frame Reply Packet
OpnF1PTyp = tOpnF1Typ
L OpnF1Typ = packed record
. id integer; Constant identfier from ZogMsgDefs -
- LocalAddr EthernetAddress; \
z RemoteAddr EthernetAdaress; N
B RemoteName String15; '_‘
GR GeneralReturn; Return code from remote node -
t_ FHBCnt long; Count of Frame Header pages
h FBCnt long; Count of Frame Body pages
E 8.3.3. Close Frame Request Packet fom
, CIsFOPTyp = tCISFOTyp .
E CIsFOTyp = packed record
Id integer; Constant identifier in ZogMsgDels i
P LocalAddr EthernetAddress; ot
- RemoteAddr EtherNetAddress; *
L RemoteName String15;
GR GeneralReturn; used in return packet :
Name UsrldTyp; {
h AgentFlag ' Booiean; '
" Sid SidTyp; Subnet ID e
FrNum integer; -f
x
U _

- - - - - - - - .
“n Lte Yoo e e e et o T e e N - . B . L T - - . - L . N . EEEE s
PR, U A S D T TR IR T T S, T N T AR R P I L) LI RPN I . I S D U N . PRI A AP

AR S AL AT it S D ol ol - Dl A" AW M DA Sl A~ 2 i R A Sl Sl Al it~ Rt il “aih -l - A= oVl “ateh sk -ati-aan -aladoal LR L RE- 028 - ols - G RE s Bt SO R

Z0G STRUCTURES PAGE 12

FBCnt long; Count of Frame Body Pages

8.3.4. Close Frame Reply Packet 1
ClsF1PTyp = tCisF1Typ
CIsF1Typ = packed record

id integer; Constant identfier from ZogMsgDefs
LocalAddr EtherAddress;

RemoteAddr EtherAddress;

RemoteName String15;

GR GeneralReturn; Return code from remote node

8.3.5. Close Frame Reply Packet 2
CIsF2PTyp = tClIsF2Typ
CisF2Typ = packed record

Id integer; Corstant identfier from ZogMsgDefs
LocalAddr EthernetAddress;

RemoteAddr EthernetAddress;

RemoteName String15;

GR GeneralReturn; Return code from remote node
FHBCnt long; Count of Frame Header pages

9. Editor Structures

These structures are global within ZED, the ZOG frame Editor.

9.1. Delete Buifer
This buffer stores characters as they are deleted from text anywhere in the frame. !t is used for
moving and copying text within and between frames. The definition and exported (global) variables_

are in Module ZEDDefs.

BufP :BufStrP; Global (ZED-wide) delete buffer pointer
BufStrP = tBufStr

BufStr = RECORD - -
Length integer; ' '
Content array[1..1760] of char;

R IR -_. T L TSI T S S P DU U T '. R . P R T T LN
ERRRN RGN A .'."‘.'-'.-iv-‘.-.-,~',v‘.- - \ : ‘“. .'_ ~ _.’_""-‘-"~'~'-'-
S Aada ety 1“,.1.‘L'.!-\~- -'-:;\‘!..!.AA-I B Noaulow n'un "- Aoai A A_‘A..l A M A o N

T R LT T T U Tl T T T 0N M e T T e TR T PR T T e TR R T TR T e T R T T T T TR R e T e T T Sy T R TR TR L T T e T e b T e T A e T T e U e T T

tw

20G STRUCTURES PAGE 13 .

e

9.2. Current text position

This record is used to maintain current position information about the current item in a frame being ~_"_'.'
edited. The record type is defined in Module ZDspinc; the Global variable, Cltem, however, is -
exported from Module ZEDDefs. =

Cltem : TxtPosTyp; Giobal (ZED-wide) Current tem record
TxtPosTyp = record =
TxtP SelPTyp; Pointer to current item e
Row integer, Current relative row position within item
Column integer; Current relative column position within item
CurStrP FsPTyp; Pointer to current string within item text "'

-
9.3. Item types
This is an enumerated variable to keep track of the type of the current item. It is defined and

exported from Module ZEDDefs.

itemType (ITitle, IText, Options, IPads); T
Typeltemn temType; -"
-

9.4. Types for maintaining selected text — Not Currenily Used L‘
These structures were defined for the proposed enhancement of ZED, to include "Pepper-like” E
selection of text for deletion or moving around. This text could be in the current frame or any other Q::
frame. F
9.4.1.Strinfo = Record A structure to store selected substrings ':'
Row, LCol, RCol integer; To store selected string starting and ending points -
Str string ; NOTE: can only store up to 80 chars
-

9.4.2. Selections = Record The structure which holds the entire selected string, and m
related information j

Fid FidTyp; The frame which contains the selected str =
SelP SelPTyp; Points to the selection containing the selected string w
Version, Row, Col integer; Holds the frame version number, and row/column information =
Cnts integer,; -
Lines Array[1..10] of Strinfo; The text itself \

m e - e = .
P T P TN 3

------ - L R - -

R PN R L

“»
»
e A, T S - . S
. PV ST L T R T DT TR A DL W I T i T A . UL St

N A R A R
A AT T

DA S S N L A A Bl il B A U Bl th il B A Dl ™ A At AL AR A A AR ARG B SRR A N A A et oA i i A AV PO i

- &G STRUCTURES PAGE 14 l

9.5. Back Room Editor Type for options

This record allows the "redefinition” of a single line/option in an AirPlan input frame into a number
(up to MaxOpts, currently 10) individual options while the frame is being edited. The option reverts
back to a single option before being written out. Note: Each option on an AirPlan input frame is
‘ N identical in layout; hence only the record structure below is necessary, since it applies to all rows

v (options) in the input frame.

Field : FieldTyp

“f“'. FieldTyp = record
o Column Array[1..MaxOpts] of integer; Stores starting position of each redefined option in
a given row. \

Len Array[1..MaxOpts] of integer; Stores the length of each corresponding option.

P / . it
CE . \% ,‘.’4.“.'.‘..._ MO i
. 7_._.‘L, AP - B

’

SR TR TR VAT ATV TR 4 T e T U

AR R SRR A A LA LM N A B IR D AR L DB A A S

20G Files

TERTE G T

ST R T LW T T T T e T TR TR T TR ET @ v SN VTN T WV ' Ty 0 e e wr LW » LI N T SO)

£0G FILES PAGE |

Table of Contents

1. Input Files for Z0G

1.1. :zognet>subnet.index

1.1.1. Structure of subnet.index

1.2. :boot>Ethernet.Names

1.3. :zognet>net.servers

1.4. :zognet>zog.animate

1.5, :zognet>sec.default

1.6. :zognet>zognet.setup

1.7. :zognet>help.frame
2. ZOG's Output Files

2.1. :z0g>log>zog.login>

2.2. :zogrlog>exception.log

L BB WLWWMNN = -

R Mt B A 2 L B T A e e e i B Sl el S s O S S St B L I e

KOG FILES PAGE 1

ZOG Files

In order for ZOG to run, certain files (other than subnets) must be available.

1. Input Files for Z0G

The following files provide information necessary for ZOG to run. These files are opened and read
as part of ZOG's initialization process. All of the information read is stored in memory for fast access

as ZOG executes normally,

@ :zognet>subnet.index
® :boot>Ethernet.Names
® :zognebnet.servers

® :zognebzog.animate
® zognet>sec.defauvit

¢ :zognebzognet.setup

0 :zognedhelp.frame

1.1. :2zcgnet>subnel.index

Subnet.Index is a listing of all the subnets available to ZOG. Each PERQ in the network must have
its own local copy of subnet.index minimally listing the core subnets. At any point in time, only the
master PERQ's subnet.index file may be a complete list of all subnets. It will be necessary to
periodically update each subnet.index file on all other PERQs in the network with the current copy of .
subnet.index from the master PERQ. This is the responsibility of the local ZOG system maintainer.

During initialization of ZOG, subnet.index is read. Each subnet name is hashed into an internal table .
maintained and accessed in Module ZOGNetServer. When a frame from some subnet is requested;
procedures in ZOGNetServer will do a lookup in the local hashed table of subnet.index to find out if
the subnet exists, and if so, on which PERQ it resides. If the subnret name is not found in the local '

table, a request will be sent to the master for this information.

1.1.1. Structure of subnet.index
This file is a segential list of subnet names, with each subnet name followed by informatior
specifying the nodes (i.e., remcte PERQs) on which the subnet resides. Individu.al PERQs are

identified by a node number (its sequence in file :zognet>Net.Servers). Entries in Subnet.index look
like:

Te W T w T h TR T YT W TW TR T T W Tt W T T T W TR I
3 DU o e [l B B B

MM i A P L ARRA R AT At Al B AR S P i SN M " M A ek S A i

20G FILES PAGE 2

F00
2 0
BAZ
116

where FOO and BAZ are legitimate subnet names. The numbers below each subnet name indicate the
following:
e First numoer is the Node number of the PERQ on which the primary copy of the subnet
residas

e Second number indicates the number of secondary copies of the subnet (up to a
maximum of MaxSecondary = 5)

» Additional number(s) indicate the PERQ(s) on which the secondary copies reside

1.2. :boot>Ethernet.Names

File Ethernet.Names contains the Ethernet name of the local PERQ. Users can edit this file to
change the name of their machine; however, this should not be done unless the :zognet>Net.Servers
files on ALL other PERQs in the network are changed correspondingly. If this rule is not followed,

communications with other PERQs on the network will not be possible.

Only the first line of this file is of importance; any other lines in it are ignored by ZOG. Thus, other
names for the local machine could be stored here for later reference.

1.3. :zognet>net.servers

The Net.Servers file is a list of all PERQs on the current ZOG network, by name. This file is read
sequentially in ZOGNetServers.BuildServers to build the global ServersStatus table. The table is
accessed with integers from O to (N - 1) where N is the number of PERQs listed. The master PERQ is
always the listed first, and thus is number 0. The node numbers associated with each PERQ listed in
this file are also the node numbers used in file :zognet>subnet.index.

The name of each PERQ is contained in file :bootEtherNet.Names. If there is more than 1 line in
this file, the name of the PERQ is the name (ASCII string) contained in line 1 of this file.

It is very important that all PERQs in the ZOG network have identical copies of this file, otherwise,
serinus inconsistencies in machines’ subnet.index files will develop.

- . L O P T
PRTE Vol e e T el tag v T e e Lo [I S VI
> v o

3 st b .. . - LTS BN L T L T R o RO R N LN
PO WG TTE WAL S PTG SIS P S TV, 3 W PRI T U S Oy 0 V0 SOU. Sy ST ST IS W ¥ ¥ Sk AR Sk T T DY e T R

B T RT VTN TRV T T T WY N RN Wy W RN AL RHLE WU, TYE W L TR, TR T TRTTETRTRETIRT AT TR TN e M Ve TN T

200G FILES PAGE3

1.4, :z0gnet>zog.animate
Z0OG.animate is used to contain the default mouse cursors of the solid arrow, and the cursor used to

indicate that an Ethernet event is occurring (i.e., that the user is temporarily locked out of ZOG for just

a momeant). This second cursor is usually the hollow arrow.

Users can use the special PERQ utility, CursDesign, to edit this file, so as to create a new set of

default cursors for ZOG to use.

If this file is not present, ZOG will only use the POS default mouse cursor of the solid arrow. No
indication is given that the file can't be found, but Ethernet interrupts will not be noticed by the user

other than the keyboard being temporarily locked.

1.5. :zognet)>sec.default

This file specifies the default number of the PERQ(s) tn be used by this machine for secondary
copies of its subnets. Its format is similar to that used in :zognetd>subnet.index: The first number
specifies the number of secondary copies for each of the local PERQ's subnets there are to be, up to
a maximum of five. The remaining number(s) specify the PERQ(s) these secondary (or backup!)
subnets are to reside on. The PERQ node numbers are specified in file :zognet>Net.Servers.

Secondary subnet files are identified by having the file name <Subnet>.sec. These may be located
in partition :zognet on some machines, and in partition :second on others (see :zognet>zognet.setup

for details).

Examples of possible contents of sec.default are:

0 no secondary copies to be made at all
17 1 secondary copy to be maintained on PERQ number 7
3135 3 secondary copies of each subnet to be maintained, one copy on PERQ 1, one

on PERQ 3, and one on PERQ 5.

1.8. :zognet>zognet.setup
This file contains a boolean (i.e., the string True or False) as its only entry.

A value of true implies that all subnets, including local and secondary copies of subnets, are located

in partition :zognet.

A value of false implies that local subnets will be in partition :local, and secondary-s'ubnets will be
stored in partition :second. All others will still reside in partition :zognet or in partition :primary, if it

hAE ARV AR A A" AL AL BNIL S

-

'_‘-?_,a Yoot

W o Sutase i gow]
RSN

T

M |

L g e T A Y e T s T T T T R Ty Ty T TN T TR TN Ty T R RSO S At et T e Bate dhoti Rl it Mhain ot e S i b Rt Siats Btk oot fhe AN a sont Aadh 2bot limin Shat dhev o)

Z0G FILES PAGE 4

exists,

1.7.:zognet>help.frame
Help.Frame specifies the frame to be displayed in the other window whenever the "heip" giobal pad

is selected. it's default is Help1.

2. Z0G’s Output Files

ZOG's output files are used to record information on disk as an aid in trouble-shooting or
debugging the system.

® zog>log>zog.log<n>

® :zog>log>exception log

2.1.:209>log>zog.log<n>

This set of files (i.e., zog.log, zog.log1, zog.log2, zog.log3) keep a four-deep log of all the user
displtay messages displayed during a ZOG run. :zog>log>zog.log is the current log file, the remaining
zog.log<n> files are the logs of the last, last but one, and iast but two ZOG runs, respectively. In
addition, login/initialization time is recorded, as is logout/ending time. Also, if ZOG aborts
abnormally, the Pascal stack dump information is also recorded in zog.log.

These files are created and maintained by procedures in Module ZLogFile.

2.2.:zog>log>exception.iog

Occasionally ZOG may abort due to an uncaught Pascal-generated exception, such as a string too
long exception. Normal procedure on the PERQ is for the running program to abort, and a stack
dump of the Pascal procedures which were invoked when the exception was generated to be
displayed on the screen. in ZOG, however, there is an All exception handler to catch these
exceptions. The purpose of this handler is twofold: to record the exception-generated stack dump in
the file :zog>log>exception.log (and in :zog>log>zog.log); and to exit ZOG "gracefully", i.e., in a
controlled fashion.

This file is created, or appended to, via Procedure ZOGDurap in Module ZDump.

N . PELEPL M
T Tum e P T

R R ~:.-'_. - e - .. ,.-.ﬁ" B L. . B B '.".b e R I A . S .
U T SR ST Uy AP YT T U | A manta (RTINS . WP S I, W, U S T A L PR AL W W o W VA

Z0G Modules

vt D A it A S D

KRGS ‘o i SRS e SRR ARV 8 f dh e AN SR TR i reunta i rain i e boni vab M Sl R AR AL ol B e e AL L L R

Z0G MQODULES PAGE | .
f
Table of Contents N
1. ZOG System Modules 1 :
1.1. Basic System 1 .
1.1.1. Module ZBack 1 c
1.1.2. Program ZOG 1
1.1.3. Module ZOGVersion 2
1.1.4. Module ZParse 2 ‘
1.1.5. Module ZSel 2 "
1.2. Initialization and Exiting 3 :
1.2.1. Module ZInitExit: 3 v
1.2.2. ZInitOthers 3 "
1.2.3. Zl.ogin 3 N
1.3. System Level Libraries 3 .
1.3.1. BaselLib 4 -
1.3.2. FsString 6 -
1.3.3. NetDefs 7
1.3.4. Netinsert 7
1.3.5. NetLib 8
1.3.6. NetMakeDel 8
1.3.7. NetOption 10
1.3.8. NetPERCCodes . 10
1.3.9. NetStack 10
1.3.'i0. NetString 11
1.4. Net interface module 12
1.4.1. Module NetHand! 12
1.5. Screen Interface 12 -
1.5.1. Moduie IncDisp 12 N
1.5.2. ZCanvas 13 :
1.5.3. Module ZCanvUtils 14 N
1.5.4. Module ZDisplay 14 .
1.5.5. Module ZIO 15 -
1.5.6. Module ZUser 15 .
1.5.7. Module ZWind 15 t
1.6. Action Processing Modules 15 {
1.6.1. ZAAction 16 \
1.6.2. Module ZAction: 16
1.6.3. Module ZActUtils: 16 =
1.6.4. ZBAction 17 ¥
1.6.5. ZDAction 17 v
1.6.6. ZEAction 18
1.7. Exernal Device and Utility 170 18 2
1.7.1. UEI 18 -
1.7.2. ZBHIO 19 "
1.7.3. ZVideo 18 .
1.8. Polling Routines for Statistics or AirPlan 19 :
1.9. Statistics Gathering 19 ;
1.10. Miscellaneous Utilities 19 .
2. ZOG Netserver Modules 19 I
2.1. E10Types 20
2.2. ZAccessProcs 20

- N P A N ~ . B - - . . . - -
el e ., ~ B . L R L A A . L o
Cadne b T T T et e it T s e DU U YO A Sk

bl Ll - had - e - il et hainalin Rl A)
Ty QIR MEAMESME I . AL SN AL B e IL AR I Sl I A Al A NTTE W] \'K: Al .I::. DINERRCIN

PN A "

. . i M al e sl el el s RN i o ANt i
" S
D
\‘_};

| S
e

£0G MODULES PAGEN :

i

2.2.1. Frame Access Routines 21
2.2.2. Frame Modification Routines. 39
2.2.2. Subnet Access Routines. 40
2:2.4. Utility Routines 41
2.2.5. Zog and Agent, Login/Logout Routines 41
2.3. NetServ 42
2.3.1, Frame Access Routines
2.3.2. Frame Modification Routines
2.3.3. Subnet Access Routines
2.3.4. Utiiity routines
2.3.5. Initialization routine
2.4. ZNet
2.4.1, Frame Access Routines
2.4.2. Frame Modification Routines
2.4.3. Subnet Access Routines
2.5. ZEint
2.6. ZNetServer
2.6.1. Frame Access Routines
2.6.2. Frame Modification Routines
2.6.3. Subnet Access Routines
2.7. ZNetProcs
2.7.1. Frame Access Routines
2.7.2. Frame Modification Routines
2.7.3. Subriet Access Routiries
2.8. Z0GMsg
2.8.1. Send Routines
2.8.2. Receive Routines
2.8.3. Message verification and handling routines
2.8.4. ZOGMsg Utilities
2.8.5. EtherNet Handler States
2.9. ZOGMsgDefs
2.9.1. Ethernet Request packet records
2.10. ZOGNetServer
2.10.1. Subnet Locating Routines
2.10.2. Subnet Maintenance Routines
2.10.3. Server Routines
2.10.4. ZogNetServer Utility Routines
3. ZOG Editor Modules
3.1. ZED Modules
3.2. SLED Modules
4, ZOG Agents Modules
4.1. Planning and Evaluation (Task Management) Agents
4.2. Backup and Transport Agents
4.3. ZOG Special function Agents
4.3.1. Writing frames in a form suitable for printing
4.3.2. Saving old versions of frames
4.3.3. Utilities
4.3.4. Fonts and Graphics
4.3.5, Creating an index or directory of subnets
4.4, Subnet Repair and Updating Agents

Xy

le' .
N D

M
Ll

A e i o 2 1
R AL RS S §
HAN

e

1l

CEBEEEBEBEEIAIVESELBBRIBL8838888822885858883

A““
L

.

b

.

L.
"
\

T S N . P R T T U B L SR S L -
- I T R I R LA e T T LA
.. e T T 0 AT R S R R O I NI

BN Lt et . .
R oP Y W W L. W VPN P, PR S ST W 4

PRl R Rt el A Rl A Bkt e WS AN AN A VA M v A ANt T R R LR AR B SR SR e il G A B A A 0 L AR AP AR SRA NS Sl o SRE wvie ot S e i e

20G MODULES PAGE Il
4.5. SORM and Weapons Elevator Agents €0
4.5.1. AgDgm : Writes out a chapter of diagrams 60

4.5.2. AgGAPL : Prints a tree of frames in scribe compatable format 60

4.5.3. AgMgmt : Produces a listing of all the frames title text 60

4.5.4. AgOpr : Prints a tree of fraems in depth first search order 60

4.5.8. AgOrg : Prints lists of responsibilities of each biilet 60

4.5.6. AgTask : Prints out option text for each frame that has options 60

4.5.7. AgText : Prints out the frame text on each frame visited 61

4.5.8. AgThy : Prints out theory section of Weapons Elevator Manual 61

4.5.9, AgTrb : Prints out troubleshooting section of Weapons Elevator Manual 61

4.5.10. AuxOrg : Prints out the appendixs for the ship's SORM 61

4.6. Agents Libraries 61

4.7. Shell Utility Modules 62

4.8. Agent/Shell Utility Invocation Modules 62

5. ZOG AirPlan Modules 63
6. PERQ Operating System Modules imported by Z0G 63

Lot
1

Ly T W
W e e

R TR SRR R R R R T TR S e T BT W R TR AR T R T TR P RN S TN TR T T N M TSN TR TS AT

P Z0G MODULES PAGE 1
".2.
o The ZOG Code Modules are listed below by functional category.
Lo
. The following options name modules and point to frames which list the exported
' procedures/functions contained in those modules.
e 20G System Modules
' ® 20G NetServer Modules
P ¢ ZOG Editor Modules
. ¢ ZOG Agents Modules
- # 20G AirPlan Modules
= e PERQ Operating System Modules IMPORTed by ZOG
1.Z20G System Modules
.
1.1. Basic System
1.1.1. Module ZBack
. This module maintains the ZOG system backup list oi frames visited, whict: is used in implementing
the back, next, prev and ret global pads.
InitBack Initialize Backup List Struciure (and ZMark Module)
SavBack Push currently displayed frame and selection on backup stack (ZBack.InsBack)
ﬂ GoBack Pop top frame on backup stack (ZBack.DelBack, ErBack)
. XPop1Back Pop up one level on the backup stack (ZBack.DelBack, ErBack)
XPopBack Pop backup stack to given frame id
XClrBack Clear entire backup list
ff" XGoBack Pop top frame on backup list, and display it - "hack"
XRetBack Display pseudo-frame listing frames on backup list - "ret"
XNext Pop top frame on backup list, and display frame id pointed to by next option, if it
exists - "next" .
1.1.2. Program ZOG
The Main ZOG Program. Consists of a Main routine which calls Procedure ZOGMain, the "real”
¢ main ZOG Procedure. This module also contains the upper-level exception handlers and the Exiting
and Logging-in invoking procedures.
SuspZ0G Suspend Z0G execution, saving current state

CRNLIAY

e R .
R R [T . » P ™ - . . v . v TP N SO T Tt AR
OO PRI VU TS S VR AL P S, PP R PP O L O O TR S0 T P R L S.'L\.TI‘.J'.-L:._ alla

oy

avE 0 R it Mt A B R I N N N T N Y N T W W Y N T M e T e T ey T e YT T g Y T, W W WL W T Y R YW ey

£0G MODULES PAGE 2
ResZ0OG Resume normal ZOG execution from saved state

RelogZ0G Determine if user "really” wants to log off from ZOG

RelnitZOG Determine if user "really" wants to exit ZOG. Calls ZinitExit.ExitZOG to perform

controlled shutdown.

Z0GMain Main ZOG loop. Calls initialization routine, then loops on character input,
character processing sequence.

1.1.3. Module ZOGVersion
This module supplies the current ZOG version number to the rest of ZOG.

1.1.4. Module ZParse
Contains some elementary parsing routines for the original ZOG command line invocation from the

shell. Also used within ZOG for command line parsing.
InitParse It ZOG is declared (in user's profile file) to be the current shell, then get any
switches passed to ZOG via GetArg, below

ProSwitches Process user-input switches from command line

GetArg Recursively obtains switches from command line; if specified argument is
missing, will prompt for missing argument with caller supplied string

GetOptArg Recursively obtains switches from command line; if specified argument is
missing, use passed default value

GetRemArg Get remaining arguements from the user command line

1.1.5. Module ZSel

Module ZSe! contains 5 exported routines necessary to do selection processing. These are:
Praocedure GetSel given a selection character, this routine returns a pointer to the corresponding
selection, if it exists

Procedure EvalSel given a pointer to a selection on a frame, this routine will either go to the frame
linked to the selection (and execute that frame's action), do the selection action, if
there is one, ar initiate top-down frame creation from the selection.

Procedure OutS given a character input by the user, this routine will interpret it as an action string
or as a selection to be processed.

Procedire ReturnSel
returns the selection character or control character input by the user.

Function GTchSel returns pointer to selection selected by mouse.

Pt T - L e P N e N S T
-, - A A Y T e et T . oot .- « Ve T . .
" vy e T e T LN T T e e e S - P

) .
- e e et . [- .
BN DN WV AN WY Tl Y S P

(S
o

A
—

1t

PR AN
Pl

v A

L)

et

« e Wt G ET N TRT T T T MM T e T My W W WL YV /LN ITRLY WL T T W R T RTOTRATRTY TR RTETRTRETR RO TR T AT T e T T
o
- ZOG MODULES PAGE 3

BN 1.2. Initialization and Exiting

. Y-, =,

y e g

1.2.1. Module ZinitExit:

' InitZOG " Initialize all the variables and pointers in all of the modules that make up ZOG.

" ExitZOG Clean up variables in preparation to exit ZOG.)
o
S LogOIfZOG Log off one user and log in another.

1.2.2. ZInitOthers
This Module has one procedure which simply calis the remaining initialization procedures, in order, N
for the rest of the ZOG sytem moduies. This procedure could not be a part of ZinitExit due to the

—

e
o PERQ Pascal compiler restriction on the number of imports allowed. Hence, ZInitExit InitZOG had to A
- call ZinitOthers InitOthers, where ZinitOthers imports the rest of the system modules needed for :
e initialization. g
o Procedure InitOthers :
i exported)
A .
= -
1.2.3. ZLogin n

ZlLogin is the login program. It is called at both boot time and anytime a Login command is g

executed.

. Procedure DoZOGLoglin ;
. exported -
& 1.3. System Level Libraries
: o BaseLib :
B

B ® FsString e
l."

o NetDefs iy

® Netinsert :_:

’. X
r ® NetLib .t
. ® NetMakeDel '
b @ NetOption ’
>
-
® NetPERQCodes -,
wy
R ® NetStack :;:
e
. ® NetString m~

il el Skl A i A SRRt S St e i e o a =t o B L L0 ® S R (= P S SR Sl il SN Sl

290G MODULES PAGE 4

1.3.1. Basalib
BaselLib is a collection of routines that are needed by the basic ZOG system and the ZOG Net

Server process. it's purpose is te avoid duplicating code for both processes.

1.3.1.1 Initialization routines

Procedure IniBaselib
Initialize internal variabies and pointers

Procedure IniFHP Initialize the frame header record structure

1.3.1.2 Test Functions

Function TisUc Test to see if a character is uppe case

Function TisLc Test to see if a character is lower case

Function TisAlph Test to see if a character is Alphanumeric

Function TIsDi Test to see if a character is a digit

Function TOwnF Test t_o se¢ ‘f & given user Id is one of the owners of a frame
Function TSidValid Test to see if a subnet Id is valid

Function TProtValid
Test to see if given protection is valid

Function TUsrldValid
Test to see if a giver user Id is valid

1.3.1.3 Convert routines
Frocedure CvintStr
Convert an integer to a string

Function CvStrint Convert a string to an integer

Procedure CvLongStr
Convert a long integer to a string

1

Function CvStrLong
Convert a string to a long integor

FunctionCvMonStrint
Convert a string to a valid month integer

Function CvDatStrint
Convert a date string into internal integer format

Function CvTimStrint ,
Convert a time in string format into a long integer

- T P, FE T P oS I
L ISR N T T S T U U AR R TR A AT TR N ALY
E N A Oy N T W R A ST T P S T i U O O I N T S L G T R S T R A AT N TR T T T

AT WAE TR RO ENTRE T T T TR AT T T W NS L LTRSS R T T SRR AR AT AT RO RSN R R LT R R RGO TR RSTRGT R
.

£0G MODULES PAGE 8

1.3.1.4 Get Functions

Procedure GTimStr
Get the time of day in HH:MM:SS format

Function GTimint Get time in milliseconds since midnight

Procedure GDatSir
Get today's date in DD MM YY format

Function GDatint Get today's date in internal integer format
Function GEqFs15P
Get an entry on a frame string15 linked list matching a given string

1.3.1.5 Make-Delete procedures
Procedure SavFs15P
Put a frame string15 record structure on the save list

Procedure SavFHP Put a frame Header record structure on the save list

Procedure RelFs15P
Release a frame string15 record from us2

Procedure RelFH Release contents of a frame header record structure
Procedure CirFHP Clear contents of a frame header record structure
Function CrFs15P Create a frame string15 record structure

Function CrFHP Create a frame header record structure

Procedure DelFs 15!
Delete a frame string15 record structure from a frame string15 record linked list

Procedure InsbFs15/
Insert a frame string15 record a the beginning of a frame string15 linked list

Procedure InseFs15!
Insert a frame string15 record at the end of a frame string15 linked list

1.3.1.6 Miscellaneous procedures

Procedure AppStrFile
Append a string to the end of « file

Function Parseline
Get a line of info from an internal frame buffer that contains a frame in external bh

frame storage format

Procedure ParseFH
Transtorms the external bh form of a frame header into the internal frame record

structure during the frame read process

SR R W e T m e e e e e T LT T T TR T TR TR T T U T W T T e R TR Wy W W WA W R LT TN LWL T T L T e T T e R TTRTT RT E T T R TR

g SULES PAGE 6

1.3.2. FsString
W Module FsString impliments the frame string manipulation routines for the ZOG system.Frame

strings are record structures with three elements. The first element is a string[80] followed by two
pointers. The pointers allow the frame strings to be put on doubly linked lists. All of the PERQ Pascal
string manipulation routines in PERQ_String have been duplicated for the frame strings in this module.

1.3.2.1 Length and Write routines
Function Fs - Length
Get the length of a frame string

Function Fs - Lines
Count the number of lines in a frame string

Procedure WrFsFile
Write a frame string to a file

Procedure WrFsXFile
Write a frame string to a file beginning with the ith character; where i is given in

the cali
o ‘ Procedure WrFs Write a frame string to the standard output
1.3.2.2 Convert routines
Procedure CvFsStr Convert a frame string to a Pascal character string
Function CvStrFs Convert a character string into a frame string

Procedure Fs - ConvUpper
Convert a frame string to all upper case letters

T Procedure s - ConvLower
‘ Convert a frame string to all lower case lelters

1.3.2.3 Basic String routines
Procedure Fs — Adjust
Change the dynamic length of a frame string

. ' Function Fs - Concat
i Concatenate two frame strings together

Function Fs - SubStr
Return a subportion of a frame string as a character string .

.' Procedure Fs - Delete
Remove characters from a frame string

Procedure Fs - Insert
Insert a string into a frame string

£0G MODULES PAGE 7

1.3.2.4 Position and Append routines
Function Fs - Pos Find the position of a pattern in a given frame string

Function Fs - RosC
find the postion of a char in a given frame string

Function Fs - RevPosC
Find the pcsition of the last occurance of a pattern in a given frame string

Procedure Fs - AppendString
Append one frame string to the end of another frmae string

Procedure Fs - CAppend
Append a character to the end of a frame string

1.3.3. NetDefs

Module NetDefs contains all of the basic ZOG system definitions. These include all of the signal
constants, basic type declarations, control character constants, declaration of protection types and
various other constant declarations that are used throughout ZOG. NetDefs does not export any

procedures.

1.3.4. Netinsert

Module Netinsert impliments all the list handling routines for frame string pointer types(Fsl), frame
string15 pointer types (Fs15i) and selection list pointer types (Sell). Each routine inserts a record into
a list of records either at the beginning (lnsb), prior to the record aiready on the list {(Insp), after a

record already on the list (Insa) or at the end of the list (Inse).

1.3.4.1 Insert al the beinning of alist utilities
Procedure InsbFs! Insert a frame string record at the beginning of a f frame string record linked list

Frocedure Insbell Insert a selection record at the beginning of a selection record linked list

1.3.4.2 Insert prior to an object on a list utilities

Procedure InspFs15!
insert a trame string15 record prior to a given frame string record that is on a

linked list of frame string15 records

Procedure InspFs! Insert a frame string record prior to a given frame string record that is on a linked
list of frame string records

Procedure InspSell
Insert a selection record prior to a given selection recor that is on a linked list of

selection records

BEA e R M S e T e A AL e A R B A DI e R e S L et B Hhe M B ~S A M e PR I PR S B S0 0 et S, S0 e S U Win L M L VR, S B Vit DL, SR Yhe Bl ML S B

i

S~ s g

[; SO

i L% TeT LT W T AT LT TR T TR RN AR AT TR TR TR R TN T A M AR AT 2 Y AMAD I el M L L S S v B = B A S Bl i Tl Mindl il el Sl
W

£0G MODULES PAGES8

1.3.4.3 Insert after an object on a list utilities

Procedure InsaFs 15/
Insert a frame string15 record after a given frame string15 record that is on a
linked list of frame string15 records

Procedure InsafFs! Insert a frame string record after a given frame string record that is on a linked list
of frame string records

Procedure InsaSell
Insert a selection record after a given selection vecord that is on a linked list of
selection records

1.3.4.4 Insert at the end of a list utilities
Procedure inseFs! Insert a frame string record at the end of a frame string recordlinked list

Procedure InseSell
Insert a selection record at the end of a selection record linked list

1.3.5. NetLib
Moduie NetLib is effectively NetHand!, Netinsert, NetMakeDel, NetOption, NetStack and NetString. It
is still used to keep older programs and modules compatible with the new division and to allow users

to import only one module instead of six.

1.3.6. NetMakeDel
Module NetMakeDel impliments all the routines that make and delete records and save the records
for future use when needed. This is basically a memory manager for frame string records, frame

string15 records and selection records.

1.3.6.1 Initialization procedures
Procedure IniNetMakeDe
Initialize variables and pointers in NetMakaDel

Procedure IniFBody
Initialize only the body of frame record (not the frame header)

Procedure IniFP Initialize the entire frame record structure
1.3.6.2 Save a record utiilities

Procedure SavFsP Save a frame string record on a save list. This routine puts an unused frame string
record on the save frame string record linked list

Procedure SavSelP
Save a frame selection record on the save list

Procedure SavFP Save a frame record structure on the save list

M RS A L B LA K

Z0G MODULES PAGE®

1.3.6.3 Release memory utilities
Procedure RelFsP Release a frame string linked list to the save list. This routine wili put every frame
string record pointed to by a frame string pointer on the save frame string record

linked list.
Procedure RelSelP Put a linked list of selection record structures on the save list

Procedure RelFBody
Release the contents of the body of a frame record structure. This rcutine will

release the entire substructure of a frame except for the frame header information.

Procedure RelF Release the entire contents of a frame record. This routine will release the entire
contents of a frame record structure to the various save record linked lists that

exist.
Procedure RelFHP Release a frame header pointer and put it on the free list

Procedure RelFP Release a linked list of frame pointers and put it on the save list.

1.3.6.4 Clear the contents of a record utilities

Procedure CirFBody
Clear only the body of the frame record (Don't change header). This routine will

release the entire substructure of a frame record structure to the various save lists
and initialize all the pointers to nil except for the frame header information,

Procedure CIrFP Clear the entire frame record (release all substructure)

1.3.6.5 Create utilities
The create utilities will atiempt to get the appropriate record structure from the appropriate save list.

If the save list is empty then a new structure is created dynamically.
Function CrFsP Create a new frame string record sircture

Function CrFP Create a new frame record structure

Function CrSelF Create a new selection record structure

1.3.6.6 Delete utilities
The delete utilities will delete the appropriate record from the linked list t that is currently a part of. if

the record is the top of the linked list the second record will automatically be made the top of the list, '
Procedure DelFsl Delete a frame string record from a linked list

Procedure DelSell Delete a selection record from a selection record linked list

Procedure SetMrkSel
Set the mark (space or minus) in a selection

D Rl N ‘el el

~auitechhia i e A RS A R MO A A b U 2 R AR A RS et A A e I e L et A Nt & e il M e e S i VI

£0G MODULES ‘ PAGE 10

1.3.7. NetOption
Module NetCption impliments the routines that manipulate options or iocal pads within a frame.

They include finding, inserting and creating.
Function GOptF Get an option with a given selection character from a frames option list

{ Procedure InsOptF Insert a option in the option list of a frame
Function GPadF Get a pad with a given selection character from a frame's local pad list

Procedure InsPadF
insert a selection in the pad list of a frame

Function CvStrSelTxt
Convert a pascal string to selection text

Function CrOptF Create d new opticn in the frame
Function CrPadF Create a new pad in the frame
Function GNewOpt
Find where next available option on a frame should go

1.3.8. NetPERQCodes

1.3.9. NetStack

Module NetStack impliments the stack operations push, pop and read for ZOG frames. A frame
stack is a mechanism to remember what frames have been visited in the past and allow them to be
visited again. It is basicalily a linkeked list uf frame string15 records that hold the frame id of all frames

"pushed” on the stack.
" Procedure InitFstk Initialize fields of frame buffer stack Fstk

Procedure IniNetStack
Initialize variables anc pointers in the module NetStack

Procedure RdFstk Read a frame from the net file into the top of ihe frame buffer stack
Procedure PshFstk Preserve the current top frame in a frame buffer stack

[o Procedure PopFstk
. Restore last pieserved frame to the top of frame stack Fstk

Procedure RdfstkX Read a frame from the rat file into the frame buffer stack X

Procedure PshFstkX
e Preserve the current top frame in a frame buHfer stack X
":::‘_f Procedure PopFstkX

Restore last preserved frame to the top of frame stack Fstk X

A B T W N P ¥

Terge T 0 . o o FO S S R SR Y - . .
KA LSO s e s e LT
hJ . B LT . . i Lt . ™ . LR ~ ..
I ¥ A R T O ST S T T A U T T e T

RSO AL AL S AR AN S AL et i Aiie i ail M Vel Nadlh I S it B b IV Y D -4 Y AL NI rOlL AN I DA R R N

20G MODULES PAGE 11

1.3.10. NetString
Module NetString handles all of the string handling routines for the ZOG system.

1.3.10.1 Convert utilities
Function CvUclc Convert a character to a lower case alphabetic
Function CvLcUc Convert a character to an upper case alphabetic

Procedure Convlower
Counvert a string to all lower case characters

Function AnyPos Find the pition of a mask in a string
Function Narrow Converta long integer to a normal integer
Function Widen Convert a integer to a long integer

1.3.10.2 Character string manipulation
Procedure Strip Strip carrage returns, line feeds and blanks from the front and back of a Pascal

string
1.3.10.3 Frame string utilities
Function TFsNull Test to see if a frame string ponter is nil
Function GFs15P Get a frame string15 pointer that matches a mask
1.3.10.4 String equaiity utilities

Function TEqStrCase
Test to see if two strings are equal (case sensitive)

Function TEqStrSub
Test to see if one string is a substring of another

1.3.10.5 String-long conversion
Function RoundLong
Convert a real number into a long integer rounded to the nearest whole number

Function Trunclong
Convert a real number to a long integer truncated to the nearest whole number

Function FloatLong
Convert a long integer to a real number

Procedure CvRealStr -
Convert a real number into a character string

Function CvStrReal
Convert string to a real number

Cw

T i B

. - - I D V. B

£0G MODULES PAGE 12

1.2.10.6 Time and date

Procedure CvTimintStr
Convert a time integer in milliseconds since midnight into a pascal string in the

* form HH:MM:SS

Procedure CvMonIntStr
Convert a month integer to a pascal string

Procedure CvDatintStr
Convert a date integer to a pascal string of the form DD MM YY

1.3.10.7 General utilities
Function TFidValid Test to see if a irame id is valid

Procedure PrsFid Parse a frame id into its subnet name and relative frame number

1.4. Net interface module

1.4.1. Module NetHandl
Provides upper-level procedures for accessing the NetServer modules. The NetServer modules |

provide read and write access to all ihe subnets and frames within the network of PERQs linked
together with the EtherNet. Since that access is at a lower level than the procedures contained

herein, the details of local versus remote access are completely hidden from the user or agent writer.

1.8. Screen interface

1.5.1. Module IncDisp
Module IncDisp is used for monitoring the state of a frame designated to be automatically updated-.

as it is changed, presumably by some remote user(s). When a frame is re-displayed via this ..
mechanism, the changes that have been made are highlighted in reverse video. The polling for this «
mechanism which determines when a frame re-display might be necessary is handled in ZSel.Return

and the ZCanvas routine RdTKeyZOG.

InitincDisp Create scratch record and initialize incremental display (local boolean, .
IncDispSig) to off. '
SetincDisp Giver: an update timing interval, set loca! variable IncDispTime and IncDispSig

accordingly, to turn incremental display on or off, as requested.

UpdatelncDisp Redisplay frame with highlighted changes if frame has changed and if display
' timing interval has expired.

SavincDisp Save the frame ID of the frame displayed in the current window and mark it as not
having changed.

LA A A i S B M BN B A R MR R R Hhe Y i A e S A R Al S A * Bl i i e et i i e I~ o § Al Dbl Sati o W ALl L A SN B B Sl e Bt 2 - Hha e B0

£0C MODULES PAGE 13 o
1.5.2. ZCanvas o
ZCanvas provides the lowest level screen display routines.
1.5.2.1 Canvas (window) and pointer routines -
InitZCanvas initialize the all canvas variabies ’“
ChangeCanvas Go to ar.other window
TitleCanvas Insert Title string at top of current window *
ClearCanvas Clear the current window :‘t
SetCanvas Read in internal window variables ::E::
ResetCanvas Clear the window and reset the screen
SetCanvPtr Select an image for the mouse pointer sl
SetCanvFunc Select black/white background *
SetPtrCh Move mouse pointer and alternate cursor, if applicable. .:?d
SetPosCh Set the position of the mouse pointer .«
GetPosCh Get the current position of the mouse pointer "v
g

1.5.2.2 cursor controlling routines
CursorOn Turn on the (character input, i.e., underscore) cursor "
CursorOtf Turn off the cursor :
isCursorOn Return the current state of the cursor ' ’
SetAltCursor Select an image for the alternate cursor) .
DispAltCursor Display a new alternate cursor at specified location | :‘3;:.‘
IsAltCursor Return the current state of the alternate cursor SR s R H
LineCanvas Draw a line between specified points
BoxCanvas Draw a box with specified corners _ o . b-‘. S '.-
SetCursorCh Set the cursor character r&—v—
1.5.2.3 Chatacter {(and mouse) input and Qutput SRR \
Rd[T]Canvas Get next character/mouse input from user - j;:;
Rd[T]KeyEv Get next character input; stay in current window ;
Rd[T]KeyZOG Get next character.input; can change windows :7:“.' ’
Rd[TIKbd Get a character from keyboard e e :
RdKbdCond Return character or null . R I _';_,:j:‘
RdCanv Detect input event and return it in a canvEv record TTTL

™ ., " e - A A - . g e
R Dol da e e N
" - ', .' -

: . o a . . LN MR . .
) R L LI R SR LA . LT,
- g N e - L N N RESRARS - L RN
5 M&A&lhg&.h‘. et A_'.-J_la.“mrj. N I R SN TR RLY VAN Y. O T IR Y S T S "

= {

290G MODULES

IsMouseEv
SetChFunc
GetChFunc
PutCh

PutStr
PutStrLn
PutSubStr
BEEPCanvas

TWTTE Y) K el AR N Sar A G a1 LR MM AR R VL YAl ol Bam S AL IS ATt b A She a7 it B -l mie Sl et SnBIail | oub |

PAGE 14

Return true if Canvas event was mouse button click
Select Replace, OR, XOR, etc. character display function
Return the current character display function

Output a character to screen and external terminai
Output a string

Output a string followed by a cr/If

Qutput a substring

Cause the terminal speaker to emit a short "heep"

1.5.3. Module ZCanvUtils

SetZ0GCanvas
iniCanvPtr
CharToAbs
AbsToChar

Screenline

DrawBox

Initialize 5 ZOG Frame Canvases and record structures
Read in Mouse pointer images from :zognet>zog.animate
Convert normal x-y character coordinates to screen pixel (absolute) coordinates

Convert pixel (absolute) coordinate points to character x-y cordinates, in the
proper window

Draw a line on screen connecting two ahsolute coordinates

Draw a box on screen with opposite corners given in absolute (pixel) coordinates

1.5.4. Module ZDisplay
The ZDisplay provides complex frame and window display utilities.

Clear
DspPos
DspEnd
CIrEOLn
CirLine
DepF
DspF1
DspSelF
DsplLPads
DGPads
DspFsP
DspStar
DspCxt

Clear the current window

Position the cursor to specified location in the frame display
Position the cursor to {UsrDispline,1)

Clear from current position {0 end-of-line

Clear the entire current line

Clear the current window and display specified frame
Display specified frame without clearing

Display Selection records

Display Local Pads records

Display Global Pads from the specified GPads frame
Display a Frame String record (i.e., item text)

Mark the selection with an asterisk

Display a context string ('edit’,'second’etc.} to the iefi of the frame id (upper RH
corner)

™

PP

]

I
r.t.

.
-

e

t A ,’!" -

TR TR TR T T TATEATEATE A TR T A TR T T TR R R TR R E R AR TR TR TR R R LR TR TR TR TR A TR TE TR TR LR LT TG
'
L
ZQC MODULES PAGE 15 .

1.5.5. Module ZIO
The ZIO module controls message display on the user display line of frame windows, and message
handling to external devices via the RS-232 port. - o

1.5.6. Module ZUser
The ZUser module contains procedures wkhich control the messages sent to the User Display

Window, and the windows themselves.

WrUsrDsp Write a single character to the User Display Window. o

CirUsrDsp Cilear the User Display Line and Window, clearing all the user display data :',-;'

structures. ‘Z;‘-..

DspUsrDsp Change windows to the Full Screen User Display window, and display the last

screen-full of error messages. -

DspFlIsrDsp Display the last User Display Window-full of (error) messages in the (small) User }

Display Window. L

InitUser Allocate memory for user display routines

InitUsrDsp Initialize all the variables for the User Display :

1.5.7. Module ZWind

The ZWind Module performs the task of managing the ZOG frames in their separate windows with e

the following EXPORTed procedures. Lo

XChange Change current window (to the other window) (taw action) o

SetWind Set the name of the frame, global pads frame and the selection character used to S
get there into current window record

DspWind (Re)Display the frame in the current window; this is also used to leave the full- e

screen user display "o

RdFWind Read a frame into the current window frame record; in general, a backup stack .

entry shouid be pushed before this is called ,

OpnWind Open the frame: in the current window (lock the record and read it in) (presumably d

for subsequent modification) P

InitWind initialize the vatiables in ZWind

LY

RelnitWind Reinitialize window records for newly logged-in user :';:j

1.6. Action Processing Modules

RCMERC AN S S S M Ml Bl Sl St A Moo RO Sl wlial' ittt nieah sl Abolt Sas a7 o o S0 LA A A A S MMM AR S it Sl Aaie - dihe A fe RInibiat M Aiie serit aa abes b e TR gLl TR ST g

£0G MODULES PAGE 16

1.6.1. ZAl.cticn

1.6.1.1 Window Utilities

SetUserLine Set the User Display line number

ExpandBig Expand the current frame to a big Frame

ShrinkBig Change the current big frame to a normal two window display
DispFr Redisplay frame in current window

1.6.1.2 Subnet Utllities

TopOtSubnet Go to the top frame in the current subnet

SetlnitFr Set the name stored in top.frame. Top.frame used to be the t top frame displayed
at login

SetFrFile Write a frameid to a specified file

GoToFrame go to a specified frame

TopFrOfNet Go to the frame listed in top.frame

Pop Pop a frame from the current windows backup stack

CntiASel main selection routine for processing tA actions

1.6.2. Module ZAction:

InitAction Initializes data structures for Control-D actions and for the Video disk modules

XAction Causes the given action command to be executed by dispatching it to the
appropriate Module Procedure

ProActStr Parses the given string into action commands, then passes the command to

XAction for execution

ProAction Removes individual strings from an action string record, then passes these to
ProActStr for eventual execution

GAction Given a control character input by the user, obtains the rest of the action
command and optional action arguments, then causes them to be executed

o 1.6.3. Module ZActUtils:
o This module contains a number of utilities for the action processing modules.

N - CvFid Returns valid frame id from user-input string

N? CvSid Returns valid Subnet Id from user-input string

:f* CvFile Returns a filename from user-input string

E _ GFidUsr Issues prompt to user for frame id, and returns frame id
;" GSidUsr Issues prompt to user for Subnet Id, and returns subnet id
IE GFileUsr Issues prompt to user for filename, and returns it

P
o .t

W T T T TR T T T TN T W R W T SR T W W W WO W T e TTROL W T W T TR T T e TR RO TR AT R TR T RTTRTT R TR T T RN T RT T] R T e TT ATR W T

£2G MODULES PAGE 17
TExitAction Returns true if current frame has an exit action
GetAction Returns action string record from selection pointer
DoAction Causes the given action string to be executed
1.6.4. ZBAction
e Comment : Writes the contents of a frame comment area to the user display
« CisFile : Close a file
* PosCursor : Position the cursor to a specified row and coiumn '
o OpninFile : Open a file for input (read only)
o OpnQOutFile : Open a file for output (write only)
i
e PrintChar : Print a char in front of a given option f
o ChangeTerm : Change the type of terminal that ZOG will send its output to :
¢ CntiBSel : main routine to process tB actions f-
1.6.5. ZDAction)
1.6.5.1 InitDAct : Initialize the variable for ZDaction
1.6.5.2 A - | command procedures : procedures for tD actions :
AddOwner Add an owner to the current frame
ClearSn Clear a given subnet :
CrFrame Create a new frame with a given frameid t
CrSubnet Create a new subnet E
EditFrame Invoke the Zog editor (Zed) L
EraseFrame Erase a given frame .
A
FProtect Set the protection for a frame $
Info Write the frame header info to the user display and highlight any differences :
between the current frame and the old frame /
.
1.6.5.3J - Zcommmand procedures : procedure for tD actions)
e Play : Play back a script ‘
u‘
¢ PbRecord : Record a script f

o ShowStats : Display the status of a given perq in the user display

i Al S Sl T Sk et ML I A A et tiabe et et St iint A e et St Rt st Sest Slane Nav Seit Mas dhon o e olfan s & o i ore S v pae i ol 4its]

290G MODULES PAGE 18 j.

¢ ShowAlIStats :Display the status of all the Pergs in the user display
» SlotEditFrame : Invoke the slot editor (Sled)
o WrFrBh : Write a frame in BH format i

o WrSNetBh : Write a subnet in BH format
1.6.5.4 CntiDSe! : main routine to process tD actions

1.6.6. ZEAction

¢ PrintFile : Send a file to the print server .

e ZScreenDump : Send a copy of the current screen image to the print server

o CntlESel : main routine to process tE actions .
1.7. Exernal Device and Utility 170 k
1.7.1. UEI

1.7.1.1 Utilities

¢ UElActivate : Activate the Universal External Interface controlier
o UEIDeActivate : DeActivate the Universal External Interface controller
e UEIEcho : Display/Don't display command

e UEIBeginStack : Clear the video stack

o T Y

¢ UEIEndStack : Termainate the command stack

o UEIReset : Reset the Universal External Interface controller

1.7.1.2 Video commands r

¢ Disk control commands
e Auxillary commands

¢ Programming Commands

s

L T T . AL
-.1-‘1-,‘-“ A =% ey . AL AP R
e T e e e e L Lt e e e e N
AR WS YUY W, LU, U, o

.............

. PRI [T N o s e
ISR TIPS W AT P S PR G I G S S T S ARy YT AR G & I

g AE TR N T RARA MG ANCIMCNE M SALURAS AP et B S UL S R O S A AL R S A it e Al Saf Mafl Vol aull sl Ak Al Sal ufl Uad val pal sall can Lo sl sk ool Dok Gl Vol

£0G MODULES PAGE 19

1.7.1.3 Utility commands
1.7.2.ZBHIO_

1.7.3. ZVideo

1.8. Poliing Routines for Statistics or AirPian

o ZPolISnap
e ZPoll
e ZPollProc

e ZPollAir

1.9. Statistics Gathering
e StatsDefs

o StatsLib
e ZPutStats
e ZSnapShot

e ZStats

1.10. Miscellaneous Utilities

¢ ZDump

e ZError
¢ Zl ogFile

e ZTrace

2.Z0G Netserver Modules

These modules provide access to subnets and frarnes anywhere within the Z0G net, i.e., on both
the local PERQ and on any other PERQ linked to the local PERQ by the EtherNet. They are accessed
_ from the basic ZOG systen: via procedures in module NetHandl, which accesses the rest through
{f»’ ZAccessProcs.

® E10Types

LI e T . R e e T AP
........... - Tat s - - . AT et e
. - - < >

" '\"\‘.b'.".\-“-:“..‘-"..'. LR A ‘.'-_'. C T e L N ST x'(,-.,'-l“'-:_'p S e e L .
AP SRR SP ISP SRR R T N L P WL PR PN P VT, P T o L O RO AL AT S R AR

L A M A AR A o Rl Sadbi A e o AP o et U BARL R B B Rl LRl iRl Rl 2 el ol A DR R YRR S S N RSl A A T Ga - e U W A YR U M iy U ie Y b S A S A N A M B T

£0G MODULES PAGE 20

® ZAccessProcs
® NetServ

® ZNet

* ZEint

® ZNetServer

® ZNetProcs

® Z0GMsg

® 20GMegDefs

® ZOGNetServer

2.1.E10Types
This module contains all valid Ethernet type fields used by PERQ software. This file is meant to be
used as an include file. ,

2.2. ZAccessProcs |
Most ZAccessProcs routines provide an interface between higher level routines (i.e. those in a

NetHandl) which make requests to access or modify a frame or subnet, and lower level routines (i.e.

those in NetServ and ZNet) which perform the actual accessing of the frames and subnets. The other

routines in ZAccessProcs, the login/logout and utility routines, are themselves iow level routines.

All routines in Module ZAccessProcs return an integer value declared as type GeneralReturn in
Module NetDefs. This integer value represents either Success, or a value for some type of failure (
signal. These signals and the integer value for success can be found declared as constants in Module
NetDefs.

.~ v 3B

The routines in Module ZAccessProcs have been broken into five categories to coincide with their
calling routines in Module NetHandl: :

» Frame Access Routines

® Frame Modification Routines

5 T~

© Subnet Access Routines

& Utility Routines

TP T T TS T T T T T e T T T e T e T e T U T e T TR T T R TR T R TRV LTS TRGT R TR T TR R R TR TN COTR T T T T T

20G MODULES PAGE 21

® Zog and Agent, Login/Logout Routines

2.2.1. Frame Access Routines

‘ n These routines provide an interface between higher level and lower level frame access (view,
create, delete) routines. Although doing very different things, they use very much the same method in
locating a subnet or frame. This is detailed in Functions ReadFrame, ReadHeader, OpenFrame, and
CloseFrame. The functicns call the appropriate functions in either Module NetServ, for local frames
and subnets, or routines in Module ZNet for accessing frames and subnets on a remote machine.

These Functions will return success to the calling routine in Module NetHandl if successful.

2.2.1.1 Function ReadFrame
i ReadFrame will read a frame locally if possible. Otherwise, it scans the local server database to find
| any primary or secondary node which is up, and sends a request to that node. If none are listed as up
in the iocal server database, it probes @ach of the primary and secondary nodes to find one which is

up. if it finds one, the server data hase is updated and the request is forwarded. The routine returns

R . success if it is able to read the frame specified. Otherwise, it returns any of a number of failure
o }‘ signals. it proceeds as follows:
2.2.1.1.1 Calls Function ZAccessProcs.CheckServer to make sure the request for a frame
. comes from a logged in user.
2.2.1.1.2 Calls Function ZogNetServer.GetSnRacord which hashes into the local subnet
database for the record. If the record is not represented locally, thg routine
, n searches in the subnet index of the master node. if tha record is found, it is
added to the local subnet database. An attempt is made to open the file if it is on
the iocal disk.
2.2.1.1.3 If the Current node has the primary copy of this subnet, then read the frame thru

a call to Function NetServ.RdF ~.

o If the Primary copy of the subnet is on a remote machine, call Function ZNet.ZReadFrame

e ‘o read the frame from a remote machine. If ZReadFrame returns unsuccessfully, call

. Function ZogNetServer.Probe to see if the Primary node is actually up. If successful, call
Function ZNet.ZReadFrame again, tc read the frame from the remote machine.

o If there is no success reading from the primary node, ReadFrame next checks to see if
the current node has a secondary copy of the subnet. If it does, ReadFrame calls
- Function NetServ.RdF - to read. Otherwise, it checks the remainder of the secondary
- nodes in the same fashion as it did for the primary node, looking for one that is up, so that
a call to Function Znet.ZReadFrame can read the frame from a remote machine.

LR R

A A YA A araL L L NP R e B A AT A A N N P S)

PAGE 22

e In the event that the primary and secondary nodes are all not up, then ReadFrame returns
the signal - SigFrUnavailable.

2.2.1.2 Call ZAccessProcs.ReadHeader
After initializing the global variables neecded to access the network (and returning an error if
something was amiss), ReadHeader will attempt to locate the subnet that contains the frame. Then, it

will try to read the frame header:
2.2.1.2.1 lf{ the subnet does not exist, return an error.

2.2.1.2.2 If the current machine contains the primary copy of the subnet, call
NetServ.RdFH - to obtain the header and exit

2.2.1.2.2.1 NetServ.RdFH -

e Test to see if the subnet exists on the local machine. If not, there is an inconsistency in
the subnet indexes. Return an error.

o Calculate the page number of the first frame. There are 10 pages/frame so this is easy.
e Turn off ethernet interrupts before reading from the disk.

e Read in the page header.

e Turn interrupts back on.

e |f the first byte is null, the frame does not exist. Return an error.

e Parse the frame into the frame record.

o If the frame is protected, return an error.

e Return success.

2.2.1.2.3 If the remote host is listed as being 'up’, call ZNet.ZReadHeader to read it from a

remote machine and exit if successful,

2.2.1.2.3.1 ZNet.ZReadHeader
Note: The foliowing algorithm is repeated a maximum of 'MaxRetries’ (3) times.

©® Recast the ZOG message buffers as ReadHeader message buffers.
® Load up the parameters of the message buffers.
@ Cal! ZOGMsg.SndRcvRecord to send the message over the Ethernet.

o If the returned status was not success, repeat.

..... .
......
. L PR .

e P A I LN P - AT ot e e T T e
PO T P LS T LT e e R e
A I A I P L R T R AP T T T W NP O A AP LR . P YR T o

R aC i e At A e A L St il Rl el i Tl Sl "l o Ha R Y A o SR R A AR M T 4 20 N e b U v e IR ia M Wy 0 B 0 R S L G0 I P B
.

£0G MODULES PAGE 23

® If the message bufler cuntains an error, repeat.
o Call ZOGMsg . ReceiveBuffer to get the header page.
@ Calis Function ZogMsg.ReceiveButfer to get the irame body.

o if that failed, repeat the initial request.
2.2.1.2.3.1.1 Recast the ZOG message buffers as ReadHeader message buffers.
2.2.1.2.3.1.2 Load up the parameters of the message buffers.

2.2.1.2.3.1.3 Call ZOGMsg.SndRcvRecord to send the message over the Ethernet.
SndRcvRecord does a synchronous send/receive pair between two machines connected by the
EtherNet. The routine sends a message across the EtherNet and waits (with a timeout) for a reply.

Errors are returned accordingly.

The messages generated by SndRcvRecord cause EtherNet exceptions to be raised on the local
(sending) machine and target (receiving) machine, and these then raise the 'Ei10ReceiveDone’
exception, focally and within ZOG. The local E10RecieveDone handler of SndRcvRecord handles the
acknowlegement and reply of the target machine to the local machine. The E10RecieveDone handler
at the ZOG system (in Module Zog) level handles the receiving of the request of the sending machine

and processing it.

2.2.1.2.3.1.3.1 ZOG.E1ORe_ceiveDone
The EtherNet exception handler in ZOG is invoked when a remote machine sends the current

machine a message. This exception handler contains nested handlers to protect ZOG from dying
when additional messages are received while ZOG is processing ethernet messages.

2.2.1.2.3.1.3.1.1 Change the mouse image to the holiow arrow. This is purely cosmetic.

2.2.1.2.3.1.3.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If an error occurs,
ignore the message. The other machine will resend it if it is important

enough.

2.2.1.2.3.1.3.1.2.1 Function ZOGMsg.HandleMsg
This is a boolean function that returns true if there is a valid ZOG request. The message is taken
from EtherNet packet form and put into a ZOG message record that must be handled. It returns false

for those messages not of the ZOG record protocol. It does the following:

¢ Check to see if there is a legal ZOG record message.

:'r:-"—\h'.“"ﬁ"f-"":‘- RGN G Al UC A bR S AR AU A S TGRS e Y e Rt Al Vit VR il vpua v i buis e va iurale Sl e onia and v it el eid okt i el Sl S R Ae 0]
. .

£9G MODULES ' PAGE 24

o If the message received is a request for a probe, and machine names maltch, then send a
probe reply. Thus, the probe is handled right here and HandleMsg returns false.

o If the message is an acknowledgement then return a value of false. These are ignored at
this levei to avoid infinite loops that can occur with two machines that get out of
synchronization and begin sending Ack messages back and forth.

o Otherwise, send an acknowledgement to the sending machine and transfer the received
message from the buffer to a ZogMsgPTyp and return true.

2.2.1.2.3.1.3.1.3 Pass the message buffers to ZNetServer.ZNetServer for processing.

Module ZNetServer is the counterpart of Module NetHand! on the remote machine. It invokes the
local routines which will return the necessary data. It is simply a case statement which uses the input
message id to determine which routine should be called. In this example, it will call Procedure
ZNetServer. XZReadHeader.

2.2.1.2.3.1.3.1.3.1 Procedure ZNetServer.XZReadHeader.

XZReadHeader is the 2quivalent, on the remote machine, to Procedure NetHandl.RdFH on the local
machine. lts method is very differnt from that of Procedure NetHandl.RdFH because of the fact that it
must perform its task on a remote machine. Notice, however, that both call Procedure NetServ.RdFH_

to do the low level reading of the frame. It does the following:

2.2.1.2.3.1.3.1.3.1.1 Recasts variables local to the Procedure as ethernet request and

reply types,

2.2.1.2.3.1.3.1.3.1.2 Calls Function ZNetProcs.ZReadHeader to load the header block
into the message buffer
ZNetProcs is the counterpart to ZAccessProcs and handles access on a remote machine. For
details on NetServ.RdFH_see p. 22.

¢ Verifies that the subnet exists, via a call to Function ZogNetServer.Chk.- SnRecord.
ChkSnRecord is very similar to GetSnRecord, except that the subnet information passed
along with the request is assumed to be correct. This eliminates the need to request it
from the MasterNodes Subnet Index. So only the local subnet index needs to be
examined to make sure that the information is correct.

o Ctherwise call NetServ.RdFH - to load the buffer with the frame header block.

2.2.1.2.3.1.3.1.3.1.3 Calis Function ZogMsg.SendRecord to send a reply to the sending

machine.
Sends a record to a remote machine and waits for an acknowledgement of receipt of the record.

hA

£0G MODULES PAGE 23

2.2.1.2.3.1.3.1.3.1.3.1 Sets addresses to be correct, in various records, so that the

record can be received on the remote machine.

2.2.1.2.3.1.3.1.3.1.3.2 Resend Loop

At this point the SendRecord enters a loop tc send a request to the other machine, saying, "Waell,
Go ahead". The ioop will attempt to send the request a maximum of NumberResends times (5). To
send the request, first the ethernet interrupts are turned off. Next, a call is made to Procedure
Ether10iC.E10WIO which starts an EtherNet |70 operation and waits for it to complete. In this case,
information is being sent, so E10WIO makes sure the information is sent cver the EtherNet,

2.2.1.2.3.1.3.1.3.1.3.3 If an error is detected in sending the message, then exit
SendRecord. Ctherwise, set the EtherNet Handier State to
indicate that the local machine is walting for the
acknowledgement from the remote machine (SWaitAck) and turn
on the EtherNet interrupts.

2.2.1.2.3.1.2.1.3.1.3.4 Got Acknowledgement Time-Controlled Loap

If the acknowledgement is received by the machine sending the message, an interrupi is generated,
causing an exception to be raised by the EtherNet MicroCode, thus invoking the local Handler
E10ReceiveDone. E10ReceiveDone sees that the EtherNet Handler State indicates that the local
machine is waiting for an acknowledgement (SwaitAck), and signals acknowledgement by assigning
the EtherNet Handler State to be that of 'Got the Acknowledgement’ (SGotAck). If the
acknowledgement is received, exit SendRecord. ’

2.2.1.2.3.1.3.1.3.1.3.5 lf after five attempts no acknowledgement is received from the

remote machine, then exit SendRecord with an error.
2.2,1.2.3.1.3.1.3.1.4 Calls Function ZogMsg.SendBuffer to send the actual frame header.

2.2.1.2.3.1.3.1.3.1.4.1 I PgCni = O then exit SendBuffer successfully. The bufferis
empty, and nothing is sent.

2.2.1.2.3.1.3.1.3.1.4.2 Set the Ethernet Handler State to indicate that this machine would
like to go ahead and send a buffer {SWaitGo).

v v e v
F N W4

R

PRV

LIRS
0

L L U AV ST S A B R) B e S L T T R N I R R Y

z

£0G MORULES PAGE 26 \

2.2.1.2.3.1.3.1.3.1.4.3 Wait for Go Ahead Time-Controlled Loop
At this point a time controlled loop is entered, and its purpose is to wait for an interrupt which
indicates that' it is all right to send the first buffer. If the interrupt occurs, the local handier B

n

E10ReceiveDone is invoked and acknowledgement is sent to the remcte machine. If this
acknowledgement is sent successfully, the EtherNet Handler State is set to indicate 'Go Ahead and
Send the First Buffer' (SSendFirst). Otherwise, the handler is exited, leaving the Ethernet Handler

State in the original state.

2.2.1.2.3.1.3.1.3.1.4.4 Set up records with correct addresses to send first buffer.

2.2,1.2.3.1.3.1.3.1.4.5 Resend Loop ,:

e Assurnes initially that only one page is being sent and puts that page into the buffer to be
sent.

e Checks to see if there is more than one page to transfer. If so, sets the buffer page size to
two and puts the second page in the buffer.

e Turns the Ethernet interrupts off and sends the Zoy Buffer Packet with a call to
Procedure Ether1010.E10WIQ. If sent successfully, sets the EtherNet Handler State to be
that of 'Waiting for a Buffer-Received Acknowledgement' (SWaitBufAck) and turns
Ethernet interrupts on. Otherwise, exits SendBuffer with an error.

2.2,1.2.3.1.3.1.3.1.4.6 Buffer Received Acknowledgement Time-Controlled Loop .

At this point, again another time-controlied loop is entered. This time it is waiting for an interrupt
indicating that the buffer was sent. If that interrupt occurs, the local handler E10ReceiveDone is
invoked. It first examines the acknowledgement from the machine that received the buffer, for

)

correctness. If the acknowledgement is correct and if all the information has been sent, the EtherNet

Handler State is set to indicate that ali has been sent (SSentAll) and the handler is exited. Otherwise,
the handier attempts (only once) to send the next buffer itself, in the same fashion as SendBuffer. "
2.2.,1.2.3.1.3.1.3.1.4.7 If after five attempts the buffer has nct been sent, then exit -
SendBuffer with an error.
2.2.1.2.3.1.3.1.3.1.5 Calls Function ZogMsg.SendBuffer to send the actual frame body. :l;
2.2.1.2.3.1.3.1.4 Clean up the mouse image and anything else if necessary. - ~
:

N . . . - 4'-4 . .-. .‘r. . o "‘- . X) . .- '. ----- . ‘—. ',.. e —~< . s o . N . - . .

R L. oo . R S SR ., e T e T T T RN . L
- - “ . -~ N - - . - - . » " - - . - . - v n~ . - - - .t - CE Y a e

PN WA WP TR DN TR I S N S W DA P W WL GV W P WO WY WO S SR W o T R P, WAL U WAL WA WA AL WAL P W Wy

£0G MORULES PAGE 27

2.2.1.2.3.1.3.2 Function ZOGMsg.SndRcvRecord.

2.2.1.2.3.1.3.2.1 Establishes a time dsadline for receipt of the reply record from tive
target machine.

2.2.1.2.3.1.3.2.2 Sets up several records to be sent over the ethernet, by the local
machine. These are recast as ZogMsgPTyp’s.

2.2.1.2.3.1.3.2.3 Resend Loop

At this point SndRcvRecord enters a loop to send the request for inforniation tn the target machine.
The locp will attempt to send the request a maximum of NumberResends tirmes (5). To send the
request, first the ethernet interrupts are turned off. Next, a call is made to Procedure
Ether1010.E10WIO which starts an EtherNet {/O operation and waits for it to complete. In this case,
information is being sent, so E10WVIO makes sure the information is sent over the EtherNet.

2.2.1.2.3.1.3.2.4 f an error Is detected in sending the message, then exit SndRcvRecord.
Otherwise, set the EtherNet Handler State to indicate that the local
machine is waiting for the acknowledgement from the remote machine

and turn on the EtherNet interrupts.

2.2.1.2.3.1.3.2.5 Wait Reply Time-Controlled ioop.
A time controlled loop is simply a loop that terminates atfter a certain period of time. This is here so
that the local machine can wait for an acknowlegement from the target machine, saying that it has

raceived the request for information.

It the acknowledgement is received by the iocal machine, an interrupt is generated, causing an
exception to be raised by the EtherNet MicroCode, thus invoking the local Hanaler E10ReceiveDone.
E10ReceiveDone sees that the EthcrNet Handler State indicates that the local machine is waiting for
an acknowledgement (SwaitSndAck), and sigrals acknowiedgement by assigning the EtherNet
Handler State to be tivat of waiting for a reply (SWaitReply). If the acknowledgement has been
received, exit the resend loop. Otherwise, continue to attempt to send the message, up to five times.
and exit with an error if an acknowledgement is never received.

2.2.1.2.3.1.3.2.6 Got Reply Time-Controlled Loop
When an acknowledgement is received, annther time controlled ioop is antered, waiting for an
interrupt which will again invoke the local handler E10ReceiveDone. This time, the Ethernet Handler

State is indicating that the local machine is waiting for a repiy (SWaitReply). I the exception is raised,
E10ReceiveDone sets up the acknowledgement packet and the packet of information te be recieved.

R B TR

L T B W

1

. T 1 r v v e« a

BUARNS. AR I At " o i A i v B e g e i e i o i iR gedu e gl aon ead sk mak Tt to it vodrn pia il ot S T MM oA M G atih A A A

£0G MODULES PAGE 28

It then assigns the EtherNet Handler State to be that of 'Got the Reply' (SGotReply). At this point,
SndRcvRecord -will exit successfully,

2.2.1.2.3.1.3.2.7 TimeOut.
2.2.1.2.3.1.4 H.ihe returned status was not success, repeat.
2.2.1.2.3.1.5 It tha message buffer contains an error, repsat.

2.2.1.2.3.1.6 Call Z0OGMsg.ReceiveBuffzr to get header page
ReceiveBuffer waits for a buffer from a remote machine connected by the GthorNet.

2.2.1.2.3.1.6.1 Function ZogMsg.ReceiveBuffer.

2,2.1.2.3.1.6.1.11f PgCnt = O then exit ReceiveBuffer successfully. The buffer is empty,
and nothing is sent,

2.2.1.2.3.1.6.1.2 Sets up several records to send an acknowledgement to the remote
machine. This will acknowledge the ‘Go Ahead’ message sent by the
remote machine during its synchronized execution of Function
ZogMsg.SendBuftfer. In essence, the local machine is saying, 'Go ahead

and send me the information | requested, | am ready to receive it'.

2.2.1.2.3.1.6.1.3 Resend Loop.

At this point ReceiveBuffer enters a loop to send the acknowledgement from the local machine
(which originally requested the information) to the remote machine (the machine sending the
information), teliing it to send the information that was requested (Go Ahead). it will attempt to send
the acknowledgement NumberResends times (5). Each time it attempts to send the
acknowledgement, it will enier a time-controlled loop to see if the acknowledgement sent was
received by the remote machine. If an error occurs in sending the acknowledgement, then control
exits ReceiveBuffer with an error. Otherwise, the EtherNet Hardler State is set to indicate that we are
ready to receive the information (SWaitGoAck). We then enter the Go Ahead Time-controlied loop

a

(mentioned above} to wait for an interrupt to begin receiving.

2.2.1.2.3.1.6.1.4 Go Ahead Time-Controlled Loop.

Aler the acknowledgement is cent, the Go Ahead Time-Controlied Loop beyins. Here, the machine
which requested the information is waiting for an interrupt so that it can begin rcceiving information. I
the interrupt occurs, an exception is raised and the local handler E10ReceiveDone is invoked. Inside
the handler, another buffer, acknowledging the receipt cf the buifer, is prepated, so that it can Le sent

‘faT

[|

R}

[95 SO

£0G MGDULES FAGE 29

vhien the buffer is received. Finally, the Ethernet Handler State is changed to indicate thar the

machine will be receiving information (SReceiving).

Noie: It is conceivable that the acknowledgement could be sent so quickly that a second interrupt
could be generated before entering this loop. This is not likely, but if it does occur, the butfer will have
been received before this tima-controlied loop, in the handier, and the ethernet handler state will have

been updated to indicate that the machine has gotten all the information (SGetAll).

2.2.1.2.3.1.€.1.5 If the interrupt is not generated, another atternpt is made at sending the
Go Ahead Acknowledgement. As usual, there are five attempts.

2.2.1.2.3.1.6.1.6 Wait Receive Time-Contolled Loop.

A this point the receiving machine enters a time-controlled loop to begin waiting for an interrupt
indicating that the information requested has arrived. If that interrupt occurs, an exception is raised
and the local handler E1UReceiveDone is again invoked, with the Ethernet Handler State being
SReceiving. Inside the handler, a check is made to see that the information comes from the correct
source and that the page numbers are correct. Finally, after all this affort, the requested information is
transfered from the sending machine to the receiving machine and the receiving machine makes an
attempt to send an acknowiedgement to the sending machine. If the acknowledgement is not sent,

the handler doesn’t worry because the sending machine will time out.

Note : If the information was received in the first Time-Controlied loop, then the Ethernat Handler

State will reflect this and ReceiveBuffer will exit successfully.

2.2.1.2.3.1.6.1.7 If the interrunt was received, then the in‘ormation requesied will have
been received in the handier and the EtherNet Handler State will indicate
that all information has been received (SGotAll). in this case,
ReceveBuffer erits successfully. Otherwise, ReceiveBuftfer will timeout.

2.2.1.2.3.1.7 cCalis Function ZogMsg.ReceiveEuiier to get the frame body.

2.2.1.2.3.1.8 Hthat failed, repeat the initial request.

2.2.1.2.4 Eise, probe the remote machiue. If it responds, send the request and read the

header and exit if succossful.

L T e N T St e et L e e N
-~ DRI I P S R PO I P L R P T
. - b »
«

P T o a v B L -
e Bt ST T
- R AP TS T o v

LI -

- : ’. = .n -- e
TR T U WA ot

- “yE 1" _x

I s

R | A S]

Bl 2 oiF TN T K T S A

Tt Tl LT aTaTaTE Y T

e Y R 4

-2

- . - Ve

W LT e

s
DA R N I T e \ A,
N - e . e
» Mo e - -

[, > . 90 SRR T T T TR AT TR ST LT T T AT WL W RS R Hd W VR R LST W R HRRTEETTRART E RS AT TR AN T e R LR LR AT T T e T
gt .

£0G MODULES) PAGE 30 Oy
2.2.1.2.5 It the current machine has a backup copy, use NetServ.RdFH -
2.2.1.2.6 Else, try all of the other backup copies with ZNet.ZReadHeader.

2.2.1.2.7 Otherwise, give up and return an error.

2.2.1.3 Function ZNet.ZOpenFrame

Z0penFrame is designed to open a frame on a remote machine. It will attempt to
send the message three times to the remote machine before it gives up. The -

number three was chosen arbitrarily. It uses two pointer types, de-

2.2.1.3.1 Intializes Variables and increments retries to begin a makeshift loop using

labels.

AT |

2.2.1.3.2 The variabies, ocal to the module ZNet, OutMsgP and InMsgP, are recast as

~xrr

open frame request and reply pointer types, to be used as such.

2.2.1.3.3 Prepare the EtherNet request packet, through various assignments.
2.2.1.3.4 Function ZogMsg.SndRcvRecord
SndRcvRecord does a synchronous send/receive pair between two machines connected by the -
ethernet. The routine sends a message across the Ethernet and waits (with a timeout) for a reply. “
Errors are returned accordingly. (For details see p. 27) ‘
Y
The messages generated by SndRcvRecord cause ethernet exceptions to be raised on the local .-

(sending) machine and target (recieving) machine, and these then raise the 'E10ReceiveDone’ -~
exception, locally and within ZOG. The local E10RecieveDone handler of SndRcvRecord handles the
acknowlegement and reply of the target machine to the local machine. The E10RecieveDone handler
at the ZOG system (in Module Zog) level handles the receiving of the request of the sending machine

and processing it.

2.2.1.3.4.1 ZOG.E10ReceiveDone : o
The EtherNet exception handler in ZOG is invoked when a remote machine sends the current <
machine a message. This exception handler contains nested handlers to protect ZOG from dying

when additional messages are received while ZOG is processing ethernet messages.

....................
| P -

R TR Y T TW T8 T T Ty TR TR LW A TN e e e WM W v

£0G MODULES PAGE 31

2.2.1.3.4.1.1 Change the mouse image to the hollow arrow. This Is purely cosmetic.

2.2.1.3.4.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If an error occurs,
- .ignore the message. The other machine will resend it if it is important
enough.
For details on the inner workings of ZOGMsg.HandleMsg see p. 23.

2.2.1.3.4.1.3 Function ZNetServer.ZNetServer.

Module ZNetServer is the counterpart of Module NetHandl on the remote machine. It invokes the
local routines which will return the necessary data. It is simply a case statement which uses the input
message id to determine which routine should be called. In this example, it will call Procedure

ZNetServer.XZOpenFrame.

2.2.1.3.4.1.3.1 Procedure ZNetServer.XZOpenFrame.

XZOpenFrame is the equivalent, on the remote machine, to Procedure NetHandl.OpnF on the local
machine. Its method is very differnt from that of Procedure NetHandl.OpnF because of the fact that it
must perform its task on a remote machine. it is impottant to notice, that both will call Procedure
NetServ.OpnF_to do the low level reading of the frame.

2.2.1.3.4.1.3.1.1 Recast variables local to the Procedure to be ethernet request and reply

types.

2.2.1.3.4.1.3.1.2 Function ZNetProcs.ZOpenFrame.
ZNetProcs is the counterpart to ZAccessProcs and handles access on a remote machine.

2.2.1.3.4.1.3.1.2.1 Verifies that the subnet exists, via a call to Function
ZogNetServer.Chk- SnRecord. ChkSnRecord is very similar to
GetSnRecord, except that the subnet information passed along with
the request is assumed to be correct. This eliminates the need to
request it from the MasterNodes Subnet Index, so only the local
subnet index needs examined to make sure that the information is
correct. ChkSnRecord also opens the subnet by inserting it into the
local subnet index and making sure that the file exists.

2.2.1.3.4.1.3.1.2.2 Function NetServ.CpnF -~. . -
This function will open a frame for modification,lock it from access by other users, and read the
frame from the file.

e Calls Function NetServ.GOpnUser to see if the current user has another frame open. If

E I .. ARSI - AT ST R P A S

L\.‘_
e Z0G MODULES PAGE32
$0, exit with an error.
o Calls Function BaselLib.TSidValid to check for a valid Subnet id.
» Calls Function NetServ.GSnRec which obtains the subnet from the local subnet index.
,}_:I The subnet was put there during initalization or during the call to Function
" NetServ.OpnSn - from Function ZogNetServer. GetSnRecord.
B e If no errors have occured to this point, ethernet interrupts are turned off, via Procedure
ZEInt.EIntOff. Then the frame header is read into a buffer by a call to Procedure
: FileSystem.FSBIkRead, and the frame header butfer count is assigned (FHBCnt).
W
K j:f.': e Calls Function NetServ.GOpnFid to see if the current frame is already open. If so, the
, _‘~ ethernet interrupts are turned back on, via a call to ZEInt.EintOn, and this user cannot
access that frame.
; e Calls Function NetServ.CrOpnRec which adds another frame to the list of open frames
. (refered to as locking the frame).
A‘ e More
2.2.1.3.4.1.3.1.3 Calils Function ZogMsg.SendRecord to send a reply to the sending
5 o mchine.
For details on the inner workings of ZOGMsg.SendRecord see p. 24.
2.2.1.3.4.1.3.1.4 Calls Function ZogMsg.SendBuffer to send the actual frame he ader. |
For details of the inner workings of ZOGMsg.SendBuffer see p. 25.
2.2.1.3.4.1.3.1.5 Calls Function ZogMsg.SendBuffer to send the actual Frame body.
. !
2.2.1.3.4.1.4 Clean up the mouse image and anything else if necessary. ‘

. N 2.2.1.3.5 Calls Function ZogMsg.RecieveBuffer if the reply came back successfully to f
= recelve the frame header.

§ - For details on the inner workings of ZOGMsg.FieceiveBuffer see p. 28. ;
:'Jiij 2.2.1.3.6 Calls Function ZogMsg.ReceiveBuffer to receive the buffer containing the frame- .
*1.“; bOdy. ‘L
.

2.2.1.4 Function CreateFrame : Aliows the usar to create ANY specificd frame.

[ARa P Al WA i MR e il R PR i ot AR DS N et " e A ol ta it sl e o b ads ma B

490G MORULES PAGE33

<

2.2.1.5 Functlion CreateNextFrame : Allows user to create the noxt frame in a subnet

_ 2.2.1.6 Function ZAccessProcs.CloseFraine
' CloseFrame handies the closing of the frame on the primary machine and closing on a secdondary
machine with different routines. This will become evident in the description of CloseFrame which

follows;
n 2.2.1.6.1 Calls Function ZAccesssProcs.ChecklUser to make sure the user is currantly
logged in.
2.2.1.6.2 Calls Function ZogNetServer.GetSnLocal which hashes into the local subnet
index for the correct subnet and returns true if found. As mentioned, it checks
oy only the local subnet index because the frame should have been opened.
| 2.2.1.6.3 Checks the local servers table to make sure the primary node is up. If not listed
'.‘;'_F ac up, calls Function ZogNetServer.Probe to see if the primary node is actually
L
up. if so, the local servers table is updated. If not, exit with an error.
2.2.1.6.4 Checks to see if ali machines with secondary copies are up in the same manner
. as described above. If a secondary node is riot up then s3t to false an entry in
. the array SecUpcdate (An array repre- senting the status of of secondary
machines). 1
- i
n |
2.2.1.6.4.1 If the current machine contains the primary copy of the frame then call :
u Function NetServ.CisF~ to close the frame. !
2,2.1.6.4.1.1 Function NetServ.CisF ~
ClsF, is designed to write and close a frame of the primary copy of a subnet.
v 2.2.1.6.4.1.1.1 Calls FunctionNetServ.GOpnUser and assigns the value of the frame on
the open record list to a variable local to CisF ~.
- 2.2.1.6.4.1.1.2 Calls Procedure NetServ.SetModFH to set modification information of the
frame. Modification information includes a new version number, the user
. modifiying, date, time, and whether modification was performed by an
O agent.
X
L T e DR TS
p A BN WU Y. WY IR, T WP S S SO, UL RN Sl T s s b [y ML R ST T TS

£0G MODULES PAGE 34

2.2.1.6.4.1.1.3 Turn oft EtherNet interrupts, via Procedure ZEInt.EIntOt{. Calls Proc
cedure NetServ.WrFH to write the frame header to a buffer. Turn
" Eth- erNet interrrupts back on, via Procedure ZEInt.EintOn.

r.

2.2.1.6.4.1.1.4 Writes the header page arnd body pages of the modified frame to « file, via
Procedure FileSystem.FSBIkWrite. if the frame gets smaller, due to the
modification, a page of zeroes is written to the file to terminate the frame
body. If the frame became larger, calls Procedure NetSev. SetFileLen to o

update the file to the new number of pages in the frame body.

¢ Turns the EtherNet interrupts back on.

e Calls Procedure NetServ.ErOpnRec to remove the open frame record from the list of
open frames, thus unlocking the frame.)

o Lastly, prepare modification information to be added to the file Change. Log. The file
Change.Log stores information about every frame that is modified.

e Add Modification information to file Change.Log, via Procedure Baselib. AppStrFile.
AppStrFiie will append the string to the end of a file.

2.2.1.6.4.2 Otherwise, the primary copy resides on another machine and Function
ZNet.ZCloseFrame must be used to write and close the frame on a remote &

.

machine.

2.2.1.6.4.2.1 Function ZNet.ZCloseFrame. :
ZCloseFrame is designed to close a frame on a remote machine. It uses types, from Module
ZogMsgDefs, CIsFOPTyp as a close frame request packet, and ClsF1PTyp and CIsF2PTyp as close

)

¥
1

frame reply packets.
2.2.1.6.4.2.1.1 Initializes the local variables for loop using labels.

2.2.1.6.4.2.1.2 Recasts (restructures) the outgoing message (outMsg) and ingoing
message (InMsg) to frame request and reply packets.

2.2.1.6.4.2.1.3 Prepares the EtherNet Request packet. .)

2.2.1.6.4.2.1.4 Calls function ZogMsg.SndRcvRecord to send a request to close a frame °
on the remote machine and receive a reply to that request. If not
successful, then start all over, step 1.

(1.

.................................
..

L et e T T T e e S T
— AN U I S I I A A T T L S AL I A TP L I o S P

PR RO -
R I e I Y T R P N A N P . -t

- - - - . - - - - oYl T
L A T YA o T T Y

MG ORI AR AU AN ACA AU L SR A A AR AR IO DS R MR AL R MO A AR At

- ZOG MODU ES PAGE 35

2.2.1.6.4.2.1.4.1 Calls function ZogMsg.SndRcvRecord to send a request to close a frame
on the remote machine and receive a reply to that request. If not

- successful, then start all over, step 1.

2.2.1.6.4.2.1.4.1.1 Function ZogMsg.SndRcvRecord.

\ SndRcvRecord deoes a synchroncus send/receive pair between two machines connected by the
- ethernet (for details see p. 27). The routine sends a message across the Ethernet and waits (with a
m timeout) for a reply. Errors are returned accordingly. The messages generated by SndRcvRecord
' cause ethernet exceptions to be raised on the local (sending) machine and target (recieving)
machine, and these then raise the 'E10ReceiveDone’ exception, locally and within Z0G. The local
E10RecieveDone handler of SndRcvRecord handies the acknowlegement and reply of the target
machine to the local machine. The E10RecieveDone handler at the ZOG system (in Module Zog) level
handles the receiving of the request of the sending machine and processing it.

2.2.1.6.4.2.1.4.1.1.1 ZOG.E10ReceiveDone on the target machine receives the message.

- The EtherNet exception handler in ZOG is invoked when a remote machine sends the current
machine a message. This exception handler contains nested handlers to protect ZOG from dying
when additional messages are received while ZOG is processing ethernet messages. For details on

ZOGMsg.HandleMsg see p. 23.

2.2.1.6.4.2.1.4.1.1.1.1 Change the mouse image to the hollow arrow. This is purely

cosmetic.

2.2.1.6.4.2.1.4.1.1.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If anerror
,ﬂ occurs, ignore the message. The other machine will resend It if it

is important enough.

2.2.1.6.4.2.1.4.1.1.1.3 Pass the message buffers to Function ZNetServer.ZNetServer for
r processing.
' Module ZNetServer is the counterpart of Module NetHand! on the remote machine. It invokes the
tocal routines which will return the necessary data. It is simply & case statement which uses the input
message id to determine which rouﬁne should be called. In this example, it will call Procedure

ZNetServer.XZCloselFrame.

Procedure ZNetServer.XZCloseFrame.. XZCloseFramz is the equivalent, on the remote
machine, to Procedure NetHandl.CIsF on the local machine. Its method is very differnt {rom that of
Procedure NetHandl.CisF because of the fact that it must perform its task on a remote machine. it is
important to notice, that both will call Procedure NetServ.CIsF_to do the low level writing and closing

M L R L . . TR . B A .« w7

Z29G MODULES PAGE 36
of the frame.
Recast variables local to the Procedure to be ethernet request and reply types.

Calls Function ZogMsg.SendRecord to acknowledge receipt of the request to write and
close a frame. If not successful, exit XZCloseFrame erroneously.. Sends a record to a
remote machine and waits for an acknowledgement of receipt of the record. Sets addresses to be

correct, in various records, so that the record can be received on the remote machine.

Resend Loop. At this point the SendRecord enters a loop to send a request to the other machine,
saying, "Well, Go ahead". The loop will attempt to send the request a maximum of NumberResends
times (5). To send the request, first the ethernet interrupts are turned off. Next, a call is made to
Procedure Ether1010.E10WIO which starts an EtherNet |/0 operation and waits for it to complete. In
this case, information is being sent, so E10WIO makes sure the information is sent over the EtherNet.
If an error is detected in sending the message, then exit SendRecord. Otherwise, set the
EtherNet Handler State to indicate that the local machine is waiting for the
acknowledgement from the remote machine (SWaitAck) and turn on the EtherNet

interrupts.

Got Acknowledgement Time-Controlied Loop. if the acknowledgement is received by the
machine sending the message, an interrupt is generated, causing an exception to be raised by the
EtherNet MicroCode, thus invoking the local Handler E10ReceiveDone. Ei0ReceiveDone sees that
the EtherNet Handler State indicates that the local machine is waiting for an acknowledgement
(SwaitAck), and signals acknowledgemeni by assigning the EtherNet Handler State to be that of 'Got
the Acknowledgement’ (SGotAck). If the acknowledgement is received, exit SendRecord. If after
five attempts no acknowledgement is received from the remote machine, then exit

SendRecord with an error.

Calls Function ZogMsg.ReceiveBuffer to receive the frame body to be written. Again, If
unsuccessful, exit erroneously.. For details of the inner workings of ZOGMsg.ReceiveBuffer see
p. 28.)

Calis Function ZNetProcs.ZCloseFrame to write and close the frame on machine where

the frame exists.. For details on NetServ.CIsF_see p. 33.

¢ Calls Function ZogNetServer.GetSnLocal, which checks the local subnet index for the
subnet contairing the frame. Since ZCloseFrame is called only from the machine
containing the primary copy of the frame, this is merely a double check to make sure the

20G MODULES PACE 37

frame is indeed there.

o Calls Function NetServ.CIsF - to de the actual low level writing and clos- ing of the frame.
Calls Function ZogMsg.SendRecord to send an acknowledgement to the machine sending

the frame body, indicating the frame body was received.

Calls Function ZogMsg.SendBuffer to send frame header information back to the
sending machine. Again, if unsuccessful exit erroneously.. If PgCnt = O then exit
SendBuffer successfully, The buffer is empty, and nothing is sent. Set the Ethernet
Handier State to indicate that this machine would like to go ahead and send a buffer

(SWaitGo).

Wait for Go Ahead Time-Controlled Loop. At this point a time controlled locp s entered, and its
purpose is to wait for an interrupt which indicates that it is all right to send the first buffer. If the
interrupt occurs, the local handler E10ReceiveDone is invoked and acknowledgementi is sent to the
remote machine. If this acknowledgement is sent successfully, the EtherNet Handler State is set to
indicate 'Go Ahead and Send the First Buffer' (SSendFirst). Otherwise, the handler is exited, leaving
the Ethernet Handier State in the original state. Set up records with correct addresses to send

first buffer.

Resend Loop.

e Assumes initially that only one page is being sent and puts that page into the buffer to be
sent.

¢ Checks to see if there is more than one page to transfer. If so, sets the buffer page size to
two and puts the second page in the buffer.

e Turns the Ethernet interrupts off and sends the Zog Buffer Packet with a call to
Procedure Ether10I0.E10WIOQ. If sent successfully, sets the EtherNet Handler State to be
that of 'Waiting for a Buffer-Received Acknowledgement' (SWaitBufAck) and turns
Ethernet interrupts on. Otherwise, exits SendBuffer with an error.

Butfer Received Acknowledgement Time-Controlivd Loop. At this point, again another time:
controlled loop i3 entered. This time it is waiting for an interrupt indicating that the buffer was sent. If
that interrupt occurs, the lccal handier E10ReceiveDone is invoked. It first examines - the
acknowledgement from the machine that received the buffer, for correctness. If the
acknowledgement is zorrect and if all the information has been sent, the EtherNet Handler State is set
to indicate that all has been sent (SSentAll) and the handler is exited. Otherwise, the handler attempts

(only once) to send the next buffer itself, in the same fashion as SendBuffer. If after five attempts

£0G MODULES ' PAGE 38

the butfer has not been sent, then exit SendBuifer with an error,
2.2,1.6.4.2.1.4.1.1.1.4 Clean up the mouse image and anything else if necessary.

2.2.1.6.4.2.1.5 It successtul, call function ZogMsg.SendBuffer to send the frame body to
the remote machine. If not successtul, then start all over at step 1.

For detials on the inner workings of ZOGMsg.SendBuftfer see p. 28.

2.2.1.6.4.2.1.6 If SendBuffer was successful then calls Function ZogMsg.ReceiveRecord
to receive the acknowledgement sent by the machine which received the

frame body. If unsuccessful, start all over from step 1.

2.2.1.6.4.2.1.6.1 Function ZogMsg.ReceiveRecord.
ReceiveRecord receives a record from another machine. It is used only in CloseFrame function of
Zog, because there are more acknowledgements that the SndRcvRecord can handie in closing a

frame.

2.2.1.6.4.2.1.6.1.1 Sets the address from where the message should be received.

2.2.1.6.4.2.1.6.1.2 Sets the EtherNet Handler State to indicate that the sending machine
is waiting for a reply (SWaitRcv).

2,2.1.6.4.2.1.6.1.3 Got Reply Time-Controlled Loop.

At this point the procedure will enter a time controlled loop waiting for an interrupt which will again
invoke the local handler E10ReceiveDone. This time, the Ethernet Handler State is indicating that the
local machine is waiting for a reply {SWaitRev). If the exception is raised E10ReceiveDone assigns
the EtherNet Handler State to be that of 'Got the Reply' (SGotRev). At this point, ReceiveRecord will

exit successfully.

2.2.1.6.4.2.1.6.1.4 If the interrupt is never received, RaceiveRecord will time out.

2.2.1.6.4.2.1.7 If the acknowledgement is received, calls Function ZogMsg.ReceiveBuifer
to obtain the updated frame header information of the frame that was

closed.
For details on the inner workir.gs of ZOGMsg.ReceiveBuffer see p. 25.

e

%0G MODULES PAGE 39

2.2.1.6.4.3 Following this, Each secondary copy of the frame is updated. If the current
machine has a secondary copy then, calls Function NetServ.Update to write

and close the secondary copy.

2.2.1.6.4.3.1 Function NetServ.Update
UpDate is called only in the event that the current machine has a sec- ondary copy of the subnet of
the frame. Itis very similar to Function NetServ.ClsF_ with the exception to the following two items;

o In the beginning, It must obtain its subnet information from the local subnet index instead
of the list of open frames. This is because the primary copy has been written and closed,
and the open frame record has been removed from the iist of open records.

o Lastly, this information is not added to the file Change.Log, because it lists only what
frames have been modified, not each individual frame and backup copy modified.

2.2.1.6.4.4 If the secondary copy belongs on a remote machine then calls Function
ZNet.ZCloseFrame. Remember, a frame can have capies on as many machines

as the creator of the subnet specifiad.

2.2.1.6.4.5 it there were no secondary update failures (all secondary machines were up),

then CloseFrame was successful and exit.

2.2.1.6.4.6 Otherwise, calls the nested Procedure
ZAccessProcs.CloseFrame.SavSecUp- date. This wili store is file sec.update
the frame number,subnet iD, version number, date, time, curusername and a
list of machine names (server names) of those secondary updates which
failed.

2.2.1.7 Function QuitFrame : Closes a frame, but will not write to frame.
2.2.1.8 Function EraseFrame : Deletes a frame.

2.2.2. Frame Modification Routines.

Frame Modification routines modify existing frames. These routines follow the same form as the
Frame Access Routines, in terms of locating the subnet of a frame. That is, calling routines in Modulé
NetServ for modifying a local frame and calling routines in Module ZNet to modify frames on a remote
machine. One important difference here is that these routines are called via Agents, which means that
these frames are already open when a frame moditication routine is called. Thus, the subnet
containing the frame will already be listed in the local subnet index. This results in a call to Function
ZogNetServer.GetSnLocal instead of a call to Function ZogNetServer.GetSnRecord in the frame
modification routines. Both return the same information, GetSnlLocal simply does it with less work.

FalPs 127 4 5 J SR

PN 1 LS BTN | U

v v T v Yy
v L T Ty R e

MY TARATRTETETERE T CTLVTARWL WY W L 9L W W R W T T w . < e s T T - - e .

£0G MODULES PAGE 40

These routines will return success if successiul.
e Function AddOwner - calis either Function NetServ.AddOwnF - (local) or Function
ZNet.ZAddOwner (remote), to add new owner.

» Function RemoveOwner - calls either Function NetServ.RemOwnF - (local) or Function
ZNet.ZRemoveOwner (remote), to remove cwner.,

e Function SetFrProtection - calls either Function NetServ.SetProt- (local) or Function
ZNet.ZSetProtection, to set frame protection bits.

2.2.3. Subnet Access Routines.
Subnet Access Routines are not as similar in nature as frame access and frame modification
routines. Some use routines in Module NetServ and Module ZNet, while others do not. A brief

summiary of each of the functions is given;

2.2.3.1 Function CreateSubnet
CreateSubnet will call Function ZogNetSerser.EnterSubnet to update the MasterNodes Subnet

index and update the subnet index file to reflect the addition of the subnet being created by the
calling routine, Procedure Nethandl.CrSnSec. Physically, there are no new frames stored on disk, just

the addition of the subnet name to the proper indexes.

CreateSubnet will select the primary node, unless it is unlisted in the net;servers database, then the
primary node becomes the master machine. in dealing with secondary nodes, CreateSubnet assigns
values to an array representing those machings those machines 10 recieve backup copies. This
in- formation is obtained from the file Sec.Default, during initialization and stored in a global array

which is imported from Module ZogNetServer.
2.2.3.2 Function ClearSubnet : Clears (deletes) a subnet.

2.2.3.3 Function IsSubnetDefined : Checks to see if a subnet is defined in local or Master

Subnet index.

2.2.3.4 Function GetHiSubnet : Returns to the calling routine, the highest frame numberin

the subnet.

2.2.3.5 Function GetNextSubnet : Generates the next subnet in the master node subnet

index.

. St
.........................

|

P 4

B

LG MODULES PAGE 41

2.2.4, Ulility Routines

These utility routines are called by the Module NutHand! Utility routines and are summarized below.

Function GetQurNode
Returns to the calling routine the Current node (machine number) and Current

machine name (i.e. mach1).

Function GetCurUser
Rewrns to the calling routine the curcent usar Name (i.e. rch).

Function GetNodeName
Returns a machine name {0 calling routine.

Function GetAgentFlag
Returns success to the calling routine if an agent is currently keing run.

2.2.5. Zog and Agent, Login/Logout Rcutines
These routines are not currently in use. They were designed to run under Spice (the forerunner to
Z0G), to allow for spawningy.

2.2.£.1 Function ZogLogin

inserts another user into the the table of current zog users, represented by the array Loggedin,
which is declared in Module ZogNetServer and Exported to Module ZAccessProcs. This function also
increments thie variable MaxZOGPoris, which is also declared in Module ZogNetServer and which is &

count of the number of currently logged in users.

2.2.5.2 NetString - String < => Numeric Conversion Utilities
These routines make use of the PERQ PASCAL extensions such as Trunc, Float and Round and

Stretch to handle most of the work.
Function RoundLong
Converts a real number to a rounded long integer

Function Trunclong
Converts a real number to a truncated long integer

Function FloatLong
Converte a long integer tc a truncated real number

Procedure CvRealStr
Converts a real number to a character string

Function CvStrReal
Converts a character string to a real number

e B R e et s e e

L T I

2™ a" »

| 4%

£20G MODULES PAGE 42

2.2.5.3 Function AgentLogin : Adds a new entry into array LoggedIN and sets the
AgentFlag field of this array entry to true indicating that this spawned protess is

an agent

2.3. NetServ

Module NetServ contains lower level routines which access the frame or subnet, except for the
actual 170, which is done at some still lower ievel in Module FileSystem, and routines which aid in this
process. These routines are called by Module ZAccessProcs (for local reguests) or Module
INetProcs (for remote requests).

The routines are brokern down into categories to coincide with their highei level routines in
ZAccessProcs and ZNetProcs:

2.3.1. Frame Access Routines

These routines can, for the most part, be related to their Module NetHaiidl relatives by looking at the
routine names. All have the same routine names followed by an underscore, with the excegption of
Function UpdateF which has no corresponding Module NetHandl routine. All will reiurn an integer

(Gen- eralReturn) vaiue, that of the constant 'success’, if successful.
Function RJF - Reads a frame from a file into a buffer

Function RdFH - Reads a frame header from a file into a buffer

Function OpnF - Opens a frame for writing, locks it from access by other users, and reads the
frame into a buffer

Function CrFr - Creates a specified relative frame

Function CrF - Creates the next frame in the subnet

Function ErF - Deletes a frame from a subnet by writing pages of zeroes

Function CisF - Writes and Closes a modified frame on a primary nods

Function UpDateF Writes and Closes a modified frame on a secondary node.

2.3.2. Frame Modificalion Routines

These routines do the actual work of modilyirg existing frames. in the same way as the other Net
Server routines, these can be recognized by their corresponding Module NetHandi Routine Names;
with the addition cof the underscore character following the NetHand| routine name. All will return the
integer value of 'success’ (type GeneralReturn from Module NetDefs), if successful.

P

S TeT . S - Lo R . , L
| o e e R P st T A T "
T VL R S SIS SV U S SO DA ST IR ST SO SEPU Il W WISTIT YL TI WP S W e o

20G MODULES PAGE 43

2.3.3. Subret Access Routines

2.3 4. Utility roulines
These utility routines a-e calied cnly v the other routines in Module NetServ. They can be broken

acvin intc the fnllowing areas:

2.2.4. | Sudbnet Record Utilities

Thesa utilit)y routines work with subnet records {(SiRecPTyp) in the Incal subnet index (SnTable,).
Function HashSid Returns an integer value representing the hashed value of the subnet being
sought ir the local subnet index.

Function CrSnRec Creates a local suhnet record and inserts it inte the local sul.net index. Returns a
pointer (o the new subnet record.

2.3.4.2 Open “rame Record Utilities

These routines deal with the list of open records, which is maintain- ed and serves to lock other
users from trying to r.odify a frame already opened. The open record list consists of CpnRecPTyp’a.
Type OpnRecPtyp, is Private to Module Netserv. Thus each machine has its own list ni frames that

have been opened locally or from a remote machine.

Procedure InsOpnRec
linserts an open record at the beginning of the list of bpen records. It is called by
another utility in this cectior, Function CrOpr:Rec.

Procedure DelOprnRec
Deletas an cpen record from the open record list. It is called by another Utility in

this seciion, Function ErOpnRec.

Functiun CrOptuRec
Creates a new open record for the open record list.

Procedure ErOpnRec¢
Deletes an open record from the open records list. The deleted node is not
disposed of, but saved as part of ZOG's own garbage collection mechanism.

Functicn GOpnUser
Searches tha open record list for a irame, to see if it is already open. Returns &

pointer to the open record frame.

Function GOpnFid Same purpose as GOpnUser, only uses different fields on which to search.

2.3.4.3 Subnet Utility
This function is called by Function NetServ.ClsF_ if a modified frame is larger than before it was
moditied.

Procedure SetFilel.ength
Sets the length of afile to a given number of pages.

T r

LIRS S G gl Rt

| S

cont

4

i 1".1

-2
LI

" -
T
. gt

Z0G MODULES PAGE 44

2.3.4.4 Frame Handling Routines o

2.3.4.4.1 Procedure WrFH : Writes a Frame Header in record form into a butter in ZBH

form. Uses several nested procedures to write strings to the buffer. ;
An individual frame is written out to disk in a modified "BH" format, called ZBH format. This format
was developed at CMU as a way of storing variable types of records in an ASCI| disk file. Each item in
alogical record is stored as a line of the form:
+<chard + [CASCI! string>]<EOL> -

where <char> is a single ASCIlI character which encodes the type of data stored on that "line", the S

optional <ASCII string> can be text, numbers, codes or special characters, and <EOL) is the end-of.

fline character(s). o

2.3.4.4.1.1 ZBH Codes for Frame Header *

These are coded in BaseLib.ParseFH
These codes are for the non-text information contained in the frame. Other than the protection -
code, this information is maintained automatica'ly by ZOG. |

ZBH Item Representation of string in file

+A+ Frame Id String N
+B+ Created by Agent Boolean ‘]
+b+ Modified by Agent Boolean
+C+ Creation Date Integer String
+M+ Modifier Name String -
+m+ Modification Date Integer String ’%
+p+ Protection Code Character 5
+t+ Modification Time Integer String »
+U+ (List of) Frame Owners String w1
- +V+ Frame Version Number Integer String -
+Y+ (List of) Frame Accessors String (not used)) o
f‘ | +Z+ End of Frame Header Marker -
P 2.3.4.4.1.2 ZBH Codes for Frame Body
E The code for this is in NetHandl.ParseF. The frame body consists mostly of text fields. This g
" information is stored in Frame Title, Frame Text, Options, Local Pads Order. Within each ltem of the _j
' frame, the order is ltem Marker & Selection Character, Item Text, Item Position, Next Frame, Action.

ZBH ltem Representation of string in file 'i
¥
[-

T T G S R S I R L R R TS

206G MOQDULES PAGE ¢5

+C+ Frame/Selection Comment String

+E+ Frame/Selection Expansion Area String

+F+ o Selection's Next Frame String

+G+ Global Pads Frame String

+1+ Frame Text Marker String (Normally Empty)
+L+ Local Pad Marker & Selection Character Character
+0+ Option Marker & Selection Character Character
+P+ Item's Position Pair of integer Strings

+T+ Frame/Selection Text String

+ X+ Frame/Selection Action String

+Z+ End of Frame Body Marker

+ {other character> +
Extra Fields String

2.3.4.4.2 Procedure SetCrFH : Sets the creation information when a frame Is created.
Creation information includes the frames version number, pretection, owners,
creation date, and a field indicating if the frame was created by an agent.

2.3.4.4.3 Procedure SetModFH : Sets the modification information when the frame is
modified. Modification information includes the frame version number,
modifier’s login name, moddate, modtime, and a field to indicate if the frame was

modified by an agent.

2.3.5. Initialization routine

Initializes this module’s variables, buffers and tables.
Procedure IniServ Sets the local subnet index to nil. Sets all garbage collection lists to nil. Creates
temporary frame header record and buffer and a buffer for writing zeroes to a file.

2.4, ZNet

Accessing frames and subnets on a remote machine is done through routines in Module Znet.
These routines are called by routines in Module ZAccessProcs whenever a frame or subnet is not
iocated on the current machine, and must be accessed via the EtherNet. The corresponding routine
in Module ZAccessProcs has nearly the same name as the Module ZNet routine, without the 'Z’

preceding it,

All ZNet routines follow the same basic format. First, they set up an EtherNet request packet to send

B
v _ . r". .”1)-_ e Ty
f .

A. s.l_s._..hn._n.. ..‘SJ'J J-.._‘A_'h_l:ﬂ_&

[y ‘-d AR
o

Z0G MODULES PAGE 46

to the target machine. Then they all call Function ZogMsg.SndRcvRecord to initiate the EtherNet

communication betwaen machines.

2.4.1. Frame Access Routines
Below are a list of the frame access routines. Three of these routines have been discussed in

greater detail. For details on ZReadHeader see p. 22 For details on ZOpenFrame see p. 30 For details

on ZCloseFrame see p. 34
Function ZReadFrame
Reads a frame.

Function ZReadHeader
Reads frame header information.

Function ZOpenFrame
Open a frame for modification.

Function ZCrFrame
Aliows the user to create ANY specified frame .

Function ZCrNextFrame
Allows user to create the next frame in subnet.

Function ZCloseFrame
Writes and Closes a frame.

Function ZQuitFrame
Closes a frame, but will not write to frame.

Function ZEraseFrame
Deletes a frame.

Function ZUpdateFrame
Writes and closes a secondary copy on the local machine.

2.4.2. Frame Modification Routines
Function ZAddOwner
Adds a new owner to the frame

Function ZRemoveOwner
Removes an owner of a frame

Function ZSetFrProtection -
Sets frame protection bits

2.4.3. Subnet Access Rouiines
Function ZCrSubnet
Creates a new index

Function ZClearSubnet
Clears (deletes) a subnet

- I S A

Z0G MODULES PAGE 47

Function ZGetSninfo
Called only on the master node to get subnet information.

Function ZGelHiSubnet
Returns to the calling routine, the highest frame number in the subnet

Function ZGetNextSubnet
Generates the next subnset in the master node subnet index

2.5. ZEiInt
Module ZEInt contains only four procedures, which are used for turning EtherNet interrupts Off and

On.
Procedure EintOff Turns off the EtherNet sofware interrupts.

Procedure EintOn Turns on the EtherNet software interrupts. Calls the compiier directive InLineByte
to turn off the interrupts before calling Prccedure Etherinterrupt.E10Srv. Then
calls Procedure E10Srv to service any interrupts which may have been sent to the
current rmachine since the prior call to turn off the EtherMet interrupts. Thus,
EtherNet interrupts are not lost when a machine has them turned off, they are
merely defered.

Procedure EintNotReady
sets a signal (local to the module) to false indicating that the machine is not vet

ready to process ethernet interrupts, and turns ethiernet interrupts off.

Procedure EintReady
Sets the same signal to true, indicating the machine is ready to process ethernet

" interrupts, and turns the interrupts on.

2.6. ZNetServer

ZNetServer routines serve the same function on a remote machine as a Module NetHandi routine cn
the local machine. They are the higher level routines in frame and subnet access on the remcte
machine. Routines in module ZNetServer are invoked wher in processing Zog, an interrupt has raised
an exception on a machine. The exception is processed in the top level of Zog by the Handler '
Zog.E10ReceiveDone. E10ReciveDone calls Function ZNetServer. ZNetServer which acts as a .
dispatcher to the proper ZNetServer routine to process the request. l

In general, these routines call the lower level routines to perform the request, then send back some

reply to the requesting machine.

LW = T LT W RV TR R T T T T T T T LT L e T T M T e TR W T e e WL W W TR T

£0G MODULES PAGE 48

2.6.1. Frame Access Routines

These higher level routines will call routines in module ZNetProcs to perform the requested activitly.

Function XZReadFrame
Reads a frame

Function XZReadHeader
Reads frame header information

Function XZOpenFrame
Open a frame for modification

Function XZCrFrame
Allows the user to create ANY specified frame

Function XZCrNextFrame
Allows user to create the next frame in subnet

Function XZCloseFrame
Writes and Closes a frame

Function XZQuitFrame
Closes a frame, but will not write to frame

Function XZEraseFrame
Deletes a frame

Function XZUpdateFrame
Writes and closes a secondary copy on the local machine

2.6.2. Frame Modification Routines
These higher level routines again, call routines in module ZNetProcs to perform the requested
activity.

Function XZAddOwner
Adds a new owner to the frame

Function XZRemoveOwner
Removes an owner of a frame

Function XZSetFrProtection
Sets frame protection bits ‘

2.6.3. Subnet Access Routines

The higher level routines whick call routines in module ZNetProcs to perform the requested activity.

Function XZCrSubnet Dt
Creates a new index

Function XZClearSubnet
Clears (deletes) a subnet

Function XZGetSninfo
Called only on the master node to get subnet information |

£0C MODULES PAGE 49

Function XZGetHiSubnet
Returns to the calling reutine, the highest frame number in the subnet

Function XZGetNex!Subnet
Generates the next subnet in the master node subnet index

2.7. ZNetProcs

All ZNetProcs routines provide an interface between higher level routines (i.e. those in NetServer)
who want to access or modify a frame or subnet located on a REMOTE machine, and lower levei
routines which perform the actual accessing of frames and subnets. Routines here are called by
routines in Module ZNetServer to carry out, whatever task, on a remote machine. Routines in
ZAccessProcs carry out these tasks when frames or subnets are located on the local machine. All
routines in ZNetProcs have the same names as there counterparts in Module ZAccessProcs, except
that each routine name is preceded with a 'Z’. For example, the routine corresponding to

ZAccessProcs.ReadFrame is ZNetProcs.ZReadFrame,

In General, these routines check the local subnet index for a subnet on the machine and perform

the requested activity by calling a MetServ routine.

2.7.1. Frame Access Routines

These routines provide an interface between higher level and lower level frame access (view,
create, delete) routines. Although doing very different things, they use very much the same method in
locating a subnet or frame. These Functions will return success to the calling routine in Module

ZNetServer if successiul.
Function ZReadFrame
Reads a frame

Function ZReadHeadesr
Reads frame header information

Function ZOpenFrame
Open a frame for modification

Function ZCrFrame
Allows the user to create ANY specified frame :

Function ZCrNextFrame
Allows user to create the next frame in subnet

Function ZCloseFrame
Writes and Closes a frame

Function ZQuitFrame
Closes a frame, but will not write te frame

o T S e T S T VY Ry L W W Y W W W » F U ™ W T SN W T T T TN Y TR TN Y W I S8 e W W o v

20G MODULES PAGF 50

Function ZEraseFrame
Deletes a frame

Function ZUpeateFrame
Writes and closes a secondary copy on the local machine

2.7.2. Frame Modification Routines
These routines use Function ZogNetServer.GetSnlLocal io locate the subnet of the frame to be

modified, since the subnet should already be on the machine calling a ZNetProcs routine. They then

call the appropriate Module NetServ routine to perform the lower level work.

Function ZAddOwner
Adds a new owner to the frame

Function ZRemoveQwner
Removes an owner of a frame

Function ZSetFrProtection
Sets frame protection bits

2.7.3. Subnet Access Routines
Supbnet Access Routines are not as similar in nature as frame access and frame modification
routines. Some use routines in Module NetServ and Module ZogNetServer, while others do not. A

brief summary of each of the functions follows.

Function ZCrSubnet
Updates the master node subnet index and the file :zognet>Subnet.index

Function ZClearSubnet
Clears (deletes) a subnet

Function ZGetSninfo _
Called only on the master node to get subnet information

Function ZGetHiSubnet
Returns to the calling routine, the highest frame number in the subnet

Function ZGetNextSubnet
Generates the next subnet in the master node subnet index

2.8. ZCGMsg
Routines in module ZogMsg are called when communication is necessary between machines.

These routines send and receive ethernet request and reply packets. Each of the send and receive
routines has its own local handler, E10ReceiveDone, which is invoked when an interrupt 1s generated
on a machine due to the synchronous communication between machines. E10ReceiveDone examines

the Ethernet Handler State, and by it, controls execution of the routine.

¢ S2nd Routines

T AT NI TN e L e

- . . -
L R KR .. . el . .
B \ ~ RSN [A L U SRR S B BRI, - . s e B . . .
. ' R N B R
L An” ", 99 2hd alt A a ntnl ata a P om m m B cm % oaA a - y e A Tt T
eV . MaXathda - - - PPN - talt A Sl atta aad at D PN S T T T

AR R N L o L e e L I L B I B T e LA %

£0G MODULES PAGE 51

® Receive Routines

©® Massage _«?riﬁcation and handling routines
© Utilities

¢ EtherNet Handler States

2.8.1. Send Routines
These routines send replies or acknowledgements to another machine.

2.8.1.1 Function SndRcvRecord
For details on the inner workings of ZOGMsg.SndRcvRecord see p. 23.

2.8.1.2 Function ZogMsg.SendRecord
Sends a record to a remote machine and waits for an acknowledgeraent of receipt of the record.

2.8.1.2.1 Sets addresses to be correct, in various records, so that the record can be

received orn the remote machine.

2.8.1.2.2 Resend Loop

At this point the SendRecord enters a loop to send a request to the cther machine, saying, "Well,
Go ahead". The loop will attempt to send the request a maximum of NumberResends times (5). To
send the request, first the ethernet interrupts are turned off. Next, a call is made to Procedure
Ether1010.E10WIO which starts an EtherNet |/0 operation and waits for it to complete. In this case,
information is being sent, so E10WIO makes sure the intormation is sent over the EtherNet.

2.8.1.2.3 1t an erroris detected in sending the message, then exit SendRecord.
Otherwise, set the EtherNet Handler State to indicate that the local machine is
waiting for the acknowledgement from the remote machine (SWaitAck) and turn

on the EtherNet interrupts.

2.8.1.2.4 Got Acknowledgement Time-Controlled Loop

If the acknowledgement is received by the machine sending the message, an interrupt is generated,
causing an exception to be raised by the EtherNet MicroCode, thus invoking the local Handler
E10ReceiveDone. E10ReceiveDone sees that the EtherNet Handler State indicates that the local
machine is waiting for ar. acknowledgement (SwaitAck), and signals acknowledgement by assigning
the EtherNet Handler State to be that of 'Got the Acknowledgement' (SGotAck). If the

acknowledgement is received, exit SendRecord.

Rl WL MO T T N, WO Y N T T Il e e T o A] TN e - - -
[l S AR R T T T N T T N N o W o T R T s T M T R T W T T PR T R R KT R YA U RA WML MUN Y VY Wl

ZOG MODULES PAGE 52

2.8.1.2.5 If after five attempts no acknowledgement is received frem the remote machine,

then exit SendRecord with an error.

2.8.1.2 Funclion SendBuffer
For detials on the inner workings of ZOGMsg.SendBuffer see p. 36.

2.8.2. Receive Routines
Recieve routines receive requests and acknowledgements.

Function ReceiveRecord (For Details see p. 38).

Function ReceiveBuffer (For Details see p. 28),

2.8.3. Message verification and handling routines

For details on ZOGMsg.HandleMsg see p. 23.
Function ChkMsg Checks a message received to see if it is a valid ethernet message.

Function HandleMsg
Boolean function that returns true if there is a valid ZOG raquest.

Function AnotherMsg
Tests if another message has been received and is waiting to be used inside the

handier, before exiting the handler. It is necessaiy to peiform this check and
process any additional messages before exiting the handler, beczuse the interrupt
for the additional messages has already occured, and was handled by an empty
nested handler. If this is not done the message would be ignored until another
new message was received.

2.8.4. ZOGMsg Utilities
Function SwapByte
Used to swap two bytes of a word

Function CvintStr Converts an integer to a decimal string

Function EqAddr Used to test if two ether net addresses are squul; this is used to make sure a reply
or acknowledgement comes from the machine that it was supposed to

Procedure SuspendZCGMsg
Resets the network and removes any pending receives

Procedure ResumeZOGMsg
resets the network and reposts all receives

Function InitZOGMsg
Initializes the ethernet and allocates all Ethernet buffets

Procedure ResetZQGMsg
Resets the ethernet and deallocataes all buffers

......

R S S S S S S P N S G LT .. o . . . o . R
W WA O o o O S VIIR SO TP S gy P ISP P PO A SRR SR SRR SR AU B T et h et .Z:

W e TR TS

T TN

£0G MODULES PAGE 53

Functions GetiMyAddr and GetMyName
Get address and name of this machine

Procedure RePgstReceive
Reposts a receive with buffers of the msg just received

2.8.5. EtherNet Handler States

Ethernet Handler States refer to the state of a particular machine which is involved in ethernet
communication with ancther machine. The 'state’ of a machine can be, for example, that it is waiting
for an acknowledgement or that the machine has gotten a reply. It describes the status of the

communication between machines.

2.8.5.1 Common State : SNotReady (always the initial state)

2.8.5.2 ProbeName States : SWaitProbe, SGotProbe (for reply to Probe msg)
2.8.5.3 SendRecord States : SWaitAck, SGotAck (for acknowliedoe of sent record)
2.8.5.4 ReceiveRecord States : SWaitRcv, SGotRcv (for msg to be received)

2.8.5.5 SndRcvRecord States : SWaitSndAck, SWaitReply, SGotRepiy (Got Ack. and
waiting for reply, got reply)

2.8.5.6 Send3uffer States.

SWaitGo Waiting for the go ahead message.

GSendFirst Got Go ahead, sending the first buffer.
EWaitBufAck Waiting for an acknowledgement of a sent buffer.
SSentAll All buffers have been sent and ackinowledged.

2.8.5.7 ReceiveButfer States : SWaitGoAck, SReceiving, SGotAll (Waiting for ack to go

ahead, receiving buffer, got all information

2.9. 20GMsgDels

Module ZOGMsgDefs defines the constants and record types used in module ZogMsg as ethernet
request and reply packets(records). The naming convention of the request packets is to and the
pointer type with '0PTyp', while the reply packets end in '1PTyp'. In the case of the close frama raply
packets there is a second packet ending in '2PTyp'. Examples of ethernet request and reply packets

are below.

LSt ek by T R R S Pl A P Po I Pa i il Sl ML M ond vall tng e JUEL AR uh il nd vl tu ittt et et ek ted and AR Gk A Aol
“

WSS SN

A

Paliafilie ™ aliaPulacto it d st s Juns oA Biat diuf Rt SR NENal A Il Shek Al Ml T o Bl MR AL N N R I A T A e A I

£0G MODULES PAGE 4

2.9.1.Ethernet Request packel records

Module ZogMsgDefs contains the declarations of all of the Ethernet request and reply packets. For
the most part the types contained in this module are the same with small variations in the records, due
to the function of a particular type. Only two of the types will be shown here. The information -
contained in these records allows the sending and receiving routines to accomplish their purpose (i.e.
opening, closing, etc.). This information is loaded ino the appropriate record, recast to a message or
huffer type and sent over the ethernet. On the remote machine, the appropriate receiving routine
knows the structure of the information in the request or reply packet, so it knows where to get the

information it needs.

2.9.1.1 Open Frame Request Packel.
OpnFOPTyp = tOpnFOTyp -
Opnr0Typ = packed record

ld integer; Constant identifier in ZogMsgDefs

LocalAddr EthernetAddress;
RemoteAddr EtherNetAddress;)
RemoteName String15;

GR GeneralReturn; used in return packet

Name UsrldTyp;

AgentFlag Boolean;

Sid SidTyp; Subnat ID

PrimeNode NodeTyp;

SecCnt integer;

SecNodes SNodesTyp;

FrNum integer;

2.9.1.2 Open Frame Reply Packet
OpnFiPTyp = tOpnF1Typ
OpnF1Typ = packed record

Id ititeger; Constant identfier from ZogMsgDefs -
LocalAddr EthernetAddress;

RemoteAddr EthernetAddress;

RemoteName String15;

GR GeneralReturn; Return code from remote node

......

WA T s e R el e T g T IR PSR TR AR TR T TR T W TR T T W TN TR T R e AT,

£0G MORULES
FHBCnt long; Count of Frame Header pages
F8Cnt long; Count of Frame Body pages

2.9.1.3 Close Frame Request Packet
CIsFOFTyp = tCisFOTyp
CisFOTyp = packed record

Id integer; Constant idertifier in ZogMsgDels
LocalAddr EthernetAddress,

RemoteAddr EtherNetAddress;

RemoteName String15;

GFr GeneralReturn; used in return packet
Name UsridTyp;

AgentFiag Boolean;

Sid SidTyp; Subnet ID

FrNum integer;

FBCnt long; Count of Frame Body Pages

2.9.1.4 Close Frame Reply Packet 1
CisFiPTyp = t+CisF1Typ
CisF1Typ = packed record

id integer; Constant identfier from ZogMsgDefs
LocalAdor EtherAddress;
RemoteAddr EtherAddreas;

RemoteName String 15,

GR GeneralReturn; Return code from remote node

2.9.1.5 Close Frame Reply Packet 2
CisF2PTyp = +ClisF2Typ
CisF2Typ = packed record

Id integer; Constant identfier from ZogMsgDefs
LocalAddr EthernetAddress;
RemoteAddr EthernetAddress;

RemoteName String15;

GR GeneralReturn; Return code from remote node
FHBCnt long; Count of Frame Header pages
I e N TR R N 3 "._.'" ~ ‘:"}::}“x -

TR T MU N WLFLTFLELWLELE I sl Rl Wli™w),

PAGE 83

> » e . BT T T &

AR IRE RN A s Aia) RAAEE AN LA A T A 2~ S St eI &l 1 e e S e i e e At R i o snla St ral il veds Tag Goit ottt LlE SoBLRSR SESE Y

206G MODULES PAGE 50

2.10. Z0GNetServer

Routines in Module ZogNetServer deal with subnet access on local and remote machines and the
building and maintenance of the local subnet database. These routines are called from routines in
module ZAccessProcs whenever frames of subnets or subnets themselves are being accessed. it also e
builds and maintains the network servers database indicating the status of the other machines in the
ZOG network.

2.10.1. Subnet Locating Routines

Function GetSnlLocal .
Takes a subnet name and hashes into the local subnet datubase and find the

corract subnet. Returns a boolean value of true if found. A pointe: to the subnet
record is returned in a variable parameter.

TEY

Function GetSnMaster -
Tries to get information on a subnet by requesting it from the master node. This :
will be called when the subnet is not found in the iocal subnet database and a
machine needs to know on what machine the subnet can be found. The function
returns a GeneralReturn type, indicating success or failure. Via parameters, it also
returns the primary node, and the number and identity of the secondary nodes. -

Function GeiSnrecord
Hashes into the local subnet database to find a subnet. if not found there, it looks
in the subnet database of the master node. A side effect of a cail to GetSnRecord
is to read the file if it is located on the local disk. Returns & GeneralReturn type

indcating success or failure.

Function ChkSnRecord
Is called by routines in ZNetProcs when a machine is being accessed for a subnet,
therefore the information is assumed to be on the local machine. It returns the
same information as GetSnMaster and will attempt to read the file if it is located on

the local disk. i
2.10.2. Subnet Maintenance Routines - i
Function CrSnRecord .
Creates a subnet record and enters it into the subnet hash tabie (subnat s
database). Returns a GeneralReturn type and a pointer to the new entry. p
Procedure ErSnRecord
Deletes a subnet record from the subnet hash table in all but the master node
index. This is used to force the next call of Function GetSnRecoid to go to the
mastar node for the information.
Function AddSnRecord
inserte a new entry into the local subnet database.
Function OpnSnRecord
Takes a pointer to a subnet record from the !ocal subnet database and opens the -
local subnet file through a call to Function {letServ.OpnSri ~. The act of opening !

is mercly setting a boolean field of the subnet recoid type.

|

X - |

e
A
PR

20G.MORULES PAGES7

Function Updatelndex
Is used to update the Subnet.index file which stores the list of all subnets.

Function EnterSubnet
le used to enter a new subnet into the subnet database on the master node and to
update the Subnet.Index file

Procedure BuildSubnets
Is caliad by Procadure InitZogMetServer to construct the local subnet index.

2.10.3. Server Routines

Procedure BuildServers
is called by Procedure InitZogNetServers during the initialization of Zog to build
the servers index consisting of the machines on the natwork,

Function Probe Is used to test another network node, to see if it is actually up and running in Zog.
If that node is found to be up, via a call to Function ZogMsg.ProbeName, tha
servers index is updated to indicate the node is up in Zog.

2.10.4. ZogNetServer Utility Routines
Procedure CvStrUpper
Converts a string to ail upper case

Procedures MsgError and PriniError
Used to output error messages

Function SnHash Is the hashing function for the subnet database

Function NxtSn Generates the next subnet name in the master nodes subnet database. If it
receives an empty string it returns the first entry in that table and if it returns the
empty string, then there were no more entries in the masters subnet index.

Procedure InitZogNetServer
Initializes the data structure for the ethernet and the ethernet itself so that it is
prepared to receive requests from other machines. It also call the routinas to build
the subnet and servers indexes. ’

3. ZOG Editor Modules

3.1. ZED Modules |

Z2CrFrame Procedures to Create Frames via tDi action or TDFC

ZDspinc Low-Level Display Utilities and giohals for ZED and SLED '
ZEdDefs ZED (and SLED) TypeDefs and Global Variables

ZEdFram Full-Frame level ZED Commands (Upper Case Commands)

ZEdit Main ZED Module - Command Parsers, hidden area command3

ZEditem Per ltem ZED Ccmmands (Lowe: Case Commands)

ZEdNew Module to implemert mouse selection of text within frames (Not Currently Used)
e e i e I s e T

ST, -

- .

W e T T T U TR T T T WL T W TR e R T T LT AT R TR T e T U

MDA RS E R A et SRR S R AN AR A ol AU S sl i Rttt v A v 0 ae b age ln Aokt Bod B ' el e Aol B B S AR A A B AL MY A v T £ 9 ARe BVl d

£0G MODULES PAGE 58

ZEdUtl Low-Level utility routines for ZED

3.2. SLED Modules
ZBrEd Special-purpose extension of SLED for AirPlan Frame Editing - Provides routines .
to break apart/put together AirPlan slots on specialized AirPlan input frames

1

ZEnvEd Main Environmental Editor Module - Contains higher level slot editing procedures N
ZEnvUtil Contains lower level slot editing utilities :
ZSled Main SLED Module - SLED Command Parser, AirPlan utilities %
28ledUtil Contains lower level SLED support functions "

. m
R

4. Z0G Agents Modules

4.1. Planning and Evaluation (Task Management) Agents

AgAdjD? Adjusts the dates and times in a specific task tree g
AgGenr Creates a generic task tree from a specific task tree z‘.
AgGreen Submit task to Green Sheet
Aginst Instantiates a specific task tree from a generic task tree
AginTask Initializes a specific task tree _
AgTPlan Creates a task plan from a specific task tree in disk file form for outputting to a i
hard copy device .
AgUpTask Updates a task tree "upward" to propagate leaf node changes ~,
AgZPlan Creates a task plan from a specific task tree in a new tree of ZOG frames “
AgPlan Creates a task plan from a specific task tree in disk file form for outputting to a ¥
hard copy device .
i’
4.2. Backup and Transport Agents
These agents are used by system maintainers for reformatting subnets for backup and "
transportation)
AgArchive Archive a subnet or frame to a floppy b
AgBackup Write zbh for all perqs ,-_
AgBak Write zbh for all subnets mcdified since a specific date and time for a specified
Perq
AgVBH Write Perg ZOG frames in VAX zbh format .
AgZBH Write zbh format of Perq ZOG frames j

CTWATHRTR TR AW T AN W TSR RIRFTRTRONR TR T T e T T T e T W T T T e TR LT LT W e B W e T e T e T e T e T T

£0G MODULES PAGE 59

4.3. 20G Special function Agents

4.3.1. Writing frames in a form suitable for printing

AgDoc "+ Write a tree of frames into a disk file using a format suitable for printing

AgPic Write a single frame into a disk file without changing the format

4.3.2. Saving old versions of frames

AgOld Copies a frame, linking the copy to the frame through an Oid locii pad

AgPost Saves the current version of a frame as an Old frame, then ciear the frame ,next

copy the schema of the Oth frame to the current frame

4.3.3. Utilities

AgHiSubNum Vinson utility routines

Aglink Links an option to the frame in the other windo in an accessor-like manner.
(Experimental)

AgMessage Send a message to another Perq

AgTest Schema for creating new agents

AgCode Create a text file ready for compiling from a code subnet

4.3.4. Fonts and Graphics
AgBar Creates a bar graph from a given data frame

AgRFont Changes the fonts for a given subnet

4.3.5. Creating an index or directory of subnets

AgAiphaSNL Creates an index of subnets either alphabetically or by Perq
AgDir Creates a directory for subnets on a Perq or ail Pergs
Agindex Creates an alphabetical index to subnets on a Perq or all Pergs

4.4, Subnet Repair and Updating Agents

AgMerge Standardizes a subnets local pads to that of a given schema frame
AgPar Corrects all bad parent and top links

AgProt Modifies the protection on frames

AgSwap Global string replacement

AgOwn Adds or deletes the owner of a frame or frames

AgChkSecond Checks secondary copy of a subne

N & T W €

£0G MODULES PAGE 60

4.5. SORM and Weapons Elevator Agents
The SORM and Weapons Elevator Agents are very specialized. Most of the following agents are
used in formatting the document that is produced when the SORM and Weapons Elevator subnets are

written out.

4.5.1. Agbgm : Writes out a chapter of diagrams
This agent will print, in scribe compatable format, a tree of frames. The format is for diagrams and
GAPL(Government Allowance Parts List). Each frame corresponds to one picture and each picture

may have a GAPL associated with it.

4.5.2. AGGAPL : Prints a tree of frames in scribe compatable format
This agent will print in scribe compatable format, a tree of frames. The format is for
GAPL{Government Allowance Parts List) and prints a depth first search list of all parts in the tree.

4.5.3. AgMamt : Produces a listing of all the frames {itle text
This agent will produce a depth first listing of all the frames title text in addition to a cross reference
to the current frame. It is currently being used to generate the Apendix for the management codes in

the organization section of the ships SORM.

4,5.4. AgOpr : Prints a tree of fraems in depth first search order
This agent will print a tree of frames in depth first search order. It is intended to print the operate
section of the Weapons Elevator Manual. It's main features are that it prints out title text and a mini

table of contents for each frame that has options.

4.5.5. AgOrg : Prints lists of responsibilities of each billet
This agent will print a tree of frames in depth first search order. It is intended to print the
organization section of the ship’s SORM. It prints a list of responsibilities of each billet with a cross

reference into the task net where it is defined.

4.5.6. AgTask : Prints out option text for each frame that has options

This agent will print a tree of frames in depth first search order. It is intended to print the unaderstand
section of the Weapons Elevator Manual and the operate and maintain section of the ship's SORM.
It's main features are that it prints out option text for each frame that has options. It will also print a
mini table of contents if the frame has the keyword "CONTENTS" in the frame comment area.

...

v ¥ . g Y T T U Y N R Y ™ N W W W o U W T WL W W™ WY W T I N (T ey vy e T R YW TTW I W R W T W T W W TTW omrrm rew e s

it i b el ahith b U S~ AL LA C il i Dl e N oA R N I A S T A A e SR e ate s Rare e et . Bt ISt Rt Jlhall Sl USa B S S el Aal Yl ol A
4

L Z0G MODULES PAGE 61

l ' 4.5.7. AgText : Prints out the frame text on each frame visited
This agent will print a tree of frames in depth first search order. It simply prints the frame text on
each frame visited. In addition it will foilow any ">.More" local pads and follow any opticn tree that

‘ exits on the "More" frame.

5"-] 4.5.8. AgThy : Prints out theory section of Weapons Elevator Manuai

This agent wil print a tree of frames in depth first search order. It is intended to print out the theory

F section of the Weapons Elevator Manual and the ship’'s SORM. Option text is printed as the first
h sentence of a paragraph with any frame text on the next frame appended to the end. Each

$ 5 succeeding level is treated as a subparagraph of the proceeding paragraph and is indented as in an

. outline. No local pad cross references are generated in this agent.

r 4.5.9. AgTrb : Prints out troubleshooting section of Weapons Elevator Manual
This agent will print out a tree of frames in depth first search order. It is intended to print the
L troubleshooting section of the Weapons Elevator Manual. It's main features are that it prints out title
» text and a mini table of contents for each frame that has options. It also generates "subchapter”,
b "section”, "subsection", and "paragraph” commands for the first 4 levels in the tree. Each

successive level has the title text printed in bold face type.

. 4.5.10. AuxOrg : Prints out the appendixs for the ship’s SORM

This agent will print out a tree of frames in depth first search order. It is intended to print the
'f appendixs in the ship's SORM for parts -of the organization such as department heads, division
officers, leading chiefs, etc. Its only difference from AgOrg is that it will first mark a tree of frames as
g having already been seen so that duplication will be avoided when only a partial list is desired. As a
“ side effect of having seen a frame before a cross reference is generated. In this way the list in an
appendix of division officers will point to tt.e correct location in the organization chapter. This is reaily
somewhat of a kludge since we cannot keep the frames vid from running AgOrg around for a seco

-
]

S

visited from running AgOrg around fcr a2 second run.

4.6. Agents Libraries
‘ 1 e AgentLib
l e ArchLib
: e EnvLib
{ h e FormLib
Et": e FramLib
-

.....................
...................

¢ FSellLib
o PlanLib _
¢ SelLib

o StackLib

¢ ZFilelO

4.7. Shell Utility Modules

¥ e ZCopy
o ¢ ZCSDXNet
¢ ZDelete
. e ZDirect
® ¢ ZMount
e ZPath
o ZRemotePrint
» ZRename
e ZSearch
) e ZStdError
« ZTypeFile
4.8. Agent/Shell Utility Invocation Modules
j | . e ZAgent
| o ZXAAgent
' . ¢ ZXBAgent
' ¢ ZShell
= o 2XShell
.
. 1 AT S R LR COL L N

e b AL uak fal wad i i ab bl vdl

VTR I TN U RN TV U W O T W U W T W UWIT N T WO W YR W Y R T T TR

PAGE 62

‘‘‘‘‘‘
........

ol et hratt a . e MEEREL Bt At et S S it Tt i A D Ak M LA i VL RS PR AL I S MY S B S oA B B B

AR - Salii)

£0G MODULES PAGE 63

5. Z0G AirPlan Modules
These modules are being maintained on board the USS CARL VINSON.

. AirCom-)

e AirDefs

e AirLib

e AirOutput

o ApChkMess
o ApFlOver

e ApLOver

e ApOpsFile
o ApPIOver

e ApPagePac
e ApROver

o ApSetEvt

e ApVerityOut

¢ ZXAirPlan

6. PERQ Operating System Modules Imported by ZOG R
Many modules from the PERQ Operating System are used throughout ZOG. These modules export -
procedures for string manipulation, for memory allocation, raster ops, ethernet interrupt handling and

the like. -
CmdParse Provides a number of routines io help with command parsing. -
Dynamic implimements Pascai dynamic memory aliocation (New and Dispose) -
Ether10/0 Provides the interface to the 10 Mbaud Ethernet microcode.

Etherinterrupt Provides the intermpg sarvice for the Ethemet.

Except Provides thé exceptior; routines.

FileSystem Provides the File System f&uﬁm .
10 - Others Provides routines for the Cursor, Table, S_creen. Time a8 Keyboard

................................
.................................

bl B ™ e IR I S B S D R B B A ol AN A il il g A B i~ i il et B piel - o MR S ol A i i~ ad A el e MR A dtv o A ol Fali™ NN IRNe eatt Bois dlad Sab Sni Balt T " Rok 2.4

£0G MODULES PAGE 64

10 - Private Exports interrupt routines and definitions which are private to the modules which
make up the 1O system.

10 - Unit -. Provides procedures to perform 10 on the various !O devices.

Memory Memory is the PERQ memory manager

PERQString Impliments the string manipulation routines for PERQ Pascal.

Screen Provides the interface to the PERQ screen including muitiple windows

Stream impliments low-level Pascal IO. It is called by higher level routines such as Reset,

ReWrite, Get, Put.

System Initializes POS and goes into a loop alternately running Shell and ZOG.

.

0 44

Copies
1 USS CARL VINSON

1 ONR/270

12 DTIC

INITIAL DISTRIBUTION

CENTER DISTRIBUTION

Copies Code Name
1 18 G. Gleissner
1 1808 D. Wildy
1 182 A. Camara
1 1826 J. Garner
1 1826 J. Jeffers
10 1826 D. Schmelter
1 522. 1 TIC (C)
1 522.2 TIC (A)
1 93 L. Marsh
P T e et e e Tt e IO e o A SRR R R SRR R LU

P oo Rt ettt e

Page 65

I

LAY DA A0 4 i e Ga s kel e AU R e 4 I SR A IS B G b B G4 B B A B B AP AL A UL BN A L RIS RN BIUC N R
’

| i ASA RSN S i ot i e o o thind ~ TR -
. - - . - * e r.'_v‘-,.'-v\‘r Lo S SRS At Ry T-"v_‘v T - v - T - - -

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPCRARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES YHEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE

BASIS.

T

