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THE DEPARTMENT OF DEFENSE
INTERNET PROTOCOLS

The enclosed package of material provides summary documentation and tutorial
information on research and development carried out by the Defense Advanced Research
Projects Agency (DARPA), the Defense Communications Agency (DCA), and other parts
of the Department of Defense, in the interconnection and use of packet communication
networks.

This material reflects the results of several years of development and experimentation
with a layered hierarchy of communication protocols and application software designed to
support resource sharing, remote interactive computing, and distributed computing services
such as electronic message handling.

The protocols have been tested in tactical applications such as fire control and tactical
situation reporting, using a mobile packet radio network developed by DARPA and utilizing
computing resources on the ARPANET.  Logistics applications and internet electronic
message handling are in regular use in military testbeds supported by the internet system.
The ARPANET network of 300 hosts and approximately 100 packet switches is
transitioning to the internet protocol hierarchy, a process which should be completed early
in calendar year 1983. In addition, the National Science Foundation is sponsoring a
Computer Science Network (CSNET) system which uses the internet protocols on the
ARPANET and public Telenet systems.

The protocols are also in regular use across several packet satellite systems using
INTELSAT IVA over the Atlantic (SATNET) and the domestic WESTAR (Wide-Band
Net/EISN) as well as the Naval FLTSATCOM (MATNET). Local broadband and coaxial
cable networks as well as fiber optic nets have been integrated into the system, and the
internet protocols have been shown to be efficient for both intranet and internet
applications.

The Department of Defense has adopted the Internet Protocol (IP) and the Transmission
Control Protocol (TCP) as standards for use in packet networking. The remaining protocols
in the hierarchy such as File Transfer Protocol and Terminal/Host Protocol (TELNET) are
in regular use in the DARPA experimental Internet System and will be used on an interim
basis in operational DoD networks such as the Defense Data Network until formal
standards are established.
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THE UNDER SECRETARY OF DEFENSE

WASHINGTON, D.C. 20301
, oY
RESEARCH AND & mi Jdl

ENGINEERING a1 X ;:j
"
) 3
..AJ
1/ 00 _J
MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS A
CHAIRMAN OF THE JOINT CHIEFS OF STAFF Acﬁ;‘—;A:-
DIRECTORS OF THE DEFENSE AGENCIES ..‘_.,.'b“ '
. L 1] s
SUBJECT: DoD Policy on Standardization of Host-to-Host Protocols for Data -]
Communications Netw-rks i
- Ny
Reference: (a) USDRSE Memc, "Host-to-Host Protocols for Data Communications 1
Networks,” 23 Dec 78 f
(b) DoD Standard Transmission Control Protocol Specification, )
Jan 80 .
(c) DoD Standard Internet Protocol Specification, Jan 80 -
(d) DoD Directive 4120.3, "Department of Defense Standardization ™
Prograa,” 6 June 73 U
(e) DoDI 4120.20, "Developneat and use of Non-Government B
Specifications and Standards,® 28 Dec 76 .
1. The purpose of this menorandum is to clarify DoD policy concerning :1

standardization of host-to-host protocols for data communications networks.

2. The policy cited in refe-ence (a) is reaffirmed, namely: (1) the use of
DoD standard host-to-host protocols (Transmission Control Protocol (TCP) and
Internet Protocol (IP), references (b) and (¢)) is mandatory for all DoD
packet-oriented data networks which have a potential for host-to-host F?
connectivity across network or subnetwork boundaries; (2) the.Director,

Defense Communications Agency, is designated as the Executive Agent for
computer communications protocols; and (3) case-by-case exceptions will be
granted by the Executive Agent only for networks shown to have no future
requirements for intercperability.
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. 3. Reference (a) is not inte~ded tr~ replace the normal DuZ =tandardization

o procedures hstablished by DoDD 4120.3 ireferenne (d)). Rather, the Executive

& Agent function is intended iu piace iucreased emphasis and initiative on the

t;- important and currently volatile technology of data communications protocol g
PY st.andardization. New standards and modifications to existing standards will A

be submitted by the Executive Agsnt to the Defense Departament components for
ratification and dissemination in accordance with the provisions of
reference (d).

P AR AN

4§, DoDI 4120.20 (reference (e)) also continues to apply to protocol
standards. Thus, it is desired that nongovernment protocol standards bde
adopted and used in lieu of the development and promulgation of new
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documents. Military requirements for interoperability, security, reliability
and survivability are sufficiently pressing to have justified the development
and adoption of TCP and IP in the absence of satisfactory nongovernment
protocol standards. In the future, the Executive Agent will determine
whenever unique military requirements justify the developament and adoption of
unique DoD protocol standards after making every effort to use prevailing
nongovernment standards. Moreover, thc Exzcutive Agent will make every effort
to inject DoD requirements into the nongovernment standard development process
through participation in voluntary standards forums and through coordination
with other U.S. Government members of such forums. This influence should be
exerted with the objectives of both avoiding the need to develop and adopt
unique DoD standards and enabling eventual replacement of unique DoD standards
with functionally equivalent nongovernment standards.

o © Ded

/. Richard D. Gelaust
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WINDOW AND ACKNOWLEDGEMENT
STRATEGY IN TCP

David D. Clark
MIT Laboratory for Computer Science

Computer Systems and Communications Group
July, 1982
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1. INTRODUCTION

This document describes implementation strategies to deal with two mechanisms in
TCP, the window and the acknowledgement.  These mechanisms are described in the
specification document, but it is  possible, while complying with the specification, to
produce implementations which yield very bad performance. Happily, the pitfalls possible in
window and acknowledgement strategies are very easy to avoid.

| OO
L

e

It is a much more difficult exercise to verify the performance of a specification than the
correctness.  Certainly, we have less experience in this area, and we certainly lack any
useful formal technique. Nonetheless, it is important to attempt a specification in this area,
because different implementors might otherwise choose superficially reasonable algorithms -
which interact poorly with each other.  This document presents a particular set of
algorithms which have received testing in the field, and which appear to work properly with .
each other.  With more experience, these algorithms may become part of the formal o
specification: until such time their use is recommended.

2. THE MECHANISMS

The acknowledgement mechanism is at the heart of TCP. Very simply, when data
arrives at the recipient, the protocol requires that it send back an acknowledgement of this -
data. The protocol specifies that the bytes of data are sequentially numbered, so that the )
recipient can acknowledge data by naming the highest numbered byte of data it has s
received, which also acknowledges the previous bytes (actually, it identifies the first byte of ‘
data which it has not yet received, but this is a small detail). The protocol contains only
a general assertion that data should be acknowledged promptly, but gives no more specific
indication as to how quickly an acknowledgement must be sent, or how much data should
be acknowledged in each separate acknowledgement.

-

.. e
i T 0 . i
I PRI

1.

The window mechanism is a flow control tool. Whenever appropriate, the recipient of
data returns to the sender a number, which is (more or less) the size of the buffer which
the receiver currently has available for additional data. This number of bytes, called the
window, is the maximum which the sender is permitted to transmit until the receiver
returns some additional window. Sometimes, the receiver will have no buffer space
available, and will return a window value of zero. Under these circumstances,the protocol
requires the sender to send a small segment to the receiver now and then, to see if more
data is accepted. If the window remains closed at zero for some substantial period, and
the sender can obtain no response from the receiver, the protocol requires the sender to
conclude that the receiver has failed, and to close the connection. Again, there is very
little performance information in the specification, describing under what circumstances the
window should be increased, and how the sender should respond to such revised
information.
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A bad implementation of the window algorithm can lead to extremely poor performance
overall. The degradations which occur in throughput and CPU utilizations can easily be
several factors of ten, not just a fractional increase. This particular phenomenon is specific
enough that it has been given the name of Silly Window Syndrome, or SWS.  Happily
SWS is easy to avoid if a few simple rules are observed. The most important function of
this memo is to describe SWS, so that implementors will understand the general nature of
the problem, and to describe algorithms which will prevent its occurrence. This document
also describes performance enhancing algorithms which relate to acknowledgement,
and discusses the way acknowledgement and window algorithms interact as part of SWS.

3. SILLY WINDOW SYNDROME

In order to understand SWS, we must first define two new terms. Superficially, the
window mechanism is very simple: there is a number, called "the window"”, which is
returned from the receiver to the sender. However, we must have a more detailed way of
talking about the meaning of this number. The receiver of data computes a value which
we will call the "offered window". In a simple case, the offered window corresponds to
the amount of buffer space available in the receiver. This correspondence is not necessarily
exact, but is a suitable model for the discussion to follow. It is the offered window which
is actually transmitted back from the receiver to the sender. The sender uses the offered
window to compute a different value, the "usable window", which is the offered window
minus the amount of outstanding unacknowledged data. The usable window is less than or
equal to the offered window, and can be much smaller.

Consider the following simple example.  The receiver initially provides an offered
window of 1,000. The sender uses up this window by sending five segments of 200 bytes
each. The receiver, on processing the first of these segments, returns an acknowledgement
which also contains an updated window value. Let us assume that the receiver of the data
has removed the first 200 bytes from the buffer, so that the receiver once again has 1,000
bytes of available buffer.  Therefore, the receiver would return, as before, an offered
window of 1,000 bytes. The sender, on receipt of this first acknowledgemeni, now
computes the additional number of bytes which may be sent. In fact, of the 1,000 bytes
which the recipient is prepared to receive at this time, 800 are already in transit, having
been sent in response to the previous offered window. In this case, the usable window is
only 200 bytes.

Let us now consider how SWS arises. To continue the previous example, assume that
at some point, when the sender computes a useable window of 200 bytes, it has only 50
bytes to send until it reaches a "push" point. It thus sends 50 bytes in one segment,
and 150 bytes in the next segment. Sometime later, this 50-byte segment will arrive at
the recipient, which will process and remove the 50 bytes and once again return an offercd
window of 1,000 bytes. However, the sender will now compute that there are 950 bytes in
transit in the network, so that the useable window is now only 50 bytes. Thus, the sender
will once again send a 50 byte segment, even though there is no longer a natural boundary
to force it.

In fact, whenever the acknowledgement of a small segment comes back, the useable
window associated with that acknowledgement will cause another segment of the same small
size to be sent, until some abnormality breaks the pattern. It is easy to see how small
segments arise, because natural boundaries in the data occasionally cause the sender to take
a computed useable window and divide it up between two segments. Once that division
has occurred, there is no natural way for those useable window allocations to be
recombined; thus the breaking up of the useable window into small pieces will persist.
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Thus, SWS is a degeneration in the throughput which develops over time, during a long
data transfer. If the sender ever stops, as for example when it runs out of data to send,
the receiver will eventually acknowledge all the outstanding data, so that the useable
window computed by the sender will equal the full offered window of the receiver. At this
point the situation will have healed, and further data transmission over the link will occur
efficiently. However, in large file transfers, which occur without interruption, SWS can
cause appalling performance. The network between the sender and the receiver becomes
clogged with many small segments, and an equal number of acknowledgements, which in
turn causes lost segments, which triggers massive retransmission. Bad cases of SWS have
been seen in which the average segment size was one-tenth of the size the sender and
receiver were prepared to deal with, and the average number of retransmission per
successful segments sent was five.

Happily, SWS is trivial to avoid. The following sections describe two algorithms, one
executed by the sender, and one by the receiver, which appear to eliminate SWS
completely.  Actually, either algorithm by itself is sufficient to prevent SWS, and thus
protect a host from a foreign implementation which has failed to deal properly with this
problem. The two algorithms taken together produce an additional reduction in CPU
consumption, observed in practice to be as high as a factor of four.

4. IMPROVED WINDOW ALGORITHMS

The receiver of data can take a very simple step to eliminate SWS. When it disposes
of a small amount of data, it can artificially reduce the offered window in subsequent
acknowledgements, so that the useable window computed by the sender does not permit the
sending of any further data. At some later time, when the receiver has processed a
substantially larger amount of incoming data, the artificial limitation on the offered window
can be removed all at once, so that the sender computes a sudden large jump rather than a
sequence of small jumps in the useable window.

At this level, the algorithm is quite simple, but in order to determine exactly when the
window should be opened up again, it is necessary to look at some of the other details of
the implementation. Depending on whether the window is held artificially closed for a
short or long time, two problems will develop. The one we have already discussed -
never closing the window artificially ~ will lead to SWS. On the other hand, if the
window is only opened infrequently, the pipeline of data in the network between the sender
and the receiver may have emptied out while the sender was being held off, so that a
delay is introduced before additional data arrives from the sender.  This delay does reduce
throughput, but it does not consume network resources or CPU resources in the process, as
does SWS. Thus, it is in this directicn that one ought to overcompensate.

For a simple implementation, a rule of thumb that seems to work in practice is to
artificially reduce the offered window until the reduction constitutes one half of the
available space, at which point increase the window to advertise the entire space again. In
any event, one ought to make the chunk by which the window is opened at least permit
one reasonably large segment. (If the receiver is so short of buffers that it can never
advertise a large enough buffer to permit at least one large segment, it is hopeless to
expect any sort of high throughput.)

3 (7)
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There is an algorithm that the sender can use to achieve the same effect described
above: a very simple and elegant rule first described by Michael Greenwald at MIT. The
sender of the data uses the offered window to compute a useable window, and then
compares the useable window to the offered window, and refrains from sending anything if .
the ratio of useable to offered is less than a certain fraction. Clearly, if the computed -
useable window is small compared to the offered window, this means that a substantial -
amount of previously sent information is still in the pipeline from the sender to the '
receiver, which in turn means that the sender can count on being granted a larger useable
window in the future. Until the useable window reaches a certain amount, the sender
should simply refuse to send anything.

Simple experiments suggest that the exact value of the ratio is not very important, but
that a value of about 25 percent is sufficient to avoid SWS and achieve reasonable
throughput, even for machines with a small offered window. An additional enhancement
which might help throughput would be to attempt to hold off sending until one can send a
maximum size segment. Another enhancement would be to send anyway, even if the ratio
is small, if the useable window is sufficient to hold the data available up to the next "push
point".

This algorithm at the sender end is very simple. Notice that it is not necessary to set
a timer to protect against protocol lockup when postponing the send operation. Further
acknowledgements, as they arrive, will inevitably cnange the ratio of offered to useable
window. (To see this, note that when all the data in the catanet pipeline has arrived at
the receiver, the resulting acknowledgement must yield an offered window and useable
window that equal each other) If the expected acknowledgements do not arrive, the
retransmission mechanism will come into play to assure that something finally happens.
Thus, to add this algorithm to an existing TCP implementation usually requires one line of
code. As part of the send algorithm it is already necessary to compute the useable window
from the offered window. It is a simple matter to add a line of code which, if the ratio is
less than a certain percent, sets the useable window to zero. The results of SWS are so
devastating that no sender should be without this simple piece of insurance.
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5. INMPROVED ACKNOWLEDGEMENT ALGORITHMS

In the beginning of this paper, an overly simplistic implementation of TCP was
described, which led to SWS. One of the characteristics of this implementation was that
the recipient of data sent a separate acknowledgement for every segment that it received.
This compulsive acknowledgement was one of the causes of SWS, because each

acknowledgement provided some new useable
described above is used to eliminate SWS,
substantial problem, which is that it greatly
end. Measurement of TCP implementations,
that most of the overhead of dealing with a

segment.

(8)

window, but even if one of the algorithms
overly frequent acknowledgement still has a
increases the processing time at the sender’s
especially on large operating systems, indicate
segment is not in the processing at the TCP

or IP level, but simply in the scheduling of the handler which is required to deal with the
A steady dribble of acknowledgements causes a high overhead in scheduling, with
very little to show for it. This waste is to be avoided if possible.
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There are two reasons for prompt acknowledgement. One is to prevent retransmission.
We will discuss later how to determine whether unnecessary retransmission is occurring.
The other reason one acknowledges promptly is to permit further data to be sent.
However, the previous section makes quite clear that it is not always desirable to send a
little bit of data, even though the receiver may have room for it. Therefore, one can state a
general rule that under normal operation, the receiver of data need not, and for efficiency
reasons should not, acknowledge the data unless either the acknowledgement is intended to
produce an increased useable window, is necessary in order to prevent retransmission or is
being sent as part of a reverse direction segment being sent for some other reason. We
will consider an algorithm to achieve these goals.
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Only the recipient of the data can control the generation of acknowledgements. Once
an acknowledgement has been sent from the receiver back to the sender, the sender must
process it. Although the extra overhead is incurred at the sender’s end, it is entirely under
the receiver’s control. Therefore, we must now describe an algorithm which occurs at the
receiver’s end. Obviously, the algorithm must have the following general form; sometimes
the receiver of data, upon processing a segment, decides not to send an acknowledgement
now, but to postpone the acknowledgement until some time in the future, perhaps by
setting a timer. The peril of this approach is that on many large operating systems it is
extremely costly to respond to a timer event, almost as costly as to respond to an
incoming segment. Clearly, if the receiver of the data, in order to avoid extra overhead at .
the sender end, spends a great deal of time responding to timer interrupts, no overall ]
benefit has been achieved, for efficiency at the sender end is achieved by great thrashing at -
the receiver end. We must find an algerithm that avoids both of these perils. -
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The following scheme seems a good compromise. The receiver of data will refrain from
1 sending an acknowledgement under certain circumstances, in which case it must set a timer
. which will cause the acknowledgement to be sent later. However, the receiver should do
F this only where it is a reasonable guess that some other event will intervene and prevent

L

the necessity of the timer interrupt. The most obvious event on which to depend is the
arrival of another segment. So, if a segment arrives, postpone sending an acknowledgement
if both of the following conditions hold. First, the push bit is not set in the segment, since
it is a reasonable assumption that there is more data coming in a subsequent segment.
Second, there is no revised window information to be sent back.
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the timer is related to the expected inter- segment delay, which is in turn a function of
the particular network through which the data is flowing. For the ARPANET, a reasonable
interval seems to be 200 to 300 milliseconds.  Appendix A describes an adaptive algorithm
for measuring this delay.

. The section on improved window algorithms described both a receiver algorithm and a
- sender algorithm, and suggested that both should be used. The reason for this is now
clear. While the sender algorithm is extremely simple, and useful as insurance, the receiver
algorithm is required in order that this improved acknowledgement strategy work. If the
- receipt of every segment causes a new window value to be returned, then of nccessity an
b acknowledgement will be sent for every data segment. When, according to the strategy of
- the previous section, the receiver determines to artificially reduce the offered window, that
. is precisely the circumstance under which an acknowledgement need not be sent. When
:' the receiver window algorithm and the receiver acknowledgement algorithm are used
- together, it will be seen that sending an acknowledgement will be triggered by one of the
b

!

? This algorithm will insure that the timer, although set, is seldom used. The interval of
¢
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following events. First, a push bit has been received. Second, a temporary pause in the
o data stream is detected.  Third, the offered window has been artificially reduced to
one-half its actual value.
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In the beginning of this section, it was pointed out that there are two reasons why one
must acknowledge data. OQur consideration at this point has been concerned only with the
first, that an acknowledgement must be returned as part of triggering the sending of new
data. It is also necessary to acknowledge whenever the failure to do so would trigger
retransmission by the sender. Since the retransmission interval is selected by the sender,
the receiver of the data cannot make a precise determination of when the acknowledgement
must be sent. However, there is a rough rule the sender can use to avoid retransmission,
provided that the receiver is reasonably well behaved.

We will assume that sender of the data uses the optional algorithm described in the
TCP specification, in which the roundtrip delay is measured using an exponential decay
smoothing alg rithm. Retransmission of a segment occurs if the measured delay for that
segment exceeds the smoothed average by some factor. To see how retransmission might
be triggered, one must consider the pattern of segment arrivals at the receiver.

The goal of our strategy was that the sender should send off a number of segments in
close sequence, and receive one acknowledgement for the whole burst. The
acknowledgement will be generated by the receiver at the time that the last segment in the
burst arrives at the receiver. (To ensure the prompt return of the acknowledgement, the
sender could turn on the "push” bit in the last segment of the burst) The delay observed
at the sender between the initial transmission of a segment and the receipt of the
acknowledgement will include both the network tramsit time, plus the holding time at the
receiver. The holding time will be greatest for the first segments in the burst, and smallest
for the last segments in the burst. Thus, the smoothing algorithm will measure a delay
which is roughly proportional to the average roundtrip delay for all the segments in the
burst.

Problems will arise if the average delay is substantially smaller than the maximum delay
and the smoothing algorithm used has a very small threshold for triggering retransmission.
The widest variation between average and maximum delay will occur when network transit
time is negligible, and all delay is processing time. In this case, the maximum will be
twice the average (by simple algebra) so the threshold that controls retransmission should
be somewhat more than a factor of two.

In practice, retransmission of the first segments of a burst has not been a problem
because the delay measured consists of the network roundtrip delay, as well as the delay
due to withholding the acknowledgement, and the roundtrip tends to dominate except in
very low roundtrip time situations (such as when sending to one’s scif for test purposes).
This low roundtrip situation can be covered very simply by including & minimum value
below which the roundtrip estimate is not permitted to drop.

In our experiments with this algorithm, retransmission due to faulty calculation of the
roundtrip delay occurred only once, when the parameters of the exponential smoothing
algorithm had been misadjusted so that they were only taking into account the last two or
three segments sent. Clearly, this will cause trouble since the last two or three segments of
any burst are the ones whose holding time at the receiver is minimal, so the resulting total
estimate was much lower than appropriate. Once the parameters of the algorithm had been
adjusted so that the number of segments taken int account was approximately twice the
number of segments in a burst of average size, with a threshold factor of 1.5, no further
retransmission has ever been identified due to this problem, including when sending to
ourself and when sending over high delay nets.
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6. CONSERVATIVE VS. OPTIMISTIC WINDOWS

According to the TCP specification, the offered window is presumed to have some
relationship to the amount of data which the receiver is actually prepared to receive.
However, it is not necessarily an exact correspondence. We will use the term
"conservative window" to describe the case where the offered window is precisely no
larger than the actual buffering available. The drawback to conservative window algorithms
is that they can produce very low throughput in long delay situations. It is easy to see
that the maximum input of a conservative window algorithm is one bufferfull every
roundtrip delay in the net, since the next bufferfull cannot be launched until the updated
window/acknowledgement information from the previous transmission has made the
roundtrip.

In certain cases, it may be possible to increase the overall throughput of the
transmission by increasing the offered window over the actual buffer available at the
receiver. Such a strategy we will call an "optimistic window" strategy. The optimistic
strategy works if the network delivers the data to the recipient sufficiently slowly that it
can process the data fast enough to keep the buffer from verflowing. If the receiver is
faster than the sender, ne could, with luck, permit an infinitely optimistic window, in which
the sender is simply permitted to send full-speed. If the sender is faster than the receiver,
however, and the window is to optimistic, then some segments will cause a buffer verflow,
and will be discarded. Therefore, the correct strategy to implement an optimistic window
is to increase the window size until segments start to be lost. This only works if it is
possible to detect that the segment has been lost.

In some cases, it is easy to do, because the segment is partially processed inside the
receiving host before it is thrown away. In other cases, overflows may actually cause the
network interface to be clogged, which will cause the segments to be lost elsewhere in the
net. It is inadvisable to attempt an optimistic window strategy unless one is certain that
the algorithm can detect the resulting lost segments. However, the increase in throughput
which is possible from opiimistic windows is quite substantial. Any systems with small
buffer space should seriously consider the merit of optimistic windows.

The selection of an appropriate window algorithm is actually more complicated than
even the above discussion suggests. The following considerations are not presented with the
intention that they be incorporated in current implementations of TCP, but as background
for the sophisticated designer who is attempting to understand how his TCP will respond to
a variety of networks, with different speed and delay characteristics. The particular pattern
of windows and acknowledgements sent from receiver to sender influences two
characteristics of the data being sent. First, they control the average data rate. Clearly,
the average rate of the sender cannot exceed the average rate of the receiver, or long-term
buffer overflow will occur.  Second, they influence the burstiness of the data coming from
the sender. Burstiness has both advantages and disadvantages. The advantage of burstiness
is that it reduces the CPU processing necessary to send the data. This follows from, the
observed fact, especially on large machines, that most of the cost of sending a segment is
not the TCP or IP processing, but the scheduling overhead of getting started.

On the other hand, the disadvantage of burstiness is that it may cause buffers to
overflow, either in the eventual recipient, which was discussed above, or in an intermediate
gateway, a problem ignored in this paper. The algorithms described above attempts to
strike a balance between excessive burstiness, which in the extreme cases can cause delays
because a burst is not requested soon enough, and excessive fragmentation of the data
stream into small segments, which we identified as Silly Window Syndrome.
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Under conditions of extreme delay in the network, none of the algorithms described
- above will achieve adequate throughput. Conservative window algorithms have a

predictable throughput limit, which is one windowfull per roundtrip delay. Attempts to

solve this by optimistic window strategies .nay cause buffer overflows due to the bursty
:ﬂ nature of the arriving data. A very sophisticated way to solve this is for the receiver,
having measured by some means the roundtrip delay and intersegment arrival rate of the
actual connection, to open his window, not in one optimistic increment of gigantic
proportion, but in a number of smaller optimistic increments, which have been carefully
spaced using a timer so that the resulting smaller bursts which arrive are each sufficiently
small to fit into the existing buffers. One could visualize this as a number of requests
flowing backwards through the net which trigger in return a number of bursts which flow
back spaced evenly from the sender to the receiver. The overall result is that the receiver
uses the window mechanism to control the burstiness of the arrivals, and the average rate.

To my knowledge, no such strategy has been implemented in any TCP. First, we do
not normally have delays high enough to require this kind of treatment. Second, the
strategy described above is probably not stable unless it is very carefully balanced. Just as
buses on a single bus route tend to bunch up, bursts which start out equally spaced could
well end up piling into each other, and forming the single large burst which the receiver
was hoping to avoid. It is important to understand this extreme case, however, in order to
understand the limits beyond which TCP, as normally implemented, with either conservative
or simple optimistic windows can be expected to deliver throughput which is a reasonable
[ . percentage of the actual network capacity.

7. CONCLUSIONS

This paper describes three simple algorithms for performance enhancement in TCP, one

: at the sender end and two at the receiver. The sender algorithm is to refrain from sending

_ if the useable window is smaller than 25 percent of the offered window. The receiver

algorithms are first, to artificially reduce the offered window when processing new data if

the resulting reduction does not represent more than some fraction, say 50 percent, of the

= actual space available, and second, to refrain from sending an acknowledgment at all if two
- simple conditions hold.

when these algorithms are used together, they will produce substantial improvement in CPU

p Either of these algorithms will prevent the worst aspects of Silly Window Syndrome, and
utilization, by eliminating the process of excess acknowledgements.

Preliminary experiments with these algorithms suggest that they work, and work very
well.  Both the sender and receiver algorithms have been shown to eliminate SWS, even
when talking to fairly silly algorithms at the other end. The Multics mailer, in particular,
| had suffered substantial attacks of SWS while sending large mail to a number of hosts.
T We believe that implementation of the sender side algorithm has eliminated every known
case of SWS detected in our mailer.  Implementation of the receiver side algorithm
produced substantial improvements of CPU time when Multics was the sending system.
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Multics is a typical large operating system, with scheduling costs which are large
PY ' compared to the actual processing time for protocol handlers. Tests were done sending
\ from Multics to a host which implemented the SWS suppression algorithm, and which could
either refrain or not from serding acknowledgements on each segment. As predicted,
suppressing the return acknowledgements did not influence the throughput for large data
transfer at all, since the throttling effect was elsewhere. However, the CPU time required
to process the do o at the Multics end was cut by a factor of four (In this experiment, the
° bursts of data which were being sent were approximately eight segments. Thus, the
number of acknowledgements in the two experiments differed by a factor of eight.)
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An important consideration in evaluating these algorithms is that they must not cause
the protocol implementations to deadlock. All of the recommendations in this document
have the characteristic that they suggest one refrain from doing something even though the
protocol specification permits one to do it. The possibility exists that if one refrains from
doing something now one may never get to do it later, and both enus will halt, even
though it would appear superficially that the transaction can continue.

Formally, the idea that things continue to work is referred to as "liveness". One of
the defects of ad hoc solutions to performance problems is the possibility that two different
approaches will interact to prevent liveness. It is believed that the algorithms described in
this paper are always live, and that is one of the reasons why there is a strong advantage
in uniform use of this particular proposal, except in cases where it is explicitly
demonstrated not to work.
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The argument for liveness in these solutions proceeds as follows. First, the sender
algorithm can only be stopped by one thing, a refusal of the receiver to acknowledge sent
data. As long as the receiver continues to acknowledge data, the ratio of useable window
to offered window will approach one, and eventually the sender must continue to send.
However, notice that the receiver algorithm we have advocated involves refraining from
acknowledging. Therefore, we certainly do have a situation where improper operation of
this algorithm can prevent liveness.
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What we must show is that the receiver of the data, if it chooses to refrain from
acknowledging, will do so only for a short time, and not forever. The design of the
algorithm described above was intended to achieve precisely this goal: whenever the receiver
of data refrained from sending an acknowledgement it was required to set a timer. The
only event that was permitted to clear that timer was the receipt of another segment, which
essentially reset the timer, and started it going again. Thus, an acknowledgement will be
sent as soon as no data has been received. This has precisely the effect desired: if the
data flow appears to be disrupted for any reason, the receiver responds by sending an
up-to-date acknowledgement. In fact, the receiver algorithm is designed to be more
robust than this, for transmission of an acknowledgment is triggered by two events, either
a cessation of data or a reduction in the amount of offered window to 50 percent of the .
actual value. This is the condition which will normally trigger the transmission of this .
acknowledgement. NS
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APPENDIX A

DYNAMIC CALCULATION OF ACKNOWLEDGEMENT DELAY

L The text suggested that when setting a timer to postpone the sending of an
acknowledgement, a fixed interval of 200 to 300 milliseconds would work properly in
. practice. This has not been verified over a wide variety of network delays, and clearly if
there is a very slow net which stretches out the intersegment arrival time, a fixed interval
will fail. In a sophisticated TCP, which is expected to adjust dynamically (rather than
manually) to changing network conditions, it would be appropriate to measure this interval
and respond dynamically.

The following algorithm, which has been relegated to an Appendix, because it has not
been tested, seems sensible. Whenever a segment arrives which does not have the push bit
on in it, start a timer, which runs until the next segment arrives. Average these
interarrival intervals, using an exponential decay smoothing function tuned to take into
4 account perhaps the last ten or twenty segments that have come in. Occasionally, there
3 will be a long interarrival period, even for a segment which does not terminate a piece of
! data being pushed, perhaps because a window has gone to zero or some glitch in the .
_ sender or the network has held up the data. Therefore, examine each interarrival interval, y
E and discard it from the smoothing algorithm if it exceeds the current estimate by some i
- amount, perhaps a ratio of two or four times. By rejecting the larger intersegment arrival
intervals, one should obtain a smoothed estimate of the interarrival of segments inside a d
L burst. The number need not be exact, since the timer which triggers acknowledgement can
K add a fairly generous fudge factor to this without causing trouble with the sender’s estimate ;
of the retransmission interval, so long as the fudge factor is constant. _'4
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RFC: 814

NAME, ADDRESSES, PORTS, AND ROUTES

David D. Clark
MIT Laboratory for Computer Science

Computer Systems and Communications Group
July, 1982

1. INTRODUCTION

It has been said that the principal function of an operating system is to define a number
of different names for the same object, so that it can busy itself keeping track of the
relationship between all of the different names. Network protocols seem to have somewhat
the same characteristic. In TCP/IP, there are several ways of referring to things. At the
human visible interface, there are character string "names" to identify networks, hosts, and
services. Host names are translated into network “addresses”, 32-bit values that identify
the network to which a host is attached, and the location of the host on that net. Service
names are translated into a "port identifier", which in TCP is a 16-bit value. Finally,
addresses are translated into "routes", which are the sequence of steps a packet must take
to reach the specified addresses. Routes show up explicitly in the form of the internet
routing options, and also implicitly in the address to route translation tables which all hosts
and gateways maintain.

This RFC gives suggestions and guidance for the design of the tables and algorithms
necessary to keep track of these various sorts of identifiers inside a host implementation of
TCP/IP.

2. THE SCOPE OF THE PROBLEM

One of the first questions one can ask about a naming mechanism is how many names
one can expect to encounter. In order to answer this, it is necessary to know something
about the expected maximum size of the internet. Currently, the internet is fairly small.
It contains no more than 25 active networks, and no more than a few hundred hosts. This
makes it possible to install tables which exhaustively list all of these elements. However,
any implementation undertaken now should be based on an assumption of a much larger
internet.  The guidelines currently recommended are an upper limit of abou: 1,000
networks. If we imagine an average number of 25 hosts per net, this would suggest a
maximum number of 25,000 hosts. It is quite unclear whether this host estimate is high or
low, but even if it is off by several factors of two, the resulting number is still large
enough to suggest that current table management strategies are unacceptable. Some fresh
techniques will be required to deal with the internet of the future.

3. NAMES

As the previous section suggests, the internet will eventually hove a sufficient number of
names that a host cannot have a static table which provides a translation from every name
to its associated address. There are several reasons other than sheer size why a host would
not wish to have such a table. First, with that many names, we can expect names to be
added and deleted at such a rate that an installer might spend all his time just revising the
table. Second, most of the names will refer to addresses of machines with which nothing
will ever be exchanged. In fact, there may be whole networks with which a particular host
will never have any traffic.
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To cope with this large and somewhat dynamic environment, the internet is moviag
from its current position in which a single name table is maintained by the NIC and
distributed to all hosts, to a distributed approach in which each network (or group of
..etworks) is responsible for maintaining its own names and providing a "name server" to
translate between the names and the addresses in that network. [Each host is assumed to
store not a complete set of name-address translations, but only a cache of recently used
names. When a name is provided by a user for translation to an address, the host will
first examine its local cache, and if the name is not found taere, will communicate with an
appropriate name server to obtain the information, which it may then insert into its cache
for future reference.

Unfortunately, the name server mechanism is not totally in place in the internet yet, so
for the moment, it is necessary to continue to use the old strategy of maintaining a
complete table of all names in every host. Implementors, however, should structure this
table in such a way that it is easy to convert later to a name server approach. In
particular, a reasonable programming strategy would be to make the name table accessible
only through a subroutine interface, rather than by scattering direct references to the table
all through the code. In this way, it will be possible, at a later date, to replace the
subroutine with one capable of making calls on remote name servers.

A problem which occasionally arises in the ARPANET today is that the information in
a local host table is out of date, because a host has moved, and a revision of the host
table has not yet been installed from the NIC. In this case, one attempts to connect to a
particular host and discovers an unexpected machine at the address obtained from the local
table. If a human is directly observing the connection attempt, the error is usually detected
immediately. = However, for unattended operations such as the sending of queued mail, this
sort of problem can lead to a great deal of confusion.

The nameserver scheme will only make this problem worse, if hosts cache locally the
address associated with names that have been looked up, because the host has no way of
knowing when the address has changed and the cache entry should be removed. To solve
this problem, plans are currently under way to define a simple facility by which a host can
query a foreign address to determine what name is actually associated with it. SMTP
already defines a verification technique based on this approach.

4. ADDRESSES

The IP layer must know something about addresses.  In particular, when a datagram is
being sent out from a host, the IP layer must decide where to send it on the immediately
connected network, based on the internet address. Mechanically, the IP first tests the
internet address to see whether the network number of the recipient is the same as the
network number of the sender. If so, the packet can be sent directly to the final recipient.
If not, the datagram must be sent to a gateway for further forwarding. In this latter case,
a second decision must be made, as there may be more than one gateway available on the
immediately attached network.

When the internet address format was first specified, 8 bits were reserved to identify the
network. [Early implementations thus iniplemented the above algorithm by means of a table
with 256 entries, one for each possible net, that specified the gateway of choice for that
net, with a special case entry for those nets to which the host was immediately connected.
Such tables were sometimes statically filled in, which caused confusion and malfunctions
when gateways and netvorks moved (or crashed).
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The current definition of the internet address provides three different options for
network numbering, with the goal of allowing a very large number of networks to be part
of the internet. Thus, it is no longer possible to imagine having an exhaustive table to
select a gateway for any foreign net. Again, current implementations must use a strategy
based on a local cache of routing information for addresses currently being used.

The recommended strategy for address to route translation is as follows. When the IP
layer receives an outbound datagram for transmission, it extracts the network number from
the destination address, and queries its local table to determine whether it knows a suitable
gateway to which to send the datagram. If it does, the job is done. (But see RFC 816
on Fault Isolation and Recovery, for recommendations on how to deal with the possible
failure of the gateway.) If there is no such entry in the local table, then select any
accessible gateway at random, insert that as an entry in the table, and use it to send the
packet. Either the guess will be right or wrong. If it is wrong, the gateway to which the
packet was sent will return an ICMP redirect message to report that there is a better
gateway to reach the net in question. The arrival of this redirect should cause an update
of the local table.

The number of entries in the local table should be determined by the maximum number
of active connections which this particular host can support at any one time. For a large
time sharing system, one might imagine a table with 100 or more entries. For a personal
computer being used to support a single user telnet connection, only one address to
gateway association need be maintained at once.

The above strategy actually does not completely solve the problem, but only pushes it
down one level, where the problem then arises of how a new host, freshly arriving on the
internet, finds all of its accessible gateways. Intentionally, this problem is not solved within
the internetwork architecture.  The reason is that different networks have drastically
different strategies for allowing a host to find out about other hosts on its immediate
network. Some nets permit a broadcast mechanism. In this case, a host can send out a
message and expect an answer back from all of the attached gateways. In other cases,
where a particular network is richly provided with tools to support the internet, there may
be a special network mechanism which a host can invoke to determine where the gateways
are. In other cases, it may be necessary for an installer to manually provide the name of
at least one accessible gateway. Once a host has discovered the name of one gateway, it
can build up a table of all other available gateways, by keeping track of every gateway that
has been reported back to it in an ICMP message.

5. ADVANCED TOPICS IN ADDRESSING AND ROUTING

The preceding discussion describes the mechanism required in a minimal implementation,
an implementation intended only to provide operational service access today to the various
networks that make up the internet. For any host which will participate in future research,
as contrasted with service, some additional features are required. These features will also
be helpful for service hosts if they wish to obtain access to some of the more exotic
networks which will become part of the internet over the next few years. All implementors
are urged to at least provide a structure into which these features could be later integrated.

There are several features, either already a part of the architecture or now under
development, which are used to modify or expand the relationships between addresses and
routes. The IP source route options allow a host to explicitly direct a datagram through a
series of gateways to its foreign host. An alternative form of the ICMP redirect packet has
been proposed, which would return information specific to a particular destination host, not
a destination net. Finally, additional IP options have been proposed to identify particular
routes within the internet that are unacceptable.
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b~ The difficulty with implementing these new features is that the mechanisms do not lie

entirely within the bounds of IP. All the mechanisms above are designed to apply to a
particular connection, so that their use must be specified at the TCP level. Thus, the
interface between IP and the layers above it must include mechanisms to allow passing this
information back and forth, and TCP (or any other protocol at this level, such as UDP),
must be prepared to store this information. The passing of information between IP and
TCP is made more complicated by the fact that some of the information, in particular
ICMP packets, may arrive at any time. The normal interface envisioned between TCP and
JP is one across which packets can be sent or received. The existence of asynchronous
ICMP messages implies that there must be an additional channel between the two,
unrelated to the actual sending and receiving of data. (In fact, there are many other ICMP
messages which arrive asynchronously and which must be passed from IP up to higher
layers. See RFC 816, Fault Isolation and Recovery.)

Source routes are already in use in the internet, and many implementations will wish to
be able to take advantage of them. The following sorts of usages should be permitted.
First, a user, when initiating a TCP connection, should be able to hand a source route into
TCP, which in turn must hand the source route to IP with every outgoing datagram. The
user might initially obtain the source route by querying a different sort of name server,
which would return a source route instead of an address, or the user may have fabricated
the source route manually. A TCP which is listening for a connection, rather than
;‘ attempting to open one, must be prepared to receive a datagram which contains a IP return
.' route, in which case it must remember this return route, and use it as a source route on all
returning datagrams.

6. PORTS AND SERVICE IDENTIFIERS

destination host to which the datagram is being sent. In fact, datagrams are not intended
just for particular hosts, but for particular agents within a host, processes or other entities
that are the actual source and sink of the data. IP performs only a very simple
dispatching once the datagram has arrived at the target host, it dispatches it to a particular
protocol. It is the responsibility of that protocol handler, for example TCP, to finish
dispatching the datagram to the particular connection for which it is destined. This next
layer of dispatching is done using "port identifiers”, which are a part of the header of
the higher level protocol, and not the IP layer.

-
- The IP layer of the architecture contains the address information which specifies the
E-
s

This  two-layer  dispatching  architecture has caused a problem for certain
implementations.  In particular, some implementations have wished to put the IP layer
) within the kernel of the operating system, and the TCP layer as a user domain application
" program. Strict adherence to this partitioning can lead to grave performance problems, for
A the datagram must first be dispatched from the kernel to a TCP process, which then
; dispatches the datagram to its final destination process. The overhead of scheduling this
L"-' dispatch process can severely limit the achievable throughput of the implementation.

- As is discussed in RFC 817, Modularity and Efficiency in Protocol Implementations, this
particular separation between kernel and user leads to other performance problems, even

L ignoring the issue of port level dispatching. However, there is an acceptable shortcut which
can be taken to move the higher level dispatching function into the IP layer, if this makes
the implementation substantially casier.
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In principle, every higher level protocol could have a different dispatching algorithm.
The reason for this is discussed below. However, for the protocols involved in the service R
offering being implemented today, TCP and UDP, the dispatching algorithm is exactly the ~
same, and the port field is located in precisely the same place in the header. Therefore, 3
unless one is interested in participating in further protocol research, there is only one . 44
higher level dispatch algorithm. SR

This algorithm takes into account the internet level foreign address, the protocol number,
and the local port and foreign port from the higher level protocol header. This algorithm

. can be implemented as a sort of adjunct to the IP layer implementation, as long as no f'}’
h other higher level protocols are to be implemented. (Actually, the above statement is only "“
g partially true, in that the UDP dispatch function is subset of the TCP dispatch function. <
- UDP dispatch depends only protocol number and local port. However, there is an occasion
4 within TCP when this exact same subset comes into play, when a process wishes to listen 4
S for a connection from any foreign host. Thus, the range of mechanisms necessary to
[ support TCP dispatch are also sufficient to support precisely the UDP requirement.) ‘
F The decision to remove port level dispatching from IP to the higher level protocol has _ ]
been questioned by some implementors. It has been argued that if all of the address =
structure were part of the IP layer, then IP could Jdo aii of the packet dispatching function »
within the host, which would lead to a simpler modularity. Three problems were identified :
with this. ]
"‘ First, not all protocol implementors could agree on the size of the port identifier. TCP -—
8 selected a fairly short port identifier, 16 bits, to reduce header size. = Other protocols being e
S designed, however, wanted a larger port identifier, perhaps 32 bits, so that the port o
_:'; identifier, if properly selected, could be considered probabilistically unique. Thus,

. constraining the port id to one particular IP level mechanism would prevent certain fruitful i
lines of research. ..

Second, ports serve a special function in addition to datagram delivery: certain port
numbers are reserved to identify particular services. Thus, TCP port 23 is the remote login
service. If ports were implemented at the IP level, then the assignment of well known
ports could not be dome on a protocol basis, but would have to be done in a centralized
manner for all of the IP architecture.
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Third, IP was designed with a very simple layering role: IP contained exactly those
functions that the gateways must understand. If the port idea had been made a part of the
IP layer, it would have suggested that gateways needed to know about ports, which is not
the case.

There are, of course, other ways to avoid these problems. In particular, the
"well-known port" problem can be solved by devising a second mechanism, distinct from
port dispatching, to name well-known ports. Several protocols have settled on the idea of
including, in the packet which sets up a connection to a particular service, a more general
service descriptor, such as a character string field.  These special packets, which are
requesting connection to a particular service, are routed on arrival to a special server,
sometimes called a "rendezvous server”, which examines the service request, selects a
random port which is to be used for this instance of the service, and then passes the
packet along to the service itself to commence the interaction.

1
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For the internet architecture, this strategy had the sericus flaw that it presumed all -
protocols would fit into the same service paradigm: an initial setup phase, which might O
contain a certain overhead such as indirect routing through a rendezvous server, followed
by the packets of the interaction itself, which would flow directly to the process providing
the service.
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Unfortunately, not all high level protocols in internet were expected to fit this model.
The best example of this is isolated datagram exchange using UDP. The simplest exchange
in UDP is one process sending a single datagram to another. Especially on a local net,
where the net related overhead is very low, this kind of simple single datagram interchange
can be extremely efficient, with very low overhead in the hosts. However, since these
individual packets would not be part of an established connection, if IP supported a strategy
based on a rendezvous server and service descriptors, every isolated datagram would have
to be routed indirectly in the receiving host through the rendezvous server, which would
substantially increase the overhead of processing, and every datagram would have to carry
the full service request firld, which would increase the size of the packet header.

In general, if a network is intended for "virtual circuit service", or things similar to
that, then wusing a special high overhead mechanism for circuit setup makes sense.
However, current directions in research are leading away from this class of protocol, so
once again the architecture was designed not to preclude alternative protocol structures.
The only rational position was that the particular dispatching strategy used should be part
of the higher level protocol design, not the IP layer.

This same argument about circuit setup mechanisms also applies to the design of the IP
address structure. Many protocols do not transmit a full address field as part of every
packet, but rather transmit a short identifier which is created as part of a circuit setup from
source to destination. If the full address needs to be carried in only the first packet of a
long exchange, then the overhead of carrying a very long address field can easily be
justified. Under these circumstances, one can create truly extravagant address fields, which
are capable of extending to address almost any conceivable entity. However, this strategy
is usable only in a virtual circuit net, where the packets being transmitted are part of a
established sequence, otherwise this large extravagant address must be transported on every
packet.

Since Internet explicitly rejected this restriction on the architecture, it was necessary to
come up with an address field that was compact enough to be sent in every datagram, but
general enough to correctly route the datagram through the catanet without a previous
setup phase. The IP address of 32 bits is the compromise that results. Clearly it requires
a substantial amount of shoehorning to address all of the interesting places in the universe
with only 32 bits. On the other hand, had the address field become much bigger, IP
would have been susceptible to another criticism, which is that the header had grown
unworkably large. Again, the fundamental design decision was that the protocol be
designed in such a way that it supported research in new and different sorts of protocol
architectures.

There are some limited restrictions imposed by the IP design on the port mechanism
selected by the higher level process. In particular, when a packet goes awry somewhere on
the internet, the offending packet is returned, along with an error indication, as part of an
ICMP packet. An ICMP packet returns only the IP layer, and the next 64 bits of the
original datagram. Thus, any higher level protocol which wishes to sort out from which
port a particular offending datagram came must make sure that the port information is
contained within the first 64 bits of the next level header. This also means, in most cases,
that it is possible to imagine, as part of the IP layer, a port dispatch mechanism which
works by masking and matching on the first 64 bits of the incoming higher level header.
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RFC: 815

IP DATAGRAM
REASSEMBLY ALGORITHMS

David D. Clark
MIT Laboratory for Computer Science
Computer Systems and Communications Group
July, 1982

1. INTRODUCTION

One of the mechanisms of IP is fragmentation and reassembly. Under certain
circumstances, a datagram originally transmitted as a single unit will arrive at its final
destination broken into several fragments. The IP layer at the receiving host must
accumulate these fragments until enough have arrived to completely reconstitute the original
datagram. The specification document for IP gives a complete description of the
reassembly mechanism, and contains several examples. It also provides one possible
algorithm for reassembly, based on keeping track of arriving fragments in a vector of bits.
This document describes an alternate approach which should prove more suitable in some
machines.

A superficial examination of the reassembly process may suggest that it is rather
complicated.  First, it is necessary to keep track of all the fragments, which suggests a
small bookkeeping job. Second, when a new fragment arrives, it may combine with the
existing fragments in a number of different ways. It may precisely fill the space between
two fragments, or it may overlap with existing fragments, or completely duplicate existing
fragments, or partially fill a space between two fragments without abutting either of them.
Thus, it might seem that the reassembly process might involve designing a fairly
complicated algorithm that tests for a number of different options.

In fact, the process of reassembly is extremely simple. This document describes a way
of dealing with reassembly which reduces the bookkeeping problem to a minimum, which
requires for storage only one buffer equal in size to the final datagram being reassembled,
which can reassemble a datagram from any number of frugments arriving in any order with
any possible pattern of overlap and duplication, and which is appropriate for almost any
sort of operating system.

The reader should consult the IP specification document to be sure that he is completely
familiar with the general concept of reassembly, and the particular header fields and
vocabulary used t» describe the process.

2. THE ALGORITHM

In order to dcline this reassembly algorithm, it is necessary to define some terms. A
partially reassembled datagram consists of certain sequences of octets that have already
arrived, and certain areas still to come. We will refer to these missing areas as "holes".
Each hole can be characterized by two numbers, holefirst, the number of the first octet in
the hole, and holelast, the number of the last octet in the hole. This pair of numbers we
will call the "hole descriptor”, and we will assume that all of the hole descriptors for a
particular datagram are gathered together in the "hole descriptor list".
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The general form of the algorithm is as follows. When a new fragment of the datagraia
arrives, it will possibly fill in one or more of the existing holes. We will examine each of
the entries in the hole descriptor list to see whether the hole in question is eliminated by
this incoming fragment. If so, we will delete that entry from the list. Eventually, a
fragment will arrive which eliminates every entry from the list. At this point, the datagram
has been completely reassembled and can be passed to higher protocol levels for further
processing.

The algorithm will be described in two phases. In the first part, we will show the
sequence of steps which are executed when a new fragment arrives, in order to determine
whether or not any of the existing holes are filled by the new fragment. In the second
part of this description, we will show a ridiculously simple algorithm for management of the
hole descriptor list.

3. FRAGMENT PROCESSING ALGORITHM

An arriving fragment can fill any of the existing holes in a number of ways. Most
simply, it can completely fill a hole. Alternatively, it may leave some remaining space at
either the beginning or the end of an existing hole. Or finally, it can lie in the middle of
an existing hole, breaking the hole in half and leaving a smaller, hole at each end Because
of these possibilities, it might seem that a number of tests must be made «~hen a new
fragment arrives, leading to a rather complicated algorithm. In fact, if properly expressed,
the algorithm can compare each hole to the arriving fragment in only four tests.

We start the algorithm when the earliest fragment of the datagram arrives. We begin by
creating an empty data buffer area and putting one entry in its hole descriptor list, the
entry which describes the datagram as being completely missing. In this case, holefirst
equals zero, and holelast equals infinity. (Infinity is presumably implemented by a very
large integer, greater than 576, of the implementor’s choice.) The following eight steps are
then used to insert each of the arriving fragments into the buffer area where the complete
datagram is being built up. The arriving fragment is described by fragment.first, the first
octet of the fragment, and fragment.last, the last octet of the fragment.

1. Select the next hole descriptor from the hole descriptor list. If there are no more
entries, go to step eight.

2. If fragment first is greater than hole.last, go to step one.
3. If fragment.last is less than hole.first, go to step one.

(If either step two or step three is true, then the newly arrived fragment does not
overlap with the hole in any way, so we need pay no further attention to this hole.
We return to the beginning of the algorithm where we celect the next hole for
examination.)

4. Delete the current entry from the hole descriptor list.

(Since neither step two nor step three was true, the newly arrived fragment does
interact with this hole in some way. Therefore, the current descriptor will no
longer be valid. We will destroy it, and in the next two steps we will determine
whether or not it is necessary t. create any new hole descriptors.)

5. If fragment.first is greater than hole.first, then create a new hole descriptor
"new_hole" with new_hole first equal to hole.first, and new_hole last equal to
fragment.first minus one.

(If the test in step five is true, then the first part of the original hole is not filled by
this fragment. We create a new descriptor for this smaller hole.)
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6. If fragment.last is less than hole.last and fragment.more fragments is true, then
create a new hole descriptor "new_hole”, with new_hole first equal to fragment.last
plus one and new_hole.last equal to hole.last.

(This test is the mirror of step five with one additional feature. Initially, we did
not know how long the reassembled datagram would be, and therefore we created a
hole reaching from zero to infinity. Eventually, we will receive the last fragment of
the datagram. At this point, that hole descriptor which reaches from the last octet
of the buffer to infinity car: be discarded. The fragment which contains the last
fragment indicates this fact by a flag in the internet header called "more fragments”.
The test of this bit in this statement prevents us from creating 2 descriptor for the
unneeded hole which describes the space from the end of the datagram to infinity.)

7. Go to step one.

8. If the hole descriptor list is now empty, the datagram is now complete. Pass it on
to the higher level protocol processor for further handling. Otherwise, return.

4. MANAGING THE HOLE DESCRIPTOR LIST

The main complexity in the eight step algorithm above is not performing the arithmetical
tests, but in adding and deleting entries from the hole descriptor list. One could imagine
an implementation in which the storage management package was many times more
complicated than the rest of the algorithm, since there is no specified upper limit on the
number of hole descriptors which will exist for a datagram during reassembly. There is a
very simple way to deal with the hole descriptors, however. Just put each hole descriptor
in the first octets of the hole itself. Note that by the definition of the reassembly
algorithm, the minimum size of a hole is eight octets.  To store hole.first and hole.last will
presumably require two octets each. An additional two octets will be required to thread
together the entries on the hole descriptor list. This leaves at least two more octets to
deal with implementation idiosyncrasies.

There is only one obvious pitfall to this storage strategy. One must execute the eight
step algorithm above before copying the data from the fragment into the reassembly buffer.
If one were to copy the data first, it might smash one or more hole descriptors. Once the
algorithm above has been run, any hole descriptors which are about to be smashed have
already been rendered obsolete.

6. LOOSE ENDS

Scattering the hole descriptors throughout the reassembly buffer itself requires that they
be threaded onto some sort of list so that they can be found. This in turn implies that
there must be a pointer to the head of the list. In many cases, this pointer can be stored
in some sort of descriptor block which the implementation associates with each reassembly
buffer. If no such storage is available, a dirty but effective trick is to store the head of the
list in a part of the internet header in the reassembly buffer which is no longer needed.
An obvious location is the checksum field.

When the final fragment of the datagram arrives, the packet length field in the internet
header should be filled in.
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6. OPTINNS

The preceding description made one unacceptable simplification. It assumed that there
were no internet options associated with the datagram being reassembled. The difficulty
with options is that until one receives the first fragment of the datagram, one cannot tell
how big the internet header will be. This is because, while certain options are copied
identically into cvery fragment of a datagram, other options, such as "record route”, are
put in the first fragment only. (The "first fragment” is the fragment containing octet zero
of the original datagram.)

S0 \ N TR v

. 13

Until one knows how big the internet header is, one does not know where to copy the
data from each fragment into the reassembly buffer. If the earliest fragment to arrive
happens to be the first fragment, then this is no problem. Otherwise, there are two
solutions.  First, one can leave space in the reassembly buffer for the maximum possible
internet header. In fact, the maximum size is not very large, 64 octets. Alternatively, one
car simply gamble that the first fragment will contain no options. 1f, when the first
fragment finally arrives, there are options, one can then shift the data in the buffer a
sufficient distance for allow for them. The only peril in copying the data is that one will
trash the pointers that thread the hole descriptors together. It is easy to see how to
untrash the pointers.

The source and record route options have the interesting feature that, since different
fragments can follow different paths, they may arrive with different return routes recorded
in different fragments. Normally, this is more information than the receiving Internet
module needs. The specified procedure is to take the return route recorded in the first
fragment and ignore the other versions.

P

3

7. THE COMPLETE ALGORITHM

In addition to the algorithm described above there are two parts to the reassembly
process.  First, when a fragment arrives, it is necessary to find the reassembly buffer
associated with that fragment. This requires some mechanism for searching all the existing
reassembly buffers.  The correct reassembly buffer is identified by an equality of the
following fields: the foreign and local internet address, the protocol ID, and the
identification field.

The f{inal part of the algorithm is some sort of timer based mechanism which decrements
the time to live field of each partially reassembled datagram, so that incomplete datagrams
which have outlived their usefulness can be detected and deleted. One can either create a
demon which comes alive once a second and decrements the field in each datagram by
one, or one can read the clock when each first fragment arrives, and queue some sort of
timer call, using whatever system mechanism is appropriate, to reap the datagram when its
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. time has come.

: An implementation of the complete algorithm comprising all these parts was constructed "
| in BCPL as a test. The complete algorithm took less than one and one-half pages of g
1 listing, and generated approximately 400 nova machine instructions. That portion of the :f
- algorithm actually involved with management of hole descriptors is about 20 lines of code. -
k{. The version of the algorithm described here is actually a simplification of the author's 4
b original version, thanks to an insightful observation by Elizabeth Martin at MIT. .
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RFC: 816

FAULT ISOLATION AND RECOVERY

David D. Clark
MIT Laboratory for Computer Science
Computer Systems and Communications Group
July, 1982

1. INTRODUCTION

Occasionally, a network or a gateway will go down, and the sequence of hops which the
packet takes from source to destination must change. Fault isolation is that action which
hosts and gateways collectively take to determine that something is wrong; fault recovery is
the identification and selection of an alternative route which will serve to reconnect the
source to the destination. In fact, the gateways perform most of the functions of fault
isolation and recovery. There are, however, a few actions which hosts must take if they
wish to provide a reasonable level of service. This document describes the portion of fault
isolation and recovery which is the responsibility of the host.

2. WHAT GATEWAYS T O

Gateways collectively implement an algorithm which identifies the best route between all
pairs of networks. They do this by exchanging packets which contain each gateway's latest
opinion about the operational status of its neighbor networks and gateways. Assuming
that this algorithm is operating properly, one can expect the gateways to go through a
period of confusion immediately after some network or gateway has failed, but one can
assume that once a period ot negotiation has passed, the gateways are equipped with a
consistent and correct model of the connectivity of the internet. At present this period of
negotiation may actually take several minutes, and many TCP implementations time out
within that period, but it is a design goal of the eventual algorithm that the gateway should
be able to reconstruct the topology quickly enough that a TCP connection should be able
to survive a failure of the route.

3. HOST ALGORITHM FOR FAULT RECCVERY

Since the gateways always attempt to have a consistent and correct model of the
internetwork topology, the host strategy for fault recovery is very simple. Whenever the
host feels that something is wrong, it asks the gateway for advice, and, assuming the advice
is forthcoming, it believes the advice completely. The advice will be wrong only during the
transient period of negotiation, which immediately follows an outage, but will otherwise be
reliably correct.

In fact, it is never necessary for a host to explicitly ask a gateway for advice, because
the gateway will provide it as appropriate. When a host sends a datagram to some distant
net, the host should be prepared to receive back either of two advisory messages which the
gateway may send. The ICMP "redirect"” message indicates that the gateway to which the
host sent the datagram is not longer the best gateway to reach the net in question. The
gateway will have forwarded the datagram, but the host should revise its routing table to
have a different immediate address for this net. The ICMP "destination unreachable"
message indicates that as a result of an outage, it is currently impossible to reach the
addressed net or host in any manner. On receipt of this message, a host can either
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abandon the connection immediately without any further retransmission, or resend slowly to
see if the fault is corrected in reasonable time.

If a host could assume that these two ICMP messages would always arrive when
something was amiss in the network, then no other action on the part of the host would be
required in order maintain its tables in an optimal condition. Unfortunately, there are two
circumstances under which the messages will not arrive properly. First, during the
transient following a failure, error messages may arrive that do not correctly represent the
state of the world. Thus, hosts must take an isolated error message with some scepticism.
(This transient period is discussed more fully below.) Second, if the host has been sending
datagrams to a particular gateway, and that gateway itscif crashes, then all the other
gateways in the internet will reconstruct the topology, but the gateway in question will still
be down, and therefore cannot provide any advice back to the host. As long as the host
continues to direct datagrams at this dead gateway, the datagrams will simply vanish off the
face of the earth, and nothing will come back in return. Hosts must detect this failure.

If some gateway many hops away fails, this is not of concern to the host, for then the
discovery of the failure is the responsibility of the immediate neighbor gateways, which will
perform this action in a manner invisible to the host. The problem only arises if the very
first gateway, the one to which the host is immediately sending the datagrams, fails. We
thus identify one single task which the host must perform as its part of fault isolation in
the internet: the host must use some strategy to detect that a gateway to which it is
sending datagrams is dead.

Let us assume for the moment that the host implements some algorithm to detect failed
gateways; we will return later to discuss what this algorithm might be.  First, let us
consider what the host should do when it has determined that a gateway is down. In fact,
with the exception of one small problem, the action the host should take is extremely
simple. The host should select some other gateway, and try sending the datagram to it.
Assuming that gateway is up, this will either produce correct results, or some ICMP advice.
Since we assume that, ignoring temporary periods immediately following an outage, any
gateway is capable of giving correct advice, once the host has received advice from any
gateway, that host is in as good a condition as it can hope to be.

There is always the unpleasant possibility that when the host tries a different gat.way,
that gateway too will be down. Therefore, whatever algorithm the host uses to detect a
dead gateway must continuously be applied, as the host tries every gateway in turn that it
knows about.

The only difficult part of this algorithm is to specify the means by which the host
maintains the table of all of the gateways to which it has immediate access. Currently, the
specification of the internet protocol docs not architect any message by which a host can
ask to be supplied with such a table. The reason is that different networks may provide
very different mechanisms by which this table can be filled in.

For example, if the net is a broadcast net, such as an ethernet or a ringnet, every
gateway may simply broadcast such a table from time to time, and the host need do
nothing but listen to obtain the required information.  Alternatively, the network may
provide the mechanism of logical addressing, by which a whole set of machines can be
provided with a single group address, to which a request can be sent for assistance.
Failing those two schemes, the host can build up its table of neighbor gateways by
remembering all the gateways from which it has ever received a message. Finally, in
certain cases, it may be necessary for this table, or at least the initial entries in the table,
to be constructed manually by a manager or operator at the site. In cases where the
network in question provides absolutely no support for this kind of host query, at least
some manual intervention will be required to get started, so that the host can find out
about at least one gateway.
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4. HOST ALGORITHMS FOR FAULT ISOLATION

We now return to the question raised above. What strategy should the host use to
detect that it is talking to a dead gateway, so that it can know to switch to some other -
gateway in the list. In fact, there are several algorithms which can be used. All are oo
reasonably simple to implement, but they have very different implications for the overhead .
on the host, the gateway, and the network. Thus, to a certain extent, the algorithm picked -
must depend on the details cf the network and of the host. < :’
[ . NETWORK LEVEL DETECTION _"A'j
f:.' Many networks, particularly the Arpanet, perform precisely the required function internal .j"]
- to the network. If a host sends a datagram to a dead gateway on the Arpanet, the <]
N network will return a "host dead" message, which is precisely the information the host *
> needs to know in order to switch to another gateway. Some early implementations of e
Internet on the Arpai.:t threw these messages away. That is an exceedingly poor idea. - J1
CONTINUOUS POLLING 4
4
& The ICMP protocol provides an echo mechanism by which a host may solicit a response .
u from a gateway. A host could simply send this message at a reasonable rate, to assure

"1
"

- itself continuously that the gateway was still up. This works, but, since the message must
be sent fairly often to detect a fault in a reasonable time, it can imply an unbearable
overhead on the host itself, the network, and the gateway. This strategy is prohibited
except where a specific analysis has indicated that the overhead is tolerable.

NEJSV B S

endodn

TRIGGERED POLLING

4 2’ ats

If the use of polling could be restricted to only those times when something seemed to
be wrong, then the overhead would be bearable. Provided that one can get the proper
advice from one’s higher level protocols, it is possible to implement such a strategy. For
ﬁ example, one could program the TCP level so that whenever it retransmitted a segment
-

-("*"ﬁ
.

more than once, it sent a hint down to the IP layer which triggered polling. This strategy
does not have excessive overhead, but does have the problem that the host may be
somewhat slow to respond to an error, since only after polling has started will the host be
o able to confirm that something has gone wrong, and by then the TCP above may have
. already timed out.

ol B

. ’ R '.,'
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Both forms of polling suffer from a minor flaw. Hosts as well as gateways respond to
ICMP echo messages. Thus, polling cannot be used to detect the error thai a foreign :
address thought to be a gateway is actually a host. Such a confusion can arise if the oo
physical addresses of machines are rearranged.

TRIGGERED RESELECTION

There is a strategy which makes use of a hint from a higher level, as did the previous
strategy, but which avoids polling altogether. Whenever a higher level complains that the
service seems to be defective, the Internet layer can pick the next gateway from the list of :
available gateways, and switch to it. Assuming that this gateway is up, no real harm can 1
come of this decision, even if it was wrong, for the worst that will happen is a redirect -
3 message which instructs the host to return to the gateway originally being used. If, on the - 4

:; 3 (27)
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other hand, the original gateway was indeed down, then this immediately provides a new
route, so the period of time until recovery is shortened. This last strategy seems
particularly clever, and is probably the most generally suitable for those cases where the
network itself does not provide fault isolation. (Regretably, I have forgotten who suggested
this idea to me. It is not my invention.)

5. HIGHER LEVEL FAULT DETECTION

The previous discussion has concentrated on fault detection and recovery at the IP layer.
This section considers what the higher layers such as TCP should do.

TCP has a single fault recovery action; it repeatedly retransmits a segment until either it
gets an acknowledgement or its connection timer expires. As discussed above, it may use
retransmission as an event to trigger a request for fault recovery to the IP layer. In the

other direction, information may flow up from IP, reporting such things as ICMP

Destination Unreachable or error messages from the attached network. The only subtle
question about TCP and faults is what TCP should do when such an error message arrives
or its connection timer expires.

The TCP specification discusses the timer. In the description of the open call, the
timeout is described as an optional value that the client of TCP may specify; if any
segment remains unacknowledged for this period, TCP should abort the connection. The
default for the timeout is 30 seconds. Farly TCPs were often implemented with a fixed
timeout interval, but this did not work well in practice, as the following discussion may
suggest.

Clients of TCP can be divided into two classes: those running on immediate behalf of a
human, such as Telnet, and those supporting a program, such as u mail sender. Humans
require a sophisticated response to errors. Depending on exactly what went wrong, they
may want to abandon the connection at once, or wait for a long time to see if things get
better. Programs do not have this human impatience, but also lack the power to make
complex decisions based on details of the exact error condition. For them, a simple
timeout is reasonable.

Based on these considerations, at least two modes of operation are needed in TCP.
One, for programs, abandons the connection without exception if the TCP timer expires.
The other mode, suitable for people, never abandons the connection on its own initiative,
but reports to the layer above when the timer expires. Thus, the human user can see error
messages coming from all the relevant layers, TCP and ICMP, and can request TCP to
abort as appropriate. This second mode requires that TCP be able to send an
asynchronous message up to its client to report the timeout, and it requires that error
messages arriving at lower layers similarly flow up through TCP.

At levels above TCP, fault detection is also required. Either of the following can
happen. First, the foreign client of TCP can fail, even though TCP is still running, so data
is still acknowledged and the timer never expires. Alternatively, the communication path
can fail, without the TCP timer going off, because the local client has no data to send.
Both of these have caused trouble.

Sending mail provides an example of the first case. When sending mail using SMTP,
there is an SMTP level acknowledgement that is returned when a piece of mail is
successfully delivered. Several early mail receiving programs would crash just at the point
where they had received all of the mail text (so TCP did not detect a timeout due to
outstanding unacknowledged data) but before the mail was acknowledged at the SMTP
level. This failure would cause early mail senders to wait forever for the SMTP level
acknowledgement. The obvious cure was to set a timer at the SMTP level, but the first
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t“ attempt to do this did not work, for there was no simple way to select the timer interval
:'j.- If the interval selected was short, it expired in normal operational when sending a large file )
:L‘-'? to a slow host. An interval of many minutes was needed to prevent false timeouts, but ‘;b
NS that meant that failures were detected only very slowly. The current solution in several i
e mailers is to pick a timeout interval proportional to the size of the message. N
p Server telnet provides an example of the other kind of failure. It can easily happen that ﬂ
o the communications link can fail while there is no traffic flowing, perhaps because the user ”
v is thinking. Eventually, the user will attempt to type something, at which time he will
o discover that the connection is dead and abort it. But the host end of the connection,
L having nothing to send, will not discover anything wrong, and will remain waiting forever. -
< In some systems there is no way for a user in a different process to destroy or take over —
ﬁ such a hanging process, so there is no way to recover. f:f
L - One solution to this would be to have the host server telnet query the user end now -]
[‘,' and then, to see if it is still up. (Telnet does not have an explicit query feature, but the
: host could negotiate some unimportant option, which should produce either agreement or

disagreement in return.) The only problem with this is that a reasonable sample interval, if

applied to every user on a large system, can generate an unacceptable amount of traffic and
system overhead. A smart server telnet would use this query only when something seems
wrong, perhaps when there had been no user activity for some time.

In both these cases, the general conclusion is that client level error detection is needed,
and that the details of the mechanism are very dependent on the application. Application
programmers must be made aware of the problem of failures, and must understand that
error detection at the TCP or lower level cannot solve the whole problem for them.

T
) i

6. KNOWING WHEN TO GIVE UP

It is not obvious, when error messages such as ICMP Destination Unreachable arrive,
whether TCP should abandon the connection. The reason that error messages are difficult
to interpret is that, as discussed above, after a failure of a gateway or network, there is a -
transient period during which the gateways may have incorrect information, so that .
irrelevant or incorrect error messages may sometimes return. An isolated ICMP
Destination Unreachable may arrive at a host, for example, if a packet is sent during the
period when the gateways are trying to find a new route. To abandon a TCP connection
based on such a message arriving would be to ignore the valuable feature of the Internet -
that for many internal failures it reconstructs its function without any disruption of the end 1

)

A Y
. -

.

points. '

But if failure messages do not imply a failure, what are they for? In fact, error messages
serve several important purposes.  First, if they arrive in response to opening a new
connection, they probably are caused by opening the connection improperly (eg, to a
non-existent address) rather than by a transient network failure. Second, they provide L
valuable information, after the TCP timeout has occurred, as to the probable cause of the
failure.  Finally, certain messages, such as ICMP Parameter Problem, imply a possible
implementation problem.

PP S U

- In general, error messages give valuable information about what went wrong, but are not
® to be taken as absolutely reliable. A general alerting mechanism, such as the TCP timeout

‘!.- discussed above, provides a good indication that whatever is wrong is a serious condition, --1
ft:.'j but without the advisory messages to augment the timer, there is no way for the client to ]
A know how to respond to the error. The combination of the timer and the advice from the 1
E-: error messages provide a reasonable set of facts for the client layer to have. It is "1
. important that error messages from all layers be passed up to the client module in a useful _._J
and consistent way. i

<
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MODULARITY AND EFFICIENCY

IN PROTOCOL IMPLEMENTATION
David D. Clark
MIT Laboratory for Computer Science

Computer Systems and Communications Group
July, 1982

1. INTRODUCTION

Many protocol implementers have made the unpleasant discovery that their packages do
not run quite as fast as they had hoped. The blame for this widely observed
problem has been attributed to a variety of causes, ranging from details in the design of
the protocol to the underlying structure of the host operating system. This RFC

will discuss some of the commonly encountered reasons why protocol .
implementations seem to run slowly. -
Experience suggests that one of the most important factors in determining the
performance of an implementation is the manner in  which that implementation  is .
modularized and integrated into the host operating system. For this reason, it is :
useful to discuss the question of how an implementation is structured at the same time that -1

we consider how it will perform. In fact, this RFC will argue that modularity is one "
of the chief villains in attempting to obtain good performance, so that the designer is
faced with a delicate and inevitable tradeoff between good structure and good
performance.  Further, the single factor which most strongly determines how well this
conflict can be resolved is not the protocol but the operating system.

B

2. EFFICIENCY CONSIDERATIONS

FY ST T U T

There are many aspects to efficiency. One aspect is sending data at minimum
transmission cost, which is a critical aspect of common carrier communications, if
not in local area network communications. Another aspect is sending data at a high rate,
which may not be possible at all if the net is very slow, but which may be the one central
design constraint when taking advantage of a local net with high raw bandwidth. The final
. consideration is doing the above with minimum expenditure of computer resources. This
9 last may be necessary to achieve high speed, but in the case of the slow net may

be important only in that the resources used up, for example cpu cycles, are costly or

otherwise needed. It is worth pointing out that these different goals often conflict;
| for example it is often possible to trade off efficient use of the computer against efficient
use of the network. Thus, there may be no such thing as a successful general purpose
protocol implementation.
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The simplest measure of performance is throughput, measured in bits per second. It is
worth doing a few simple computations in order to get a feeling for the magnitude of the
problems involved. Assume that data is being sent from one machine to another in packets
of 576 bytes, the maximum generally acceptable internet packet size. Allowing for
header overhead, this packet size permits 4288 bits in each packet. If a useful
throughput of 10,000 bits per second is desired, then a data bearing packet must leave
the sending host about every 430 milliseconds, a little over two per second. This is clearly
not difficult to achieve. However, if one wishes to achieve 100 Kkilobits per second
throughput, the packet must leave the host every 43 milliseconds, and to achieve one
megabit per second, which is not at all unreasonable on a high-speed local net, the
packets must be spaced no more than 4.3 milliseconds.
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These latter numbers are a slightly more alarming goal for which to set one’s sights.
Many operating systems take a substantial fraction of a millisecond just to service an
interrupt. If the protocol has been structured as a process, it is necessary to go
through a process scheduling before the protocol code can even begin to run. If any piece
of a protocol package or its data must be fetched from disk, real time delays of
between 30 to 100 milliseconds can be expected. If the protocol must compete for
cpu resources with other processes of the system, it may be necessary to wait a
scheduling quantum before the protocol can run. Many systems have a scheduling
quantum of 100 milliseconds or more.  Considering these sorts of numbers, it becomes
immediately clear that the protocol must be fitted into the operating system in a
thorough and effective manner if any like reasonable throughput is to be achieved.
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There is one obvious conclusion immediately suggested by even this simple analysis. -’"l
Except in very special circumstances, when many packets are being processed at once, ]
the cost of processing a packet is dominated by factors, such as cpu scheduling, which
f are independent of the packet size. This suggests two general rules which

any implementation ought to obey. First, send data in large packets. Obviously, if J

p processing time per packet is a comstant, then throughput will be directly proportional to '1
) the packet size. Second, never send an unneeded packet. Unneeded packets use up .
- just as many resources as a packet full of data, but perform no useful function. RFC 813,
"Window and Acknowledgement Strategy in TCP", discusses one aspect of reducing the i
number of packets sent per useful data byte. This document will mention other attacks R |
on the same problem.

The above analysis suggests that there are two main parts to the problem of
achieving good protocol performance. The first has to do with how the protocol
implementation is integrated into the host operating system. The second has to do .1
with how the protocol package itself is organized internally. This document will :
consider each of these topics in turn.
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3. THE PROTOCOL VS. THE OPERATING SYSTEM ::!
>

.

There are normally three reasonable ways in which to add a protocol to an operating
system. The protocol can be in a process that is provided by the operating system,
or it can be part of the kernel of the operating system itself, or it can be put in a
separate communications processor or front end machine. This decision is strongly
influenced by details of hardware architecture and operating system design; each of these
three approaches has its own advantages and disadvantages. ]
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The "process” is the abstraction which most operating systems use to provide the
execution environment for user programs. A very simple path for implementing a
protocol is to obtain a process from the operating system and implement the
protocol to run in it. Superficially, this approach has a npumber of
advantages. Since modifications to the kernel are not required, the job can be done
by someone who is not an expert in the kernel structure. Since it is often impossible to
find somebody who is experienced both in the structure of the operating system and the
structure of the protocol, this path, from a management point of view, is often extremely
appealing. Unfortunately, putting a protocol in a process has a number of disadvantages,
related to both structure and performance. First, as was discussed above, process
scheduling can be a significant source of real-time delay. There is not only the
actual cost of going through the scheduler, but the problem that the operating system may
not have the right sort of priority tools to bring the process into execution
quickly whenever there is work to be done.

Structurally, the difficulty with putting a protocol in a process is that the protocol may
be providing services, for example support of data streams, which are normally obtained by
going to special kernel entry points. Depending on the generality of the operating
system, it may be impossible to take a program which is accustomed to reading
through a kernel entry point, and redirect it so it is reading the data from a process. The
most extreme example of this problem occurs when implementing server telnet. In
almost all systems, the device handler for the locally attached teletypes is located inside
the kernel, and programs read and write from their teletype by making kernel calls. If
server telnet is implemented in a process, it is then necessary to take the data streams
provided by server telnet and somehow get them back down inside the kernel so that they
mimic the interface provided by local teletypes. It is wusually the case that
special  kernel modification is necessary to achieve this structure, which somewhat
defeats the bencfit of having removed the protocol from the kernel in the first place.

Clearly, then, there are advantages to putting the protocol package in  the kernel
Structurally, it is reasonable to view the network as a device, and device drivers are
traditionally contained in the kernel. Presumably, the problems associated with
process scheduling can be sidesteped, at least to a certain extent, by placing the code
inside the kernel. And it is obviously easier to make the server telnet channels mimic
the local teletype channels if they are both realized in the same level in the kernel.

However, implementation of protocols in the kernel has its own set of  pitfalls.
First, network protocols have a characteristic which is shared by almost no other device:
they require rather complex actions to be performed as a result of a timeout.
The problem with this requirement is that the kernel often has no facility by which a
program can be brought into execution as a result of the timer event. What is really
needed, of course, is a special sort of process inside the kernel. Most  systems
lack this mechanism. Failing that, the only execution mechanism available is to run at
interrupt time.

There are substantial drawbacks to implementing a protocol to run at interrupt time.
First, the actions performed may be somewhat complex and time consuming, compared to
the maximum amount of time that the operating system is prepared to spend servicing an
interrupt.  Problems can arise if interrupts are masked for tco long. This is particularly bad
when running as a result of a clock interrupt, which can imply that the clock interrupt is
masked. Second, the environment provided by an interrupt handler is usually extremely
primitive compared to the environment of a process.
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There are usually a variety of system facilities which are unavailable while running in an
interrupt handler. The most important of these is the ability to suspend execution pending
the arrival of some event or message. It is a cardinal rule of almost every known operating
system that one must not invoke the scheduler while running in an interrupt handler. Thus,
the programmer who is forced to implement all or part of his protocol package as an
interrupt handler must be the best sort of expert in the operating system involved, and
must be prepared for development sessions filled with obscure bugs which crash not just the
protocol package but the entire operating system.

A final problem with processing at interrupt time is that the systerm scheduler has no
control over the percentage of system time used by the protocol handler. If a large
number of packets arrive, from a foreign host that is either malfunctioning or fast, all
of the time may be spent in the interrupt handler, effectively killing the system.

There are other problems associated with putting protocols into  an operating system
kernel. The simplest problem often encountered is that the kernel address space is
simply too small to hold the piece of code in question. This is a rather artificial sort of
problem, but it is a severe problem none the less in many machines. It is an
appallingly unpleasant experience to do an implementation with the knowledge that for
every byte of new feature put in one must find some other byte of old feature to throw
out. It is hopeless to expect an effective and general implementation wunder this kind
of constraint.  Another problem is that the protocol package, once it is  thoroughly
entwined in the operating system, may need to be redone every time t“2 operating
system changes. If the protocol and the operating system are not maintained by the same
group, this makes maintenance of the protocol package a perpetual headache.

The third option for protocol implementation is to take the protocol package
and move it outside the machine entirely, on to a separate processor dedicated to
this kind of task. Such a machine is often described as a communications processor or a
front-end processor.

There are several advantages to this approach. First, the operating system on the
communications processor can be tailored for precisely this kind of task. This
makes the job of implementation much easier. Second, cne does not need to redo the task
for every machine to which the protocol is to be added. It may be possible to
reuse the same front-end machine on different host computers. Since the task need not
be done as many times, one might hope that more attention could be paid to doing it
right. Given a careful implementation in an environment which is optimized for this
kind of task, the resulting package should turn out to be very efficient.

Unfortunately, there are also problems with this approach. There is, of course, a
financial problem associated with buying an additional computer. In maay cases,
this is not a problem at all since the cost is negligible compared to what the
programmer would cost to do the job in the mainframe itself. More fundamentally,
the communications processor approach does not completely sidestep any of the
problems raised above. The reason is that the communications processor, since it is a
separate machine, must be attached to the mainframe by some mechanism. Whatever
that mechanism, code is required in the mainframe to deal with it. It can be argued
that the program to deal with the communications processor is simpler than the program
to implement the entire protocol package. [Even if that is so, the communications
processor interface package is still a protocol in nature, with all of the same structural
problems. Thus, all of the .issues raised above must still be faced. In addition to those
problems, there are some other, more subtle problems associated with an outboard
implementation of a protocol. We will return to these problems later.
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There is a way of attaching a communications processor to a mainframe host
which sidesteps all of the mainframe implementation problems, which is to use some
preexisting interface on the host machine as the port by which a communications
processor is attached. This strategy is often used as a last stage of desperation when the
software on the host computer is so intractable that it cannot be changed in any way.
Unfortunately, it is almost inevitably the case that all of the available interfaces are
totally unsuitable for this purpose, so the result is unsatisfactory at best.
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The most common way in which this form of attachment occurs is when a
network connection is being used to mimic local teletypes. In this case, the front-end
processor can be attached to the mainframe by simply providing a number of wires out -
of the front-end processor, each corresponding to a connection, which are plugged into
teletype ports on the mainframe computer. (Because of the appearance of the physical
configuration which results from this arrangement, Michael Padlipsky has described
this as  the "milking machine” approach to computer networking.) This  strategy -
solves the immediate problem of providing remote access to a host, but it is :
extremely inflexible. The channels being provided to the host are restricted by the -
host software to one purpose only, remote login. It is impossible to use them for any
other purpose, such as file transfer or sending mail, so the host is integrated into the
network environment in an extremely limited and inflexible manner. If this is the best that
can be done, then it should be tolerated. Otherwise, implementors should be
strongly encouraged to take a more flexible approach.
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4. PROTOCOL LAYERING
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The previous discussion suggested that there was a decision to be made as to where a
protocc! ought to  be implemented. In fact, the decision is much more
complicated  than that, for the goal is not to implement a single protocol, but to
implement a whole family of protocol layers, starting with a device driver or local network
driver at the bottom, then IP and TCP, and eventually reaching the application
specific protocol, such as Telnet, FTP and SMTP on the top. Clearly, the bottommost
of these layers is somewhere within the kernel, since the physical device driver for the
net is almost inevitably located there. Equally clearly, the top layers of this package, which
provide the user his ability to perform the remote login function or to send mail, are
not entirely contained within the kernel. Thus, the question is not whether the
protocol family shall be inside or outside the kernel, but how it shall be sliced in two
between that part inside and that part outside.

Since protocols come nicely layered, an obvious proposal is that one of the layer
interfaces should be the point at which the inside and outside components are sliced apart.
Most systems have been implemented in this way, and many have been made to work
quite effectively. One obvious place to slice is at the upper interface of TCP. Since
TCP provides a bidirectional byte stream, which is somewhat similar to the I/O facility
provided by most operating systems, it is possible to make the interface to TCP
almost mimic the interface to other existing devices. Except in the matter of opening a
connection, and dealing with peculiar failures, the software using TCP need not know that
it is a network connection, rather than a local I/0 stream that is providing the
communications function. This approach does put TCP inside the kernel, which raises all
:' the problems addressed above. It also raises the problem that the interface to the IP
' layer can, if the programmer is not careful, become excessively buried inside the
; kernel. It must be remembered that things other than TCP are expected to run on top of
; IP. The IP interface must be made accessible, even if TCP sits on top of it inside the
I kernel.
f
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Anocher cbvious place to shice is above Telnet.  The  advantage of slicing above
et that gt solves the problem of having remote login channels emulate local

retvpe Channels The disadvantage of putting Telnet into the kernel is that the
amoant ot code which has now been  included  there is  getting remarkably large.
I ~ome carly 1mplementations, the size of the network package, when one includes

peoton ol at the  level  of Telnet, rivals the size of the rest of the supervisor. This leads
to vague feelings that ail 1s not night.

Any attempt to slice through a lower layer boundary, for example between internet
and  ICP, reveals one fundamental problem. The TCP layer, as well as the IP layer,
performs a  demuluplexing  function on incoming datagrams.  Until the TCP header has
been examined, it is not possible to know for which user the packet is ultimately
desuned Therefore, if TCP, as a whole, is moved outside the kernel, it is necessary
to create one separate process called the TCP  process, which performs the TCP
multiplexing function, and probably all of the rest of TCP processing as well. This means
that incoming data destined for a user process involves not just a scheduling of the
user process, but scheduling the TCP process first.

This suggests an alternative  structuring  strategy  which  slices through  the
protocols, not along an established layer boundary, but along a functional boundary
having to do with demultiplexing. In this approach, certain parts of IP and certain parts
of TCP are placed in the kernel. The amount of code placed there is sufficient so that
when an incoming datagram arrives, it is possible to know for which process that datagram
is ultimately destined. The datagram is then routed directly to the final process,
where additional IP and TCP processing is performed on it. This removes from the
kernel any requirement for timer based actions, since they can be done by the process
provided by the user. This structure has the additional advantage of reducing the
amount of code required in the kernel, so that it is sujtable for systems where
kernel space is at a premium. The RFC 814, titled "Names, Addresses, Ports, and
Routes,” discusses this rather orthogonal slicing strategy in more detail.

A related discussion of protocol layering and multiplexing can be found in Cohen and
Postel [1].

5. BREAKING DOWN THE BARRIERS

In fact, the implementor should be sensitive to the possibility of even more peculiar
slicing strategies in dividing up the various protocol layers between the kernel and
the one or more user processes. The result of the strategy proposed c':ove was that part
of TCP should execute in the process of the user. In other words, instead of having
one TCP process for the system, there is one TCP process per connection. Given this
architecture, it is not longer necessary to imagine that all of the TCPs are identical.
One TCP could be optimized for high throughput applications, such as file transfer.
Another TCP could be optimized for small low delay applications such as Telnet. In
fact, it would be possible to produce a TCP which was somewhat integrated with the
Telnet or FTP on top of it. Such an integration is extremely important, for it
can lead to a kind of efficiency which more traditional structures are incapable of
producing.
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Earlier, this paper pointed out that one of the important rules to achieving efficiency
was to send the minimum number of packets for a given amount of data. The idea of
protocol layering interacts very strongly (and poorly) with this goal, because independent
layers  have independent ideas about when packets should be sent, and unless these
layers can somehow be brought into cooperation, additional packets will flow. The
best exampie of this is the operation of server telnet in a character at a time remote
echo mode on top of TCP. When a packet containing a character arrives at a server
host, each layer has a different response to that packet. TCP has an obligation to
acknowledge the packet.  Either server telnet or the application layer above has an
obligation to echo the character received in the packet. If the character is a Telnet
control sequence, then Telnet has additional actions which it must perform in response to
the packet. The result of this, in most implementations, is that several packets are
sent back in response to the one arriving packet.

Combining all of these return messages into one packet is important for several reasons.
First, of course, it reduces the number of packets being sent over the net, which
directly reduces the charges incurred for many common carrier tariff structures. Second, it
reduces the number of scheduling actions which will occur inside both hosts, which, as
was discussed above, is extremely important in improving throughput.

The way to achieve this goal of packet sharing is to break down the barrier between the
layers of the protocols, in a very restrained and careful manner, so that a limited
amount of information can leak across the barrier to enable one layer to optimize its
behavior with respect to the desires of the layers above and below it. For example, it
would represent an improvement if TCP, when it reccived a packet, could ask the layer
above whether or not it would be worth pausing for a few milliseconds before
sending an acknowledgement in order to see if the upper layer would have any
outgoing  data to send. Dallying before sending  the  acknowledgement  produces
precisely the right sort of optimization if the client of TCP is server Telnet.
However, dallying before sending an acknowledgement is absolutely unacceptable if TCP
is being used for file transfer, for in file transfer there is almost never data flowing in
the reverse direction, and the delay in sending the acknowledgement probably translates
directly into a delay in obtaining the next packets. Thus, TCP must know a little
about the layers above it to adjust its performance as needed.

It would be possible to imagine a general purpose TCP which was equipped with
all  sorts of special mechanisms by which it would query the layer above and modify its
behavior accordingly. In the structures suggested above, in which there is not one but
several TCPs, the TCP can simply be modified so that it produces the correct behavior as
a matter of course. This struciure has the disadvantage that there will be several
implementations of TCP existing on a single machine, which can mean more maintenance
headaches if a problem is found where TCP needs to be changed. However, it is probably
the case that each of the TCPs will be substantially simpler than the general purpose
TCP which would otherwise have been built. There are some experimental
projects currently under way which suggest that this approach may make designing of a
TCP, or almost any other layer, substantially easicr, so that the total effort involved in
bringing up a complete package is actually less if this approach is followed. This approach
is by no means generally accepted, but deserves some consideration.

The general conclusion to bc drawn from this sort of consideration is that a layer
boundary has both a benetit and a penalty. A visible layer boundary, with a well
specified interface, provides a form of isolation between two layers which allows one to be
changed with the confidence that the other one will not stop working as a
result. However, a firm layer boundary almost inevitably leads to inefficient operation.
This can easily be seen by analogy with other aspects of operating systems.
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Consider, for example, file systems. A typical operating system provides a file N
system, which is a highly abstracted representation of a disk. = The interface is highly
formalized, and presumed to be highly stable. This makes it very easy for naive users
to have access to disks without having to write a great deal of software. The
existence of a file system is clearly beneficial. On the other hand, it is clear that the
restricted interface to a file system almost inevitably leads to inefficiency. If the interface
is organized as a sequential read and write of bytes, then there will be people who wish
to do high throughput transfers who cannot achieve their goal. If the interface is a
virtual memory interface, then other users will regret the necessity of building a byte
stream interface on top of the memory mapped file. The most objectionable inefficiency
results when a highly sophisticated package, such as a data base management package,
must be built on top of an existing operating system. Almost inevitably, the
implementors of the database system attempt to reject the file system and obtain
direct access to the disks. They have sacrificed modularity for efficiency.

| R

The same conflict appears in networking, in a rather extreme form. The concept of a
protocol is still unknown and frightening to most naive programmers. The idea that they
might have to implement a protocol, or even part of a protocol, as part of some
application package, is a dreadful thought. And thus there is great pressure to hide the
function of the net behind a very hard barrier. On the other hand, the kind of
inefficiency which results from this is a particularly undesirable sort of inefficiency, for it
F shows up, among other things, in increasing the cost of the communications resource used

up to achieve the application goal. In cases where one must pay for one’s
communications costs, they usually turn out to be the dominant cost within the system.
- Thus, doing an excessively good job of packaging up the protocols in an inflexible
b manner has a direct impact on increasing the cost of the critical resource within the
) system.

This is a dilemma which will probably only be solved when programmers become
somewhat less alarmed about protocols, so that they are willing to weave a certain amount
of protocol structure into their application program, much as application programs today
weave parts of database management systems into the structure of their application
program.

An extreme example of putting the protocol package behind a firm layer boundary
occurs when the protocol package is relegated to a front- end processor. In this case the
interface to the protocol is some other protocol. It is difficult to imagine how to build
close cooperation between layers when they are that far separated. Realistically, one of
the prices which must be associated with an implementation so physically modularized is
that the performance will suffer as a result. Of course, a separate processor for protocols
could be very closely integrated into the mainframe  architecture, with interprocessor
co-ordination signals, shared memory, and similar features. Such a physical modularity
might work very well, but there is little documented experience with this closely
coupled architecture for protocol support.

6. EFFICIENCY OF PROTOCOL PROCESSING

,'.-..'.“.‘
. oy

E. To this point, this document has considered how a protocol package should be
Lo broken into modules, and how those nriodules should be distributed between free
(:' ] standing machines, the operating system kernel, and one or more user processes. It is now
el time to consider the other half of the efficiency question, which is what can be done
R to speed the execution of those programs that actually implement the protocols. We will
P make some specific observations about TCP and IP, and then conclude with a few :
. @ generalities. ﬁ
FA - 1
[ '
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IP is a simple protocol, especially with respect to the processing of normal packets,
so it should be easy to get it to perform efficiently. The only area of any
complexity related to actual packet processing has to do with fragmentation and reassembly.
The reader is referred to RFC 815, titled "IP Datagram Reassembly Algorithms",
for specific consideration of this point.

M.st costs in the IP layer come from table look up functions, as opposed to packet
processing functions. An outgoing packet requires two translation functions to  be
performed. The internet address must be translated to a target gateway, and a gateway
address must be translated to a local network number (if the host is attached to more
than one network). It is easy to build a simple implementation of these table look up
functions that in fact performs very poorly. The programmer should keep in mind
that there may be as many as a thousand network numbers in a typical configuration.
Linear searching of 2a thousand entry table on every packet is extremely unsuitable. In
fact, it may be worth asking TCP to cache a hint for each connection, which can be
handed down to IP each time a packet is sent, to try to avoid the overhead of a
table look up.

TCP is a more complex protocol, and presents many more opportunities
for getting things wrong. There is one area which is generally accepted as causing
noticeable and substantial overhead as part of TCP processing. This is computation of the
checksum. It would be nice if this cost could be avoided somehow, but the idea of an
end- to-end checksum is absolutely central to the functioning of TCP. No host
implementor should think of omitting the validation of a checksum on incoming data.

Various clever tricks have been used to try to minimize the cost of computing the
checksum. If it is possible to add additional microcoded instructions to the machine, a
checksum instruction is the most obvious candidate. Since computing the checksum
involves picking up every byte of the segment and examining it, it is possible to combine
the operation of computing the checksum with the operation of copying the segment from
one location to another. Since a number of data copies are probably already required
as part of the processing structure, this kind of sharing might conceivably pay off if
it didn’t cause too much trouble to the modularity of the program.  Finally,
computation of the checksum seems to be one place where careful attention to the
details of the algorithm wused can make a drastic difference in the throughput of the
program.

The Multics system provides one of the best case studies of this, since Multics is about
as poorly organized to perform this function as any machine implementing TCP. Multics is
a 36-bit word machine, with four 9-bit bytes per word. The eight-bit bytes of a TCP
segment are laid down packed in memory, ignoring word boundaries. This means that
when it is necess:-y to pick up the data as a set of 16-bit units for the purpose of adding
them to compute checksums, horrible masking and shifting is required for each 16-bit
value.  An early version of a program using this strategy required 6 milliseconds to
checksum a 576-byte  segment.  Obviously, at this point, checksum computation was
becoming the central bottleneck to throughput. A more careful recoding of this algorithm
reduced the checksum processing time to less than one millisecond. The strategy used was
extremely dirty. It involved adding up carefully selected words of the area in which the
data lay, knowing that for those particular words, the 16-bit values were properly aligned
inside the words. Only after the addition had been done were the various sums shifted,
and finally added to produce the eventual checksum.

This kind of highly specialized programming is probably not acceptable if used
everywhere within an operating system. It is clearly appropriate for one highly localized
function which can be clearly identified as an extreme performance bottleneck.

9 (39)
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Another area of TCP processing which may cause performance problems is the overhead
- of examining all of the possible flags and options which occur in each incoming packet.
T One paper, by Bunch and Day {2]), asserts that the overhead of packet header
R processing is actually an important limiting factor in throughput computation. Not
- all  measurement experiments have tended to support this result. To whatever extent it
m is true, however, there is an obvious strategy which the implementor ought to use in
q designing his program. He should build his program to optimize the expected case.

It is easy, especially when first designing a program, to pay equal attention to all of
- the possible outcomes of every test. In practice, however, few of these will ever
L happen. A TCP should be built on the assumption that the next packet to arrive will
h have absolutely nothing special about it, and will be the next one expected in the
- sequence  space. One or two tests are sufficient to determine that the expected set of
T, control flags are on. (The ACK flag should be on; the Push flag may or may not be on.
7t No other flags should be on.) One test is sufficient to determine that the sequence number
3 of the incoming packet is one greater than the last sequence number received. In
§ almost every case, that will be the actual result.

receiving the expected sequence number had a detectable effect on the performance of
the system. The particular problem arose when a number of packets arrived at once.
TCP attempted to process all of these packets before awaking the user. As a result, by
. the time the [last packet arrived, there was a threaded list of packets which had
p—-- several items on it. When a new packet arrived, the list was searched to find the
L, location into which the packet should be inserted. Obviously, the list should be searched
f from highest sequence number to lowest sequence number, because one is expecting to
{'_ . receive a packet which comes after those already received. By mistake, the list was
¢
S

_ Again, using the Multics system as an example, failure to optimize the case of
2
}

searched from front to back, starting with the packets with the lowest sequence number.
: The amount of time spent searching this list backwards was easily detectable in the
metering measurements.

Other data structures can be organized to optimize the action which is normally taken
on them. For example, the retransmission queue is very seldom actually used for
retransmission, so it should not be organized to optimize that action. In fact, it
should be organized to optimized the discarding of things from it when  the
acknowledgement arrives. In many cases, the easiest way to do this is not to save the
packet at all, but to reconstruct it only if it needs to be retransmitted,
starting from the data as it was originally buffered by the user.

There is another generality, at least as important as optimizing the common case,
which is to avoid copying data any more times than necessary. One more result from
the Multics TCP may prove enlightening here. Multics takes between two and three
milliseconds within the TCP layer to process an incoming packet, depending on its size.
For a  576- byte packet, the three milliseconds is used up approximately as follows. One
millisecond is used computing the checksum. Six hundred microseconds is spent
copying the data. (The data is copied twice, at .3 milliseconds a copy.) One of those
copy operations could correctly be included as part of the checksum cost, since it is done
to get the data on a known word boundary to optimize the checksum algorithm.
However, the copy also performs another necessary transfer at the same time. Header
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S processing and packet resequencing takes .7  milliseconds. The rest of the time is
N used in miscellaneous processing, such as removing packets from the retransmission queue
SA which are acknowledged by this packet.
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Data copying is the second most expensive single operation after data checksuming.
Some implementations, often because of an excessively layered modularity, end up
copying the data around a great deal. Other implementations end up copying the data
because there is no shared memory between processes, and the data must be moved from
process to process via a kernel operation. Unless the amount of this activity is kept
strictly under control, it will quickly become the major performance bottleneck.

7. CONCLUSIONS

This document has addressed two aspects of obtaining performance from a protocol
implementaticn, the way in which the protocol is layered and integrated into  the
operating system, and the way in which the detailed handling of the packet is optimized.

It would be nice if one or the other of these costs would completely dominate, so
that all of one's attention could be concentrated there. Regrettably, this is not so.
Depending on the particular sort of traffic one is getting, for example, whether Telnet
one-byte packets or file transfer maximum size packets at maximum speed, one can
expect to see one or the other cost being the major bottleneck to throughput.  Most
implementors who have studied their programs in an attempt to find out where the
time was going have reached the unsatisfactory conclusion that it is pgoing equally
to all parts of their program. With the possible exception of checksum processing, very
few people have ever found that their performance problems were due to a
single, horrible bottleneck which they could fix by a single stroke of inventive programming.
Rather, the performance was something which was improved by painstaking tuning of
the entire program.

Most  discussions  of protocols begin by introducing the concept of layering, which
tends to suggest that layering is a fundamentally wonderful idea which should
be a part of every consideration of protocols. In fact, layering is a mixed blessing.

Clearly, a layer interface is necessary whenever more than one client of a
particular layer is to be allowed to use that same layer. But an interface, precisely
because it is fixed, inevitably leads to a lack of complete understanding as to what one
layer wishes to obtain from another. This has to lead to inefficiency.

Furthermore, layering is a potential snare in that one is tempted to think that a
layer boundary, which was an artifact of the specification procedure, is in fact the proper
boundary to  use in modularizing the implementation. Again, in certain cases, an
architected layer must correspond to an implemented layer, precisely so that  several
clients can have access to that layer in a reasonably straightforward manner. In other
cases, cunning rearrangement of the implemented module boundaries to match with
various functions, such as the demultiplexing of incoming packets, or the sending of
asynchronous outgoing packets, can lead to unexpected performance improvements
compared to more traditional implementation strategies.

Finally, good performance is something which is difficult to retrofit onto an existing
program. Since performance is influenced, not just by the fine detail, but by the gross
structure, it is sometimes the case that in order to obtain a substantial performance
improvement, it is necessary to completely redo the program from the bottom up.
This is a great disappointment to programmers, especially those doing a protocol
implementation for the first time. Programmers who are somewhat inexperienced
and unfamiliar with protocols are sufficiently concerned with getting their program logically
correct that they do not have the capacity to think at the same time about the
performance of the structure they are building. Only after they have achieved a logically
correct program do they discover that they have done so in a way which has precluded
real performance.
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Clearly, it is more difficult to design a program thinking from the start about both
logical correctness and performance. With time, as implementors as a group learn more
about the appropriate structures to use for building protocols, it will be possible to
proceed with an implementation  project having more confidence that the
structure is rational, that the program will work, and that the program will work well
Those of us now implementing protocols have the privilege of being on the forefront
of this learning process. It should be no surprise that our programs sometimes suffer
from the uncertainty we bring to bear on them.
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A Protocol For Pac|<et Network Intercommunication

VINTON G. CERF axp ROBERT E. KAHN, MEMBER, IEEE

Abstract—A protocol that supports the sharing of resources that
exist in different packet switching networks is presented. The proto-
col provides for variation in individual network packet sizes, trans-
mission failures, sequencing, flow control, end-to-end error checking,
and the creation and destruction of logical process-to-process con-
nections. Some implementation issues are considered, and problems
such as internetwork routing, accounting, and timeouts are exposed.

INTRODUCTION

X THFE LAST few vears considerable effort has bheen

expended on the design and implementation of packet
switching networks [17 [V1.L141.017] A principle reason
for developing such networks has been to facilitate the
sharing of computer resources. A packet communication
network includes a transportation mechanism for deliver-
ing data between computers or between computers and
terminals. To make the data meaningful. computers and
terminals share a common protocol (e a set of agreed
upon conventions) . Several protocols have already been
developed  for this purpose [8]-[12].[16]. However,
these protocols have addressed only the problem of com-
munication on the same network. In this paper we present
a protocol design and philosophy that supports the sharing
of resources that exist in different packet switching net-

set of computer resources called o051+ a set of one or
more paclet switches, and a colleetion of communication
medin that interconneet the packet switches. Within
cach Host, we assume that there oxist processes which
must communicate with processés in their own or other
HosT Any current def m of a process will be adequate
for our purposes [13]. 1ese processes are gencrally the
ultimate source and destination of data in the network.
Typieally, within an individual network, there exists a
protocol  for communication between any source and
destination process. Only the source and  destination
processes require knowledge of thi- convention for come-
munication to tahe place Processes in twao distinet net-
works would ordimarily use different protocals for this
purposc of pachet
mumieation medin o called the pacl ot sotehing subnet,

The  ensemble ~witche~ and ecom-
Fig 1 illustrates these adeas

In a tvpical packet switching <ubmet, data of a fixed
maximum size are aceepted from a source Host, together
with a formatted destination address which 1< used to
route the data in a store and forward fa<hion. The transmit
time for this data is usually dependent upon internal

network parameters such as communication media data
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K rates, buffering and <ignaling strategies, routing, propa-
"OTKS, . .. . . P
w :ft briof i ducti to int twork 1 gation delavs, ete. In addition, some mechanism s gen- L
. er a one ntroduction to nternctwor 'm_’t”“’ crally present for error handling and determination of T
issues, we deseribe the funetion of a GATEWAY as an inter- status of the networks components s
face between networks and discuss its role in the protocol. Individual packet switching n('.(\\'nrkﬂ mav differ in o
We then consider the various details of the protocol, ) o Jementations as follow ' '
including addressing, formatting, buffering, sequencin “ir implementations as fo OWE- . T
' Bl ’ o furnemg, 1) Each network mav have distinet wavs of addressing R
flow control, error control, and %o forth. We close witha receiver, thus requiring that a uniform addressing 1
deseription of an interprocess communication mechanism «cheme be ;'r(-ﬂt(-d which can be understood by cach )
and show how it can be supported by the internetwork individual network ) )
. - L
otocol. . .
pr}):toml though . diff ¢ d | b 2) Each network may aceept data of difierent maximum 1
swven though many (; crent and complex probiems o0 thus requiring networks to deal in units of the - 4
mgsthb(- sol\trofj ;\n tt}}:( omg{:] of an lndlw(.irual] packet o Host maximum size (which may be impractically 3
switehing r'm work, | eae problems are mam estly com- small) or requiring procedures which allow data crossing
pounded when dissimilar networks are interconneeted. a network boundary to be reformatted into smaller ]
Issues arise which may have no direet counterpart in an picees ) !
individual network and which strongly influence the way 3) The success or failure of a transmission and its per- 1
. , -(‘ .n (‘ R . - . . A o s * N ]
n ;:]"}; llt rnl((t\t\orlitcg'mmumcatu;(n‘ can tak(mi;)lafcn. formance in cach network is governed by different time _-,1
vypical packet switching network 18 composed of & 415y iy accepting. delivering, and transporting the data. -
Puper approved by the Aswociate Editor for Data Communica- This requires ('c.m-ful development of internetwork timing !
tn;x;-. of the ILEE ('C;mmunu-utmns Society for publication withaut ~ procedures to insure that data can be successfully de- K
oral presentation. Manuseript received November 5, 1473. The [y, . 3 ‘twork !
research reported in this paper was supported in part by the Ad- livered t.hr(.)ugh the various netw nrl\s.. . . i
vmir('d( l(mear(-}; ‘{’;;p'e('ta 7Ag(en<-y of the Department of Defense 4) Within cach network, communication may be dis- - :
under Contract 1) > 15-73-C0370. . \ R . i -
V.G Cerf 1v with the Department of Computer Science and Elec- ru.ptf‘d due to unrecoverabl mutat.l()n of the data or N
tr'lml ll'_inwll(wf‘nnu. Stanford University, Stanford, Calif. missing data. End-to-end restoration  procedures are -
t. E. Kahn is with the Information Processing Techuology = dei . . He wo , s n- e
Office, Advanced Research Projects Agency, Department of De- df ’ilmbl(' to allow complete recovery from these co Y
fense, Arlington, Va. ditions. S
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PACKET-SWITCHING SUBNETWORK

PS (<3

PACKET SWITCHING NETWORK

Fig. 1.

PS = PACKET SWITCH

Typical packet switching network.

5) Status information, routing, fault detection, and
isolation are typically different in each network. Thus, to
obtain verification of certain conditions, such as an in-
accessible or dead destination, various kinds of enordi-
nation must be invoked between the communicating net-
works.

It would be extremely eonvenient if all the differences
between networks could be economically resolved by
suitable interfacing at the network boundaries. For
many of the differences, this objective can be achicved.
However, both economic and technical considerations lead
us to prefer that the interface be as simple and reliable
as possible and deal primarily with passing data between
networks that use different packet switching strategies,

The question now arises as to whether the interface
ought to account for differences in HosT or process level
protocols by transforming the souree conventions into the
corresponding  destination  conventions. We  obviously
want to allow conversion between packet switching
strategics at the interface, to permit interconneetion of
existing and planned networks. However, the complexity
and dissimilarity of the HOST or process level protocols
makes it desirable to avoid having to transform between
them at the interface, even if this transformation were
always possible. Rather, compatible HosT and process
level protocols must be developed to achieve effective
internetwork  resouree  sharing. The unacceptable  al-
ternative is for every HOST or process to implement every
protocol (a potentially unbounded number) that may be
needed to communicate with other networks. We there-
fore assume that a common protoceol is to be used between
HOST's or processes in different networks and that the
interface between networks should take as small a role as
possible in this protocol,

To allow networks under different ownership to inter-
conneet, some aceounting will undoubtedly be needed for
traflic that passes across the interface. In its simplest
terms, this involves an accounting of packets handled by
cach net for which charges are passed from net to net
until the buck finally stops at the user or his representa-
tive. Furthermore, the interconnection must preserve
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intact the internal operation of cach individual network,
This is casily achicved if two networks interconneet as
if cach were a HosTt to the other network, but without
utilizing or indecd incorporating any  claborate HosT
protocol transformations.

It ix thus apparent that the interface between networks
must play a central role in the development of any net-
work interconneetion strategy. We give a special nanie to
this interface that perforins these functions and call it a
GATEWAY.

THE GATEWAY NOTION

In Fig. 2 we illustrate three individual networks Jahelod
A, B, and €' which arc joined by cartewavs VY oand N
GATEWAY )/ interfaces network 4 with network B, and
GATEWAY N interfaces network B oto network 0 We
assume that an individual network mayv have more than
one GATEWAY (c.g., network B) and that there mav be
more than one GATEWAY path to use in going between a
pair of networks. The responsibility for properly routing
data resides in the GATEWAY.

In practice, a GATEWAY between two networks may be
composed of two halves, cach associated with its own
network. It is possible to implement each half of a GATE-
waY 80 it need only embed internetwork packets in local
packet format or extract them. We propose that the
GATEWAYs handle internetwork packets in a standard
format, but we arc not proposing any particular trans-
mission procedure between GATEwWAY halves,

Let us now trace the flow of data through the inter-
connected networks, We assume a packet of data from
process X enters network A destined for process }oin
network C. The address of Y is initially specified by
process X and the address of GaTEwAY M is derived from
the address of process Y. We make no attempt to specify
whether the choice of GATEWAY ix made by process X,
its HOsT, or one of the packet switehes in network 4. The
packet traverses network A4 until it reaches GATEWAY M.
At the GATEWAY, the packet i= reformatted to meet the
requirements of network B, account is taken of this unit
of flow between A4 and B, and the caTeway delivers the
packet to network B, Again the derivation of the next
GATEWAY address is accomplished based on the address of
the destination Y. In this case, GATEWAY .\ is the next one,
The packet traverses network B until it finally reaches
GATEWAY .\ where it is formatted to meet the requirements
of network €. Account is again taken of this unit of flow
between networks B and €. Upon entering network €
the packet ix routed to the Host in which process Y
rexides and there it is delivered to its ultimate destination,

Since the carEway must understand the address of the
source and destination nosts, this information must be
available in a standard format in every packet which
arrives at the ¢ateway. This information it contained
in an internetwork header prefixed to the packet by the
source HOST. The packet format, including the internet-
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pashat from
proxen
) T
x
GATEWAY GATEWAY
Fig. 2. Three networks interconnected by two GATEWAYs.

imay be nult)

Hoader

Eocn MEADER SOUACE DESTINATION SEQUENCE NO 'BYTE COUNT FLAG FIELD] TEXT | CHECKSUM

Fig. 3. Internetwork packet format (fields not shown to scale).

work header, is illustrated in Fig. 3. The source and desti-
nation entries uniformly and uniquely identify the address
of every HosT in the composite network. Addressing is a
subject of considerable complexity which is discussed
in greater detail in the next section. The next two entries in
the header provide a sequenee number and a byte count
that may be used to properly sequence the packets upon
delivery to the destination and may also enable the
GATEWAY= to deteet fault conditions affecting the packet.
The flag ficld is used to convey speeifie control information
and ix discussed in the seetion on retransmission and
duplicate detection later. The remainder of the packet
consists of text for delivery to the destination and a trailing
cheek sum used for end-to-end software verification. The
GATEWAY does nof modify the text and merely forwards the
cheek sum along without computing or recomputing it.

Each network may need to augment the packet format
before it can pass through the individual network. We
have indieated a local header in the figure which is prefixed
to the beginning of the packet. This local header is intro-
duced merely to illustrate the coneept of embedding an
internetwork packet in the format of the individual net-
work through which the packet must pass, It will ob-
viously vary in its exact form from network to network
and may cven be unneeessary in some cases. Although not
explicitly indicated in the figure, it is also possible that a
loeal trailer may be appended to the end of the packet.

Unless all transmitted packets are legislatively  re-
stricted to be small enough to be aceepted by every in-
dividual network, the GATEWAY may be foreed to split a
packet into two or more smaller packets. This action ix
called fragmentation and must be done in such a way that
the destination is able to pieee together the fragmented
packet. It is elear that the internetwork header format
imposes a minimum  packet size which all networks
must carry (obviously all networks will want to carry
packets larger than this minimum). We believe the long
runge growth and development of internetwork com-
munieation would be seriously inhibited by specifving
how much larger than the minimum a packet size can be,
for the following reasons.

I; 1f 2 maximum permitted packet size is speeified then
it becomes impossible to completely isolate the internal
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packet size parameters of one network from the internal
packet size parameters of all other networks,

2) It would be very difficult to increase the maximum
permitted packet size in response to new technology (e.g.,
large memory systems, higher data rate communication
facilities, ete)) sinee this would require the agreement and
then implementation by all participating networks.

3) Associative addressing and packet eneryption may
require the size of a particular packet to expand during
transit for incorporation of new information.

Provision for fragmentation (regardless of where it is
performed) permits packet size variations to be handled
on an individual network basis without global admin-
istration and also permits #osT and processes to be
insulated from changes in the packet sizex permitted in
any networks through which their data must pass.

If fragmentation must be done, it appears best to do it

upon entering the next network at the GATEWAY since only
this GATEWAY (and not the other networks) must be aware
of the internal packet size parameters which made the
fragmentation necessary.

If a GATEWAY fragments an incoming packet into two or
more packets, they must eventually be passed along to the
destination HOsT as fragments or reassembled for the
HosT. It is conceivable that one might desire the GATEWAY
to perform the reassembly to simplify the task of the desti-
nation HoOST (or process) and‘or to take advantage of a
larger packet size. We take the position that GATEways
should not perform this function since GATEWAY re-
assembly can lead to serious buffering problems, potential
deadlocks, the necessity for all fragments of a packet to
pass through the same GATEwAY, and incrcased delay in
transmission. Furthermore, it is not sufficient for the
GATEWAYR to provide this funetion sinee the final GATEWAY
may also have to fragment a packet for transmission.
Thus the destination HosT must be prepared to do this
task.

Let us now turn brieflv to the somewhat unusual ac-
counting c¢ffeet which arises when a packet may be frag-
mented by one or more cateways. We assume, for
simplicity, that cach network initially charges a fixed rate
per packet transmitted, regardless of distance, and if one
network can handle a larger packet size than another, it
charges a proportionally larger price per packet. We also
assume that a subsequent inerease in any network's
packet size does not result in additional cost per packet to
its users. The charge to a user thus remains basically
constant through any net which must fragment a packet.
The unusual effeet oceurs when a packet is fragmented into
smaller packets which must individually pass through a
subsequent network with a larger packet size than the
original unfraginented packet, We expeet that most net-
works will naturally seleet packet sizes close to one
another, but in any ease, an increase in packet size in one
net, even when it eauses fragmentation, will not increase
the cost of transmission and may actually decrease it. In
the cvent that any other packet charging policies (than
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the one we suggest) are adopted, differences in cost can be
used as an economic lever toward optimization of indi-
vidual network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate in full
duplex with their correspondents using unbounded but
finite length messages. A single character might constitute
the text of a message from a process to a terminal or viee
versa. An entire page of characters might constitute the
text of a message from a file to a process. A data stream
(e.g., a continuously generated bit string) can be repre-
sented as a sequence of finite length messages.

Within a HosT we assume the existence of a transmission
control program (TCP) which handles the transmission
and acceptance of messages on behalf of the processes it
serves. The TCP is in turn served by one or more packet
switches connected to the Host in which the TCP resides.
Processes that want to communicate present messages
to the TCP for transmission, and TCP’s deliver incoming
messages to the appropriate destination processes. We
allow the TCP to break up messages into segments be-
causc the destination may restrict the amount of data that
may arrive, because the local network may limit the
maximum transmission size, or because the TCP may
nceed to share its resources among many processes con-
currently. Furthermore, we constrain the length of a
gsegment to an integral number of 8-bit bytes. This uni-
formity is most helpful in simplifving the software needed
with HosT machines of different natural word lengths.
Provision at the process level ean be made for padding a
moessage that is not an integral number of bytes and for
identifving which of the arriving bytes of text contain
information of interest to the receiving process.

Multiplexing and demultiplexing of segments among
processes are fundamental tasks of the TCP. On trans-
mission, 4 TCP must multiplex together segments from
different  source  processes and  produce  internetwork
packets for delivery to one of its serving packet switches,
On reception, a TCP will aceept a sequence of packets
from its serving packet switch(ex). From this sequence
of arriving packets (generally from different  Hosts),
the TCP must be able to reconstruet and deliver messages
to the proper destination processes.

We assume that every segment is augmented with ad-
ditional information that allows transmitting and re-
ceiving TCIs to identify destination and souree processes,
respeetively. At this point, we must face a major issuc.
How should the source TCP format segments destined for
the same destination TCP? We consider two cases.

('use 1) : If we take the position that segment boundaries
are immaterial and that a bhyte stream can be formed of
segments destined for the same TCP, then we may gain
improved transmission cfficicney and resource sharing by
arbitrarily parecling the stream into packets, permitting
many scgments to share a single internetwork packet
header. However, this position results in the need to re-
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construct exactly, and in order, the stream of text bytes
produced by the source TCP. At the destination, this
stream must first be parsed into segments and these in
turn must be used to reconstruct messages for delivery to
the appropriate processes,

There are fundamental problems associated with this
strategy due to the possible arrival of packets out of order
at the destination. The most eritical problem appears
to be the amount of interference that processes sharing the
same TCP-TCP byte stream may cause among them-
selves. This is especially <o at the recciving end. First,
the TCP may be put to some trouble to parse the stream
back into segments and then distribute them to bufiers
where messages are reassembled. If it is not readily ap-
parent that all of a segment has arrived (remember, it
may come as several packets), the receiving TCP may
have to suspend parsing temporarily until more packets
have arrived. Second, if a packet is missing, it may not be
clear whether succeeding segments, even if they are identi-
fiable, can be passed on to the receiving process, unless the
TCP has knowledge of some process level sequencing
scheme. Such knowledge would permit the TCP to decide
whether a succeeding segment could be delivered to its
waiting process. Finding the beginning of a segment when
there arc gaps in the byte stream may also be hard.

Case 2): Alternatively, we might take the position that
the destination TCP should be able to determine, upon
its arrival and without additional information, for which
process or processes & received packet is intended, and if
s0, whether it should be delivered then.

If the TCP is to determine for which process an arriving
packet is intended, every packet must contain a process
header (distinet from the internetwork header) that com-
pletely identifies the destination process. For simplicity,
we assume that each packet contains text from a single
process which is destined for a single proeess. Thus cach
packet need contain only one process header. To deeide
whether the arriving data is deliverable to the destination
process, the TCP must be able to determine whether the
data is in the proper sequence (we can make provision
for the destination process to instruet its TCP to ignore
sequencing, but this ix considered a speeial case). With the
assumption that cach arriving packet contains a process
header, the necessary sequencing and destination process
identification is immediately available to the destination
TCP.

Both Cases 1) and 2) provide for the demultiplexing
and delivery of segments to destination processes, but
only Case 2) does so without the introduction of potential
interprocess interference. Furthermore, Case 1) introduces
extra machinery to handle flow control on a HosT-to-
HOST basis, since there must also be some provision for
process level control, and this machinery is little used sinee
the probability is small that within a given HosT, two
processes will be eoincidentally scheduled to send messages
to the same destination HosT. For this reason, we sclect
the ‘method of Case 2) as a part of the infernetwork
{rangmzisgion prolocol.
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of Internetwork packets

Similar troables are encountered when we deal with
process addris~ing and. more generdlv, port addressing.
We introduce “he notion of ports norder to permit a
process to di=tingmsh between multiple message streams.
The port i ~lmply a de<ignator of one such miessage stream
as=ociated with a process. Theomeans for identifving a port
are generally different in different operating systems, and
therefore, to obtain uniform addressing, a standard port
address format is also required. A port address designates
a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in routing
1s<ues, sinee a HOST or GATEWAY must choose a suitable
destination HOST or GATEWAY for an outgoing internetwork
packet. Let us postulate the following address format for
the TCP address (Fig. 4). The choice for network identi-
fication (N bits) allows up to 236 distinet networks. This
size secms sufficient for the forsecable future. Similarly,
the TCP identifier field permits up to 65 536 distinet
TCP’s to be addressed, which secems more than sufficient
for anyv given network.

As cach packet passes through a GATEWAY, the GATEWAY
observes the destination network 1D to determine how
to route the packet. If the destination network is con-
nected to the GATEWAY, the lower 16 bits of the TCP address
arc used to produee a local TCP address in the destination
network, If the destination network is not connected to the
GATEWAY, the upper 8 bits are used to select a subsequent
GATEWAY. We make no effort to speeify how each in-
dividual network shall associate the interncetwork TCP
identifier with its local TCP address. We also do not rule
out the possibility that the loeal network understands the
internetwork addressing scheme and thus alleviates the
GATEWAY of the routing responsibility.

PORT ADDRESSING

A receiving TCP is faced with the task of demultiplex-
ing the stream of internetwork packets it reccives and
reconstructing the original messages for each destination
process. Each operating syvstem has its own internal
means of identifying processes and ports. We assume that
16 bitsarc sufficient toserve asinternetwork port identifiers,
A sending process need not know how the destination
port identification will be used. The destination TCP
will be able to parse this nuinber appropriately to find
the proper buffer into which it will place arriving packoets.
We permit a large port number field to support processes
which want to distinguish between many  different
messages streams concurrently. In reality, we do not care
how the 16 bits are sliced up by the TCP's involved.

sentation of the port. The use of short numes for port
identifier< is often desirable to reduee transmission over-
head and possibly reduce packet processing time at the
destination TCP. Assigning short names to cach port.
however, requires an initial negotiation between source
and destination to agree on a =uitable <hort name assign-
ment, the =ubscquent maintenanee of conversion tables
at both the souree and the destination, and a final trans-
action to release the short name. For dvnamic assignment
of port names, this negotiation is generally necessary in
any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the TCP
into segments whose format is shown in more detail in
Fig. 6. The field lengths illustrated are merely suggestive.
The first two fields (source port and destination port in
the figure) have already been discussed in the preceding
section on addressing. The uses of the third and fourth
ficlds (window and acknowledgment in the figure) will
be discussed later in the scetion on retransmission and
duplicate detection.

We recall from Fig. 3 that an internetwork header con-
tains both a sequence number and a byte count, as well as
a flag field and a cheek sum. The uses of these fields are
explained in the following section.

REASSEMBLY AND SEQUEXNCING

The reconstruction of a message at the receiving TCP
clearly requires! that each internetwork packet carry a
sequence number which is unique to its particular desti-
nation port message stream, The sequence numbers must
be monotonie increasing (or decreasing) since they are
used to reorder and reassemble arriving packets into a
message. If the space of sequence numbers were infinite,
we could simply assign the next one to cach new packet.
Clearly, this space cannot be infinite, and we will consider
what problems a finite sequence number space will cause
when we diseuss retransmission and duplicate detection
in the next section. We propose the following scheme for
performing the sequencing of packets and hence the re-
construction of messages by the destination TCP,

A pair of ports will exchange one or more messages over
a period of time. We could view the sequence of messages
produced by one port as if it were embedded in an in-
finitely long stream of bytes, Each byte of the message has
a unique sequence number which we take to be its hyte
location relative to the beginning of the stream. When a

'In the coase of eng-ryrteq packets, a preliminary stage of re-
assembly may be required prior to decryption.
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Fig. 5. Creation of segments and packets from messages.

32 2 16 18 Bn

Source Port l Destination/Port [w-wwlACK Tent (Foald sizes in bits)

Process Header ————————————————+|

Fig. 6. Segment format (process header and text).

segment is extracted from the message by the source
TCP and formatted for internetwork transmission, the
relative location of the first byte of segment text is used as
the sequence number for the packet. The byte count
ficld in the internetwork header accounts for all the text
in the segment (but does not include the check-sum bytes
or the bytes in either internctwork or process header).
We emphasize that the sequence number associated with
a given packet is unique only to the pair of ports that are
communicating (see Fiz. 7). Arriving packets are ex-
amined to determine for which port they are intended.
The sequence numbers on each arriving packet are then
used to determine the relative location of the packet text
in the messages under reconstruction. We note that this
allows the exact position of the data in the reconstructed
message to be determined even when pieces are still
missing.

Every segment produced by a source TCP is packaged
in a single internetwork packet and a check sum is com-
puted over the text and process header associated with the
segment.

The splitting of messages into segments by the TCP
and the potential splitting of segments into smaller picees
by GATEWAYs creates the necessity for indicating to the
destination TCP whe. the end of a segment (ES) has
arrived and when the end of a message (EM) has arrived,
The flag ficld of the internetwork header is used for this
purpose (see Fig. 8).

The ES flag is set by the souree TCI each time it pre-
pares a segment for transmission, If it should happen that
the message is completely contained in the segment, then
the 1M flag would also be set, The 1N flag is also set on
the Jast segment of a message, if the message could not
be contained in one segment. These two flags are used
by the destination TCP, respectively, to discover the
presence of a check sum for a given segment and to discover
that a complete message has arrived.

The ES and EN flags in the internetwork header are
known to the GaTEway and are of special importance when
packets must he split apart for propagation through the
next loeal network. We illustrate their use with an ex-
ample in Fig. 9.

The original message .1 in Fig. 9 is shown split into two
scgments Ay and A, and formatted by the TCP into a pair
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Fig. 8. Internetwork header flag field.
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Fig. 9. Message splitting and packet splitting.

of internetwork packets, Packets 4, and .1, have their
ES bits sct, and .1, has its EM bit et as well. When
packet A, passes through the GATEWAY, it is split into two
pieces: packet Apn for which neither EN nor ES bits are
set, and packet Ay whose ES bit is set. Similarly, packet
Az in split such that the first picee, packet Ay, has neither
bit set, but packet A4z has both bits set. The sequence
number field (SEQ) and the byte count field (CT) of cach
packet is modified by the GATEWAY to properly identify
the text bytes of cach packet. The GATEWAY need only
examine the internetwork header to do fragmentation.

The destination TCP, upon reassembling segment A,
will deteet the ES flag and will verify the cheek sum it
knows is contained in packet A Upon receipt of packet
Az, assuming all other packets have arrived, the desti-
nation TCP detects that it has reassembled a complete
message and can now advise the destination process of its
receipt.

"




v

—

W Y

AR "RARERNS (AN

gt

Lo e o s o o

.

CERF AND KAHN: PACKET NETWORK INTERCOMMUNICATION

RETRANSMISSION AND DUPLICATE
DETECTION

No transmission can be 100 percent reliable. We
propose a timeout and positive acknowledgment mecha-
nism which will allow TCP's to recover from packet losses
from oue HosT to another. A TCP transmits packets and
waits for replies (acknowledgements) that are carried in
the reverse packet stream. If no acknowledgment for a
particular packet is received, the TCP will retransmit.
It is our expectation that the HosT level retransmission
mechanism, which 18 deseribed in the following para-
graphs, will not be called upon very often in practice.
Evidence already exists? that individual networks can be
effectively constructed without this feature. However, the
inclusion of a HOST retransmission capability makes it
possible to recover from oceasional network problems and
allows a wide range of HOST protocol strategies to be in-
corporated. We envision it will occasionally be invoked to
allow HosT accommodation to infrequent overdemands for
limited buffer resources, and otherwise not used much.

Any retransmission policy requires some means by
which the receiver can detect duplicate arrivals. Even if
an infinite number of distinct packet sequence numbers
were available, the receiver would still have the problem
of knowing how long to remember previously reccived
packets in order to detect duplicates. Matters are compli-
cated by the fact that only a finite number of distinet
sequence numbers are in fact available, and if they are
reused, the receiver must be able to distinguish between
new transmissions and retransmissions,

A window strategy, similar to that used by the French
CYCLADES s8ystem (voie virtuelle transmission mode [N])
and the ARPANET very distant HosT conncetion [18],
is proposed here (sce I'ig. 10).

Suppose that the sequence number ficld in the inter-
network header permits sequence numbers to range from
0 ton — 1. We assume that the sender will not transmit
more than w byvtes without receiving an acknowledgment,
The w bytes serve as the window (see Fig. 11}, Clearly,
w must be less than n. The rules for sender and recciver
are as follows.

Sender: Let L be the sequence number associated with
the left window edge.

1) The sender transmits bytes from segments whose
text lics between Landup to I + w — 1.

2) On timcout (duration unspecified), the sender
retransmits unacknowledged hyvtes.

3) On receipt of acknowledgment consisting of the
receiver’s current left window cedge, the sender’s left
window cdge is advanced over the acknowledged bytes
(advancing the right window edge implieitly),

Recetver:

1) Arriving packets whose sequenee numbers coincide
with the receiver’s current left window edge are acknowl-
edged by sending to the source the next sequencee number

* The ARPANET is one such example.
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Fig. 10. The window concept.

1 Source
Address
2 Destination
Address
3 Next Packet Seq.
4 Current Buffer Size
L] Next Writs Position
[} Next Read Position
7 End Read Position
8 No. Retrans. Max Retrans.
9 Timeout Flags
10 Curr. Ack Window

Fig. 11. Conceptual TCB format.

expected. This effectively acknowledges bytes in between.
The left window edge is advanced to the next sequence
number expected.

2) Packets arriving with a sequence number to the left
of the window edge (or, in fact, outside of the window) are
discarded, and the current left window edge is returned as
acknowledgment.

3) Packets whose sequence numbers lie within the
receiver’s window but do not coinicide with the receiver’s
left window edge are optionally kept or discarded, but
are not acknowledged. This is the case when packets arrive
out of order.

We make some observations on this strategy. First, all
computations with scquence numbers and window edges
must be made modulo 7 (e.g., byte 0 follows byten — 1).
Sceond, w must be less than n '2%; otherwise a retrans-
mission may appear to the receiver to be a new trans-
mission in the case that the receiver has aceepted a
window’s worth of incoming packets, but all acknowledg-
ments have been lost. Third, the recciver ean ecither save
or discard arriving packets whose sequenee numbers do
not coincide with the receiver's left window. Thus, in the
simplest implementation, the receiver need not buffer
more than one packet per message stream if space is
critical. Fourth, muliiple packets can be acknowledged
simultancously. Iifth, the receiver is able to deliver
messages to processes in their proper order as a natural
result of the reassembly mechanism. Sixth, when dupli-
cates are deteeted, the acknowledgment method  used
naturally works to resvonchronize sender and receiver.
IFurthermore, if the receiver aceepts packets whase
sequence numbers e within the current window  but

3 Actually n/2 ix merely & convenient number to use; it ix only
required that a retransmission not appesar to be 8 new transmission.
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which are not coincident with the left window edge, an
acknowledgment consisting of the current left window
edge would aet as a stimulus to cause retransmission of the
unacknowledged bytes. Finally, we mention an overlap
problem  which results  from  retransmission, packet
splitting, and alternate routing of packets through dif-
ferent GATEWAYS.

A 600-byte packet might pass through one GATEwAY
and be broken into two 300-byte packets. On retrans-
mission, the same packet might be broken into three
200-byte packets going through a different GATEWAY.
Sinee cach byte has a sequence number, there is no con-
fusion at the receiving TCP. We leave for later the issue
of initiallv synchronizing the sender and receiver left
window cdges and the window size.

FLOW CONTROL

Every segment that arrives at the destination TCP is
ultimately  acknowledged by returning  the  sequence
number of the next segmient which must be passed to the
process (it may not vet have arrived).

Earlier we deseribed the use of a sequence number
space and window to aid in duplicate detection. Ac-
knowledgments are carried in the process header (see
Fig. 6) and along with them there is provision for a
suggested window?’ which the reeeiver can use to control
the flow of data from the sender. Thix is intended to be
the main component of the process flow control mecha-
nism. The receiver is free to vary the window size accord-
ing to anyv algorithm it desires so long as the window
size never exeeeds half the sequence number space ?

Thix flow control mechanism is exceedingly powerful
and flexible and does not suffer from svnchronization
troubles that may be encountered by incremental buffer
allocation schemes [97,[107. However, it relies heavily
on an effeetive retransmission strategy. The receiver can
reduce the window even while packets are en route from
the <ender whose window is presently larger. The net
effeet of this reduction will be that the receiver may
diseard incoming packets (they may be outside the
window ) and reiterate the eurrent window size along with
a current window edge as acknowledgment. By the same
token, the sender can, upon oceasion, choose to send more
than a window’s worth of data on the possibility that the
receiver will expand the window to aceept it (of course, the
sender must not send more than half the sequence number
space at any time). Normally, we would expeet the sender
to abide by the window limitation. Fxpansion of the
window by the receltver merely allows more data to be ac-
cepted, For the receiving #Host with a small amount of
buffer space, a strategy of discarding all packets whose
sequence numbers do not coincide with the current left
edge of the window is probably necessary, but it will incur
the expense of extra deluy and overhead for retransmix-

slon.

(50)
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TCP INPUT - OUTPUT HANDLING

The TCP has a component which handles input /output
(I.0) to and from the network* When a packet has ar-
rived, it validates the addresses and places the packet
on a queue. A pool of buffers can be set up to handle
arrivals, and if all available buffers are used up, suceccding
arrivals can be discarded since unacknowledged packets
will be retransmitted.

On output, a smaller amount of buffering is needed,
since process buffers can hold the data to be transmitted.
Perhaps double buffering will be adequate. We make no
attempt to specify how the buffering should be done,
exeept to require that it be able to serviee the network
with as little overhead as possible. Packet sized buffers,
one or more ring buffers, or any other combination are
possible candidates.

When a packet arrives at the destination TCP, it is placed
on a queue which the TCIP services frequently. For ex-
ample, the TCP could be interrupted when a queue place-
ment occurs, The TCP then attempts to place the packet
text into the proper place in the appropriate process
receive buffer. If the packet terminates a segment, then
it can be checksummed and acknowledged. Placement
may fail for several reasons.

1) The destination process may not be prepared to
recelve from the atated source, or the destination port 1D
may not exist.

2) There may be insufficient buffer space for the text.

3) The beginning sequence number of the text may
not coincide with the next sequenee number to be delivered
to the proecess (e.g., the packet has arrived out of order).

In the first case, the TCP should simply discard the
packet (thus far, no provision has been made for error
acknowledgments). In the second and third eases, the
packet sequence number can be inspeeted to determine
whether the packet text lies within the legitimate window
for reception. If it does, the TCP may optionally keep the
packet queued for later proecessing. If not. the TCP
can diseard the packet. In cither caze the TCP can
optionally acknowledge with the current left window edge.

It may happen that the process receive buffer is not
present in the active memory of the HosT, but is stored on
secondary storage. If this i< the case, the TCP can prompt
the scheduler to bring in the appropriate buffer and the
packet can be queued for later processing,

If there are no more input buffers available to the TCPR
for temporary queueing of incoming packets, and if the
TCP cannot quickly use the arriving data (c.g.. a TCP
to TCP message), then the packet is discarded. Assuming
a sensibly functioning svstem, no other processes than the
one for which the packet was intended should be affected
by this disecarding. If the delaved processing quene grows

*Thi~ component can serve to handle ather protocols whose
associated control programs e designated by internet work destina-
tion addres..
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excessively long, any packets in it ean be safely discarded
since none of them have vet been acknowledged. Con-
gestion at the TCP level is flexibly handled owing to the
robust retransmission and duplicate detection strategy.

TCP 'PROCESS CONMNMUNICATION

In order to send a message, a process seta up its text
in a buffer region in its own address space, inserts the
requisite control information (described in the following
list) in a tran=mit control block (TCB) and passes control
to the TCP. The exact form of a TCB is not specified
here, but it might take the form of a passed pointer, a
pseudointerrupt, or various other forms. To receive a
message in its address space, a process sets up a receive
buffer, inserts the requisite control information in a
receive control block (RCB) and again passes control
to the TCP.

In some simple avstems, the buffer space may in fact
be provided by the TCP. For simplicity we assume that
a ring buffer is used by cach process, but other structures
(e.g., buffer chaining) are not ruled out.

A possible format for the TCB is shown in Fig. 11. The
TCB contains information necessary to allow the TCP
to extract and send the process data. Some of the informa-
tion might be tmplicitly known, but we are not concerned
with that level of detail. The various fields in the TCB
are deseribed as follows,

1) Source Address: Thix is the full net nost/TCP/port
address of the transmitter,

2) Destination Address: This s the full net "HosT '
TCP port of the receiver.

3y Nest Packet Sequence Nwonber: Thix is the sequenee
number to be used for the next packet the TCP will
transmit from thix port.

41 Current Buffer Size: This i= the present size of the
process transmit buffer.

S0 Nert Wrate Position: This 1= the address of the next
position in the buffer at which the proces< can place new
data for transmission.

G) Neot Read Position: This is the address at which the
TCP <hould begin reading to build the next segment for
output.

7) End Read Position: This is the address at which the
TCP should halt transmission. Inttially 6) and 7) bound
the mes<agee which the proeess wishes to transmit.

Sy Nuwher of Releansmissions Marinaan Relransmits-
stoms: These fields enable the TCP to keep track of the
number of times it hax retransmitted the data and could be
omitted if the TCP is not to give up.

9 Timeout Flags: The timeout field  speeifies the
delavy after which unacknowledged data should be retrans-
mitted. The flag ficld is used for semaphores and other
TCP process svnchronization, status reparting, ote.

10) Cucrent Aeknowledgment Window: ‘The  current
arknowledgiment field adentifies the first hyte of data
still unacknowledged by the destination TCP.
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The read and write positions move circularly around the
transmit buffer, with the write position always to the left
(module the buffer size) of the read position.

The next packet sequenee number should be constrained
to be less than or equal to the sum of the current ac-
knowledgment and the window ficlds. In any event, the
next sequence number should not exceeed the sum of the
current acknowledgment and half of the maximum possible
sequence number  (to avoid  confusing  the receiver’s
duplicate deteetion algorithm). A possible buffer lavout
is shown in Fig, 12,

The RCB is substantially the same, except that the end
read field is replaced by a partial segment cheek-sum
register which permits the receiving TCP to compute and
remember partial check sums in the event that a segment
arrives in several packets. When the final packet of the
segment arrives, the TCP can verify the cheek sum and if
suceessful, acknowledge the segment.

CONNECTIONS AND ASSOCIATIONS

Much of the thinking about process-to-process com-
munication in packet switched networks has been in-
fluenced by the ubiquitous telephone system. The HosT—
HosT protocol for the ARPANET deals explicitly with the
opening and closing of simplex connections between
processes [97.[10]. Evidence has been presented that
message-hased “connection-free” protocols can be con-
structed [127, and this leads us to carefully examine the
notion of a connection.

The term connection has a wide variety of meanings. It
can refer to a physical or logical path between two en-
tities, it can refer to the flow over the path. it can in-
ferentially refer to an action associated with the setting
up of a path, or it can refer to an assactation hetween two
or more entities, with or without regard to any path
between them. I this paper, we do not explieit]ly reject
the term conneetion, sinee it is in such widespread use,
and does connote o meaningful relation, but consider
it exelusively in the sense of an association between two or
more entities without regard to a path. To be more precise
about our intent, we shall define the relationship betweer
two or more ports that are in comnianication, or are pre-
pared to communicate to be an association. Ports that
arc associated with cach other are called associates.

It is elear that for any communication to take place
between two processes, one must be able to address the
other. The two important cases here are that the desti-
nation port may have a global and unchanging address or
that it may be globallyv unique but dynanmiecally reassigned.
While in cither case the sender mayv have to learn the
destination address, given the destination name, only in
the second instanee is there a requirement for learning the
address from the destination (or its representative) cach
time an association i~ desired. Only after the source has
learned how to address the destination can an association
be said to have occurred. Rut, this is not vet sufticient.

(51)
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Fig. 12. Transmit buffer layout.

ordering of delivered messages is also desired, both
TCP’s must maintain sufficient information to allow
proper scqueneing. When this information 1s also present
at both ends, then an association is said to have occurred.

Note that we have not said anything about a path, nor
anything which implies that cither end be aware of the
condition of the other. Only when both partners are
prepared to communicate with each other has an associ-
ation occurred, and it is possible that neither partner
may be able to verify that an association exists until some
data flows between them.

CONXNECTION-FREE PROTOCOLS WITH
ASSOCIATIOXNS

In the ARPANET, the interface message processors
(INMP’s) do not have to open and close connections from
source to destination. The reason for this is that con-
nections are, in effeet, always open, since the address of
every source and destination is never® reassigned. When
the name and the place are static and unchanging, it is
only necessary to label a packet with source and desti-
nation to transmit it through the network. In our parlance,
every source and destination forms an association.

In the case of processes, however, we find that port
addresses are continually being used and reused. Some
ever-present processes could be assigned fixed addresses
which do not change (e.g., the logger process). If we sup-
posed, however, that every TCP had an infinite supply of
port addresses so that no old address would ever be reused,
then any dynamically ereated port would be assigned the
next unused address. In such an environment, there
could never be any confusion by source and destination
TCP as to the intended recipient or implied source of cach
message, and all ports would be associates,

Unfortunately, TCP’s (or more properly, operating
systems) tend not to have an infinite supply of internal
port addresses. These internal addresses are reassigned
after the demise of cach port. Walden [12] suggests that
a set of unique uniform external port addresses could
be supplicd by a central registry. A newly ercated port
could apply to the ecntral registry for an address which
the central registry would guarantee to be unused by any
HosT system in the network. Each TCP could maintain
tables matching external names with internal ones, and
use the external ones for communication with other

$ Unless the IMP is physically moved to another site, or the
BOST i~ contected to n different IMP.

(52)

P T T NN TR T R TR T T TR v ey

IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

processes. This idea violates the premise that interprocess
communication ghould not rcquire centralized control.
Onc would have to extend the central registry service to
include all HosT's in all the interconnceted networks to
apply this idea to our situation, and we therefore do not
attempt to adopt it.

Let us consider the situation from the standpoint of the
TCP. In order to send or reccive data for a given port,
the TCP needs to set up a TCB and RCB and initialize
the window size and left window edge for both. On the
receive side, this task might even be delayved until the
first packet destined for a given port arrives. By con-
vention, the first packet should be marked so that the
receiver will synehronize to the received sequence number.

On the send side, the first request to transmit could
causec a TCB to be set up with some initial sequence
number (say, zero) and an assumed window size. The
recciving TCP can reject the packet if it wishes and
notify the sending TCP of the correet window size via the
acknowledgment mechanism, but only if cither

1) we insist that the first packet be a complete segment ;

2) an acknowledgment can be sent for the first packet

(even if not a segment, as long as the acknowledg-
ment specifies the next sequenee number such that
the source also understands that no bytes have been
accepted).
It is apparent, therefore, that the synchronizing of window
size and left window edge ean be accomplished without
what would ordinarily be called a connection setup.

The first packet referencing a newly created RCB
sent from one associate to another can be marked with a
bit which requests that the receiver synchronize his left
window edge with the sequence numbe; of the arriving
packet (see SYN bit in Fig. 8). The TCP _an examine the
source and destination port addresses in the packet and
in the RCB to decide whether to aceept or ignore the
request.

Provision should be made for a destination process to
specify that it is willing to LISTEN to a specific port or
“any" port. Thix last idea permits processes such as the
logger process to accept data arriving from unspecified
sources. This is purely a HosT matter, however.

The initial packet may contain data which ean be stored
or discarded by the destination, depending on the avail-
ability of destination buffer space at the time. In the other
direction, acknowledgment is returned for reeeipt of data
which also speeifies the receiver’s window size.

If the receiving TCP should want to reject the svn-
chronization request, it merely transmits an acknowledg-
moent carrying a release (REL) bit (see Fig. 8) indicating
that the destination port address is unknown or inacces-
sible, The sending HosT waits for the acknowledgment
(after accepting or rejecting the synchronization request)
before sending the next message or segment. This rejection
is quite different from a negative data acknowledgment.
We do not have explicit negative acknowledgments. If no
acknowledgment i3 returned, the sending HosT may
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retransmit without introdueing confusion if, for example,
the left window edge is not changed on the retransmission,

Beeause messages mayv be broken up into many packets
for tran<mis<ion or during transmission, it will be neees-
sary to ignore the REL flag except in the case that the
AL flag is also set. This could be accomplished cither
by the TCP or by the careway which could reset the flag
on all but the packet containing the set EM flag (sec
Fig. 9).

At the end of an association, the TCP sends a packet
with EN, ENM, and REL flags set. The packet sequence
number scheme will alert the reeetving TCP if there are
<till out<tanding packets in transit which have not vet
arrived, so a premature dissociation cannot oceur.

To assure that both TCI’s are aware that the associ-
ation has ended, we insist that the reeciving TCP respond
to the REL by sending a REL acknowledgment of its
own,

Suppos=e now that a process sends a single message to an
associate including an REL along with the data. Assuming
an RCB has been prepared for the reeeiving TCP to
accept the data, the TCP will accumulate the incoming
packets until the one marked ES, ENM, REL arrives, at
which point a REL i~ returned to the sender. The associ-
ation is thereby terminated and the appropriate TCB
and RCB are destroyed. If the first packet of a message
contains a SYN request bit and the last packet contains
ES, EM. and REL bits, then data will flow “one message
at a time.” This mode is very similar to the scheme de-
seribed by Walden [127, sinee cach suceceding message
can only be aceepted at the receiver after a new LISTEN
(like  Walder's RECEIVE) command is issued by the
receiving process to its serving TCP, Note that only if the
acknowledgment is received by the sender can the associ-
ation be terminated properly. It has been pointed out®
that the receiver may  crronecously accept duplieate
tran=missions if the sender doces not receive the acknowl-
edgment. Thi= may happen if the sender transmits a
duplicate message with the SYN and REL bits set and the
destination has already destroved any record of the
previous transmission. One way of preventing this problem
i« to destroy the record of the association at the desti-
nation only after some known and suitably chosen timeout.
However, this implies that a new association with the
same source and destination port identifiers could not be
e~tablished until this timeout had expired. This problem
can oceur even with sequenees of messages whose SYN
and REL bits are separated into different internetwork
packets. We recogmaze that this problem must be solved,
but do not go into further detail here.

Alternatively, both processes can send one message,
causing the respective TCI”s to alloeate RCB,'TCB
pairs at both ends which rendezvous with the exchanged
data and then disappear. If the overhead of ereating and
destroving RCB’s and TCRB'x is small, such a protocol

¢N Crocker of ARPA/IPT.
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might be adequate for most low-bandwidth uses. This idea
might also form the basis for a relatively secure trans-
mixsion svstem. If the communicating processes agree to
change their external port addresses in some way known
onlv to cach other (e, pseudorandom}. then cach
message will appear to the out<ide world as if it is part of a
different association message stream. Even if the data is
intereepted by a third party, he will have no way of
knowing that the data <hould in fact be considered part of
a sequence of messages,

We have deseribed the way in which processes develop
associations with cach other, thereby becoming associates
for possible exchange of data. These assoeiations need not
involve the transmis<sion of data prior to their formation
and indeed two assaciates need not be able to determine
that they are associates until they attempt to communi-
cate.

CONCLUSIONS

We have discussed some fundamental issues related to
the interconnection of paeket switching networks. In
particular, we have deseribed a simple but very powerful
and flexible protocol which provides for variation in
individual network packet sizex, transmission failures,
sequencing, flow control, and the creation and destruction
of process-to-process associations. We have considered
some of the implementation issues that arise and found
that the proposed protocol is implementable by Host's
of widely varyving capacity.

The next important step is to produce a detailed speci-
fication of the protocol =0 that some initial experiments
with it can be performed. These experiments are needed
to determine some of the operational parameters (e.g.,
how often and how far out of order do packets actually
arrive; what sort of delay is there between segment
acknowledgments; what should be retransmission time-
outs be?) of the proposed protocol.
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Issues in Packet-Network Interconnection

VINTON G. CERF ano PETER T. KIRSTEIN

Invited Paper

Abstract—This paper introduces the wide range of technical, legal,
and political issues associated with the -interconnection of packet-
switched data communication networks. Motivations for interconnec-
tion are given, desired user services are described, and a range of tech-
nical choices for achieving interconnection are compared. Issues such
as the level of interconnection, the role of gateways, naming and
addressing, flow and congestion control, accounting and access control,
and basic internet services are discussed in detail. The CCITT X.25/
X.75 packet-network interface recommendations are evaluated in terms
of their applicability to network interconnection. Alternatives such as
datagram operation and general host gateways are compared with the
virtual circuit methods. Some observations on the regulatory aspects of
interconnection are offered and the paper concludes with a statement
of open research problems and some tentative conclusions.

1. INTRODUCTION

T IS THE THEME of many papers in this issue, that people
I[need access to data resources. In many cases this access
must be over large distances, in others it may be local to a
building or a single site. Data networks have been set up to
meet many user needs—often, but not necessarily, using packet-
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switching technology. For single organizations, these data
networks are often private ones, built with a technology
optimized to the specific application. For communication
between organizations, these networks are being set up by
licensed carriers. In North America, there are many such
licensed carriers, e.g., TELENET (1], DATAPAC [2], and
TYMNET [3]. In the rest of the world, the Post, Telegraph,
and Telephone Authority (PTT) in each country has a near
monopoly on such services; special public data networks
being set up in these countries include TRANSPAC (5] in
France, EURONET (6] for inter-European traffic, DDX [7]
in Japan, EDS (8] in the Federal Republic of Germany, and
the Nordic Public Data Network (NPDN, [9]) in Scandinavia.
These public data networks are considered in greater detail
in other references (e.g., [10]-[12])). Most of the above net-
works use packet-switching technology; some of them, e.g.,
EDS and the NPDN, do not do so yet, but may do so in the
future. In some cases special data networks have been autho-
rized for specific communities, e.g., SITA [13) for the airlines,
and SWIFT [14] for the banks. In addition many private net-
works have been set up among individual organizations, and
experimental networks of different technologies have been
developed also, e.g., ARPANET [15], {16], CYCLADES
{17), ETHERNET [18], SPYDER [19), PRNET [20], [21]
and SATNET [22].
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N It is a common user requirement that a single terminal and the CCITT recommendations X.25 and X.75 and their role in o
b access port should be able to access any computing resource network interconnection. Section VIII describes some of the -
: the user may desire -even if the resource is on another data network interconnections achieved and some of the experi- >
. network. From this requirement, there is a clear user need to ments in progress. Section 1X outlines regulatory issues raised -
. have data networks connected together. By the same token, by network interconnection alternatives. Section X mentions .":4
the providers of data network services would like to have their some unresolved research questions, and the final section .
networks used as intensively as possible; thus they also have a offers some tentative conclusions on network interconnection “"4
strong motivation to connect their data networks to others. issues. -
As a result of these considerations, there has been a high ’
recent interest in the issues arising in the connection of data II. THE DEFINITION OF TERMS ]
networks [ 23]-[26}, [32]. The vocabulary of networking is extensive and not always
From the user viewpoint, the requirement for interconnec- consistent. We introduce some generic terms below which we ]
tion of data networks is independent of the network tech- will use in this paper for purposes of discussion. It is impor- A
nology. From the implementation viewpoint, there can be tant for the reader not to make any a priori assumptions about . ]
some considerable complications in connecting networks of the physical realization of the objects named or of the bound- T
widely different technologies—such as circuit-switched and ary of jurisdictions owning or managing them. For instance,
datagram packet-switched networks (these terms are explained a gateway (see below) might be implemented to share the -
below). On the whole we will consider only, in this paper, the hardware of a packet switch and be owned by a packet-switch- o
interconnection of packet-switched data networks. In many ing service carrier; alternatively it might be embedded in a host —d
cases, however, the arguments will be equally valid for the inter- computer which subscribes to service on two or more com- i
connection of packet-switched to circuit-switched networks. puter networks. Roughly speaking, we are assigning names to :
Network interconnection raises a great many technical, legal, groups of functions which may or may not be realized as 1
and political questions and issues. The technical issues gen- physically distinct entities. p
erally revolve around mechanisms for achieving interconnec- Packet: A packet of information is a finite sequence of bits, ;
tion and their performance. How can networks be intercon- divided into a control header part and a data part. The header 4
nected so that packets can flow in a controllable way from one will contain enough information for the packet to be routed -
net to another? Should all computer systems on all nets be to its destination. There will usually be some checks on each K
able to communicate with each other? How can this be such packet, so that any switch through which the packet oY
achieved? What kind of performance can be achieved with a passes may exercise error control. Packets are generally “'

set of interconnected networks of widely varying internal
design and operating characteristics? How are terminals to be
given access to resources in other networks? What protocols
are required to achieve this? Should the protocols of one net
be translated into those of another, or should common proto-
cols be defined? What kinds of communication protocol
standards are needed to support efficient and useful inter-
connection? Who should take responsibility for setting
standards?

The legal and political issues are at least as complex as the
technical ones. Can private networks interconnect to each
other or must thev do so through the mediation of a public
network? How is privacy to be protected? Should there be
control over the kinds of data which move from one net to
another? Are there international agreements and conventions
which might be affected by international interconnection of
data networks? What kinds of charging and accounting
policies should apply to multinetwork traffic? How can faults
and errors be diagnosed in a multinet environment? Who
should be responsible for correcting such faults? Who should
be responsible for maintaining the gateways which connect
nets together?

We cannot possibly answer all of these questions in this
paper, but we deal with many of them in the sections below.

This paper is divided into eleven sections. In the next sec-
tion we provide some definitions, and in Section III we ex-
plore some of the motivations for network interconnection.
In Section IV we discuss the range of end-user service require-
ments and choices for providing multinetwork service. Section
V reviews the concept of computer-communication protocol
layering. Section VI reviews the basic interconnection choices
and introcuces the concept of gateways between nets, proto-
col translation and the impact of common protocols; it elabo-
rates also on the function of gateways. Section VII discusses
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associated with internal packet-network operation and are not
necessarily visible to host computers attached to the network.

Datagram: A finite length packet of data together with
destination host address information (and, usually, source
address) which can be exchanged in its entirety between hosts,
independent of all other datagrams sent through a packet
switched network. Typically, the maximum length of a data-
gram lies between 1000 and 8000 bits.

Gateway: The collection of hardware and software required
to effect the interconnection of two or more data networks,
enabling the passage of user data from one to another.

Host: The collection of hardware and software which uti-
lizes the basic packet-switching service to support end-to-end
interprocess communication and user services.

Packer Switch: The collection of hardware and software re- ;
sources which implements all intranetwork procedures such as 4
routing, resource allocation, and error control and provides ac- 4
cess to network packet-switching services through a host/ R
network interface.

Protocol: A set of communication conventions, including “
formats and procedures which allow two or more end points h
to communicate. The end points may be packet switches, <
hosts, terminals, people, file systems, etc. b

Protocol Translator: A collection of software, and possibly _:{
hardware, required to convert the high level protocols used in
one network to those used in another. -

Terminal: A collection of hardware and possibly software
which may be as simple as a character-mode teletype or as
complex as a full scale computer system. As terminals increase
in capability, the distinction between *“host” and “terminal”
may become a matter of nomenclature without technical
substance.

Virtual Circuit: A logical channel between source and desti-
nation packet switches in a packet-switched network. A
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virtual circuit requires some form of ‘‘setup” which may or
may not be visible to the subscriber. Packets sent on a virtual
circuit are delivered in the order sent, but with varying delay.

PTT: Technically PTT stands for Post, Telegraph, and Tele-
phone Authority; this authority has a different form in differ-
ent countries. In this paper, by PTT we mean merely the
authority (or authorities) licensed in each country to offer
public data transmission services.

We have attempted to make these definitions as noncontro-
versial as possible. For example, in the definition of packet
switch, we alluded to a host/network interface. The reader
should not assume that subscriber services are limited to those
offered through the host/network interface. The packet-
switching carrier might also offer host-based services and
terminal access mechanisms as additional subscriber services.

HI. THE MOTIVATING FORCES IN THE
INTERCONNECTION OF DATA NETWORKS

In the introduction, we mentioned that there was a strong
interest, among both the users and suppliers of data serivces, in
the interconnection of data networks. However, the technical
interests of the different parties are not identical. The end
user would merely like to be able to access any resources from
a single terminal, with a single access port, as economically
as possible according to his own performance criteria. A
Public Carrier, or PTT, has a strong motivation to connect its
network to other PTT’s. As in the telephone system, the
concept of all subscribers being accessible through a single
Public Data Service, is considered highly desirable; however
the different PTT’s may have restricted geographic coverage,
or only a specific market penetration.

The motivation of the PTT’s to interface to private networks
is weaker and more complex. They always provide facilities
to attach single terminals, where a terminal may be a complex
computer system; they are often not interested, at present, in
making any special arrangements when the “terminal™ is a
whole computer network. The operators of private networks
often have a vital interest in connecting their networks to
other private networks and to the public ones. Even though
in many cases the bulk of its traffic is internal to the private
network, which is why it was set up in the first place, there is
usually a vital need to access resources not available on that
network. The regulatory limitations often imposed on the
method of interconnection of private networks are discussed
in Section IX. In some countries, it is not permitted to build
private networks using leased line services, but intrabuilding
networks may be permitted. Interconnection of such local
networks to public networks may play a crucial role in making
the local network useful.

To date the PTT's have tried to standardize on access pro-
cedures for their Public-Packet Data Services. The standardiza-
tion has taken place in the International Consultative Commit-
tee on Telegraphy and Telephony (called CCITT) in a set of
recommendations called X.3, X.25, X.28, and X.29 ([27]~
[29]). Not all PTT’s have such forms of access yet, but most
of the industrialized nations in the West are moving in this
direction. This series of recommendations is discussed in
much more detail in Section VI; it does not pay special atten-
tion to the attachment of private networks ([31], [32]), but
the recommendations are themselves expected to change to
meet this requirement. The PTT’s are agreeing on a set of inter-
face recommendations and procedures called X.75 [33], to
connect their networks to each other; so far this interface
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procedure (and its corresponding hardware) is not intended
to be provided to private networks.

While most PTT’s have preferred to ignore the technical
implications of the attachment of private networks to the
public ones, most private network operators cannot ignore
this requirement. They are often motivated to add some extra
“Foreign Exchange” capability as an afterthought, with mini-
mum change to their intranetwork procedures; this approach
can be successful up to 2 point, but will usuaily be limited by
the lack of high-level procedures between the different net-
works. These high-level procedures have not yet been con-
sidered by CCITT, but it has been proposed that CCITT Study
Group VII investigate high-level procedures and architectural
models, in cooperation with the investigation of “open system
architectures” by Technical Committee 97, Sub-Committee
16 of the International Standards Organisation (ISO). This
subject is also considered later in this paper, in Section VI.

An aim of these standardization exercises is to ensure that
both manufacturer and user implementations of network
resources can communicate with each other through single
private or public data networks. A consequence should be
that the resources are also compatibly accessible over con-
nected data networks.

Depending on the applications and spatial distribution of
subscribers, the preferred choice of packet-switching medium
will vary. Intrabuilding applications such as electronic office
services may be most economically provided through the use
of a coaxial-packet cable system such as the Xerox ETHERNET
[18) and LCSNET [64], or twisted pair rings such as DCS
[34], coupled with a mix of self-contained user computers
(e.g., intelligent terminals with substantial computing and
memory capacity) and shared computing, storage, and input-
output facilities. Larger area regional applications might best
employ shared video cables [35] or packet radios [20], [21]
for mobile use. National systems might be composed of a mix-
ture of domestic satellite channels and conventional leased-
line services. International systems might use point-to-point
links plus a shared communication satellite channel and multi-
ple ground stations to achieve the most cost-effective service.

A consequence of the wide range of technologies which are
optimum for different packet-switching applications is that
many different networks, both private and public, may co-exist.
A network interconnection strategy, if properly designed, will
permit local networks to be optimized without sacrificing the
possibility of providing effective internetwork services. The
potential economic and functional advantages of local net-
works such as ETHERNET or DCS will lead naturally to pni-
vate user networks. Such private network developments are
analogous to telephone network private automated branch
exchanges (PABX) and represent a natural consequence of
the marriage of computer and telecommunication technology.

Two further developments can be expected. First, organiza-
tions which are dispersed geographically, nationally, or inter-
nationally, will want to interconnect these private networks
both to share centralized resources and to effect intraorganiza-
tion electronic mail and other automated office services.
Second, there will be an increasing interest in interorganization
interconnections to allow automated procurement and financial
transaction services, for example, to be applied to interorgani-
zation affairs.

In most countries where private networks are permitted,
interorganization telecommunication requires the involvement
of a PTT. Hence the most typical network interconnection
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scenarios will involve three or four networks. Within one na-
tional administration the private nets of different organiza-
tions will be interconnected through a public network. Inter-
national interconnections will involve at least two public
networks. We will return to this topic in Section V1.

In addition to permitting locally optimized networks to be
interconnected, a network interconnection strategy should
also support the gradual introduction of new networking
technology into existing systems without requiring simul-
taneous global change throughout. This consideration leads
to the conclusion that the public data networks should sup-
port the most important user requirements for internet service
from the outset. If this were the case, then changes in net-
work technology which require a multinetwork system during
phased transition would not, a priori, have to affect user
services.

IV. ProvisioN OF END-USER MULTINETWORK SERVICES

The ultimate choice of a network interconnection strategy
will be strongly affected by the types of user services which
must be supported. It is useful to consider the range of exist-
ing and foreseeable user service requirements without regard
for the precise means by which these requirements are to be
met. We will leave for discussion in subsequent sections the
choice of supporting the various services within or external to
the packet-switched network. The types of service discussed
below are general requirements for network facilities. For this
reason they also should be supported across interconnected
networks.

Most of the currently prevalent computer-communication
services fall into four categories:

1) terminal access to time-shared host computers;
2) remote job entry services (RJE);

3) bulk data transfer;

4) transaction processing.

The time-sharing and transaction services typically demand
short network and host response times but modest bandwidth.
The RJE and file transfer services more often require high
amounts of data transfer, but can tolerate longer delay. Some
networks were designed to support primarily terminal service,
leaving RJE or file transfer services to be supported by dedi-
cated leased lines. Packet-switching techniques permit both
types of service to be supported with common network
resources, leading to verifiable economies. However, bulk
data transfer requires increasingly higher throughput rates if
delivery delays are to be kept constant as the amount of
data to be transferred increases.

As distributed operating systems become more prevalent,
there will be an increased need for host-to-host transaction
services. A prototypical example of such a system is found in
the DARPA National Software Works [4), [36]). In such a
system, small quantities of control information must be ex-
changed quickly to coordinate the activity of the distributed
components. Broadcast or multidestination services will be
needed to support distributed file systems in which informa-
tion can be stored redundantly to improve the reliability of
access and to protect against catastrophic failures.

Transaction services are also finding application in reserva-
tion systems, credit verification, point of sale, and electronic
funds-transfer systems in which hundreds or thousands of
terminals supply to, or request of, hosts small amounts of
information at random intervals. Real-time data collection for

SERVER
HOST

USER TERMINAL

n GATEWAY

USER
TERMINAL

Fig. 1. Network concatenation.

weather analysis, ground and air traffic control, and meter
reading, for example, also fall into this category.

More elaborate user requirements can be foreseen as elec-
tronic mail facilities propagate. Multiple destination address-
ing and end-to-end encryption for the protection of privacy
as well as support for text, digitized voice, and facsimile mes-
sage transmission are all likely requirements. Electronic tele-
conferencing using mixtures of compressed digital packet
speech, videographics, real-time cursors (for pointing at video
images under discussion), and text display will give rise to re-
quirements for closed user groups and time-synchronized
mixes of transaction-like (e.g., for cursor tracking and packet
speech) and reliable circuit-like services (e.g., for display
management).

Reliability and rapid response will be increasingly important
as more and more computer-based applications requiring tele-
communications are integrated into the business, government,
military, and social fabric of the world economy. The more
such systems are incorporated into their daily activities, the
more vulnerable the subscribers are to failures. Reliability
concerns lead to the requirement for redundant alternatives
such as distributed file systems, richly connected networks,
and substantial local processing and storage capability. These
trends increase the need for networking to share common
hardware and software resources (and thus reduce their mar-
ginal cost), to support remote software maintenance and de-
bugging, and to support intra- and inter-organizational infor-
mation exchange.

We have described the end-user services required across one
or more data networks. We have carefully refrained from dis-
cussing which services should be provided in the data network,
and which should be provided in the hosts. Here the choice
in single networks will depend on the network technology and
the application requirements. For example, in a network using
a broadcast technology such as ETHERNET or the SATNET,
multidestination facilities may well be incorporated in the data
network itself. In typical store-and-forward networks, this
feature might be provided at the host level by the transmission
of multiple copies of packets. This example highlights im-
mediately the difficulty of using sophisticated services at the
data network level across concatenated networks. If A4, B,
and C are data networks connected as in Fig. 1, and 4 and C
but not B support broadcast or real-time features, it is very
difficult to provide them across the concatenation of A, B, and
C

The problem of achieving a useful set of internetwork ser-
vices might be approached in several ways, as follows.

1) Require all networks to implement the entire range of
desired services (e.g., datagram, virtual circuit, broadcast, real
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time, etc.), and then attempt to support these services across
the gateways between the networks.

2) Require all networks to implement only the most basic
services (e.g., datagram or virtual circuit), support these ser-
vices across gateways, and rely on the subscriber to imple-
ment all other services end-to-end.

3) Allow the subscriber to identify the services which he
desires and provide error indications if the networks involved,
or the gateways between them, cannot provide the desired
services.

4) Allow the subscriber to specify the internetwork route to
be followed and depend on the subscriber to decide which
concatenation of services are appropriate and what end-to-end
protocols are needed to achieve the ultimately preferred class
of service.

5) Provide one set of services for local use within each net-
work and another, possibly different set for internetwork
use.

The five choices above are by no means exhaustive, and, in
fact, only scratch the surface of possibilities. Nothing has
been said, thus far, about the compatibility of various levels
of communication protocols which exist within each network,
within subscriber equipments, and within the logical gateway
between networks. To explore these issues further, it will be
helpful to have a model of internetwork architecture, taking
into account the common principle of protocol layering and
the various possible choices of interconnection strategy which
depend upon the protocol layer at which the networks are
interfaced. We consider this in the next section.

V. LAYERED ProTOCOL CONCEPTS

Both to provide services in single networks, and to compare
the capabilities of different networks, a very useful concept
in networking is protocol layering. Various services of increas-
ing capability can be built one on top of the other, each using
the facilities of the service layer below and supporting the
facilities of the layer above. A thorough tutorial on this con-
cept can be found in the paper by Pouzin and Zimmermann in
this issue [37]. We give some specific examples below of layer-
ing as a means of illustrating the scope of services and inter-
faces to be found in packet networks today—and some of the
problems encountered in offering services across multiple
networks.

Table 1 offers a very generic view of a typical protocol
hierarchy in a store-and-forward computer network, including
Jayers usually found outside of the communication network
itself. There are several complications to the use of generic
protocol layering to study network interconnection issues.
Chief among these is that networks do not all contain the same
elements of the generic hierarchy. A second complication is
that some networks implement service functions at different
protocol layers. For instance, virtual circuit networks imple-
ment an end/end subscriber virtual circuit in their intranet,
end/end level protocol. Finally, the hierarchical ordering of
functions is not always the same in all networks. For instance,
TYMNET places a terminal handling protocol within the net-
work access layer, so that hosts look to each other like one or
more terminals. Figs. 2-7 illustrate the functional layering
of some different networks. It is important to note how the
functions vary with the choice of transmission medium.

A. ETHERNET

In Fig. 2, we represent the Xerox ETHERNET protocol
hierarchy. The basic link control mechanism is the ability of
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TABLE |
GENERIC PROTOCOL LAYERS

PROTOCOL LAYER FUNCTIONS

6. APPLICATION FUNDS TRANSFER. INFORMATION
RETRIEVAL ELECTRONIC MAIL,

TEXT EDITING . . .

FILE TRANSFER, VIRTUAL TERMINAL
SUPPORT

6. UTlITY

4. END/END SUBSCRIBER INTERPROCESS COMMUNICATION
(€ G. VIRTUAL CIRCUIT. DATAGRAM,

REAL-TIME. BROADCAST

NETWORK ACCESS SERVICES
(E.G. VIRTUAL CIRCUIT, DATAGRAM . . )

3. NETWORK ACCESS

2. INTRANET. END-TO-END FLOW CONTROL. SEQUENCING

1. INTRANET, NODE-TO-NODE {CONGESTION CONTROL. ROUTING

0. UINK CONTROL ERROR HANDLING. LINK FLOW CONTROL

APPLICATION  |-m==seemeeaee
uTILITY FILE TRANSFE;[ VIRTUAL TERMINAL | @ v LOOK.UP,
FILE ACESS
STREAM PROTOCOL
END TO-END
SUBSCRIBER

RELIABLE PACKET PROTOCOL

NETWORK ACCESS BROADCAST DATAGRAM {UNRELIABLE}

LINK CONTROL

Fig. 2. ETHERNET protocol layering.

the interface device to detect conflict on a shared coaxial cable.
If a transmitting interface detects that another interface is
also transmitting, it immediately aborts the transmission.
Hosts attached to the network interface present datagrams to
be transmitted and are told if the datagram was aborted.
Datagrams can be addressed to specific interfaces or to all of
them. The end/end subscriber layer of protocol is split into
two parts. a reliable datagram protocol in which each data-
gram is reliably delivered and separately acknowledged, and
a stream protocol which can be thought of as a virtual circuit.
This split is possible, in part, because there is a fairly large
maximum datagram size (about 500 bytes) so that user appli-
cations can send datagrams without having to fragment and
reassemble them. This makes the datagram service useful for
many applications which might otherwise have to use the
stream protocol. All higher level protocols, such as Virtual
Terminal and File Transfer, are carried out in the hosts.

B. ARPANET

The ARPANET protocol hierarchy is shown in Fig. 3. The
basic link control between packet switches treats the physical
link as eight independent virtual links. This increases effec-
tive throughput, but does not necessarily preserve the order
in which packets were originally introduced into the network.
The intranet node-to-node protocols deal with adaptive rout-
ing decisions, store-and-forward service, and congestion con-
trol. Hosts have the option of either passing messages (up to
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ELECTRONIC
MAIL

TELNEY (21,4

END/END

SUBSCRIBER Nee

TCcP NVPINVCP
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LINK CONTROL NON-SEQUENCED. MULTI-CHANNEL ERROR CONTROL

Fig. 3. ARPANET protocol layering.

8063 bits of text) across the host/network interface, which
will be delivered in sequence to the destination, or passing
datagrams (up to 1008 bits of text) which are not necessarily
delivered in sequence. The user’s network access interface is
datagram-like in the sense that no circuit setup exchange is
needed even to activate the sequenced message service. In
effect, this service acts like a permanent virtual circuit over
which a sequence of discrete messages are sent. For the
sequenced messages, there is exactly one virtual circuit main-
tained for each host/host pair. In fact, these virtual circuits
are set up dynamically and terminated by the source/destina-
tion packet switches so as to improve resource utilization
(38],[62]).

The end/end subscriber layer of ARPANET contains two
main protocols: Network Control Protocol (NCP, [39], [40])
and Transmission Control Protocol (TCP, [25]}). NCP was the
first interprocess communication protocoi built for ARPANET.
It relies on the sequenced message service provided by the net-
work and derives multiple virtual circuits between pairs of
hosts by multiplexing. The TCP can use either the sequenced
message service or the datagram service. It does its own
sequencing and end/end error control and derives multiple
virtual circuits through extended addressing and multiplexing.
TCP was designed for operation in a multinet environment in
which the only service which reasonably could be expected
was an unreliable, unsequenced datagram service.

To support experiments in packetized voice communication,
two protocols were developed for use on the ARPANET. The
Network Voice Protocol (NVP) and Network Voice Confer-
encing Protocol (NVCP) use the datagram service to achieve
very low delay and interarrival time variance in support of
digital, compressed packet speech (more on these protocols
.may be found in [41]). The NVP could be considered the
basis for a generic protocol which could support a variety of
real-time, end/end user applications.

The higher level utility protocols such as terminal/host
protocol (TELNET, [40], [42]) and file transfer protocol
(FTP, [40],[42]) use virtual circuits provided by NCP or TCP.
The FTP requires one live interactive stream to control the
data transfer, and a second for the data stream itself. Yet
higher level applications such as electronic mail and remote
job entry (RJE, [40], [42]) use mixtures of TELNET and
FTP to effect the service desired. These protocols are usually
put into the hosts. There is one anomaly, which occurs in
many networks. Because terminal handling is required so
frequently, a Terminal Interface Message Processor (TIP, [43])
was built. This device is physically integrated with the packet
switch (IMP, [38)}); it includes also the NCP and TELNET
protocols.

(60)
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Fig. 4. TYMNET protocol layering.

C. TYMNET

TYMNET (see Fig. 4) is one of the oldest of the networks in
the collection described here [3]. Strictly speaking, it oper-
ates rather differently than other packet-switched networks,
because the frames of data that move from switch to switch
are disassembled and reassembled in each switch as an integral
part of the store-and-forward operation. Nevertheless, the net-
work benefits from the asynchronous sharing of the circuits
between the switches in much the same way that more typical
packet-switched networks do. The network was designed to
support remote terminal access to time-shared computer re-
sources. The basic service is the transmission of a stream of
characters between the terminal and the serving host. A
frame is made up of one or more blocks of characters, each
block labeled with its source terminal identifier and length.
The switch-to-switch layer of protocol disassembles each frame
into its constituent blocks and uses a routing table to deter-
mine to which next switch the block should be sent. Blocks
destined for the same next switch are batched together in a
frame which is checksummed and sent via the link control
procedure to the next switch. Batching the blocks reduces
line overhead (the blocks share the frame checksum) at the
expense of more CPU cycles in the switch for frame dis-
assembly and reassembly.

The protocol between TYMNET switches also includes a
flow control mechanism which, because of the fixed routes,
can be used to apply back pressure all the way back to the
traffic source. This is not precisely an end-to-end flow control
mechanism, but a hop-by-hop back pressure strategy. Charac-
ter blocks are kept in sequence along the fixed routes so that
no resequencing is required as they exit from the network at
their destinations. The network interface is basically a virtual
circuit designed to transport character streams between a
host and a terminal. The same virtual circuits can be used to
transport character streams between hosts, which look to each
other like a collection of terminals. Above the basic virtual
circuit service, is a special echo-handling protocol which
allows the host and the terminal handler in the “remote
TYMSAT” to coordinate the echoing of the characters typed
by a user.

D. PTT Networks

Many PTT networks, e.g., TELNET, TRANSPAC, DATA-
PAC, and EURONET use a particular network-access protocol,
X.25 [28], [29]) (see Fig. 5). This protocol has been recom-
mended by the CCITT for public packet-switched data net-
works. X.25 is a three-part protocol consisting of a hardware
electrical interface, X.21 [44], the digital equivalent of the
usual V.24 or EIA-RS232C modem interface [45], s link
control procedure, High Level Data Link Control (HDLC,
{46]), and a packet-level protocol for effecting the setup,
use, termination, flow, and error control of virtual circuits.
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This brief summary of different network-protocol layerings

. .17
et Bedbee

In all but the DATAPAC network, a fixed route for routing
packets through the network is selected at the time the virtual
. circuit is created. “Permanent” virtual circuits are a customer

option; if used, the setup phase is invoked only in the case of

a network failure. Between source and destination packet
! switches, a virtual circuit protocol is operated which imple-
ments end-to-end flow control on multiple virtual circuits
between pairs of packet switches. Up to 4096 virtual circuits
between pairs of host ports can be maintained by each packet
switch, as compared to the single virtual circuit provided by
ARPANET (on which hosts can multiplex their own virtual

-

i : circuits). This choice has a noticeable impact on the sub-
e scriber interface protocol which becomes complicated be-
L! cause the subscriber host and the packet switch to which it
= attaches must maintain a consistent view of the state of each
- virtual circuit in use.

[:.. . To provide for echo control, user commands, code conver-

- sion, and other terminal-related services, these networks
. implement CCITT Recommendations X.28 {29] and X.29
[29] in a PAD (Packet Assembly and Disassembly unit):
These protocols sit atop the virtual circuit X.25 protocol. In
order to serve customers desiring a terminal-to-host service
with character terminals, such as is provided by TYMNET or
by the ARPANET (through the TIP), most of the PTT net-
works mentioned are developing a PAD unit. A matching
X.29 (PAD control protocol) layer must be provided in hosts
offering to service terminals connected to PAD’s.

uTILITY TERMINAL HANDLING X 28, X.29 . . . . . )
’ is in no way comprehensive, but illustrates the diversity of

ensz::ggmm I 7 7, protocol designs. which can bfe found on nets providing differ- o
NETWORK ACCESS| X 75 PERMANENT OR TEMPORARY ent types of services to subscribers. o
VIRTUAL CIRCUITS —d
INTRANET. MULTIPLE VIRTUAL CIRCUITS, V1. TECHNICAL INTERCONNECTION CHOICES o
END END FLOW CONTROL ~3
INTRANET AOUTING. STORE/FORWARD. A The ISSUCS ‘:'-
NODE NaoE CONGESTION CUNTROL Beginning with the earliest papers dealing with strategies -]
LINK CONTROL | HOLC OR EQUIVALENT for packet-network interconnection [23])-{26], (32}, the -3
Fie 5. PTT orotocol layerin common objective of all the proposed methods is to provide }}:

% 5 protocol fayering. the physical means to access the services of a host on one net- o

—
. E. High Level Protocols robustness (i.e., resistance to failures), security, flexibility, ]
L . . accountability, access control, resource allocation options, and .
= The X.25/X.2.8/X‘29 p"'°t°C°l hierarchy does not include an  (pe |ike can separately and jointly influence the choice of
8 end/end stubs'cnber or high-level protocol layer. Some cus- jnterconnection strategy. Combinations of strategies employ- -
L. tomers ‘f"n’ n _f“t_» implement end-to-end protocols on top  jng protocol standards and protocol translations at various o
e of the virtual cn.rcmt protocol, but o?hers may not. Several |evels of the layered protocol hierarchy are also likely ._4
r attempts are being made to standardize protocols above the possibilities. s
network access level. The ARPANET community has de- There are a number of issues which must be resolved before {
veloped a Tr'ansmxsszon Control Protocol [25] for internet- 3 coherent network interconnection strategy can be defined. o
o work operation to replace the Network Control Program A jist of some of these issues, which will be treated in more ]
(NCP) developed early in the ARPANET project. The Inter-  getail in succeeding sections, is: ]
. national Federation of Information Processing (IFIP) has <4
e proposed a Transport Station through its Working Group 6.1 1) level of interconnection; _J
- on Network Interconnection [47] ; the proposal has been sub- 2) naming, addressing, and routing;
:\ mitted to the International Standards Organisation (ISO) as 3) flow and congestion control,
b a draft standard. [In addition, other communities, e.g., the 4) accounting;
d High Level Protocol Working Group in the UK, have devised 5) access control;
:- ) protocols for Virtual Packet Terminals (VPT, [48]) and File 6) internet services.
> Transport Protocol (FTP, [49]) which are intended to be net- —
'! work independent and which may be submitted to CCITT. B. Gateways and Levels of Network Interconnection _ _!
:A' The ISO study on “open systems architecture” and the pro- The concept of a gateway is common to all network inter- R
posed similar study by CCITT Study Group VII will attempt connection strategies. The fundamental role of the gateway is B
to evolve higher level protocol recommendations for existing to terminate the internal protocols of each network to which
g j and future data networks. it is attached while, at the same time, providing a common B
b (61) 2
f. B
b e S STV AR SR A ittt

work to all subscribers (including hosts) of all the intercon-
nected networks. Of course, limitations to this accessibility
are envisaged, imposed either for administrative reasons or
by the scarcity of resources. The achievement of this objec-
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tive invariably requires that data produced at a source in one s
net be delivered and correctly interpreted at the destination(s) e
in another network. In an abstract sense, this boils down to —
providing interprocess communication across network bound- ~J
aries. Even if a person is the ultimate source of the data, :
packet-switching networks must interpose some degree of soft- !
ware processing between the person and the destination ser- .
vice, even if only to assemble or disassemble packets produced -]
by a computer terminal. -]
A fundamental aspect of interprocess communication is
that no communication can take place without some agreed T
conventions. The communicating processes must share some -

physical transmission medium (wire, shared memory, radio
spectrum, etc.), and they must use common conventions or
agreed upon translation methods in order to successfully ex-
change and interpret the data they wish to communicate. One =3
of the key elements in any network interconnection strategy
is therefore how the required commonality is to be obtained.
In some cases, it is enough to translate one protocol into

another. In others, protocols can be held in common among

the communicating parties. -
In any real network interconnection, of course, a number of '\J

secondary objectives will affect the choice of interconnection - ‘

strategy. For example achievable bandwidth, reliability,
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G = GATEWAY
G2 = “HALF GATEWAY"
Q = PACKET SWITCH

Fig. 6. Various gateway configurations.

LEGEND
£ SOURCE HOST
D DESTINATION HOST
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G GATEWAY
G2 GATEWAY MALF
N INTERNATIONAL NETWORK

Fig. 7. International packet-networking model.

ground across which data from one network can pass into
another. However, the choice of functions to be performed in
the gateway varies considerably among different interconnec-
tion strategies (see Fig. 6). The term ‘“‘gateway” need not
imply a monolithic device which joins a pair of networks. In-
deed, the gateway may merely be software in a pair of packet
switches in different networks, or it may be made up of two
parts, one in each network (a sort of ‘“‘gateway half”). In the
latter case, the two halves might be devices separate and
distinct from the network packet switches or might be inte-
grated with them. Furthermore, a gateway might interconnect
more than two networks. In the material which follows,
every attempt has been made to avoid any implicit choice of
gateway implementation. It is worth pointing out, however,
that the “‘half gateway’ concept is highly attractive from both
a technical and a purely administrative point of view. Tech-
nically, each half could terminate certain levels of protocol
of the net to which it is attached. Administratively each half
could be the responsibility of the network to which it belongs.
Then the only matters for jurisdictional negotiation are the
physical medium by which the half-gateways exchange data,
and the format and protocol of the exchange.

(62)

It is important to realize that typical applications may in-
volve three or more networks. Where local networks are used,
they will usually need to be interconnected to realize the
benefits of interorganizational data exchange. In most coun-
tries, such interconnections will only be permitted through a
public network. Thus for a typical national situation, three
networks and two gateways will be involved in providing the
desired host-to-host communication.

The international picture is similar, except that more net-
works are likely to be involved. Shown in Fig. 7, the path
from a host, S, on local network LN(A4) in country A, passes
through a public network, PN(A4) in country 4, through an in-
ternational network IN, through a public network PN(B) in
country B, and finally through a local network, LN(B), to the
destination host, D. There are four internetwork gateways
involved. It is this model involving multiple gateways that
guides us away from network interconnection methods which
rely on the source and destination hosts being in adjacent
networks connected by the mediation of a single gateway.

1) Common Subnet Technology (Packet Level Intercon-
nection): The level at which networks are interconnected can
be determined by the protocol layers terminated by the gate-
way. For example, if a pair of identical networks were to be
interconnected at the interpacket-switch level of protocol,
we might illustrate the gateway placement as shown in Fig. 8.
Here the “gateway” may consist only of software routines in
the adjacent packet switches, e.g., P(4) and P(B), which pro-
vide accounting, and possibly readdressing functions. The
contour model of protocol layer is useful here since it shows
which levels are common to the two networks and which
levels could be different. In essence, those layers which are
terminated by the gateways could be different in each net,
while those which are passed transparently through the gate-
way are assumed to be common in both networks. This net-
work interconnection strategy requires that the internal ad-
dress structure of all the interconnected networks be common.
If, for example, addresses were composed of a network identi-
fier, concatenated with a packet-switch identifier and a host
identifier, then addressing of objects in each of the networks
would be straightforward and routing could be performed on
a regional basis with the network identifiers acting as the
regional identifiers, if desired. Alternatively, two identical
networks could adopt a common network name and assign
nonduplicative addresses to each of the packet switches in
both networks. This may require that addresses in one net-
work be changed.

The strategy described above might be called the “common
subnetwork strategy,” since, in the end, subscribers of the
newly formed joint network would essentially see a single
network. This strategy does not rule out the provision of
special access control mechanisms in the gateway nodes which
could filter traffic flowing from one network into the other.
Similarly, the gateway nodes could perform special internet-
work traffic accounting which might not normally be per-
formed in a subnet switching node. This network interconnec-
tion method is limited to those cases in which the nets to be
connected are virtually identical, since the gateways must
participate directly in all the subnet protocols. The end-to-
end subnet protocols (e.g. source/destination packet-switch
protocols) must pass transparently through the gateways to
permit interactions between a source packet switch in one
net and a destination packet switch in another. The resulting
network presents the same network access interface to all
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COMMON INTER-PACKET SWITCH PROTOCOL
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Fig. 8. Interconnection of common subnetworks.

subscribers, and this leads us to the next example which is
based on the concept of a common network access interface.
2) Common Network Access Interfaces: If the subnetwork
protocols are not identical, the next opportunity to establish
internetwork commonality is at the network access interface.
This is illustrated in Fig. 9. Each network is assumed to have

A datagram interface allows the subscriber to enter packets
into the network independent of any other packets which
have been or will be entered. Each packet is handled separately
by the network. A virtual circuit interface requires an ex-
change of control information between the subscriber and the
network for the purpose, for example, of setting up address
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L its own intranet protocols. However, each network presents translation tables, setting up routes or preallocating resources,
o the same external interface to subscribers. This is illustrated before any data packets are carried to the destination. Some
] by showing a common interface passing through all hosts, networks may implement a fast select virtual circuit interface
- marked *“common network access interface” in the figure. in which a circuit setup request is sent together with the first
) Once again, the gateway could be thought of as software in (and possibly last) data packet. Other control exchanges
3 adjacent packet switches. Each gateway is composed of two would be used to close the resulting virtual circuits set up in _J
,--. halves formed by linking the packet switches of two nets this fashion. =
[ together. However, in this case, the subnetwork protocols are It is essential to distinguish datagram and virtual circuit e
L - terminated at the gateway so that the intergateway exchange services from datagram and virtual circuit interfaces. A data- - }
= looks more like network access interaction than a node-to- gram service is one in which each packet is accepted and )
~‘fl node exchange. This is the approach taken by CCITT with treated by the network independently of all others. Se- ]
2 its X.25 packet network interface recommendation and X.75 quenced delivery is not guaranteed. Indeed, it may not be ~nd
¢ intergateway exchange recommendation. guaranteed that all datagrams will be delivered. Packets may o
4 It is important to note that the intergateway interface could be routed independently over alternate network paths. Dupli- - }
i be similar to the standard network access interface, but it cate copies of datagrams might be delivered. ;g.'_
[ need not necessarily be identical. Virtual circuit service tries to guarantee the sequenced de- el
M. There are two basic types of network interface currently in livery of the packets associated with the same virtual circuit. e
:, use: 1) the datagram interface [31]; and 2) the virtual circuit It typically provides to the host advice from the network on -
- interface [32]. The details of these generic interface types flow control per virtual circuit as opposed to the packet-by- )
| vary in different networks; some networks even offer both packet acceptance or rejection typical of a datagram service. -1
3 types of interface. In some, the interface to use may be If the network operation might produce duplicate packets, -
[ chosen at subscription time; in others it may be possible for a these are filtered by the destination packet switch before ;
L." subscriber to select the access method dynamically. delivery to the subscriber. Duplicate packet creation is a
’ (63)
¢ -
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Fig. 9. Interconnection of networks with common network-access interfaces.

common phenomenon as in packet-switched store-and-forward
systems. The basic mode of operation is to forward a packet
to the next switch and await an acknowledgment. After a
timeout, the packet is retransmitted. If an acknowledgment is
lost due to line noise, for example, then two copies of the
packet would have been transmitted. Even if the next switch
is prepared to filter duplicates out, a network which uses adap-
tive routing can deliver a duplicate packet to the periphery of
the network. For example, if a packet switch receives a packet
successfully but the line to the sender breaks before the re-
ceiver can acknowledge, the sender may send another copy to
a different packet switch. Both packet copies may be routed
and delivered to the destination packet switch where final
duplicate filtering would be needed if virtual circuit service is
being provided.

Some networks offer both a datagram and a virtual circuit
service; some offer a single interface, but different services.
For example, the ARPANET has a basic datagram interface.
However, the subnetwork will automatically provide a se-
quenced virtual circuit service (i.e., packets are kept in
sequence when they are delivered to the destination) if the
packet is marked appropriately. Otherwise, packets are not
delivered in sequence nor are packet duplicates or losses,
except for line by link correction, recovered within the net-
work for nonsequenced types of traffic.

By contrast, TRANSPAC offers a virtual circuit interface

result of this exchange, the source subscriber has associated a
“logical channel number” or LCN, with the full source-
destination addresses. Thus subsequent packets to be sent on
the same logical channel are identified by the LCN and are
kept in sequence when delivered to the destination.

Finally, it is possible to implement a datagram-like service
using a virtual circuit interface. In this case, the exchange of
request and accept packets might be terminated at the sub-
scriber’s local packet switch, so that even if packets were not
delivered in sequence they might employ abbreviated address-
ing for local subscriber and packet-switch interaction.

If network interaction is to be based on a standard interface,
then agreement must be reached both on the interface and an
associated service or services. Furthermore, a common ad-
dressing system is needed so that a subscriber on one network
can address a packet to a subscriber on any other network. A
weaker assumption could be made but we are deliberately
assuming a truly common service, interface, and addressing
mechanism. We will return to this topic in a later section.

The choice of a standard network service through which to
effect network interconnection has a8 primary impact on the
flexibility of implementable network interconnection methods.
We will consider two choices: datagr.m service and virtual
circuit service.

a) Datagram service as a standard for network intercon-
nection. For this case, it is assumed that every network offers
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' and service. Subscribers transmit ‘‘call request” packets a common datagram service. A uniform address space makes it .
F. containing the full destination address to the packet switch. possible for subscribers on any network to send packets ad- _f
A The request packet is forwarded to the destination, leaving dressed to any . ‘her subscriber on a connected network. Pac- .
- behind a fixed route. The destination subscriber returns a  kets are routed between subscriber and gateway and between )
:' n “call accepted” packet which is delivered to the caller. As a gateways based on the destination address. No attempt is 4
[ (64) :
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made to keep the datagrams in any order in transit or upon de-
livery to the destination. Individual datagrams may be freely
routed through different gateways to recover from failures or
to allow load-splitting among parallel gateways joining a pair
of networks.

The gateway/gateway interface may be different than the
network access interfacs, if need be (see Fig. 9).

This strategy requires that all networks implement a com-
mon interface for subscribers. The simplicity and flexibility
of the datagram interface strategy is offset somewhat by the
need for all networks to implement the same interface. This is
true for the pure virtual circuit interface strategy as well, as
will be shown below.

One of the problems which has to be faced with any net-
work interconnection strategy is congestion control at the
gateways. If a gateway finds that it is unable to forward a
datagram into the next network, it must have a way of reject-
ing it and quenching the flow of traffic entering the gateway
en route into the next network. The quenching would typi-
cally take the form of an error or flow control signal passing
from one gateway half to another on behalf of the associated
network. Similar signals could be passed between subscribers
and the packet network for similar reasons. Since datagram
service does not undertake to guarantee end/end reliability,
it is possible to relieve momentary congestion by discarding
datagrams, as a last resort.

b) Virtual circuits for network interconnection. Another
alternative standard network service which could be used for
network interconnection is virtual circuit service (Fig. 10).
Independent of the precise interface used to ‘*‘set up” the
virtual circuit, a number of implementation issues immedi-
ately arise if such a service is used as a basis for network
interconnection.

Since it is intended that all packets on a virtual circuit be
delivered to the destination subscriber in the same sequence
as they were entered by the source subscriber, it is necessary
that either: 1) all packets belonging to the same virtual circuit
take the same path from source subscriber, through one or
more gateways, to destination subscriber; or 2) all packets
contain sequence numbers which are preserved end-to-end
between the source DCE in the originating network and the
destination DCE in the terminating network.

In the first case, virtual circuits are set up and anchored to
specific gateways so that the sequencing of the virtual circuit
service of each network can be used to preserve the packet
sequence on delivery. This results in the concatenation of a
series of virtual circuits through each gateway and, therefore,
the knowledge of each virtual circuit at each gateway (since
the next gateway to route the packet through must be fixed
for each virtual circuit).

In the second case, there is no need to restrict the choice of
gateway routing for each virtual circuit since the destination
DCE will have sufficient information to resequence incoming
packets prior to delivery to the destination subscriber.

In either case, the destination DCE will have to buffer and
resequence packets arriving out of order due either to dis-
ordering within the last network or to alternate routing among
networks, if this is permitted. Some networks may keep
packets in sequence as they transit the network. This will only
be advantageous at the destination DCE if the packets enter
the network in the desired sequence. If such a service is relied
upon in the internet environment, then each gateway must
assure that on entry to such a net, the packets are in the de-
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Fig. 10. Virtual circuit network interconnection strategies. (a) Sub-
scriber-based gateway. Internet source and destination carried in user
data field of X.2S5 call set-up packets. (b) X.75 based gateway. Note
how much of the X.25 VC service is terminated at the STE. (c) X.75-
based gateways with general virtual circuit networks.

sired order for delivery to a destination subscriber or another
gateway.

The buffering and resequencing of packets within the net-
works or at gateways introduces substantial variation in buffer
space requirements, packet transit delays, and the potential for
buffer lockups to occur [50], [51}, [61].

If packets for a specific virtual circuit are restricted to pass
through a fixed series of gateways, and if a standard flow-
control method is agreed upon as part of the virtual circuit
service, then it is possible for each internet gateway to partici-
pate in end-to-end flow control by modifying the flow control
information carried in packets carried end-to-end from the
source DCE to the destination DCE. Consequently, a gate-
way may be able to adjust the amount of traffic passing
through it and thereby achieve a kind of internet gateway
congestion control. If this is done by allocating buffer space
for “outstanding™ packets, then either the gateways must
guarantee the advertised buffer space or there must be a re-
transmission capability built into the internet virtual circuit
implementation, perhaps between source DCE and destination
DCE or between DCE’s and gateways.

Such a mechanism does not, however, solve the problem of
network congestion unless the gateway-flow control decisions
take into account resources both in the gateway and in the
rest of the network. Although it is tempting to assume that
virtual circuit-flow control can achieve internetwork conges-
tion control, this is by no means clear, and is still the subject
of considerable research.

As a general rule, compared to the datagram method, the
virtual circuit approach requires more state information in
each gateway, since knowledge of each virtual circuit must be
maintained along with flow control and routing information.
The usual virtual circuit interface is somewhat more complex
for subscribers to implement as well, because of the amount
of state information which must be shared by the subscriber
and the local DCE. For example, implementations of the X.25
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interface protocol have been privately reported by Computer
Corporation of America and University College London to
require 4000-8000 words of memory on Digital Equipment
Corporation PDP-11 computers. By contrast, the ARPANET
and Packet Radio Network datagram interfaces require 500-
1000 words of memory on the same machine. For internet-
work operation, this may be even more burdensome, since
any failure at a gateway may require a subscriber-level re-
covery through an end-to-end protocol, in addition to the
virtual circuit interface software, as is shown in [52].

Nevertheless, it may be advantageous to consider internet-
working standards which usefully employ both datagram and
virtual circuit interfaces and services. For example, some
special internet services such as multidestination delivery may
be more efficient if they are first set up by control exchanges
between the subscriber and the local network and perhaps
gateways as well. Once set up, however, a datagram mode of
operation may be far more efficient than maintaining virtual
circuits for all destinations. Implicit virtual circuits which are
activated by simple datagram-like interfaces are also attrac-
tive for very simple kinds of terminal equipment.

If it is not possible for all networks to implement a common
network-access interface, then the next opportunity is to
standardize only the objects which pass from one net to the
next and to minimize any requirements for the sequencing
of these objects as they move from net to net.

3) General Host Gateways: In this model, a gateway is
indistinguishable from any other network host and will imple-

_. ment whatever host/network interface is required by the
A networks to which it is attached. For many networks, this
b may be X.25, but the strategy does not rely on this. The
. principle assumption is that packet networks are at least

. capable of carrying subscriber packets up to some maximum
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length, which may vary from network to network. It is specif-
ically not assumed that these packets will be delivered in order
through intermediate networks and gateways to the destina-
tion host. This minimal type of service is often termed “‘data-
gram” service to distinguish it from sequenced virtual circuit
service. A detailed discussion of the tradeoff between data-
gram and virtual circuit types of networks is given elsewhere
[52).

The basic model of network interconnection for the data-
gram host gateway is that internetwork datagrams will be
carried to and from hosts and gateways and between gateways
by encapsulation of the datagrams in local network packets.
Pouzin describes this process generically as “wrapping™ [37].
The basic internetwork service is therefore a datagram ser-
vice rather than a virtual circuit service. The concept is
illustrated in Fig. 11.

Datagram service does not offer the subscriber as many
facilities as virtual circuit service. For example, not all data-
grams are guaranteed to be delivered, nor do those that are
delivered have to be delivered in the sequence they were sent.
Virtual circuits, on the other hand, do attempt to deliver all
packets entered by the source in sequence to the destination.
These relaxations allow dynamic routing of datagrams among
multiple, internetwork gateways without the need for sub-
scriber intervention or alert.

The internet datagram concept gives subscribers access to a
basic internet datagram service while allowing them to build
more elaborate end-to-end protocols on top of it. Fig. 12
illustrates a possible protocol hierarchy which could be based
on the internet datagram concept. The basic internet data-
gram service could be used to support transaction protocols
or real-time protocols (RTP) such as packet-voice protocols
(PVP) which do not require guaranteed or sequenced data
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delivery; reliable, sequenced protocols could be constructed
above the basic internet datagram service to perform end/end
sequencing and error handling. Applications such as virtual
terminal! protocols (VTP) [40], [42], [48] or file-transfer
protocols (40}, [42], [49] could be built above a reliable,
point-to-point, end/end service which is itself built atop inter-
net datagrams. Under this strategy, the basic gateway func-
tions are the encapsulation and decapsulation of datagrams,
maoping of internet source/destination addresses into local
network addresses and datagram routing. Gateways need not
have any knowledge of higher level protocols if it is assumed
that protocols above the internet datagram layer are held in
common by the communicating hosts. Datagrams can be
routed freely among gateways and caan be delivered out of
sequence to the destination host.

The basic advantage of this strategy is that almost any sort
of network can participate, whether its internal operation is
datagram or virtual circuit oriented. Furthermore, the strategy
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offers an easy way for new networks to be made “backwards
compatible,” with older ones while allowing the new ones to
employ new internal operations which are innovative or more
efficient.

Every subscriber must implement the internet datagram con-
cept for this strategy to work, of course. The same problem
arises with the standard network interface strategy since all
subscribers must implement the same network interface.

4) Protocol Translation Gateways: It would be misleading
to claim that the concept of protocol translation has not
played a role in the discussion thus far. In a sense, the encap-
sulation of internet datagrams in the packet format of each
intermediate network is a form of protocol translation. The
basic packet carrying service of one network is being trans-
lated into the next network’s packet carrying service (see Fig.
13). This concept could be extended further. For example,
if two networks have a virtual circuit concept, one imple-
mented within the subnetwork and the other through common
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host/host protocols, it might be possible, at the gateway be-
tween the nets, to map one network’s virtual circuit into the
other’s. This same idea could be applied to higher level proto-
col mappings as well; for instance, the virtual terminal proto-
col for one network might be transformed into that of another
“on the fly.”

The success of such a translation strategy depends in large
part on the commonality of concept between the protocols
to be translated. Mismatches in concept may require that the
service obtained in the concatenated case be a subset of the
services obtainable from either of the two services being trans-
lated. Extending such translations through several gateways
can be difficult, particularly if the protocols being translated
d.» not share acommon address space for internetwork sources/
destinations. In the extreme, this strategy can result in sub-
scribers *““logging in’’ to the gateway in order to activate the
protocols of the next network. Indeed, front-end computers
could be considered degenerate translation gateways since they
transform host/front-end protocols into network protocols.

There are circumstances when translation cannot be avoided.
For instance, when the protocols of one network cannot be
modified, but internet service is desired, there may be no
alternative but to implement protocol translations. The model
typically used to guide protocol translation gateways is that
the source/destination hosts lie on either side of the transla-
tion gateway. Concatenation of protocol translations through
several networks and gateways is conceivable, but may be very
difficult in practice and may produce very inefficient service.

C. Names, Addresses, and Routes

In order to manage, control, and support communication
among computers on one or more networks, it is essential that
conventions be established for identifying the communicators.
For purposes of this discussion, we will use the term host to
refer to all computers which attach to a network at the net-
work-access level of protocol (see Table I). Subscribers to
terminal-access services can be thought of as attaching to hosts,
even if the host is embedded in the hardware and software of
a packet switch as a layer of protocol. Consequently, we can
say that the basic task of a packet-switching network is to
transport data from a source host to one or more destination
hosts.

To accomplish this task, each network needs to know to
which destination packets are to be delivered. Even in broad-
cast nets such as the ETHERNET, this information is neces-
sary so that the destination host can discriminate packets
destined for itself from all others heard on the net. At the
lowest-protocol levels it is typical to associate destinations
with addresses. An address may be simply an integer or it
may have more internal structure.

At higher levels of protocol, however, it is more common to
find text strings such as “MULTICS” or “BBN-TENEX" used
as names of destinations. Application software, such as elec-
tronic mail services, might employ such names along with
more refined destination identifiers. For example, one of the
authors has an elcctronic mailbox named “KIRSTEIN at ISI”
located in a computer at the University of Southern California’s
Inforination Sciences Institute.

Typically, application programs transform names into ad-
dresses which can be understood by the packet-switching net-
work. The networks must transform these addresses into
routes to guide the packets to their destination. Some net-
works bind addresses to routes in a relatively rigid way (eg.,
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setting up virtual circuits with fixed routing) while others
determine routes as the packets move from switch to switch,
choosing alternate routes to bypass failed or congested areas of
the network. Broadcast networks need not create routes at all
(e.g., SATNET).

In simple terms, a name tells what an object is; an address
tells where it is; and a roure tells how to get there [54]). A
simple model involving these three concepts is that hosts trans-
form names into addresses and networks transform addresses
into routes (if necessary). However, this basic model doesleave
a large number of loose ends. The subject is s. filled with

issues that it is not possible in this paper to explore them all in .

depth. In what follows, some of the major issues are raised
and some partial resolutions are offered.

One major question is “Which objects in the network should
have names? addresses?”’ Pouzin and Zimmermann offer a
number of views on this question in their paper in this issue
[37]. A generic answer might be that at least all objects which

can be addressed by the network should have names as well so -

that high-level protocols can refer to them. For example, it
might be reasonable for every host connection on the network
to have an name and an address. There also may be objects
internal to the network which also have addresses such as the
statistics-gathering fake hosts in the ARPANET [38].

A related issue is whether objects should or can have multiple
n: aes, multiple addresses, and multiple routes by which they
can be reached. The most general resolution of this issue is to
permit multiple names, addresses, and routes to exist for the
same object. An example taken from the multinetwork en-
vironment may serve to illustrate this notion. Fig. 6 shows
three networks which are interconnected by a number of gate-
ways. Each gateway (or pair of gateway halves) has two inter-
faces, one to each network to which it is attached. Plainly
there is the possibility that several alternate routes passing
through different gateways and networks could be used to
carry packets from a source host in one net to a destination
host in another net. This is just the analog of alternate routing
within a single network.

Furthermore, each gateway has two addresses, typically one
for each attached network. This is just the analog of a host on
one network attached to two or more packet switches for reli-
ability. The term multihoming is often used to refer to mul-
tiply attached hosts.

Finally, it may be useful to permit a gateway to have more
than one name, for example, one for each network to which it
is attached. This might allow high-level protocols to force

packets to be routed in certain ways for diagnostic or other -

reasons. Multiple naming also allows the use of nicknames for

user convenience. Many of these same comments would apply
to hosts attached to multiple networks. e

An interesting addressing and routing problem arises in mo-
bile packet radio networks. Since hosts are free to move about,

the network will need to dynamically change the routes used to -

reach each host. For robustness, it is also desirable that hosts
be able to attach dynamically to different packet radios. Thus
failure of a packet radio need not prevent hosts from accessing
the network. This requires that host names and perhaps host
addresses be decoupled from packet radio addresses. The net-
work must be able to search for hosts or alternatively, hosts
must *“‘report-in’’ to the network so that their addresses can be
associated with the attached packet radio to facilitate route
selection based on host address. This is just a way of support-
ing logical host addressing rather than using the more common
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physical host addressing in which a host’s address is an exten-
sion of the packet-switch address.

A crucial issue in network interconnection is the extent to
which it should or must impact addressing procedures which
are idiosyncratic to a particular network. It is advantageous
not to require the subscribers on each network to have detailed
knowledge of the network address structure of all intercon-
nected networks. One possibility is to standardize an internet-
work address structure which can be mapped into local net-
work addresses as needed, either by subscribers, by gateways
or by both. Subscribers would know how to map internetwork
service names into addresses of the form NETWORK/SERVER.
Subscribers need not know the fine structure of the SERVER
field. Gateways would route packets on the basis of the NET-
WORK part of the address until reaching a gateway attached
to the network identified by NETWORK. At this point, the
gateway might interpret the SERVER part of the address, as
necessary, to cause the packet to be delivered to the desired
host.

The addressing strategy presently under consideration by
CCITT (X.121, {30]) is based on the telephone network. Up
to 14 digits can be used in an address. The first 4 digits are a
“destination network identification code” or DNIC. Some
countries are allocated more than one DNIC (the United States
has 200). The remaining ten digits may be used to implement
a hierarchical addressing structure, much like the one used in
the existing telephone network.

Since the CCITT agreements are for international operation,
it might be fair to assume that the United States will not need
more than 200 public network identifiers. However, this
scheme does not take into account the need for addressing
private networks. The private networks, under this addressing
procedure will most likely appear to be a collection of one or
more terminals or host computers on one or more public net-
works. It is too early to tell how much this asymmetry in ad-
dressing between public and private networks will affect private
multinetwork protocols.

A related problem which is not unique to network intercon-
nection has to do with addressing (really multiplexing and de-
multiplexing) at higher protocol levels. The public carriers
tend to offer services for terminal as well as host access to net-
work facilities. This typically means that addresses must be
assigned to terminals. The issue is whether the terminal address
should be associated with or independent of the protocols
used to support terminal-to-host communication.

The present numbering scheme would not distinguish be-
tween a host address and a terminal address. A host might
have many addresses, each corresponding to a process waiting
to service calling terminals.

There has been discussion within CCITT concerning “subad-
dressing™ through the use of a user data field carried in virtual
call “setup™ packets. This notion would support the concept
of a single host address with terminal or process level demulti-
plexing achieved through the use of the user data {ield sub-
addressing.

It seems reasonable to predict that, as terminals increase in
complexity and capability, it will eventually be attractive to
support multiple concurrent associations between the terminal
and several remote service facilities. Applications requiring
this capability will need terminal multiplexing conventions
beyond those currently provided for in the CCITT recommen-
dations.
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To simplify implementations of internet protocol software,
it is essential to place bounds on the maximum size of the
NETWORK/SERVER address. Otherwise, subscribers may
have to construct name-to-address mapping tables with arbi-
trarily large and complex entries.

Even if all these issues are resolved, there is still a question of
‘“source routing’’ in which a subscriber defines the route to be
taken by a particular packet or virtual circuit. Depending on
the range of internetwork services available, a subscriber may
want to control packet routes. It is not yet clear how such a
capability will interact with access control conventions, but
this may be a desirable capability if gateways are not able t.
automatically select routes which match user service require-
ments,

D. Flow and Congestion Control

For purposes of discussion, we distinguish between flow and
congestion control. Flow control is a procedure through which
a pair of communicators regulate traffic flowing from source
to destination (each direction possibly being dealt with sepa-
rately). Congestion control is a procedure whereby distributed
network resources, such as channel bandwidth, buffer capacity,
CPU capacity, and the like are protected from oversubscrip-
tion by all sources of network traffic. In general, the success-
ful operation of flow-control procedures for every pair of net-
work communicants does not guarantee that the network
resources will remain uncongested.

In a single network, the control of flow and congestion is a
complex and not well understood problem. In a multinetwork
environment it is even more complex, owing to the possible
variations in flow and congestion control policies found in
each constituent network. For example, some networks may
rigidly control the input of packets into the network and ex-
plicitly rule out dropping packets as 2 means of congestion
control. At the other extreme, some networks may drop
packets as the sole means of congestion control.

At this stage of development, very little is known about the
behavior of congestion in multiply interconnected networks.
It is clear that some mechanisms will be required which permit
gateways and networks to assert control over traffic influx es-
pecially when a gateway connects networks of widely varying
capacity. This problem is likely to be most visible at gateways
joining high speed local networks to long-haul public nets.
The peak rates of the local nets might exceed that of the long-
haul nets by factors of 30-100 or more. Generic procedures
are needed for gateway/network and gateway/gateway flow
and congestion control. Such problems also show up in single
networks, but are amplified in the multinetwork case.

E. Accounting

Accounting for internetwork traffic is an important prob-
lem. The public networks need mechanisms for revenue shar-
ing and subscribers need simple procedures for verifying the
accuracy of network-provided accountings.

The public packet-switching networks appear to be converg-
ing on procedures which account for subscriber use on the
basis of the number of virtual circuits created during the ac-
counting period and the number of packets sent on each virtual
circuit. Indeed, it has been argued that accounting on the
basis of virtual circuits at gateways requires less overhead than
accounting on a pure datagram basis {32}. Scenarios can be
cited which support the opposite conclusion.
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Suppose there is a choice between setting up virtual circuits
for each transaction and sending a datagram for each transac-
tion, and that virtual circuit accounting includes information
on each virtual circuit setup (as in the present telephone net-
work). If datagram accounting simply accumulates the number
of datagrams sent between particular sources and destinations
without regard to the time at which they are sent, then the
amount of accounting information which is collected for the
datagram case will be substantially less than for the virtual
circuit case. In the limit (i.e., one packet per transaction), the
virtual circuit accounting information is proportional to 2N,
where N is the number of transactions, while for the datagram
case, it is proportional to log N (base 2). Thisissimply because
the datagram case only sums counts for traffic between source/
destination pairs while the virtual circuit accounting would
identify start/stop times for each virtual circuit.

Alternatively, if the bulk of the traffic involves a large num-
ber of packets per transaction, then the two accounting pro-
cedures would accumulate more nearly the same information
since each would predominantly involve accounting for packet
flow.

If it is chosen not to account for virtual circuit duration, but
merely to account independently for the number of virtual
circuits and the number of packets sent between source/desti-
nation pairs, then the virtual circuit accounting would be closer
to the datagram case.

The important conclusion to be drawn is that accounting for
datagrams is generally less complex than accounting for virtual
circuits, but that the two can be made arbitrarily similar by
suitable choice of the details of the accounting information
collected.

F. Access Control

In multinetwork environments, it may be necessary for each
network to establish and enforce a policy for “‘out-of-network”’
routing. For example, a public network might conclude agree-
ments with other networks regarding the type and quantity of
traffic it will forward into other networks. This might even be
a function of the time-of-day. Consequently, mechanisms are
needed which will permit networks to prevent traffic from
entering or leaving or to meter the type and rate of traffic
passing into or out of the network.

Another example of the need for control arises with the pos-
sibility of third-party routing. That is, traffic destined from
network A to network B is routed through network C. It can-
not be assumed that all networks have gateways to all others.
However, some nets may want to limit the amount of rransit
traffic they carry. There may be explicit agreements among a
subset of the nets regarding revenue sharing for transit services.
If a particular network does not have a revenue-sharing agree-
ment with the particular source/destination networks of a
given virtual circuit or datagram, then it must be able to reject
the offending traffic if it so chooses.

There does not seem to be any technical barrier to separating
the access control policy decision mechanism from the enforce-
ment of the policy. For example, a gateway might simply en-
force policy by sending traffic for which it has no known ac-
cess rules to an access controller. If we adhere to the model
that gateways have two halves, then each half deals with the
network to which it is connected. The access controller can
either dynamically enable the flow by causing table entries at
the gateways which permit the flow to be created or it can tell
the gateway to reject all further traffic of that type.

(70)

Clearly, access control policies will affect routing strategies,
so this adds a complicating factor into any internetwork rout-
ing strategy implemented by the gateways. At present, very
little experience has been accumulated with internet access
control and routing policies. For the most part, agreements
among public networks have been bilateral and transit routing
has been treated as a very special case. When EURONET [6)
becomes operational, this problem will be particularly impor-
tant to solve.

G. Internet Services

It is by no means clear what set of services should be stan-
dardized and available from, at least, all public data networks.
The current CCITT recommendations provide for virtual cir-
cuit service and terminal access service on all public packet-
switching networks.

Although the recommendations (X.3, X.25) provide for frag-
mentation of packets being delivered to a subscriber on 8 vir-
tual circuit, the current X.75 gateway draft recommendation
uses an agreed maximum packet size of 128 octets of data, not
including the header, This agreement avoids for the moment
the need to fragment packets crossing a network boundary, as
long as all subscribers recognize that the maximum length in-
ternetwork packet allowed is 128 octets. Bilateral exceptions
to this rule may develop but neither a fixed size nor a collec-
tion of special cases represent a very general solution to this
problem.

It has been argued [25) that a general scheme for dealing
with fragmentation is desirable so that new network technol-
ogies supporting larger packet sizes can be easily integrated
into the multinetwork environment.

Apart from fragmentation, there are a set of special services
such as multidestination addressing and broadcasting which
could be used to good advantage to support multinetwork ap-
plications such as teleconferencing, electronic mail distribution,
distributed file systems, and real-time data collection. Other
services such as low delay, high reliability, high bandwidth,
and high priority are also candidates for standardization at the
internet level.

As in the case of access control, selection of such services
might constrain the choice of packet routing to networks
capable of supporting the desired services. Once again, very
little experience with standard internet services has been ac-
cumulated so this subject is still a topic for research. For the
most part, terminal-to-host services have been successfully of-
fered across network boundaries using nearly all of the net-
work interconnection methods described in this paper. It
remains to be seen whether more complex applications can be
equally well supported.

VI X.25/X.75-THE CCITT STRATEGY FOR
NETWORK INTERCONNECTION

The common network access interface concept is favored by
CCITT for network interconnection. In the CCITT model of
packet networking, all networks offer the same interface to
packet-mode subscribers and this is called X.25. X.25 is a vir-
tual circuit interface protocol. However, gateways between
networks employ an interface protocol called X.75 [33],
which is much like X.25 but accommodates special network/
network information exchange, such as routing information,
accounting information, and so on.

Fig. 10(a) illustrates the basic network interconnection
strategy proposed by CCITT. To appreciate the difference
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between this strategy and the “‘common subnetwork” strategy,
it is necessary to have some understanding of the X.25 packet
network interface. X.2S5 provides a virtual circuit interface for
the setup, use, and termination of virtual circuits between
subscribers of the networks. X.25 provides for flow control of
packets per virtual circuit flowing into or out of the network,
Subscribers may set up switched virtual circuits by sending
“call request’” packets into the network and receiving ‘‘call
confirmation” packets in return. The standard also provides
for permanent virtual circuits.

The public networks plan to employ X.25 interfaces; it can
therefore be assumed that source and destination hosts in dif-
ferent networks will essentially want to exchange “call request™
and ‘‘call accepted”’ packets through the mediation of one or
more gateways. This strategy could result in a series of virtual
circuits chaining source host to gateway, gateway to gateway,
and gateway to destination host; alternately an end-to-end
virtual circuit could be set up from source host to destination
host, with the gateways acting as relays without any special
knowledge of the virtual circuits passing across the network
boundary.

The principle difference between the X.25 interface and
X.75 interface is that virtual circuit setup and clearing packets
are passed transparently by the X.75 gateway to the next gate-
way or destination. For reasons which are described below, it
is necessary to maintain the sequence of packets belonging to
a given X.25 virtual circuit as they pass through a gateway and
enter the next network. Therefore, a virtual circuit is in fact
created between the source host and intermediate gateway and
between gateways. The X.7S gateway does not spontaneously
generate any ‘“‘call acceptance’ packets in response to ‘‘call
request’ packets, but it does participate in the sequencing and
t.ow control of packets on each virtual circuit passing through.
Other differences between the X.25 and X.75 interface have to
do with the nature of the internetwork accounting or routing
information which might be exchanged over X.75 which would
not be appropriate for a subscriber to exchange with the net-
work over the X 25 interface.

The design of the X.75 type of gateway depends in principle
upon all networks’ use of the X.25 subscriber interface. Some
networks, like the ETHERNET, cannot implement it without
extensive modification, because there are no packet switches
in the network to support the required packet reordering at
the destination. The alternative is to insist that all internet
applications rely on a sequenced data protocol built into the
hosts or front-ends. For some services, such as packet speech,
the potential overhead of resequencing packets before delivery
to the destination may prevent the service from being viable.
This problem could be amplified if packets are constrained to
remain in sequence as they pass the X.75 boundary.

Fig. 10(b) and (c) shows variants of the CCITT intercon-
nection strategy. In Fig. 10(b), we see an example in which
only X.25 is used both as a network access method and as a
means of passing traffic across network boundaries. A single
subscriber or a pair of subscribers to two nets could interface
to their networks via X.25 and to each other by means of
some agreed and possibly private protocol.

Virtual circuits would be explicitly set up from source host
to gateway, gateway to gateway, and gateway to destination
host. The “internet’’ addresses of the source and destination
hosts could be carried in the so-called *Call User Data Field”
of an X.25 Call Request packet. This leaves the packet address
field free to identify intermediate destinations (e.g., gateways),
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but preserves an ultimate internetwork source/destination ad-
dress which the gateway can use to select the destination to
which the next intermediate virtual circuit is to be set up.

An alternative to this is shown in Fig. 10(c) in which the
subnets 4 and B use nonstandard virtual circuit interfaces, but
agree to build gateway software employing X.75 signaling pro-
cedures across the gateway interface. This solution is substan-
tially the same as that shown in Fig. 10(b), except there is
now additional translation software in each gateway half to
make each virtual circuit network-access protocol compatible
with X.75 procedures.

There are some specific problems with the X.25/X.75 gate-
way strategy, which do not necessarily apply to other virtual
call gateways [63]. The basic X.25 interface provides for the
sequence numbering of subscriber packets mod. 8 or, option-
ally, mod. 128. Since X.25 is an interface specification, this
numbering can only be relied upon to have local significance
(i.e., host-to-packet switch). Some X.25 implementations use
these host-assigned sequence numbers on an end-to-end basis.
Others generate internal, network-supplied numbers to allow
for repacking of subscriber packets into larger or smaller units
for transport to the destination. If packet sequence numbers
assigned by the source host were carried transparently to the
destination without change, it might be possible to allow
packets to flow out-of-order across the X.75 boundary to a
gateway and thence into the next network. If the packet se-
quence numbers were still intact, they could be carried out-of-
order to the next destination which might either be a gateway
or an X.25 host. In the latter case, the original packet-sequence
numbers could be used to resequence the packets before de-
livery. If the packets were being delivered to an intermediate
gateway, they would not have to be sequenced there, How-
ever, the X.25 interface specification does not undertake to
carry the host-supplied sequence numbers to the destination
gateway or host in a transparent fashion, primarily so that the
subnetwork can deal more freely with the physical packaging
of the packet stream. For example, a source may supply
packets of length 128 bytes while a destination may prefer to
receive packets no longer than 64 bytes. To allow for such
variations, the network must be free to renumber packets for
delivery. These considerations have two consequences.

1) X.25 packet sequence numbers cannot be relied on for
end-to-end signaling, though they could be so used if requisite
information is known about the intermediate transit networks.

2) Packets must be delivered in sequence when passing to or
from gateways and hosts on X.25 networks.

The second conclusion may be modified slightly. It is at
least essential that packets be delivered in relative sequence on
each virtual circuit. By maintaining independent sequence
numbering on each virtual circuit, it is possible for hosts and
gateways to refuse traffic on one virtual circuit while accepting
traffic on another. There are two penalties for this. First, a
gateway must keep track of which virtual circuits are passing
through it. Second, dynamic alternate routing of packets be-
longing to the same virtual circuit through alternate gateways
is not possible without resetting or clearing the virtual circuit.
This last point is simply the consequence of not defining an
end-to-end sequence numbering scheme, but instead relying on
sequencing of the packets of a virtual circuit on entry to and
exit from each intermediate network.

Some networks implement X.25 level acknowledgments
(i.e., level 3) that have an end-to-end significance, but others
make this purely a host-to-packet switch matter. As a conse-
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Fig. 14. Use of X.25 for public/private network interconnection.

quence, it is not possible to rely on X.25 packet acknowledg-
ments to determine which, if any, packets were not delivered
as a result of the resetting or clearing of a virtual circuit. Fur-
thermore, even if a subnet were to offer an end-to-end ac-
knowledgment between a source host and an X.75 gateway, this
could not be assumed to guarantee that the acknowledged
packet was delivered to the ultimate X.25 destination in another
network.

X.75 is an interface intended for use between public net-
works. Thus, it is not likely to be used or even allowed as an
interface between public networks and private networks. For
the case illustrated in Fig. 14, X.25 interfaces could be pro-
vided between pubdlic and private networks (or other special
interfaces) and X.75 interfaces between public networks. Con-
sequently, gateways between public and private networks are
likely to appear to be ordinary host computers in the view of
the public networks.

The use of X.25 for private/public network interfaces and
X.75 for public/public network interfaces leads to the situa-
tion shown in Fig. 14 in which an internetwork virtual circuit
would have to be made up of several concatenated par:s such
as virtual circuits 1-2-3-4 (see also {52, Fig. 3.4)). Even if
X.25 implementations uniformly permitted an end-to-end
interpretation of packet sequence numbers and acknowledg-
ments, there would still be separate virtual circuits required
between the source or destination hosts and the gateways into
the public networks. However, the concatenation of virtual

. circuits does not yield a virtual circuit. For instance, a gate-

way between the public and private net could acknowledge a
packet but fail to get it delivered, in which case the subscriber
will have been misinformed as to the delivery of the packet.
This situation forces the end subscribers of private networks to
implement end-to-end procedures on top of any concatenated
virtual circuits provided by the public networks.

VIil. PRACTICAL NETWORK CONNECTIONS AND
EXPERIMENTS IN PROGRESS

A number of networks have been connected successfully
over the last few years. Most of these connections have been
made in an ad hoc manner, using one of the following tech-
niques,

1) One network is a star network with remote RJE and in-
teractive stations. The other is a star or distributed network

with clearly defined protocols. A device on the star network
provides exactly the functions required by its own network on
one side, and those of the other network on the other side.

2) Formal gateways are provided between the two networks,
and protocol mapping occurs in the gateway.

3) A computer is a host on two networks. It is arranged
that services are provided by accepting input from one net-
work and putting it out on another, possibly after substantial
processing.

4) Formal gateways are provided between the two networks.
Sufficient agreement is obtained that end-to-end protocols
(even high level ones) are common in the two networks. In
this case, less activity is required in the gateway.

In the first method, a form of front-end computer is used.
It has been adopted in the large airline and banking networks
SITA {13] and SWIFT [14]. In each case the standards for
the networks have been defined rigidly. SWIFT has even certi-
fied officially t! - devices of three manufacturers to provide
interfaces to its ..etwork. The other side of the device is then
programmed to meet the requirements of the star system being
attached. In the two cases cited, only a simple message level
of interface needed to be defined.

Other examples of the same technique are the connection of
the Rutherford Laboratory (RL) star system [53] and the
Livermore CTRNET to ARPANET. In these examples, more
serious protocol mapping was required. ARPANET has a well-
defined set of HOST-IMP, HOST-HOST, Virtual Terminal, and
File Transfer protocols. All these had to be mapped into the
appropriate procedures for the other network.

The second method has been applied only experimentally.
The UCL interface between ARPANET and the UK Post Office
Experimental Packet Switched Service (EPSS, [55]) and the
National Physical Laboratory interface between EPSS and the
European Informatics Network (EIN, [56]) are examples of
this technique; a demonstration has even been made of EIN-
EPSS-ARPANET with no extra problems encountered from
the three networks being concatenated. Technically there is
almost no difference between the first two methods. The sec-
ond looks at first sight somewhat more general than the first,
but almost the same problems have to be overcome. The diffi-
culties come from the fundamental differences in the design
choices made in the protocols of the different networks; these
differences are in general difficult, and even sometimes impos-
sible, to resolve completely. In the first method, they can
sometimes be resolved using a specific facility in the star net-
work; in the second, where two distributed networks are in-
volved, this recourse may no longer be available,

One example of the problem occurs in the connection of
EPSS and ARPANET. ARPANET can forward any number
of characters at a time, and often uses full duplex remote echo-
ing. EPSS works in a half-duplex mode, forwarding only com-
plete records. A special “Transmit Now" has to be input by
the user, and interpreted by the gateway, to ensure that partial
records are forwarded. Another example, from the same appli-
cation, occurs in File Transfer. ARPANET assumes an inter-
active process is live throughout the file transfer; all comple-
tion codes are passed over this live channel. The RL network
(and EPSS) assume that file transfer is a batch process; they
return network completion codes at a later time, and may
delay acting on the commands. With the ARPANET-RL link
[53], the file transfer job had to be given a very high priority,
so that the completion code usually arrived before a timeout
occurred; because of the nature of the way the computer was
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used for large real-time jobs, this did not always ensure that
the job was run in a reasonable time.

There are several examples of the third technique. A DEC
PDP 10 machine used on the Stanford University SUMEX
project is a host both on ARPANET and on TYMNET; several
machines at Bolt, Beranek and Newman are both on ARPANET
and TELENET. Because the TENEX operating system has
good facilities for linking between programs, it would be pos-
sible for interactive streams to come in one network and go
out on another. File transfer problems would be simple in this
configuration, because the hosts obey all the conventions, in
any case, of each network. Of course, this mode of operation
may require that files in transit between networks may have to
be stored temporarily in their entirety in the host serving as
the gateway between the networks.

The fourth technique is newer, and has many variations. As
a result of agreement on the X.25, and partial agreement on
the X.75, protocols, PTT networks are able to interconnect in
a reasonably straightforward manner. The connections between
DATAPAC and both TELENET and TYMNET have been done
in this way. In each case, there has not been any agreement on
higher level protocols, so the problems of host-host communi-
cation across concatenated networks is not resolved by these
linkups of the subnets.

The ARPA-sponsored INTERNET project has tried to stan-
dardize to a higher level. A host-host protocol has been defined
(TCP, [25]), and is being implemented on a number of differ-
ent networks including Packet Radio [20], [21]), ETHERNET
[18], LCSNET [64]) and the SATNET ([22], in addition to
ARPANET. This protocol is defined for use across networks;
thus each packet includes an “Internet Header” which is kept
invariant as the packet crosses the different networks. One
aspect of the INTERNET program is to develop gateways
which can interpret this header appropriately.

By late 1976, the ARPA project had connected together the
Packet Radio Network, the ARPANET, and the Atlantic Packet
Satellite Network using two gateways between the Packet Radio
Network and the ARPANET and three gateways between the
ARPANET and Packet Satellite Network. It is routinely pos-
sible to access ARPANET computing resources via either of
the other nets and to artificially route traffic through multiple
nets to test the impact on performance. In one such test, a
user in a mobile van in the San Francisco area accessed a DEC
PDP-10 TENEX system at the University of Southern Califor-
nia’s Information Sciences Institute over the following path:

1) from van to the first gateway into ARPANET via the
Packet Radio Network;

2) across the ARPANET to a second gateway in London,
using a satellite link internal to the ARPANET;

3) across the Atlantic Satellite Network to a third gateway
in Boston;

4) across the ARPANET again to USC-ISI.

The user and server were 400 geographical miles apart, but the
communication path was 50000 miles long and passed through
three gateways and four networks. Except for a slightly in-
creased round-trip delay time, service was equivalent to adirect
path through the ARPANET. Since the Packet Radio Network
is potentially lossy, can duplicate packets, and can deliver pack-
ets cut of order, the end/end TCP protocol was used to exer-
cise flow and error control on an end-to-end basis. The avail-
ability of a common set of host-level protocols substantially
aided the ease with which this test could be conducted.
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The ARPA project also has high-level standard protocols al-
ready in existence to support file transfer and virtual terminals
(the FTP and TELNET protocols [40]), and these are being
retrofitted above the internet TCP protocol to provide a stan-
dard high-level internetwork protocol hierarchy.

IX. REGULATORY ISSUES

The regulatory issues in the interconnection of packet net-
works takes a different form in North America than elsewhere,
It is hard in a paper of this type to more than touch on some
of the problems involved. The discussion here is simplistic in
the extreme, and no attempt is made to put the issues in the
legalistic language they really require,

In almost all countries the provision of long distance com-
munication transmission and switching is provided by a regu-
lated carrier. In most countries outside North America, this
carrier is a single national entity—called the “PTT”. In some
countries (e.g., Italy) there are different carriers for different
services—e.g., telegraph, telephone, intercity, international
telephone, etc. In North America there are many carriers.
Usually only one in each geographical area has a monopoly on
public switched voice traffic. Also the so-called “Record Car-
riers” have some sort of monopoly on “record traffic,” which
is message traffic. In a “Value Added Network” (VAN), the
operators rent transmission equipment from the carriers, and
then add their own switching equipment. These VAN’s are
themselves regulated in what they may do, what traffic they
may carry, and what rates they may charge, Between North
America and Europe, specific “International Record Carriers”
(IRC) have monopoly rights on data and message transmission
—in collaboration with the appropriate European PTT’s. The
regulations take into account who owns the hosts and termi-
nals, who owns the switches, who rents the transmission lines,
what types of traffic is carried, what is the geographic extent
of the network, and what is the technology of long distance
transmission.

In Fig. 15, a single network N is sketched. It consists of
switches S and transmission lines L; these together are called
the data network, DN. It consists also of terminals T and
hosts H; the exact difference between a terminal and a host is
not very clear; we believe it is assumed that terminals mainly
enter and retrieve data without processing; while a host trans-
forms the information by processing. This definition probably
does not meet the picture of modern “intelligent terminals,”
but it is always hard for the regulations to keep up with the
technology. If the total network is all localized in one site, so
that no communication lines cross public rights of way,
then it can usually be considered from a regulatory viewpoint,
as a single host in more complex network connections. The
hosts and the terminals can be connected to the switches, and
the switches to each other, either by leased lines, or by the
Public Switched Telephone Network; the first type of connec-
tion is called a leased connection, the second switched. In the
subsequent discussion of this section, the term “host™ will in-
clude localized networks. In general we will assume the con-
nections between the switches are via leased lines; if that is not
the case, the regulations are much eased in general (though in
some countries, like Brazil, no data transmission is permitted
at all via switched telephone lines).

If all the hosts and switches are owned by one organization
P, which also leases the lines, then P is said to own and operate
the network, and it is called a *‘Private Network.” There are
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DATA NETWORK DN

Fig. 15. Schematic of one network.

minimal restrictions on such networks—though in West Ger-
many, for example, higher tariffs are charged for the leased
lines if any terminals or hosts are connected via the PSTN. In
most countries such a network may not be used for the trans-
fer of messages between terminals belonging to organizations
other than P,

If the data network belongs to one organization, and the
hosts to others, the data network is a VAN. Stringent regula-
tions apply to VAN’s, in most countries. With rare exceptions,
in most European countries, VAN’s can be operated only by
the PTT’s. In the U.S., they can be operated by other organi-
zations, but only if approved as regulated Value Added Car-
riers (VAC’s) by the Federal Communications Commission
(FCC). One regulation imposed by the U.S. is that an organiza-
tion operating as a VAC may not also operate a host for out-
side sale of services. For this reason, the companies TYM-
SHARE and ITT have had to spin off their VAC’s into separate
subsidiaries, TYMNET and ITT Data Services.

In the past, a few VAN’s have been permitted to operate
internationally for specific interest groups. Two such VAN’s
are SITA [14], for the airlines, and SWIFT {14} for the bank-
ing community. Here the regulations can be stringent. SWIFT
has to pay specially high tariffs for its leased lines; its license
to operate may be revoked when the PTT’s can offer a com-
parable international service.

As soon as two networks, owned by different organizations,
are interconnected, there are regulatory difficulties. This situ-
ation is illustrated schematically in Fig. 16. Even if one net-
work is an internal one, so that it can be treated as a single
host, its connection to other network immediately changes the
latter’s status. Thus in Fig. 16, the connection of DN to DN2
immediately changes DN2 to a VAN. In Europe it has been
decreed that such private networks may not connect directly
to each other, but only through a PTT network. Thus the
most general configuration permitted by the European PTT’s
is illustrated in Fig. 17. Moreover, the PTT’s have also agreed
that only the X.25 interface will be provided to customers,
though that interface was defined for the configuration of Fig.
15 rather than 17. The different PTT networks will themselves
connect to each other by the different interface X.75 as illus-
trated in Fig. 18. This does not change, however, the inter-
face seen by the private networks. Further work is needed to
assess the suitability of X.25 in this role.

In the U.S., the regulations are not quite so stringent. Con-
nections such as Fig. 15 are permitted even where one host
belongs to a different organization than the network operator
P-provided such connection is only limited and for the pur-
poses of using the facilities of that network. This type of re-
laxation is really necessary, because of the difficulty of dis-
tinguishing between a *‘host™ and a “‘terminal”. In practice, in
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Fig. 18. Muttiple PTT network interconnection.

most countries, the line is drawn between leased line and PSTN
connections. The former are usually not permitted without
change of status of the network; the latter seem to downgrade
the connection to that of a terminal,

The discussion above has treated the types of connections
which can be made. In addition, the PTT’s, and the FCC in
the U.S., usually regulate the purposes for which the network
can be used. In particular, there is a ban on such networks
being used for message or voice transmission between organi-
zations. How such measures are to be policed, gets us into
another regulatory problem. For example the UK PO [57]
has claimed a right to inspect the contents of any data message
sent across lines leased from it; this right would be at variance
with the privacy laws being enacted in many countries [ 58],
(59]. This subject is a large one in its own right, and it is
clearly beyond the scope of this paper.

Two other service problems will arise in international con-
nections., First the impact and form of the privacy and trans
national data flow regulations in different countries are differ-
ent. Thus in the interconnection of international networks, a
particular set of problems may arise, even when the appropri-
ate regulations are obeyed in each network separately. Thus
both Network 1 in country A and Network 2 in country B
may obey their own national regulations. However when the
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networks A and B are connected, Network 1’s practices may
break country B’s regulations, and yet be accessible from coun-
try B. It is this class of problems which delayed seriously the
permission by the Swedish Data Inspectorate Board for Swedish
banks to connect their networks to SWIFT.

Secondly, some of the functions of networks or gateways
legal in one country may be illegal in another. Thus U.S. car-
riers are not permitted to do data processing in their data net-
works; no such considerations apply in most European coun-
tries. Some of the protocol translation activities, some of the
message processing activities, and some of the high-level ser-
vices (e.g. the provision of multiaddress links) may well be
classed as “Data Processing,” and hence be illegal in the U.S.
In interconnected networks, this raises the possibility that
functions can be carried out outside the jurisdiction of the
country in which the operator initiating the activity is sited,
and yet which is illegal in that country. This subject is treated
rather fully elsewhere {60]. A clear example of this is the use
of message services operated by TYMSHARE and CCA on
TELENET and TYMNET. While these services are legal in the
U.S., their use by UK persons connected to TYMNET by the
official International Packet Switched Service is clearly tech-
nically illegal; this use would contravene the UK Post Office
Monopoly.

X. UNRESOLVED RESEARCH QUESTIONS

There are many unresolved research questions; on some of
them even the present authors do not agree with each other!
Primarily these questions have a technical, policy, administra-
tive, economic, regulatory, or operational aspect, or a combi-
nation of these,

One example of this is the question of the procedures to be
used for internet routing. Here there are technical questions
on what is feasible in view of the technologies used in the sub-
nets; there are policy questions on when third country routing
might be allowed; there are economic considerations on how
much it would cost to do the necessary protocol translation to
route through third countries, and on what charges the con-
necting transit network might make; there may be regulatory
questions on which classes of data may flow through specific
countries (related to the transnational data flow regulations);
and there may be operational questions on whether in the event
of failure in dynamic rerouting, reestablishment could take
place with sufficient rapidity.

Among the outstanding research questions are, in alphabetic
order, the following.

Access Control: What are the requirements and methods of
implementation of access control? How should they affect
internetwork routing?

Addressing: How should the International Numbering Plan,
which goes to the level of known subscribers of public
networks, be extended? Should this extension be in the num-
bering plan itself, or should additional user and network in-
formation be supplied? Should there be local, or only physical,
addressing? Should there be internetwork source routing
implied by the addressing?

Broadcast Facilities: What is the role of broadcast communi-
cation facilities in the provision of internet services? Should
facilities using it be offered? Should technologies supporting
it use it, particularly at gateways? What are the implications
on protocols, especially with respect to duplicate and error
detection?

Datagram versus Virtual Call Facilities: How should data-
gram and virtual call facilities be interconnected? How can
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one compare the relative performance and costs of the imple-
mentations? What criteria should be used in any comparison?
When might datagram, or alternatively virtual calls, be desir-
able or essential between networks?

Data Protection: What are the effects of end-to-end data
encryption on protocol translation?

Flow and Congestion Control: To what extent should one
adopt congestion and flow control between gateways and their
feeding networks, between gateways directly, or between gate-
ways and the source? What are the relative effects of just dis-
carding packets in gateways, and relying on the end-to-end
protocol to detect and compensate for this? How is charging
for discarded packets arranged?

High Level Protocols: There are still many questions on
what should be standardized, and how rigid the standards
should be. To what extent should the individual networks
support common standards, and to what extent should proto-
col translation be feasible technically or attractive economi-
cally? What are the costs of maintaining standards or the
economic advantages of standard hardware and software?
How does the technology of individual networks and the
proportion of internetwork traffic affect the decisions?

Internetwork Diagnosis: There are many technical problems
in isolating faults in concatenated networks. There are also
organizational and economic problems on who should be
responsible for their repair, and how costs for service failures
should be allocated.

Performance: How do choices of design parameters, and
network services, affect the costs of the individual networks?
How do the individual network performances and costs scale
to large networks? How do the choices affect the feasibility,
costs and performance of the gateways? How do the varia-
tions in technology or choice of parameters affect the perfor-
mance in interconnected networks?

Routing Policies. To what extent and when should adaptive
routing be used between networks? How can one recover
from the partitioning of a single network, when there are still
routes existing by going through other networks? How should
administrative considerations affect routing policies between
networks (privacy regulations, economic considerations of
internet pay ments, desire to provide for hagh avadability, etc.)?
When is a hierarchical organization more efficient that a direct
route search?

Services: What services are needed on an 1. ternetwork level?
Clearly interactive and bulk transport services must be sup-
ported. What else isneeded? Should the internetwork facilities
be able to support voice, telemetry. and teleconferencing?
What is the cost of supporting these latter services. and what
is their effect on other facilities”?

X.25 and X.75 and Related Recommendations s X.2§
suitable for transaction processing” Arc the present datagram
proposals adequate? How should X.25 be extended for inter-
net addressing? How should X.25/X.75 be modified to allow
the connection of private to public networks, or private net-
works to each other? Do the X.3, X.28, X.29 pad concepts
extend well to the internet environment, or should they be
modified?

X1. CONCLUSIONS

In view of all the unresolved questions discussed in Section
X, most of the conclusions which can be drawn in this paper
must be tentative. From the early part of the paper, we have
shown that it is essential that techniques be developed for con-
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necting computer networks. Moreover, no single set of tech-
niques will fit all applications.

The services which will normally have to be supported are
terminal access, bulk transfer, remote job entry, and transac-
tion processing. The quality and facilities of the services re-
quired will be very dependent on the applications.

The connections between networks can be made at the level
of the packet switches or of hosts, and can be on a datagram
or virtual call basis. Connection at the packet-switch level
requires broadly similar network access procedures, or com-
plex protocol transformation at the gateways between the
networks. If the network protocols are different, intercon-
nection can be most easily achieved if done at the host level.
The higher levels of service can be mapped at service centers,
which need not be colocated with the gateways—but very
different philosophies of network services can be very difficult
to map. Altematively, subscribers can implement common
higher level protocols if these can be agreed upon.

The principal problems in connecting net works are much the
same as those in the design of the individual networks of het-
erogeneous systems—but the lack of a single controlling au-
thority can make the multinet design problem more difficult
to solve. It is essential to resolve the usual problems of flow
control, congestion control, routing, addressing, fault recovery,
flexibility, protocol standards, and economy. The public car-
riers have attempted to resolve many of these problems; par-
ticularly in the areas of flexibility, addressing, and economy
we feel their solutions are not yet adequate. At the higher
levels of protocol, much more standardization is required be-
fore we have really satisfactory long term solutions.

The advent of international computer networks, private net-
works which must communicate with other private networks
(even if via public ones), and the new applications of computer
networks, raise regulatory and legal issues which are far from
resolution,

Many technical solutions to the problems of the connection
of networks are discussed in this paper. Their applicability in
view of the different technical, economic, and policy con-
straints imposed in different countries must still be assessed.
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PROTOCOLS IN A COMPUTER INTERNETWORKING ENVIRONMENT

Ray I. McFarland Jr.

United States
Department of Defense

ABSTRACT

This paper presents a model for protocol
layering in 8 computer internetworking enviromment.
Four distinct protocol layers are identified; the
network layer, the internet layer, the transport
layer, and the application layer. The functi{ons of
each are defined. Gateway functions are also
addressed in the discussion of the internet layer.
A set of protocols are defined for the transport
layer based on communications requirements; a
reliable data protocol, a datagram protocol, a
speech protocol and a real time protocol.
Alternatives for standardization at the network,
internet and transport layers are presented. Some
impacts of choosing each alternative are discussed.

INTRODUCTION

Computer networks are playing a more important
role every day within the Department of Defense.
More and more projects situated on different
networks are finding that they have s requirement
to intercommunicate. These requirements, in
addition to the direction being taken by DoD to
have one long haul common carrier (that {is,
AUTODIN 1I) rather than many large geographically
dispersed special purpose networks, are leading
to the development of computer internetworking
strategies.

In order to exchange information in a
meaningful way through networks of computers,
there must be an agreed upon protocol, or set of
protocols. This paper will present a protocol
layering model for a cowputer internetworking
environment. Four distinct protocol layers will be
identified and their functions defined. The
functions of network gateways will also be
addressed by the model.

Alternatives for standardization of three of
the four layers will be presented. Some of the
impacts of the various alternatives will also be
discussed.

A PROTOCOL LAYERING MODEL

One of the definitions Webster's New World
Dictionary of the American Language gives for
protocol is "the code of ceremonial form and
courtesies, of precedence, etc. accepted as proper
and correct in official dealings, as betwveen heads
of states or diplomatic officials" {1}. In much
the same way, a communication protocol is a
defined set of control procedures and formats for
the transmission of information which 48 agreed to
by the owners of the communications gear involved.
Protocols can be divided into layers in such s way
that each layer implements certain control
procedures, which provide a set of communication
properties to the layers sbove it. 1deally, the
higher layer protocols should be able to take
advantage and build on the properties provided by
the layers beneath 1it.

There are four major protocol layers emerging
in the DoD computer internetworking environment.
We call them the network layer, the internet layer,
the transport layer and the application layer.
These four layers are illustrated in Figure 1, For
one example which will briefly show how the layers
fit together, consider what a message would look
like on a network with all four layers present.
The first item in the message 18 the network layer
header, which contains the control information for
the network layer. Next is the intermet layer
header, followed by the transport layer header, an
application layer header if the application control
is not implicit in the data, and finally the data
itself. See Figure 2. This section will define
the control procedures of each layer.

The ARPAnet will be used in the following
discussion to provide examples. Further infor-
mation on the ARPAnet is given in {2} and {3}.
The term ’packets' will be used here to refer to
integral units of information transmitted on a
network. The term will be qualified, as in
'ARPAnet packets', when referring to specific
{mplementations to avoid ambiguity.

Network Layer

The 'lowest’' (furthest removed from the user)
layer 18 the network layer. This layer coneists of
the control procedures required to actually trana-
mit packets physically between two subscribers on
one network (one or both of which could be a
gateway to another network), and defines the inter-
face to higher layer protocols. (The concept of a

U.S. Govemment work not protected by U.S. copyright.
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gateway is defined in the Internet Layer section

of this paper.) For example, the ARPAnet's network
layer consists of the IMP-IMP protocol, (the IMP,
which stands for Interface Message Processor, is
the ARPAnet packet switch), and that portion of the
Network Control Program which implements the Host-
IMP protocol, which is usually referred to as the
bolt, Beranek and Newman 1822 Interface Specifica-
tion {3}. Of necessity, this protocol layer is
dependent on the specific network technology. The
network protocol for an ARPAnet type packet
switching network will be different than one for a
ring network, a packet radio network, or a
satellite network.

There are two minimal control procedures
which all network layers must implement, addressing
and routing. As noted in {4} and {5}, these are
not the same thing. An address defines where an
entity is located and a routing mechanism defines
how to get from one address to another. Every
network must have the ability to identify the
locations of machines on it ({i.e., have an
addressing scheme). In addition, they must have a
scheme for routing packets between two points,
whether it is a static or dynamic scheme, predeter-
mined or based on a heuristic algorithm.

There are, of course, additional control
procedures which a network layer may provide. Ome
of the most important from a network health stand-
point is flow control. A properly implemented flow
control scheme allows the network to protect
network resources from congestion. Two ways of
doing this are throttling network input to a
certain maximum level and redirecting traffic
around a congestion point with a dynamic routing
scheme. For example, the ARPAnet allows only eight
ARPAnet messages at a8 time between any two hosts,
while the dynamic routing algorithm was intended
(in part) to handle traffic congestion between any
two adjacent IMPs.

This layer may also provide error detection,
either on a hop by hop basis or on a point of entry
to point of exit basis, or some combination of the
tvo. A strictly hop by hop scenario is the
strategy typically used 1. a store and forward
network, When a switch receives a packet it sends
an acknowledgment to the adjacent sending switch,
which 18 then allowed to release its copy. One
disadvantage of this scheme is that, if a network
malfunction occurs, it is possible to lose
messages. A ewitch crashing after having acknowl-
edged a message but before sending it on is ome
example. For a strictly point of entry to point of
exit scenario, the destination switch would
acknowledge the packet to the source switch only
after it had successfully passed it to the intended
destination. (This is also referred to as end to
end acknowledgement,) Thus, if the network
malfunctions and drops a packet, recovery is still
possible since the source switch has maintained a
copy. An acknowledgment from the destination
switch had not yet been received by the source
switch. The ARPAnet actually uses a combination of
the two, with inter-IMP acknowledgments as an ARPA-
net packet traverses the network and a Ready For

(80)

Next Message (RFNM) which is sent from the
destination IMP to the source IMP.

A network may provide a form of fragmentation,
where messages delivered to the network are broken
down into smaller unite for transmission. This is
another mechanism commonly used by networks to
maximize their resources. At the destination
switch, the network is responsible for reassembly
of the fragments it has created. The ARPAnet
breaks messages down into packets for transmission
across the IMPs and reassembles the messages at the
destination IMP.

A network may also implement some form of
precedence strategy for high priority packets.

The overall capability this layer provides 1is
the capability to physically move packets of
information between the network's subscribers (or
gateways), without requiring the higher layers to
have knowledge of the switch procedures or formats.

Internet Layer

This layer consists of the control procedures
required to allow internet packets to traverse
multiple networks between any two hosts. This
protocol 41s usually implemented within hosts and
gateways. The gateway attaches to two or more
networks and is the bridge between the networks
over which the internet packets flow. The primary
function of the gateway is the passing of control
information and data between two networks. In
addition, the gateway must also determine what
network layer control procedures are to be invoked
for a particular packet. The gateway derives this
information from the intermet protocol header. It
should not translate between the two network
layers. It is preferablq to derive the control
information needed from the internet header and
allow the destination network to implement the
required control within the context of its own
control constructs rather than try and match up the
control constructs of two network layer imple-
mentations. In general, the translation of control
constructs from one network layer implementation to
another is cumbersome and a one-to-one mapping of
the control constructs of two network protocols is
rarely obtainable. The best chance to achieve such
a mapping is if the two network protocols are
exactly the same, but even then some 'fudging' of
the protocol may be needed for an implewentation,
(e.g., the implementation and interpretation of a
RFNM, which is end to end intranet, but is not end
to end internet).

There are three minimal control procedures
which the intermet layer must jimplement: addruss-
ing, routing and fragmentation. The internet
address must be able to uniquely specify a location
on a set of networks and also identify the proper
traneport layer processing software to which the
packets should be sent. The usual mechanism for
doing this is a hierarchical addressing scheme,
such as '<network address><host address><transport
protocol processing module address>'. Other
addressing schemes have also been devised to try
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e and reduce the overhead of the addressing field in constrained to go through the same gateway when
V the header. Whatever scheme is implemented, the leaving 8 network. For error recovery by retrans-
- gateway must be able to map the internmet address mission, the retransmission of the original packet
:; to a specific network address, either the intended must be constrained to the originally addressed
‘ destination host or another gateway. gateway, which may counter any dynamic routing
i algorithm that may exist at the internet lsyer.
N Gateways determine the routing at the internet Without dynamic routing, the gateway is a point of
N layer when more than one gateway wust be traversed single failure for all connections that go through
. to reach the destination host. There may even be it. With dynamic routing and the requirement for
’ two different gateways between the destination reassembly of fragments at a gatewvay, the gateway
' network and an intermediate network. The gateway may require some knowledge of the formats and error
T between the gource network and the intermediate recovery procedures of all the transport layer
Ii network would then be able to choose which gateway protocols which can pass through 1it.
g to route the packets through. This can be even to decide whether to hold or discard a partial
. more significant when the destination network is at packet, the gateway may have to know which trans-
- least three networks away from the source network. port level protocols retransmit and which do not.
. In this case, the internet routing could actually This violates the premise that protocol layers
' determine which network(s) the packets are to flow should be kept separate and distinct, and not rely
through. For example, network A may attach to on the formats and prcedures of protocols that are
network B through one gateway, network B attach to at a hipher layer. A second disadvantage to
network C through one gateway and to network D dynamic routing with reassembly at a gateway is
through one gateway, network C attach to network B that a gateway's buffers may be tied up waiting for
through one gateway, and network D attach to net- a 'lost' fragment of a packet while the retrans-
work E through one gateway (see Figure 3). 7Two mitted packet has already passed through an
alternate routes then exist from netwoik A to net- alternate gateway.
work E. One route is A-B-C-E, the other 1s A-B-D-
E. The gateway can adjust to gateway (or inter- Where then should the fragments be reassem-
mediate network) congestion by dynamically choosing bled? 1If the reader will recall, we have been
which gateway individual packets should go through. discussing the functions of a gateway which are
This is analogous to the dynamic routing algorithm needed to process the internet protocol layer.
in the ARPAnet mentioned earlier. In the same way Yet, novhere was it mentioned that the protocol
that ARPAnet packets of a given message are not layer is either created or terminated at the
constrained to a specific series of IMPg, packets gateway. The information has already existed for
of a given connection should not be constrained to the gateway to process it. All well defined
a given series of gateways. However, for this to protocols have (at least) two distinct ends, the
be possible, the packets of a higher layer protocol 'ends' for the internet layer are at the source
connection must not be constrained to go through and destination hosts. The software which imple-
one specific gateway or series of gateways to reach ments these internet layer procedures at the hosts
their destination. (The concept of a connection is could be loosely referred to as ‘half a gateway’,
defined {n the Transport Layer section of this since it only connects to one network.
paper.) The gateway should be oblivious to the gateway-half 1s responsible for forming the
exigtence of connections. An additional advantage internet header, deriving the necessary control
gained from this approach is the lack of a need for information from either the host directly or from
the gateway to store connection state information, the transport layer header (e.g., precedence,
allowing for a simple and more efficient gateway. sequencing information, etc.). The destination
The proper place for connection state information gateway-half 1is responsible for reassembling the
18 st the next layer, the transport layer. fragments and demultiplexing the internet packets
to the proper transport protocol processing
The third minimally required control procedure modules. Of course, some host {mplementations may
is fragmentation. (Fragmentation in a specific not have the capability to reassemble fragments.
gateway 1is necessary when one of the attached In this case, the internet protocol mwust allow for
networks has a maximum packet size which is smaller the source host to declare an option of 'do not
than one of the other attached networks' maximium fragment this packet'. Gateways which have to
packet size. We will assume this as the general fragment these type of packets would either
case in this discussion.) A gateway must have the discard them or reroute them to another gateway.
capability to interface two networks which have In fact, this information {8 one of the things
different maximum size packet lemgths. To do this, which could go into the routing scheme which
the gateway must be able to break down a packet gateways implement (including the gateway-half at
into fragments, each looking like an integral the source).
{ packet to the network with the smaller size maximum
k- packer length. The internmet protocol must, For retransmission efficiency, one might wish
- therefore, provide the means for identifying to trade off some of the flexibility in the
r fragments and for sequencing them so that they can previously described dynamic routing scheme for a
. be reassembled, simple error detection and retransmission
b procedure betwveen any two gateways.
L It is important to note that if reassembly of there is still no need to correlate two different
b fragments 1s done at the gateway, then sll of the fragments at an intermed{ate gateway.
'C fragments which make up the larger packet are network packets, when retransmitted from one
329

For example,

The source

In this case,

Individual
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gatevay to the other, would be constrained to go
to the gateway addressed originally. However, if
the gateway fragments a packet; then nev internet
checksums are computed for each fragment (which
become individual packets for the next network).
What is lost is the ability to address the
retransmitted packet to an alternate gateway if
the gatewvay addressed originally is overloaded or
has crashed. (A more complex procedure could
allow for both dynamic routing and gateway error
detection and retransmission. The complexity is
in the bookkeeping required at the sending gateway
to allow it to properly process any returning
acknowledgment.)

The internet layer presents the capability to
move the packets over many networks and hides the
necessary details of gateway functions from the
higher layer protocols. For instance, the trans-
port protocol layer need mot worry about gateway
addressing or nmetwork routing.

The functions of a gateway are intimately
tied to the internet protocol which it implements;
however, the gateway and the internet protocol are
not synonymous. A gateway may have other functions
beyond the strict implementation of the internet
protocol. These functions must, howvever, meet the
requirement that the gateway remain simple,
efficient and easily maintainable. One such
function has already been mentioned, the mainte-
nance of network congestion information, which
contributes to the routing decision at the internet
layer. Other functions would be accounting and
reporting to some network control center(s) for
'state of the gateway' information, such as queue
lengths, traffic density, etc. A gatewvay could
also act as an agent of a network sccess control
center, for network accountability and self
protection requirements.

Transport Layer '

This layer consists of the control procedures
necessary’ to deliver packets between two
application processes on different host computers,
wvhether the hosts are on the same or different
networks, Within retworks, this layer has been
commonly referred to as the Host to Host protocol.
The transport protocol modules interface to the
application layer software modules (or scwme host to
front end protocol module where the transport
protocol is terminated in a front end). It is at
the transport layer that explicit connection
information makes sense, since connections are
thought of as explicitly defining the transmission
path between two (or more) application layer
procesves. Connection state information and
connection maintenance is one responsibility of the
transport layer protocol.

One type of transport layer protocol is not
sufficient for most users. Different users have
different compunication requirements. These
requirements are usually a function of the relia-
bility level needed, timeliness of delivery, and
the need for sequenced delivery between two
application processes in different hosts. A
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protocol vhich attempts to solve all the needs of
8ll users will probably be worthless to everyone.
(It will at the least be grossly inefficient,
something which cannot be tolerated in a
communications environment.)

Four types of protocols seem to be needed at
this level; a reliable data protocol, a datagram
protocol, speech and a real time protocol. There
may be more, but this paper will limit its
discussion to these four. The following discussion
vill not attempt to define all the control proce-
dures a particular transport protocol should have,
but will give a sufficient number to allow the
reader to distinguish between the four types.

The reliable data protocol is characterized
by the need for a high level of reliability and
the need for sequential delivery of the packets
transmitted between two processes.

The need for sequenced delivery leads to the
concept of a communications connection existing
between two processes. The defining character-
istics of a connection are: (1) each end has an
explicit name and is associated with a specific
process; and (i1) the packets are sequenced only
with respect to the order of transmission on their
connection, and independent of the sequencing of
packets on other connections. The reliable data
protocol is responsible for implementing the
concept of a connection. Thie includes, but is
not limited to, the opening and synchronizing of a
connection, the maintenance of an open connection
and the corresponding connection state information,
the resynchronization of a connection if and when
necessary, and the closing of a connection. 1In
short, all the connection management functions.

The reliability requirement is satisified by
a mechanism {n the reliable data protocol which
guarantees packet delivery at the receiver. To do
this, the protocol must provide a sufficiently
robust error detection scheme (which is usually
some form of cyclic redundancy check). The
protocol wust also provide a way to positively
acknowledge packets and must be persistent in the
retransmission of packets until, positive acknowl-
edgment of an error free delivery is received or an
abort time out period expires. If the abort
occurs, the protocol must be able to identify for
the user which packets were received and which
wvere not. Since fragmentation, dynamic routing
strategies and packets received in error can
result in out of order reception of error free
packets and possibly duplicate reception of some
packets, the protocol must compensate by being
able to detect duplicate packets and reorder the
original packets prior to delivery to the receiving
process. The reordering of packets before delivery
also aids in the identification of received packets
for an aborted connection.

One last functional requirement for the
reliable data protocol is the maintenance of a flow
control strategy. At this layer, the flow control
strategy is aimed at the management and protection
of host resources, such as the gmount of buffers
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available for received traffic.

The second type of transport protocol is the
datagram protocol. This protocol is characterized
by the lack of a need for sequenced delivery and
the decreased level of reliability required.

The datagram 'service' basically has a single
packet orientation with no relation existing
between packets, something like a telegram
service. Becuase of this characteristic, there is
really no need for all the overhead involved {n
the maintenance of explicit connections. In fact,
a number of the functions that a reliable data
protocol provides, such as flow control, are not
even needed. Establishing a connection for a
single packet can be s waste of transmission
resources and be very inefficient. The datagram
protocol must provide a way to identify individual
packets, but it does not have to sequence them.

Some individuals within the ARPAnet community
who have expressed a desire for a datagram have
indicated that their application layer protocol
will provide the degree of reliability wanted. An
application layer protocol would simply retransmit
until some form of positive acknowledgment (either
explicit or implicit, such as the results of some

Csa

initiated action being returned) has been received.

The datagram protocol, then, must implement some
form of error detection for error free delivery of
packets, but it does not have to guarantee the
arrival of the packets or reorder them or detect
duplicates as the reliable data protocol does.

A speech protocol is a third type of trans-
port protocol. This protocol is characterized by
the need for sequenced delivery and the need for
very timely delivery.

As in the case of the relisble data protocol,
the speech protocol requires a connection manage-
ment mechanism to preserve logical relationships
anong the packets through sequenced delivery.

Flow control may or may not be required, depending
on the particular speech application and available
resources.

Individuals who are working on packetized
speech have indicated that they would prefer to
trade off a highly reliable protocol for one which
is very timely in its delivery of packets. (Note
that the retransmission of packets received in
error or possibly lost in the network reduces the
timeliness of their delivery.) Reordering is
required for two reasons, ordered delivery to the
application process and for the detection of late
arriving packets, which are discarded. Though
they require reordering, they do not worry about
lost or undelivered packets. Gaps {n the
reordered packets delivered to a speech algorithm
do not severly affect the quality of the speech,
unless the gap 1s significantly large. The
protocol must then provide for a way of sequencing
the packets, reordering them and de -cting
duplicate fragments. But it does not necessarily
have to implement a positive acknowledgment scheme
for the purpose of retransmission of packets
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which were lost or received in error. An error
detection scheme is required so that error packets
can be discarded at the receiver.

The fourth type of transport layer protocol
is for real time traffic. This is the most
difficult type of traffic to deal with, since it
18 characterized by a need for sequenced delivery,
and the need for both highly reliable and timely
delivery. The distinction made between speech and
real time traffic is that with speech, which 1s
ultimately intended for the human ear, all the
traffic {s not required for intelligent processing
of the information. The ear i{s an excellent
filter which can integrate over missing traffic,
as long as the gap ies not too large. Real time
traffic is more in the character of dats as
described under the reliable data protocol, such
as the remote control of a sensitive production
process. All of the information is required for
processing. The requirements for both high
reliability and timely delivery effects the
technology choices of the networks over which the
information wmust pass.

The types of functions that this protocol
must have 18 a combination of those defined for
the reliable data protocol and the speech protocol.

Transport layer protocols provide the 'trans-
portation medium' to the protocols at the
application layer. The transport layer hides from
the application layer the implementation details
of connection management and flow control,
sequencing and packet errors (except for the data-
gram protocol). Packets generally will be
delivered just as they vere sent, except as noted
earlier.

Application Layer

This layer defines the control procedures
between two application processes necessary to
accomplish a given task. For example, the control
procedures for an information retrieval package
might be search, extract, sort, merge, etc.

The application lsyer protocols provide the
capability for two software processes to work
together, This layer slways exists, whether
explicitly or i{mplicitly, wvhenever two processes
are required to communicate, be they on the same
machine, the same network, or different networks.
When this layer is explicitly defined in the
design stage of & project, it increases the
understandability of the software requirements and
aids in the definition of clean software
interfaces.

PROTOCOL STANDARDIZATION

Recalling our initial definitfon of the word
'protocol', it is interesting to consider what
happens when two societies, which have different
protocols (or shall we say ‘standards' of
behavior?) interact. The results can be humorous,
confusing, irritating, and sometimes even violent,
all at the same time. The effects can be the same
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when different computer networks, which have
different protocols, want to intercommunicate.
And this leads to the question of standardization
and the degrees of standardization. How much is
sufficient? How much is too much? What are the
issues? These questions are questions which must
be addressed, and they cannot be addressed in a
vacuum., What one organizstion does and how they
do 1t has an impact on other organizations, and
vice versa.

Standardization of the Network Layer

The definition of the network layer protocol
{s primarily a function of the technology of the
network because this is the protocol responsible
for actually moving packets through the network's
physcial switches. The choice of a specific tech-
nology for networks is usually driven by the intra-
network requirements, as it should be. Resl time
requirements also play a large role in the choice
of network technology.

A network implementer may choose from a number
of technologies for his network. Some network
implementers might choose an R/F cable (such as the
MITRE bus), or radio (such as ARPA's Packet Radio),
or the use of commercial land line (such as the
ARPAnet), to name just a few, It 1s, therefore,
not really practical to argue for one, or even a
few, standard protocols at the network layer. The
disadvantages of forcing every network to use the
same or extremely similar technologies to meet
their requirements far outweigh the advantage of
all networks being able to interconnect at the
network layer, especially when a strategy exists
which allows intercommunication between networks
without imposing this type of restriction (one

example being the protocol lasyering model given in -

this paper).

It does, however, make sense to argue for a
standard interface to the higher layer protocol.
This would allow relatively easy conversion between
two network technologies when a network is upgraded
and to some extent sllows for transportability of
higher layer protocol implementations.

Standardization of the Internet Layer

The internet layer ie where the real impact
of standardization or the lack thereof occurs.

There are three alternatives for implementing
the internet layer: (1) define one standard
internet layer protocol to be used within one
communication community (such as DoD); (11) do not
standardize at all and allow all networks to
implement their own internet layer protocol,
requiring a protocol translstion at the gateway
for the intermet protocol; and (i11) do not even
have an internet protocol and relegate the
functions to either the network layer or the
transport layer. Implementation of the internet
layer procedures in the network layer protocol now
ioplies that a protocol translation must occur at
the network layer. The net effect, from a
standardization point of view, is the same as

(84)
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alternative (11{). Implementation in the transport
layer protocol falls under the category of
standardization for transport layer protocols.

The following discussion focuses on alternative
(1), a single internet protocol standard and
alternative (11), the lack of a standard.

There are a number of advantages to a standard
internet protocol, most of which are reflected in
the size and simplicity of the gatewsy. A standard
protocol leads to a common approach for gateway
construction, where many copies of the heart of one
gateway (the internet protocol implementation) can
be made and supplied to many netwvorks. Networks
would be responsible for interfacing their partic-
ular network layer to the internet layer. These
modules should already exist at the network's
hosts, where a gateway-half is implemented. This
approach can reduce the net development costs for
gateways, and software development is an expensive
proposition (as we continue to experience). It
would also reduce the software maintenance costs.
It 18 possible tc have the types of congestion
control based on dynamic routing dicussed earlier
that would probably not be possible 1f protocol
translation were required, resulting in a form of
more reliable service (relisble here in the sense
that a gateway is not necessarily a single point
of fajilure or congestion for s user's communi-
cation).

The gateway does not have to worry about
connection management (which is non-trivial) as it
would have to do if the procedures of this layer
are relegated to the transport layer, unless s
standard transport protocol 1is implemented. This
approach maintains a transparency to all the trans-
port layer procedures. And there may very well be
more than one transport layer protocol to worry
about. This results in a much simpler, more
efficient, and probably more relisble gateway.

On the other hand, one standard internet
layer protocol does have its disadvantages. It
requires political agreement between orgainzations
vhich 18 not always easy to obtain, especially
wvhen an organization has already invested resources
to go in a different direction. Technical
conformity is required, something that all
skillful protocol designers have trouble living
with. And it provides less flexibility to change,
at least at the internet layer, to meet new
requirements.

When some of the procedures which we feel
should be in the internet layer have been relegated
to the transport layer, the discussions of the
section on transport layer protocol standardization
also apply.

Standardization of the Transport Layer

Standardization of the transport layer
protocol can also have a significant impact, but
not as large as that of the internet layer (unless
the internet layer's control procedures are
implemented at the transport layer). It %»
possible to speak about standardizstion of the
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transport layer within a community since it 1s
possible to define a set of closed cormunities
which share a common network or set of networks.
By a closed comnunity, we mean thet a host
belonging to that community will never talk to a
host outside of the community. But, when two
closed communities which have their own "standard"
transport layer protocols develop a requirement to
intercommunicate, their protocols are no longer
standard within the expanded closed community.
They will face the same difficulties that other
non-gtandard implementations will face when
trying to intercommunicate.

There are three alternatives for standardizing
transport layer protocols: (1) to have one
standard protocol for all types of traffic; (i1)
to have a set of standard protocols based on
traffic type (as defined earlier); and (i1i) to
allow each network to develop their own transport
layer protocols, i.e., not to standardize.

When one protocol is defined to answer the
needs of all users, it will probably end up not
serving any very well. Ite generality will require
8 large amount of overhead, resulting f{n potential
severe inefficiencies. It will be extremely large,
possible eliminating smaller hosts from even
implementing it. This approach is not a realistic
alternative,

When protocols are based on the type of
traffic, one protocol per type, then each protocol
can be optimized to handle the communication
characteristics of the traffic for which it was
intended. This alternative eliminates the need for
severe overhead and size. Of course protocols will
continue to be enhanced, but as long as one main-
tains backward compatibility, this should not
present a significant problem. A host will also
not have to worry about implementing many different
protocols for each new communication requirement
which comes along.

It should be recognized that a standard set
of transport level protocols still allow for
divergent hardware technologies at the network
layer and minimizes the impact when & network
decides to change its network technology.

Development costs would be small (except for
the first round), since the same protocols
developed for different machines would be
svailable off the shelf for machines of the same
type that connect to a network later.

This alternative also buffers the transport
layer protocols from gateway malfunctions. If a
gateway were to crash (assuming the internet
control procedures are in an internmet layer
protocol), the transport protccol does not have to
wvorry about messy connection cleanup, since there
18 no transport protocol translation at the
gatewvay.

The third rlternative, the no standard
spproach, has the advantage of allowing the trane-
port level protocols to.be very finely tuned to
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specific applications. It does not have to compro-
mise its technical approach for other requirements.

Also, the very hard to get political agreements are’

not necessary for this approach.
Standardization, Some Concluding Remarks

We are in basic agreement with the studies
vhich advocate a single standard internet layer
vithin a community. We also contend that a set of
transport layer protocols is what is required, not
just s reliasble data protocol. There, unfortu-
nately, are no hard answers yet &8 to which way is
best, because the implementations for internet-
working are still in the study and experimental
phases. The model we have presented {n the first
part of this paper is consistent with the ARPA
approach to intermetworking.

Should DoD choose to implement standard
protocols within the context of a closed community,
it is important to define that community
judiciously. There are definitely impacts on DoD
agencies and departments from the way other members
of the same community design and implement their
protocols.

The area of interconnection of computer net-
works 18 an exciting and interesting one, but many
difficult questions remain unanswered.
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Abstract—The motivation for interconnecting networks ks to provide one  host network interface (hardware and software) can be viewed 5
0"'"0'; ";'“'s"':; ':h"::“ “k:':“: of """M 'mn:‘;mmm as providing an interprocess communication system. ~
networks. 10 provide serv T New end- .
must be defined or the service protocots of the individual networks must be ‘W.hen a new host comp‘:‘tu is to be connected to an -
made 10 interwork. In either case the lssues of sddremsing, routing, ©XIStiNg network, it must implement the protocol layers -
buffering, flow control, error control, and security must be considered.  NECESSary to match the existing protocol used in the network. *;-*j
Two examples of interconnection strategy are examined: the latercon- The new host must join the network-wide interprocess com- At
pection of:';zs mtwor'h. ‘:nd the interconnection of ARPA research  munication system so the processes in that host can com- <]
:::'““od w:“"’.:: B terconnection of networks and the role of 1y nicate with processes in other hosts in the network. -
et The interconnection of networks requires that the processes N
in the hosts of the interconnected networks have a common -

INTRODUCTION interprocess communication system. This may be achieved by : q’
HE motivations for constructing computer communication Sonverting the networks to a new interprocess communication ' ]
networks—data and program exchange and sharing, remote system, by converting one or more levels of protocol to new
access to resources, etc.—are also motivations for intercon- P’°‘°°°“g or by translanng.bet\.veen pairs of interprocess 3
necting networks. This follows from the observation that the COMmmunication systems at their points of contact. . ]
power .of a communication system is related to the number of DATAGRAMS AND CIRCUITS

potential participants. ] ] =]
This paper first discusses a few key concepts involved in 'Two types of service are commonly discussed as appro- 7
computer communication networks. The view that computer Priate for the network-provided interprocess communication
networks provide an interprocess communication facility is Service: datagrams and virtual circuits. .
presented. The datagram and virtual circuit services are com- Datagrams are one-shot simple messages. They are in- S
pared. The interconnection device or gateway is discussed. herently unreliable since they travel one-way and are not 1
The relation of the interconnection issues to the open systems 3cknowledged. Datagrams may also arrive in a different 1
architecture is described. order than sent (at least in some networks). Datagrams are )

In this paper, two approaches to intemetworking are
characterized: the public data network system as implied by
the CCITT X.75 Recommendation and the ARPA experi-
mental internetwork. These two systems illustrate the virtual
circuit and the datagram approaches to network intercon-
nection, respectively. The vast majority of the work on inter-
connecting networks falls into one of these two approaches.

INTERPROCESS COMMUNICATION

While discussing computer communication, it is useful to
recall that the communication takes place at the request and
agreement of processes, i.e., computer programs in execution,
Processes are the actors in the computer communication
environment; processes sre the senders and receivers of data.
Processesoperate in host computers or hosts.

The protocols used in constructing the communications
capability provide an interprocess communication system.
Fig. 1 shows how the combination of the network and the
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simple to implement since they do not require the networks
or gateways to record and update state information. Data-
grams must carry complete address information in each
message. The transmission of datagrams by a process is via
send and receive actions.

Virtual circuits (or connections) are designed to be re-
liable and to deliver data in the order sent. Implementation of
virtual circuits is complicated by the need for the networks
or gateways to record and update state information. Virtual
circuits are created through an exchange of messages to set
up the circuit; when use terminates, an exchange of messages
tears down the circuit. During the data transmission phase, 8
short form address or circuit identifier may be used in place
of the actual address. To use a virtual circuit a process must
perform actions to cause the virtual circuit to be created (call
setup) and terminated, as well as the actions to send and re-
ceive data.

Datagrams provide a transaction type service while virtual
circuits provide a8 connection type service. Each of these
services is needed in a general purpose communication environ-
ment. Datagrams are most efficient for transaction type in-
formation requests such as directory assistance or weather
reports. Virtual circuits are useful for terminal access to
interactive computer systems for file transfer between com-
puters.
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Fig. 2. Interconnected networks.

GATEWAYS

Two or more networks are connected via a device (or pair
of devices) called a gateway. Such a device may appear to each
network as simply a host on that network (Fig. 2).

Some gateways simply read messages from one network
(unwrapping them from that network’s packaging), compute
a routing function, and send messages into another network
(wrapping them in that network’s packaging). Since the net-
works involved may be implemented using different media,
such as leased lines or radio transmission, this type of gateway
is called a mediaconversion gateway.

Other gateways may translate the protocol used in one
network to that used in another network by replacing mes-
sages received from one network with different messages with
the same protocol semantics sent into another network. This
type of gateway is called a protocol-transiation gateway.

It should be clear that the distinction between media-
conversion and protocol-translation is one of degree: the
media-conversion gateways bridge the gap between differing
link and physical level protocols, while protocol-translation
tateways bridge the gap between differing network and
higher level protocols.

(88)
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The translation approach to network interconnection
raises several issues. Success in protocol translation seems
inversely correlated with the protocol level. At the lower
levels, protocol translation causes no problems because the
physical level and link levels are hop-by-hop in nature. It
thould be noted, though, that different protocols even at
these low levels may have impact on the reliability, through-
put, and delay characteristics of the total communication
system.

At the network and transport levels, the issues of message
size, addressing, and flow control become critical. Unless one
requires that only messages that can be transmitted on the
network with the smallest maximum message size be sent, one
must provide for the fragmentation and reassembly of mes-
sages. That is, the division of a long message into parts for
transmission through a small message size network, and the
reconstruction of those parts into the original message at the
destination. The translation of addresses is a difficult problem
when one network or transport level protocol provides a larger
address space than the corresponding protocol to be translated
to. When end-to-end flow control mechanisms are used, as
they commonly are in transport level protocols, difficulties
arise when the units controlled are different. For example,

- when one protocol controls octets and the corresponding

protocol controls letters. More difficulties arise with potential
difference in the model of flow control. For example, a
difference between pre- and postallocation, or between the
allocation of buffer space and the allocation of transmission
rate.

At higher levels, the problems are more difficult because
of the increased state information kept and the lower likeli-
hood of one-to-one translation of individual protocol mes-
sages. A further difficulty is that each level further multi-
plexes the communication so that each connection or stream
or channel or virtual circuit must be separately translated.
It should be noted that neither of the specific interconnec-
tion approaches discussed in this paper attempts higher level
protocol translation.

Gateways may be thought of as having a *“half™" for each
network they interconnect. One could model the operation
of a gateway as having each gateway-half contain procedures
to convert from a network specific protocol into a standard
protocol and vice versa (Fig. 3).

RELATION TO OPEN SYSTEMS ARCHITECTURE

In relation to the open systems architecture, the inter-
connection of networks focuses on levels 3 and 4 {1].

To review, the open systems architecture defines the
following levels of protocol:

Function

Application
Presentation
Session
Transport
Network
Link
Physical
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Fig. 3. Gateway halves.

The lower levels, the physical and the link levels, are
hop-by-hop in nature and present no interconnection issues
in terms of compatibility, although there may be some per-
formance concerns.

The higher levels, the session level, the presentation level,
and the application level, have so many compatibility require-
ments that it seems quite unlikely that interconnection of
different protocols at those levels will be workable.

Thus, it is at the network level and the transport level that
the interconnection of networks finds issues of concern.

The network level corresponds to the interface to data-
gram service, and the transport level corresponds to the inter-
face to virtual circuit service.

In some networks, the network level and datagram service
have been hidden from the user, forcing consideration of
network interconnection 3t the transport level.

INTERCONNECTION OF X.25 NETWORKS
Introduction

The public data networks (PDN's) that follow the CCITT
X.25 Recommendation [2] are to be interconnected via an
interface specified in CCITT Recommendation X.75 {3].
Recommendation X.25 specifies the interface between the
customer’s equipment, called the data terminal equipment
(DTE); and the network equipment, called the data circuit-
terminating equipment (DCE). Recommendation X.25 implies
a virtual circuit operation. Thus, the PDN’s offer an interface
to 8 virtual circuit transport level protocol. Fig. 4 shows the
model of a PDN virtual circuit.

The interface between two PDN's specified in Recom-
mendation X.75 is quite similar to that in Recommendation
X.25. The equipment on either side of this interface is called
a signaling terminal (STE). The STE-STE interface is much
like the DTE-DCE interface. The STE-STE interconnection
is 8 split gateway with each gateway-half in a physical device
controlled by the PDN connected to that gateway-half. Fig. §
shows the interconnection of PDN's,

The interconnection of PDN's via X.75 interfaces results
in a series of virtual circuits. Each section is a distinct eatity
with separate flow control, error recovery, etc. Fig. 6 showss
PDN transmission path with two virtual circuits (VC's) and
five separate flow control (FC) steps.
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v
Addressing N
The address field is variable in Jength up to 15 digits, with .
each digit coded in a 4 bit field. The maximum address is then
60 bits (about 8 octets).
Routing —
The user has no influence over routing used. To create N
the series of virtual circuits, a series of call setups establishes .
a fixed route (between pairs of STE's at least). State informa- ol
tion must be kept Jor each call in the source and destination D
DTE's and DCE's and in each STE in the route. -
Buffering and Flow Control N
Each portion of the total path is a distinct virtual circuit. ..
Each virtual circuit has an independent flow control (and e
(89)
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particular to that PDN). In addition, there is flow control
across each STE-STE interface. All this flow control is on a
per call basis. This stepwise flow control may introduce
delay in the total path that could be avoided with an end-to-
end scheme.

There are some concerns about the interaction of two
types of flow control implemented in PDN’s. One type allows
one message in transit from source DCE to destination DCE
at any one time. The other sllows multiple messages to be
in transit, the number being determined by the flow control
window.

Acknowledgment

Each portion of the total path has an acknowledgment.
The user to network interface also has an acknowledgment.
This local acknowledgment means only that the first PDN
has accepted the message for transmission, not that it has
arrived at the destination.

Recovery

The X.25 and X.75 Recommendations do not specify
how the PDN's deal with errors intemally. If unrecoverable
errors occur, the network will signal a Reset, which apparently
means that the virtual circuit still exists, but the flow control
is reset and messages may have been lost. More serious errors
result in the call being cleared.

Because of the fixed route nature of the multinetwork
path, an STE failure disrupts the communication.

Security

The X.25/X.75 Recommendations do not provide any
security features.

Header Structure

Once the call is established, a header is only 3 octets. The
call setup headers are substantially longer, typically 20 octets,
but possibly as large as 166 octets. There is a tradeoff between
header size and state information kept; in the PDN’s, the
tradeoff has been made toward small headers and large state.
The details of the headers are shown in Appendix 1.

Summary

The most important aspect of the interconnection of
PDN’s is that service provided to the using process is 8 virtual
circuit with essentially the same properties a single PDN would
have provided. This is done by concatenating a series of
virtual circuits to provide the total path, resulting in a fixed
route through a set of network interconnection points,

INTERCONNECTION OF ARPA RESEARCH NETWORKS
Introduction

The ARPA sponsored research on interconnections of
networks has let to a two-level protocol to support the equiva.
Y lent function of the PDN's X.25/X.75 service. The ARPA
sponsored work on networks has developed an intemet proto-
col (IP) [4], and a transmission control protocol (TCP) [5].
TCP is a logical connection transport protocol and is a
level 4 protocol in the OSA model of protocol structure.

(90)
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Fig. 7. End-to-end connection.

The IP is a datagram protocol. The collection of intercon-
nected networks is called an internet. IP is the network proto-
col of the internet and this is a level 3 protocol in the OSA
model. The actual networks used are of various kinds (e.g.,
the ARPANET, radio networks, satellite networks, and ring
or cable networks) and are referred to as local networks even
though they may span continents or oceans. The interface to
a local network is a local network protocol or LNP. Fig. 7
shows the model of an end-to-end connection.

In the ARPA model, the networks interconnect via a
single device called a gateway. A gateway is 3 host on two
or more networks, Fig. 8 shows the ARPA model of the
interconnection of networks.

Each network addresses a gateway on it in the same way it
addresses any other host on it. The information required to
deliver a message to a destination in the internet is carried in
the IP header. The IP is implemented in the gateways and in
hosts. A sending host prepares a datagram (which is an IP
header and the original message) and then selects a gateway
in its own net to forward the datagram. The sending host
then sends the datagram wrapped in a local network packet
to that gateway.

A gateway receives a packet from one of the local net-
works to which it is attached, and unwraps the IP data-
gram. The gateway then examines the IP header and deter-
mines the next gateway (or destination host) address in one
of the local networks it is directly connected to. The gate-
way then sends the datagram with its IP header in a new local
net packet to that gateway (or host).

The IP has no provision for flow control or error control
on the data portion of the message (the IP headers are check-
summed). There are no acknowledgments of IP messages.
The IP is simple and the gateway may be implemented in
small machines. A key point is that a gateway has no state
information to record about a message. At the IP level, there
are no connections or virtual circuits.

The IP does not provide a service equivalent to the PDN's
X.25/X.75. To provide that type of end-to-end reliable
ordered delivery of data the ARPA internet uses TCP.
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Fig. 9. ARPA model of transmission path.

TCP uses end-to-end mechanisms to ensure reliable ordered
delivery of data over a logical connection. It uses flow control,
positive acknowledgments with time out and retransmission,
sequence numbers, etc., to achieve these goals. Fig. 9 shows
the conceptual transmission path in this interprocess com-
munication system, pointing out the datagram (DG) path
between the IP modules and the virtual circuit path between
the TCP modules st the source and destination and the flow
control (FC) at that level.

ARPA has used these techniques to interconnect several
very different networks including the ARPANET, packet
radio nets, s satellite net, and several local networks.

Addressing

The size of the address in this experimental system fis
fixed. The IP provides a one octet network field and a three
octet host field. Also a one octet protocol identifier in the

IP header may be considered address information. The TCP
provides a two octet port field. The total of the address
length is then seven octets. Provision has been made for a
host to have several addresses, so the host field is sometimes
called the logical host field. The total address is the con-
catenation of the network, host, protocol, and port fields.
Routing

Normally, the user has no influence over the route used
between the gateways. There is no call setup and the route
may vary from one message to the next. No state information
is kept in the gateways.

A user might insert 8 source routing option in the 1P
header to cause that particular message to be routed through
specific gateways.

Buffering and Flow Control

There is no flow control mechanism in the IP. The gate-
ways do not control the flow on connections for they are
unaware of connections or any relation between one message
and the next message. The gateways may protect themselves
against congestion by dropping messages. When a gateway
drops a message because of congestion, it may report this
fact to the source of the message.

The TCP uses end-toend flow control using windows
on a per logical connection basis.

Acknowledgment

The IP has no provision for acknowledgments. The TCP
uses acknowledgments for both error control and flow control.
The TCP acknowledgments are not directly available to the
user.

Recovery

Errors in a network or gateway result in a message being
dropped, and the sender may or may not be notified. This
inherent unreliability in the IP level allows it to be simple
and requires the end-to-end use of a reliable protocol.

TCP provides the reliable end-toend functions to recover
from any lost messages. The TCP uses a 'positive acknowl-
edgment, time out, and retransmission scheme to ensure
delivery of all data. Each message is covered by an end-to-
end checksum.

Because of the potential of alternate routing, the end-to-
end communication may be able to continue despite the
failure of a gateway.

Secunty

The IP provides an option to carry the security, precedence,
and user group information compatible with AUTODIN II.
The enforcement of these parameters is up to each network,
and only AUTODIN Il is prepared to do so.

The TCP end-toend checksum covers all the address
information (source and destination network, host, protocol,
and port), so if the checksum test is successful the address
fields have not been corrupted.

(91)
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Header Structure

The IP header is 20 octets (plus options, if used), but
there is no call setup and no gateway state information.
Thus, at the IP level, the header size versus state information
tradeoff has been made toward large header and little (no)
state information.

The TCP header is 20 octets (plus option, if used). There
is a connection establishment procedure called the *‘three-way
handshake,” and significant state information is kept. In this
case, there are both large headers and large state tables. The
details of the headers are shown in Appendix 11.

Summary

The ARPA networks are interconnected by using a com-
mon datagram protocol to provide addressing (and thus
routing) information and an end-to-end transport protocol
to provide reliable sequenced data connections.

This model has evolved from the ARPANET experience,

APPENDIX |
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in particular from the internetwork protocol model sug:
gested in a paper by Cerf and Kahn [6].

CONCLUSION

Both the PDN's and the ARPA networks are intercon-
nected by establishing standard protocols. The PDN’s provide
a virtual circuit service by concatenating the virtual circuit
services of the individual networks. The ARPA networks use
two levels of protocol to provide both datagram and virtual
circuit services.

Additional discussion of the interconnection of PDN's is
provided in (7], [8]. In another paper in this issue Boggs
et al. present in detail another example of network inter-
connection using the datagram approach [9].

The issues of network interconnection have been discussed
for at least 5 years (for example, McKenzie [10]). The recent
expositions by Sunshine [11], Cerf and Kirstein [12], and
Gien and Zimmermann [13], are particularly recommended.

X.75$ HEADER FORMATS

The call request and the data packet formats are illustrated here. These typify the X.75 packet formats.
All the X.75 packets are the same in the first two octets. The format field indicated the type of packet.

Call Request

The call request packet is variable in length from a practical minimum of 11 octets to an unlikely maxi-

mum of 160 octets.

Format

Channel Group

Channel Number

Type

Src Adr Len

Dst Adr Len

Destinastion Address
then
Source Address
( saximum 15 octets )

Network Utilities Len

Network Utilities Data

( saxioum 62 octets )

User Facilities Len

User Facilities Data

( maximum 62 octets )

User Data

( maximum 16 octets )
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Format Channel Group
Channel MNumbder
Flow Control
Data

Intermne: Protocol

ARPA PROTOCOL HEADER FORMATS

APPENDIX 11

Every datagram carries the basic IP header. Every TCP segment transmitted carries the basic TCP header.

The ARPA IP has a basic header of 20 octets, and may carry a varisble number of options up to s total
length of 60 octets.

RS

Version Header Length 1

i ‘Typ; of Service 2 - j
RO = . =
1 Total Length T
) ]
* — -t ¢ -t E ‘.1
5 \j
1 Identification -
6 -
Flags " Fragment 7 \_}
© offset 8 =
" Time to Live ) 9 ~i
- T “ =~y
Protocol 10 -
o ) 1" ]
4 Checksum 4
12 ]
o o 13 'T’T?i
1 " .
4 Source Address T
15 Y
1 ]
16 i 4
$ - ) — ¢ ‘7 . .
4 8
18 1
4 Destination Address N
19 -

9 -
20 D
Dats or TCP Header -]
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Transmission Control Protocol
The basic TCP header is 20 octets, and the header may be up to 60 octets long if options are used.

n - o e & &

611

1 Source Port

4 Destinstion Port 4
1 Sequence Numbder

1 -
J Destination Address 4

Data Offset

1
Control Flags
9 Window 1
1 Checksum 4
4 Urgent Pointer 4

{n
12]

3

[4)
3)
(6)

m

(8]
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The ARPA Internet Protocol

Jonathan B. Postel, Carl A. Sunshine and
Danny Cohen

Information Sciences Institute, University of Southern Cali-
fornia, 4676 Admiralty Way, Marina dcl Rey, California
90291, USA

A variety of computer networks are interconnected by
gateway computers in the ARPA internetwork system. Pro-
cesses on different networks may exchange messages with
each other by means of an Intemet Protocol which must be
implemented in each subscriber (host) computer and in the
gateways. The Internet Protocol is a relatively simple proto-
col that provides for the delivery of individual messages
(datagrams) with high but not perfect rcliability. This Inter-
net Protocol does not replace the existing protocol in any
network, but is used by processes to extend the range of
communications. Messages in Internet Protocol are trans-
mitted through any individual network by encapsulating
them in that network’s protocol. This paper presents an over-
view of the Internet Protocol and the operation of the gate-
way computers in the ARPA internet system.

Kevwords: Protocol, ARPA Net, Internctwork, Data-
gram, Gateway.
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1. Introduction

The family of computer networks developed for
the United States Defense Advanced Research
Projects Agency (DARPA) represents one of the
largest and most diverse internetwork systems
currently in operation. The basic approach to inter-
connecting this variety of networks was developed
over several years, and has resulted in the definition
of an Internet Protocol (IP) [1]. This paper is
intended primarily to document the details of the IP
in the open literature, and secondarily to provide a
brief discussion of the major design tradeoffs which
caused the IP to take its current form,

Section 2 presents an overview of the DARPA
approach to interconnection and the operation of IP.
Section 3 details IP's main features, while some addi-
tional options are treated in section 4. Section 5
sumiarizes the 1P and other functions performed in
the gateways which interconnect networks. Section 6
discusses the major design choices in developing IP.
Section 7 outlines severa] questions and extensions
requiring further work.

Carl Sunshine is with the University
of Southern California Information
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2. Overview

Since the development of the ARPANET in the
early 1970's, a variety of new packet switching net-
work technologies and operational networks have
been developed under DARPA sponsorship, including
satellite, packet radio, and local networks. In order to
allow processes on different networks to communi-
cate with each other, a means for interconnecting net-
works has been developed without requiring changes
to the internal operation of any network.

The method chosen for interconnecting networks
makes minimal demands on individual networks. To
facilitate inclusion of a wide variety of networks,
each net is required to provide only a minimal data-
gram level of service (i.e. to deliver individual packets
of moderate length between its users with high but
not perfect reliability). Networks are inter-connected
by gateway computers that appear to be local sub-
scribers on two or more nets. The gateways are
responsible for routing traffic across multiple net-
works, and for forwarding messages across each net
using the packet transmission protocol in each net-
work. The gateways provide a point-to-point internet
datagram service by concatenating the datagram
services available on each individual net. Such a
system of interconnected networks has been called a
Catenet [2].

This approach allows the interconnection of net-
works that have significantly different internal proto-
cols and performance. The networks in the ARPA-
Catenet were originally designed as independent enti-
ties. In the Catenet approach no changes are required
in the internal functions of any network.

Gateways provide an internet service by means of
an Internet Protocol (IP) that defines the format of
internet packets and the rules for performing inter-
net protocol functions based on the control informa-
tion (internet header) in these packets. IP must be
implemented in host computers (subscribers) engaged
in internet communication as well as in the gateways.
Gateways also use a gateway-to-gateway protocol to
exchange routing and control information.

IP provides for transmitting datagrams from an
internet source to an internet destination, potentially
in another net. IP also provides for fragmentation and
reassembly of long datagrams, if necessary, for trans-
mission through networks with small packet size
limits.

IP is purposely limited in scope to provide only
the function necessary to deliver datagrams over an

(96)

interconnected system of networks. The functions of
flow control, sequencing, additional data reliability,
or other services commonly found in host-to-host
protocols, and multidestination delivery capability or
other services are purposely left for higher level
protocols to provide as necessary. This allows the
higher levels to be tailored to specific applications,
and allows a simple and efficient implementation of
IP.

2.1. Place in Protocol Hierarchy

As described above, IP functions on top of, or
uses, the packet transmission protocol in each indivi-
dual network. IP is used by higher level end-to-end
protocols such as a reliable transport protocol, e.g.,
Transmission Control Protocol (TCP) [3] in the
ARPA-Catenet or a “‘real time" protocol, e.g., for
packet speech.

As shown in Figure 1, IP is the only level in the
protocol hierarchy where a single common protocol is
used. By locating this' point of convergence at the
internet datagram level, the Catenet approach
preserves the flexibility to incorporate a variety of
individual networks and protocols providing packet
transmission below IP, while remaining general and
efficient enough to serve as a common basis for a
variety of higher level protocols. With this approach,

Fle Tormmal Inquiny Name
Transfer Accens Respome Server
Prosacol Provocol Provocoi Prowocol

Tramwormon User
Conurol Datagram
Prowocol Protocol

Network | Network 2
Protocol Prowocol

Fig. 1. Protocol Hierarchy.
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gateways need only provide datagram service, and
remain relatively simple, inexpensive, and efficient.

2.2. Model of Operation

The Internet Protocol provides two major func-
tions: routing a datagram across successive networks
to its internet destination address, and fragmentation/
reassembly of large packets when needed to cross nets
with small packet size limits. To accomplish this, an
IP module must reside in each host engaged in inter-
net communication and in each gateway that inter-
connects networks. The following scenario describes
the progress of a datagram from source to destination
(assuming one intermediate gateway is involved-see
Figure 2).

The basic notion is encapsulation. The data to be
transmitted must pass through a variety of network
environments. To do this the data is encapsulated in
an internet datagram. to send the datagram through
an individual network, it is in turn encapsulated in a
local network packet, and extracted at the other side
of that network where it is decapsulated from the
first network protocol and is encapsulated in the
second network protocol. Thus the model is a series
of encapsulation/extractions, not translations. This
encapsulation is an information preserving transfor-
mation, all the information is preserved even if the
individual network cannot make use of it.

The sending internet user (typically a higher level
protocol module such as TCP) prepares its data and
calls on its local IP module to send the data as a data-
gram, passing the destination address and other
parameters as arguments of the call.

The IP module encapsulates the data in a datagram
and fills in the datagram header. The IP module exa-
mines the internet destination address. If it is on the
same network as this host, it sends the datagram
directly to the destination. 1f the datagram is not on
the same network then the IP module sends the data-

HOST GATEWAY HOST
VY

Fig. 2. ARPA Mode! Transmission Path.
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gram to a gateway for forwarding. The selection of
which gateway to send the datagram to is an internet
routing decision.

The local network interface (note that from the IP
point of view, all actual networks are “local” even if
they span across the world) creates a local network
packet with its own header, and encapsulates the
datagram (complete with internet header) in it, then
sends the result via the local network.

The datagram arrives at a gateway host encapsu-
lated in the local network packet. The iocal network
interface extracts the IP datagram and turns it over to
the IP module.

The IP module determines from the internet
destination address that the datagram should be for-
warded to another host in a second network. The
IP module uses the local portion of the destination
address 1o determine the local net address for the
destination host. It calls on the local network inter-
face for the second network to send the datagram to
that address. :

If the datagram is too large to be sent through the
second network, the IP module fragments it into
several smaller datagrams and passes each one ‘o the
local net interface.

The local network interface creates a local net-
work packet and encapsulates the datagram, sending
the result to the destination host. At the destination
host, the datagram is extracted from the local net
packet and passed to the IP module.

The IP module determines that the datagram is for
an internet user in this host. If the datagram is a frag-
ment, the IP module collects all fragments of a parti-
cular datagram and reassembles the complete original
datagram. It then passes the data to the user along
with the internet source address and other informa-
tion from the internet header.

2.3. Additional Mechanisms

In addition to the basic addressing and fragmenta-
tion functions described above, IP uses four key
mechanisms in providing its service: Type of Service,
Time to Live, Options, and Header Checksum. Each
of these is summarized here and fully described in
Sections 2 and 3.

The Type of Service (TOS) is used to indicate the
quality of the service desired — this may be thought
of as selecting among Interactive, Bulk, or Real Time,
for example. The type of service is an abstract or
generalized set of parameters which characterize the
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service choices provided in the networks that make
up the Catenet. This type of service information is
used by gateways to select the actual parameters for
transmission through each individual network.

The Time to Live (TTL) is an indication of the
lifetime of a datagram. Datagrams must not be
allowed to persist in the ARPA-Catenet indefinitely.
This is because reliable end-to-end protocols depend
on there being an upper bound on datagram lifetime,

especially old duplicates due to retransmissions. The .

time to live can be thought of as a self-destruct time

limit.

The Options provide for control functions useful

in some situations but unnecessary for the most
common communications. The options include provi-
sions for timestamps, error reports, and special rout-
ing.
The Header Checksum provides a verification that
the information used in processing the datagram has
been transmitted correctly. However, the data is not
covered by the checksum, and may contain errors
(see Section 2.6). If the header checksum fails, the
internet datagram is discarded by the entity which
detects the error.

2.4. Relation to Other Work

The current ARPA Internet Protocol evolved from
ideas suggested by Cerf and Kahn [4], and from
contemporaneous proposals within the International
Federation for Information Processing (IFIP) Tech-
nical Committee 6.1 (also known as the International
Network Working Group or INWG), in which internet
functions and reliable transport functions were com-
bined in a single protocol. Subsequent development
of other high level protocols (such as packet speech)
that needed internet services led to splitting internet
functions and reliable transport functions into sepa-
rate protocols (the current IP and TCP).

The Internet Protocol used in the ARPA-Catenet
is quite similar in philosophy to the PUP protocol
(5] developed by the Xerox Corporation. The PUP
protocol does not include fragmentation (leaving this
to each local net to perform if necessary), but does
include a third level of addressing (Ports within hosts)
in the internet packet header. IP and PUP share the
important principle of having a single common inter-
net datagram protocol as a point of convergence in
their protocol hierarchies. Both the PUP and IP
systems use the encapsulation technique, and a
scheme for “mutual encapsulation™ has been worked
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out [6]. PUP and IP both trace their roots to a joint
XEROX-DARPA project at Stanford University. The
network interconnection approach used by the
European Informatics Network [7] is also quite
similar.

Public packet switching networks, on the other
hand, have chosen to use virtual circuit (VC) level of
service as the level of interconnection, providing end-
to-end service as a concatenation of VCs through each
network. Since gateways must participate at the VC
level, they are more complex and costly, and the end-
to-end service may be less efficient and less robust.
They are also unable to accommodate *transaction™
type users without setting up a VC, although the
CCITT is currently considering adding a datagram
e of service. For further comparison of CCITT and
Catenet approaches see {8—-12].

In summary, the ARPA Intemnet Protocol supports
delivery of datagrams from an internet source 1o a
single internet destination..IP treats each datagram as
an independent entity unrelated to any other data-
gram. There are not connections or logical circuits
(virtual or otherwise). There are no acknowledgements
either end-to-end or hop-by-hop. There is no error
control for data, only a header checksum. There are
no retransmissions. There is minimal flow control.
For flexibility, it is explicitly left to higher level
protocols to provide these functions.

3. Main Features

The following paragraphs describe in some detail
the mechanisms of the IP. A summary of the contents
of the IP header is shown in Figure 3. Further
information may be found in the current specifica-
tion {1].

3.1. Addressing

The IP provides a two level addressing hierarchy.
The upper level of the hierarchy is the nerwork
number (8 bits), and the lower level is an address
within that network (24 bits), and is commonly
called the host. This second level of the hierarchical
address is sometimes calied the local address. The
details of the local address are dependent on the
particular network.

The local address should allow a single physical
host to act as several logically distinct internet hosts.
That is, there should be mapping between internet
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Version IH Length Type of Sene

Towal Length

Idenufication

Flags Fragment Offset

Time o Line Protocol

Headet Checksum

— Source Address —

— Desunation Address —

Fig. 3. INTERNET Protocol Header.

host addresses and nctwork/host interfaces that
allows several internet addresses to correspond to one
physical interface. It should also be possible for
several interfaces to accept or emit datagrams for the
same internet address.

3.2. Protocol Number

The Protocol Number indicates the next level
protocol used in the data portion of the datagram.
This allows the internet module to demultiplex the
incoming datagrams to higher level protocol modules
for further processing. Hence, the protocol number
indicates the format for parsing the rest of the data-
gram. Note that there is only one protocol number
rather than a source protocol and a destination proto-
col because, higher level protocol modules exchange
datagrams with each other using the same protocol.
For example, two TCP modules exchange TCP seg-
ments via datagrams marked “TCP" in the protocol
number.

One particular protocol number designates a multi-
plexing protocol which allows several independent
data blocks from possibly different higher level proto-
col modules to be aggregrated together into one data-
gram for transmission [13].

TR RS e e e T T T TRT AT T e

3.3. Fragmentation and Reassembly

The IP provides information to allow datagrams to
be fragmented for passage through networks with
small packet size limits and to be reassembled at the
destination. The necessary information includes an
identification of the fragments that belong to the
same datagram and the position of each fragment
within the datagram.

The Identification (1D) field is used together with
the source and destination address, and the protocol
number, to identify datagram fragments to be
assembled together. The More Fragments flag (MF)
is set if the datagram is not the last fragment. The
Fragment Offset (FO) identifies the fragment loca-
tion, relative to the beginning of the original unfrag-
mented datagram. These offsets are counted in units
of 8 octets. Hence, if a datagram is fragmented, its
data portion must be broken on 8 octet boundaries.
This convention is designed so than an unfragimented
datagram has all zero fragmentation information
(MF=0,FO=0).

If the Don't Fragment flag (DF) is set, then inter-
net fragmentation of this datagram is not permitted,
although this may force it to be discarded at a gate-
way to a small packet network. DF can be used to
prohibit fragmentation in cases where the receiving
host does not wish to reassemble internet fragments.
It is also possible that a small packet network could
use network specific fragmentation and reassembly
without the knowledge or involvement of the IP
modules [14].

If a datagram is too large to be forwarded through
any net, the entrance gateway breaks it into as many
fragments as are nccessary to fit within that net’s
packet size limit. Figure 4 shows a large datagram of
452 octets being fragmented into two smaller frag-
ments (only the header fields relevant to fragmenta-
tion are given). Subsequent gateways may break the
fragments into even smaller fragments if necessary
using the same procedure.

Datagrams arriving at the destination IP are easily
recognizable as fragments if either MF or FO is non-
zero. Fragments from the same original datagram are
identified by having identical ID ficlds (for a parti-
cular source, destination, and protocol number).
Fragments are qucued until the original datagram can
be fully reassembled. Reassembly may be accom-
plished by placing the data from each fragment in a
buffer at the position indicated by FO. Using the
header information from the first fragment, the reas-
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HL = 20

T =amn

MF = 0

DF = 0

FO=0

452 Duta Octets
(]
HL =20 HL = 20
Tt = 276 TL = 216
MF =1 MF=0
DF a0 DF = 0
FO=0 FO = 32
256 Data Octets 196 Data Octes

®) ©

Fig. 4. Fragmentation Example.

sembled datagram is processed further just as if it had
been received intact. If the time to live on any frag-
ment expires during reassembly, the partialy
assembled datagram is discarded, and an error data-
gram is sent to the source.

A convention has been established in the current
ARPA-Catenet that no datagrams larger that 576
octets will be sent, and that all receivers will be
prepared to receive a reassemble datagrams up to this
length (unless specifically arranged otherwise). This
number is chosen to allow a data block of 512 octets
and a reasonable number of header octets for several
protocol levels to be transmitted in one datagram.
Note that the IP header is repeated in each fragment.
Hence, the minimum maximum packet size for any
network in the Catenet is 20 header octets plus 8 data
octets or 28 octets total.

The internet fragmentation procedure allows the
fragments to be treated as independent datagrams the
rest of the way to their destination (even taking
different routes), with reassembly occurring only at
the destination.

There is a need to uniquely identify the fragments
of a particular datagram. Hence the sender must
choose the identification field to be unique for each
source/destination pair and protocol number for the
time the datagram (or any fragment of it) could exist
in the internet. Since the ID field allows 65,536
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different values, some host may be able to simply use
unique identifiers independent of destination.

It is beneficial for some higher level protocols to
choose the identification field. For example, TCP
protocol modules may retransmit an identical TCP
segment, and the probability for correct reception
would be enhanced if the retransmission carried the
same identifier as-the original transmission since frag-
ments of either datagram could be used to construct
a correct TCP segment. Note that a retransmission
might be routed via a different set of networks and
gateways and also may be fragmented into a different
number of different sized fragments. The fragmen-
tation information permits reassembly from frag-
ments from either copy of the datagram.

3.4. Type of Service

The Type of Service (TOS) provides a network
independent indication of the quality of service
desired. These parameters are 1o be used to guide the
selection of the actual service parameters when
transmitting a datagram through a particular network.
Some networks offer several piecedence levels of
service. Another choice involves a low-delay vs. high-
reliability trade off. Typically networks invoke more
complex (and delay producing) mechanisms as the
need for reliability increases. A few networks offer
a stream service, whereby one can achieve a
“smoother” service at some cost. Typically this
involves the reservation of resources within the net-
work.

The abstract service quality parameters provided
by IP are:

Precedence: Indicates the importance of this data-
gram.

Stream or Datagram: Indicates if there will be other
datagrams from this source to this destination at
regular frequent intervals justifying the maintenance
of stream processing information.

Reliability: A measure of the level of effost desired to
ensure delivery of this datagram.

Speed: A measure of the importance of prompt
delivery of this datagram.

Speed over Reliability: Indicates the relative
importance of speed and reliability when a conflict
arises in achieving both.

3.5. Time to Live

The Time to Live (TTL) indicates the maximum
time the datagram is allowed to exist in the Catene?.
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As a datagram moves through the Catenet the TTL is
decremented. 1f the TTL reaches zero the datagram
should be discarded. The intention is to cause long
delayed or undeliverable datagrams to be discarded.
Guaranteeing a maximum lifetime for datagrams is
inportant for the correct functioning of some higher
level protocols such as TCP, and to protect the
Catenet resources.

This field should be decreased at each point that
the internet header is processed to reflect the time
spent processing the datagram. Even if no informa-
tion is available on the time actually spent, the field
should be decremented by 1. The time is measured in
units of seconds, and the maximum TTL is 255
seconds.

3.6. Checksum

The IP provides a checksum on the header only.
Since some header fields may change (e.g., TTL, MF,
FO), this is recomputed and verified at each point
that the internet header is processed. This is a hop-by-
hop checksum.

This checksum at the internet level is intended to
protect the internet header fields from transmission
errors. If the internet header contained undetected
errors, misrouting and other unanticipated behavior
could result. There may be applications in which it is
desirable to receive data even though there are a few
bit errors. If the IP enforced a data checksum and
discarded datagrams with data checksum failures such
applications would be restricted unnecessarily.

The checksum is computed as the 16 bit one’s
complement of the one’s complement sum of all 16
bit words in the header. For purposes of computing
the checksum, the value of the checksum field is zero.
This checksum is simple to compute and has been
adequately reliable for usage to date, but it is provi-
sional and may be replaced by a CRC procedure,
depending on further experience.

3.7. Header Format

In addition to the main features discussed above,
the P includes the following items in the datagram
header:

A Version Number (VER) which indicates the
vession of the IP in use, and hence the format of the
internet header.

The Internet Header Length (IHL) is the length of
the internet header and thus points to the beginning
of the data.

The Total Length (TL) is the length of the data-
gram, including internet header and data. There are
several protocol options, some of which are discussed
in the next section.

4. Additional Features

The following optional methanisms are available
in the IP for use when needed.

4.1. Source Routing

The Source Route option provides a means for
the source of a datagram to supply routing informa-
tion to be used by the gateways in forwarding the
datagram to the destination.

As described above, routing at each gateway is
based on the internet address in the destination field
of the datagram header. If the source routing option
is used, a series of additional internet addresses will
be present in the option field. When the address in
the destination field has been reached and the source
route is not empty, the next address from the source
route becomes the new destination (and is deleted
from the source route list).
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Fig. §. Source Routing Example.
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Thus, the source specifies a series of points the
datagram must pass through on the way to its final
destination. Normal internet routing is used to reach
each of these points in turn, and the datagram may
pass through a number of intermediate points
between the specified addresses. Source routing may
be used to specify routes to networks that are not
known to the full internet system,

In Figure § an example of source routing is shown.
Here host A is sending a datagram to host E. The
normal routing would most likely be through the
gateway C. We assume the user at host A would
prefer in this case to have this datagram routed
through gateways B and D. The Figure shows the
address information at each step along the route.

4.2. Return {(or Record) Route

The Return Route option provides a means to
record the route taken by a datagram. A return route
is composed of a series of internet addresses. When an
IP module routes a datagram and the return route
option is present, the gateway inserts its own inter-
net address (in the environment of the next destina-
tion) into the return route option data.

4.3. Error Report

The Error Report option is used to report an error
detected in processing a datagram to the source. A
code indicates the type of error detected, and the ID
is copied from the datagram in error, and additional
octets of error information may be present depending
on the error code. If a datagram consisting only of
an error report option is found to be in error or must
be discarded, no error report is sent.

Error codes are defined to report the following
conditions: (0) No reason given, (1) Not Accepted —
no program at the destination will accept the data-
gram, (2) Fragmentation Problem - the datagram
cannot be delivered without fragmenting and the DF
flag is set, (3) Reassembly Problem — the datagram
cannot be reassembled because there are missing frag-
ments and the time to live has expired, and (4) Gate-
way Congestion — the datagram was discarded to
relieve congestion.

§. Gateway Functions

This section summarizes the tasks performed by a
gateway: which are, interfacing to the local networks,
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and performing the IP functions.

The actual interconnection of networks is
performed by gateways which are computers con-
nected as hosts on several networks (sce Figure 6).
Messages are communicated across networks by using
the protocols and conventions of the individual net-
works. While traversing each network the IP datagram
is encapsulated within the local network protocols.
At the gateway the IP datagram is decapsulated and
examined by the gateway 10 determine how to route
this datagram, and what local network options to use,
if any. The gateway handles issues of routing, frag-
mentation (if the local network cannot handle regular
size datagrams), error reporting and control, and
interfacing 1o Jocal networks.

The essential purpose of a gateway is to forward
each datagram toward its destination. The key deci-
sion a gateway must make is the routing decision.
When a gateway receives a datagram it must use the
destination address in the IP header along with rout-
ing information stored in the gateway to determine
where to send the datagram.

The routing information stored in the gateway
may be relatively static (changed only by manual
intervention) or dynamic (changed automatically).
Both cases are allowed in the ARPA-Catenct system.
The discussion of the techniques for dynamically
updating the routing information are described by
Strazisar [15].

Another important task of a gateway is 1o encap-
sulate datagrams for transmission through the next
network. using that network’s existing message trans.
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fer protocol. This involves adding an appropriate
message header (and perhaps trailer), to the datagram.
The gateway must interpret the type of service field
of the IP header to select the appropriate service in
the next network.

The gateway decreases the TTL to account for the
time elapsed since the TTL was last adjusted. This is
an estimate of the time spent in transmission and
processing. If this reduces the TTL to zero the gate-
way discards the datagram.

I the datagram is larger than the maximum packet
size of the next network, the gatcway may fragment
it into pieces that will be sent separately.

If the gateway must discard a datagram due to
congestion or errors in processing the datagram (such
as an unknown or currently unreachable address). it
sends an error report datagram to the source of the
discarded datagram.

Of course. the gateway verifies the IP header
checksum on every datagram it receives before pro-
cessing it. If the check fails the datagram is discarded
with no notification to the source or adjacent gate-
way. Since some of the IP header information is
changed during gateway processing (e.g. TTL), the
gateway computes a new IP header checksum before
sending it on.

Each datagram can be processed completely
independently of other datagrams. The provision of
error recovery, sequencing, or flow control functions
are left for end-to-end protocols, and the gateway
does not maintain any status information or dedicate
any resources for individual virtual circuits. Indeed,
the gateway is unaware of any details of the higher
protocol levels.

6. Design Decisions

The key decision in the design of the ARPA Inter-
net Protocol is the choice of a datagram basis rather
than a virtual circuit basis. Using datagrams as the
basis of communication in the Catenct permits the
usc of simpler gateways since they are not required to
maintain  state information about the individual
virtual circuits, and allows the end-to-end communi-
cation to continue via alternate routing it a gateway
fails.

Using datagrams as the basic communication ser-
vice allows the construction of virtual circuit style
end-to-cnd services (e.g., TCP), and other services. In
the DARPA research program there are needs for

other styles of communication service. For example,
the packet speech requires a service which provides
minimal delay even at the cost of a few dropped
messages. Such a service can be built on a datagram
base. but not on a virtual circuit base. For more detail
on the tradeoff betwecen a datagram base and a virtual
circuit base for communications see references
(8-12].

This choice of a datagram base for the operation
of the Catenet results in the separation of the internet
protocol from the end-to-end protocols in general and
TCP in particular. The early proposals for TCP did
not focus clearly on the responsibilities of the gate-
ways and did not allow for aliernate styles of com-
munication service. Once these needs were apparent
the protocol functions were separated into distinct
layers.

The decision to use the encapsulation/decapsula-
tion technique to send the 1P datagrams through local
nets was made to maximize individual networks’
autoniomy, and to avoid the need for modifications of
individual networks (particularly in the area of rout-
ing) to support internet traffic [10].

The decision to fragment datagrams in gateways as
they pass from a large packet network into a small
packet network, but not reassemble the fragments
until they reach the destination host, allows simpler
gateways and minimizes the delay in the Catenet. The
alternate approach of reassembly in the next gateway
is explored in reference [14).

Perhaps the most difficult design decision was the
choice of the address size and structure. The size of
the address field is a compromise that allows enough
addresses for the anticipated growth of the Catenet
yet is not an excessive overhead burden. The structur-
ing of the address into network and host fields allows
the gateways to process datagrams destined for
distant networks on the basis of just the network
field. This field separation also reflects an administra-
tive delegation of the address assignment function.

In addition to the address, IP carries additional
address or multiplexing information in the protocol
field. This indicates which next level protocol should
be used to interpret this datagram. Most of the higher
level protocols have further multiplexing information
called ports in their headers. The IP approach to
addressing may bc characterized as hierarchical {10].

An option in IP supports the concept of source
routing. This means a source may specify a series of
addresses which are used in turn until the ultimate
destination is reached [10]. The decision to jinclude
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this feature was motivated by the realization that
many small networks may be interconnected to the
Catenet via ad hoc arrangements, and destinations in
such networks (or such networks themselves) may be
unknown to gateways in the general Catenet.

IP uses a Time To Live which is decremented by
each gateway by at least one unit (more if the data-
gram is delayed in the gateway for a substantial time).
Other protocols use a hop count which is incre-
mented by each gateway [5]. The practical difference
is small, though the time to live approach remains
effective as the size of the network changes, and
allows the source to specify a maximum life fos the
datagram.

7. Research Issues

7.1. Multiple Addresses

There are several issues related to more flexible
addressing that the current IP does not deal with. One
case is a host with two (or more) internet addresses,
either on one network or even on different networks.
Sometimes this serves to distinguish between logically
separate hosts, but in other cases it is desirable to
consider both addresses as the “same place™ as far as
higher level protocols are concerned. It is not clear
how a gateway could know when or how to route
messages sent to one address to another address (e.g.
if the first address was unreachable). A particularly
difficult example of this problem is a mobile packet
radio which moves from one network to another
while trying to maintain unbroken communication.

7.2. Local Networks

A second issue is the addressing of local networks.
There will soon be a large number of local networks
(e.g., networks within one building or on a campus)
wishing to use the ARPA-Catenet for long distance
interconnection. It seems unreasonable that every one
of these should have the same status as a nationwide
network, with all gateways responsible for maintain-
ing routing information about them. It may be
preferable to introduce another level in the addressing
hierarchy, or to combine a gateway plus internal
address for such nets in the local address field of IP
addresses [16].

(104)

7.3. Multiple Destinations

Another addressing issue is provision of a capabil-
ity to send datagrams to a number of destinations at
once. Broadcast to all is, of course, the ultimate
multi-destination, but *“to all” is easier to handle then
*to some.” This capability is inherent in the techno-
logy of some networks (e.g. satellite, ring, and Ether-
nets) but there is no provision in the current IP for
such multidestination addressing. These is work
underway in the ARPA community on an internet-
work digital packet speech conferencing experiment.
A protocol called ST developed for that experiment
does contain a multidestination capability (17].

7.4. Naming/Addressing/Routing

The mapping of character string names that are
convenient for people into internet addresses is often
a problem. This can be eased by the provision of a
“directory assistance™ service or name server [18]. A
name server is a service with a table of name/address
correspondences. When the name server is sent a
query about a name it responds with the name and
corresponding address(es). Directory services can be
provided in a centralized and/or distributed fashion.
For a further discussion of the roles of names,
addresses, and routes see [19].

7.5. Congestion Control

Congestion control is a problem for any network.
The gateways may be viewed as nodes of the Catenet,
much as IMPs are the nodes of the ARPANET. As
internet traffic increases, gateways may become over-
loaded, even while the individual networks con-
necting them are enforcing their own congestion
controls. Thus there may be a need for an internet
congesiion control mechanism which is effective with
the datagram mode of operation in the Catenet.
Several methods such as isarithmic control. buffer
categories, and “‘choke™ packets [20] have been pro-
posed for such environments. The ARPA gateways
implement a simple strategy of notifying the source
when a packet must be discarded due to congestion.

7.6. Monitoring and Adminstrative Control
Accounting is another basic internetworking

requirement. Traffic statistics are useful for monitor-
ing and control purposes, and are easily coilected by
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the gateways either on a net-to-net basis, or with
more detail by internet source/destination pairs.
Volume of packets and/or bits can be collected by a
set of counters, and periodically dumped to a Catenet
monitoring and accounting center. A gateway moni-
toring and control center is now operating to coordi-
nate the collection of these statistics [21].

8. Conclusions

The ARPA Internet Protocol provides a common
base for supporting higher level protocols in a net-
work independent multi-network environment. The
datagram basis of the internet protocol has allowed
the flexible evolution of a variety of application
specific higher level protocols while allowing simple
gateways to interconnect networks. The principle of
encapsulation for transmission through individual
networks is essential for the provision of internet
service over a variety of networks without requiring
changes to each networks’ internal operation.

As of August 1980, IP is implemented in 12 gate-
ways interconnecting 10 networks, including packet
racio. satellite. local nets, and the original ARPA-
NET. Gateways are typically PDP 11/40 or 11/03
processoins with limited memory. High level protocols
including TCP, terminal access (Telnet), and file
transfer (FTP) are in use above IP, Transaction
oriented services such as directory assistance (Name
Serv .., are also in use. Other applications are under
development.
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"INTERNETWORKING IN THE MILITARY ENVIRONMENT"

by B.H. Davies and A.S. Bates

Royal Signals and Radar Establishment
Gt. Malvern, Worcs, U.K.

Abstract

The increasing requirement for data communi-
cations in the military environment and the hetero-
geneous nature of the network technologies and pro-
tocols involved are highlighted. The main section
of the paper discusses how the design of a military
internet architecture is influenced by the military
requirements especially that of survivability.
Comparison with the civilian PIT approach to inter-
networking shows that while there are economic
advantages to using civilian international stan-
dards where possible, these standards do not
satisfy the military requirements. In particular
the strategies for routing in a heavily damaged
network environment and addressing hosts that
migrate from one network to another must form an
integral part of the overall architectural design.
This results in pateways whose routing tables
have a finer degree of detail of the internet to-
pology than is usually required but which do not
contain connection oriented information.

Finally, practical experience gained on the
ARPA catenet system is described.

1. Introduction

The increasing complexity and tempo of modern
warfare has rapidly created the need for flexible
data communications, parallel to those associated
with the "information technology' growth in the
civilian environment. The aim of this paper is
to highlight the differences in emphasis between
data communications in the civilian and military
environments, and to examine the consequence of
these differences. In particular, the importance
of an overall communications architecture, in
order to provide survivable and interoperable
commnications involving both present and future
systems, cannot be overstated.

Experience gained in connecting a prototype
military network to the ARPA catenet system and
measurements made using internetworking data trans-
port protocols are described. Enhancements to the
systerm to improve survivability and performance
are suggested.

1I. The Requirement

To a large extent, the increase in the demand
for data communications stems from the increasing

CH1745-9,82/0000/0019300.75 © 1982 IEEE

use of computers, microprocessors and digital cir-
cultry in weapons, sensor, and command and control
systems. These devices are used for similar rea-
sons to those pertaining in the civilian environ-
ment, in that they can perform well specified tasks
faster, more reliably and more cheaply than human
personnel. However, in order to accomplish the
overall goal of efficient deployment of military
resources, these geographically separated devices
wust communicate with each other and exchange in-
formation in a hostile environment. A distinctive
property of the communications between these de-
vices, is the very 'bursty" or non-continuous
nature of the information transfers, which makes
racket switching an attractive means of providing
the cormunications. In packet switching, bandwidth
is only allocated on demand, and therefore this
technique allows considerably more efficient shar-
ing of communication resources than the use of
dedicated communication links. A further advantage
of a well designed network, is the inherent sur-
vivability of communications that it provides.

This does not mean that networks in a damaged .on-
dition provide the same quality of service as in
their pristipe condition, hence the necessity for
priority markings to indicate which data is the
most important. HKHowever, we can say that packet
switching is an economical means of distributing
the communications resources in such a manner that
it is difficult for the enemy to completely destroy
communications between users of the network.

So far we have described a single set of users
connected to one network. However, there are many
different types of networks based on different
technologies and providing diff.rent types of ser-
vice. This diversity of network types is due to
the different user requirements and environments.
For example, naval data communications mayv well be
provided by a packet satellite network because of
the large geographical area of coverage required
and the great mobility of the hosts or users of
the network. In the forward area tactical environ-
ment, the data communications may well be provided
by a frequency hopping packet radio network, be-
cause of the extreme hostility of the electromag-
netic environment. Finally, in an underground
control centre, or on board a single ship, the
communications may be provided by a "local area
network'.

Besides these different hardware technologies
the grade of service provided to the user may
differ. For example, a network which is primarily

€ British Crown Copynght 1982
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designed for transporting sensor information, may
well be optimized for providing minimum delay in

the delivery of the data, rather than providing re-
liability of delivery, because of the perishable
nature of the dats. Thue, users vho are primarily
interested in reliable delivery would have to initi-
ate transport control features on an end-to-end
basis, to provide for loss and misordering of the
data by the network.

There is a requirement for users on the differ-
ent networks to communicate with each other [1]. In
particular, the long haul communications may be pro-
vided by a common bearer network, which may inter-
connect forward area networks with local command
centre networks. Also, with additional tasks and
new capabilities, there will continue to be new and
unknown data communications requirements, which will
have to be integrated with existing systems.

The main requirements of data communications
are that they should be secure, survivable and
interoperable [2]). This paper concentrates on the
survivability and interoperability issues, and the
reader is referred to the references which concern
computer and network security [3,4]. However, it
is necessary to point out that the more interoper-
able the systems are, the greater the security
risks, because there are more avenues of attack on
the confidentiality and integrity of the dats, by
a greater number of personnel. In particular,
“"access controllers’ or security sentinels in cri-~
tical gateways, which interconnect networks, may
restrict access to certain types of traffic, thus
sacrificing survivability and flexibility in the
interests of security. Survivability of communica-
tions has many different meanings, but in its stric-
test sense it implies fully automatic routing around
damaged switching components or links, and the abil-
ity to use alternate routes, even through other net-
works, in such a way that data integrity is main-
tained on an end-to-end basis.

I11. Reasons for an Overall Architecture

To date, most communications systems have not
been designed with an overall communications archi-
tecture in mind. This has resulted in great diffi-
. culty in providing interoperability with other sys-
b - tems. Because the modulation and coding, address-

- ing and message representation, have often been com
® bined, interconnection with another system has in-
. volved a very expensive box between the two systems.
- The disadvantages of this approach are:-

o 1) Each interface box is a special 'one off’
- design, which is custom built and therefore very
:;;_' expensive in design time and procurement cost.
@ 2) Inevitably, in translating between one sys-
F - tew and another, there will be certain features and
: services that will not have an equivalent in both
systems.
L‘.
L~ 3) Because of the processing power required
- to translate at all protocol levels, the interface
= unit will be a large and expensive piece of hardware.
¢ This has an effect on survivability, in that because
(108)
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the interface units are expensive, the minimum will
be procured and the survivability of the overall
communications will be determined by these wvul-
nerable interface units.

The problem of deciding on the best architec-
ture for computer to computer communications, has
been the subject of sustained discussion over the
past decade. In particular, the International
Standards Organization's subcommittee 16 has pro-
duced a major document in this field, "Reference
Model of Open Systems Interconnection” [5]). The
central thesis of this document is that the most
flexible architecture is a layered one, in which
each layer has a well specified function and pro-
vides a well gpecified service to the layer above
it. In particular, any given layer views the
layers below it as & single entity. This is snala-
gous to structured programming, where the user of
a procedure call is only interested in how para-
meters are passed to and from the procedure and not
in the internal structure of the procedure. The
seven layer model is illustrated in figure 1. Two
points about the model are relevant to the discus-
sion below. Firstly, the functional specification
of each layer is more difficult to agree on, the
higher the layer, because in these layers in the
architecture there are more choices. Secondly,
there has as yet been no ISO agreed protocols for
implementing any of the layers. The model itself
does not preclude more than one protocol implement-
ing a given layer of the architecture.

Iv. Current State of Civilian Standards

In Europe, with its highly regulated public
commnications authorities, there has been a very
active co-operation among various countries to
establish data communications standards from the
outset. The CCITT (The International Telegraph
and Telephone Consulative Committee), which is the
corporate body representing the telecommunications
authorities of these countries, has developed
standard protocols, X25 [6 ], for levels 1,2 & 3 of
the ISO reference model. It is important to note
that in arriving at these standards, the PTTs
(Public Telegraph and Telephone authorities) bave
identified that most customers want a connection
orientated type of service, ensuring ordered and
reliable delivery of packets. The network reserves
the right, in event of a network error or conges-
tion, to send & reset to both ends, indicating loss
of dats integrity. At present, no figures are
available to indicate the frequency of such events.
Because the main public networks in Europe are X25
networks, there has been considerable pressure on
computer manufacturers to provide X25 hardware and
software products off the shelf. This has led
manufacturers of private networks, in particular
local area networks, to consider providing X25
accesses, in order to facilitate connections to
existing machines and operating systems. Thus, X25
is rapidly becoming a de facto international stan-
dard in Europe.

What about the interconnection of X25 networks?
Obviously, connecting networks which use the same
access protocols and provide the same grade of
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service, is not so difficult a problem as inter-
connecting very dissimilar networks. Thus, there
are X series protocols, X75, X121 [6 ], which en-
able PTT's to provide connections between users on
different X25 networks, and although not all X25
facilities are available on internetwork comnec-
tions, the service offered is snalagous to STD
dialling of international telephone calls. How-
ever, these protocols do rely on the X25 networks
themselves, to route the internet pasckets to the
gateways. It appears that private networks will
not be allowed to connect to public networks via
X75 gateways, and so gatewvays between private snd
public networks will have to provide a service be-
tween two X25 calls back-to-back, and will thus
act as a staging post for the user's data.

Protocols for the transport layer (layer 4
of the OSI Reference model), are not so well
developed as for the lower layers. However, in
the United Kingdom a transport protocol [7] has
been defined, and implementations above X25 have
been realized. The most notable feature of this
protocol is the flexible addressing structure,
which allows connections to be established across
different naming/addressing domains.

Before considering the applicability of
these developments in the military enviromment,
it is useful to consider some of the differences
in emphasis, between civilian and military net-
works, and their usage.

V. Comparison Between Civilian and
Military Networks and their Usage

1)  The usage of military networks in time
of war is very difficult to predict. Although
major exercises give some idea of the user demand,
past experierce has shown that these are slightly
artificial and may not give a true picture. In
civilian networks, usage can generally be accu-
rately predicted by extrapolating present useage
patterns, with economic and equipment sales fac-
tors being taken into account.

2) The availability of the full capacity of
a military network may well be degraded when it is
most needed, because links may be jammed and nodes
and gatewsays physically destroyed. In the civi-
lian environment, there is usually a very high
availability of hardware and dats links, with the
use of standby power supplies and 'hot' spares for
critical nodes such as gateways.

3) In general, there is s considerably
higher degree of wobility of both users and net-
works in the military environment. In psrticulsr,
airborne networks such as JTIDS (Joint Tactical
Information Distribution System), with users such
as fighter aircraft, will place stringent require-
mwents on internetwork connections and survivabil-
ity. A consequence of this will be that the users
may well be completely unaware of the internet
topology. While mobile access to networks will
obviously develop in the civilian environment, in
general it constitutes a fairly static community
of networks and users.
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4) One of the major advantages of geograph-
ically distributed databases, which are flexibly
interconnected with communications links, is the
decrease in vulnerability of the overall system to
the total failure of a site (eg by physical destruc-
tion). Thue, when designing military networks it
is important not to introduce an Achilles heel by,
for example, employing s centralized network control
centre. However, centralized control msy well be
the most convenient and cost-effective solution in
civilian environment.

5) Both civilian and military network author-
ities wish to provide secure, survivable, ioter-
operable, and guaranteed grades of service to their
users. The questions arise as to hov much the user
is villing to pay for these properties, and how im-
portant the properties are? The question of the
importance of the property, depends on the threats
to the network, and these are obviously substan-
tially greater in the military case. This means
that the solutions for military networks may well
be more expensive, in terms of implementation and
running costs, than those for the civilian environ-
ment .

VI. Techniques For Network Interconnection

At present there are two main architectural
methods (8] for providing process to process com-
munication scross dissimilar networks. They are
referred to as the "end-to-end" and "hop-by-hop"
methods, because in the former, all the control
information relevant to a particular data connec-
tion is held only in the source and destination
hosts, while in the latter, connection oriented
information is also held in various intermediate
switching nodes, called gateways.

The end-to-end approach is based on the assump-
tion that all networks will offer at least an unre-
lisble datagram service, ie if a sequence of packets
is injected into the nmetwork then the destination
will receive some of them, possibly misordered, and
with possible duplication. Any improvement on this
grade of service will be achieved by implementing
end-to-end procedures to perform reordering, re-
transmission of losses and detection of duplicates.
A legitimate criticism of this approach is that
these upgrading procedures are acting across all
the networks in the chain, which in the case of
good networks means that there are extra overheads
which involve needless expenditure. Thus, in the
hop-by-hop approach, the required level of inter-
net service is provided by procedures implemented
across each network. This is obviously more expen-
sive initially, in that the procedures are different
for the different networks, but its running costs
are cheaper because unnecessary control and re-
transmissions do not occur across the networks pro-
viding the higher grade of service.

There are also two schools of thought on
addressing strategy, which are difficult to com-
pletely separate out from the ideas set out above.
The first school, whichhas to date been associated
with the end-to-end approach, is that all networks
worldwide should have a unique network number
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allocated to it by a global authority. Thus, any
host address can be uniquely defined worldwide by
concatenating its network number with its host
number. The addressing of internet packets is
then simple. The other school believes that such
international agreement on address formats is not
achievable in the near future, and that there will
exist multiple naming/addressing authorities.
Thus, the address field will have to consist of a
list of addresses in different formats, which will
be parsed by the gateways of the different naming
authorities as the packet wends its way through
the internet system. This second system is con~
siderably more flexible than the first, but as we
shall see has other consequences as well.

To date, operational systems of the end-to-
end variety have used a flat addressing space and
the hop-by-hop systems have used the multiple do-~
main system. A schematic representation of the
protocol layering involved, in an internetwork
connection across three networks, is shown for
both the hop-by-hop and end-to-end approaches in
figure 2. The hop-by-hop diagram clearly illus-
trates that the total service is provided by
three concatenated services, involving different
transport protocols on different types of net-
works. The end-to-end representation illustrates
the singular nature of the transport service,
which is independent of attributes of the under-
lying networks. We will now compare the advan-
tages and disadvantages of the two systems, in
the light of operation in the military environ-
ment.

1) Running Costs The hop-by-hop approach has
the advantage over the end-to-end approach as

far as the civilian user is concerned, in that

it is very 'tariff’' conscious (ie it only uses

the minimum amount of transport protocol neces-
sary to provide the required grade of service).
Now as many of the European networks provide the
high reliability of a virtual call service, this
means that hop-by-hop implementations of the trans-
port service for these networks will involve mini-
mum overheads in te ms of extra bits to be trans-
mitted, and therefore their running costs will be
minimal.

In the end-to-end approach, every packet
carries a full internet source and destination
address in its header, so that it can make its own
way to its destination., In the hop-by-hop approach
once the call has been set up, only the destina-
tion address for that particular network has to be
carried, because the gateways on route contain
addressing information for further hops.

2) Development Costs The philosophy of the hop-
by-hop approach implies a different protocol for
each different type of network. This is not so
serious in the civilian environment, because of

the considerable influence of the CCITT standards
which means that most European public and private
networks are of the X25 variety. Even local net-
worhs with very high speed interfaces are planning
to implement an X25 access. However, in the
military environment, where there is & considerably
greater range of networks, this could require the
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development of & number of transport protocols.

J)  Trusting Transit Networks When a user makes
a multi-net connection, using the hop-by~hop
approach, it implies that he trusts the level of
transport service being offered by the intermediate
gateways in the internet route. Furthermore, it
implies that he is happy with the relisbilicy of
intermediste gateways whicl, albeit temporarily,
take responsibility for his data at the termination
of each hop. We believe that this is s state of
affairs that is considerably more acceptable in the
benign civilian environment than in the hostile
military one.

In the end-to-end approach, only sn unrelisble
datagram delivery service is expected from the set
of concatenated networks, and loss of data in any
intermediate switching node or gateway will be re-
covered by a retransmission from the source.
Therefore, maintaining the bit integrity of the
data transmission does not rely on the continuing
correct operation of an intermediate node.

4) Addressing Strategy In the multi-domain
address strategy, if a user in one domain wishes to
communicate with users in another domain, the user
must know the topology of the interconnection of
these domains, so that he can supply the informa-
tion necessary for his data to reach the destina-
tion domain. This information could be obtained
automatically for him, but it implies separate and
possibly different bilateral agreements between

the various domain authorities.

In the end-to-end approach with a flat address-
ing space, each packet contains complete addressing
information, and is free to find the best current
route scross all intermediate networks (figure 3).
This dynamic internet routing has similar resource
allocation advantages to dynamic routing on single
networks. This flexibility of routing in the inter-
net environment is more important in the context
of the more rapidly changing scensario of the mili-
tary environment.

5)  Transport Control The end-to-end control is
certainly less flexible than the hop-by-hop control.
Timeouts in particular, may vary by an order of
magnitude, even on the networks in service today.
End-to-end flow control, also requires more sophi-
sticated strategies than are needed in the hop-by-
hop method.

6) Gateway Complexity One of the chief attrac-
tions of the end-to-end approach with flat address-
ing is the conceptual simplicity and relative small-
ness of the gateways with respect to the hop-by-hop
approach. This is because the only modules that
vary from gateway to gateway are the network access
modules that pertain to each network (and these are
just the modules needed on all hosts attached to
that network). The fact that no connection orien-
ted information is held in the gatevay, greatly
simplifies the action that the gateway has to take
on receiving a packet and the amount of buffer
storage it needs. This property ties in well with
the gateway policy for military networks, namely
that networks should be multiply connected by
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gatewvays in order to provide survivable internet-
vwork communications. Thus, the “simplicity” of
the gateways will result in cheapness and the abi-
lity to provide more than one gateway between
every pair of networks.

Thus, although the end-to-end approach in-

just above a basic Internet Protocol, which pro-
vides & way for the TCP to send and receive vari-
able length segments of information enclosed in
internet datsgram envelopes. In order for the
TCP to provide a reliable logical circuit between
pairs of processes, on top of the less relisble
internet communication system, it performs the

volves higher overheads in terms of packet headers functions of basic data transfer, data acknowledge- 'T{
we believe that it offers considerably increased wment, flow control and multiplexing. o
survivability in a hostile enviromment. Further- s
more, in a situation in which users and networks 3) Gateway to Gateway Protocol (GGP) (13 ]J. The RS
are mobile, it is necessary for all networks to gateway to gatewsy protocol is responsible both S
come under & single naming/addressing suthority for distributing routing information through the oS

(eg NATO) if these changes in topology are to be
distributed rapidly and efficiently throughout
the internet system.

gateways of the catenet and for advising communi~ e
cating hosts of routing changes, congestion con-
trol and unreachable destinations. The basic

|
L -

. routing algorithm, in use today, is the original “~\
- VII. The ARPA Catenet System ARPAnet routing algorithm. This involves gateways o
telling their nearest neighbours which networks Y

An example of the end-to-end approach with a they can reach and hov many gateway to gateway o

flat address space, which has been running opera- hops are involved in the route. 1f a gateway is .7,:

tionally for about 5 years, is the ARPA catenet directly connected to a network, then it is said e

system. This system connects about thirty differ-
ent networks including land-line, satellite and
radio based networks, as well as a variety of
local area networks. The thinking and concepts

< involved in the architecture of this system have
been fully described in a number of papers [9, 10].

to be zero hops to that net. Gateways continuously
monitor the state of the network access switch to
wvhich they are connected and their nesrest neigh-
bour gateways to ensure that routes through them
are still available.

-

VIII. Practical Experience of the ARPA Catenet .
- The protocols responsible for data transport System
L‘ in this system and their hierarchical relation-

)

ship are shown in figure 4. In the autumn of 1978, RSRE set up a collabora-
tive program of research and development in com-
munications with the Advanced Research Projects
Agency of the US Department of Defense. This
collaborative program involved the connection of
the PPSN (Pilot Packet Switched Network), our own
in-house research network, to the ARPA catenet

P

1) ° Internet Protocol (IP) [11] This provides
for transmitting blocks of data, called datagrams,
from sources to destinations. Its main parameters
are source and destination addresses which are
globally unique. Implementations of this protocol

’
v

o e .
O

.
ey

exist in the gateways and internet hosts. The system, and providing terminal and file access from et
datagrams are routed from one internet module to an internet host on the PPSN to some of the major B
another through individual networks. 1In this ARPAnet hosts. The first two years of the program o
approach, datagrams may be routed across networks were allocated to the development and implementa- T
whose maximum packet size is smaller than they are. tion of a reliable connection between PPSN and the an
In this case, a fragmentation module breaks up the ARPA catenet system. We have implemented the DoD s
packet into smaller packets, replicating enough standard Transmission Control Protocol, the Inter- i;i

T Ty

information in the headers to allow reassembly at
the destination. Reassembly does not take place in
the gateways, because packets may take different
routes to their destinations. There are a number

net Protocol and the Gateway-to-Gateway Protocol
in Coral 66. In addition, we have made many
measurements on the performance of the catenet
system, particularly in terms of round-trip delays

of options available in the internet protocol and as the connectivity and the development of the 3

these are specified in the control information of catenet has evolved. )

the header. Thus, the internet header is of vari- )

. able length, The current configuration is shown in figure 5. -
. The RSRE internet host (PDP-11/23) contains the ’

r’ 2) Transmission Control Protocol (TCP) {12]). 1TCP standard internet protocols of Telnet, TCP and IP, *;.#

" is a data transport protocol appropriate to level and which run under our own virtual memory opera- S

g 4 of the ISO reference model, and is especially ting system EMMOS (19 ]. The link level protocol, N

.

designed for use on interconnected systems of net- X25 level 2, is used to interface to the PPSN. el

\ St au an

- works. TCP is a connection oriented, end-to-end This protocol is implemented on a microprocessor T

reliable protocol, designed to fit into a layered communication interface (X25 line unit) which is coad

> hierarchy of protocols which support multi-network connected to PDP~11 hosts via a standard interface -l
[ applications. It provides for reliable interpro- [18].

cess communications, between pairs of processes in
host computers, attached to distinct but intercon-
nected computer communication networks. The TCP

sssumes it can obtain a simple, potentially unreli-

The PPSN is connected to the rest of the catenet
via the RSRE gateway. The gateway (PDP-11/23) has
three network interfaces on it, each using & X25

b
L able, datagram service from the lower level proto- line unit., They are used to provide, 1) access to ) "ol
b cols. It fits into s layered protocol architecture PPSN, 2) a test port which can be directly connected ~
4
4
E i} (111)
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to a measurement host, and 3) an interface which
connects the RSRE gateway to s gateway at University
College, London (UCL) via & 9.6k bits/s Post Office
line.

The UCL gateway is connected to two other net-
works, 1) UCL net and 2) Sstnet (ARPA packet satel-
lite network). The connection to Satnet is via the
Goonhilly SIMP (Satellite Interface Message
Processor). Packets destined for Arpanet are for-
warded by the Goonhilly SIMP, over the shared 64k
bits/s half duplex satellite channel to the Etam
SIMP, and from there they are forwarded on to the
BBN gateway, and hence into Arpanet.

Catenet Measurements. Some of these measurements
vere made by echoing packets off the various cate-
net gateways (figure 5), and a small but represen-
tative sample are listed below. By time stamping
the packets as they leave the measurement host at
RSRE, and then comparing the time stamps with the
local time when the packets return, having been
echoed off the gateways, the single round trip
delay is measured. These delays not only include
network transition times, but also any internal
delays in the gateways.

The round trip delays from the RSRE measure-
went host to various gateways, for internet packets
containing 6 data bytes are:-

GCateway Mean Delay (secs) Min/Max Delay (secs)
RSRE 0.2 0.2

ucL 0.35 0.35 - 0.4

BBN 2.0 1.5 - 3.8
SRI-PRI 2.5 1.9 - 3.8

The results for the RSRE and UCL gateways corres-
pond to the theoretical delays expected due to
line speeds. The results for the BBN and SRI-PR1
gateways are due to the longer satellite delays
and control algorithm of Satnet.

Retransmissions in TCP. TCP can be used for com
munications over a variety of different networks,
therefore the wide variation of round trip delays,
as shown above, means that a fixed retransmission
period is not suitable, since in some cases there
will be significant delays when a TCP segnment is
lost, while in others there will be unnecessary
retransmissions.

To overcome this problem we have implemented a
dynamic timeout algorithm for use in TCP. This
algorithm measures the time elapsed between send-
ing a data octet with a particular sequence number,
and receiving an acknowledgement that covers that
sequence number. Using that measured elapsed time
as the round trip time (RTT), we compute a smoothed
round trip time (SRTT) as:

SRTT = (ALPHA * SRTT) + ((1 ~ ALPHA) * RTT)

and based on this, compute the retransmission time-
out (RTO) as:

RTO = min {BOUND, BETA * SRTT}
where BOUND is an upper bound on the timeout (eg

(112)
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0.9), and BETA is a delay variance factor (eg 1.5).

The performance of this algorithm has shown to
be very good and has significantly reduced the
number of unnecessary retransmissions.

IX. Enhancements To The Catenet System

There are a number of situations, peculiar to
the military context, which are not catered for by
the algorithms presently used in the catenet. Be-
fore discussing these and possible enhancements to
the catenet which would improve its survivability
in the military environment, we must introduce the
concepts of "partitioned networks" and "source
routing”.

A "partitioned network” is ome that is so
badly damaged that there exists no paths between
certain of ite switching nodes. Typically, this
results in two or more subsets or partitions of
nodes, within which communications are possible,
but which cannot communicate with each other. Hosts
connected to different partitions cannot communi-
cate in the usual way. However, if this network
is connected by more than one gateway to the cate-
net system and there is at least one gateway on
each partition, hosts could still communicate by
an internetwork path as illustrated in figure 6.
The concepts of routing to partitioned networks are
concerned with automatic and efficient routing of
packets under the conditions mentioned above.

The principle of '"source routing" is one of
providing some of the routing intelligence ia the
packet header, by providing not just the destination
address, but also some or all of the intermediate
node addresses through which the packet has to pass.
This facility is provided as an option in the
present DoD Internet Protocol.

1) Changes to the Catenet Routing Algorithm. The
catenet system as presently configured, permits
routing around damaged networks and gateways. It
assumes that hosts know the addresses of their local
gateways, and are prepared to poll these gateways

to determine their status, and have procedures for
using alternate gateways, if the primary one is
congested or inoperative. Presently, routing to a
partitioned network would involve knowing the topo-
logy of the catenet and inserting the routing in-
formation in the packet header in the form of a
source route. This is perfectly feasibly, but in a
fast changing military environment it would be
preferable if the gateways contained enough informa-
tion to perform sutomatic routing to hosts on par-
titioned networks.

If the internet system of gateways is regarded
as a super-datagran netvork, whose node to node
protocol is the Internet Protocol, then it would
seenm reasonable that the internode routing be based
on gateway or node identifiers. The routing inform—
ation distributed to gateways should permit routing
to a specific gateway, rather than to a netvork.

As there may be more gateways than networks, this
will involve the storage of more information in the
gateways than at present. However, if there are

oW TeTwaNw

Rad

]

R T B
fe. LN TS cue T
WA . U oW G Sl AT U S

hadhadi gt d

BV )

o

P S S S




. additional gateway nodes for providing survivabil-
= ity it is a vaste of resources if the informstion
is not disseminated and used vhen most needed.

There are two reasons for wishing to change
the present cstenet routing algorithm:-

(i) The present aslgorithm suffers from os-
cillations when certain link failures occur, be-
cause it uses repeated minimization to compute the
shortest path. Presently, this problem is overcome
by having a narrow range of link costs.

(ii) The granularity, or fineness, of the
information distributed by the present algorithm
which performs routing to networks, is insufficient
for automatic routing to partitioned networks. This
is because the route into a destination net via two
different gateways may be wildly separated, as
illustrated in figure 7. If the network is parti-
tioned, we need to specify the entry into the net
rather than just the net.

A recognized candidate for the improved rout-
ing algorithm is a modification of the New Arpanet
‘ Routing Algorithm [14.], which is currently used on
s Arpanet. Using this algorithm, all the gateways
1 broadcast information to all other gateways using
s flooding technique. In particular, two types of
information are disseminated:-~

- (i) Each gateway broadcasts the names of
. the nets to which it is directly connected.

- (ii) Each gateway broadcasts the names of its
" - peighbours with which it can commnicate.

From this information, all gateways can deter-
mine which networks are partitioned, because a
t- partitioned net will have two or more gateways
) attached to it which are unsble to communicate.
Having implemented this algorithm, there are one or
=3 two additional techniques that are necessary for
i dealing with routing to partitioned networks. The
main remaining problems are, determining the parti-
tion in which the destination host is located, and
specifying this in packets to be sent to that host.
Now specifying the partition could be sccomplished
by specifying the identifier of the gateway through
vhich the partition communicates with the rest of
the catenet. Rowever, at present there is no for-
mat for specifying gateway identifiers in the inter-
net header. The determination of which partition
the destination host is in, is best done by the
gateway connected to the source host's network.
This gateway will know how many partitions the des-
tination network is divided into, and the entry
gatevays to these partitions. When the connection
is being set up, the opening packets will be sent
to all partitions, and the resultant reply will
contain the relevant partition identifier. A minor
expansion of the internet header will be required
for specifying gatevay identifiers in the internet
packet headers.

2) Mobile Hosts in the Military Environment.
There are already a number of requirements for air-
craft flying from one tactical net to another, to
be able to maintain communication with a ground
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based command and control centre [15]. There has
been gonsidernble discussion on possible solutions
to tpxu problem [ 16,17 ] . The solution should, if
possible avoid using a centralized database, not
only because of its vulnerability but also because
& separate communication must be successfully per-
formed with the database, as a pre-requisite for a
successful connection to the mobile host. Further-
wore, as the host moves from one net to another,
updates to the database must be made in a timely
manner. Obviously, a third party has to be in-
volved if two mobile hosts wish to communicate.
However, the ground control centre is a natural
anchor for mobile communications, and if the TCP
connection identifiers were divorced from physical
addresses, the scheme below would provide total
data integrity as the mobile host changed networks.

An interesting point, that is immediately
highlighted vhen considering this problem, is that
the unique identification of a TCP connection is
at present tied down to physical addresses. We
believe that this is undesirable, and has led to
the present restricted sttempts at solving this
problem. We believe that unique TCP identifiers
should be exchanged at the start of the connection
and that these be used throughout, so that any
changes in the physical addresses can be exchanged
without closing the connection (ie when the air- -4
craft changes nets it inserts its new address in
the source address field, this is then used by the
ground to continue the connection). It is possible e
that there will be a little hiccup as the change o
over from one net to another occurs, because pack- )
ets may arrive out of order, however retransmission
would take care of this. It would obviously be the
responsibility of the mobile host to ‘login' to the
ground centre on entering a network, so that a con-
nection could be opened up from the ground. An
alternative approach would be to include another
protocol layer directly above the TCP layer. This
new protocol would be responsible for opening and
closing TCP connections and maintaining data inte-
grity as the mobile host moved onto another net-
work. The disadvantage of this approach, is the
necessity to transfer the mobile host's new add-
ress on a three way handshake basis, before the
host moved onto the new network.
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3) Congestion Control in the Catenet. The cate-
net is essentially a super datagram network, and
congestion control consists of using all possible
routes to the best advantage and being able to
offer a graceful degradation of service when the
users demand exceed the network resources. It is
important that fairness is exercised in providing
a service to users, assuming that they are of the
same priority. The above implies that the cost of
a route should change if substantial queues build
up on it, so that alternate routes become prefer-
able in an SPF (Shortest Path First) routing algor-
ithm. The change in cost will be reflected in the
routing updates, and alternate less congested routes
will be preferred. This requires a more realistic
measure of internet routing costs, than the number
of gateway hops used at present. This needs to be
implemented on the catenet for realistic trials,
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even though the numbers of alternate routes is

very small. Having thus made the best use of the
internet resources, the only remsining sction is to
throttle off users when, by their weight of numbers,
they overload the system. This throttling must be
fair, bearing in mind priorities. One aspect of
the fairness problem is that gateways handle pack-
ets on an independent datagram basis and are mot
therefore conscious of ''greedy" users disobeying
advisory flow control messages. A full solution of
this problem would require a complex control theory
model to be solved. This would involve the know-
ledge of the queuing sizes and delays on all inter-
gateway links. The despatching of packets from the
initial gateway would only occur when its journey
through the system could be undertaken without it
exceeding a specified delay band,

X. Summary

Many of the concepts presented in this paper
have been widely discussed in the ARPA internet
community. The authors wish to thank their
colleagues in the ARPA internet community for many
discussions on the concepts presented in this paper.
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Internet datagrams in the * end-w-end’’ appresch mey tahe
any of the dashed or the solid routes, but data in the

**hop-by-hop’® approach takes the s0lid route set up when
the conner:tion was established
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END-TO-END APPROACH
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different types
° - 4
with gateways 2
Darpa’s Internet connects more o
than 20 networks by gateways, »
which transmit datagrams -
and allow adaptive routing. )
n
. 4
ust as packet-switching connecting a communications processor that runs ==
technology matured and spread to commercial appli- internetworking software to each of the networks. The -
cations, internetw rking technology is now moving combination processor and software is a gateway. o]
from the research environment into the commercial Host A can send a message to host B on network B .
world. Gateways are being built to interconnect X.25 by first sending the message to the gateway. The gate- B
public packet-switching networks, and many more are ~ way then forwards the message through network B to -
planned to link various local networks such as Ethernet.  destination host B. L
One of the original interconnected group of networks Several gateways can be used to interconnect a ]
is the Department of Defense Advanced Research Proj- number of different networks. These multiple gateways o]
ect Agency’s (Darpa) Internet System. It uses commu-  provide redundancy and additional load capacity.
nications processors as gateways to link more than 20 The user view of the interconnected networks is sim- ]
networks that use diverse technologies. plified if the gateways are regarded as switching nodes ]
The Internet System has been a focal point for inter-  and the networks as lines. Then the entire configuration '—"
networking development, with much of the technology ~ can be viewed as a single network, built from a collec- -
supplied by Bolt Beranek and Newman (BBN) of Cam-  tion of separate networks. —1
bridge, Mass. For example, the Internet gateway trans- Gateways forward messages across networks to Sy
. mits information in the form of datagrams and allows other gateways within an internetwork system just as
= different routing schemes to be determined dynamical-  switching nodes forward messages across lines to oth- -
- ly depending on the best available path. The alternative  er switching nodes within a single computer network. Ny
‘. approach to the datagram model for gateways is the However, to provide an efficient, reliable communica- .4
4 virtual-circuit approach, whicii determines and estab- tions service, the gateways should also provide e
| - lishes a route betore information is transmitted. Each switching node functions such as adaptive routing, S
a scheme has advantages and disadvantages relatedto  flow control, and network monitoring. *
& congestion, reliability, and overhead. o
5 In general, gateways extend network users’ abilities ~ The transatlantic connection -
- to access remote machines, transfer files between dif- There are two approaches to internetworking: the vir- -
e ferent vendors' computers, and send electronic mail. tual-circuit approach and the datagram. In the archi- =
[ They also provide a solution to the problem of deciding  tecture that the International Consultative Committee o
. which of the many networking methods is best by al- for Telegraphy and Telephony (CCITT) recommends, -
[ lowing all of them to be used, depending on the appli- the internetwork switching nodes provide virtual-circuit .. 1
- cation. The ditferent types of networks can then be service between networks. To do this, each switching -
- interconnected by gateways, thus giving the user a node, called an X.75 gateway, is directly connected o 4
a ° view of only one large network configuration. to X.75 gateways on other networks. When a call is {
b The fundamental technology of gateways is straight-  established between two networks, virtual circuits are - 1
. forward. For example, two networks A"’ and 'B,"" set up between the source host and an X.75 gateway s
- composed of hosts, nodes, and lines, are linked by on the source network, between neighboring X.75 K
: s Data Communications/ August 1982 (119) -
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1. The Darpa Internet core. There are more than 20
networks and gateways, several hundred host computers,
and several thousand terminals that make up the Darpa
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gateways, and between the remote neighbor gateway
ard the destination host.

Since the X.75 gateway provides virtual-circuit ser-
vice, it must send messages reliably and in sequence
to neighboring X.75 gateways. Flow control between
gateways also prevents one gateway from sending
more traffic than its neighbors can handle — which is
an advantage.

Opponents of the CCITT's virtual-circuit approach
to gateways reason that the X.75 architecture is de-

(120)

signed to interconnect X.25 networks only and cannot
easily link together networks that use different access
protocols. These networks include Ethernets, ring net-
works, and satellite networks. In addition, the X.75 R
architecture does not provide adaptive routing between
networks —when an X.75 call is made, the selection
of gateways is fixed. Therefore a failure in one of the
X.75 gateways disconnects the call and an alternate
route can only be established by making a new call.
The Darpa community has developed an internet-

P
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access protocois to be interconnected. The Internet
System differs in several important ways from the
CCITT architecture. For example, gateways are con-
nected directly to networks instead of being connected
to other gateways. In addition, traffic is sent across

the networks in the form of datagrams instead of via
virtual circuits between the networks. And, most impor-
tantly, the Darpa Internet uses an adaptive-routing
scheme that guarantees that packets exchanged be-
tween hosts on different networks travel on the shortest
path through gateways. This means that if one gateway
faiis and there is an alternative gateway available, the
alternative gateway will be used automatically without
disrupting host-to-hast connections.

The current Darpa Internet System consists of more
than 20 networks and gateways, several hundred host
computers, and several thousand terminals. The In-
ternet networks are connected in a general distributed
fashion, with muitiple paths between networks and
alternate paths that span other networks (Fig. 1). The
gateways dynamically decide the best path for a mes-
sage to be routed to its destination, taking into account
topology changes as they occur.

Diverse networks make up the Internet System: ter-
restrial packet-switching networks such as Arpanet
and BBN-Net; satellite networks such as the Atlantic
Packet Satellite Network (Satnet) and the Darpa-spon-
sored Wideband Packet Sateliite Network {(Wideband);
local networks such as Ethernet and the Norwegian
Defense Research Establishment (NDRE) Ringnet; and
mobile radio networks such as SR! International’s pack-
et radio network. These networks vary in characteris-
tics such as message size, speed, delay, reliability, and
local address tormat (Tabie 1).

It’s all in the family
The Darpa research community has developed a family
of protocols that provides the mechanisms for host
computers to communicate over Internet. These pro-
tocols offer services that may be lacking in the underly-
ing networks that make up Internet. As a result of the
small number of network requirements, new networks
are easily added.

To be part of Internet, a network needs only to be

minimum message size. The family of Darpa Internet
protocols then provides the following services:

® Datagrams

Addressing

Message fragmentation and reassembly

Data reliability

Message sequencing

Flow control

Connections

The Internet System's protocols are a layered family

of protocols, as shown in Figure 2. The two main pro-
tocols that provide user data transfer are the Internet
protocol (IP) [Ret. 1] and the Transmission Control
protocol (TCP) [Retf. 2]. In addition, there are protocols
for specific applications such as terminal traffic (Tel-
net), file transfer (FTP), and electronic mail transfer
{MTP). Internet also has specialized protocols for func-
tions such as gateway routing, gateway monitoring
and control, and error reporting.

tndividual network protocols are not specified in the
Internet System. Instead, each network has its own
access protocols. For instance, Arpanet uses the 1822
Host and IMP protocol (a protocol for interconnection
ot a host and IMP) [Ref. 3], and Satnet uses the Host
Satnet protocol [Ret. 4].

Individual network protocols are used to encapsulate
the Internet protocols for transmission across that net-
work. When a message traverses Internet, each gate-
way creates a new network header appropriate to the
next network (Fig. 3).

Datagram delivery

The IP in the second layer of the Internet protocol fam-
ily transports datagrams across an interconnection of
networks. Datagrams are messages that consist of
source and destination addresses, p)i's data. They are
not required to be delivered reliably or in sequence.

No type of connection needs to be set up to send or
receive them. In contrast, virtual-circuit services are
provided by high-level end-to-end protocols.

A major advantage of the datagram approach to
gateways is that networks are not required to provide
many services in order to send a datagram. Therefore,
it is comparatively easy to interconnect networks of

Table 1 Network Characteristics

§ NAME MESSAGE SIZE SPEED DELAY GUARANTEED NOTES
L IN BYTES DELIVERY
ARPANET 1008 MEDIUM MEDIUM YES
SATNET 256 LOW HIGH NO SATELLITE NETWORK
WIDEBAND 2,000 HIGH HIGH NO zA:E L;;[,NE TWORK
_;ACKET RADIO 254 MEDIUM MEDIUM NO VA;VIF;GA-!;:OT(;GV
NDRE RING 2.048 HIGH LOwW YEs (OCAL NETWORS

. WHERE SPEED 1S LOW = < 100 KBIT/S, MEDIUM = 100 KBIT/S
TO 1 MBIT/S, HIGH = > 1| MBIT/S; AND DELAY 1S LOW = < 50 ms,
" MEDIUM = 50 ms TO 500 ms. OR HIGH = > 500 ms.

Data Communications / August 1982

{121)

e e T T T RGN

b

"' N )

- .
. ot

b

}_.;! work architecture that allows networks with ditferent able to deliver messages to a destination and have a

Aomda ot

t
A b

K ! 'L;;:L,‘ .




e

—————v

S S R T A TR r——

2. Internet protocol relationships. The layered family of
Internet protocols perrmits hosts to communicate over
Internet and provides for specific applications.

LAYERS

FILE
TRANSFER
PROTGCOL
(FTP)

MAIL
TRANSFER
PROTOCOL
(MTP)

4 TELNET [ 21

TRANSMISSION CONTROL

(11}
PROTOCOL

INTERNET
CONTROL
MESSAGE
PROTOCOL

I

1 INDIVIDUAL NETWORK PROTOCOL

diverse characteristics.

The IP provides two basic services in the second
layer: addressing and fragmentation/reassembly. A
common address format is maintained across Internet.
Addresses are tixed-length (32 bits) and consist of the

e

network number and a locatl address. The network-
number fietd contains the address cf a particular net-
work, and the locali-address field contains the address
ot a host within that network.

The networks that make up internet have different
message sizes. The IP provides a fragmentation /reas-
sembly service to overcome these variations. When a
datagram originates in a network that allows large mes-
sages, and the datagram must traverse a network with
a smaller message limit, the datagram must be broken
into smalter *‘pieces,”’ or fragments. The IP provides
a mechanism to permit datagrams to be fragmented
and to be later reassembled into one piece at the des-
tination host.

The TCP, in the third layer, is a connection-oriented,
reliable end-to-end protocol. It provides the services
necessary for reliable message transmission over the
Internet System.

The networks that make up Internet are not required
to guarantee that all datagrams are delivered. Also,
the originator of a datagram does not necessarily know
through which networks a datagram will be routed to
arrive at its destination. Therefore it is necessary to
provide message reliability end-to-end —that is, at the
source and the final destination. To address these re-
quirements, the TCP provides reliability, flow control,
multiplexing, and connection functions.

Reliability is achieved through checksums (error-
detecting codes) and positive acknowledgments of all
data. Data that is not acknowledged is retransmitted.

End-to-end flow control lets the receiver of the data
regulate the rate at which it is sent. To allow many pro-
cesses (applications) within a single computer (for
example, many terminals talking to one host) to use

3. Message encapsulation. When a message traverses
networks on Internet, individual network protocols are
used to encapsulate the Internet protocols for transmus-

ARPANET

ARPANET
HEADER

ARPANET
HEADER

sion across each network. When the message reaches a
gateway. that gateway creates a new network header
appropriate to the next network.

GATEWAY

BBN RING
NETWORK

BBN RING
HEADER

BAN RING
HEADER

INTERNET i3
DATAGRAM DATAGRAM

IP

DATA

NATAGRAM

P
DATAGRAM

1
OATAGRAM
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Table 2 Network table for BBN gateway

; NETWORK NAME NET ADDRESS “ROUTE
SATNET 4 DIRECTLY CONNECTED
ARPANET 10 DIRECTLY CONNECTED
BBN-NET 3 1 HOP VIA RCC 10.3.0.72 (ARPANET 3.72)
PURDUE-COMPUTER SCIENCE 19255.1 2 HOPS VIA PURDUE 10.2.0.37 (ARPANET 2/31)
INTELPOST 43 2 HOPS VIA MILLS 10.3.0 17 (ARPANET 317)
DECNET-TEST 38 3 HOPS VIA MILLS 10.3.0.17 (ARPANET 317}
WIDEBAND 28 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72)
BBN-PACKET RADIO 1 2 HOPS VIA RCC 10.3.0.72 (ARPANET 372}
DCN-COMSAT 29 1 KOP VIA MILLS 10.3.0.17 (ARPANET 317)
FIBERNET 24 3 HOPS VIA RCC 10.3.0.72 (ARPANET 372}
BAAGG-PACKET RADIO ] 1 HOP Via BRAGG 10.0.0.38 (ARPANET 0/38)
CLARK NET 8 2 HOPS VIA MILLS 10.3.0.17 (ARPANET 317}
LCSNET 18 1 HOP VIA MIT-LCS 10.0.0.77 (ARPANET 077)
BBN-TERMINAL CONCENTRATOR 192.1.2 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72)
BBN-JERICHO 19213 3 HOPS Via RCC 10.3.0.72 (ARPANET 3772)
UCLNET n 1 HOP VIA UCL 4.0.060 (SATNET 60)
RSRE-NULL 35 1 HOP VIA UCL 4.0.0.60 (SATNET 60)
RSRE-PPSN 25 2 HOPS ViA UCL 4.0.0.60 (SATNET 60)
SAN FRANCISCO-PACKET RADIO-2 6 1 HOP ViA C3PO 10.1.0.51 (ARPANET 1:51)

"NAMES AND ACRONYMS IDENTIFY GATEWAYS
IN THE INTERNET SYSTEM.

the protocol simultaneously, the protocol provides for
ports to allow individual processes to be identified. The
protocol also provides a mechanism for interprocess
communications between computers.

Open the gates
A host computer that wants an IP datagram to reach
a host on another network must send the datagram to
a gateway. A local-network header containing the ad-
dress of the gateway is attached to the datagram be-
fore it is sent into the network. When the packet is re-
ceived by the gateway, its local-network header is
checked for possible errors and the gateway performs
any necessary host-to-network protocol functions.

The Internet control message protocol (ICMP) [Ref.
5] is the control protocol associated with the IP that is
used to convey error and status information to Internet
users. For example, if the header indicates that the
packet contains an internet datagram, then the packet
is passed to the Internet header check routine, which
performs a number of validity tests on the IP header.
Packets that fail these tests are discarded, and an error
packet is sent from the gateway 10 the Internet source
of the packet.

After a datagram passes these checks, its Internet
destination address is examined to determine if the
datagram is addressed to the gateway. Each of the

L%
hr
S
8
L
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gateway's Internet addresses — one for each network
interface —is checked against the destination address
in the datagram. If a match is not found, the datagram
is passed to the forwarding routine. f the datagram is
destined for the gateway. then the datagram is pro-
cessed according to the protocol in the IP header.
Some types of datagrams that might be addressed to
the gateway include monitoring packets, gateway rout-
ing packets, or remote debugging packets.

Multiple hops

Among other functions, the gateway must make a rout-
ing decision for all datagrams that are to be forwarded.
The routing procedure provides two pieces of informa-
tion: which network interface should be used to send
the packet, and which destination address should be

in the packet's local-network header.

The gateway maintains a network table that contains
an entry for each reachable network (Table 2). The
entry consists of a network number and either the ad-
dress of the neighbor gateway on the shortest 1oute
to the network or an indication that the gateway is
directly connected to the network. A neighbor gateway
is one that shares a common network with this gate-
way. The distance measurement that is used to deter-
mine which neighbor is closest is *‘'number of hops.”

In other words, a gateway is considered to be zero

(123)

.
’ .
’

AR
| T

. [
Adn B 2 A 4

e Voot
) ".’I L' "-vn' ‘.' .__, .

L,
)

P

¥
DA

TR
L
R T
N

'
. .'l . v,
[ SIS Y

1.
1

St
ndan

) .
RN
d bendnd ol A & 4

P

v L .
e sl

1

i

1
I




hops from its directly connected networks, one hop
trom a network that is reachable via one other gate-
way, and so on. The Gateway-to-Gateway protocol
(GGP) (Ref. 6] is used to build the network table.

The gateway tries to match the destination network
address in the IP header of the datagram to be for-
warded with a network in its network table. If no match
is found, the gateway drops the datagram and sends
an ICMP packet to the IP source. If the gateway does
find an entry for the network in its table, it uses the
network address of the neighbor gateway entry as the
local network destination address of the datagram.
However, if the final destination network is one to which
the gateway is directly connected, the destination ad-
dress in the local-network header is simply buiit from
the destination address in the datagram’s IP header.

if the routing procedure decides that an IP datagram
is to be sent back out of the same network interface
from which it was read, then the source host has
chosen a gateway that is not on the shortest path to
the IP final destination. The datagram will still be for-
warded to the next address chosen by the routing pro-
cedure, but a redirect-ICMP packet wili also be sent
to the IP source host indicating that another gateway
should be used to send traffic to the finai IP destination.

Break it up

After the routing decision is complete, the datagram
is passed to the fragmentation procedure. If the next
network through which the datagram must pass has

a smaller maximum packet size than the size of the
datagram, the gateway will break the datagram into
fragments. These fragments are then transported as
independent datagrams themselves and are ultimately
collected and assembled at the destination host to
recreate the origina! datagram.

The gateway now builds a new network header tor
the datagram. The gateway uses the information ob-
tained from its routing procedure to choose the proper
network interface for the datagram and to build the
destination address in the new network header.

The gateway then queues the packet for delivery to
its destination. It also enforces a limit on the size of the
output queue for each network interface so that a slow
network does not unfairly use up all of the gateway’s
buffers. A packet that cannot be queued because of
the limit on the output-queue length is dropped. Wheth-
er or not the packet is retransmitted depends on the
type of packet.

When the packet finally reaches its destination, the
network header is stripped off and the information
inside the IP datagram is processed. In addition, if the
original datagram was fragmented, the destination
host collects ali of the fragments and reassembles
them into the original datagram.

To provide Internet service, the IP gateway must
support a variety of protocols. For example, the gate-
way has to send and receive packets on its connected
network interfaces. Therefore, it must implement all of
these networks' access protocols, such as the Arpanet
1822 protocol or the Satnet Host Access protocol.

Since all Internet traffic is sent in the form of Internet

(124)

L i st gl SR SN A I S A uidh Sl Sandh e 2

datagrams, the gateway must also implement the iP
protocol. In addition, the gateway sends control infor-
mation, such as *'This destination network is unreach-
able.” to hosts using the ICMP protocol.

Monitoring and support of gateways is aided by the
Cross Network Debugger protocol [Ref. 7], which al-
lows remote debugging of the gateway, and the Host
Monitoring protocol [Ref. 8], which allows the gateway
to report the status of its interfaces. The gateway also
has an internal message generator that is used as a
testing facility.

The right way

The IP gateway uses the GGP for four functions con-
cerned with routing:

@ Determining if its network interfaces are operational
& Determining if its neighbor gateways are operational
® Building a table of networks that can be reached via
neighbor gateways

® Adding new neighbor gateways and new networks
to its network table

Gateways use the information obtained from GGP
packets to ensure that a datagram uses the best route
through internet to reach its destination.

GGP packets are sent reliably using sequence num-
bers and an acknowledgment scheme. The gateway
determines if its network interfaces are up by sending
GGP packets, called “‘interface probes,” addressed
to itself every 15 seconds. When a number of these
probes have been successfully received, the interface
is declared operational. if a number of probes are
missed, the interface is declared down.

In order to determine whether other gateways are
operating properly, each gateway has a built-in table
of neighbor gateways. Every 15 seconds, a gateway
will send a GGP echo packet (*‘neighbor probe’’) to
each of its neighbors to determine which are operation-
al. When a neighbor gateway has echoed a number of
probes, it is declared operational. However, if several
probes are sent to a neighbor but are not echoed, the
neighbor is declared down.

Whenever a gateway determines that there has been
a change in Internet routing, such as when it declares
one of its network interfaces to be down, it sends a
GGP-routing-update packet to each of its neighbors.
This packet indicates for each network the distance
and address of the gateway on the shortest path to
the network.

On receiving a routing update, a gateway will recal-
culate its network table to ensure that it uses the neigh-
bor on the shortest route to each network. If the routing
update packet is from a new neighbor or contains infor-
mation about a new network, the gateway updates its
neighbor or network tables. It thereby learns about
new neighbors and networks without having to undergo
reconfiguration.

Finding the alternate path

The gateway uses the information in its routing tables
to minimize congestion and delay by adapting its rout-
ing to the situation. For example, suppose there are
two gateways, X and Y, that can be used to reach net-
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Table 3 Gateway status report

.

v l;]
L -
t .-_' .
. R 8
S Vi GATEWAY 2 B3N 10.040 (ARPANET 3/40) SAT MAY 3 15:15:06 1582 o
=
m VERSION 1001 e
:f: - p INTERFACES: ' J
: ' uP: BBN 4.0.0.61 (SATNET 6%) .
E uP: BEN 10.3.0.40 (ARPANET 3/40) 4
4 NEIGHBORS: j
up: RCC 10.3.0.72 (ARPANET 3/72)
) DOWN: DCEC 10.3.0.20 (ARPANET 3/28) i 4
ur: BRAGG 10.0.0.30 (ARPANET §/38)
uP: C3PD 10.1.0.51 (ARPANET 1/51) ) ]
ur: A202 10.30.51 (ARPANET) 3/51) -~ 1
4 DOWN: NORE 4.9.0.38 (SATNET 38 |
- ur: UCL 4.0.0.60 (SATNET 80) L]
) ue: PTIP 10205 (ARPANET 2/5) 1
ur: PURDUE 10.2.0.37 (ARPANET 2/37) |
or: MIT-LCS 10.0.0.77 (ARPANET ¥/77)
! ur: MILLS 10.30.17 {ARPANET 317} 3
] DOWN: RING 10.2.0.76 ARPANET 2/76) .
r.: DOWN: TIU 10.3.0.76 (ARPANET 3/76) _ .
- METWORK TASLE: -
3 ,
3 ] NETWORK NETWORK ADDRESS *ROUTE -]
¥ 1 NAME . )
. SATNET . DIRECTLY CONNECTED "
1 ARPANET " DIRECTLY CONNECTED 1
1 BEN-NET ] 1 HOP VIA RCC 19.3.0.72 (ARPANET 3/72) 5
PURDUE-COMPUTER SCIENCE 192851 2 WOPS VIA PURDUE 102837 (ARPANET 27) "
INTELPOST Q 2 HOPS VIA MILLS 18.30.17 (ARPANET 217) B )
; DECMET-TEST » 3 HOPS VIA MILLS 10.38.17 (ARPANET 317) 1
3 WIDESAND n 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72)
1 BBN-PACKET RADIO 1 2 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72) o
SAN FRANCISCO-PACKET RADIO1 2 UNREACHABLE ]
DCN-COMSAT 2 1 HOP VIA MILLS 10.30.17 (ARPANET D) :-f,:
FIBERNET n 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72) 5
_ BRAGGPACKET RADID . 1 HOP VIA BRAGG 10.0.0.38 (ARPANET 8/38) ;
CLARK NET ' 2 HOPS VIA MILLS 10.3.0.17 (ARPANET 3/17) .’4
1 LCSNET " 1 HOP VIA MIT-LCS 10.8.8.77 (ARPANET /17 E
SBN-TERMINAL CONCENTRATOR 19212 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72) T
SBNJERICHO w213 3 HOPS VIA RCC 10.3.0.72 (ARPANET 3/72) j{j
UCLNET " 1 HOP VIA UCL 4.0.0.68 (SATNET 88) o]
RSAE-NULL ) 1 HOP VIA UCL 4.0.0.60 (SATNET o8) .
SON-LN-TEST “ UNREACHABLE ~
RSREPPSN % 2 HOPS VIA UCL 4.0.0.80 (SATNET 88) o
€oN n UNREACHABLE -
BEN-GT-TEST € 241 UNREACHASLE -
SAN FRANCISCOPACKET RADIO-2 8 1 HOP VIA 3P0 10.1.8.51 (ARPANET 1/51) :_1*
BBNSAT-TEST N UNREACHABLE ~
*NAMES AND ACRONYMS IDENTIFY GATEWAYS R
IN THE INTERNET SYSTEM " 3
Deta Communications/August 1982 (125) i
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work A. When gateway X goes down, all of its neigh-
bors will send out routing updates reporting that net-
work A is no longer reachable via gateway X. When a
gateway receives this routing update it will recalculate
its network table and find that gateway Y can be used
to reach network A. Gateways will now forward data-
grams through gateway Y to reach network A without
disrupting any host-to-host connections.

Putting it together
The IP gateway operates on Digital Equipment Corpo-
ration PDP-11 or LSI-11 16-bit processors under a
small real-time operating system cailled the Micro Oper-
ating System (MOS), developed by SRl International.
MOS provides facilities for multiple processes, interpro-
cess communications, buffer management, asynchro-
nous input/output, and a shareable real-time clock.
There is one MOS network process and accompa-
nying data structure called a netblock, which contains
information about, for exampile, network interface
status and queueing for each network that is directly

connected to the gateway. Each network process waits

for input from one of the gateway's interfaces. When
an IP datagram is received, the appropriate network

process ‘‘wakes up’’ and calls procedures to forward
the datagram toward its destination.

The IP gateway is written in Macro-11 assembly lan-
guage instead of a higher-level language because
memory is limited by the 16-bit address space. The
gateway code occupies about 10K words of memory.
The MOS operating system occupies an additional 3K
words of code space, leaving 15K words for buffers.
These buffers are shared by various network processes
for reading and writing packets.

Adding support to connect a new network to the IP
gateway is a relatively easy task. A programmer must
write a device driver that handles the hardware inter-
face of the new network as well as a routine to imple-
ment the new host-to-network access protocol. The
programmer also creates a gateway-configuration file
that contains gateway-specific information, such as
interface-device addresses. The macro assembler then
assembles a new gateway program. This programming
task is simplified because more than 75 percent of the
code in all IP gateways is identical because of the mod-
ularity of the gateway software.

Keeping order

Fault isolation can be a major problem in the daily op-
eration of a computer network. Some issues that must
be resolved are: When communications fails, what is
to blame? Is the problem with the host machine, the
network, the lines, or the user program?

Internet fault isolation is even more difficult because
of the number and diversity of users, networks, paths,
and requirements involved. For example, the commu-
nications path may traverse many networks and gate-
ways so that the potential sources of communications
disruption are multiplied.

The ability to identify areas of congestion is also a
more complex task. For example, poor performance
can be the result of individual networks failing to pro-

(126)
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vide users with adequate throughput or of a bottleneck
in connections between networks.

For Bolt Beranek and Newman, the solution to In-
ternet monitoring and control is to apply techniques
much like those used to operate Arpanet. In fact, tools
developed by the company to monitor the gateways
that are the switching nodes of Internet are similar to
those used to monitor the switching nodes in Arpanet.

These tools include a central monitoring facility
called the network operational center (NOC}) [Ref. 9]
that runs on BBN's C/ 70 computer under the Unix
operating system. The NOC regularly receives traffic
statistics and reports of important events from each
of the Internet gateways. Data communications users
can interrogate the NOC to find the current status of
any Internet gateway. The monitoring facility then
prints a gateway status report (Table 3).

The NOC's status- and event-monitoring capabilities
pinpoint hardware and software problems during the
operation of Internet. For example, when communica-
tions is disrupted between Internet hosts, the NOC
monitoring tools help determine whether the problem
lies with a gateway, network, communications line, or
with one of the Internet hosts. Whenever a gateway
receives an erroneous packet, a report that identifies
the source of the packet is sent to the NOC. These
reports help to diagnose malfunctioning hardware and
aid in debugging Internet host software.

References
1. “DOD Standard Internet Protocol,” RFC: 791, Infor-
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Source file

Updates to NICBSRI-NIC;

The Network Information Center (NICBSRI-NIC) has been tasked to maintain .
the official Internet Gateway Name Table.

be registered with

of the connected networks,
continues tou maintain the ARPANET/DDN Host Name Table as well.

redundancy the NIC,
to this document.

[SRI-NIC)<Protocols>TCP-IP-Status. txt.
and password 'guest'

‘anonymous’

Dr.

Pt 3
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TCP-IP IMPLEMENTATIONS

1982

June 8,

[SRI-NIC]<Protocols>TCP-IP-Status. txt

cc: to POSTELGISIF

===

NOTE

All internet gateways should
the NIC along with the location of the gateway,
and a liaison (see examples below). The NIC
To avoid
rather than ISI, will now be the focus for updates
The online version will reside in the file,
It may be FTPed using username
from the SRI-NIC machine (10.0.0.73).

Jon Postel (Postel@USC-ISIF or (213) 822-1511) is acting as

technical coordinator for TCP/IP implementation questions during the

transition to the new internet protocols.

Specific technical questions

about the internet protocols should be directed to him.

I. NETWORK TYPES
The following network types are represented in the internet:
- Packet Switched (ARPANET, DDN, WIN, MINET, EDN)
- Packet Radio (SRI, Ft. Bragg, SAC)
— Packet Satellite (SATNET, WBCNET, MATNET)
— Local Networks (PRONET, ETHERNET (3Mb), ETHERNET (10Mb),
BBN-FIBERNET, Ungerman—-Bass NET/ONE, LL-LEXNET)
- Public Data Networks (TELENET)
II. ADDRESSES

The internet addresses in this memo are stated as four 8-bit fields

with the value of each field given in decimal.

Numbers"”

(RFC~790) for network and protocol number assignments.
"Address Mappings*"

See "Assigned
See

(RFC-796) and "Host Table Specification" (RFC 810)

for a more detailed description of the addressing and naming scheme.

.................
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NTERNET GATEWAYS
GATEWAY TABLE Date: 29 April 1982
BBN—-PR-GATEWAY

system = MOS

location = BBN

networks = BBN—-PR, BBN—-NET

liaison = Steve Chipman (Chipman@BBNC)

SRI-R2D2 2

system = MOS

location = SRI

networks = SF-PR-1, ARPANET

liaison = Jim Mathis (Mathis@SRI-KL)

BBN—-RING-GATEWAY 3.1.0.11, 31.0.0.61, 4

system = MOS

location = BBN

networks = BBN-NET, BBN-SAT-TEST, BBN-LN-TE
liaison = Alan Sheltzer (Sheltzer@BBN—UNIX)

BBN-TIU-GATEWAY

comment = test—gateway

system = MOS

location = BBN

networks = BBN-NET, BBN-TEST-C

liaison = Alan Sheltzer (Sheltzer@BBN-UNIX)

BBN-PTIP-GATEWAY

comment = non-routing

system = PTIP

location = BBN

networks = BBN—-NET, ARPANET

liaison = Steve Chipman (Chipman®@BBN)

BBN-FIBRENET-IG

system = MOS

location = BBN

networks = BBN—-NET, BBN-LOCAL

liaison = Steve Chipman (Chipman@BBN)

BBN—NET~-GATEWAY
system = MOS
location = BBN

networks = BBN-NET, ARPANET
liaison = Alan Sheltzer (Sheltzer@BBN-UNIX)

1.0.0.11, 3.0.0.62

- - . .
S P P P S S U

.0.0.11, 10.3.0.51

1.0.0.5, 192.0.1.5 -

ST, BBN-TEST-C

3.2.0.11, 192.0.1.5

3.2.0.5, 10.2.0.5

3.2.0.50, 24.2.0.1

3.3.0.8, 10.3.0.72
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ETAM--IG 4.0.0.21, 10.4.0.39

comment = non-routing

system = SIMP

location = ETAM

networks = SATNET, ARPANET

liaison = Dale McNeill (McNeill@BBN-UNIX)

NDRE-GATEWAY 4.0.0.38, 48.0.0.4, 50.0.0.4

system = MOS

location = NDRE

networks = SATNET, NDRE-TIU, NDRE-RING
liaison = Alan Sheltzer (Sheltzer@BBN-UNIX)

UCL—GATEWAY 4.0.0.60, 11.3.0.42, 32.2.0.42, 35.7.0.0

system = MOS

location = UCL

networks = SATNET, UCLNET, UCL-TAC, RSRE-NULL liaison = Alan
Sheltzer (Sheltzer@BBN—-UNIX)

BBN-GATEWAY 4.0.0.61, 10.3.0.40
system = MOS
location = BBN
networks = SATNET, ARPANET

liaison = Alan Sheltzer (Sheltzer@BBN-UNIX)
SRI~-C3PO 6.0.0.11, 10.1.0.51

system = MOS

location = SRI

networks = SF—-PR-2, ARPANET

liaison = Jim Mathis (Mathis@SRI-KL)

CLARKSBURG-IG 8.0.0.30, 10.1.0.71

comment = non-routing

system = SIMP

location = Clarksburg

networks = CLARKNET, ARPANET

liaison = Dale McNeill (McNeill@BBN-UNIX)

BRAGG-GW1 9.0.0.11, 10.0.0.38
system = MOS
location = BRAGG
networks = BRAGG-PR, ARPANET

liaison = Ed Perry (Perry®ISID)

MIT-GATEWAY 10.0.0.77, 18.8.0.4

system = MOS

location = MIT

networks = ARPANET, LCSNET

liaison = J Noel Chiappa (JNCBMIT-XX)

R |
"




WISC-GATEWAY 10.0.0.94, 192.5.2.6

system = MOS

location = UWISC

networks = ARPANET, WISC

liaison = Rusty Sandberg (rusty@UWISC)

LL-PSAT-IG 10.1.0.10, 28.9.0.0
comment = non-routing
system = PSAT
location LL

networks = ARPANET, WIDEBAND
liaison = Walter Milliken (Milliken@BBN-UNIX)

SRI-PSAT-IG 10.1.3.51, 28

comment = non-routing

system = PSAT

location = SRI

networks = ARPANETY, WIDEBAND

liaison = walter Milliken (Milliken@®BBN-UNIX)

PURDUE—-CS—-GATEWAY 10.2.0.37, 128

comment = non-routing

system = UNIX

location = PURDUE

networks = ARPANET, PURDUE-CS
liaison = Paul McNabb (pam@PURDUE)

DCNET—GATEWAY 10.3.0.17, 29.

system = MOS

location = Linkabit

networks = ARPANET, DCN-LINKABIT
liaison = Dave Mills (Mills®ISID)

DCEC-GATEWAY 10.3.0.20, 21.

system = MOS

location = DCEC

networks = ARPANET, EDN

liaison = Ed Cain (Cain@EDN-UNIX)

ISI-PSAT-IG 10.3.0.22, 28.

comment = non—-routing

system = PSAT

location = ISI

networks = ARPANET, WIDEBAND

liaison = walter Milliken (Milliken@BBN-UNIX)

.11.0.0

.10.0.2

'''''''''
.......




SAC—-GATEWAY 10.3.0.80, 47.0.0.11

system = MOS

location = SAC

networks = ARPANET, SAC-PR
liaison = Ed Perry (Perry8ISID)

DCEC-PSAT-IG 21.0.0.3, 28.10.0.0
comment = non-routing
system = PSAT
location = DCEC
networks = EDN, WIDEBAND

liaison = Walter Milliken (Milliken@3BN-UNIX)
RSRE-CATEWAY 25.6.0.0, 25.13.0.0, 35.6.0.0

system = EMMOS

location = RSRE

networks = RSRE-PPSN, RSRE—-NULL
liaison = Andrew Bates (ABates@ISID)

B. BBN MACRO-11 GATEWAYS

Date: 11 May 1982
From: Alan Sheltzer (Sheltzer@BBN-UNIX)

In an effort to provide improved service in the gateways
maintained by BBN, a new gateway implementation written in
macro—11 instead of BCPL has been developed. The macro-11 gateway
provides users with internet service that is functionally
equivalent to that provided by the current BCPL gateways with the
following exceptions:

1. Packets with options will be fragmented if necessary.
2. ICMP protocol is supported. The gateway sends Time Exceeded,

Parameter Problem, Echo, Information Request, Destination
Unreachable, and Redirect ICMP messages.

3. Initially, Source Quench and Timestamp packets will not be
supported.

Class A, B, and C Network Address formats as specified in the
September 1981 Internet Protocol Specification (RFC 791) are
supported.

T e
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5. The gateway contains an internetwork debugger (XNET) that
allows the gateway to be examined while it is running.

[

fi' 6. Buffer space is greatly expanded to provide better throughput.
E- ARPANET RFNMs are counted so the gateway will not send more than 8
o outstanding messages to an ARPANET host.
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The following gateways are now using this implementation: -

BBN-PR-GATEWAY
BBN—RING-GATEWAY
BBN-TIU-GATEWAY
BBN-NET-GATEWAY
NDRE-—-GATEWAY

VR N RS R S LR IR T | TR FL DR A

UCL—-GATEWAY

BBN-GATEWAY

SRI-C3PO

DCEC-GATEWAY

IV. HOST IMPLEMENTATIONS OF TCP/IP
1. BBN H316 and C/30 TAC

Date: 18 November 1981 ‘
From: Bob Hinden (Hinden@BBN-UNIX) |
The Terminal Access Controller (TAC) is a user Telnet host that 2

supports TCP/IP and NCP host-to-host protocols. It runs in 32K
H-316 and 64K C/30 computers. It supports up to 63 terminal
ports, and connects to a network via an 1822 host interface.

The TAC TCP/IP conforms with RFC-791 and RFC-793 specifications
with the following exceptions:

[ T LY W AN

1. IP options are accepted but ignored.

2. All TCP options except maximun segment size are
not accepted.

3. Precedence, security, etc. are ignored.

J
The TAC also supports Packet core, TAC Monitoring, Internet 5
Control Message Protocol (ICMP), and a subset of the ;
Gateway—-Gateway protocols. 4

For more information on the TAC's design, see IEN-166.

All major features have been implemented except Class B and C
addressing, IP reassembly, and TCP Urgent handling. These will be
done in the near future.

Hosts:
TAC ADDRESS Date: 12 May 1982 i
A
ABER 10.2.0.29 .
AFGL 10.2.0.66 3
AFSD 10.1.0.65 1
ANDRWS 10.1.0.67 b
BBN 1.0.0.83 4
; BBNCC1 3.1.0.3 ;
we BBNCC2 3.2.0.3 \
. BRAGG 10.2.0.38
‘e CcCA 10.2.0.31
b CHINA 10.2.0.85
T (132) 6
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A DARCOM  10.2.0.50

o DAVID 10.2.0.81

n DEP56 3.0.0.10

. DIV-5 3.2.0.9

e GUNTER  10.2.0.13
NBS 10.2.0.19
NSWC 10.2.0.84
PAXRV 10.3.0.97
SAC 10.2.0.80
STLA 10.2.0.61
ucL 11.2.0.42
USGS2 10.1.0.69
USGS3 10.1.0.70
WASH 10.2.0.91
YUMA 10.2.0.75

2. BBN TENEX and TOPS20

Date: 23 November 1981
From: Charles Lynn (CLynn@BBNA)

TCP and IP are available for use with the TENEX operating system
running on a Digital KAl1lO processor with BBN pager. TCP and IP
are also available as part of TOPS20 Release 3A and Release 4 for
the Digital KL10 and KL20 processors.

Above the IP layer, there are two Internet protocols within the
monitor itself (TCP and GGP). 1In addition, up to eight (actually
a monitor assembly parameter) protocols may be implemented by
user-mode programs via the "Internet User Queue" interface. The
GGP or Gateway-Gateway Protccol is used to receive advice from
Internet Gateways in order to control message flow. The GGP code
is in the process of being changed and the ICMP protocol is being
added.

TCP is the other monitor-supplied protocol, and it has two types
of connections —— normal data connections and "TCP virtual
Terminal" (TVT) connections. The former are used for bulk data
transfers while the latter provide terminal access for remote
terminals.

A
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Note that TVTs use the standard ("New") TELNET protocol. This is
identical to that used on the ARPANET with NCP and in fact, is
largely implemented by the same code.

At the IP level, fragmentation and reassembly are currently being
tested. The Security option can be parsed, but no code for doing

R e
- S

; preemption of resources has been writen. Certain other

ﬁ security-related features are implemented.

b .

b Performance improvements, support for the new address formats, and

; User and Server FTP processes above the TCP layer are under

T development.
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The most recent release of IP and TCP TOPS20 software is based on
the Multinet network interface and was made about 15 May 82,

KRNI SO

Hosts:
BBNA 10.3.0.5 Date: 27 May 1981

Contact: Steve Chipman (617)491-1850 Chipman@BBNC =
TCP Services: L
Port Service

23 Telnet
Test Account: None

BBNB 10.0.0.49 Date: 27 May 1981

TCP Services:
Port Service

-
*,
g
Contact: Steve Chipman (617)491-1850 ChipmanGBBNC J
i
!

1 Telnet
Test Account: None

=

.
.

BBNC 10.3.0.49 Date: 27 May 1981

Contact: Steve Chipman (617)491-1850 Chipman@BBNC
TCP Services:
Port Service E

- 23 Telnet )
h Test Account: None R

4

O B

BBND 10.1.0.49 Date: 27 May 1981

Contact: Steve Chipman (617)491-1850 Chipman@BBNC
TCP Services:
Port Service
23 Telnet
Test Account: None

aaad oL e

BBNE 10.0.0.5 Date: 27 May 1981

Contact: Steve Chipman (617)491-1850 Chipman@BBNC
TCP Services: None
Test Account: None

BBNF 3.2.0.51 Date: 27 may 1981

Contact: Steve Chipman (617)491-1850 Chipman@BBNC
TCP Services:
Port Service
23 Telnet
Test Account: None
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- BBNG 10.1.0.51 Date: 27 May 1981 g
*
g- Contact: Steve Chipman (617)491-1850 ChipmangBBNC
r~' TCP Services: 1
[LJ Port Service 1
S 23 Telnet 4
g Test Account: None -
-. 1
i 1518 10.3.0.52 Date: 27 May 1981 :
b
- Contact: Dennis Smith (213)822-1511 Smith@ISIB
TCP Services: ]
Port Service A
e 1
23 Telnet i
Test Account: None s
ISIC 10.2.0.22 Date: 27 May 1981 .
]
Contact: Dennis Smith (213)822-1511 Smith@ISIB ]
TCP Services:
Port Service
23 Telnet L
Test Account: None >
" 3
ISID 10.0.0.27 Date: 27 May 1981 3
Contact: Dennis Smith (213)822-1511 Smith®ISIB
TCP Services:
Fort Service
. —— v — —— — -*
23 Telnet -]
57 MTP Mail '1
Test Account: None B
-4
ISIE 10.1.0.52 Date: 27 May 1981 =
Contact: Dennis Smith (213)822-1511 Smith3IS1IB i
TCP Services: - ]
Port Service L
o 57 MTP Mail ]
j, Test Account: None K
[+ ISIF 10.2.0.562 Date: 27 May 1981
Cf .
- . Contact: Dennis Smith (213)822-1511 Smith@ISIB ®
o TCP Services: _
Port Service j
i 23 Telnet 2
| 25 SMTP Mail "
b 57 MTP Mail .;
" Test Account: TCP-TEST "
28 ]
= -]
3 -
R
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DZC TOPS20

Date: 3 May 1982
From: Kevin Paetzold (PaetzoldGDEC-MARLBORO)

DEC is merging the BBN TCP/IP software into TOPS-20, and
implementing a different JSYS interface that is more consistent
with the other TOPS20 I/0O JSYSs.

Hosts: none indicated
4. SRI TENEX (AUGUST and FOONEX)

Date: 1 July 1982
From: Henry Miller (MILLERGSRI-NIC)

SRI has implemented TCP and IP for the TENEX (FOONEX and AUGUST)
operating system running on F3 and F4 Foonly processors. The SRI
TENEX TCP/IP is written in MACRO and resides in the operating
system. It was adapted from the BBN and ISI versions of TENEX
TCP/IP. The work was supported by the DCA/NIC contract, and the
NIC version of TENEX TCP/IP is available fcr other machines
running TENEX, FOONEX, or AUGUST.

Hosts:
SRI-NIC 10.0.0.73 Date: 1 July 1982

Contact: Henry Miller (415)859-5303
TCP Services
Port Service

23 Telnet

37 Time (currently not running)
42 Name

43 Whois

101 Host

UDP Services
Port Service

101 Host
SRI-CSL 10.2.0.2 Date: B8 May 1982
Contact: Geoff Goodfellow (415)859-3098 GEOFF@SRI-CSL

OFFICE machines
Contact: Steve Kudlak (408)446-6102 KUDLAK@OFFICE
5. TOPS10

Date: 1 July 1982
From: Don Provan (Don.Provan@CMU-10A)

Don Provan (Don.Provan@CMU-10A) is currently implementing a TOPS10
version of TCP/IP under contract to the Air Force.
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6. BBN UNIX 11/70

.
Date: 14 May 1981 ﬁ
From: Jack Haverty (haverty@BBN-UNIX) '

This TCP implementation was written in C. It runs as a user

process in version 6 UNIX, with modifications added by BBN for 2
network access. It does not perform reassembly, and has no N
separate IP user interface. It supports user and server Telnet. =

1. Hardware - PDP-11 running UNIX version 6, with BBN IPC )
additions.

2. Software — written in C, requiring 22K instruction space, -

)
15K data space. Supports 10 connections. ;¥
3. Status — TCP has been essentially completed since March, 1979, ;
and no additional work has been done on it since then. 3
4. Unimplemented protocol features -
A. TCP - Ignores options except S/P/T. #

Discards out—-of—-order segments.

B. IP — Does not support fragmentation or reassembly.
Ignores options.

5. Documentation - "TCP/PSIP Development Report", and "TCP
Software Documentation”, both BBN reports.

This implementation was done under contract to DCEC. 1t is
installed currentiy on several PDP-11/70s and PDP-11/44s. Contact
Ed Cain at DCEC <Cain®EDN-UNIX> for details of further
development.

S Hosts:
o BBN-UNIX 10.0.0.63 Date: 27 May 1981
o Contact: Tom Blumer (617)491-1850 tpb@BBN-Unix hp
5 TCP Services: S
< Port Service "
b - —_——— m—————— .
- 23 Telnet -
o Test Account: TCP-TEST ‘
.
L 7. DCEC PDP-11 UNIX =
= Date: 29 January 1982 jﬁ
= From: Ed Cain <cain@EDN-UNIX> -j
.’ This TCP/IP/ICMP implementation runs as a user process in version 74
. 6 UNIX, with modifications obtained from BBN for network access. '
o IP reassembles fragments into datagrams, but has no separate IP -
g user interface. TCP supports user and server Telnet, echo, S
- discard, internet mail, and a file transfer service. ICMP B
. generates replies to Echo Requests, and sends Source-—-Quench when “%
{‘ reassembly buffers are full. - 1
h X
L
h~
-
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1. Hardware - PDP-11/70 and PDP-11/45 running UNIX version 6, ﬁ
with BBN IPC additions. o
2. Software - written in C, requiring 25K instruction space, ?
20K data space. Supports 10 connections. -
3. Unimplemented protocol features: g
]
A. TCP - Ignores all options (work in progress to implement "
the max-seg-size option (the only defined option)). Discards R
out—of-order segments (work in progress to utilize .
out-of—-order segments). R
B. IP - Ignores options except Security/TCC j
y
Hosts: q
EDN-HOST1 21.1.0.1 Date: 27 May 1981 g
Contact: Ed Cain (703)437-2578 CainBEDN-Unix
TCP Services:
Port Service
1 THP
7 Echo
9 Discard
17 Short Text
23 Telnet
25 SMTP Mail
65 List of services
53 AUTODIN II FTP
57 MTP Mail
79 Finger: UNIX "dpy" command.
Test—-Account: TCP-TEST
EDN-HOST3 21.0.0.3 Date: 27 may 1981
Contact: Ed Cain (703)437-2578 Cain@EDN-Unix
TCP Services:
Port Service
1 THP
7 Echo
9 Discard
17 Short Text
23 Telnet
25 SMTP Mail
N 65 List of services
o 53 AUTODIN II FTP
e 57 MTP Mail
p 79 Finger: UNIX "dpy" command.
L. Test-Account: TCP-TEST
-
-
o
n
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EDN-UNIX 10.3.0.20 Date: 27 Mmay 1981

Contact: Ed Cain (703)437-2578 Cain®EDN-Unix
TCP Services:
Port Service

1 THP

7 Echo

9 Discard

17 Short Text

23 Telnet

25 SMTP Mail

65 List of services

53 AUTODIN II FTP

57 MTP Mail

79 Finger: UNIX "dpy" command.

Test—-Account: TCP-TEST
BBN UNIX C70

Date: 18 November 1981
From: Rob Gurwitz (Gurwitz@BBN-UNIX)

The C/70 processor is a BBN-designed system with a native
instruction set oriented toward executing the C language. It
supports UNIX Version 7 and provides for user processes with a
20-bit address space. The TCP/IP implementation for the C/70 was
ported from the BBN VAX TCP/IP, and shares all of its features.

This version of TCP/IP is running experimentally at BBN, but is
still under development. Performance tuning is underway, to make
it more compatible with the C/70's memory management system.

Hosts:
BBNT 3.3.0.7 Date: 27 January 1982
BBN UNIX VAX

Date: 27 May 1981
From: Judy Gordon (JGordon@BBN-UNIX)

BBN has developed an implementation of TCP/IP for DEC's VAX(TM)
family of processors, that runs under the Berkeley 4.1BSD version
of UNIX(TM). The development effort was funded by DARPA.

Some important features of the BBN VAX TCP/IP are that it runs in
the UNIX kernel for enhanced performance, it is a complete
implementation of the TCP and IP protocols, and provides
facilities for direct user access to the IP and underlying network
protocols. The IP module supports checksums, option
interpretation, fragmentation and reassembly, extended internet
address support, gateway communication with ICMP, and support of
multi—-homing (multiple interfaces and addresses on the same or
different networks). The TCP supports checksums, sequencing, the
ability to pass options through to the IP level, and advanced
windowing and adaptive retransmission algorithms. Support is also
provided for the User Datagram Protocol (UDP).
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In addition to the TCP/IP software for the VAX, BBN has developed
implementations of the TELNET Virtual Terminal Protocol, File
Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP),
for use with TCP. These protocols are operated as user level
programs. Also provided are network programming support tools,
such as network name/address manipulation libraries, status,
tracing, and debugging tools.

X
;
:
3
;.;

The TCP/IP and higher level protocol software are now available
direct from BBN. The software is distributed on a 1600 bpi tar
format tape, containing the sources and binaries for a 4.18SD UNIX
kernel containing the network modifications and the sources and
binaries for the higher level protocols and support software.
Documentation is provided in the form of a set of UNIX manual
pages for the network access device, user programs, and libraries.
In addition, a detailed installation document is provided. Device
drivers are supplied for the ACC LH/DH—-11 IMP interface and the
Proteon Assoc. PRONET Local Network Interface.

The tape is available for a $300.00 duplication fee to Berkeley
4.1BSD licensees. To order the tape, contact:

Ms. Judy Gordon
Bolt Beranek and Newman, Inc.
10 Moulton St.

. Cambridge, MA 02238
o 617-497-3827
v jgordon@bbn—-unix

You will then receive a copy of the licensing agreement. Tapes
will be mailed upon receipt of a completed agreeement and the
distribution fee.

This tape is supplied as—is to 4.1BSD licensees, with no
warranties or support expressed or implied. BBN would be pleased
to arrange separate agreements for providing installation
assistance and/or software support services, if desired.

UNIX is a trademark of Bell Laboratories. VAX is a trademark of
Digital Equipment Corporation.

Hosts:
BBN-~VAX 10.2.0.82 Date: 27 May 1981
Contact: Rob Gurwitz (617)491-1850 Gurwitz@BBN-Unix

TCP Services
Port Service

23 Telnet
Test Account: TCP-TEST

10. ISI UNIX VAX

Date: 8 June 1982
From: Dennis Smith (Smith®@ISIB)
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Hosts:
ISI-VAXA 10.2.0.27 Date: 8 June 1982
Contact: Dennis Smith (213)822-1511 Smithg1isis
TCP Services:
Port Service
23 Telnet
Test Account: TCP-TEST
11. DTI VMS VAX

Date: 12 Mar 1982
From: John Schur (schur at dti-vms)
This TCP implementation is written in C for the VMS operating
system. It uses ACP's for the TCP and IP processes, and supports

791
ser

1.

r s

.«
* .

At
‘..nl‘-’

user level

The implementation fully conforms to the TCP (RFC 793),

interfaces to these ACP's.

IP (RFC
Higher level protocol
FTP, and SMTP.

) and ICMP (RFC 792) specifications.
vices include user and server TELNET,

Hardware — VAX 11/780 or 11/750 running VMS 2.2 or later,
and ACC LH/DH-11 interface (other devices will be supported
in future according to user interest).

Software — written in mostly C and some MACRO. Supports
a user—definable number of connections.

Status — TCP/IP ACP's are currently in testing stages,
with field test sites to begin use in April.

Protocol Features Supported:

IP:

Fragmentation/Reassembly: reassembly is supported, but
fragmentation is not implemented.
Options: all options are generated and interpreted.

Reassembly timeout: fixed value. Oldest fragments are
discarded first when buffers fill up.

TCP:

Options: All defined options are implemented.

Urgent, Push: Supported as per specifications.

Retransmission: Timeouts employ exponential backoff until a

limit is reached, at which time user is notified.
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12.

13.

Window strategy: Window size is larger than the actual
available buffer space by the maximum size of an internal
buffer.

Please contact DTI for further information.
Hosts: None indicated
SRI LSI-11

Date: 15 May 1981
From: Jim Mathis (Mathis.tscb@SRI-UNIX)

The IP/TCP implementation for the Packet Radio terminal interface
unit is intended to run on an LSI-11 under the MOS real-time
operating system. The TCP is written in MACRO-11 assembler
language. The IP is currently written in assembler language; but
is being converted into C. There are no plans to convert the TCP
from assembler into C.

The TCP implements the full specification, although the current
user interface lacks a mechanism to communicate URGENT pointer
information between the TCP and the higher-level software. The
code for rubber-EOL has been removed in anticipation of a change
to the specification. The TCP appears to be functionally
compatible with all other major implementations. 1In particular,
it is used on a daily basis to provide communications between
users on the Ft. Bragg PRNET and ISID on the ARPANET.

The IP implementation is reasonably complete, providing
fragmentation and reassembly; routing to the first gateway; and a
complete host—-side GGP process. Currently the source quench
message is ignored. No IP options are generated and all received
options are ignored.

A measurement collection mechanism is currently under development
to collect TCP and IP statistics and deliver them to a measurement
host for data reduction.

Hosts: None indicated
8BN HP—-3000

Date: 14 may 1981
From: Jack Sax (sax@BBN-UNIX)

The HP3000 TCP code is in its final testing stages. The code
includes under the MPE IV operating system as a special high
priority process. It is not a part of the operating system kernel
because MPE IV has no kernel. The protocol process includes TCP,
IP, 1822 and a new protocol called HDOH which allows 1822 messages
to be sent over HDLC links. The protocol process has about 8k
bytes of code and at least 20k bytes of data depending on the
number of buffers allocated.
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“i The TCP code is believed to support all features except rubber f
. EOL. The IP code currently supports fragment reassembly but not e
o fragmentation. In addition provisions have been made to allow the ]

- IP layer to accept and act on routing and source quench messages.
These features will be added sometime this summer. Security and

r .
o

precedence are currently ignored. ﬂ

ol
In addition to TCP, the HP3000 has user and server TELNET as well 3
as user FTP. A server FTP may be added later. "]
A complete description of the implementation software can be found =
in IEN 167. Q

. -

.-

For further information see BBN Report 4856 (January 1982).
Hosts: none indicated

13. MIT MULTICS

Date: 29 December 1981
From: Dave Clark <Clark@MIT-Multics>
Michael Greenwald <Greenwald@MIT—-Multics>

Multics TCP/1IP is implemented in PL/1 for the HISI 68/80. It has
been in experimental cperation for about 2 years; it can be
distributed informally as soon as certain modifications to the
system are released by Honeywell. The TCP and IP package are
currently being tuned for performance, especially high throughput
data transfer.

It is believed that the implementation fully conforms to the DOD
standard. It also supports most relevant features of GGP and
ICMP, including redirect packets. The IP layer is a gateway, and
supports fragmentation as well as reassembly.

We don't do much with options. The only exception to this is TCP
max segment size — with which you can coax us to send you TCP
monster packets. (The record so far is 5000 octet packets between
mit-multics and cisl-multics [with a clone of our code], but that
was only for testing purposes.)

Higher level services include user and server telnet, and a full
function MTP mail forwarding package. We also have a preliminary
SMTP implementation.

= The TCP and IP contain good logging and debugging facilities, * ]
e which have proved useful in the checkout of other implementations. -
rﬁ Please contact us for further information. -~

‘® Hosts: iy
MIT-Multics 10.0.0.6 Date: 27 December 1981 i

L Contact: Dave Clark (617)253-6003 Clark@MIT-mMmultics
Mike Greenwald (617)253-6042 Greenwald@MIT-Multics

17 (143)
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Michael Greenwald (617)253-6042 Greenwald@MIT—Multics
TCP Services:
Port Service ]

‘_‘.

TCP Services: =
Port Service T

7 Echo *

9 Discard -

23 Telnet -

25 SMTP .

37 Special MIT Time Server 5

57 MTP Mail o

UDP Services <l
Port Service %

Gl

14 Name Server 4

69 TFTP -
Test Account: TCP_Test Iy
MIT-DevMultics 10.3.0.31 Date: 27 December 1981
-

Contact: Dave Clark (617)253-6003 ClarkeMIT-Multics =

1 Old-Telnet

7 Echo
9 Discard
23 Telnet
37 Special MIT Time Server .
UDP Services R
.
Port Service y
14 Name Server }
69 TFTP :
Test Account: None 5
g 4
Lﬁb 14. UCLA IBM 9
.'_’.I \:
- Date: 18 Jan 1982 N
- From: Bob Braden (Braden®ISI) -
NN .
8 Implementation Status —— IP/TCP for IBM 360/370 under OS/MVS or
5 OS/MVT. .
S
ti> 1. Hardware
o
- IBM 360 or 370 CPU. IMP connected to Basic Multiplexor channel
rg_ using ACC interface box.
i 2. Operating System
e
o OS/MVS with ACF/VTAM. An OS/MVT version is also available.
-
i
o
o (144) 18
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Installation of the MVT version includes a number of operating
system extensions and modifications; the MVS version uses an
unmodified IBM system.

The ARPANET control program operates as a user job, which must
be declared non-swappable to MVS and occupy a high performance
group. Under MVT, it must have high dispatching priority.
3. Implementation Language
Assembler H.
4. Protocol features supported:
A. IP PROTOCOL:
(1) Fragmentation/reassembly: performs reassembly. o
Does not fragment, assuming that higher-level protocol sl

(TCP) will create suitable size segments during
packetizing. ™~

(2) Options: all internet options accepted but ignored.
None are sent (in particular, no error options).

]

4

(3) Identifier selection: uses globally-unique identifiers -1
for transmitted segments, independent of destination. 3

1

4

|

(4) Reassembly timeout: fixed value (30-60 seconds),
independent of time-to-live field. Packets are
discarded if time—-to-live field is zero.

(5) Gateway functions: Fixed routing, based either on its
own host table (for locally-initiated association) or on
gateway from which first packet received (for remotely-
initiated association). Currently unable to select an L
alternate gateway if the original choice fails. ]

(6) ICMP: Accepts GGP, has not yet been converted to ICMP.

a (7) Type of Service: default Type of Service set, may cause ﬁ;
L either Subtype 0 or Subtype 3 (Uncontrolled) packets to %
. be sent.

}

,Q B. TCP PROTOCOL:

(1) Precedence, security fields: not set or tested.

a (2) TCP Options: no options generated. All options accepted

. but ignored. ;
4

- (3) urgent: may be sent and received by user process. E
a (4) EOL: may be sent by user process, but received EOL's are .
& not passed to user process because input uses a circular -
E buffer.
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15.

(6) Retransmission: successive retransmissions use
exponential backoff. Base time is 2 times observ
exponentially weighted round-trip time. Round-tr
is measured as initial packet transmission to com
acknowledgment. Retransmits slowly into zero wind

(7) Initial Sequence Number: derived from system cloc

(8) window strategy: uses conservative strategy., neve
advertising a receive window larger than the spac
available in the circular buffer.

(9) ACK generation: always sends <ACK> in response to
receipt of a non-empty packet. As user process r
bytes from buffer, optimizing algorithm determin
to generate <ACK> to inform sender of larger wind

5. UDP
UDP has not yet been implemented.
6. User—-Level Protocols Available with TCP
User and Server Telnet.
FTP has not yet been converted to use TCP.
Hosts
UCLA-CCN 3033 10.1.0.1 Date: 27 may 1981

Contact: Bob Braden (213)825-7518 Braden@ISI
TCP Services:
Port Service
7 Echo
23 Telnet (TSO & NETSTAT)
Test Account: None

LINKABIT DCNET Internet Software

Date: 17 April 1982
From: Dave Mills (Mills at ISID)

The DCNET internet software system has been developed with
sponsorship over the last three years and used extensively
testing, evaluation and experimentation with other
implementations. It currently runs in a sizable number of
and LSI-11s with varying configurations and applications.
system is designed to be used with the DCNET local network
BOS/V0OS operating system for a multi-media internet worksta
(so—called "fuzzball"), which operates using emulation tech
to support ordinary RT-11 system and application programs.

20
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However, the system has also been used on other networks,
including ARPANET, and with other operating systems, including
RSX-11. An RSX-11 based version is presently used to support the
INTELPOST electronic—-mail network.

The DCNET system consists of a package of MACRO-11 and C modules
structured into levels corresponding to local-net, IP, TCP and
application levels, with user interfaces at each level. The
local-net level supports several comunication devices, including
synchronous and asynchronous serial lines, 16-bit parallel links
and 1822 interfaces. Hosts using these devices have been
connected to ARPANET IMPs, Satellite IMPs, BCPL and MACRO-11
Internet Gateways, SRI Port Expanders and to the DCNET local
network. When used on DCNET the system provides automatic
routing, time-synchronization and error-reporting functions.

The IP level conforms to the RFC-791 specification, including
fragmentation, reassembly, extended addressing and options, but
currently does not interpret options. A full set of ICMP features
compatible with RFC-792 is available, including
destination-unreachable, timestamp, redirect and source—quench
messages. Destination-unreachable and source-quench information
is conveyed to the user level via the TCP and raw-datagram
protocol modules. Internet gateway (routing and non-routing)
facilities compatible with IEN-109 (as amended) can be included on
an optional basis. This support can be configured to include
hierarchically structured gateways and subnets.

The TCP level conforms to the RFC-793 specification, including
PUSH, URGENT and options, but currently does not interpret
options. Its structure is based on circular buffers for
reassembly and retransmission, with repacketizing on each
retransmission. Retransmission timeouts are dynamically
determined using measured roundtrip delays, as adjusted for
backoff. Data flow into the network is controlled by measured
network bandwidth, as adjusted by source—-quench information.
Features are included to avoid excessive segment fragmentation and
retransmission into zero windows. The user interface level
provides error and URGENT notification, as well as a means to set
outgoing IP/TCP options.

A raw—-datagram interface is available for XNET (IEN-158), UDP
(RFC-768) and similar protocols. It includes internal congestion
and fairness controls, multiple-connection management and
timestamping. Protocols above UDP supported in the present system
include Time Server (IEN-142) and Name Server (IEN-116). A number
of user—-level protocol modules above TCP have been built and
tested with other internet hosts, including user/server TELNET
(RFC-764) user /server FTP (RFC-765), user/server MTP (RFC-780),
user/server SMTP (RFC-788) and various other file-transfer,
debugging and control/monitoring protocols.
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Code sizes and speeds depend greatly on the system configuration -
and features selected. A typical 30K-word LSI-11/2 single-user :
configuration with all features selected and including the -
operating system, device drivers and all buffers and control "
blocks, leaves about-16K words for user—level application programs -
and protocol modules. A typical 124K-word LSI-11/23 configuration —
provides thz same service to a half-dozen individually relocated =
users. Disk—-to-disk FTP transfers across a DMA interprocessor link x
between LSI-11/23s operate in the range 20-30 Kbps with 576-octet i
packets. The 124K-word PDP11/34 INTELPOST adaptation supports two R
.ﬁi 56—Kbps lines and a number of lower-speed lines. B
-
o DCNET Supported Protocols ﬂ
‘» -. :'1
2 All DCNET hosts can support the following protocols: ;@
Number Name Protocol j
p 1 ICMP Internet Control Message Protocol 4
- 3 GGP Gateway-Gateway Protocol .
3 4 GMP Gateway Monitoring Protocol 2
! 6 TCP Transmission Control Protocol ]
s 7 ucCLP University College London Protocol - 4
[]; 15 XNP XNET Cross—Net Debugger Protocol %
X 17 uDP User Datagram Protocol
- 19 DCNP DCNET Protocol ]
- 63 LNP DCNET HELLO Protocol .
. 71 SMP SIMP Monitoring Protocol ﬁ
Notes:

1. XNP datagrams directed to some DCNET hosts will simulate
power-up reset followed by entry to the downline loader "
firmware.

2. GMP, UCLP, XNP, UDP, DCNP and SMP protocols are supported
only when the relevant protocol modules are active.

DCNET Supported Services

All DCNET hosts can support the following services and associated
port numbers:

Port Name Service
L e ———— e
. 7 ECHO Echo server
b 9 SINK Sink (discard) server
N 19 TTYTST Traffic generator server
yoo 21 FTP File transfer (FTP) server
g 23 TELNET Virtual terminal (TELNET) server
e 25 SMTP Simple internet mail (SMTP) server
s 37 TIME Time server
- 42 NAME Name server
e 45 MPM Internet message (MPM) server
:'Q 47 NIFTP File transfer (NIFTP) server
K = 57 MTP Internet mail (MTP) server
Do 87 TALK Operator Intercom server
o (148) 22
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Notes:

1.

-~

10.

11.

All servers operate with TCP. The ECHO, SINK, TIME and NAME
servers operate with UDP as well.

The FTP, NAME, NIFTP, MTP and SMTP servers require a disk.
Most TELNET server funcions require a disk.

The ECHO server forwards datagrams after interchanging
addresses and ports. The SINK server discards TCP data at
the user level. The TTYTST server repeats a test message
continuously until the connection is closed by the user.

The FTP server is compatible with the minimal implementation
of RFC-765.

The TELNET server is compatible with RFC-764, including
IP/URGENT, but excluding negotiations, and requires "local
echo."” It supports an RT-11 emulator which can run most
utilities and user programs for that system.

The TIME server is compatible with IEN~142. It is
synchronized to the DCNET time standard, which provides
accurate timekeeping to within a few milliseconds relative
to NBS radio time broadcasts.

The NAME server is compatible with IEN-116. The host
name—address tables contain all the ARPANET hosts from the
NIC database, together with all DCNET and many other internet
hosts.

The NIFTP and MPM servers are presently but empty shells.

The MTP server is compatible with the minimal implementation
of RFC-780 and requires "recipients first."

The SMTP server is compatible with the minimal implementation
of RFC-788.

The TALK server links the opcerator terminal to the TELNET
connection in full-duplex mode.
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TCP-IP DIGEST ;
ﬂf' Contributions to Mike Muuss, Coordinator (Mike@BRL) ;.
;‘1 Back issues in directory [SRI-NIC]<TCP-DIGEST> X

A A
f %= v

man o

A a o o 4)

Micnhnael Muuss at the Ballistics Research Laboratory is coordinating an
- informal online special-interest digest called TCP-IP DIGEST. Those
iii interested in general news items concerning the TCP/IP protocols are ”ﬂ
encouraged to add their names to the distribution list by sending a y
! network message to R

TCP-REQUEST@BRL or TCP-IP-REQUEST@BRL

Implementors are alilso encouraged to contribute news items about their
versions of TCP/IP, or anything else of related interest to

TCP-IP@BRL

Back issues are available online only from the directory <TCP-DIGEST> on
the SRI-NIC machine (10.0.0.73). The issues may be FTPed from your
local host using username 'anonymous', password=guest. The files are in
the form

<TCP-DIGEST>TCP-VINO1l. txt
<TCP-DIGEST>TCP—-V2NO9. txt
<TCP-DIGEST>TCP-V3N10. txt
etc.

[

1

>

4

o

= The newsletter is the place to report milestones, ask questions of

L fellow programmers, discuss interesting technical issues, and generally
@ keap in touch. It does not have a regular publishing cycle, and is

4 published whenever Mike has enough material of interest and enough time
4 to get it organized and sent.
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