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, Summary

It is shewa-that, by a reparametrization, the problem of estimating a linear
combination of variance components can be reduced to that of estimating a single
variance component. Such a reduction is used to obtain some characterizations
of nonnegatively estimable linear combinations of variance components. Charact-

erization of nonnegative estimability using MINQUE is also discussed.
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1. Introduction. Recently, much attention has been given to the problem of

nonnegative estimation of variance components. Several nonnegative estimators
have been proposed sacrificing unbiasedness; see e.g., P.S.R.S. Rao and Chaubey
(1978), Hartung (1981) and Chaubey (1983). In the works of LaMotte (1973), ﬁ:}
Pukelsheim (198la,b), Mathew (1984) and Baksalary and Molinska (1984), the main
concern is the existence of nonnegative definite (nnd) quadratic estimators that ;.ﬁi-
are also unbiased. The present work is concerned with the existence and character-
ization of nnd quadratic unbiased estimators (QUE's) of a linear combination of o
variance covariance components.

The problem of nonnegative estimation of variance components is not fully ]
resolved by characterizing linear combinations of variance components that admit ::_;’
nnd QUE's. It should also be possible to obtain an nnd QUE haying some optimal

properties (for e.g. properties similar to those of C.R. Rao's MINQUE). The work ;'ﬂu

of Pukelsheim (198la) is a significant achievement in this regard. Under a
quadratic subspace condition, Pukelsheim showed that in order to verify non-
negative estimability, it is enough to check the nonnegativity of the MINQUE (given

I). This actually solves the problem of nonnegative estimability of variance com-~

ponents from balanced data, since, as observed by Anderson, et. al. (1984 p. 170),
the quadratic subspace condition is always satisfied in this case. Pukelsheim's
result has been extended by Mathew (1984). However, the procedure outlined in
Pukelsheim (198la) and Mathew (1984) will not always work for unbalanced data.

In the next section we show that, by a suitable reparametrization, the
problem of estimating a linear combination of variance components can be reduced
to that of estimating a single variance component. This reduction has enabled
us to obtain some characterizations of nonnegatively estimable linear combinatiéns

of variance components and also to obtain nnd QUE's, A complete solution is

'
4

given to the nonnegative estimation problem in the case of a model with two

.
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variance components. These are discussed in section 3. In section 4 we consider

the problem of characterizing nonnegative estimability using MINQUE.

2. Notations and Preliminary Results.,

k

Let Y be a random R" -vector with E(Y)=XB and D(Y)= V Z eivi Here X

is a known nxm (m<n) matrix, B is a vector of unknown parameters varying over

m

R, Vi(i= 1,2,...,k) are known real symmetric matrices and 6= (61,92,...,8k)'
is a vector of unknown parameters varying over the set O, a subset of Rk.
The following assumptions are made regarding the matrix Ve and the set O
(i) for each 8¢ 0O, Ve is nnd (1)
. k
(ii) the elements of © span R (2)
(111) there exists an nnd matrix V e SP{Ve: 8¢ O} such that
for i=1,2,...,k R(Vi)c R(Vb) 3
Here R(*) denotes range. We denote the above model as
Y~ (XB, Ve)s Be© (D

The unknown ei's could be components of variance or covariance. We are interested

in estimating a linear combination q'0= q161+q292+...+qk6k, the estimators under

consideration being quadratic forms in Y, We assume without loss of generality )

that q'q=1 and qk# 0. For an nx@ positive definite (p.d.) matrix I, let MZ = -
1- x(x'z‘lx)"x'z‘l (A" denotes a generalized inverse of the matrix A) and let

S¢ be the matrix whose (ij)t element is tr I ]szimiz vj (i,1=1,2,...,k). o

Then it can be shown that R(S ) does not depend on I and q'0 has an invariant fﬁij
quadratic unibased estimator (IQUV) iff qe R(S ). When qe¢ R(S ), the MINQUE >l?

(given I) of q'8 is given by Y'( z X T lMZVjMZZ )Y, where A= (A ..,Ak)' is ) .4

)
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any solution to SZA= q. The MINQUE (given I) of q'9 is the unique estimator ob~-
tained by minimizing tr AZAJ,where A is any symmetric matrix satisfying the con-
ditions AX=0 and tr AVi= 9y (i=1,2,...,k). PFor the details, we refer to
Rao (1970, 1971, 1972, 1973), Kleffe (1977) or Rao and Kleffe (1980). For our
discussion, it is conveneint to have the following definitions. Definition 1
is due to Pukelsheim (198la).
Definition 1 We say that q'0O is nonnegatively estimable in model (I) if it has
a nonnegative definite quadratic unbiased estimator.
Definition 2 We say that MINQUE (given L) characterizes nonnegative estimability
in model (I) if, for every vector qe Rk, the nonnegative estimability of q'6
implies the nonnegativity of its MINQUE (given ).

For a nonnegatively estimable q'6 and for a p.d. I, let B, minimize tr BZBI,
where B is any nnd matrix such that Y'BY is an unbiased estimator of q'6. We

shall refer to Y'B,Y as the MINQUE (I, NND) of q'0. Let

[ 2 ]
I=q; =949, 993 cecees T G
- 1~ 2 - -
1,% 9 Q3 =rever THYf ;. B
Q =
- - - 1- 2
Y191 "Y-192 K130 T -1
9 Ty Ty e "1 %

Then |Q| = 9y which is nonzero (by our assumptions q'q= 1 and qk# 0). For

= ' = = -
n (”1’”2""’”k) , if we let 8 = Qn, then elvl+ezv2‘:...+ekvk ”1(V1 qlvq) +
L- oo o - . = .
nz(V2 qZVq)+ nk—l(vk-l qk_lvq)+~nkvq Here Vq izlqivi We now
consider the model

A
e et
ate ety by

o 4

A




k-1
Y~ (X8, ] n (V;=q,V )+nkV ) (1D
i=1l

where ne Q_lO = {Q_lez B¢ O}.

Lemma 1 (i) Every QUE (or IQUE) of q'6 in model (I) is a QUE (respectively IQUE)
of Ny in model (II) and vice versa.

(ii) The nonnegative estimability of q'6 in (I) is equivalent to the
nonnegative estimability of nk in (II).

(iii) For any p.d. I, the MINQUE (given I) of q'® in (I) is same as the
MINQUE (given I) of N in (11).

(iv) If q'® is nonnegatively estimable in (I), then for any p.d. I, the
MINQUE (I, NND) of q'0 in (I) is same as the MINQUE (I, NND) of nk in (II).

Proof: Y'AY is a QUE (or IQUE) of q'0 in (I) iff tr AV, = 9y (i=1,2,...,k)

i
and X'AX = 0 (respectively AX = 0). Then tr AVq = Zqi = 1 (by assumption).

- - = i = 2,...,k
Since Vk quq z q. (Vi quq), the condition tr A.Vi a9 (i=1,2, )

q =
is seen to be equ1vzlint to the conditions tr AVq = 1 and tr A(Vi- quq) =
(i=1,2,...,k-1). This proves the asse:tion in (i). (ii) follows from (i).
Since the class of IQUE's of q'6 in (I) and M in (II) are the same, the minimum
norm element in this class gives the MINQUE (given I) of q'8® as well as Ny * This

proves part (iii). (iv) follows similarly., [

3. Nonnegative Estimation.

When the matrices Vi (i=1,2,...,k) are nnd, conditions for the nonnega-
tive estimability of a single variance component in the model (I) has been derived

by Pukelsheim (1977, Theorem 5.1). Alternativeforms of the same condition are

given in Kleffe (1977, Theorem 3) and Rao and Kleffe (1980, Theorem 5.5.1). We

now proceed to obtain similar results for the nonnegative estimability of q'6,

-
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The following lemma will be used in the sequel, When a symmetric matrix A is

nnd, we denote A> 0.

+
Lemma 2 (Pukelsheim, 198la). Let M=I-XX . Then q'6 is nonnegatively estimable

in (I) 4ff t MV, M+...+E MV, M > O implies q t +...+q t > 0.

Let Pq denote the orthogonal projector onto the subspace R(leM-qlMVqM)+-~

+R (MV MVqM), i.e. if the columns of the matrix H form a basis for this sub-

k=11 %1

space, then Pq= H(H'H)_lﬂ'. Further, let VM(q) denote the vector space spanned

by the matrices M(Vi—qivq)M (i=1,2,...,k-1).

Theorem 1. (i) If (I-Pq)MVqM (I~Pq) is non-null, thenq'8 is nonnegatively estimable

in (I) 1iff (I—P MV M(IﬂP ) is nnd,

(ii) If there exists an nnd matrix Woe Yy v (q) satisfying R(MV M—q MV M)c R(W )
for i=1,2,...,k-1, then q'6 is nonnegatively estimable in (I) iff (I—Pq)MVqM(I—Pq)
is nonnull and nnd.

Proof: Let
Ui=Vim9yV,
=V for 1= k.
q

for 1=1,2,...,k-1

From Lemma 2 and Lemma 1 (ii), it follows that q'S is nonnegatively estimable in

(1) iff € MU M. .. +E MUM >0 => t >0, where M= I-XX'. In view of assumption

(2) about O, there exists a nonnull ty satisfying thU1M+ +tkMUkM > 0. This

i - MV M(I-P ) >0, If (I-P )MV M(I-P ) is a nonnull matrix
implies ¢, (I Pq) q 2 L ( q) ,
since tk is nonnull, tk is positive iff (I-Pq)MVqM(I-Pq) is nnd. This proves
part (i). The "if" part in (ii1) is clear from (i). The "only if" part also

follows from (i) once it is shown that for q'® to be nonnegatively estimable,

(I-Pq)MVqM(I—Pq) must be nonnull when there exists a matrix WO as specified
k
in the theorem, Suppose (I-P )MV M(I-P ) = 0. Let z t MU.M > 0 where
q q q i=1 i1

T
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6
k
tk # 0. Since qu-lMUiM==MUiM for i= l,2,...,k-1,i§ltiMUiMz_0 can equivalently be ®
written as pq( izl MUOP + tk[(I—Pq)MVqHE_‘q+ PqMVqM(I-—Pq)+ PqMVqMPq] > 0. This
gives (I-Pq)MVqMPq= 0, which, along with (I—Pq)MVqM(I—Pq)= 0 yields (I-Pq)MVqM= 0
or equivalently R(MVqM) c R(WO) and hence there exists t <0 such that ®
W0+tkMVqM > 0. This contradicts the nonnegative estimability of q'6 since
WO is a linear combination of MUiM (i=1,2,...,k=-1). g
Remark 1 If (I-Pq)MVqM(I—Pé) is nonnull, then it cannot be indefinite. From the °
proof of Theorem 1 it follows that there exists tk# 0 satisfying tk(I-Pq)MVqM(I-Pq)
> 0. Hence (I—Pq)MVqM(I—Pq) is either nnd or nonpositive definite. In case it
is nonpostive definite, q'6 has a nonpositive definite quadratic unbiased esti- i
mator.
In the case of a model with two variance components, the following corollary
gives a complete characterization of nonnegatively estimable q'S6. ‘
Corollary 1. Suppose k=2 in model (I). Let Pq and M be as defined before.
(i) If (I-Pq)MVqM(I—Pq) is nonnull, then q'® is nonnegatively estimable iff A
(1-B )MV M(I-P ) is nnd. v ]
(i1) 1f MVlM—qlMVqM is nnd or nonpositive definite, then q'6 is nonnegatively
estimable iff (I-Pq)MVqM(I—Pq) is nonnull and nnd.
(iii) If MVlM—qlMVqM is indefinite and if (I—Pq)MVqM(I-Pq)= 0, then q'0 is ! |
nonnegatively estimable iff (a) R(MVqM)C R(leM—qlMVqM) and (b) there exists a
real number o such that MVqM+a(MV1M-q1MVqM) is and.
Proof: Only part (iii) needs to be proved. Suppose q'0 is nonnegatively esti- [ ] )
mable. If (I—Pq)MVqM(I-Pq)= 0, then proceeding as in the proof of Theorem 1 (ii), -;;
we get R(MVqM) c R(MVIM—qlMVqM); Since there exists a nonnull real ‘Ei:lv
> |
]
-
fi
’
o e
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number t, satisfying tl(MVlM—qlMVqM)+-tzMVqME_O, the nonnegative estimability of
q'® demands that there exists a positive t, satisfying the same, which leads to
part (b). To prove the sufficiency of the conditions, we observe that since
MVlM-qlMVqM is indefinite, couditions (a) and (b) guarantee the existence of an

nnd matrix A satisfying tr A(MVlM—q

=0 M- >
lMVqM) and tr A(MVqM+a(MVl qlMVqM)) 0
or ~quivalently tr AMV M > 0, Then ————l;——-Y‘MAMY is an nnd unbiased estimator
q tr AMVqM
of a'6. 0O
In the case of a model with two variance components with Vl’VZ nnd, we shall

now obtain explicit characterization of vectors q for which q'6 is nonnegatively
estimable, To this end, let Alz_kzz:...z_kr denote the proper eigenvalues of
MVIM w.r.t. MVZM (see Rao and Mitra (1971, Section 6,3), Here r is the rank of

MVZM. Some of the Xi's could be zero and some of them may be repeated.

Corollary 2 Let k=2 in model (I) and suppose Vl and V2 are nnd, Let Xi(i= 1,2,...,r) 1
be as defined above. B
(a) Suppose R(MVlM)n R(MVZM) = {0}, 1f MVlM and MV2M are nonnull, then q'6 is 'x;
nonnegatively estimable iff qlz_O, qzz_O. wmfﬁ
(b) Suppose R(MV M) n R(MV,M)# {0}, Then
(i) if R(MVlM) ¢ R(MVZM), q'0 is nonnegatively estimable iff qlz_qzkri(). .
(ii) 1f R(MVlM)C R(MVZM) and rank(MVlM) <rank(MV2M), then q'6 is nonnegatively |
estimable iff qZAlz-qli.o' ]
(1ii) 1f R(MVlM)= R(MVZM), then q'6® is nonnegatively estimable iff ]
QA2 912 94,2 0. ;
Proof: Since V1 and V2 are nnd, any nonnegatively estimable q'0 must have qlz_O, ;g
q,> 0 (LaMotte, 1973). Using Theorem 6.3.4 in Rao and Mitra (1971), we see that f;i
there exists a nonsingular matrix P satisfying P‘MVZMP= diag (Ir,O) and P'MVlMP= - ?
diag(Al,Az) where Al= diag(kl,kz,...,kr) and A2= diag(xf+l,...,kn). 33
]
1
»
R T e e e e e e e e e e




(a) R(MVlM)n R(Mv, M) = {0} iff A =0. 1In such a case, for q;>0, q,>0,
!
rank(Az)

q'6.

+
Y'p diag(OJ\z)P'Y + ;; Y'P diag(Ir,O)P'Y is an nnd unbiased estimator of

= -1 = - =1
(b) MVqM P diag(qul+q2,...,qul+q2,qlkr+l,...,qlAn) and MVlM qlMVqM— q2P

. . . 2,2 .
dlag(qzkl ql,...,qzkr-ql,qzkr+l,...,qzkn) (using the assumption ql+q2— 1). If
q; or q, is zero, then it can be verified that the necessary and sufficient con-
dition for the nonnegative estimability of a single variance component as given in
Theorem 5.1 of Pukelsheim (1977) or Theorem 3 in Kleffe (1977) or Theorem 5.5.1
in Rao and Kleffe (1980) reduce to those given in the theorem. We now consider
the case q; #0, q, # 0.
(i) When R(MVlM) ¢ R(MVZM), A2 # 0. Let us assume A >0, If qzkr— ql> 0, then

+1

MVlM—qlMVqM is nnd and has the same range as MVqM. Hence from Corollary 1(ii)

it follows that q'6 is not nonnegatively estimable. Conversely, if qz)\r-ql < Q,

since Ar+l> 0 and MVin_O, we can find an nnd A satisfyingtr AMVqM> 0 and

tr A(MVlM—qlMVqM) = 0. Then E;—Xév—ﬁ Y'MAMY is an nnd unbiased estimator of q'6.

We observe that R(MVIM)C R(MVZM) ifg A2= 0 and then rank (MVlM) <rank(MV2M) iff

Ar = 0. Using these observations, the rest of the corollary can be established B
using Corollary 1. [ s
) ". Corollary 2 reduces to Theorem 1 in Baksalary and Molinska (1984) when ]

V2 =1 1

Let V0 be the nnd matrix as defined in assumption 3. Let U0 be an nnd matrix

=0 and MV.M + U

satisfying MVOMUo 0 0

is p.d. '

Theorem 2. Suppose (I—Pq)MVqM(I—Pq) is a nonnull nnd matrix of rank ty- Then

+
(i) the estimator i?—Y'[(I—Pq)MVqM(I-Pq)] Y is an nnd unbiased estimator of q'f.
0

(ii) if there exists an nnd matrix WO

NND) of q'4.

as specified in Theorem 1 (ii), the above es-

-
o .4. . l‘ '
PR B I D

timator is the MINQUE(MV0M+UO,

P
. 'y
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Proof: (i) We observe that tr[((I-Pq)MVqM(I—Pq)]+(Vi-quq):0 for 1=1,2,...,k-1
and tr[(I-Pq)MVqM(I-Pq)]+Vq - tr[(I-Pq)MVqM(I-Pq)]+[(I-Pq)MVqM(I-Pq)] -
rank[(I-Pq)MVqM(I-Pq)]. Thus, the estimator given in the theorem is an nnd unbiased
estimator of n, in (II) ang hence that of q'6 in (I).

(ii) Let Y'B_ Y denote the nnd estimator of q'6® given in part (i) of the theorem and
let Y'BY be any other nnd unbiased estimator of q'6. We first show that

B = (I-Pq)MBM(I—Pq) when there exists a matrix Wo as specified in Theorem 1 (ii).

The matrix B satisfies BX = 0, tr BVq =1 and tr B(Vi—qivq) =0 (i=1,2,...,k-1).
Since BX=0 iff B = MBM, the last set of conditions give tr B(MViM-qiMVqM) =0
(i=1,2,...,k-1), which implies tr BW0= 0 or equivalently BWO- 0. Thus B

satisfies BX= 0, B(MViM-qiMVqM) = 0 and hence B = (Iqu)MBM(I-Pq). Now let

2 2 2
I Bl = tr BOWV MU BV MHG) = | B*||0‘+ | B-B, [l +2tx B, (MV M+U ) (B-B,)
2 2 . .
(MV0M+UO) = | B*"O + | B-B*"o + 2tr B*MVOM(B-B*)MVOM. The proof is complete if

we show that the last teri_is zero. Since Vo€ sp{Vl,Vz,...,Vk}a sp{Vq,Vl-qIVé,...,
vk_l-qk_lvq}, Vo= oV * izlai(vi-qivq)' where o) # 0 (since (I-P )MV M(I-P )#0).

Then tr B*MVOM(B-B*)MVOM = ai(trB*MVqM(B-B*)MVqM and trB*MVqMBMVqM = trB*(I-Pq)MVqM
(I—Pq)MBM(I—Pq)MVqM(I-Pq)=£;'tr(I—Pq)MVqM(I-Pq)MBM - %; tr BVq = 5;- tr B*MVqMB*MVqM. d

Remark 3. If we are interested in the nonnegative estimability of a single var-
iance component, Theorem 2 (ii) reduces to Theorem 5.5.2 in Rao and Kleffe (1980)

when the matrices Vi (i=1,2,...,k) in (I) are nnd.

2

As an example, we consider a model with two variance components Y ~ (X8, 01

2
Ib 2 lklé + 9, Ib ] Ik) where 1, is a k-component vector of ones, oiz_o, Og

Such a model arises in the interblock analysis of a block design with b blocks,

>0.

each block having k plots. A model from genetics discussed by Gnot and Kleffe

(1983, p. 275) is also of the above form. An explicit characterization of q;
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and q, such that qloi + qzoi is nonnegatively estimable can be obtained using .'
Corollary 2 or Theorem 1 in Baksalary and Molinska (1984). We shall consider the
nonnegative estimation of 0; and (k0i4*z). These are the parametric functions -

of interest when we want to combine the inter and intra block estimates of the .

»
treatment contrasts in a block design. For the estimation of Og, Theorem 1 (ii)
and Theorem 2 (ii) clearly applies. Let M =1 - XX+, v, = Ib 2 lklé, v,= Ib eI,
1= k - and q, = f:%: . Then V_ = ——l——(kv +V,)) and V.-q.V = —l——{V -kv_).
S / ) T 5 1 2 1 %l q 1+k2 1 2 [ ]
1+k 1+k 1+k
Since Vl-qlvq is nonpositive definite, so is MVlM-qlMVqM. Thus the nonnegative es-
timability of kOi+0§ can be verified using Theorem 1 (ii). When it is nonnega-
tively -@estimable (which is the case for a block design) its MINQUE (I, NND) can ’
be computed using Theorem 2 (ii). Explicit characterization of nonnegatively es-
timable q'0 for some ANOVA models is given in Pukelsheim (1979, 198la). .
;o
4, Characterization of Nonnegative Estimability using MINQUE.
We now proceed to obtain conditions under which MINQUE (given Z) characterizes
nonnegative estimability in model (I). i i
Let B be a subspace of real symmetric matrices of order n. For an nxn posi-
tive definite matrix N, let PN denote the orthogonal projector onto B, where
orthogonality is w.r.t, the inner product <A,B> = tr ANBN; A,B symmetric. ’
Definition 3. We say that B is an N-quadratic subspace if BNBe¢ B whenever Be B.
Definition 4. We say that B preserves nonnegative definiteness wr.r.t. N if
PN(B)Z_O whenever B> 0. »
Definition 3 is given in Musiela and Zmyslony (1978, Appendix). Definition 4
is a generalization of a definition given in Mathew (1984) and is a special case
of the definition of a nonnegativity preserving linear transformation given in ]
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de Pillis (1967). It is clear that B preserves nonnegative definiteness w.r.t N
2

iff Nl/zBNl/2 = {Nl/zBN}/:Be B} preserves nonnegative definiteness w.r.t. I. Us-

ing this observation characterization of subspaces that preserve nonnegative defi-

niteness can be obtained similar to Lemma 1 and Lemma 2 in Mathew (1984). It

can also be shown that an N-quadratic subspace preserves nonnegative definiteness
w.r.t. N, (cf. Pukelsheim 198la, Lemma 2),.

Let MZ be as defined in section 2 and let BZ denote the subspace spanned by
the matrices MZViMé (i=1,2,...,k). The following result is a generalization of
Theorem 2 in Pukelsheim (198la) and the theorem in Mathew (1984).

Theorem 3. (i) MINQUE (given I) characterizes nonnegative estimability in (I) iff
;- BZ preserves nonnegative definiteness w.r.t. Z-l. -

(ii) Leth preserve nonnegative definiteness w.r.t.Z-land suppose BZ is k-dimension-
k ~ 2

al. Then ) O M_V M! is nnd, where O, denotes the MINQUE (given I) of 8.
i=1 1212 i i

The theorem follows from the corresponding results for the case L= I once
it is observed that MINQUE (given I) characterizes nonnegative estimability in (I)
iff MINQUE (given I) characterizes nonnegative estimability in the model

g=1/2g (Z-l/ZXB,Z-l/ZVez—l/Z). Ll

In the introduction, it has been pointed out that MINQUE (given I) always
characterizes nonnegative estimability in a general m-way classification model
with balanced data. We shall now apply the reuslts in this section to the multi-
variate linear model Y ~ ((Ip 2 X)B, § B V), where § of order p is unknown and V is

a known nnd matrix. Let U be an nnd matrix satisfying (V4XX')U= 0 and G= V+XX'+U _
1 o

. '
RS G U P .

is p.d. Let MG = I—X(X'G-lx)-X’G_ .  Then subspace BIﬁG consisting of matrices
- +
s MGVMé isan I 8 G 1 -quadratic subspace of dimension‘ng—ll, where § is any

symmetric matrix of order p., Hence for checking the nonnegative estimability of
a linear combination of the components of t, it is enough to check the nonnega-

- 1

tivity of its MINQUE (given IAG l). Furthermore, the estimate of } obtained from the ._.j
. ';'.i

}

L

4
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MINQUE (given I R G_l) of its components is nnd. For the case V = I, these

observations are given in Pukelsheim (198la, p. 295).
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