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•/ Counterfactuals

Abstract
." '--- Counterfactuals are a form of .m~nonsense non-monotonic inference that has been of

long-term interest to philosophers. In this paper, w fiegin4y describing some of the impact
counterfactuals can be expected to have in artificial intelligence, and by reviewing briefly
some of the philosophical conclusions which have been drawn about them. Philosophers
have noted that the content of any particular counterfactual is in part context-dependent;
we present a formal description of counterfactuals that allows us to encode this context-
dependent information clearly in the choice of a sublanguage of the logical language in
which we are working. Having made this choice we show that our description of coun-
terfactuals is formally identical to the acceptepossible worlds terpretation due to
David Lewis. Finally, we examine the application of our ideas in the domain of automated
diagnosis of hardware faults. a
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§1. Introductior / A AC,

A counterfactual is a statement such as, "if p, then q," where p is expected to be false.

Typical examples are, "If the electricity hadn't failed, dinner would have been ready on

time," or "If the bedroom door were open, I could get the widget I left in there."

From the point of view of logical semantics, counterfactuals are always true. This is

in contrast with our intuitive understanding of their content, which might well accept the

statements in the last paragraph while rejecting, for example, "If the power hadn't failed,

pigs would fly."

Indeed, the distinction between true and false counterfactuals seems to underly much

of our use of knowledge. When planning the solution to a complicated problem, we reduce

it to subproblems by realizing that we can prove a counterfactual of the form, "If only thus-

and-so were true, I would be able to solve the original problem." The original problem

reduces to proving the counterfactual (in sonic suitable sense) and to arranging ror thus-

and-so to be true.

Consider the problem of crossing a river if the only boat available has no oars. The 0] [ '..','\

counterfactual, "If I had some oars, I'd be able to cross the river," suggests replacing the

original problem with that of finding something with which to row. This is a fairly general

phenomenon: counterfactuals suggest goal regressions. _ ii,.. " :- y Code"
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Counterfactuals also enable us to understand why plans fail. The example we have

already mentioned, "If the electricity hadn't failed, dinner would have been ready on time,"

is typical. The electricity did fail. But in spite of its lack of logical content, the statement

does explain why the soup isn't ready.

Dave Smith has pointed out that additional applications can be found in the area

of design. Suppose that a machine contains an on-line representation of the design of a

complex device. Questions of the form, "If I were to remove the pullup resistor connected

to the output of the or gate, would the output of the circuit change?" are counterfactual

in nature.

Diagnosis is similar. The counterfactual, "If the device fails in this fashion, the and

gate is not functioning," allows us to reason directly from the intended description of the

design of the device in question, as opposed to reasoning from a description that explicitly

allows for the failure of some component, as in [4]. The nature of counterfactual implication

is also such as to subsume the single fault assumption-the above counterfactual will be

true if (and only if) a fault in the land gate is sufficient, in and of itself, to explain the

failure of the device.

Finally, counterfactuals will necessarily play a part in natural language understanding.

The extent to which they pervade our communications makes it inevitable that we will

eventually need a formal description of them.
p.. '*-.-

My aim in this paper is twofold. Firstly, I would like to describe briefly some of the

existing philosophical work that has been done on counterfactuals, although with an eye

* towa-rd eventual applications in artificial intelligence. Secondly, I will present a formal

description of cotinterfactuals that is precise enough to admit a machine implementation.

Before proceeding, though, I should point out that there are other types of cosditionals

of potential interest in artificial intelligence. An indicative conditional is a statement of

the form, "If z is a bird, then z can fly." There is some consensus among philosophers

[1,5] that the truth value of such a conditional is probabilistic; the reason philosophers -

draw a distinction between indicative conditionals md other probabilistic statements is

2
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because our confidence in "If z is a bird, then z can fly" is a function of the likelihood of a

randomly selected bird flying, as opposed to the likelihood of the statement being true for S.

a randomly selected instantiation of z. The statement will be true for the overwhelming

Smajority of such instantiations, since most of them will not be birds.

I will not be concerned with indicative conditionals here. They have already been

considered extensively in the non-monotonic literature [7].

There is also a very loose connection between counterfactuals and causality. In the

planning examples we have given, the counterfactual "if p, then q" corresponds to "-,p is

a cause for -,q." The electricity failure is the cause of the lateness of the dinner. The lack

of oars prevents us from crossing the river.

This connection cannot be pushed too far, however. Suppose that after a MYCIN
run, we want to know why the machine asked that a certain clinical test be taken. The

response is that, "If the result had been positive, the organism would have been rodlike."

This is a useful counterfactual, but the causal connection is from the conclusion to the

premise, as opposed to the reverse.

An example where there is no causal connection at all *can be found in [6]. Suppose

that Olga attends a certain party, but that Boris, who is trying to avoid Olga, does not.

If Olga has no similar aversion to Boris, we would have that, "(Even) if Boris had come,

Olga would (still) have come." Here, the counterfactual describes the lack of a causal

connection.

§2. Properties of counterfactuals

In his excellent book on counterractials, Lewis [6] clarifies the distinction between

counterfactuals and standard logical implications by listing some of the properties that

distinguish them. The results of this section are not new, but may be unfaniliar to an AI

audience. A fairly complete treatment of this topic can also be found in [9].

Contraposition s not a valid rule of inference for counterfactual. If we denote the

counterfactual, "ir p, then q," by p > q, we cannot conclude -q > -'p from p > q. Returning

• .-. ; .-......-.....•..* •..-..•. *-.- ;........• •...........-... •.......... .... •. .....-.. ...... ..-..
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to our power failure example, it may well be the case that if the power hadn't failed, dinner

would have been on time:

The power didn't fail> dinner was on time. .

It does not follow from this that the electricity would have failed if dinner had been late-- t

there may well be an alternative possible cause.

Counterffactuals are not necessarily transitive. From p > q and q > r we cannot

necessarily conclude p > r. The standard example is due to Stalnaker [101:

i J. Edgar Hoover had been born a Russian, then he would have been a Communist,

and

If he had been a Communist, he would have been a traitor

do not together imply

IfHoover had been born a Russian, he would have been a traitor.

anall , counterfactuals are nou-monotonic. Frotn p > r we cannot necessarily con-

elude p A q > r. In fact, it is possible to have p > r and p A q > -w: The two statements, .:

"If the electricity hadn't failed, dinner would have been ready on time," and "If the elec-

tricity hidn't failed, but I had been elected president, dinner would have been late," are

completely consistent.

Glymour and Thomason [5] seem to infer from this last observation that the study of

non-monotonic inference generally can be subsumed to some extent under an investigation

of counterfactuals, but in light of the breadth of the non-monotonic nature of commonsense

reasoning (the frame problem, indicative conditionals, etc.), this seems to me to miss the

mark. Counterfactuals in fact main to be a distinct type or non-nionotonic reasoning.

13. Possible worlds

Following an idea of Stalnaker's 1101, most modern investigations of counterfactuals

are based on the notion of possible worlds. Loosely speaking, we analyse a counterfactual

p > q by considering the "possible world" that is as shnilar to our (real) world as possible,

4
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given that p is true in it. The counterfactual is true or not depending upon whether or

not q holds in this world.

Lewis [61 has observed that this "most similar possible world" may.* be unique. He

defines a counterfactual to be true if and only if it holds uniformly in the most similar

possible worlds in which the premise holds.

This distinction is apparent if we consider the law of the counterfactual excluded

middle:

(p > q) V (p >

In Stalnaker's view, either q or -,q will hold in the nearest possible world where p holds,

so that the disjunction above will be valid. Lewis points out that this may not be the case

by examining the counterfactuals, "If Bizet and Verdi had been compatriots, Bizet would

have been Italian," and, "If Bizet and Verdi had been compatriots, Bizet would not have

been Italian." Both of these appear to be invalid.

It is possible to upderstand the discussion of section 2 in terms of possible worlds;

we will discuss only the non-monotonic nature of counterfactuals here. The other two

properties described earlier are similar.

The basic reason that p > r and p A q > -'r are consistent is that worlds where p A q

hold may be much lcss similar to our own than worlds where p alone holds. It is entirely

possible that r holds uniformly in the nearest of the p-worlds while -,r holds uniformly in

the (more distant) nearest of the p A q-worlds. It is also possible that r holds in some of

the nearest of the p A q-worlds while -,r holds in others. In this case we would have only

p> and -,(pAq> r).

Returning to our power failure example, the nearest possible worlds in which the

power remained on are worlds in which dinner was ready on time. In the nearest of the

(much) more distant worlds where I was elected president, dinner was late. In still more

distant worlds, such as those where the power remained on and I was elected president,

but no one bothered to inform me, dinner will once again be prompt.

We can formalize these notions by assuming that, given a fixed world F, the set of all "--

5.°°



possible worlds W. can be ordered under a relation 2!F where U 2!F V if U is at least as

jsimilar to Fas Vis. We can also define > as U >FViff '(V 2:FU); here Uis more

similar to F than V in.

Lewis now defines a counterfactual p > q to be true in some world F if there exists a

world U such that:

-(1) p is true inU, and

(2) p q is true in any world Vwith V >rU(i.e., if Vif any world ansimilar toF an

U is, q will hold in V if p does).

He also defines p > q to be (vacuously) true if there is no possible world U in which p

holds.

The following diagram of his may help to explain this. The concentric circles around

F each contain worlds of equal similarity to F. The diagram on the left corresponds to t

the case where q holds uniformly in the most similar of the p worlds (the shaded region

In the diagram), so that p > q is valid. In the righthand diagram, neither q nor -q holds

I uniformly in these worlds, so that nesither p > q nor p > -V is valid.

Iq

p> q ee(p~q)'

* 54. Framework

From an Al perspective, the difficulty with the possible worlds interpretation of coun-

terfactuals is that the notion of "similarity" is too vaguely defined. Our main intention in

6
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this paper is to present a sharper definition of it.

Intuitively, there are (at least) three measures of the similarity, or lack thereof, between

different possible worlds. These correspond loosely to the number of propositions whose

truth values change, to the extent by which these truth values change, and to the relative

importance of the propositions involved.

The last of these is the most difficult to understand in any formal sense, since (as we

will see in the next section) it is fundamentally dependent upon context. In fact, we will be

able to do little more than to provide a way to encode information concerning the relative p
importance of the propositions being considered. It is of some interest to note that the

scheme we will present can be used to define a notion of similarity that is unchanged from

one possible world to another; in other words, we can impose some sort of uniformity on

the various relations >F presented in the last section.

The other two sources of similarity are more syntactic. If the truth value of a propo-

sition changes unnecessarily, in the sense that the possible world without the change is

consistent, the possible world which incorporates the change should be deemed " ore dis-

tant" from our own than the one which doesn't. Similarly, a world where the truth value

of some fixed proposition changes from "true" to "true by default" is closer than one where

the truth value changes from "true" to "false".

Although this latter is not a feature that will arise in a simple predicate calculus inter-

pretation of counterfactuals, it is important to us because much commonsense reasoning

seems to involve these "intermediate" truth values. Since counterfactuals are aspects of p

commonsense reasoning, they will need to mesh neatly with the features of other common-

sense systems. -....

In order to allow for this, we will work in a logical system that is as loosely defined

as possible. While looking for a logical system that potentially includes predicate calculus

and some form of default/probabilistic reasoning as special cases, we must also find one

capable of supporting precise notions corresponding to logical ideas such as closure and

consistency, since these ideas underly that of counterfactual implication. The construction

7



we are about to present will in fact be a generalization of one due to Ellis [2].

Fix a partially ordered set T of truth values, and assume that T admits a least upper

"- bound operation. Denote by u ("unknown") the least upper bound of all of the elements

of T. Next, let L be the set of sentences in some language. We define a truth function to

. be a mapping

::L -- T.

Intuitively, 0,(p) < 4(q) if we are more certain of the truth or falsity of p than of q.

Predicate calculus corresponds to T = {u, t,f ) (t=true, f=false) with u > t and

u > f; t and f are incomparable. A truth function 46 assigns to each sentence of L its

truth value, if one is known (and u otherwise).

We will say that a truth function 4 is an extension of a truth function 0, writing

:5, i, if O(p) <_ O(p) for all p E L. We will call an extension 4 proper if the inequality is

strict for at least one p in L, and will call 4 a simple eztenion if O(p) i -O(p) for only a

" single p E L.

We will also assume that we have some way of determining whether or not a trutk

function is consistent. In the predicate calculus case upon which we are modelling our

*' analysis, however, the truth value of a compound sentence is defined recursively in terms

of the truth values of its components; furthermore, the definition only applies if the truth

values of these components are t or f (as opposed to t). The (consistent) assignment of

the truth values t or f to all of the sentences in L constitutes a model for L.

In general, a model can be characterized by the fact that it is impossible to add to

the infornmation corresponding to the truth assignments of the model. Since we have been

interpreting r < a (for truth values r and s) to mean that the iiformation content of the

truth value r is greater than that of 8, it follows that it will be impossible to supplement

the information content of the truth assignment 4(p) if 0(p) is a minimal element of T.

This leads us to define a truth function 4 to be a model if O(p) is minimal for all p E L.

If a truth function 0 is a model that is an extension of the truth function 4,, we will say

that 0 is a modular eztenuion of 4. Assuming that consistency is defined as a primitive

8
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for models, we will say that a truth function 4, is consistent if" 4S has a consistent modular

extension.

Here are some predicate calculus examples. In the first two cases, 0' is a consistent

modular extension of 4,. Since 4, in the third case has no consistent modular extension, it

is inconsistent.

X -(X) O(X,) 46(z1 OW(, OWx O(z)'---'

A t t f f f f
B f f u t (orf) u ?

AAB t t f t t

Lemma 1. Let P be the set of consistent truth functions. Then if 4 S 4 and 4, E r,

Proof. Since j6 < ', any extension of 4, is an extension of 4'. -

Equivalently, any extension of an inconsistent truth function will also be inconsistent.

We might model default logic with T = {u, t, f, dt, df, pt, pf,,, with dt= "true by

default", df="false by default", pt= 'propensity for truth" and pf= "propensity for falsity".

Now
dt = lub(t, f,pt) = lub(t, pt)

4f = lub(t,f,pf) = lub(f,pf)

U = lub(t, f, pt, pf)= lub(pt, pf)

= lub(t, ).

Probabilistic logic might correspond to T = ([a, b] [ (0, 1]), with [a, b] < [c, d] if [a, b] _

[c,d]. The minimal elements of T in this casc are the singletons (x) C [0, 1].

For a consistent truth function 4, the closure of 4, will be the least upper bound of

the consistent modular extensions of 4,, and will be denoted cl(4,). If 4 = cl(C,), 4, will be

called closed. It is not hard to see that this corresponds to logical closure in the predicate

calculus case.

In the exmnple below, 01 and 02 are the only consistent modular extensions of 4,:

9
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S 1 02 Cl(O)

A t t t t
B t f U

AvB u t t

* Lemma 2. cl() < 4.

Proof. Let {40} be the consistent modular extensions of q. Then O, S 0 for all i, so that

cl(0) = lub(,} <0. a

Related to the notion of closure is that of reduction: a truth function 0 will be called

reduced if all of its simple extensions are consistent. The idea is that a simple extension

of 4 corresponds to the acquisition of more knowledge about some specific proposition; if

every such extension is consistent, the original truth function must have been minimal in

the sense that it had no extensions which were 'necessary" consequences of it.

That the notions of closed and reduced truth functions are not identical is demon-

strated by the following example: Returning to the case where T is the set of closed

subintervals of [0, 11, suppose that there is a proposition p such that O(p) = 0 is not con-

sistent, but such that O(p) z : is consistent for every z 6 0. Now a truth function with

O(p) = 10,11 may well be closed, since [0,1] = lub(z E (0,11). It will not be reduced,

however, since the simple extension given by O(p) - 0 is inconsistent.

* In order to formalize the connection between reduction and closure, we need the

following definition: The consistency set ic will be called dense if, for all collections of

truth functions {, O) which agree uniformly except on a single sentence p E L, if ', E 1

for all i, O(p) is minimal for all i, and O(p) < lub({i(p)), then 0 E .. Intuitively, if X is

dense and the Oj are consistent and agree except at a single proposition p, then if 46 is any

truth function that agrees with them except at p, and such that O(p) is in the "span" of

the O,(p), then 0 will be consistent as well.

Lemma 3. Predicate calculus is dense.

Proof. If O(p) _< lub{ O(p)) and each O,(p) is either t or , we must have O(p) _ Oj(p)

10
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* for some s.Now apply lemma 1. a

Lemma 4. Suppose xc is dense. Then any closed truth function 4,is reduced.

- Proof. Let 0b be a simple extension of 40 with 4,(p) iA 0(p). Then there exist consistent

* modular extensions Og of 45 with 0k(p):5 lub[O,(p)}. Define truth functions 9, by

Oqif q 0p

eiqif q p.
*Since 9, is an extension of V9, the 19 are consistent, agree with lbexcept at p, and Ob(p) !5

lub(i8 (p) 1. ThereforeOl is consistent. a

§5. Similarity

The terminology introduced in the last section allows us to make precise some of the

* ideas in section 3: possible worlds correspond to consistent models, and sets of possible

worlds to consistent truth functions.

The difficulty with this is that we still lack a formal notion of similarity. Part of the

- problem is context-dependent, as we can see from the pair of counterfactuals

If Caesar had been in command lin Korea), he would have used the atom bomb

* and

If Caesar had been in command, he would have used catapults.

- This examnple is Quine's [81. E ither counterfactual may well be true (although not both);

- if thc first, Caesar's character is important to our notion of similarity; if the second, it is

the tools he had available which are relevant.

It is clearly impossible to select between these two counterfactuals in advance; the best

we cani do is to prcacnt a meth~odl for encoding in our semantic miach~inery the inrorination

leading to the choice. In order to do this, let L' be a subset of L, and suppose that 4, is a

fixed truth function defined on L - LV. We can now define a truth function ~'on L' to be

* consistent if and only if the truth function

lb'p)= 0(p), forP ELV,
O 4(p), for p LV

11 2



is consistent. The effect of this is to fix the truth values outside of L, so that any consistent

truth function on L' must be consistent with them.

In the above example, if L' includes "Caesar was a ruthless military leader," but not,

"Caesar's military tools were those of the Roman Empire at its height," we will have to

accept Caesar's use of catapults without question, regardless of the weapons available at

the time of the engagement, resulting in the validity of the counterfactual which concludes

that he would have used catapults. If the situation were reversed, the other counterfactual

would be valid. If L' includes both of the statements describing Caesar, the construction

we will present will ambiguously select either of the counterfactuals, while if both of the

descriptions are relegated to L, both counterfactuals will be vacuously true because no

truth function oo with qO(Caesar in command) t'will have a consistent extension to all of

Given the choice of a (possibly restricted) language L, let p be a sentence in L',

*a truth function, and 8 a truth value. We will investigate the consequences of the

counterfactual premise O(p) - a be defining a new truth function, to be denoted

and corresponding to with the truth ialue at p replaced by 8. If # = t, so that we are

interested in restricting the value of O(p) to "true", we will denote 01(p).t simply by #1p.

We will follow the Caesarian example carefully throughout this section. We have the

following propositions in L:

K = Caesar in command in Korea

r : Caesar war ruthless

R =Caesar's tools were those of the Romans

a = thc atoa bomb was used in Korea

c catapults were used in Korea.

In L are the rules of inference:
K Ar- a

K A R-*.":
•K-R-...
-,(a A c).

12
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The last of these is equivalent to -,(K A r A R). Our initial truth assignment is given by:

K f
r t
R t
a f

Of interest to us is the truth function OIK; what if Caesar had been in command in Korea?

The general difficulty is that simply changing O(p) to 8 may well produce an incon-

sistent truth function. We begin therefore by replacing 0(p) not with s, but with the

least upper bound of 8 and 0(p). This truth function q' must be consistent (since 0 is an

extension of it), but need not be closed.

K f u =lub(t, f
r t t t
R t t t

e f f 1 ff

Assume next that there is at least one reduced truth function of which 4' is an

extension. (By lemma 3, we will generally be able to take for 0 the least upper bound of

all consistent models for L.) The set of all such O's is partially ordered under extension;

,.. let 4" be a minimal element of it.

0 0' 0 (typical) 011

K I u u u :"
r t t t t -
R t t U
a f f U U5

Cf ff

The result of replacing 0"(p) with a is necessarily consistent, since " is reduced and

4"(p) > * initially. Let 0 be the truth function obtained by making this replacement, and

take #1#(,).. to be cl(o). We also define #(p > q) = #,(q).
13
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____6# 1 #11K 02 2 OI1K

K u t t u t t
r t t t U S f
R f t t t

C f f f i

K>c f t

The construction we have Oven works through the construction of the "intermediate"

truth function e', which is in some sense a set of the most similar possible worlds in which

we might have -O(p) being either its original value or the new value.8. The reason we have

done this in because it seems to be technically easier to define similarity for a world of

which ours is an extension (0' in the above construction) than for one which is not directly

comparable with it (as # with O(p) replaced by s would be).

Having constructed similar worlds where 0(p) =s might hold, it is straightforward

to investigate the consequences if we assume that it does hold. This is the content of our

taking 0#(.)=. to be the closure of #6" with O"(p) replaced by.

The choice of truth function #" corresponds to choosing a .set of the possible worlds

in which 0(p) s8. hnour military example, assuming Caesar to be in command in Korea

required our abandoning one of these descriptions, and the choice of which to discard

corresponded to our choice of #".

An alternative would be to assume that the worlds where we abandon one description

are just as similar to our own as those in which we abandon another. Lewis might wel

make this choice; it corresponds to defining

O(p > q) = IbOpqJ

where the least upper bound is taken over all possible choices of "

16. Formal description

Previous analyses of counterfactuals have generally developed a set of axioms which

counterfactual implication must satisfy. Wc will conclude by showing thiat our definition

14
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matches Lewis' in the predicate calculus case and with the definition of O(p > q) at the

end of the last section.

Lewis introduces two counterfactual operators. He writes p o-4 q for, 'If it were the

case that p, then it would be the case thatqg", andp *-+q for, "If it were the came that p,

then it might be the case that q." Both of these are handled by our formalism. We write

PoC-'q iff *(p >q) t

p -q iff *(p >q)t.L

Theorem 5. p o -* q is equivalent to -"(p '- -q).

Proof. Suppose p o-, q. Then if 0~ is a consistent modular extension of any 0 in our

counterfactual construction with O(p) = t, ib(q) = t. Thus 0(-mq) =f, so #(p > -q)=f

and -(p (*- -q). The reverse implication is identical. a

Lewis in fact takes o)-+ as primitive and uses theorem 5to define 0-.

Our main result depends on one due to Girdenfors [31:

Theorem 6 (Girdenfors). A countetfactual operator )-# is formaffy identically to

Lewis' iff it satisfies:

(p 0'-q) A(p o-,r)-.(p o-.q Ar)()

po-* T (2)

(poD-*q) A ~=(q-r) .(p C-. r) (3)-

PD-' P (4)

(P q) (P (q(5)

(p A q) -- (p0C'-. q) (6)

(p D-4 q) -4 (p -4 q) (7)

(pD- r) A(q C- r)-(p V q D-+T)(8

(pC-# q) A-(p D-4-r) -# (p Ar 0-4q). a (9)
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Theorem 7. The counterfactual construction of section 5 is formally identical to Lewis'

possible worlds construction.

Proof. We need to verify (1) through (9) above. As in the proof of theorem 5, let 0 be a

consistent modular extension of some 9 in the counterfactual construction. Then:
V.

For (1), we must show that if *P(p) t implies O(q) = t and i(r) = t, it implies

(q A r)= t. This is immediate.

For (2), we must show that O(T) = t. This is also immediate.

For (3), we must show that if O(p) = t implies O(q) = t, and if x(q -' r) = t for any

consistent model X, then O(p) = t implies O(r) = t.

(4) requires that if O(p) = t, then b(p) = t. For (5), if O(p) = t is equivalent to

¢(q) = t, then clearly O(p) = t will imply O(r) t if" O(q) = t does.

In (6), suppose that (p A q) holds for our original truth function 4. Then we will

clearly have 01p = 0, so that p )-# q because O(q) = t.

For (7), if O(p -- q) 0 t, there is a consistent modular extension X of 4 with X(P) = t

and x(q) = f. This X will also be a consistent modular extension of a 9 in the counterfactual

construction, so that O(p > q) # t.

The only non-trivial case in (8) is that where O(p) = O(q) = f. Now the premise

is equivalent to the assumption that in any consistent modular extension X of 0 where

X(p) = t or X(q) = t, x(r) = t. Thus if x(p V q) = t, x(r) = t.

In (9), suppose first that O(p) = t. Then we know that O(q) = t, and O(r) > t. It

follows that there is a consistent modular extension X of 0 with X(pAT = t, so that 0IPA^

is an extension of 4, and 4<111A(q) ,(q)= t. O(p) = u is similar, and if #(p) = f, we have

that there is a consistent modular extension X of some 0 with X(pAr) = t, and that for any

consistent modular extension of a 0 with X(P) = t, x(q) = t. The conclusion follows, a

17. Example: diagnosi

7.1 Setting

Genesereth has proposed [41 that it is possible for machines to be used in automated

16*5~4~ .4 *. *..t'.........
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diagnosis, provided that the machines are given both a design for the device in question,

and the ability to manipulate the device by varying its inputs and observing the results.

He investigates the diagnosis of a full adder in considerable detail:

FlI

X-s

A2 I.

A full adder is essentially a one bit adder with carry in and carry out, and it is
usually used as one of ni elements in an ni bit adder. A graphical representation
of its design is given [above]. It has three inputs and two outputs and consists of
two "xor' gates (X1 and X2), two "and' gates (Al and A2), and an "or*W gate
(01) ... In normal operation, the first output (the *sum' line) is 'on* if and
only if an odd number of inputs is "on"; the second output (the "carry' line) is
*on" if and only if at least two inputs are "on'. 141

Genesereth proceeds to describe the design of the full adder in a variant of prefix

predicate calculus. We continue to quote him:

301: (X0KG X0)
BD2: (101G 12)
303: (ANDO Al)
304: (A300 £2)
305: (ORO 01)
306: (COIN (IN 1 F1) (IN 1 11))
ED?: (COIN (IN I F0) (1I 1 AM)
3WO: (CONN (IN 2 F0) (IN12 11))
309: (COIN (11 2 F0) (IN 2 Al))
3010: (CONN (IN 3 Fl) (1I 2 12))
3011: (CONN (IN 3 F0) (IN 1 £2)
3012: (CONN (OUT 1 11) (19 1 12))
3013: (CONN (OUT 1 11) (IN 2 A2)
3014: (CONN (OUT 1 Al) (IN 2 01))

17



SD16: (CONN (OUT 1 A2) (IN 1 01))
SD16: (COIN (OUT 1 12) (OUT 1 FM)
OD17: (CONE (OUT 1 01) (OUT 2 FM)

* These axioms describe the strctw.1 denption of the full adder. SDl, for example, states

* that X1 is an exclusive-or gate. SD13 states that the first output of Xl is connected to

the second input of A2.

Geneuereth also states in a similar form results describing the behavior of the various

sorts of gates, and describing in these term what it means for two points in the circuit to

be connected. Using these additional miami, it in possible to prove that if, for example,

the first input to the full adder is an while the other two are off, the first output should

* be on while the second should be off.

7.2 Diagnosi using predicate calculus

The situation of interest, of course, is that in which the outputs of the adder are not

ns predicted by the design. Gemeuereth ssumes that we hav:

ACI: (VAL 1IN i Fl) I.ON)
AC2: (VAL (IN 2F1) 10FF)
AC3S: (VAL (IN 3 F1) 1W?"):1...
051: (VAL (OUT 1 Fl) 1 0FF)
032: (VAL (OUT 2 Fl) 1 0FF)

In other words, the values of the three inputs to the adder at time t =I are as described 7

* at the end of the last subsection, but both of the outputs are off at that time.

* The observed behavior characterized by ACI-AC3 and O13l-0B2 is inconsistent with

the design given by SDI-SDI7. Diagnosis is a matter of resolving this inconsistency..

To do so using predicate calculus, Genesereth assumes (correctly?) titat the device in

question (1043 not satisfy the design description given earlier, but instead satisfies some1

weaker "device assumptions3 . In the example we are considering, he asuumes tht:

(1) The connections are all an described in the design, and

(2) At most one of the gates is broken (the sio16W amst umption).

These device asunaptions cmn be written ws:
DAl: (CONN (IN 1 F1) (1N 1 11))

~~ ~~ * .~~~.. . . .* . * * *.. .* ... . . . . . ..



DA2: (CONN (IN I Fl) (IN 1 Al))

DA3: (COIN (IN 2 Fl) (IN 2 XI)

PDA4: (CONN (IN 2 Fl) (IN 2 Al))
DA5: (COIN (IN 3 Fl) (IN 2 X2))
DA6: (CONN (IN 3 Fl) (IN 1 £2)
DA7: (CONN (OUT 1 X1) (IN 1 X2))

DA8: (COIN (OUT 1 X0) (IN 2 A2))
DA9: (CONN (OUT I Al) (IN 2 01))
DAIO: (CONN (OUT 1 A2) (INI 1O1)
DAlI: (COIN (OUT 1 X2) (OUT 1 FlM
DA12: (CONN (OUT 1 01) (OUT 2 Fl)

DA13: (IF (NOT (XbaG 11)) (AND (bORG X2) (ANDG Al) (ANDG A2) (ORG 01)

DA14: (IF (NOT (XORG X2)) (AID (XORG X0) (ANDG Al) (ANDG A2) (ORG 01)
DA16: (IF (NOT (ANDG Al)) (AND (bORG X0) (bORG X2) (ANDG A2) (ORG 01)

* DA16: (IF (NOT (ANDG A2)) (AID (XORG X0) (XORG X2) (ANDG Al) (ORG 01)

* DA17: (IF (NOT (ORG 01) (AID (bORG 11) (bORG 12) (ANDG Al) (ANDG A2))

The reappearance of the connection information in DAl-DA12 amounts to the assumption

that the connections are intact; the axioms DA13-DA17 encode the single fault ass8umption.

The axioms above are consistent with the observed behavior of the adder, and.lead

to the conclusions that

(OR (NOT (bORG X1)) (NOT (XORG X2))) (10)

and

(AND (Alma Al) (AIDG A2) (ORO 01). (1

In other words, one of the exclusive-or gates is broken, and the reinnmg components are

functioning satisfactorily. The information about the functionality of the and and or gates

is useful bccatisc it enables us to generate a test to dctcrwiine which or the two cxclusive-or

gates is in fact faulty.

The difficulty with this approach is that it requires us to generate the device as-

tumptions DAl-DA17. It is possible that the fault(s) in the device are such that these

assumptions are invalid, in which case the system will be unable to diagnose the device o

* without a replacement set of device assumptions.
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7.3 Diagnosis using counterfactuals

The device assumptions in the last subsection were introduced to encode our belief that

the wiring in the adder was correct, and to enable us to take advantage of the simplifying

assumption that only one of the remaining components was damaged. Both of these

conditions can be recast naturally in the framework of counterfactuals.

To perform the diagnosis using the methods we have presented, we will assume the

structural description DSI-DS17 and the inputs achieved by AC1-AC3, and examine the

counterfactual consequences of the observed outputs OB1-0B2. There are three possible

explanations for the fault:

(1) One or more of the components is faulty.

(2) The wiring is faulty.

(3) The inputs were not as expected.

We eliminate all but the first from our counterfactual reasoning by including only the

component assumptions SD1-SD5 in our restricted language L'. The wiring and input

assumptions SD6-SD17 and ACI-AC3 are therefore assumed to be independent of the

counterfactual assumptions corresponding to the observed misbehavior of the device.

The conclusion (10) that one of the two exclusive-or gates must be faulty is in fact a

logical consequence of the behavior of the device:

OBI A OB2 -4 (OR (NOT (X0RG X)) (NOT (xoRG X2))).

Meanwhile, because the remaining components cannot be contributing to the observed

fault, their continued performance is comnterfactually implied by the observed behavior:

0131 A 0B2 > (AND (ANDC Al) (ANDG A2) (ORG 01)).

This reappearance of (11) is especially useful. Because of the non-monotonic nature
of counterfactual reasoning, it is of course possible that additional observations appended

to the lefthand side of the above equation will invalidate its conclusion; this will hap-

pen whenever the single fault assumption is violated. In this case, however, rather than

20
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generating a contradiction, the counterfactual analysis will automatically produce a new

diagnosis which once again involves failure for a minimal set of components.

It is possible, however, for a counterfactual analysis to suggest a violation of the single

fault assumption when one is not required. If the observed behavior can be explained either

by the failure of a single component, or by the failure of a pair of different components,

both will be proposed. There is nothing counterintuitive about this, however-it is quite

normal to assume that a group of normally undependable components has failed before

questioning a single part of proven reliability. In any event, we can if necessary retain the

single fault assumption by using it to select among the possible 0"'s in the counterfactual

construction itself.

§8. Conclusion

Our aim in this paper has been to present a formal description of counterfactuals,

describing them in terms of existing logical operators instead of following the usual practice

of developing a "counterfactual calculus" to describe their behavior.

We have also sought to work in a setting that will not eventually commit us to any

particular reasoning paradigm; since counterfactuals are a form of commonsense reasoning,

and there are currently a variety of competing paradigms for commonsense reasoning

generally, this seemed prudent.

The construction we have presented seems to meet these objectives. It has indeed

described counterfactuals in terms of existing logical primitives, and, in the setting of

predicate calculus, reduccs to the "possible worlds" interpretation of counterfactuals that

is accepted by philosoplhcrs.

Our construction also distinguishes clearly between the context dependent and context

independent features of counterfactual implication. It provides us with a precise method

for selecting those aspects of our world which are to be considered inviolable even under

a counterfactual assumption; having made such a choice, we proceed to generate possible

worlds which respect it.
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The biggest difficulty with the approach we have described is the rather heavy-handed

nature of the choice described in the last paragraph. Although it is possible to clearly

recognize ambiguities remaining in the analysis of any particular counterfactual (they

correspond to the choice of 4" in our construction), we have no method for choosing

consistently between them. In any specific implementation, it will of course be possible to p

select an 0" when one is needed, but we have not considered the nature of the formalism

that should govern this choice.
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