AD-A152 215 AN AUTONMATED/INTERACTIVE SOFTHARE ENGINEERING TOOL To 174
GENERRTE DATA DICTIONARIESCU) RAIR FORCE llST 0F TECH
MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..

UNCLASSIFIED DEC 82 AFIT/GCS/ENG/84D-29 /ﬁ 9/2

'ﬁ'n‘f. R

- ..' v
‘a ‘, ‘l i

————

T

o

Il
L

lllll-

22 s

I‘E

28 Iml
™ ug
= 12

22

e

llLs

5

CTPFRE

fe

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAL OF STANDARDS 1062 A

T Ty

REPRODUCED AT GOVERNMENT EXPENSE

AD-A152 215

AN AUTOMATED/INTERACTIVE SOFTWAREL
ENGINEERING TOOL TO GENERATE DATA
DICTIONARIES

e

THESIS

Charles W. Thomas
Captain, USAF

AFIT/GCS/ENG/8B4D-29

= _DTIC

on approved v
E‘:“m“ | FlecTERy,
. APR4 185

distribution is unlimited. L

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY V A

AIR FORCE INSTITUTE OF TECHNOLOGY

ONC FILE COPY

Wright-Patterson Air Force Base, Ohio

gs 03 13 181

................................

AFIT/GCS/ENG/84D-29

AP I

AN AUTOMATED/INTERACTIVE SOFTWARE) _
ENGINEERING TOOL TO GENERATE DATA Dl
- DICTIONARIES e
bi THESIS f

Charles W, Thomas

- Captain, USAF ey g

& AFIT/GCS/ENG/84D-29 i AN

ﬂ. _TE

[1935 :
b .

. e e B -
Approved for public release; distribution unlimited -
e g T o PP) 1: AP - .s; N '..~"' > .'}:"m"s" RN G A';'JL;:;"--": " . \'. .- s.:' .;":L‘g.:‘k -;;.fg.l

T Ty

GENERATE DATA DICTIONARIES

THESIS

P ———
o

of the Air Force Institute of Technology
|o Air University
In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

— va'v:T" _v"-..n» ‘fon o -
ARSI

®

Charles W. Thomas, B.S.
(d .
i Captain, USAF

December 1982

Approved for public release; distribution

- e

............................

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO

BN

Presented to the Faculty of the School of Engineering

',f:::\\
¢ Che, i]
SN e, O
-!
P
Accession For e —
NTIS EaRE D
pTIC T .
Unore v
Jusy
By- . ,
pistritoite
Avaiieniid
A
Tivt SR
| |
\ t i
U{ L |

unlimited

R R e i ow i A R S S i S i S JUGE it Sae mhe,

PREFACE

4

This report is the result of my efforts to accomplish a - j
design and initial implementation of an automated and
interactive software engineering tool which generates data iifi
dictionaries., The resulting implementation of this thesis
investigation 1is an interactive data dictionary gencration
tool which accepts and maintains data dictionary information
in éupport of three methods of software representation;
SADT, structure charts, and code. A fourth sofitware
representation, data flow diagrams, is not supported in the

initial implementation of the tool, however, all necessary

design work for its inclusion in the tool was accomplished, If&

This initial implementation of the data dictionary o
. - o
'Y J

generation tool represents only a partial realization of the L i

potential of a fully automated data dictionary generation T

tool. The last chapter of this report contains i?&i
recommendations for future development of this tool. >~»j
I wish to express my sincere appreciation to Dr Gary B. ;
Lamont, the advisor of this investigation, for his guidance i
and insight throughout the duration of this effort and Dr 1

Thomas C. Hartrum for his assistance in the development and
testing and evaluation of this tool. I also wish to thank ffi}
Captain Pat Lawlis for serving on the Lhesis committee for

this investigation.

s ,—.—.,~.-r‘v v yov v—y‘vvvw-f_
. B R B R
Jao PR

A

L
) e
AT O
Lo . o
PSP RSV SR U Y N S

ii

- ot
le
. 4
i
L Table of Contents
L i
{] Page ‘
k:- Preface L] L] L] L] . L] L] L] * L] L] . . L] L] L L] - L] L] [] L] i i
List of Figures . « ¢ o« o o o o o o o o o o o o o = v
AbStract . o s & o ¢« 4 s e o s e e e e s 4 e e e s viii
; I. Introduction . ¢ o o o o o o o o o o« o o o 1 _
Thesis Objective . .« « ¢« ¢« ¢ o « & o o @ 1 j
- Background . . .« ¢ ¢« 4 & 4 4 e 4 e e e . 1
ol SADT v v v v e e e e e e e e e e e e 5 ‘
Structure Charts And Data
Flow Diagrams . .« « o« & & o o o o o o 7
Data Dictionaries . . ¢« ¢« « o o o o o & 11 {
Problem Statement . . « & o « « o o o = 16
% Scope of Thesis Investigation 16 -
’ 4
. Approach . .« . « « v ¢ ¢ 4 o e e e 0 . 16 -
:t II. Requirements Definition + « . « & o . 19 h
L' Introduction . « « ¢ ¢ v ¢ ¢ o o« o o o o 19 .
= Objectives And Concerns . . « . « « . . 21 ufi
ni (5 Functional Model For The Data -
: Dictionary Generation Tool 40 1
III. Preliminary Design . .+ « ¢« ¢ ¢ o o« o o o« o 47
: Introduction « . . & « ¢« ¢« ¢ ¢ o+ o o o« 47
= Design Stratesy « ¢« « o o o o o o o o 49)
Data Dictionary Information "J
{ Content . &+ « o o &« o o o o o o o o o 55
> Database Design . .« . .+ ¢ ¢ o ¢« o « o 70
v Data Dictionary Database . . .« .+ « « .« & 84
. Database Design Alternatives+ & 142
& Data Dictionary Generation
*. Tool Structural Model . . . « + « « . . 152
1
! IV, Detailed Design . . o o v ¢ o o o o o o o o 164 :}
1 Introduction « « « ¢ & o o o o & o « o 164 R
= Algorithms For Selection of -]
) Dictionary Opecration Modules 166 B
#, Add Entity Definition . « « « & o« « o & 168 1
‘ Retrieve IBntity Definition 1-?
N Algorithms « . . . e e 170 S
. Print Entity Definition Algorithms . . . 173 T
- Delete Entity Definition Algorithms . . 176 .y
T lModify Intity Definition Algorithms ., . 178 '“i
é. List Entity Names Algorithms . ., 180 i
3 o
o iii AN
' o
F' "
| =

V. Implementation . . & & &+ + &« & o o o o o o o @ 183
Introduction o o . 0 . 183 y
Sclection of Databasec
lianagement System . o o +« + ¢ 4 & 4 o+ 4 133
Choice of Implementation
Language .+ ¢« o v o ¢ o o ¢ ¢« 4 e e e e 188
Implementation of Dictionary)
Database . o+ & v ¢« v v 4 e e e e e e e 190 '
Implementation of Data Dictionary ' ')
Generation Tool Functional HMHodules . . . 164
VI. Conclusions And Recommendations 2006
Introduction . . « & v & ¢ & o o & o o 2006 |
Design Summary . . . & « ¢« « ¢« o o o o 206 .
Implementation/Testing Results 207
Recommendations For Further :
Developement . .« &« ¢« ¢ « o &+ o o « o o 209 :
Appendix A: Requirements lodel Data . i
Dictionary Generation Tool 211 '
) E
Appendix B: Structural Model Data .
Dictionary Generation Tool 226]
Appendix C: User's Manual For Data]
Dictionary Generation Tool 267]
- . 1
Bibliography . « + & & o ¢« « & & « « & & o « « . . 281
Ty
L X7
& - .4
_l
:
-
]
L
O
a
1
€
iv N

. - o0 & T RS L BT S GRS R S
T T T e T N N UL MR N T Tt et e M
PP I NI LI R INOPILIAIPLLre JRDACIRLA IRI, TR TR AR W T W Y RGP T AL A T S D S AR ST

v - e v T T T O NI A s et S R T ~ e T I R e i S R I T Al G e

".‘l'frrl e
E IR

)
List of Figures '
j Figure ' Page]
;f 1. SADT Activity Diagram e e 7 :d
:k 2. Structure Chart Diagram « « « « & 8 ;311
l 3. Data Flow Diagram ¢ ¢« ¢« ¢ & o + « « 9 :
4, Entity, Attribute, Relationship Structure . . . 28
5. Examples of Entity, Relationship,]
r; Attribute Constructs . . . & « &« 4 « o o+ & & 30 4
6. Top Level Data Dictionary Generation Tool . . . 41
7. Obtain and Use Data Dictionary Information . . 42 -
8. Generate Dictionary Inputs . -
From Software Representations 43 .
9. Perform Dictionary Functions + « « .« . 44 g
: 10. Software Representation Action ;;;J
ii (® Entity Information Elements e e e e e e e e 58 |
_ 11, Software Representation Data | -f
o Information Elements . . . « + « + & « « +« « & 59 ;
h 12. Example Relational Table . . . « + & « v « o . 73 ; 4
o)
: 13. Use of Keys In Relations 70
14, Normal Forms 79
15. Transitive Dependence« .« . « + +« . . . 83]
16. Description Kelation+ « + « « ¢« « + « . 85 f
17. Description Relation Example 80 ;
18. History Relation 87 i
19. History Relation Example .,« « + .+ . 88 1
20. Logical Decomposition Using :
Data Flow Diagrams . . . « ¢« o o « 2 o s o o = 90
21. Hierarchy Relation o v e e e 91 -
v

- et . . R N . Y L. . R IR L P N s . IR
. L N ATIAL N 0 . . BRI ~ ' A A I I
PR L R SR R W P ST W P ST SR LRSS : PR AP I S O S N S it ShU N S S SLI My PSP LA SR U Y Wl Y Wt WUR WA SR SRR SV HRSE i WO TRT SRt |

St s e = mmcw s e »te e wmtec tweR T LTLT . vy

. - R T T T Y T T T T T Y Y T T T
i ;.,4
i
22. Hierarchy Relation Example 92
23, Reference Relation« . « v ¢« & ¢« « « o . 93 13
] 24, Ref_Type Attribute Values . . . « 95 ;
25. Alias Relation + & ¢« + « « . . e 96 {
26, Alias Relation Example « « & . 98 ,i
l 27. Value Set Relation o e e e e e 100)]
28. Value Set Relation Example 101 f
29. Algorithm Relation . . . « « « « « « . . . 103 4
; 30 Algorithm Relation Example 103 '
31, Activity Relation e e e e e e e e e e e 104
32. Activity Relation Example o 105 4
’ 33. Activity IO Relation . . . « « + « veu o « . . 106 '
34. SADT Activity and Data Item Interaction . . . 107 ?;?
‘35. Activity_IO Relation Example , , , , , 4+ + , 107 f j
I 4o 36. Data Item Relation . . . & & e v o & & & « o« & 108 : 1
37. Bubble Relation e e e e e e 111
. 38. Bubble Relation Example 112
- 1
. 39. Bubble_IO Relation . . « ¢« « « « + « . e 112 1
40. Bubble_I0 Relation Example iI1l4 ﬁ
41. Data Flow Relation 115 -’i
’ 42, Process Relation . . ., . e e e e e e e e e 117 1
43, Process Relation Example 118
44, Process_I0 Relation 119]
' 45, Class and Direction Attribute Values . . AN 121 5
-_ 46. Process_I0 Relation Example! 123
) 47, Structure Chart Diagram . e e e e e e e 124]
4 -
G vi
)
e e e e e e e e S e T e e S ;.;iﬁ;;;:ifj

LA Se e e I Ji

e ————————————— r———
]
i 3]
48. Process_I0 Relation Example 2 126
) 49. Pr_Call Relation v v & v o o « « « . 127 j
“ 50. Pr_Call Relation Example 128)
51. Pr_Passed Relation « . . 128 lﬂ
52. Pr_Passed Relation Example 131
l 53. Parameter Relation 132
54, Module Relation e e e e e e e e e e e e 134
55. Module_IO Relation + « « « « « . . 136]
s 56. M_Call Relation © e e e s e e e e e e e e . 138
57. M_Pass Relation e e e e e e e e e e 139
58. Variable Relation . . v « v o o o o o v o o . 141) :
’ 59. Data Item Relation Design Alternative . . . 146
60. Sample HIPO Function Chart 153 -
_ 61. 1IPO Diagram Example e e e e e e e e e 153 ' j
a 62. HOS Function Specification . «+ . « . « « . . 154 .j
f- 63. Top Level Structural Model 155 ;
5. 64. Perform Data Dictionary Functions 156 ::
. 65. Selection of Dictionary Operatior 158 i
66. Input Entity Definition 160 E
| 67. Input SADT Activity Definition 162]
’ 68. Main Relations For Printing Entity Definitions . 174 1
69. Create Relation Example . . . « « « « + « . . 193 .
>]
|]
=
’ - b
: S
vii w
..- .‘<
- s
e e e e e 2 e e e e e T

r—r———— — e o L —

AFIT/GCS/ENG/84D-29

Abstract

The purpose of this investigation is to design and

develop an automated/interactive software engineering tool

which gencrates data dictionaries. This tool is provide the

user with an interactive data dictionary tool to support the

development of software in all phases of the software 1life

cycle. The tool supports data dictionary information for

specific methods of software representation. The dirnitial

implementation of this tool supported . four methods of

software representation: SADT, data flow diagrams,

structure charts, and code. The requirements definition for

‘o the tool includes a discussion of the objectives and
concerns associated with the tool development. Dat; flow
diagrams are used to formulate a requirements model. The
) preliminary design specifies the type of information to be
-
t; contained in the data dictionary for ecach of the methods of
L: software representation supported and database design
@ required to maintain the data dictionary information. The
E' structural framework of the application software which
Ei provides the 1interface betwecen the tool wuser and the
]
’ dictionary database 1is specified and structure charts are
; used to model this structural framework. In detailed
; design, algorithms are developed for the tool's application
°

software.
: viii
3

e e

LI PR SR IR S RN T e T . o . '.. . LR) . '.1' '~- - - . ~ fatetay . -
Al e s N T Wil WA LI A ST Yl WAL VAT WAL S N IPRE SR SR D P A

o

Py

T W RO G T G SR G 7RO N S

‘e 'a s 'a b il

2

o ~

T UL PU ML T LR P Y
......

The dictionary database is implemented through the wuse
of the INGRES database management system. The application
software 1is .oded using the C programming language. The
application software interfaces with the dictionary database
by means of embedded EQUEL (INGRES Embedded Query Language)
statements in the C language source code, The tool was
implemented on the VAX 11/780 computer wusing the UNIX

operating system,

ix

.......
.......

L N I ORI TRl TR T R Tt AT LRI W A AP S L. - DS LN
B N T i N L A B e D N P e N L e e A R A L N

'y

I

L
PSS WP T

DY q."-‘ \" . ..'-"~ LAY - T e Tt Lt -
[N IET R A R 0, A S N a0 SRR e W0 NP S0 B PN A

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO
GENERATE DATA DICTIONARIES

I. Introduction

Thesis Qbjective

The objective of this thesis investigation is to design
and develop an automated/interactive software engineering
tool which translates the information contained in graphical
software engineering techniques into data dictionaries.
This tool will employ a combination of user interaction and
machine analysis to extract the required data dictionary
information from the graphical representation. During
machine analysis the tool will "attempt to detect any
specification errors detected in the graphical
representation and bring them to the attention of the user.
This tool will support the development of software through

all phases of the software life cycle.

Background

Advances in both the application and affordability of
electronic computer systems have greatly increased the
demand for reliable, cost efficient, and maintainable
software. Unfortunately, our inability to produce quality

software products in a timely and cost effective manner has

N N AT U AL R AR A . o S T S L
WA LT " P PAD SR OTIL VL LR ST S S R e T T S T R RTINS PR P

At o T oim w e =W —w W —w W vy ——

led to a situation which many people refer to as the
software crisis,

For the computational power of the computer to be fully
realized, we must place increased emphasis on improving the
methods and tools used in software production,

The problem of the 1980s is different. Now
we must reduce the cost of electronic solutions:
that is, reducing the cost you incur in using our
device to build a product. Solving this problem
will require a shift from the component integration
of the 1970s to concentration on system level
integration in the 1980s.

We can now talk about putting the power of a

mainframe CPU on a single chip. This buys vyou
nothing as acustomer, howvever unless you can use
that powver. lHlardware is commputing potential; it

must be harnessed and driven by software to be
useful. (1:22)

Software production problems can best be resolved by

considering software development from a life cycle point of

view. "The complexity of a large software system surpasses
the comprehension of any one individual. To better control
the development of a project, software managers have

identified six separate stages through which a software
project pass; these stages are collectively called the
software development life cycle" (2:198).

The definition and nomenclature of the six phases which
constitute the software 1life cycle vary from author to
author. For the purpose of this investigation, the

following is used to define the phases of the software life

cycle: requirements definition, preliminary design,
detailed Design, implementation,integrativon, and
2

I T
P W WY]

P

A:.‘_"

e pe—r — R T R TR TN TR TR R—p——

maintenance. Most versions of the 1life cycle 1include a

phase which is dedicated to testing, validation, and
verification. In this paper, testing, validation, and
verification will be considered an integral part of all

phases of the 1life cycle rather than as a separate and

distinct phase.

{ The purpose of the requirements definition phase is to

r‘ clearly define exactly what the proposed software project is
»

b to accomplish for the user. The primary emphasis during

this phase is to define as precisely as possible the exact
function or functions the software project is to perform,
i This 1life «c¢ycle phase will require a great deal of
interaction between the ultimate user of the software and

the software designer.

R

. . During the preliminary design"phase, the infermation

Ef obtained during the requirements definition phase is used to f;?

iﬁ determine the structure and framework of the software. "The ;
preliminary design step is an attempt to develope software

ﬁ beginning from the top down. Information flow or structure,

; determined from requirements, becomes a tool that leads to

; an overall representation of software" (1:132). In this

: phase, the software project is broken down into modules

; which represent particular functions. These functional
modules are further decomposed into sub-functions to obtain

rf a hierarchial representation of the software project.

'k During the detailed design phase, the functions defined

PR T P N SPE JPETRRCI D R . S e e T e . K ORI

-~ - ..’ ‘..'n -'n"—-n".'-~- - o« T et et .Y - ..'.'.-‘- - . - . - C e te T .
PP PN, SO N W & TR SR S L RO PREPL TR P8 P S N W S WY v)

in the preliminary design phase are further detailed and
decomposed ., The functional modules are converted into
specific algorithms which perform the function. "Detailed
design provides a blueprint for coding. With the use of a
design representation that may be graphical, tabular, or
textual, a detailed procedural specification for the
software 1is created, Like the blueprint, the detailed
design specification should provide sufficient information
for someone other than the designer to develop resultant
source code" (1:133).

The implementation phase represents the actual coding
of the software. Utilizing the detailed‘design information,
the software project 1is translated into a particular
programming language.

During the integration phase, the project software is
installed on the target hardware. Extensive testing will
take place during this phase to ensure that the software
meets all specified requirements.

The maintenance phase of the life cycle consists of
activities involved in the actual use of the software,.
These activities include the detection and correction of any
errors and the modification of the software to meet any
changing usef requirements,

In order to support the development of software through
the various stages of the life <cycle, numerous software

engineering tools and methodologies have been developed.

Ao S B S i Ny ” hdiase dhun it enh g i s o

A

2

!

’.
t
»

E

The aim of these efforts is to improve our ability to
produce cost efficient and reliable software products and to
help control the software crisis.

While there are many existing software engineering
tools and methodologies in use, four in particular have
gained widespread use within the Defense software community:
Structured Analysis Design Technique (SADT), data flow
diagrams, structure <charts, and data dictionaries. The -
first three tools listed above are graphical techniques used
in the requirements definition and design phases of the

software life cycle.

"SADT (a trademark of Softech, Inc.) is a systems .
analysis and design technique that has been widely used as a
tool for system definition, software requirements analysis,
and system and software design" (1:120). SADTs consist of a
graphical representation of the software project which R
enhances the anralysis and communications process which is so
critical during the requirements definition and the design
phases of a software project. "SADT is a technique that
enables people to understand complex systems in a complete
and precise manner, and cnables them to communicate their
understanding” (3:A-2). The application of the SADT ;?:

technique results in a model which describes what functions

C '.‘ ‘.. '... S -~ ‘. R o AL "- "".1) ". T et e - D) ~ .
. . - NSNS . N - e e . . = DRI RN A '..‘. ST, T B N
Alentid e acatal o ata taln Sa e ol PP RS I S SV AU S S T IR R T S UL W DAL Y SO

a system must perform, specifies how a system is to be
designed and constructed, and explains how a system is to be
used and maintained.

The SADT model consists of a series of diagrams that

decompose a complex problem into its component parts. The
initial diagram will present a general or abstract
description of the problem. Subsequent diagrams will

decompose the problem into smaller less complex components.
As the decomposition process continues, the level of detail
illustrated by the diagrams will increase. This iterative
process will <continue until a level of detail is reached
where further decompostion is not possibie.

The SADT diagram consists of boxes and arrows which
illustrate the components of a system and their relationship
to one another. "The notation employed is simple: boxes
describe functions and arrows describe interfaces between
functions. Diagrams, composed of boxes and arrows are used
as the framework for expr ssing whole units of a system"
(4:31).

The direction of the arrows and the point of attachment
of the arrows to the box have a specific meaning in the
semantics of the SADT diagram (see figure 1). "If a box
represents an activity, then input data (on the left) are
transformed into output data (on the right). Controls (on
the top) govern the way the transformation 1is done.,

Mechanisms (on the bottom) indicate the means by which the

-

®

T T Y e T T T T T
'v -

F T T T T e T T
-‘ " .

| |

| |

activity is performed. A "mechanism" might be a person or a

committee or a machine or a process”" (3:45).

CONTROL

INPUT ACTIVITY 3 OUTPUT

MECHANISM

Figure 1. SADT Activity Diagram

"SADT diagrams show both the things (objects or data)
and the happenings (functions or activities) in a system"
(3:42). Two separate types of diagrams are used in the
SADT methodology. The activity diagram uses the boxes to
represent activities and the labeled arrows constitute the
input data, output data, control information, and
mechanisms. The data diagram uses the box to represent a
data item and the labeled arrows to represent acitvities

involving the data.

Structure Charts and Data Flow Diagrams

Structure <charts are a graphical representation of the

sub-functions or modules of a software system and their

D T L A PR B S S

e e e e e e et e e T, e e et T e e . R e S T IR Y
I . ~ b ., S k) o e s I VA Sy /A i A VAN VL S S S I S VA LA A LIPS AP LI AP =

T P T A R T
ERCWAE VRIS AL W WA R R SR)

A o
o R i i aa Aals L

 m e &

Lt M aa

- a'a ala.

—~ — T ~ . - —— . - y RIS Sk BN AV S peun s s sl ae anac

»

]
M |
[}
R
-4
relationship to one another. "Structure charts were .
originally developed by Constantine et al; 16Y to specify Y
. i
modular characteristics of software during design" (5:1087.)
The graphics used in structure charts provide a <clear ;;
picture of the interaction between modules and the basic R fj
. 1
structure of the software system (see figure 2). "Structure
charts can be drawn in several different ways. The approach
proposed by Constantine utilizes three basic graphical forms . J

1(the rectangle, used to contain a module or module
descriptor; 1

2(the vector, used to highlight interaction between
modules (usually a call);

3(the arrow with a circular tail, wused to depict o
transfer of data and control between modules"
(5:1087-1088).

a\b

Figure 2, Structure Chart Diagram

In structure chart notation, the arrow whose circular -

tail is filled in () represents the transfer of control

information, TIf the circular tail of an arrow is open (not

filled in), it represents the transfer of data between : l

. L

.

8 R

3

o

R N LI P ISPy gL, N A P P S AR AT IR BT AT A DA

fut

AN S 7 S e A Dt AR fasie Brtus IRin G40 L Su SNie S Sete S/ S e S e Biie-iee S e Seen 2nesmeen T ———r Y —~

modules.

A data flow diagram is a graphical representation which
depicts the information flows and the transforms that are
applied to data in a software system, Data diagrams are
also called bubble charts or data flow graphs (1:101), A
data flow diagram consists of a series of circles
interconnected with vectors (see see figure 3). The circles
or bubbles represent functions or transforms which act upon
incoming data, represented by incoming vectors, and produces

output represented by output vectors.

Figure 3, -Data Flow Diagrams

A fundamental . system model can be represented as a
single bubble with input and output data. This initial
diagram can be refined in a series of bubbles. "Each
transform in the diagram (bubbles) could be refined still
further to provide greater detail.... That is, the diagram
may be layered to show any desired level of detail" (1:101).

When using data flow diagrams as a tool in the

requirements specification and design phases of software

CR
- veveviy
4

N
-

e

-l
-
®

-'... -
AP N S

C m e e m e cmmamamu—y e — T~ - - - T Y Ty w i

NIRRT o

LR Sl SO

L e I T

Faliih- i ants aan con o

development, two important factors should be kept in mind.
"Since movement and transformation of data are the only
characteristics represented by data flow diagrams, the
concept of the passage of time along any single or several
data flow path(s) is not present" (5:1090-1091), The other
factor of importance is that the decomposition process
produces a network of programs rather than a hierarchy of
programs (6:23).

Both structure charts and data flow diagrams are
utilized in a software design technique known as data flow
design method. "The data flow desigﬁ'method was first
proposed by Larry Constantine (Reference 2) and has since
been propogated and extended by Ed Yourdon and Glen Myers
(References 2,3). It has been called by several different
names including Transform Centered Design and Composite
Design" (7:305).

The data flow design method is based upon the
functional decomposition of a software with respect to data
flows. The data flow diagram is used to help the designer
show the flows and transformations of data through the
system. The data flow diagrams are then partitioned into
three different types of transforms : efferent, afferent,
and central.

The afferent transforms represcnt the input and are
concerned with accepting and developing the system's input.

The efferent transforms are concerned with delivery of the

10

A .-"'.“.'.‘ '.‘..-‘ T '.'\-".' '.'. ".' . .'.'A'.“'.“ - .'-‘.:'.‘-‘.‘A '.':"-'.“ . e RSN
B A e R N, AP P FAY T S PO, S S, A, . .S W, Sl SO SR MO VU RS PRL S PR SO M Wi S T P U S VS PR VN

st e
b,

systems output data. "The central transform is the portion
of the system DFD that contains the essential functions of
the system and is independent of the particular
implementation of the dinput and output" (9:226). The
identification of these three portions of the data flow
diagram leads to a hierarchial decomposition of modules
which can be more effectively depicted using structure
charts. The designer will iterate between the data flow
diagram and structure chart representation of the project in
order to decompose the system into smaller more manageable

pieces.

Data Dictionaries

SADTs, data flow diagrams,u and structure - charts
graphically illustrate the functional structure and fiow of
information or data in a software system, The information
portrayed on these graphical representation tools can be
used to determine the general content and some of the
detailed information contained in a data dictionary. In
turn, the data dictionary provides the definition and
composition of items illustrated in the graphical
representation techniques. "Basically, the use of a data
dictionary is an attempt to capture, and store in a central
location all definitions of data within an enterprise and

some of their attributes, for the purpose of controlling how

11

T T vy

PR

ik

.o f . .
. e .

.] .’»' . . :
POP IOV W i

.}

data is used and created and to improve the documentation of
the total collection of data on which an enterprise depends"
(11:1.1).

A data dictionary consists of dictionary entities and
their attributes, An entity can be generally placed into
one of the following three categories:

a. A data entity, such as a data item, group,

file, etc., and among its attributes may be
user names, System name, picture, description,
etc.

b. A processing entity, such as a module, program,
system, etc., and attributes may include name,
description, programming language, etc.

c. A uscage entity, such as a person, department,
terminal, etc., and attributes may include name,
security attributes. (11:1.3)

The wuse of data dictionaries can help reduce the
rapidly growing costs associated with the documentation and
maintenance of software systems. Software experts estimate
that approximately 657 of the cost associated with software
systems occur during the maintenance phase of the life cycle
(2:201).

A data dictionary is an important tool during the
maintenance phase of the software life «cycle. llowever, a
data dictionary can contribute significantly to all phases

of the software life cycle.

Using a DDS (Data Dictionary System) provides

economic and technical benefits. A DSS may provide
immediate savings, or it may facilitate a continuing
technical process by making it easier or more reliable
to perform. To summarize the benefits:

Better control of the organization's data resources

.

12

St T . RIS AP s . . R T Y T N T e e L A et et e PR T T R e
T S B YR TN 1D St i Y T PR Wy YRSV SRR T Wi TP T TP W NPT N W W IR el P { Ll Wl WA S WO WA Sl W g U 1 Sl o s .a

2" o " a'a ‘a'a’s _a

P I I P [APy

P R
SR e o

il

through improved (i.e., centralized, rigorous, and
standardized) data definitions, data handling and data
collection.,

Improved +transportability of data and software between
computing environments through standardized data
elements and data definitions.

Improved documentation for databases, programs, and
systems,

Automatic compilation of data definitions to be included
in application programs or in DBMS database definition.

Increased security and access control for the database
environent,

Effective aid to software development, modification, and
maintenance through configuration management of system

components of data and programs.

Increased cost effective use of- data resources
throughout the system development life cycle. (12:9)

The degree to which a data dictionary system can
provide the benefits listed above is largely dependent upon
the type of data dictionary syste% used and its level of
integration into the databases and system software of the
organization.

There are basically two methods of <classifying data
dictionaries, One classification 1is based upon the
capability of the data dictionary system to provide data
entity descriptions to other softwvare. The second
classification method 1is concerned with the dependence of
the data dictionary system on other soltware for performing
its functions,

When examining the capabiltiy to provide data entity
descriptions to other software, a data dictionary <can be

13

e T S L e e e T T e e T e e e e T e e T e e e e
L T T ~
CIRICIRI IR I IS P -t IR I T TS SR S R S S Pl e B et et e
S atat et atar e LR B L A U I e R L

e bl il

.‘.'I“ ‘.l . 1‘

Lol

e

(N

[\

L)}

PSR NI SO S I SCY

R T e i e i e P A e e v e St e DA st A Jente et S SuAhut ol Bude B i h A e ey

classified as either passive or active. "A passive DDS is
an information tool that is only accessed by personnel, to
enter or retrieve entity.descriptions. With a passive DDS,
descriptions of the same data will exist concurrently in
other software such as COBOL programs. Changes in DSS
content do not automatically produce corresponding changes
in the other data descriptions, and vice versa" (12:6). A
passive DDS will serve as an aid to manual procedures for
controlling data, but will not directly control an
organization's data descriptions.

"An active DDS, through softvare interfaces and
computer operating procedures, provides Lhe ONLY source for
data descriptions to other processing components such as
compilers, assemblers, and DBMSs, The active DSS assists in
the enforcement of data standards énd usage throughout the
organization and its computer applications" (12:6).

The dependence of a data dictionary system on other
software can be <classified as either stand-alone or
dependent. "A stand alone DDS is self-contained; that is ,
its functions are performed without relying on any other
general prupose software such as a DBMS" (12:7), YA
dependent DDS is specifically tailored to operate in

conjunction with another general purpose software system,

usually a DBPS, It requires the DDBMS facilities to perform

DSS functions. In some cases, the dependent DSS 1is

inplemented as an application under a DBMS, wholly using
14

PR S R T S SO T N A T P T Y T W

DBMS facilities"™ (12:7).

The software engineéring tools discussed: SADT, data
flow diagrams, structure charts, and data dictionaries
provide valuable support to the software engineer during the
various phases of the software life cycle. The automation
of these tools <can help relieve the burden of the many
tedious tasks associated with applying these tools to
software projects. Although automation improves the ease of
[use and effectiveness of software engineering tools, the
application of the tools in a software development

environment can provide increased flexibility and efficiency

! in the performance of software development and maintenance
tasks.

"A software development environment is a collection and
integration of automated software development tools that
should adequately support the entire software life cycle"
(13:9). An example of a software development environment is
the Software Development Workbench (SDVW) developed at the

Air Force Institute of Technology (13:ix). The SDW

constitutes a continuing research effort to provide support
: in the development ¢of software products by providing
integrated and automated software ecngincering tools to
. enhance software development in all phases of the 1life

- cycle.

15

- S et - W tet et e - . PRI I B S -t

P S TR P B DR S Y L P N A TR T e U ST
e “u atlatalafatcltetelatelelefelel ool etsalsSnlateateoleata’arat e artataataratatasal ool e -

A

U

Ty — —— T - ———— W

Problem Statement

The purpose of this 'study is to design and implement an
automated tool to generate data dictionaries from graphical
software engineering tools such as data flow diagrams,
structure charts, and SADTS. This tool will interpret
the graphical software representation and interact with the
user 1in order to obtain the necessary information for the
data dictionary. The tool will attempt to identify any
specification errors and bring them to the attention of the
user.

The manual generation of data dictionaries is a tedious
and time <consuming task. There exists a need for an
automated and interactive software engineering tool which
generates data dictionaries with a minimum amount of user

interaction.,

Scope of the Thesis Investigation

This project will only be concerned with generating
data dictionary information for the following software
engineering graphical tools: SADTs, data flow diagrams, and

structure charts.

Approach

The initial step in the project will be to perform an

extensive literature search on the problem. This review of

16

PPN AP VS W, VA T, U SR VG YO A A WU SO VLA W AP TO R W VO APV A N PR

P Y

ottt

-t o

) S

b

P~

P

* A" a®sladtaw 'S

current information will have four primary goals:

1. Gain a thorough understanding of how SADTs, data
flow diagrams, and structure charts graphically represent
data elements and data flows.

2. Evaluate current data dictionary systems in order
to determine an appropriate format for the data dictionaries
generated by the proposed tool.

3. Understand the process for generating data
dictionaries from SADTs, structure charts, and data flow
diagrams.,

4, Study existing automated data dictionary systems.

Utilizing the information obtained during the
literature search, the process of generating data
dictionaries will be modeledn using a graphical
representation technique. Emphasis will be placed on
identifying those tasks in the process which «can be

performed more efficiently with the machine and those tasks
which will require user interaction.

The next phase of the project will be to wutilize a

model to formulate a requirements definition for the
automated tool. During this phase, the primary goals and
objectives of the tool will ©be specified. The primary

concern during this phase will be to <clearly delineate
exactly what the automated data dictionary generation tool

is to accomplish for the user.

17

R AT T S T PRET U S T
*. S

- -

o BT e e e e e e, PERPE - .t et =l
A AT R T R R AP N A e LIS T AT T AN
IS N T MR AP S DY IV I IV I S T T Sol Sl S S TSN

-y

WP A PRI DR RPN P

e

—————

Using the requirements definition, the next step is to
perform the preliminarx design of the tool. During this
phase, the component structure and framework of the tool
will be determined. The sub functions or modules needed to
meet the requirements of the tool will be identified.

The next stage 1involves the detailed design of the
tool. During this phase, specific algorithms or procedures
will be developed to perform the functions identified in the
preliminary design phase. A test plan for the software
associated with the tool will be designed.

The algorithms developed during the detailed design
phase will be translated into an appropriate programming
language during the implementation phase. Upon completion of
this task, the tool will be loaded onto the target computer
for testing and integration. The iﬁplementation of the tool
will Dbe followed by extensive testing to ensure that the

tool meets all requirements specificiation,

L, e e S T T T

.. -"~"._-‘- . "v'.'-'~"-'~ Y Tt et et
" "8 " mtata e e atatataratat il et e

- - - - - TN Tw T YT At de caeolng Seh S ek s e B

171, Requirements Definition

Introduction

F. The Requirement's Definition is a clear statement of

the goals and objectives of the proposed software system.

i This phase of software developement requires a great deal of
*; interaction between the software devoloper and the software
user., The software wuser will attempt to describe the

functions or capabilities he or she expects the proposed
@ software to provide. The software developer will take the
user's concept and attempt to translate it into specific
[functional and performance objectives.

ti ‘o During the Requirements Definition phase, emphasis is

placed on defining as precisely as possible the exact

LA 2 um gmn . gan o
o .

function or functions the proposed software is to perform in
support of the wuser. In order for this software
development step to be successful, the user and developer

must be able to effectively communicate with one another.

In developing software, the possibility for misunderstanding
and misinterpretation is extremely high., "The dilemma that

confronts a software cnginecr may best be wunderstood by
repeating the statement of an anonymous (infamous?)
requester: "I know you believe you understood what you
think I said, but I am not sure you realize that what you

heard is not what I meant..."(1:94)

19

e e v YW
PR

T

LI Y

P
L
>
7
N
3
#
3
.,
[
[
p.
b

Rt R L T S LI
[PR S AP S A S PO AR

-

[,

@ e
L

T -77""‘.*('-*?-

vl—v -

P [

-
s
s

A Bt Tl Rl Al e S I — T v T T T T

The primary component of the requirenents definition
document 1is a functional and/or data model of the proposed
system. This model pe;forms a dual role. It provides the
developer with an ecxcellent tool for defining the
functional/data specifications for the system and enhances
the communications process between the wuser and the
developer.

In addition to the model, the requirements definition
may also include a description of the fundamental concerns,
constraints, and objectives that will guide the developement
of the system. The Requirements Definition Document should
contain a set of evaluation parameters and criteria. This
will assist in eventually testing the system to ensure that
it meets all specified requirecments,.

The purpose of this chapterAis to develop the system
requirements for an automated/interactive software
engineering tool which translates the information <contained
in graphical software wengineering techniques into data
dictionaries. Initially a group of objectives and concerns
fundamental to development of the tool will be listed and
explained. iith this background, the requirements for the
tool will be defined. A two dimensional graphics technique,
data flow diagrams, will be used for defininp and describing
system requircments. Iinally a set of evaluation parameters
and «criteria is established to aid in testing the sofltware

to ensure the system meets specified requirements.

20

aalata®a e

! . Qbjectives and Concerns

Before the functional model of the data dictionary

generation tool was developed, an extensive literature

vow oY v .,

'. . search was conducted to identify objectives and concerns -
. related to the design, developement, and use of data
; dictionaries as software engineering tools.
‘- Data dictionaries are becoming recognized as an
F important tool in the management of an enterprise's data
E resources, "Corporate management is becoming aware of an
} important asset which, wuntil recently, has been virtually -
ignored. The asset is data.... The idea of data being a
L corporate asset is relatively new, and has developed along
.‘ with the influence of computers in business. The capacity ;wa
of computer storage devices for hoiding data has increased
and the relative <cost of these devices has decreased" .
i‘ (14:118). i
- The recognition of the importance of data as an
E organizational resource has led to the development of data
L dictionary systems with a wide range of <capabilities and
‘ features. The objectives of a data dictionary system depend
- upon the types of activities it supports., 'The objectives of
h the automated/interactive data dictionary generating tool
' will not only consist of those for the resulting data
dictionmary, but also the objectives of the portion of the

tool which extracts data dicitonary information from the

i 21

- . N A, e e e T T I R e
et T N T e N e T e T T e e e T T At e T e et e et e T

4
b
.. .
I B c et et e o ™ - . e 7. - - . . - - - ~ - - » .« . . - - - . - - - - - - » .
ERE AL SRR VAE MW W SO DN - SACLAT RS YA /R NE MR YRR WAEWIEIVRCANEAE AT P SRPLINE S PP L PRE APy IO IR AR R S S

AT AP A Sk S St Badt I g A SAG SuEh e o osk Sl aves it e S W ——— T -

software representation method. The objectives and concerns
regarding the data dictionary generation tool are described

and listed in the following paragraphs.

Support All Phases of the Software Life Cycle. A

primary objective of this tool will be to provide improved
support for all phases of the software life cycle, The data
dictionary generated by this tool can be used as the sole
source for metadata (information about data) through all
phases of the software life cycle, To better define
objectives, eceach 1life cycle phase and the support it can
receive from a data dictionary system will be described
individually,
Support Requirement's Definition Phase.

"The wuse of the DD/DS (Data Dictionary/D@rectory
System) in requirement's definition and analysis is
critical, The DD/DS provides a framework in which the end
user and analyst can communicate with each other using
common terminology and definitions" (15:34), As discussed
earlier, miscommunication between the user and designer can
cause serious problems in any software project. By
maintaining consistency in the data uscd, a data dictionary
system can aid in averting potentially disastrous conditions
caused by inexact or inconsistent data.

The data dictionmary is also used in the requirement's
definition phase to document requirements as they are

defined and to support their analysis., The data dictionary

22

e

PP)

P T S W Y)

records descriptions of processes, information about the
operation of processes, potential uses of the processes, and
the data elements required by the processes. It also
contains information about the relationship between
different processes and data elements,

Once data requirements are defined, it is necessary to
determine how much of the data is currently available in the
data resource inventory. This will help -ensure that
unnecessary redundancy is not introduced. "Another step in
the analysis 1is to determine if the requirements can be
satisfied by modifying existing data. - The assistance of
DD/DS is invaluable at this stage, especially if the DD/DS
already has a complete inventory of the enterprise's data.
This is further supported when the data defined in the DD/DS
has common definitions which can facilitate the analysis

process" (15:44),

Support Preliminary and Detailed Design Phases.

Design specifications require information about data or
metadata. "Recording these metadata in the DD/DS is very

useful because the DD/DS can provide a means for maintaining

control over the system design specifications and can aid in

% insuring that requirements stated carlier are consistent
. with the implementation, This can be accomplished at the

common denominator between the "what" and the "how", which

® is the data element" (15:46).

23

Tet e e e T e e . e Tl LT T e T e e e e e et . N
L T S P P S L T IR T S O L P ST S S . .
o, .

P N P TC LR ORI T N L A A ST SN
R i SRR N N A S e IS WP SR S WY W SR P I R N

v ' ' .
P ..;‘-'_L._J

ARl Ak

o

LK

The data dictionary is a valuable tool in performing
both system and database design. The data dictionary can be
used for storing the desériptions of system components such
as program modules, subsystems, data [flows, and data
structures. The descriptions will contain such information
as functional characteristics, interaction between different
components, and the data components require for operation.

"Database design involves describing the data required
by the programs, beginning with previously developed
definitions of the data elements, records, and descriptions
of storage structures and access strategies., These arec uscd
to generate a desired data structure dr schema for the
database. Also from these descriptions, the programs view
of the data, or subschema can be generated" (15:47). The
data dictionary's ability to store these descriptions make

it a valuable aid in the database design process.

Support Implementation Phase.

"Metadata about the program and about the data can be
retrieved from the DD/DS to help in the programming task.
Pertinent metadata retrieved from the DD/DS can be
incorporated directly into the programs being coded as the

the data definition block"™ (15:47).

Support the Integration [hasc.
During the integration phase of the software life

cycle, the testing and validation of the software project is

.

24

D A Jefa ik uau —

f VS SN L S Y * P R _J

A I
R
Abrd b '

Lo RSp—

Lo

]
i

3

aoa s &

la'a ‘a 4 4 e

to

an 1important step. The data dictionary can aid in this
effort. "Use of metadata can be extended to testing and
validation, Once the characteristics of the database are

recorded, it would be easier and possibly more reliable to
generate test data using metadata recorded in the DD/DS"

(15:48).

Support Operations and Maintenance Phase.

The biggest contribution of a data dictionary system
to the operation and maintenance phase of the software 1life
cycle is as a tool for documentation and standards.
Software documentation is a serious and.costly problem for
all organizations. "The DD/DS is one tool which can be uscd
to overcome these difficulties by automatically producing
documentation about the database and the system, In this
licht, the DD/DS should be used routinely to augment current
documentation efforts, and to supplant a large percentage
(60% to 70%) of existing systems and data documentation
requirements, When used in the normal course of
development, the DD/DS can lessen the monotony and
rcpetitiveness of the task of documenting, and it can assist
in completing the system development cffort on time,
delivering an end product which is well documented" (15:50).
Although documentation is a task which should be done during
every phase of the life cycle, a lack of good documentation
is disastrous when attempting to operate and maintain

software. The data dictionary is also an invaluable aid in

25

Pl U I SN W L

P

[_ ¢/

[

- ,..,.'. .

Ta Slmte Tal?

vy B A i b s Jonn. St aemy s sman cmes mesmem shermens e sven de e M e e ae ea e A MR 9 Se Ran 4 *’ﬁ'ﬁ““‘ﬁ?

determining the effect of a software modification on both
the system and database. Its utilization can help reduce
both the time and money involved in software maintenance.

A data dictionary can aid in the enforcement and use of
standards in an organization's data processing endeavors.
The use of standards can help to promote the sharing of data
resources 1in a controlled environment. "In the conputing
field, especially, the same terminology is often used to
mean different things in different contexts. Thus in some
cases, standards arc necessary so that everyone uses the
same data to mean the same thing" (15:52);

Data related standards can be grouped into one of two
types, data definition and data format conformance (ref 15).
"Data definition refers to a standard way of describing
data" (15:51),. As an example, a naming standard could
consist of rules or conventionss for assigning names to data
entities. This would allow all users in an cnterprise to
know that when a data clement is used in programs, reports,
and files that it means the same throughout the
organization.

"Data format conformance is content related. It mcans
that a data element,in addition to having the same nanc
throughout the cnterprise, also must conform to a comnon

set of format rules for the data clement to retain the same

meaning. lioreover, these must be accepted throughout the
enterprise” (15:51-52). I'or example, the data element date
26

PR

I e T R L Tt m Tt et te et e tar e ot LR P I TN .
T S ST T SR, P T P R O A R DI PR g VA W T Y R a

beg o

oy

L g g

Y
()

T v A v— —T T Laha. soen atus amd AL SubS St ary T T TY

should have the same format throughout the enterprise and
| only that format should be allowed. Another example would
be the wuse of codes in an organization. If a two letter
code is an accepted representation of a state (ic SC, VA,OIl)
' then that code must be accepted by the entire organization
and no other codes should be accepted.

"The DD/DS can failitate the introduction and

1 enforcement of such standards, via a set of editing rules to
be included in the DD/DS. These editing rules can, in
effect, edit and validate acceptable codes, so that

g nonconforming codes are not acceptable. The DD/DS can be

used as both the promulgator and the enforcer for data

standards" (15:52).

i (e |
Data Dictionary VWill Support Information About
ntities, Relationships, and Attributes.

N The data dictionary can be <considered a database
whose contents is information about data. The domain of a
data dictionary database consists of entities and their

> attributes and relationships. The following definitions
should clarify this concept.

"Entity - any named concept, object, person, event,

» process or quantity that is the subject of stored or

collected data.
Relationship - a pre-determined ordering between pairs

b of entities.

27

N T L A T e e T et T e e - At
AT I P P '
[PPSR S AP I I L W, D A AT A .

b POy - -

P

T e T e T e T T s A e et e e e e T e i L v T N e e e et e e e
PP W S LI SR Uil G 1P AP Vil VAT WY YRIE Vol Vol Wi VO Wl Vs W ML S5 VI, U UL Y. ™ W L R W R Wy Y G Wy W WY

TR LT 'WW"'
[B

tiax Length Relationship Entity
400 Characters Created Created
(Attribute) (Attribute) (Attribute)
] Payroll Record | N Contains Social Sccurity
L (Entity) | (Relationship)| (Fntity)
. —
—
- T
. Entity Created Comments h Lengeth
- 820519 (Attribute) Y Characters
. (Attribute) | (Attribute)
o il —_ ,
L Figure 4. ULntity, Attribute, Relationship Structurc
. 28
o
Lt s e e e a M e e e

Attribute - a property or characteristic of an

entity"(16:8).

A data dictionary entity represents an object, person,
process, etc. It is not the actual data that might exist in
a file or database, but a representation of that data. Tor
example, the enitity called "social sccurity number" would
not consist of an actual number such as "247-82-4457".

An attribute is a characteristic of an entity. An
attribute for a data dictionary entity could, for example,
be length, In the case of the social security number

entity, the length attribute would be nine.

The relationship between entities indicates the
structure or ordering that exists between different
entities. I'or example, the entity "Payroll Record" may
contain the entity social security .number. leclationships,

like entities, may also possess attributes which describe
their characteristics. Figure 4 graphically illustrates the

entity~-attribute-relationship structure.

L SO S LA WY S I

.

s a2 a

4 o aa o - -

b e

ala

Aa ama oAb

ea Aaaoeo

e —— —p ” — WT— -

"The basic unit in a data dictionary is the entity.
lelationships connect pairs of these entities, and both

entities and relationships have attributes assinned to them"

(16:10).
Entities, relationships, and attributes can be
organized 1into sets known as types. Attribute-types are

organized so that cach menber of a set represents a like
characteristic. A typical attribute type could be 'date
created”. In a similiar fashion, entities can be organized
into entity-types. All examples of a specific entity-type
would have similar or identical characteristics or
attribute-types. Like entities .and attributes,
relationships can be groupcd together to form relationship-
.‘ types. Relationships which are examples of a particular "
relationship-type possess attributés from the collection of

attribute-types associated with that relationship-type.

Examples of relationships are system-contains-program and

record-contains—-element.

%

"These "types" form the basis of the dictionary schemna

-—-the collection of structures that describe the

dictionary.... This entity-relationship-attribute
construction uscd for the dictionary can be used to model
the schema as well, Thus the DPS contains a "weta schema,"
or schema describing the schema (The concept of "meta" is
defined as data about data.). At this "meta" 1level, the

three concepls "entity-type", "relationship-type'", and
I) ¥ f Vi

e T T e

DAL 2L AP 20 S S S N T NP VSV N3P U S0 M S P S RS S S SR NV SRS SR SR S

(o

"attribute-type" are all "meta-cntity-types".
these concepts are "meta-entities which
connected by "meta-relationships". '"iHeta-attributes"

associated with both the "meta-entities" and the

relationships™ " (16:12), Figure

entries at each level.

LR B e ko o

Instances

of

are conceptually

gives examples

can

be

"meta-

of

SCHEMA MODEL LEVEL SCHEItA LEVEL

DICTIONARY LEVELS

Typical Meta_kntity Typical kEntity-
Types Types,
Relationship-
Types, and
Attribute Types

Typical Lntities

Relationships,
and Attributes

Element

Social Security
umber
Agency liame

Entity Type Record

Employce Record
Payroll Record

PDocument

['orm 1040

Relationship_Type Record-Contains

Payroll-Record

Element Contain-
Employece-liame
Attribute~Type Length @ Characters
Creator ADP Division

Figure 5.
Contructs.

The Data Dictionary Vill Support

Lxamples 0Of [Entity, Relationship,

Pata, Process, and

User Lntity Types.

Data entities are a class of entities that

attribute

describe or

s

r.—.-,v Rt SRR e A S0 AN Ans A an Sres B 2ues e Jaanine

b
b
- k
@ '
represent objects that are units or data or aggrepates of

r‘ data. The following list contains some specific classes of -
data-entity-types.

1. Element - describes instances of data belonging to
_ an organization (Lxamples: social security number and
[agency name).

- 2. Document - describes instances of human readable

data collections (Lxample: Form 1040).

3. Record - describes instances of logically
associated data (Examples: Employee Record and Payroll
Record).
4, IFile - describes instances of an organization's
data collections (Examples: roster and accounts
o receivable). (16:14) T

Process entities are a class of entities that represent
processes and components that exist as part of the data
processing environment. The following list contains some

specific classes of process-entity~types.

1. System - A collection of programs (and indirectly
modules) that can be associated with major functions of the
organization (Lxamples: Personncl System and Supply System).

2. lfodule - A collection ol processable code which is
called by one or morc programs and which may, in turn, call
one or more other modules (lkxample: Sort Reccords),

3. Program - Describes instances of automated

31

. et PR N “ et . .
gty T e e e e et «, v .

processes (Example: roster update). (11:2.8-2.9)
&‘ User-entity-types describe members belonging to .

an organization who are responsible for data in the data

(2haChat

g

dictionary. A uscage entity can be a person, organization,

terminal, or office.

The Data Dictionary Will Suport the [ollowing Classes

of Relationship-Types: Contains, Processes, Responsible-

.-WTV

For, Ig, and Derived From.

b —_—

The <contains class of relationship-types describes
s instances of an entity being composed of other entities. "A
typical CONTAINS relationship-type ié RECORD-CONTAINS-
ELEMENT, which has as a possible instance the relationship
ﬁ ‘e "Payroll-record-contains-employce-name"." (16:15)

The process class of relationship-types represents an

association betwecen data and process enlLity-types. "A

typical PROCESSES relationship-type is SYSTEN-PROCLSSES-
FILE, which has as a possible instance the relationship

"budget-system-processes-cost-center-file"." (16:15)

Associations between entities representing

organizational components and other entities denoting
?’ organizational responsibilities are described by the
a responsible-for class of rclationship centitics. "A typical
\
2 RESPONSIBLE-FOR relationship-type is USLER--RESONSIBLE-FOR~-
§
E_ DOCUMENT, which has as a possible instance the relationship
- "personnel-office~responsible-for-SF-171"."(16:10)
1." To describe associations between wuser and process
! 32

IR e e e TR e T s T e e e e L e e T e e e e e TN e e N T,
DU VA VLA i Tl S AP NP SLAY W W, LI EPEAPEAE AP S W P PP L Fata ot et ata atafa’ata., lataSalatalasal

P REAE VAT VO VAR W oL WAL

PP T e

Ty

entity-types, the runs class of relationship-types is used.

It illustrates that a person or organization is responsible
for running a «certain process., "A typical RULS
relationship-type is USER=-RUNS PROGRAIL, which has as a
possible instance the relationship "John-Doe-runs-system-
backup"." (16:10)

The to class of relationship-types describes flow

associations between process entity types. "A typical 1O

relationship-type is HODULL-TO-LODULL, which has as a

possible instance the relationship "wain-program-to-sort-

routine," (indicating flow of control or data within a
program)" (luv:l6).

The derived-frowm class of relatiouship-types describes

2 ~\ R

associations between entities where.the target entity is the
result of a calculation involving a source entity, "A

typical DERIVED-FROM relationship-type is DOCWILHT-DERIVED-

;ﬁ FROM-FILE, which has as a possible instance "annual-report-
!

t derived-from-plans-file"."(16:106)

® The Data Dictionary Should Support an Attribute-Type
; Which Indicates Software Life Cycle Phasc of the Entity or
: Relationship Being Addressed.

} The data dictionary generation tool will be used to
5 support all phascs of software development from requirements
! definition to operotions and maintenance. To effectively
é perform its functions, the data dictionary nust possess a
[

r

.- 33

o

T T Tt e T T N e T T T L T e e O R TV T N TR

. -~ - « T a® e e - - " . - - . -
Tl et At atatel st el At gt T T e e e et g

- . . P R T T T e S i e R I A e S e e i Bt OIS Sl ¥

e T

means of determining the stage of development of the data
and process descriptions it supports., This facility will
help the designer keep better track as to the status of the

project and will allow a means of tracing the evolution of a

Ty T YT T T T oo T
. .

b project component through the various development phases.

\ User Friendliness.

{ The data dictionary generation tool will be required

I‘ to interact with the user in order to obtain complete
f descriptions for the data dictionary concerning the
processes and data illustrated on the software

representations, The user will also interact with the data
dictionary when obtaining information about its contents.
Failure to establish a freindly wuser interface which
(o . : , R
enhances communication could lead to the data dictionary

containing erroncous or mislecading information about the

system's data and process cntities,

The Data Dictionary Should Support User Defined

Attributes.

The data dictionary will support a set of standard
attributes in describing data and processes, llowever, by
allowing the user to creatc his own attribute, the

flexibility of the system will be greatly improved.

‘ Error Checking.

When the tool extracts data dicitonary information from

a software representation, it should check for errors in the

34

T T O Y e e et e te L Tt et ety
e, . o RN L R A R AT I uA UL SRR St O
PRI . . N DRETAIR TR I
- FERT AT N

4'-'-‘-'-‘-.‘.'A"..A'.-.-'-,'-.-.'-.-.- .‘._'\ _'-_'-_"_‘-"-. -_' ‘.‘..‘.-' ".-'_~.."4 . o, ',_'.7._' o
A VRN SV NG IV ML PN PRI WK P P SR WA R U LIPS PR PR S SV R I S, S TR SR SO AP S JVNE A RN A -

e

W W w W Y- W oW —w oW TR T T W W TR ——— e —w W —w

representation and bring them to the attention of the user.
Errors in format or meaning in the software representation
could lead to the processing of erroncous or unclear

descriptions in the data dictionary.

The Data Dictionary Generation Tool Should be capable

of Interpreting the Contents of Several Different Software

Representations,

There are currently nurierous techniques and
methodologices available for supporting softwarc developnent.
For the tool to be useful it must be capable of working with
more than one of these techniques. Also'it is not unusual
for a single software project to employ more than one of

these techniques in the coursc of software developnent.,

Provide Support for The Information System Planning.

Most information systems must undergo continual change
and modification in order to support the changing needs of
the user, These changes and modifications are more
efficiently controlled and implemented if a system's
planning activity takes place. "The purpose of this planning
activity is to determine the feasibility and the technical
and cconomnic trade-offs for a planned system, basced on an
assessment of the current environent and an analysis of
current use and future requirecments" (15:27),

The data dictionary system is an invaluable toel in

supporting this planning activity, Information systen

35

)

R T e e R e

planning requires an initial assessment of the current
environment. This assessment helps the planner to determine
the data that 1is available and to analize information
requirements. "These activities... are uscd in determining
the data needed to produce an information product, the data
that 1is already available, the potential conflicts and
redundancies, the impact on existing systems, and the
potential users of the system" (15:23). The data dictionary
supports this activity by recording and coordinating
information needs from various menmbers of tlie organization.

In performing the system's planning activity, it 1is
important for the planner to analyze <current wusage and
determine future requirements. To accomplish this task the
system planner must understand how information is actually
used to perform specific functions, how data cntities are
rclated to both each other and otlier system components, and
the dependencies of the data on other entities and
processes.

Many of the tasks associated with system planning
activities are time consuming, tedious, and prone to error
when performed mwmanuually, "With the aid of an automated
tool, such as the BD/DS, the tasks may Dbe simplificed,
reliability may be incrcased, and consistency may Dbe
maintained, while facilitating coordination of these

planning activities" (15:28).

The data dictionary systenm is an effective tool for

36

« e e e e L U eV L R SN “ - EA - IR -
. s e e e e e e T e e e e e T N e T e e e
. e e T T e T Tt e T s R P T N S
LI OE NG Pl S T Vol Vo Wil Wil Wl AT Yl W Sl Yhdl VLT TR SRl o WL P Y. W I PR R e

St et e T et ety
MR W LN

P IR

I S I B B P

Y ST

e

"

{

[+

information system planning. "It provides coordinated and

consistent functional sdpport for documenting the plan and

its subsequent use as a control mechanism over developnent

and operation since the DD/DS contains data about the

enterprise's operational data, that is, it is an inventory

of currently available data. Further, the DD/DS contains

information about how the data is used, its relationship to

other data entities, occurrences, dependencies, and
constraints. Thus with a DD/DS fully operational, its use
during the planning phase <can increase control over

developmental and operational aspects of the organization"

(15:29),
.6 Data Dictionary System Should Contain a Security
Feature for The Protection of The Informations It Poésesses.

The security of information is a —concern when

designing the data dictionary generation tool. Two reasons

for this concern are:

"1, The dictionary database represents a complete
inventory of the enterprise's processing system, An
intelligent decision on anyone's part intent on

accessing the enterprise database in an authorized

manner would be to first perusc the contents of the

dictionary databasec.

2. The basic concept of a data dicitonary systenm

includes the ideca of a central repository of.data, the

37

IR

A I S S L AL L WAL AL LI L I S B B DAL DAL NI S P P AR S ISP PR SIS 2 SN .

o

AM A A ot i

el
A e

DN P Y

A

24

»)

=2 =

dictionary database, which is considered to have a high
degree of reliability and the confidence of the database
users. As such, precautions should be taken to assure
that unauthorized alterations, cither accidental or

intentional, will be prevented" (11:2-20),

A security facility for & data dictionary system should
not simply restrict access to data dictionary information,
but should differentiate Dbetween creating, reading,
altering, and destroying existing data dictionary cntities.
"In the final count it must be considered that the security
of the data dictionary systen is related to the sccurity of
the entire computer system. The level of sccurity existing
there is influenced by the security of the installation, as
well as the procedures wused by the personnel “of the

enterprise" (11:2-21).

The Data Dictionary System Should Provide Both

Reporting and Intcrrocation lKacilities For Use By the U

0
o]
e

and Dictionary Administrator.

The benefits derived from the use of a data
dictionary system are direcctly related to the quantity and
the quality of the data the dictionary databasce contains
about the information system. The usclfulness of the system
is also related to the reports generated and the flexibility
with which the database can be interrogated in responsc to

specific questions.

36

hlind

P AY

e . o .
el N PR
PP VT IR INY PP U S S R

oot

e

"The major categories of reports on the contents of the

dictionary datahbase arc: -

l. Listings of all dictionary entities of a given
type, 1i.e., 1items, groups, ctc. Such listings will in
general contain some attributes for cach entity.

2. Listings of all attributes for a specified
entity of any type. Such listings may be limited
essentially to the attributes placed in the dictionary
database, or they may also contain data about all or
selected dictionary wentities which have a logical
relationship to the specified item,

3., Usage reports show either the manner in which a
given entity is used by other entities, or to which
other entities wuse a given entity. The manner in which
such reports are provided may vary in that only one
level of usage may be included, i.e., from file to group
or vice versa, or that all levels of the hierarchy may
be included in the report. In the former <case this
facility nmust be invoked multiple times to obtain the

same results.

4, A key-word-in-context or Lkey-word-out-of-
context facility that can be usecd to scarch specifies
attributes for given Lkey word. A facility of this
nature can be useful in view of the fact that the

previously described reports allow only the use of a

39

PO)

) SR R

EREI
v

—tdb oL b 2

PR

s

ol

-

S, T . . BERNERN . . e : . . et
P P A . LI S S PR N P PO R L R e P
AL P AP SR P P\ g JE S LS. S S Sy L VS S T S AT W S SR S SO SRR 1y JURC S O S S A SR SRS

limited number of attributes as scarch arguments. A
simple example of the use of the use of such a facility
might be to query the dictionary database for a listing

of all programs written in COBOL.

5. Some systems provide specialized programmer
interfaces at which the dictionary database 1is made
available in a prescribed format. Under such
circumstances, it is then possible for an installation
to provide extensions to the reporting facilities

available" (11:2-14).

Functional iiodel For The Data Dictjonary Generation Tool

With a 1list of concerns and objectives developed,
sufficient background has been ostéblished to develop the
defintion of the functional requirements for the Data
Dictionary Generation Tool. This task 1s accomplished by
formulating a functional model which defines and describes
the tool's functional requirenents.

A variecty of techniques and methods are available for
defining system requirements. From among these, the Data
I'low Diagram technique was selected to definc the
requirements's for the Data Dictionary Generation Tool.

Data Flow Diagrams arc¢ especially uscful in detining
the requirements for software systems wvhich contain a

complex and varied array of data flows. 'The Data Dictionary

40

PP Y W |

B T N N SR S S S

[N P S I A

R LTSS U
Tata actateta”™ O ;'J

L 4

..}

(e

e T R e 2 T T WY ———wr -

Generation Tool is this type of system, liccause of the
intricate data fious assqciatod with the tool, the Data [Flow
Diagram is an e¢xcellent technique for defining the
requirements for the Data Dictionary Generation tool.

The following figures and scctions display and explain
the Data Flow Diagrams associated with the higher levels of
the functional model. The diagrams for the e¢ntire Data
Dictionary Generation Tool functional model are presented in
appendix A,

Data Dictionary Gencration Tool Functional ilodel: Top

Level.
The top 1level of the Data Dictionary Generation Tool

functional model is displayed in figure 6.

User Input—m0 5 User tlessage

Software Aata Dictionar
Representation Information
1

Data Dictionary
_— :
" Information

Figure 6. Top Level Data Dictionary Generation Tool.

This top level diagram represents a vaouce and abstract idea
for the softwarc system., The Obtain and Usc Data Dictionary
Information operation is the process of extracting data
dictionary information from the tool wusers and various
software representation such as S5ADT, Sturcture Chart, etc
and using this information to support the development of

software in each phasc of the life cycle.

41

PO S Y D

RIS VLA

PPy ETY N PEPLPLrP

| .

e Foo

4

y e

"

.

P ad e an e aas
. -_

v m e e e m e g m e ww—y —

Software User User Uscr
Representations \iessages Inputs iiessages
24) /7‘ N

enerate
ictionary
Inputs from
Software

Representatio
1.1

Perform
Dictionary
Functions

1.2

Dictionary
Inputs

Data s
Dictionary
Information

Figure 7. Obtain and Use Data Dictionary Information

Obtain an Usec Pata Dictionary Inforpation

Figure 7 displays the initial decomposition of the top
level of the functional model. This deconmposition sheows the
two primary functions or components of the Data Dictionary
Generation Tool. The Generate -Dictionary Inputs Fron
Software [Representations operation represents that portion
of the tool which interprets automatically the information
content and of various software represcentations and converts
this information into data dictionary inputs. This
operation requires wuscer input to obtain data dictionary
information which might not be portrayed on a software
representation. The Perform Dictionary lunctions operation
consists of thosc tasks which maintain the data dictionary
information. This operation also supports the tool user by
providing a mecans by which information in the data

dictionary can be retricved, deleted, added, and modified.

42

Y A S AP)

VIS SR B wen

A A A A A AN S A A e A alala

L

YT

User Input Error llessage

Software
Representation y Analyze

\\\\\\ Software

~.-Representatiorn ™
1.1.1 ™~ Inconmplete
.. Dictionary
Input
User Response
To Prompts Prompts To
2 User

rror ilessages

Obtain
Dictionary
Information
From User

1.1.2 _
///_//// fav Dictionary lntry
Format /,//'/
Dictionary\, —
Iintry
1.1.3 —

i;kiiimattcd Dictionary Entry

N
Add Untry

To Dictionary

Database

l.1.4 —eeceee .y Dbictionary

Inputs

Figure 8. 1.1 Generate bictionary Tnputs IFrom Softwvare
lepresentations.

Generate Dictionary Input Trom Software Represcentations

Figure & displays the decomposition ot the Generate
Dictionary Inputs [From Software Representations opcration
into its component functions. Initially, the subjecct

software represcntation is analyzed and the data dictionary

43

tat . tatatala &' s s 0

7iv..

(oM e an an mn i . SuEs M aa g
1",1 -
. . . -

-

(@

information available is obtained., Information not depicted
in the software representation is obtained from the tool
user by means of the tool displaying proumpts to the uscer and
the wuser responding to the pronpts. The information
obtained both automatically from the software representation
and interactively {rom the tool user form constitute the
unformatted dictionary entry. This information is then
formatted and added to the dictionary database, which

maintains all data dictionary information.

User Input\\ o //4eror Ilessages

Determine
Dictionary
Punction

1.2.1

User Input L : N Dictionary
’ Administrator

i
P ﬁ Inputs
N
|
i

Interact

Vith e . MAerforn
Dictionary \\ Dictionary
Schema Administrato
1.2.2 I‘'unctions
1.2.4
“Schema Information N~
Changes To Schema !

Interact
Vith
Dictionary
Database
1.2.3

User Input — . Changes

“*To Database

4 Dictionary
Content
Information

Figurec 9. Perform Dictionary l'unctions

44

-4' '.'.. .-.'_..'_: R _-.’\- S U R P R - e R s e - .

- R R T e L TR TP L SO B P S S R
PPN YR R WA N YR -, WS N SR IPAL WAL WL WU A W R WCIRT D. RE WRRSND WS LIE WIS U S i e

A e aas

. . »
S L
[SR SR L SR SO S JEPP S S

aa aaaaa

e o Mm ma e e

-

I RSN

T o bt S L - — Ty PdEar. g " P Ty

Perform Dictionary Functions.

rvvrv.-rf‘—y-,v.v,v—r]

Figure 9 displays the decomposition of the Perform
Dictionary Functions operation into its component functions.

The functions portrayed in figurec 9 represent the functions fin

STV Y Y ey
W
l

P the tool user can request from the data dictionary.
Operation 1.2.1, Determine Dictionary Functions, determines

B and selects the function the tool user has indicated he or

she would like to pertorm, Errors in user input are also
[
' checked by this operation and error messages displayed
r
{ Operation 1.2.2, Interact With Dictionary Schema, allows the
!
& user to obain information about the structure of the
) .
. dictionary and to, if desired, modify that structure.
E_ Operation 1.2.3, Interact With Dictionary Database, allows -
hi Q‘ the user access to the data dictionary information ;;m
E maintained in the dictionary database. Operation- 1.2.4, _
E Perform Dictionary Administrative Functions, performs tasks R
L3S .
p‘ essential to the maintenance of the tool such as sccurity e
Lf and storage scheme sclection.
:;' Lvaluation Criteria)
; In order to measure the success of the Data Dictionary .
- Genecration Tool in mecting its requircuwents, a set of
E_‘ cvaluation criteria must be established. There are scveral
;" parmeters which can be uscd to gauge Lo success of the Data
E Dictionary Generation Tool.
EA The f{irst is the average time spent in learning to use
; the tool. This paramecter will vary frow individual to

T
B~
w

. * e - P et e el . . RN Pt et e . - - c Lt e
[SRR N MO K. A, Mt Sy S A, S, ML S AL P, S UL SISk S, SO, S P il S G UL L A I AR IR L VAT LA N JPUL I I PREL L AP

. individual. llowvever, the anrount of time required for the

average user should be minimal, probably in the range from
two to four hours,

Another —cvaluation parameter, closely related to the
amount of time required to learn the use of the tool, is the
degree of user friendliness the system provides its users.
The Data Dictionary Generation Tool is a highly interactive
tool whose successful operation is heavily dependent upon
the inputs supplied by the tool's users. The user
friendliness demonstrated by the tool should be high.
llowever the degree of user friendliness is a subjective and -
extremely difficult parameter to measure.V

System responsiveness is another evaluation paranmcter

(‘» which should be considered, As stated above, the Data ";@
Dictionary Generation ‘Tool is a highly interactive tool
requiring substantial communication betwecen the tool and the
user. If the tool's responsc time to user inputs is slow, S
it will cause user frustration and dissatifaction. A
slow response time will decrcase the advantages of the tool
in comparision to manual generation of data dictionary

information.

The most dimportant parameter by which the Data
Dictionary Generation Tool should bc measured is how
accurately it maintains data dictionary information. If

the tool allows ecrrors or contributes to errors in data

dictionary information it usefulness is questionable.

40

R e T et e Y™t et . te L . e [P
LA .. LI e o R A T . S e e e e e T e e T PR --. ‘oA ". At e T e T T S e e e
PRSI PRI P A S RIS NP LI I W WA PRI IR W W W PV PG WLV S P SR Sl Sl W S S WS PR Pt . A, S, i

@ 1o

e L R haiaaad 2at N
b () oL
b .

ITII. Preliminary Design

Introduction

Preliminary Design refers to the software devclopment
stage during which the functional framework of the software
system is determined. The purpose of Preliminary Design
then is to establish the functional framework or structure
which will reflect the system objectives or requirements
specified during the DRequirement's Definition Phase of
software development, Within this framework or structure
the algorithms for the software system are integrated.
Without this structure, the associated algorithms would
probably not be able to support the objectives of the
software system. Therefore, the main purpose of Preliminary
Design 1is to provide a sound framework for the softwarce
system.

In developing the Preliminary Design for a softwvare
system, the software engincer will seck to establish a
hierarchial frawmcwork of managerial and functional modules.
The framework begins with a single executive module at the
top of the structure which can call or use other modules
within the software system. These modules may also call or
use other modules. Some modules perform the task of
managing lower lecvel modules while other modules perform the
actual functions required to support the objectives of the

software system, The modules constituting this *hierarchial

47

RN - LR B -, ., o ..' ‘., ., A= o . e N . . A.' L ~.' a t.' -.‘ L. . AN - - - - T
- "a @ 'a o' a'Ww'a’a‘a e 'e®s r a'n'a" 2”88 e s 4 e a 28" M a'a ale s e ataa A e Yl

~

Vi

framework arc linked together by their abililty to call or
use one another. These mudules may pass data, control and
status information back and forth between each other.

The Preliminary Design for the Data Dictionary
Generation Tool will be involved with establishing the
functional structurc for the software system, This chapter
will also discuss a design strategy for the data dictionary
generation tool, This tool is envisioned as a dynamic tool

whicli will be able to cvolve to accomodate new software

developnent methods and their acconpanying software
representations. This design objective will be used in the
initial design of the tool. The dictionary database design
will be discussed at length. The database which maintains

the data dictionary information is an cssential element of
the Data Dictionary Generation Tool. Tor that reason, the
design of the dictionary database is an important issue in
the overall preliminary design of the tool. The development
of the structurc of the software system will be discussed
and structure charts will be used to provide a graphical
representation of the hierarchial framewvork of the system.
The Preliminary Design chapter will conclude with a
discussion of how the preliminary design of the systen
satisfics the objectives and concerns expressed 1in the

Requirements Definition Chapter.

R T A B o e e e o e e e A Tt Bt

Design Strategy

The Data Dictionary Generation Tool is envisioned as a
dynamic tool capable of supporting the entire software
devclopment life cycle. To accomplish this goal, the tool

must be capable of expanding to accomodate the wide variety

of software representations available to the software
designers. The design strategy for this tool must be
capable of not only supporting existing software

representations such as SADTs, data flow diagrams, structure
charts, etc but must also possesss the flexibility to
accomodate software representations which may be developed
in the future. Of course, it is impossible to guarentce
that any design strategy will be able to accomodate a
unknown softwarc ecngincering development. HHowever, by
providing a well defined and logical design strateny, the
flexibility of the tool in supporting new software
representation is greatly enhanced.

The initial step in the design strategy is to gain a
thorough understanding of the software representation in
question., A software representation is important in the
software development process because it provides information
about the softwarc system under deveclopment. The type and
quantity of information provided by a particular software
representation technique will depend upon the nature of the
representation. For xanple, data flow diagrams provide

information about the activities which form a software

49

s “J.‘-A

0 »’ .'
ateta e ad

d ek 2 B

(o

DR ST I T AL AP T TR T N

system and the data inputs and outputs of these activitics.
Data flow diagranms also depict the flow of data between the
various activities which constitute the software system.
SADTs, on the other hand, not only depict the flow of data
into, out of, and btween activitics, but also allows for a
data flow to be classified as a control data input for an
activity. SADTs also provide the necessary conventions for
designating a mechanisms or the means by which an activity
performs a function. As the above exanmple indicates, a
thorough understanding of the nature of the softwarc
representation is essential.

The next step in the design stratégy is to determine
the dinformation content of the data dictionary for a given
softvare representation, A data dictionary is a repository
of data about data. The softwafc representation - contains
information about the softvare system it describes, The
contents of the data dictionary for a softwarc
representation will to a large extent be driven by the
nature of the representation. ' For example, a data
dictionary entry supporting a SADT representation of a
software system would contain information about control data
and mechanisms, This information would not be included in a
data dictionary e¢ntry supporting a data flow diapram or
structure chart represcntation. VVhen determining data
dictionary contcnt, it is important not to let the

information content be limited to just the information

- A e
“t e . IR LT P I S - Se e et T AT T T e s
nttdatadulodraladat ol ol et i e A e A A A e A e N R e W e T T et et et

—a Aaaxa

L

o

PO

T e " L A S At A AL { LR A e TN —T—,—mwme——

contained in the software representation. If the tool user
possesses additional information of value, it should also bhe
included. IFor example,.it is not possible to determine the
data type (ie, <character, integer,) from a data flow
diagram, SADT, or struucture chart. ilowever, if the system
has reached a level of development where the wuser has
knowledge of the data type of a particular data element it
should be included in the data dictionary.

Once the information requirements for the data
dictionary have been determined, the initial design of the
dictionary database can be accomplished. In designing the
dictionary database, an important point.should be kept in
mind, Although the differences in information content of
the various software representations does exist, there 1is
also a great deal of commonalit§ betveen the software
representations. I'or cxample, SADTs, data flow diagrams,
structure charts, and <code all depict the flow of data
elements into, out of, and betwcen activities. Where
possible this commonality should be exploited in designing
the data dictionary database. Ilowever, valuable information
which may exist in only one particular type of
represcntation should not be sacrificed for the sake of
maintaining commonality. This point will be further
clarified when the databasc design for the data dictionary
database is discussed later in this chapter. The objectives

of the initial databasc design should be to structure the

RS
alalg)

e

i

C e L= e e e wmw - e -~ - Lamacame T

database in a manner which rcduces redundancy but maintains
traceability and consistency.

WVith the initial database design accomplished, the next
step in the design strategy is to designate the user's view
of the database information. The user's view, when used in
this context, indicates the manner in which the user
interacts with the data dictionary system. In this step,
the manner in which the user is presented with database
information and the manner in which the user can manipulate
database information are defined. The user will as a
minimun want to be able to retrieve, insert, delete, and
modify the data dictionary contents. Thé definition of the
user's view will also determine the format in which a user
will obtain data dictionary information. F'or exanple, if
the wvser desires to know the inpué data for a particular
act lvity, the view would define tiie format in which that
picce of data dictionary information would Dbe prescnted.
The presentation could consist of the exact data element
nanes of all inputs to the desired activity or it could be
in the form of an activity definition which included the the
names of all input data along with other information about
the activity. The most important point to remenber in
defining the user's view of the dictionary database is to
attempt to present the information in a manner which rmost
cffectively supports the user's nceds.

The uscr's view represcents the manner in vhich the user

.

L N T Y T P U T Y "I TR JPOC IR
CA o, .. . "ot Tt Tat Tt
L e R R) . - .
e toa e

. R ‘.. .‘l . ® " 'A' ,_.' . g "p '.- "- '_- "' ‘_' .“ . . a-_ -.‘ A.. LI . - - -~.
T e S RO SO W Lo SN DN MK WP W PV I SPLPELY WY AP WLV Sl VA Yy DA WIS N SN SN SRS Y.T, - SRR F SRy S S QR Y S Y

]
PURIIPLEPUIP SN VY S TP UY WP NiE TR

g

“

R N P

'
PP PP i |

e N e e e e e e

c e E— e Tw —w— g

n!

A

desires to manipulate or use the dictionary databasec. The
database design represents the manner in which the - 1
information is conceptually maintained. In order to allow

the wuser to perform data dictionary functions, application
software 1is required to connect the wuser view and the o
dictionary databasec. The application softwarc represcents
the dictionary portion of the data dictionary gcncration
tool. The actual implementation of the dictionary portion .
of the tool will be heavily dependent upon particular method

used to maintain the database and the level of user

friendliness the system must support. I'or ecxample, the - 4
database could be designed along either the network, 1
reclational, or hierarchial approach. The user wmight Dbe ‘
required to have technical knowledge of the database -

te A
management system used to maintain the database in order to
manipulate the dictionary information or a wuser friendly

menu driven interface which required no technical knowledge

could be provided.

SRR RSP

The development of the application softwarc to conncct

the desired user's view with the dictionary database should

<
follow the software development life cycle approach. The]
specification of the user's view and the initial database af:;
design will provide an cxcellent foundation for formulating ;
the requircments definitions for the dictiomary softwvarec. 5
With the development of the dictionary software, the ﬁ
dictionary portion of the tool is complete. The information .
L

53 B

B TR I B I I I T Y e e e T e e e e T e e et e
- - - - - - - - . - - - » - - - - . - Y - - * ~, . - -, . . . - - - - . TR VTR
i P VTl Sl Tt Vol S-S S0 ST S T Ses LI W A0 TR TSR A W Y0 B SR NS WP S B Y8 T B A Sl PRI P LR R Dy D T Vs DA T, T W R D |

-

r—

»)

contained in a software representation along with other
necessary data dictionary intormation is maintained in the
dictionary databasc. A dictionary user can perform the
necessary interactions with the database by speciflying
his/her desires Lhrough the user viev. The application
softvare will conncct the user's view with the databasc and
enable the user to perform the desired opcration. The
automatic information extraction portion of the data
dictionary generation tool can now be addressed.

The initial step in developing this portion of the tool
is to determine for a specific software rcpresentation which
portions of a data dictionary cntry fo. tﬁat representation
can be deternmined dircctly from the representation and wvhat
information wmust be provided by the uscr. Vith this

determination made, the basic requirements for this-portion

of the software system have been identified. In order to
obtain data dictionary information from the software
rcpresentation, the software systent must access and
interpret the contents of thc representation. The systen

software mnust then extract the data dictionary information
and convert it into a form suitable for insertion into the
data dictionary database. The software systen nust
communicate interactively with the uscer in order to obtain
data dictionary information vhich can not be derived from
the software rcpresentation.

The design stratepy presented here 1is intended to

A e Nt

NP |

e

TN S P

PP W L]

o

vt

)

R

provide an approach to follow in expanding the tool to
accommodate new software representations and their
associated data dictioﬁary information, The following
sections in this chapter will be concerned with developing
the database and applications software for the initial set

of software representation to be supported.

Data Dictionary Information Content

The Preliminary Design of the Data Dictionary
Generation Tool will attempt to support four diffecrent types
of software representations and their associated data
dictionary information. The software representations to be
supported are SADTs, structure charts, data flow diagrams
and codece. SADTs,data flow diagrams, and structure charts
have been described earlier in this paper. The code
software representation 1is the actual source code which
makes up the softwvare system in question. This
representation is formulated during the implcmentation phase
of the software 1life cycle. These four softvare
representation wverc sclected because of their widesprcad use
in the Dcfense Community.

t'hen discussine the dictionary content for cach of
thesc software represcntations, it is useful Lo consider the
information for the data dictionary as being in one of two
categorics. The first catenory is actions, which contains

all information clements about the various functional or

. e . K3 . e - L PR
C Tt te ee a e e R T T S S
. o -

L
A e’ Tes s anMan

N . . - . . o« * n” a P ,'.. - o o L., AP .~-~. . o o PR
PPN ST VY S FOAC TP P, P Sull, POV SR, SR, S SN PP MUL FL So S A, OISO VR JUNE VRt Y Wat N SRR S R A

La Al -

A e a'a miana s

p
3
3
3

managerial modules which make up the svstem. The second

information category, data, represents the information which

4
M]
the action modules usc or manipulate in performing their
various functions. Poth categories of infoerration <contain
elements which relate data and actions to each other., For j

example, action information would identify the data inputs

and outputs of a functional module. Data information, on]
b the other hand, would identify the action modules which used]
f.
or manipulated a particular data item.
1 Because of this categorization of information within
:]
{ . : .
} each software representation, the data dictionary }
® | |
information desired for each rcprescentation will be ;
]
discussed from both a action entry and data entry point of ‘
view, The discussion of the informaton content of both the . 4
action and data portions of the softwvare representation will
show that a large degrec of commonality exists betwecen the coe
various representations, In addition, a large deprce of g
4
commonality will also be scen btween the action and data
information content. The complcete listineg of cach |
1
representation's action and data information clements 1is 1
presented in figures 10 and 11,
In discussing the various inforwation colements that
make up the data dictionary contents for the various
software representations, those clenents which areco connion T
across the range of the three representations and those DY
which are also common among the data and action information
.
_’\
50 E
"
9
3

- --- '.. . . " B - . -- '-. "-» l-‘ q-' --- '-‘ —. . - '-. .- - \‘ . ‘.V - ',. ‘~> . - s
- - - - - . - - - " ~

P WL I PP PR VWP WAL SRR D T YRR APPSR AL WL WAL)

L.

- -

adaata

categoriecs for all represcentations will be discussed first,
The following paragraphs will describe each of these
information elements and cxplain its meaning or value as
data dictionary information. It is important to remenucr
that these information elements are present in both the data
and action information categories in all three softwvarec

representations under consideration.

Project.

The project information element identifies a group of

> software developers who are responsible for entry of

r information into the dictionary database. The project -
e .

» identifier is important because it allows more than one

group to be working on the same software projecct at the same

. time. The designation allows different groups to use the .
@ (o |
[same dictionary database without having to be concerned
1
S about interferrine with the work of another group,. This <
Bi capability is especially important when the the data '
dictionary dis being uscd to support a large software
3
L development effort,
s Name
@
b
Hame is the title given to the acitvity or data
element represcented in the dictionary databasec. The name
b.
‘- clement associated with an action or data clement should be
A
f unique in that no other data clement or action should have
N) Y
the same namc. The name information element should, to the

extent possible, describe the data element or activity it

v fi

o

(]

e

«

LR I e B S

——— "

represents,

SADT Data FPlow Diagran Sructure Chart Code)
Project Project Projecct Project

liumber Humber Humber llumber R
Name lame Hame dame o
Inputs Inputs Inputs Inputs .
Outputs Outputs Outputs Outputs 1
Conrols

Hlechanisns
Description
leference

Alias
Parent liode
Child llodes
Date

Originatced
Original
Author
Hlodify
Date
Hodify
Versions

Fipure 10.

Description
Reference
Alias

Parent liode
Child Hodes

Date
Originated
Original
Author
llodify
Date
lodify
Versions

Software

Information

Description,

The

which

description

describes

an

activity

Description
Reference
Alias

Input Flags
Qutput Flags
Global Data
Used

Global Data
Changed
Algorithm
Parent HNode
Child liodes
Called Dy
Calls
lfardware
Read
liardvarc
Vritten

Date
Originated
Original
Author
ilodify
Date
liodify
Versions
Representations Acti
Llcments,

inforuation element is a

or

data clement contained

Description
Reference
Alias i

Global Data

Read

Global Data

Vrite :]
Algorithm .
Called by

Calls §
Hardware - £
Read

Hardware
Viritten
Progran
Language
Date 4
Oripinated
Oripinal
Author
dodifvy
Date .
dodifly |
Versions

on rntity
text input !
in the

'

PR S A R I SUSPLINY S'S U I

data dictionary.

to define

nature of a data clement.

The description is the developers attenpt

the function or purposc of an activity or the

SADT Data Flow Diagram Structure Chart Code
Project Project Project Project
Name Nane Hame Name
Description Description Description Description
Sources Sources Passed TFrom Passed From

Destination
Composition
Part Of
Data Type
Miin Value
Max Value
Valule Set
Alias

leference

Original
Date
Original
Author
Hodify
Date
Hodify
Author

Figure 11,

Aliases,
An alias,

another name for an existing

use of an

dictionary

Dstination
Composition
Part Of
Data Type
liin Value
lfax Value
Value Set
Alias

Reference
Original
Date
Original
Author
fiodify
Date
[Hodify
Author

Software
lenents

when used in

software

Represcntation

system

Passed To
Composition
Part Of
Data Type
iin Valuce
vlax Valuce
Value Set
Alias
Storage
Type
Reference
Original
Date
Original
Author
ilodify
Date
Modify
Author

alias can cause confusion in

should be avoided wvhenever possible.

The remaining {ive

information

Pata

development.,

clements

Passed To
Composition
Part Of
Data Type
viin Value
ifax Value
Value Set
Alias
Storage
Type
Reference
Original
Date
Original
Author
Hodify
Date
ilodify
Author

Information

a data dictionary context, is

activity or data eclement. The

the data

Their use

which are

common to both the data and action information clements of

i

S g g

i

Y

o
B
Lo aata g a2y

'

- e

the three software representations under consideration are
concerned with maintaining a historical record of the déta
element or activity they describe. The date originated and
original author information clements identifly the time and
person or group that initially entered a data element or
activity into the dictionary database. In a similar
fashion, the modification date and modification author
identify the time and person who made a <change in the
associated data or action entry. The version information
element i1dentifics cach modification made by indicating its
sequence. For example, the initial entry.of an activity or
data element would be identified as version 1 while the
first modification to the initial entry would be designated
as version 2,

The next group of data dictionary information eiements
discussed will be those data information elements which are
common among the three softwarc representations. The first
four of these elements scek to describe the actual value

which will be associatced with the data clement,

The data type information clement describes the basic
characteristics of the wvalucs associated with a data
element, IFor example, if the data elcment value was either
true or false then the associated data type would be
boolean. In a similar fashion, if the value was always a

number the data type could be, depending on the nature of

60

T M s —— LRI Sam Sonns w LANIES S Shen e eascaee s ave aen o

the number, either integer or real,

!i The Min Value and ilax Value.

s g
:n The min value and max value information elements

..

- describe the highest and lowest values the data element can

represent. If the ©possible values for the data element

order were whole numbers between I and 10, the min value for

data element order would be 1 and the max value would be 10,

i; Value Set.

The valuce set information clement is uscd when a data

! element can only assume a limited number of values. For -

g

} example, if due to the nature of the software systen the .
data element could only assume three values: high, low, or .

medium, then the value set for the data element would

contain each of these three values. . : :

It is important to note that a data element will not
always have a value set, min value, or max value information
element associated with it. liovever, these information)
elements do provide valuable information in certain

situations.

Composition and Part Of.

The compositon and part of data information clements
provide data dictionary information about the make up of a
data elcment and it relationship to other data elecments,

For exanmple, the data element cuployee salary could be

considered as part ol the data clement cmployee pay. In a

similar fashion, employce pay is composed of employece salary .

61

.. - e . - e R . e v,
. B I TN e e . L T

. . - - - - e S . ’
e T e) RIS . . e o T e P S I P . R
UNEL IS WL W WL . L L . WA L R P AL ‘-(‘A =P SO L. SR W TG S L AT LT DT AR PRI VA WA ¥

as well as other data elemcnts such as employee social

security number or employee namec.

.
3

Sources, Destinations, Passed From, an assed To.

—_— v e

The source, destination, passed from, and passcd to
data information elements describe the flow of data into,
out of, and between the various functional and manaperial
modules which make up the software systemn. Although these
data elements are common in all three data portions of the
software representations, therce is a naming inconsistency
which could 1lead to confusion. The SADT representation
calls activities which output data elements sources and
activities which accept or 1input data elements as
destinations. Structure charts and code, on the other hand,
designate activities outputting data clements as passed fron
and activities inputting data eclements as passed to. The
use of different terminology is not important because the €>°
meaning the information elements are the same in all three g

representations.

The next three data information eclenents discussed:
requirenments #, SADT data elecment, and SC parameter, provide
a trace capabiltily between the threc represcentations and

more importantly a recfercence between the various stages of

software development,

Requirement .

? The requirement # data information element is used to

.- L. . . o e e e s e s .
. PR T e e e e T e T e e Y e YT N T e

D T T A P N T P ST TR e BN
P PN PEERE DA T VRE SN AL YL VR RE A M WAL SR W K R R SRS P S . - *

ﬁ"""‘" T . A 4 Balidi Bl e N Ak A AR AL M S AR Al SES Sfiairie < ~ A g B B e s

reference a data element used in the SADT representation to

r a previously defined requircment, This requirement _
{ . s
’ represents a stated objective or goal of the system which

; was formulated by the system developer and/or system user.
The wuse of this information clement identifies a system e
requirenment which the subject data clement is intended to

help resolve. Linking system requircments to a SADT data

o R

element 1is appropriate because the SADT representation 1is

)
widely wused in the requirements definition ©phase of the |
E sotware lifecycle.
SADT Data Iteuw. - i
L . '
I The SADT data item information eclement rclates data : 5;
elements wuscd in the structure chart representation to a :
-
Lh ... data element sed in the SADT representation, The __"j
L rclationship between these two represcntations is h _i
E~ appropriate. The hierarchial structurc in the structure :3
E chart representation nmalies it a valuable tool in the design ,“u;
E phase of software development. The link between these two ‘
? representations allows for a tracing of data elements as ?k{%
; they develope from the requirements phase to the design ‘i
: phase. j
:ﬂ SC Parametcr. ;
s ¢
; The SC parameler data information elenment relates the %
‘ actual data clement or variable wusecd in the code 5
representation to the corresponding data eclenments or 5
; parameters uscd in the structure chart representation. The i
" p
” 63 |
»

S et T e s e e e e et St e ettt s e s T T T S T Ty

R S T L S ST R ey s e s e T AP
(SIS SN SR AL, Ty H PR S0P PR ST S WK T S SRS S WA SRR ST W WP S T Tl Ve . AP PN AP PR RV DV P PR APRL SR R R SRR e A AT M,

v—av-.iv-

information element allows for the linking of information in
implementation phase, represented by the code
representation, to corrésponding information in the design
phase, represented by the structure chart representation.

The value of the trace data information elements is
especially valuable in the error correction and modification
of softwvare systens. For example, if an error is detected
during the implcmentation phase the crror can he traced back
through the design and requircments phases. This will help
to ensure that the error is removed completely from the
system and enhances the designers abiltiy to track software
problems to their source. Vhen a modification to a software
system is proposed, it is extremecly valuable to be alble to
determine the overall effect of the modification on the
entire systen. By tracing the cffected data clements
through all phases of development, the designer can better
determine the influence, both positive and negative, that a
modification will have on the systen.

Storage Type.

The final data information eclenment to be discussed 1is
storage type, This information element is common to the
structure chart and code software representations., The SADT
representation does not contain this information clement.
Storage type represents a classgification of the data element
as it is viewed or uscd by the software systcun, there are

two classifications associated with this information

Ao . —a - -

Aa &

ah

. Lo .
Coe e e
e e s 0. L
s - At atatala’a s A al UL 4 ek e

vy 7

.
:
4
®

element: passed and global. The global classification
indicates that the data element value can be both accessed
and changed by any portion of the software system. It is
known throughout the system and can be used or changed by
any functional module in the systert. The passed
classification indicates that the data eclement is only known
in a portion 2f the system and for its value to be either
used or change requires that the data elements value and
type be passed or sent to other portions of the systen.

This completes our discussion of the information
elements associated with the data portions of the software
representations. The action information-elements will now
be discussed. As before, the action information elenents
which are cowmmon among the four representations will be

discussed first.

Inputs, Outputs, Input Data, and Qutput bData.

The inputs outputs, input data, and output action
information elcments identify the data elements which a
action or activity wusecs or produces in performing its

function. As the names indicate, the action takes the input

data and wuses or manipulates it, The results of the
activity arec the output data wvhich flows or is passed out of
an activity. The SADT, DI'Ds, and code representations

designate the data elcments associated with an activity as

inputs and outputs. Structure charts, on the other hand,

65

. e T e T e e e e te v e e el et e e e
P T Tt e T et et e e T T e

. STt e T «*a P I I T SR AR AP A S S Eal R S S U S - SR
A SN SR APPSR RS I P R R A . VAL AT T TR T RS R TP U W TV S ST L. SR . . Sy

Ao a a

b ohod

IR

W PR)

ata’ala M

Y

et

use the naming convention input data and output data. SADT
rcpresentations usc another input data designation known as
control which is not presént in the structure chart and code
representations. This information element will be discussed
later in this section,

Parent WNode, Children Wodes, Called By, and Calls.

The parent node, children nodes, called by, and calls
action information elements depict the composition or make
up of an action. Parcent node and children node are terms
used in the SADT representation to depict the logical
decomposition of an activity into its component parts or
children, For example, the activity Find Average could be
considered as a parent node with the <children nodes Read
Entry, Add To Sum, Divide By Number of Intries. The
structure chart and code represontations use the terms calls
and called by to depict the composition of activitics. The
term call is normally associated with the usc of an activity
by another activity. This meaning is slightly different
from the parent/children scheme used in SADT. Although this
difference does exist, both sets of terms still depict a
composition relationship and contain sufficient commonality
to be grouped together.

Requirement i, SADT #, and 5C 4.

The requirenment i, SADT &, and SC § action information
elements provide a tracc capability between actions depicted

in the thrce representations and the rcquirements, desian,

60

and implementation phases of software development. These
. information clements scrve the same purpose for the software
system's actions as the requirements #, SADT data item, and
sSC paramecter information elements did {for a software
I- system's data elements. This completes our discussion of
the action information elements which are common among the

three software representations.

L The next two action information elenments
fu
discussed,controls and mechanisms, are only present in the
j action information for the SADT representation. "The control]
; action information element is depicted as an input to an i
L
: SADT activity. The control information ceclement identifies
input data flows which an activity uses to <control its _:J
hi (.- execution, For example, a control input could be used to *"*I
o ,
determine the flow of cxecution inside the activity, The A
-~ L
mechanism action information clement is also depicted as an R
hi input into an activity in the SADT represcntation. A S
<
. mechanism represents the means hy which an activity perfornms
, its functions. k
The discussion of mechanismns and controls completes the !
]
discussion of information clements, both action and data, B
for the SADLT representation., Ye will now turn our attention
back to the action information clenents and discuss Lhosce
1
clements wvhich are cowmon in both the structure chart and 3
3
9
code representations. R
Y
)
Global Data Used, Global ata Changed, Global Data
22004 CALILL SN il RALLLIE S LR KL e lat A Heaks i
. N
. Y
- "
07 .
9
-
B P T S A T IIEA P R P S R A A R AP S A S N SN A

As
elements
activity
elements
present
the syste
elements

effect

Global Data YUritten.

discussed carlier, global data refers to data

which «can be both accessed and changed by any

or module in the software system. Vhile global data
are extremely handy

in developing software, they do

an opportunity for introducing scerious errors 1into
m due to their casy access. The action information

global data used and global data changed depict the

-
O
.
g

an action or wmodule has on a global data clement in

the structurc chart representation. The action information

elements global data rcad and global data written perform

the same function in the code rcprescentation.

Algorithm.

The algorithm action information clement is a text

dscription of the method or manner in which an activity or

module performs its function. I'or example, if the function

of a module was to calculate the average cmployec salary the

following formula could be use to describe the algorithm:

total salary all ecmployec/number of employees = average

enployee salary.

Files Read and

Files Written.

The files read and [files written action information

elements represent the obtaining of information and the

outputting of results to and from existing files in the

system by the action or modulc. In many cascs, an activity

will obtain input inforwation from a previously created file

D [T I R e I AL D s "

B > PP

- St et et et et T e A “t . et LI VN VL YR VR SR} -
RO e S R S O LR
- Al alacaata ataa’etata atnaas gttt atataTw

.

OB T Y

)

R UL I B R A At B g T ———

in the systecnm. The action information element files read
identifies the name of the subject (file. In a similar
fashion, once an activity has completed processing its input
information its outputs or writes the results to a file.
The action information clement files written identifies the
name of this file.

llardware Read and liardware Vritten.

The hardwvare read and hardware written action
information clements indicate the idinteraction of the
software activity with the computer harecdwarec which supports
the system, An exanple of a hardware read or hardware
written information could be an input/outbut port nunber,

This complctes our discussion of the action information
elements which are common betwecn the structure chart and
code representations. The remaining action inférmation
elements arec unique to a particular representation.

Input IFlags and Output Flags.

The dinput flag and output flag action information
clements indicate the usc of a boolecan data element to send
control dinformation to an activity. 'or cxanple, mnmodule
error check <could send a boolean data element to another
module to indicate that no crror cxists, Input and output
flag information clements arc used in the structurce chart

representation.

Program Langu

=)

ge.

The rogram languane information clement indicates the
- ¢

69

o«

IV SN

LY Sy

actual program language which is used in writing the source
code for an activity or module. Examples of the progran
language information céntent arc: Pascal, lortran, and
Cobol.

This completes our discussion of the information
elements which constitute the data dictionary informnation
for the subject software representations, This discussion
has briefly described these information elements and pointed

out the comnmonality which exists among the representations.

Database Design

In the previous scction, the infornation content of the

data dictionary was discussed in detail., This provided a
clearer wunderstanding of the tyﬁc of dinfornmation the
dictionary databasec must support. The previous scctions also
identified numerous areas where the information content of
the three subject represcntations are conmon. By defining
all common areas, the identification of thosc information
elements which differ among the threce representations made
more meaningful. Vith this background, the lopical
structuring of the information in a manner which hest
supports the dictionary database can begin. The process of
logically structuring the information is known as databasc
design. Two of the major goals in database desiagn are to

reduce data redundancy or information duplication, where

70

P P e L A R PR R . T R A R T S N O
Ca e e s Mo BBt o Bt Bt b B B SR R hrel Nt AN ataSata®aata a'atadsta’aatatatae _atala"as 4 a*

— T - ————r—

possible, and to strengthen data independence, the lack of
data structure dependence on application softwarc.

There arc thrce basic approaches to databasc design:
relational, hierarchial, and netwvork (17:63). "The
hierarchial approach sces a hicrarchy of objeccts as the most
typicallly useful data structure. Relationships betwveen an
object and several subordinate objects, e¢.g., between a
manager and his or her employees or betwecen suppliers and
the parts they supply, are hicrarchial relationships...
(18:97)." The hicrarchial approach views the data structure
in the databasc as a scries of parent/children relationships
which is often depicted as a simple tree structurec. The
advantages of the hierarchial approach are: the fauwiliarity
of many users with the hierarchial structure and the
significant decgrec of data indepcnﬂencc supported (19:1006).
On the other hand, the major disadvantancs of the
hierarchial approach arc: the manner of dealing with many
to many relationships is clumsy, the Dbasic database
operations such as insertion. and deletion are overly
complex, deletion of & parent eclement results in the
deletion of all information about its <children data
elements, and information about a child is accessible only
through its parcnt (19:100-109).

The network approach sces ",..hicrarchial relationships

as a special case of a networl relationship between objects,

For exanple, in a manutacturing application cach part nay

71

LI IR WO T SUAP UL R DAL N, LT UL L TR S L, S VR TR ST VoA VAP S VU W ML LN AL P

rT'A' e
&“ 'l
"
3
L'-
o
3
%
b
3
5
3
=
i}

.0

E f

3

S

have many suppliers and each supplier may supply many parts.
Each of these relationships is hierarchial, however, the
overall relationship between suppliers and parts is a
network relationship, A netvork system assumes that each
object may participate in network reclationships" (18:97).
The major advantage of the network approach is that it
easily implements the many to many relationships which exist
in real life. "The main disadvantage of the network model
is its comnplexity. The applications programmer must be
familiar with the logical structurc of the data base because
she/he has to "navigate" through different set occurrences
with the help of connector type rcéord occurrcnces"
(19:121).

The relational approach does not "distinouish Dbetween
objects and relationships. Th6> basic construct is a
relation, or group of related data elements., A relation nay
represent an object, say a part, or a reclationship, such as
the relationship between parts and supplicrs" (18:97). The
major advantage of a rclational databasec is its simplicity.
The relation can be equated to an information table which
greatly enhances wuser understanding. Other advantages
associated with the relational approach are that it provides
a relatively higher degree of data independence than the
hierarchial and network approaches and that it is based upon

a well developed mathematical theory or relations

(19:95),

The relational approach was used to design the database
for the data dictionary gencration tool. The relational
approach was sclected becausc of its simplicity and case of
understanding. In the relational approach, information is
organized into tables or relations. A table or relation

contains information elements which are related or logically

belong together. The colunns of the table represent the
attributes of the relation. The rows or tuples of the
relation represent single entries into the relation. Ior

example, a part reclation could contain attributes which
describe a part such as part number, <color, weight, and
quantity. A tuple in a part relation would contain values
for the various attributes which apply to a specific part.

Figure 12 provides a graphical display of these concepts.

Part Relation

Part Number Part Lame Color Height Quantity

62ABY holt red 20 12

3GC1F screw blue 5 9

4911Vo nut white L 20
Figure 12, Lxample Relational Table.

The organization or information elcments into tables or
relations closcly parallels the manner in which humans think

about information organization, Because of this, the

. e . .-'-.'.- PR - - et o, - TR PR o .. . - St e te et Lt t
LIRS A, K S A A S AP AP LA AP I YL D WAL WAL S N ST SO W L MY ol PR T)

TR T N L T T T —— ?

Aa o oo

. .
Aa s s hla o

PP AN WP

RPN AN Y

. IR
o ‘e s e »

4 g g

L i A e R AR S Sl atdn aem g T T— I e A0 She Bno B 20 o o

2

relational approach is easicr to both understand and use
than either the hierarchial or network approaches to
database design.

During the first part of this chapter, the information

a
e

fendinte Ak b

elements essential to the data dictionary database were
identified and discussed. The database design problem is
concerned with organizing these information clements into
relations or tables in a manner which supports the functions
of the data dictionary, reduces data redundancy, and
enhances data indecpendence.

"The ©process of crystallizing the entities and their
relationships in table formats using relational concepts is
called the normalization process. llormalization theory 1is

Lo based on the obsecrvation that a certain set of reclations has ." 1
better properties in an updating environment than do other
sets of relations containing the same data (19:91)."
NHormalization concepts provide a useful aid in the fkh%
organization of information e¢lemnents into tables or
relations which can be supported by a relational database.
Before <discussing normalization any further, it is
important to understand the concept of key attributes in a
relation, A key 1is an attribute or combination of
attributes with values that are unique within a relation and 1

can be used to identify the tuples of that relation (17:87).

Consider a relation which contains information about parts

(Figure 13A) which contains the attributes part name, purt 3

h

N

74 T
TN

1

DT T N P R T T Tl T BN e S PR e . N T T
C et et et a et e IR IR L I R PR T IR TR S S SRS S ,~',~',"'.‘ D T T - - - N P A L .
PP PP P PR L L YT P PR P GO S G R SR RDE RS AL LWL SRR AR O S UL AL SR G

R e

oY ovow ',".'T‘ D

L TR T DAL P ST o LI I et R
PR R P P PR P A P O P P VA WA D K VT R Wil o i o g S Wy . Sy

I e e

T TR A - T T T T T T T

number, part color, and weight. If the part number uniquely
identifies each tuple in the relation then it, the part
number attribute, <can serve as a key for the relation.
How consider figure 130. In this relation, the part number
alone is insufficient to uniquely identify each tuple in the
relatijon. In this relation, 2 combination key consisting of

both the part number and part color attributes are required

to identify the individual tuples in the relation. "liot
every relation will have a single attribute key. However,

every relation will have somc combination of attributes
that, when taken together, have the unique identification
property.... The cxistence of such a combination 1is
puaranteed by the fact that a relation is a sct. Since sects

do not <contain duplicate elements, each tuple of a given

relationship is unique with respect to that relation, and
hence at 1least the combination of all attributes has the

unique identification property (17:568)."

P . P - e e e T . - IS -
P O L R e D TR PR - e DA N
PN . s o - . WY R P T UL SR A R |
et et m DR N AT I P I S I L R N et e w
N - o e Te e Te T e S -
LY .

VPRSI R

P .
PORAEY .
P S T e R A TP

; L

i
- 4
b

£ »
d
1
4

¥
B
©4
,'-.j
R
4
[,,A..-..i

—— i

T T T T T T NI T AT T T T e T ST BIC R T ~ P B D Pl T Pl = '.'j-‘
3
-
- ~ 4
A. Parts Relation 1 :
Candidate Xey Candidate Key o
Part Name Part liumber Color Veight .
bolt . 124 red 6 -
screw 138 blue 5 i
- 1
nut 159 green 3
A
B. Parts Relation 2 .
Primary Key Primary Key b
1
Part lame Part lumber Color Weiaght o
bolt 1246 red o :
bolt 12406 blue 6 .
: 1
bolt 5392 blue 4
|
C. Shipment Relation
. Primary Key roreign Key —————
(o . .
Shipment ¥ Part {lumber Quantity -]
21 124 2067 .
25 159 1200 O
Figure 13 Use of Keys In Relations. K
Figure 13A illustrates another situation vwvhich often
arises in a rcelation. The attribute part nawe also
possesses the property of being unique for cvery tuple in
the relation, In this situation, the relation is said to R
.‘ - .‘
possess two candidate leys, part name and part number. In o
this particular situation, it would be appropriate to -
76 :
e e e T e e e e

Ty T T W W T —— i — -

designate onc of these attributes as the primary key and
the other attribute as an alternate key for the relation.
Figure 13C illustrates another wusc of Lkeys in a

relational database. Relation shiprent contains the

attributes part number, gquantity and shipment . Hotice 3
that the attribute part number in this relation constitutes
an index into the parts relation illustrated in figure /34.
An attribute such as part number in the shipment rclation is
known as a foreign key into the parts relation, Foreign
keys are useful in designating relationships between]

different tables or relations in a relational database.

N,

It is important to rcalize that tuples in a relation T
represent entities in the real world. For cxample, a tuple ffij
in the parts relation represents information about a -]

particular part that could be used or produced by an

organization, In a similiar fashion, a tuple in the -
-~ -4
shipment relation provides information about the content and 3
. -
size of a particular parts shipment. The keys which exist o

in these relations serve as a unique identifier for the T

entities represented in the tuples of the various relations.

Keys are an important concept 1in the relational

-‘ W v' »Y ‘

approach to database design. Becausc of their importance, fﬁ;ﬁ

ﬁ.“ i

two important inteprity rules are imposed. Inteprity Rule 1

ﬁﬂ , is concerned with maintaining the integrity of entities. 1t

simply states that no component of a primary key value may

be null in a tuplc of a relation (17:88). Decause the key

77

AT e et AT, . R N T O N R R ST RS LN S RS

T T L T e T T T T e T T T T e T T T s e
W IR I WA AT, . AR AL R E PR AL A S S S A S AR R A W RTINS AP LIPS L PG . PR P W P P O O - v

~—-‘-v- ~vrr

I
P

‘n

serves as a unique identifier for each tuple within a
relation, an identificr 'which was null in valuc would be a

contradiction in terns and can not be allowed.

Integrity Rule 2 is concerned with maintaining
referential inteqrity. It is common for one relation to
contain references to another relation. For example, the

shipment relation in figure 13C, by means of foriegn Lkey
part number, 1is able to recference the parts relation shown
in figure 13A. 1f the part number value in a particular
tﬁple of the shipment relation did not cxist in the part
relation, it would be a violation of referential integrity.
The subject tuple in the shipment relation would be
describing a shipment of parts which, as far as the parts
relation was concerned, did not .cxist. Simply stated,
Integrity Rule 2 specifies that if a tuple in a relation
references a tuple in a different relation, that tuple must
exist (17:90). To state this in another manner, an
attribute which represents a foreign lkey key may only
possess a null wvalue or a value wvhich exists in the
referenced relation.

Vith an understandine of key attributes in a relation,

the discussion on database design and the normalization
process can continuc. As stated earlicr, normalization is
the process of grouping data eclements into tables

"

representing entities and their rclationships. I'he reason

one would use the normalization proccdure is to ensure that

e 2

.
LY

»

.
S 2
it ol k.

L A T T B S A A B e San Sae IhBe SRR S Jhen A B Chuie S 5t Jinn Jher maae Jumes Avien e 2e e — = —

A

PPV T

the conceptual model of the data base will work, This

means, not that an unnormalized structure will not work, but .
only that it may causé some problems when applications

programmers attempt to modify the data base (19:130)." :[EH

-

Hormealization theory 1is built around the concept of lﬁ
normal formns, A relation is said to be in a particular
normal form if it satisfies a certain specified set of

constraints.

"Humerous normal forms have been defined... Codd
originally defined first, sec0nd, and third normal forns

(18F, 2NF, 3ilF)...." (17:238). Figure 14 displays the . 3

currently existing normal forms, - f

]

Universe Of Relations llormalized And Unnormalized ‘

te 1 IF Relations -.m:

7 T lelations

R PR

3 HF Relations R

Cld

BCHF Relations . A

4 i'f Relations T 1

PJ/IT (5 1iF) Relation z

1

Acitdied ccdenedh o

"

Figure 14, HNoraal TForms

.
aad

79

Lol

A e e Tttt e tat R T I L N O P P P P et .
A e CRS A - PR iy M R R TS PN R L S AP i PR L B Py P PO

v.j

CHEN 2 Ants g 4

- - = W - - T Y

B e 0 o S Jina B S 2 o Ty

As figure 14 suggests, "all normalized relations are in

1iil'; some INF relations arc also in 24F; and some 2iF

relations are also in 3NT. The motivation behind the
definitions was that 2HF was '"more desirable" than
1dF,...e,and 3" was more desirable than 21T, That is, the

designer should generally choose 3ilF rclations in designing
a database, rather than 2HF or 14F relations (17:238-239)."
For the purposes of this investigation, relations were
only formally normalized to the third normal form.
However, other normal forms do exist and are displayed in

figure 14 and briefly summarized below,

"Codd's original definition of 3iF suffered from
certain inadequaciesS.... A revised (stronger) definition
due to Boyce and Codd, was given... -stronger in the sensc

that any relation that was in 3iF by the new definition was
certainly 3KF by the old, but a relation could be 3UF by the
old definition and not by the new. The newv 3lLF is sometimes
called Boyce/Codd iHlormal Form (BCIHF) to distinguish it from
the old form. Subsequently, TFagin defined a new "fourth"
normal form (4lI') and more recently another form which he
called "projection-join normal form" (PJ/UI, also know as
S5iHir) (17:239)."

As stated carlier, the data dictionary databasc design

considered only the first three normal forms to be
important, bDefore discussing the meaning and constraints
80

AL AN e T
. . ot

- . -~ % -
W SN R R LS

- A RIS R
~_.. Sl P JRFC IR ST SR T
™Y

N G

R
e
3

B IR

R

associated with these normal forms, it is important realize
that normalization thecory does not constitute a hard and
fast process for database design, but rather a set of
guidelines which aid in the design process. "Jormalization
theory is a uscful aid in the design process, but it is not
a panacea. Anyone designing a relational database is
advised to be familiar with the basic techniques of
normalization..., but we certainly do not sugnest that the
design shouldbe based on normalization principles alone
(17:238)."

A rclation is in first normal form'(lHF) if and only if
all undorlyipg domains contain atonic vﬁluos only (17:243),
To state this din another manncer, every value in the
relation, each attribute value 1in cach tuple, is
nondecounposable so far as the éystcm is concerned. A
relation is considered to be in first normal form when there
exists at every row and column position in the table only
one value, never a sect of values.

A relation is in sccond normal form if and only if it
is in first normal form and ecvery nonkey attribute is fully
dependent on the primary key (17:2406). This means that a
rclation 1is in sccond normal form when the value of the
primary key attributes destermine the value of the other

attributes in the relation. [For example, the part relation

shown in figure 13A demonstrates this idea. The primary key

sy part number detecrmines the value of the other attributes

)

PN SN S S T S

I SN,

»

S S SNSRI

T

& in a particular tuple of the relation.)

|
f A relation is in third normal form if and only if it is 1
{ - :
- in second normal form and every nonkey attribute is

nontransitively dependent on the primary key (17:248). Vhen

& one nonkey attribute can be determined with one or nmore ifﬁ
?l nonkey attributes, there is said to be transitive functional
dependency between the two (17:247),. As an example of a

relation which possesses transitive dependence, consider a i
relation named supplier. This relation contains three
attribute fields: supplier number, c¢ity, and status. In

this relation, the primary key is supplier number and city : ;

and status are nonkey attributes. As a condition of this]

relation, assume that status is detcrwined by the city in -f?

wvhich the supplier is located. Lased upon this condition, il

(o | T

the status attribute value can be determined by the primary 1

key value or the nonkey attribute valuec for city. Although]

the «c¢ity attribute value is determined by the supplier “uj

number, the fact that the status value can Dbe determined f

from the «city value leads to a situation where transitive t}

d

dependency exists, S

A method of removing this transitive dependence is to .,j

decompose the gupplier relation into two new rceclations, };

supplier city and city status, 'igure 15 displays both the 35

original supplicr relation with transitive dependency and 1

the two newlv formned relat:ons in third norwal fsrn.

82

R T R S e . e e . e e . s L. et .t o
S T T S . T B D L S e e e T

Sy S
- . . e - -. o -, LN »' . - . LA . . . - oAt . . . AT T et . . - . Tt e BT S P P .-t * -
h e e e B B SV S SV N0 S SVRSP WA RV 36 30 S A0 ol 20 PSP ST PRIPA WPOPRUI LRI M RN S S S A DA

Supplier Relation

Primary Key

Supplier Number City Status

21F ¥With Transitive Dependence

City Status Relation Supplier City Relation

City Status Supplier Lumber City

Jew Relations In Third Hormal Form

Figure 15 Transitive Dependence

The design of the data dictionary databasc utilized the
normalization process in formatting all relations to at
lcast the third normal form. As pointed out carlier, the
use of the normalization process alone will not ensure a
good database design. Rumerous factors and trade offs comnc
into play during the design process. An important point to
keep in mind is the intended purpose of the database wunder
design. A thorouch understanding of how database
information will be used and changed in the course of normal
opcrations 1is cssential., Also of primary concern is the
effect the .databasc degipn will have wupon applictions
software written to interact with the databasc. In the
following section, the data dictionary database will be

presented and discusscd.

83

.
l
'

1

il
T
-

a. S

Data Dictionary BPatabase

In this section, the relations which makecup the
dictionary database are discussed,. The contents of the
rclations and how they solve the problem of wmeecting the
information maintenance recquirements for the various
software represcentations are also be discussed. The
alternatives considered when designing the database are
presented and the rationale for makiny certain design
decision arec discussed.

When the information content of the dictionary was
studied, it was reccognized that a great deal of commonality
existed among the various software representations which are
supported by the data dictionary. g¢eneration too;. In
discussing the rclations which make wup the dictionary
databasce, initial discussion [ocus on thosc relations which
the software representation have in common. Discussion will
then be dirccted to thosec relations wvhich are wunique to
specific software representations,

Description Zclation.

I'he description rclation contains the textual
description of the action and data entities for all softwvare
representations supported by the dictionary. In reality,

there arec cight diffcvrent description relations contained in

the database. A description relation exists for both the

data and action entities for all four soltwarece
54

Lt ';..;E:_'_A. . LL'- ot A : .'.‘.E‘-\ R '.-.:' LRI .L o L-.- ~.“- - a_ o

s Ky

Cavin Ca ‘ara®

Al A e

representations, Figure 106 provides a graphical display of
the attribute ficlds contained in this relation and a 1list
of the eight relations which use this format and there
associated software represcntation. Also included in figure
16 is the entity typc of the item described by this relation
which would correspond to the classification of the value

contained in the name field of this relation

Description lelation

Project Name Line Description

Database Relation Software Representation Dntity Type

a_description SADT activity
d_description SADT , data iten
b_description Data Flow Diagram bubble
df_description Data l'low Diagranm data flow
pr_description Structure Chart process
p_description Structure Chart parancter
im_description Code nodule
v_description Code Variable

primary key valuc
Figure 16. Description Relation.

The primary key for this relation is a coubination of
the project name, name, and line attributes. The project
attribute identiflics the teanm or individual responcible for
this particular entry into the dictionary databasece, The
nasiec attribute didentifics the particular action or data
crtity being descrived, The tine attribute identifics the

particular line of text which an individual tuple in the

v..“._..‘.__.‘,.. -_'.\'-'g'-" UL U A RN L T T T

- . - . 0 - - . " - . .. - - AV - - " - " - M) P TR T P L L
PSR PN PR N PP PR VRDPE LWL W PR V- PR AT TP PP S . VS WAL W YR PR WP E PG VL Y Y W)

AD-A152 213 AN AUTOMATED/INTERACTIVE SOFTHARE ENGIN ,
ENERRTE DATA DICTIONRRIES(U) AIR F(lll(:EEE'!guG TOOL TO e
NRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI.. C H HOI!HS
UNCLASSIFIED DEC 82 AFIT/GCS/ENG/84D-2

..

e T T e S O R

e

a2 22
L ELS

=
1.8

E

i

22 s pe

FFEEERR

crr
f
rr

MICROCOPY RESOLUTION TEST CHART

NATIONAL RIRFAIL OF QTANDARDS 1082 A

relation contains. The description attribute contains for

each tuple in the relation 60U characters of text which
describes the ecentity identified in the wname attribute. S

Figure 17 diplays what the relation when it contains somne o

actual valuces.

?4 Project Hame Line Description
|]
tean 1 qty 1 nunieric value which represents
b N .
s team 1 qty 2 the number of items required by
: team 1 qty 3 the customer to comnplecte a cale. -
o
1
f
.

Figure 17 Description Relation Lxample.

[——

llistory Relation.

The history rclation provides information concerning
the modification or change a dictionary entity undergoes ;““;
within a particular devecloprnent phasc. This relation
maintains information about when and by whom a dictionary
entity is modificd., Figure 18 presents a graphical display
of this relation and its attribute fields. It also lists
the ecight relations in the database where thias format is
used and the associated software represcentation, Also
included 1is the entity type ol the itenm described by this

relation. SR

el e e e T e e e T R T S N L)
.. et T et e Tt et e RN -
R LR A S S T SR e SRS .

I PLI SR L= T, . L C e ., IR
AR P, S, ML L, yli PSP W WAT DI SNe T DA WA S LI I ST W DR AT WA ST S WAL S I IO I AL AN

e T

HHistory Relation

Project Name Version Date Author

YT TWeeay it
S

Database Relation Goftware Representation Lntity Type

a_history SADT acitivity
d_history SADT data item
b_history Data I'low Diagram bubble
df_history Data Flow Diagram data flow
pr_history Structure Chart process
p_history Structure Chart parameter
m_history Code nodule
v_history Code variable

* primary key

Figure 18. liistory Relation.
The primary key in this relation is a cowmbination of
the project, name, and version attribute fields, The

project attribute identifics the group or individual

responsible for the dictionary cntry. The name attribute
identifies the dictionary entry being described. For
b example, in relation p_history the nawme attributce would be
the name of a particular parameter in the structure chart
software representation. The version attribute scquentially
identifies the wmodifications to a particular dictionary

entity. For exawmple, when an entity is initially cntered

into the data dictionary its version is identified as 1.0,

Yhen this entity is modified, the version attribute becone -

o)
~
L4

e e e e et T e e T e e e e e e T LU R A L et e -
N R Tt et T et et et et O SR T e R T I S R

. . PR B A A A P . . DG « P ° .
'.F'J‘._“_‘"A'J".“"-'-' DRI N W T Y YR R 2 g e e ta W S (G [N RE) (i S IR %)

1.1 in a new tuplc in this rclation. The date attribute

designates the month, day, and year when the entity was

3

- modified, The author attribute identifies the individual 5
. DR
& : . c . e
b responsible for changing some aspcct of the cntities meaning S
_l in the dictionary. Figure 19 provides a demonstration of

what this relation mipght look lilte when actually wused to

document entity modifications.

e

Project Hame Version Date Author
4
. teanl data | 1.0 6-9-384 Ted
o
3 teaml datan 1.1 8-24-84 Bill
- tecaml data 1.2 12-14-54 | iiike

Figure 19 ilistory Hclation Example. i
The dictionary databasc only maintains the current
information on a dictionary cntity. in other words, when e

any information content on an entity is modified the old
information content is not maintained for reference
purposes, The history relation, however, docs provide a
means for maintaining a record of all ecntity modification

which take place as well as the time when they occured and

the individual responsible tor the chanpe. By maintaining

this relation, it is possible to recover this information

from the author of the change or old printed cpoics of the

dictionary contents,

s
o

L T T T TR RS S et et e ra e P i S ST S e - PN
ISR LRI St et - R T R T S TR ST ST P S T S PG I S ST S L O P R T B
Lot et TR S S SR S S SN P S [SR P S .

e i e e ———— - - ———— e
g N : " v TR B G rS SCARTLAe e 0 o T T r———

llierarchy Relations.

The hierarchy relations contain information about the
logical decomposition of action and data entities into other

action and data entities. The concept of logical

decompostion of the action and data elements associated with

a softvare project is very important in the Top Down Design

‘
N
"t

1

“
-

(

«

i~ method of softwarc design.

The Top Down Design ilecthod initially considers a

software projecct to consist of only onc action entity and j

Y its associated data entities. This single action and its 5
fo .

, associated data cntities are then decomposed into a series -}

: of more detailed entities. These newly derived action and]

(5 data entities are then, themselves decomposed into still *;;j

more detailed components. This deconposition -process i ,j

continuecs until a level of detail is reached vhere further

decomposition is not possible.

This process allows the software designer to begin with o
a highly abstract <concept of the softvare project,

represented by the initial action entity and its associatced

s 1
data entities, and logically decomnposc the project into)
smaller more detailed components represented by the derived . X

I
action and data entitics. C
:

The concept of Top Down Design is supported by the
SADT, data flow diagram, and structurec charts methods of

software representation. Figure 20 demonstrates the Top

.

P L A ST e . oS . * o
- LS LU P P O I L N TR SR . T T et T e e e e e e e T

RS I I D "~ .
. S .- o e e S P
U S ERIE A S PG, Y O P A W W AT

. e .
e e e s T T T B
AP W N W RS WA S SR S R P I WY A L WA Y el

F- - - - T IR TS EM A i o s s R CI A A S M et e St At el Pt et S e e e B A AR A s et ae e e

Down Design !iethod as it might be portrayed in the data flow

diagram represcntation

/
/
7

c d 4
21
= :
1.)
I'irst Level of Deconmpostion
IFigure 20. Logical Decomposition Usinrg Data Flow Diagrams.
In order to support the logical decomposition process, L
. A) 4
the hierarchy relation, by means of its attributes, ties
each component entity to the entity from which it was
derived. Figure 21 presents a graphical display of the —
attribute ficlds contained in this relation. It also lists Tg'i
R

the relations in the database which use this format. The

corresponding soitware representation supported and the

entity type described by these relations are also listed.

90

P N R - T T T - L o - -".“. -~ o a . P . - o L o '--'_~ -
R T A St ML S N A R N N AR LI R E T

. ALY A PN W ORGPy -'.'.~'.~'-'1-'-'-;-'..-'.".' N e et e e e T T e e, e
PP AP ALIPLILIS JPS. DLPR WL A GO N SPSS G SE S Gl RADRE RE W L T Sl Nl S WO W Sy Sl Sl SO, R i, Sl S S iR . Tk, L TR R N

L

liierarchy Re

lation

Project

High_iiane

Low i.ame

Database Rel

a_hierarchy
d_hicrarchy
b_hierarchy
df_hierarchy
pr_hierarchy
p_hierarchy
v_hierarchy

ations

SADT
SALT
Pata Flow
Data TFlow
Structurce
Structure
Code

Software Represcntations

Diagram
Diagram
Chart
Chart

Entity Type

activity
data_iten
bubble
data flow
process
pararicter
variable

primary key

Figure 21, llierarchy Relation.

The primary key for this relation consists of a

combination of all attributes. The project attribute

identifies the individual or group responsible {or this

CSIR T YL
Pl A I

dictionary
name
entities.,

which are

entry.

The

children or were derived from the parent

The high_name attribute identifies the

of the entity which is the parcnt of the

lowv_name attribute identifies the

identified in the high_name attribute.

lover 1level
cntities

entity

The code software representation uses this relation in

a slightly

differcent

manncer

than the

other three

representations, ihe concept of logical decomposition doces
not come into play in the v_hicrarchy relation which
supports the code represcntation, In this case, the

relation supports the idea of a variable being derived

91

. ‘._‘._ L T SR T .- " '.“-'A'.-:u PR
VRPN VS S I SOl S I RS S W W LI RN VY

fronm

)
PPN VT

2
P

4
]
Co
4

A

cd

i

o

-9

4

]

- 4
N

h

"

P

.oty
PR A N NI T Y S

b

e}

. '/ -)

2T
ivv-:-

A he

NTY T e

\o

S —— S I L. . T

a data structurec supported by a particular proasramminge
language. A pood exanple of this situation is the record
structure in the Pascal prograuming language. A rcecord is a
data structurc vhich can consist of many different fields.
A variable derived from a Pascal record would be considercd
the child of that record in the hierarchy relation.

Figure 22 presents an exauple of how the hicrarchy relation
would maintain information about the logical decompostion process
in the structurec chart representation. The example displayed in

figure 20 is docuumcnted in this figure.

df _hierarchy (data cntities) b_hierarchy (action entities)
Project High_llame Low_lame Project iligh_ilame |Low_llame
team 1 a c team 1 A B

team 1 a £ tean 1 A C

team 1 b i " tean 1 A D

team 1 b d

team 1 b h

Figure 22, Ilierarchy Relation Uxauple.

leference Relation,

The reference relation contanins inforwation which
allows the development of an action or data entity to be
traced through the softwarce design process. PDilferent
software represcentations will be used to develope software

in the wvarious stagpces of the software life cycle. The

2
[

" P T R S et S "
LI S S AL PR DI YA T Wi TR WV St WA SOUN SR S N} Y -

PO W

reference relation contains information which identifics the
particular software recpresentation used in the previous
developuent stage and the reference or references which
identify the entity in the previous development stage.
I'igure 23 provides a graphical display of the attributes
which make wup this relation, I'ipure _23 also 1lists the
reclations wusing this format, the software representation

supported and the cntity type described in cach of these

relations,

leference Relation

"

Project lfame leference Ref_Type

[T S\UE S A R A S S S S S AL S S VAP P S S S WAL TP P WL AP LAY

Databasce Kelations Software epresentations Latity Type

a_rcicrence SADT activity
d_reference SAbT data item
b_refercnce pata 'low Diacran bubble
df_reference Data I'low Diagranm data flow
pr_reference Structurce Chart process
p_rcfercnce Structurc Chart parameter
m_reference Code nodule
v_reference Code variable

* primary key

Figure 23, keference lelation,

The primary ey for this relation consists of a
conbination of all attributes contained in the rcelation.
The project attribute, as in the previous rcelations

discussed, identifics the project or individual responsible

PO . A L e - R I .. e . R R T
. et ~

- C e T cae T T e T T T e e T R AN
L PP N P PR P N et et et tan

S AT
P PP P P

LSRR
PO W

. C e
Celelal

1
¥
!
1
R

-
.

for the dictionary entry. “The name attribute identifies the
entity being described. The reference attribute designates
the identity of the entity in the previous development
stage.

The softwvare represcntations supported by the
dictionary designate an action entity by both a nane
convention and a numeric designation. For this reason, the
reference for an action entity can be either 2 name or a
number. doth action and data entities can contain a
reference to a written requirenents document by including
under the reference attribute the number of the section of
the document which applies to the entity Being described.

The ref_type attribute identifies the particular
representation and the method used (number or nane) to
designate a refcrence to a prcvious development - stage.
Fipure 24 diplays the allowable ref_type attribute values
for cach of the four representations supported by the

dictionary.

94

- q.‘.'. - . - LR . LY v e ‘
PR I PO T I I P N PO Y

ia

—

. ."- et -
PRSPV AT SR . . P

]

i
J ORI

bkt

-
.
«

.
‘

;.i

| AU A RN S S Sn e St e S - o e d d sy e e e ———
@
|
ri SADT - ‘\Ctiv:ity) 1
Requirements Number DI'D Dubble ilumber 1
- Dr'b Bubble Namc “]
s SADT Data Iten A
~ Requirements lumber DF Data Flow lanec S
- _ Data Flow Diagram - BLubble T
. Reguirements tumber SADT Activity lumber
SADT Activity Hame
Data Flow Diagram - Data Flow
Requirements Humber SADT Data Item :
Structure Chart - Paramcter l
i} Requirements tumber SADT Data Iten]
f; DFD Data [Flovu
Structurce Chart - Process ;
Requircements Humber SADT Activity Huwmber 1
SADT Activity liaue D Bubble Humber]
. DI'D Bubble Name 1
: Code - Variable 1
L SC Parameter lianme SADT Data Ttem
. DI'D Data Flow fequireuments lumber
- Code ~ilodule)
, SC Process ilumber SC Process l'ane
) SADT Activity lumber SADT Activity ilane
—_ , DFD Bubble liumber DD Bubble Hane e
g (o 4
" Figure 24, Ref_Type Attribute Values 7|
;']
Ei 4
P
®
: 4
_ 1
* 1
r. . 1
. 1
1
’]
. 1
1
- 95 «
y 1
. 1
- e s : e e S T e IS ool

Trre

)

Alias Relation.

The alias relationm documents the situation in a
software ~epresentation where an action or data element is
identified by more than one name. The format for the alias

relation exists in two forms, one for data entities and one
for action entities. Tigure 25 provides a graphical display
of the attributes which make up the two forms of the alias
relation, Also shown in figure 25 are the actual database
relations which use the displayed formats, the name of the
software representation which is supported by the relation,

and the entity type described by the relation.

Alias Relation For Data Entities

Project Name_1 Name_2 Comment Where_Used
#* 3
Database Relations Software Representations Entity Type
d_atias SADT data item
df_alias Data Flow Diagram data flow
p_alias Structure Chart parameter
v_alias Code variable

Alias Relation For Action Entities

Project Name_1 Name_2 Comment
5 3 S
Database Relations Software Representations [Entity Type
a_alias SADT activily
b_alias Data Flow Diagram bubble
pr_alias Structure Chart proccss
m_alias Code module

¥ primary key

Figure 25, ALias Relations.)

96

o Wy WP R NPT I Wl Wt T Ty AT Wi S TP AT T Tk T L P O PUL,

Aa e Atk

WIS Sk S Y |

T
-

- T'.,

LES A g

~ - . . - . -~ Tt . .t -
COAI I R N [T . . .
S R 2 P RN LY LAY S L SAPLJP B S, ShRE RO S F A S VAN, BV S S

Both forms of the alias relation usc a combination of
the project, name_1l, and name_2 attributes as their primary
key. These three attributes taken together can wuniquely
identify any tuple in the alias relation. The project
attribute designates the team or individual responsible for
this dictionary entry. The name_1 attributc contains the
alias name or the "other name" by which a data or action
entity can be identified. The name_2 attribute specifies
the original or primary name which identifies an action or
data entity.

The selection of these three attributes as the primary
key provides a wunique identifier for each tuple in the
relation. The project attribute ensures that the
information in the tuple not will be confused with another
software project. The name_1l and name_2 attributes form a
unique identifier within the software project. While it is
conceivable that a entity could be identified by more than
one alias name, an alias name can not be allowed to be
associated with more than one original entity name.

Both the data and action forms of the alias relation,
contain a comment attribute. The comment attribute provides
a place for the tool user to include a comment concerning
the alias name for a dictionary entity. This comment should
attempt to explain why an alias name was used to identify
the entity. This is a valid question, The entity

obviously existed and was identified by an original name.

97

PV B R A T T TR T S S A N NI e Wi

———

O

| ®

Why was the primary name not used to identify the data
entity ? The use of alias names should be closely monitored
and wherever possible should be eliminated. llaving two
names for one entity leads to communications problems and
confusion 1in the operations of the data dictionary and the
development of software in general.

The only difference between the two forms of the alias
relétion is the existence of an attribute field 1labeled
where wused in the data entity version of this relation,
This attribute identifies the action entity or entities in a
project which use the alias name to identify a data entity
with which they interact. For example, assume that an SADT

activity named "getdata" takes as an input a data item named

"new data". Also assume that the data item "new data" is
not the primary name for the data entity but an alias name
for the data item "sales data'". The alias relation depicted

in figure 26 provides a graphical picture of how the alias

relation would document this situation.

Project Name_1 Name_2 Comment ' Wherve_used

Team 1 New Data Sales Data| Design Error Get data

Figure 26, Alias Relation Example.

Value Set Relation.
The value set relation is used to identify the values a

particular data entity can assume. This relation is only

98

o e e e e e e e e A e . e . R T L L P P PR L T S .
LI SRS NS St It PRI I R B T BT T NI I A I S TP T SR AT N S R I I A S 1

"
P

A et

R
L .
Ak 4 kol e o Ah'ela m s 8 4 4 hianlaoe o alsem

S, et
PSP L P

- - <,v. vv = v -

,
»

»
vl
b
[
Voo
”o.
i-.“‘
b
b
)

)

I
)
r
'
S

e
‘
*

LA 7 mashat i os el .T_v_ |
SIS T T e
A . . FAN

(®

useful in providing meaningful information about a data
entity when the set of values that a particular data entity
can assume is both finite and reasonably small. If the set
of values for a data item were infinite, the relation
containing these values would have no size limit. In much
the same manner, if the number of values associated with a
data item was extremely large, the cost of storing this
information in the database would exceed the benefit of
having access to the information, IHowever, if the number of
values is small, maintaining them in the dictionary 1is
beneficial. As a general rule of thumb, a data entity which
can assume only ten or less values should have these values
included in the dictionary database.

Because this relation 1is only <concerned with data

entities, it only supports the data entity portions of the

software representations supported by the dictionary.
Figure 27 displays a graphical representation of the
attributes which make up the value set relation. Also

included in figure 27 are the names of the database
relations which use this format, the software representation

supported, and the entity type described.

The project attribute identifies the person or group
responsible for this entry into the dictionary. The name
attribute identifies the data entity being described in the

relation, The value attribute contains the value which the

99

e e .

. - > N .
g e Tt T T Tt e e Ty et e et e T T e e e e T T e e e . N
EAEAPL NN VL L AL 1P, UL PSP PN APRR 2 AE WS WAL YT A SR SR WL WA, WS W 1N S Al WP VB S LI 3 COR]

r

Y

:

g
b
&
h‘. .

data entity identified in the name attribute can assume.

Value_Set_Relation

| Project Name Value
*®

3¢ 3

Database Relations Software Representations Entity Type

d_value_set SADT data item
df_value_set Data Flow Diagram data flow
p_value_set Structure Chart parameter
v_value_set Code variable

*primary key

Figure 27. Value Set Relation,

The primary key for this relation <consists of a

combination of all the attributes which make wup the
relation. This is necessary to ensure that all tuples in
the relation <can be uniquely identified. Since. it is

not only possible but highly likely that a data entity will
have more than one value associated with it, the inciusion
of the value attribute in the primary key is necessary to
ensure the unique identification property.

As stated earlier, this relation is only useful when a
finite and reasonably small set of values exist which the
data entity being described can assume. For example, if a
data entity named city could only assume the names of four
cities in a particular software application, the use of the
value set relation would be appropriate., On the other hand,

if the data entity could assume the name of any city or town

100

. e L
PP PR PR P S R

'
'

’

b

’

»

»

in the United States, the set of values would be so large as

to render the use of the value set relation worthless.
Figure 28 gives a visual example of how the value set

relation would support the first case of the data entity

city described in the previous example.

Project Name Value

Team 1 city Boston
Team 1 city New York
Team 1 city Atlanta
Team 1 city Washington

Figure 28. Value Set Relation Example

Algorithm Relation.

The algorithm relation «contains information which
explains how an action entity performs its function. An
algorithm is a step by step procedure for solving problem or
performing a task or operation in a finite amount of time.
This relation allows the tool user to specify the step Dby
step procedure by which the action entity being described
operates. Because this relation is only concerned with
action entities, it is only applicable to the action portion
of the software representations. In fact, the algorithm
relations is only applicable to the structure chart and code

software representations. The SADT and data flow diagram

101

n e et et e e T T et e T Y e T T e e s e s e R L A

- A I L P I I A T T S L) S e T T e e T T T e T T T T e
Salmfatalaraatalalal a ales et adn el et el ol ol i e it a e S A i S nta Na el

- - - - e e - MRRA A S N are e diade i bl dedh e i i R A T e B I R i T T T T

methods of software representation are most useful during
the requirements definition ©phase of the software 1life
cylce. During this initial phase of development, the

software designer has not determined what algorithms will be

Pl o - T ——— 5 Ty v
| P -' ‘

used to perform the desired actions, For this reason, the
algorithm relation 1is not included among the database
relations which support these software representations,
Figure 29 provides a visual display of the attributes
which make wup the algorithm relation. Also included in
figure 29 are a list of the database relations which wuse
this format, the software represcntatiop supported, and the — e

entity type described.

Algorithm Relation 1

Project Name Line Algorithm

Database Relations Software Representations [Entity Type ~:f;
p_alg Structure Chart Process
m_alg Code tHodule

* primary key

Figure 29, Algorithm Relation,

The project attribute identifies the person or group
responsible for the dictionary entry. The name attribute
identifies the action entity described in a particular tuple
of the relation. The line attribute identifics the
particular text line of the total action algorithm which is

contained in a particular tuple. The algorithm attribute

102 e

MR SRR e = -~ CAEA St M M SEELANEcan) T —— CEBENL Mot e e e Segun ek & adiusu v SOEELEGEL e e ma T A g

e d

PR R IR

contains 60 characters of a text which provides a portion of

the overall algorithm for the action entity. Y ‘i
The primary key for this relation consists of a ;E
combination of the project, name, and line attributes. FE;E
These three attributes taken together are able to uniquely . |
identify every tuple in the relation.
? Figure 30 provides an example of an example of what the
F; algorithm relation would look like when supporting an actual :) ;
dictionary entry. :
} a
ul Project Name Line Algorithm N _%
:V Team A | Sort 1 If A>B Then ~:;E
E‘ Team A | Sort 2 Put A in File I j
q0 Team A Sort 3 If A<B Then ;émj
,i Team A | Sort | 4 Put A in File 2
3 Team A Sort 5 If A=B Then
[_I Team A | Sort 6 Put A in File 3 C
[)
Figure 30. Algorithm Relation Example L
P In format and operation, the algorithm relation 1is j
identical to the description relation discussed earlier. ii
4 The only difference Dbetween these two relations is the ?2
;’ nature of the information they maintain. bj
; This concludes the discussion of the dictionary :‘;g
: relations which are common among the four software ii
representations. The remainder of the relations will be ~ 1
‘ 103

oo e e Nat e e te e e Tt e B TR I TP o DI U R)
R N S LR U N P P T L P e e N e L G T TR S S . .
T Tt R T s e Tl e e e e e e
PRI NP DN IR 2P . PG PV N it LY SL SoAP SLAT WAl Vot Wl Sl Wil VO . S PUULP U Wy Wit Y, bbbt o hinl ol oo bl ate et atatala®eBolkoP oBada o®a®>a%a®a'a'ai

.
[

I

) e

[

-~— D e T T ey ———

bndnsiestusicad

discussed within the context of a particular software v;
representation. This does not mean that the remaining) .
relations do not contain elements which are common among the ;?
various represcntations. Hovever, the discussion of these t
q
relations is more effective when the strengths and)
constraints of the individual software representations are]
taken into consideration. _
SADT Relations.)
There are three dictionary relations which support the
SADT software representation which have not already been
& <
discussed. These three relations are the activity,
activity_io, and data_item relations. These relations will
be discussed individually in the following sections., R
Activity Relation. “Vm;
The activity relation can be considered as the main fg
relation in the dictionary for identifying the action .1
entities or activities depicted in a SADT software :
representation. Figure 31 provides a graphical display of i
the attributes which make up this relation. :‘z;
3
Activity Relation]
Project | Name . Number
3% 3% . }
RS
* primary key ‘_fﬁ
Figure 31. Activity Relation, .;ij
The project attribute identifies the team or individual]
104 R
-
4
1
<
o e o D e e e e

responsible for this entry into the data dictionary. The
name attribute identifies a particular acitivity within a
software project. Thé number attribute <contains the
activity number associated with a particular activity on a
SADT diagram.

The project and name attributes form a unique
identifier for each tuple in the activity relation. For
this reason, a combination of these two attributes form the
G primary key for the activity relation. Figure 32 gives an ’

example of an SADT diagram and how the activity relation

would identify the various activities contained in the

diagram,

Find Data .
d 6o 1.2.4.1) y
Process .
: Ny Data K
3 T TN 1.2.4.2 By
i . Sort Data 0
-3 1.2.4.3
B Activity Relation
g Project Name Number
»)
Team 1 Find Data 1.2.4.1 f
Team 1 Process Data 1.2.4.2 -
Sy
Team 1 Sort Data 1.2.4.3]
» ' .
"
Figure 32. Activity Relation Example. t‘:ﬁ
RS
’]

105

PP A L S R S STt o . i . P R T I AL P P T e S e e

- . - - - " --‘.'-'.’.' e tat
TP NP R AN NENY DL APSIE AP XOUF P U S, i

Rt RS TR Rl S Tt At At Tt St Mttt et i o B S S 1

J

’ activity identified by the Aname attribute. The 3
EE element_type attribute classifies the manner in which the

; data entity identificd in the Dname attributec interacts with

? ' the activity identified in the Aname attribute. Vj
::. The classification of the interaction between an E;E
Y.l _' ;J
;' activity and a data entity in a SADT diagram or j
: 106 =
o . %
]

g .
L e e S P S B g e e AT e e et T]

Activity_ IO Relation.

The activity_io relation identifies the elements of an
SADT software represent&tion which interact with an action
entity or activity. The elements are normally SADT data
entities or data itenms. These data entities represent the
inputs, outputs, controls, and mechanisms which are used and
produced by an SADT activity.

Figure 33. provides a graphical display of the

attributes which make up the activity_io relation.

Activity_IO Relation

Project Aname Dname Element_Type

% % ®
¥ primary key

Figure 33. Acitivity_IO0 Relation..

The project attribute identifies the person or group of
persons who are responsible for the dictionary entry. The
Aname attribute contains the name which identifies the SADT
activity being described. The Dname attribuite contains the

name of an SADT data entity which interacts with the

-—e——

representation is determined by the position of the data
A entity with respect to the activity on a SADT diagram. The - 4
‘ graphical display provided in figure 34 should help to ' ‘j
. clarify this concept. . ;?
i C (Control) i ii
So}t ‘ _
) ———m-* (Activity) ?]
A B]
(Input) T (Output)]
) D (Mechanisms) 3
' Figure 34, SADT Activity and Data Item Interactions.
As figure 34 demonstrates, there are four 1
) classifications for activity and data entity interaction in] '
the SADT software representations: inputs, outputs,]
controls, and mechanisms, The element_type attribute will i
i ‘° contain one of these classification for a particular tuple -‘.R
in the activity_io relations. ,i
)
Figure 35 demonstrates how the acitvity_io relation ‘J
] would document the activity and data wentity interactions) ‘j
depicted in the example in figure 34, 3
) Activity_JO Relation
Project Anamce Dname | Element_Type ;
Team 1 Sort A Input 5
) Team 1 Sort B Output 'j
Team 1 Sort C Control _i
Team 1 Sort n Mechanism f?
' Figure 35. Activity_lO Relation Exanple. 4
107 1
)
e e e e e]

| ¥

@

The primary key for this relation is a combination of
the project, aname, and dname attributes. The combination
of these values form a unique identifier for each tuple in
the activity_io relation,

Data_Item Relation.

The Data_Item relation contains information about the
data entities used in an SADT represcentation of a software
project. FEach tuple in this relation contains information
which describes a particular data entity. Figure 36
provides a graphical display of the attributes which make up

the data_item relation.

Data_Item Relation

Project Name Data_Type Low High Data_Span

* *
* primary key

Figure 36, Data_JItem Relation,

The project attribute identifies the individual or
group of individuals responsible for this entry 1into the
dictionary. The name attribute identifies the particular
SADT data entity which a tuple in the relation describes.

The data_type attribute attempts to classify the data
entity in terms of the type storage structure required to
represent the data entity in a programming language. This
attribute may not cven contain a value. Since the SADT

representation 1is rimarily used durine the requirements
o

108

P T R e R AU U S P e
K . e RS ARN R

L, e T e, Y
R T TOA SR SLR WA, WA SO Yol

Chalil Sain eas o v S Shs 96 200 2n — S — —T——

s

PSPy

AP IPL LRE EL I S IR S e el e e e T
PP Sl WAL Al WAL P VML ST Wolt el A LA S Ala A et Al e atatala Vs, vasted

Ty

PG T

"

A

L 4

- AL PN P N]
. - T
-’ l‘_ aAemts At -._ -_ -

»)

phase of software development, it may bhe impossible to]
specify a data type for a Jdata entity at that stage of !

1
development. However, 1if that information is available it é

enhances the description of the data entity. The dictionary
supports the documentation of four standard data types:
integer, real, character, and boolean. lHowever, if these
four types are not sufficient to describe the data type of]
the data item, the tool users may enter their own data type
for a data entity. The data_type attribute will contain
either one of the four standard data types or a user defined

data type.

The low attribute contains the minimum value a
particular data entity can assume. Like the data type
attribute, the low attribute may not contain any value. For i .j
some data entities a minimum value will not exist, For _ ?
example, a data item which represented the cities of the)

United States would not possess a minimum value which could
be maintained in a low attribute field,

The high attribute contains the maximum value a data
entity «can assume,. Like the low attribute a particular
tuple in the data_item relation may not contain a value for
the high attribute.

The data_span attribute contains a 060 character

description of the range of values a particular data entity

can assume, This attribute is extrenely useful in
describing the <characteristics of a data entity. For .
109 .

A SR D R R A T IS PR UL P . . N L et
PR R IPRE TG PP RPN, 0 g 2 O, PRI L PULIPLE S.F P WYL F W SN TN A et A a4 a e s aa e ata S it e

example, if a data item represented the cities of the United 1

States, it is obvious that neither a low or high attribute

value could be specified, However, the data_span attribute -
could easily represent this situation by including the ff i
statement "all cities in the US" in its attribute field for
the tuple which described this particular data entity. Like
the low and high attributes, a tuple in the relation may not J
contain a value for the data_span attribute.
; This concludes our discussion of the relations which ‘
support SADT method of software representation. The :
4
k following sections will discuss the relations which support
- the data flow diagram method of software representation, ' E
ﬁi Data Flow Diagram Relations. L
|® 1
There are three rclations which support the data flow ‘
b diagram representation which have not been previously '}:
k‘ discussed. These relations are the bubble, data_flow, and i
1
bubble_io relations. From the discussion of these j
relations, it will become obvious that these relation are 1
{. almost identical in format to the three relations dicussed -
; in the previous section which supported the SADT
E representation. llovever, although similiar these reclations
% support a respresentation which uses entirely different
X graphical symbols to represent the elements of a software T
& project. These relations will be discussed in the following :11
r ‘ -
Hr. sections, j
| 110
3 ‘.
: 1
:. L T T L e e e e e e T e _

Bubble Relation.

The bubble relation is the primary relation for
identifying the action entities depicted in the data flow
diagram representation. Figure 37 provides a graphical

display of the attributes which make up the bubble relation.

Bubble Relation

Project Name Number

% *
primary key

Figure 37. Bubble Relation.

The project attribute identifies the person or group
responsible for this entry into the dictionary. The name
attribute identifies the particular data flow diagram action
entity being described. The number attribute contains the
number associated with the action entity on a data flow
diagram,

The combination of the project and name attributes
serves to uniquely identify every tuple contained in the
bubble relation. For this recason, the combination of these
tvo attributes serve as the primary key for this relation
Figure 38 displays a data flow diagram and how the bubble
relation would document the actions entities depicted.

The bubble relation is identical in format tec the

activity relation discussed carlier. Both relations serve
to identify the action entities associated with their
111

L
@
:
]
respective softwvare representations,
-
~]
{ | | 4
. -]
8 A Get Data E
o ' 2.5.6.1 o
. -9
. -‘1
B |
Sort Data
\2.5.6.3
. D 1
[
[Bubble Relation
|
Project Name Number
! Team 1 Get Data 2.5.6.1 1
| ® ’
Team 1 Process Data | 2.5.6.2]
Team 1 Sort Data 2.5.6.3
- 4
K4 _ {
Figure 38. Bubble Relation Example, .
Bubble_IO Relation.
The bubble_io relation contains information about the
interaction between data entities and action entities in a
data flow diagram recpresentation. Figure 39 displays the _)
attributes which make up the bubble_io relation, 4
Bubble T0 Relation]
N
Project Bname | Dbname Dircction
% primary key O
Figure 39. Bubble_I0 Relation, 1
4
B
|
‘ A
i
‘,;:{" So... 2 e “'; b L. _’-\ b, SR D -A_'IL-.‘_:A.‘ “‘.-L"A .- - P | hd o k4 - - - : ;i

(Y

e @

—— v‘«-.
L S L

-

- . . et B
e . Tt T T ey T T T T e T T e LI S URUL AT LN LS
PP PR S SV SR L PO G S L W S R S S DUERE S A VTR S S % IS

The project attribute identifices the person or group
responsible for this entry in the data dictionary. The
bname attribute identifes the structure chart action entity
described by a particular tuple in the relation. The dname
attribute identifies a structure chart data entity which is
either an input or an output to the action wentity being
described, The direction attribute indicates whether the
data entity identified in the dname attribute is an input or
an output to the action entity described by a relation
tuple.

A combination of the values contained in the project,
bname, and dname attributes uniquely identif{y each tuple in
the bubble_io relation. Both the action entity name and the
data entity nanme are required for unique' tuple
identification, because an action entity may have several
data entities it interacts with and a data entity may be
used by more than one action entity. Decause of this unique
identification property, the project, bname, and dname
attributes serve as the primary key for the bubble_io
relation.

Figure 40 presents an example of a data flow diagram
and how the bubble_io relation would document the
interaction betwecen the action and data entities depicts in
the example data flow diagram.

The format of the bubble_io relation is almost

.

113

S A -'\.'_‘-' LY et

«" a4 - RS
ot ol .

e B S an - g

. Y
AT LI AR . Y

P

~e

et n

K J

e, ST ot et e e R I I R T RO TR . -)
PRI Sl iy A A W [N TSP GAPCAPELIPN, WELIFG.IP WAL W RS A AT W Dul SR Wy P

Car - = = Ay e e~y

identical to the format of the activity io relation
discussed earlicr. Both relations maintain information
about the interaction between data and action entities in
their respective software representations, The only
difference between the two is that the values 1in the
direction attribute of the bubble_io relation only indicate
it a data cntity is an input or output of the action entity.

The corresponding attribute,

element_type, in the
activity_io relation allows a data entity to be c¢lassified

as a control, mechanism,input or output.

A —— //_D
I

Bubble_I10 Relation
Project bname dname]direction
Team | Get Data A Input
Team 1 Get Data B Output
Team 1 Get Data I Output
Team 1 Process Data I ITnput
Team 1 Process Data C Out put
Tean 1 Process DPata I Output
Team 1 Sort Data I’ Input
Team 1 Sort Data) Uutput

. e et Tet et at e,
. R RSN . . A Vet e e
a

P
-

. OV R I
PR RSP PR

* AT A .t atatan.

Figure 40. DBubble_IO0 Relation Example

Data_Flow Relation.

The data_flow relation describes the data entities

wvhich exist in the data flow diagram software
representation. The information contained in a tuple of
this relation describes a particular data entity. The

attributes which make up this relation are shown in figure

41.

Data_Flow Relation

Project Name Data_Type Low High Data_Span

¥ *

* primary key

Figure 41, Data Flow Relation.

The project attribute identifies the person or group
responsible for this entry in the data dictionary. The name
attribute identifies the data flow diagram data cntity
described by a tuple in the relation, The data_type

attribute indicates the storage structure the data entity

would require in a progranming language, The value of this
attribute may be one or four standard data types directly
supported by the dictionary; inteper, real , character,and
boolean; or a uscer input value ior the data_type

attribute, The low and high attributes contain the rmininum

and maximum values, respectively, victen the data entity can

‘atata’a’.'a'a’"a’a Al d A PP A S W W G Y P

pp——
DR

Ty ‘vv.v, "

assume. The data_span attribute consists of a sixty
character description of the range of values the data entity
can assume, The dat5_type, lowv, high, and data_span
attributes may not contain a value for some data entities
documented in this relation.

A combination of the attribute values for the project
and name attributes serves to uniquely identify each tuple
in the data_f{low relation.

The format of the data_flow relation and the format of
the data_item reclation discussed in the section on SADT
relations are identical, Both relations describe the data
entities of their associated software repfesentations.

This completes the discussion of all relations which
support the data flow diagram method of software
representation. The next section begins discussion-on the
remaining relations associated with the structure chart
method of software representation.

Structure Chart Relations.

There are five relations which support the structure

chart representation that have not been previously
discusscd. These relations are the process, process_io,
pr_call, pr_passed, and parameter rceclations. These

relations will be discussed in the following sections,

Process Relation.

The process reclation identifies the action entities

depicted in the structurc chart software representation.

116

A N el At el ettt ele s e IR R
ca . T T I . . BRI W LT e e e T e s
e

S T L ST T T s T T S e T T Nt T T A e e
., S b S) PG T A L I A AT A P A A L A S LY A S G G S U TP LI

STt e tet
WP U W]

Figure 42 displays the attributes which make up the process
relation,

The project attribute identifies the person or group of
persons responsible for this entry in the data dictionary,

The name attribute identifies the particular action entity

or process being described. The number attribute contains
the number associated with an action entity when it 1is

.
yﬂ depicted on a structure chart diagram,

Process Relation

Project Hame Kumber

o .
P
[primary key

Figure 42. Process Relation. o
E (®
;_ A combination of the values contained in the project
' and name attributes scrve to uniquely identify each tuple in
Fi the relation. For this reason, a combination of these two

attributes serve as the primary key for the process
relation,
Figure 43 displays an cxanple of a structure chart

diagram and how the process relation identifies the action

e

entities depicted by the structure chart example,

./ ~aadma
.'.

et LR S -t BN R
e e et e T e e e e IR A

LTa “aratale’

S sLem w o mUw Te TR TR T TV Y e TR T g T '3 T T W - — —r = Y v w e v w o o ow-—

— - vﬁlvAviv-.v,_
-

Data ' Dafa '
1.2.3.2 1.2.3.3

Process Relation

Project Name Number
Teaml Process Data 1.2.3.1 .
)
Team 1 |Get Data 1.2.3.2
Team 1 |Sort Data 1.2.3.3
40 Figure 43. Process Relation Example.

Process_I0 Relation.

The process_io relation describes the intcraction of a
structure chart action entity and a structure chart data
entity. Action entities are often called processes and data
entities are often called parameters in structure chart
terminology. The process_io relation identifies the
parameters which previde input to or constitute the output
from an action entity or process. A parameter in the
process_io relation can be a file or hardware item as vwell
as a parameter., The iwmportant characteristic is that the ;;‘;

data entity described by this relation represents the action

r
)
s

[
N

118

Lo s
.

i Wv_‘
r, s ov ... ;)

At e, et . .'—_-\-..".‘__‘ D N LU R o e e e el e

DA LS. v VR PR PP P R P VR VI WAL, YRR i

DI APICEPROIPR. D PP PE PSRN VLW PRDIE VAL . Y. PR P PP ¥

e CBnd I -~ - T AACAR e e e e ey v e a A ot B s ‘1

entities interface or interaction with the rest of the
software project under development. Figure 44 presents a

graphical display of fhe attributes which make wup the

o daded

?~ process_io relation,

The project attribute identifies the person or group of
persons who are responsible for this entry into the data
dictionary. The name attribute identifies the action
entity or structure chart process being described by a tuple

Process_IO Relation

Project | Name | Pname | Direction | P_Type | Class | Order

' Y s n s
4t 3% 3%

vlﬁ
PR %)

! * primary key

Figure 44, Process_I0 Relation.

in the relation. The pname attribute identifies a parameter

or other item which interacts with the action entity

identified 1in the name attribute. The value contained in
the pname attribute may identify a file or a hardware item
as well as a structure chart paramecter.

The remaining four attributes of the process_io
relation (direction, p_type, class, order) describe the
nature of the intcraction between the action entity and the o
data entity and the nature or classification ol the data
entity. The valuces contained in these attributes arce highly

dependent upon the nature of the associated data entity.

AU MAAOM A TR T T -
L
e ek

The class attribute identifies the nature of the data

entity interacting wvith the action entity. The values which - A

119

.., '.-. ' ..' .-“T'...T'.

o

B ol e it
LR t‘ v

~

A P B e e e W T e e e e e T R - K Rt TR R S T S
';{‘.'_1."\.‘ b S S Ty A T S L, P L. P Ay . U, W PO M. M S . I U O I P PP S a P S PR . Wl S s SOl Vit Wl S

Ala e s ‘g

can appear in the class attribute are: 1local, global, file,
‘ and hw (hardware). The lacal and global values indicate that
the subject data entity is a structure chart parameter. If
the value is global, it indicates that the parameter can be
I accessed by any process or action entity in the program or
project wunder development. If the value is 1local, it
indicates that the parameter can only be accessed by the
ol portion of the program where it is known or identified. If
the action entity is interacting with a file or hardwarec
item, then the <class attribute value will be file or hw
) respectively,

The direction attribute classifies the nature of the

s

interaction between the action and data entity. This
i @ classification indicates how the action entity uses the
subject data entity. There is a definite correlation T

P
‘e

between the values contained in the class attribute and the

i values contained in the direction attribute. Figure 45

PR

displays the four different values contained in the <class
attribute and the <corresponding allowable values for the

direction attribute,

'.:j 120

. . - . . - - -t A .
e . et CHRC . .
h bondenbata i a’ sl as s a2 & o sl A

)

-\

Class Attribute

Direction Attribute

local input
output
global used
channed
file read
write
hw read
write

the value attached

communicate

written to.

attribute

could

parametcer

Figure 45. Class

As figure 45 shows,

arca of intecrest

entity actually changes

with

associated
value.

casily rcad

calculations using these values,

to the file.

The p_type

which

and Dircection

the value.
It is not unusual for a
direction

For example,

attribute

interacts

a local

to the global parameter or

the action entity by bei

data

values for a

valucs

trom a

with action

121

Attributce

parameter

I'iles and

then write the

describes the

entity.,

Values.

is considered to

act as an input or output to the action entity.

ng read

entity

particular

file,

LT W

if the

to

a structure chart

nature

Y

Since

from

the
value of a global parameter is known throughout the program,

is whether the action entity only uses

action

hardware items
or

possess

class

of

LI A Y

process
perforn

results back

a

It basically

~ B S s

s gt e 2T e S e Tl L.

Y Y

ettt ek

R

MRS APRAT W

PP ST WL

identifies if the parameter, either local or global,
represents flag or data.information for the action entity,.
Data information would be such things as the name of a city,
a number required for a computation, or a month of the year.
Flag information would be such things as the answer to a
specific yes or no question such as the value true or false
for a parameter which indicate if a <certain number 1is
negative or positive.

The order attribute identifics the order in which a
local paramcter is received by the action entity. For
example, 1if a structure chart process interacted with three
local paramecters, one of the parameter would have a order of
one, another would be the second in order, and the final
local parameter would have an order value of three.

A combination of the values contained in the broject,

name, and pname attributes serve to uniquely identify each

tuple in the process_io relation. The project attribute
differentiates between the various software projects
supported by the data dictionary. The combination of the

action entity namc, contained in the name attribute, and the
data entity name contained in the pname attribute provides a
unique identifer for all action and data interactions which
take place within an individual software project. Because
an action entity can interact with more than onc data entity
and a data entity can be used by more than one action

entity, it requires the name values of both components to

122

e Wt vt .
BRI N I N i SR T T T St MNP N P S R Sttt e =
WP AY SlP NP SIS W I L S P AP LA A L L I WAL WP P YRR WA PR LRE RN WA WU D P 8 Can

I Ant Bon Jeei g See Sy 2

Py

ALl als & g4 o o

]

K

TR SRR P T S

provide the unique identification property. For the above
reasons, the project, name, pname attributes serve as the
primary key for the process_io relation,

In using the process_io relation to support the
structure chart method of softwarc representation, it 1is
necessary to establish a standard convention or framework
for referencing the information portrayed on a structure
chart diagram. The data entities which enter at the top of
the structure chart process are those entities which
interact with the action entity and are documented in the
process_io relation. Figure 46 provides an example of a
structurc chart diagram and how the process_io would

document the data and action entity interaction.

Process
Get Total

No_l?

Ho_2? 8 Total

Process
Add

Process_I0 Relation

Project | llame | Pname | Direction |P_Type| Class | Order
Team 1 Add No_ 1 Input Data l.ocal 1
Team 1 Add lio_2 Input Data Local 2
Team 1 Add Tolal | Output Data L.ocal 3

Figure 406, Process_10 Example 1.

123

e om .ttt e P P <L e e e s - e s .
PPN WAL AU R IP I Y TR S PRI, LML, LU, . P LI T T VR WO SR W S

T e———y

s aalacaia 4

. .

s

o . .
IR R R P

'

, .
[P Y)

y
14
o

entity

action.

Since

enter or

It does

Total 1is
k discussed
{ The

exanple,

40 structure
entities
appear on

situation

As figure 406 shows,
the interaction between a structure chart action and

which

are received

none

the process_io relation documents
data
occurrs at the top of the box symbol for an

In this example, all data entity inputs or outputs

from or sent to the Get Total action entity.

of the data entities included in the ecxample
exit from the top of the Cet Total action entity,
not appear in the process_io relation. The

relationship betwecen the data entities and action entity Get

depicted iu the pr_passed relation which will be
later in this paper.

situation depicted in finure 40 is a rather simple
There are situations which may occur in the
chart representation in which the name of the data
would not

documented in the process_io relation

the corresponding structure chart diagram., Such a

is depicted in figure 47,

Get Total

Get Sum

01d TotalO\\Tn o

N L
\J,L(
Add

Figure 47, Structure Chart Diagra

124

Ve e T, P P T O A T, ST e T e T N e -
. . U R . A
B P . LRI IR ST SR I ST AP P A U S L S S PO |
(UK PR L NE P L RN DT WA WAL R PR, WAL P PP RIPE. LA, YR WO PP

1
\st Total 19/’ o7 Sunm
Deposit SN “~ ol

me

PR

POV

e

(R

' @

In the example depicted in ficure 47, the Add process
accepts as input two. data entities representing whole
numbers. The Add process will calculate the result of the
addition of these twvo numbers and output this result. The
structure chart depicted in figure 47 could be interpreted
in such a manner as to indicate that the process Add accepts
four inputs- Nol, Ho2, 01d Total, beposit- and crecates two
outputs, Sum and New Total. From a structure chart point of
view, this interpretation would be correcct. ffowever, the
data dictionary relation process_io is not interested in the
number of higher level processes which use the Add process
nor the names of the paranecters passed to and f{rom the
process from <calling processes. This information is
documented in the pr_call relation and the pr_passed
relation which will be discussed in the following sections.
The process_io relation documents the inputs needed and the
outputs produced by the Add process. I'n the situation
depicted in figurce 47, the tool user would neced to specify a
name for the twvo input nunbers and the output result which
intecract with the Add process. These names would be
different from anv of the nanes depicted in the structure
chart in fipure 47, This creation of namnes [or the input
and output parancters of process Add is needed to uniquely
identify the intertace characteristics of the process.

Il the situation as depicted on the structure chart in

figure 47 was documented in the process_io relation, it

125

N BRI RN
Lt L
e S

| RO

would give the erroncous conclusion that the Add process
required four input parameters to perform its function and
created two output paramcters.

A possible sect of process_io entries which would
correctly document the situation portrayed in figure 47 is
shown in figure 48.

It is important to remember that the situations
discussed previously represent problcms encountered in
representing the structure chart representation in the data
dictionary. The solutions dicussed for these problems
represent standard conventions which were established for
using the Data Dictionary Generation Tool and not standard
conventions which «can be applied to the Structurc Chart

method of software represcntation.

Process_I0 Relation

Project| Name| Pname |direction| Ptype | Class |order
Team 1 [Add Addendl | Tnput Data Local 1
Team 1 [Add Addend2 | lnput Data Local 2
Team 1 [Add Result Output Data lLocal 3

Figure 48, Process_I0 Exanple 2.

Pr_call Relation,

The pr_call relation depicts the use of or call to an
action entity by another action cntity, Often an action
entity, in performing its function, will use another action

entity to perform a calculation or other jobs. This is known

126

B L .__:- _'.J.‘;:..‘".._-.s e

P P L A S U R R R L . e R TR T
PP P R TIPS JPULI Sl WIE Wi NV Tl Sl Sl Sl S IS P URP Y BRP IR UMWl WAL YOy IR W UG ST A Dy DRI DA

A e aaaa b e Ah o &t b e dmtatata J

P
P S

i oai— ol alalale ol

v.wr‘vww- g

as a call by one action entity to another action entity.
The attributes which make up the pr_call relation are

displayed in figure 49,

Pr_Call Relation

Project Calling Calls

A
rl

¥ primary key

Figure 49. The Pr_Call Relation.

The project attribute identifies the person or group of
persons responsible for this entry in the data dictionary.
The calling attribute identifies the action entity or
structure chart process which enlists the aid or calls
another process in performing its function. The calls
attribute identifies the process wused by the process
identified in the calling attribute.

The primary key for this relation consists of a
combination of all attributes contained in the relation.
The project attribute is needed to differentiate betwveen
different softwarce projects contained in the data
dictionary. because a process can call more than one
process and a process can be uscd by more than one process,
both the «calling and calls attributes are necded in the
primary key to uniquely identify cach tuple in the pr_call
relation, Figure 50 provides an cxanple of a structure

chart diagram depicting the calling of processes by other

127

S L .

.

. S Te . .. Cte e P . P LT R N T T N L R AN . O A N U P S S S
P WL L LI AL S S S LS DL NI ST LD SIS I R S R RGP SIS R RO W NN e

A
:

rl v

A0 ot A o o0 4

.- - - - - - T T T T Ay % WY Yy e - —~— Ve YR W X T T - v

processes and how the pr_call relation would document the

situation.

Process A Process B

Process C Process D Process E

Pr_Call Relation

Project Calling Calls
Feaml A C '
Teaml A D
Teaml B D
o Teaml B tl

Figure 50. Pr_Call Relation Example,

Pr_Passed Relation.

The pr_passcd relation describes the data centites sent
to and returned from an action entity when il is called or
used by another action entity. The attributes which make up

the pr_passcd relation arec displayed in figure 51,

Pr_Passed Relation

Project } Name| Destination | Source | Order |P_Type| Class

¥ primary key

Figure 51. Pr_Passed Relation,

128

DR PR P R WA o S P . et L S e L TSt T T s s T T s T

(@

L N AL SR S PG, S I K T, VSR SRt Sl Wl N SU L AP P P TC I S PR P L L

The project attribute identities the person or group of
persons responsible for this entry into the data dictionary.
The name attribute identifies the data entity or parameter
which 1is being transfered in a call between two processes.
The destination attribute identifies the process which is
receiving the parancter identified in the name attribute.
The source attribute identifics the process from which the
parameter was transmitted or sent, The order attribute
indicates the order of this particular parameter among all
parameters involved in this call between two processes. The
p_type attribute indicates if the parameter being passed
represents flag or data information, The class attribute
indicates if the parameter identified in the name attribute
is returned by the called process to the calling process or
if the paramcter is passed from the calling procesé to the
called process.

A cowmbination of the values contained in the project,
name, destination, and source attributes serve to uniquely
identify cach tuple in the pr_passed relation. The project
attribute serves to differentiate between different projects
which are contained in the data dictionary. Because a
parameter may be passed from and passed to several
different processes, the names of the paramecter, its source
process, and its destination process are required to
uniquely identify a tuple in the pr_passed relation.

On a structure chart diagram, the pr_passcd relation is

129

. .t e e e et a L P R R

Sk Y YT — Y — TTTTTTTY

r . - . e T T Ty - -——v
b
-
>

(®

7

interested in those data entities which depart and arrive

at the bottom of the box structure which represents a
process.
Figure 52 displays a sample structure chart diagram and

how the pr_passed relation would document the passing

o

and
return of parameter during calls between processes.

As figure 52 shows, the pr_passed relation documents
the parametecrs passed between processes dauring process
calls, The point of reference for documenting this
situation in the pr_passed rclation is the bottom portion of
the box which represents the calling action wentity in a

process call.

T

®

T

130 f:'

. P N N S e
St et e et e T e T e e Tt
At ataaatala alatat

L J

T T T W T WY T T - ———T—Y -~

7
|
Get Balance :

0ld Balance ' liew Balance
0 //c \.\\ 3
Withdrawal ///bd Balance ~o -
L - 0ld Gy j
7 Balance ar~. |
e PN P

Deposit
e . :
Suabtract Add)
Pr_Passed Relation :
Project Hame [Destination| Source {Order | P_Type| Class l
A 01d Subtract Get 1 Data passed)
Balance Balance)
A Withdrawal| Subtract GCet 2 Data passed -
Balance)
A ilew Get Subtract 3 Data return j
Balance Dalance h
A 01d Add Got 1 Data basscd ':
Balance Palance }:
A Deposit Add Get 2 Data passed ‘;
Balance }
A New Get Add 3 Data return .
Balance Balance

Figure 52. Pr_Passed Relation Example.

Parameter Relation,
The parawcter relation describes the local and gplobal
parameters, files, and hardware items which exist in a

structure chart representation of a software project.

Figure 53 provides a visual display of the attributes which

131

S e T T e T e T e .

e T e LR TR NP B T A N
LRI SOl AT T AT IR IR Sl SR SR VAL il W B hine et i el e e S S T R AR L R e A e alalatay

« . R -
Aol ool e B e Sald

make up this relation.

Parameter Relation

Project | Name | Data_Type | Low| High| Data_Span | Class

an
rt

¥ primary key

Figure 53. Parancter Relation.

The project attribute identifies the person or group of
persons responsible for this entry into the data dictionary.
The name attribute identifies the paraneter, file, or
hardware item described by an individual tuple in the
relation.

The data_type attribute indicates the storage type
which would have to be assigned to a parancter before it
could be described in terms of a progranming languagc. It

would not be unusual for this attribute to contain no value

for a specific parameter being described. The dictionary
tool supports the inclusion of four values in this
attribute: integer, real, boolcan,and character. llowever,

if these values to do sufficiently describe the parameter,
the wuser has the option of entering his own value for the
data_type attribute,

The low and high attribute contain the minimum and
maximum values, respectively, that the parameler being
described in a relation tuple can assume. It is not unusual

for no value to be assigned to these attributes, as some

‘. -t .'- - - -" -’ ..' K « " -.- -.. 4" ," .. .-' -" ..'‘ - ~. n-‘ . - .
e .’_."."."9_-_.'_- T e S Y e T e e e .
L o Be BBl o ® ol ata a®aSatatatala®alala atadadsa'a'aatata ata A"

e atd

fata'acsndos A

oY

parameter will not possess a minimum and maximum value.
Also, depending wupon the stage of development of the
project, it may not be possible to specify these values.

The data_span attribute allows Lhe tool user to enter a

sixty character description of the range of values a

particular parameter may assune. The attribute may not
contain any values depending upon the nature of the
parameter being described and the current stage of

development of the project,

The class attribute designates the entity being
described as cither a file, hardware itcm, local parameter,
or global parameter.,

This concludes our discussion of the relations which

support the structure chart method of softwvare
representation. The next and final software representation
to be discusscd will be the codec representation. A great

deal of commonality exists between the relations which
support the code and structure chart methods of software
representation. The arca of commonality between the two
is pointed out in the discussion of the relations supporting

the code method of representation.

Code Represcntation Relations.
There are five rewmaining relations which support the

code method of softwvare representation which have not yet

been discussced. These relations are the module, module_io,

133

Y . PR N -

'-.“ PP WY VUYL PP~ ._J

R
e e

. DA L . et s R
PRSPV Tl T Pl S T et et T e T . PO DGR R O A R
ALY, LIRS DAL TR TN TS SR AP IR RS Y AR S e, et e T T T e e ey

P |

.o
Aedd

o3

e wmT s —w Ty —y—y—— - B M Se e SN BiE Ihun e Jheecm ey ¢ < 3 g N B hd

m_call, m_pass, and variable relations. Fach of these

relations will be discussed in the following section. The
code representation constitutes the actual translation of
project design into a functional programming language. The
code relations vere designed to support a wide variety of
programming languages. The actual use of these dictionary
relation may vary depending upon the accepted conventions of
the language being supported.

Module Relation.

The module rclation documents the action entities found
in the code representation., The attributes which make up

the module relation are described in figure 54.

Module Relation

Project Name Humber Filenamcl Type I Library

3 ™

primary key

Figure 54. Module Relation.

The project attribute identifies the person are group
of persons responsible for this entry idinto the datn
dictionary. The name attribute identifies the particular
action cntity being described by an individual tuple in the
relation. The nuunber attribute contains the nmodule number
associated with the action entity identificd in the nawme
attribute.

The filename attribute 1identifies the name of the

134

W e e e T et te e s ., . . .

IR S NN S S I T WP S Yol Sl St N S A ST St S SR St S Sl S B Sl SN I, B, S S

o
PRy

Pay

R
R .t
ata ad

y -

-2
-
®

.

computer system file where the actual code {for this module
can be found, This attribute would be especially valuable
in locating a module which was part of a project where the
code was contained in several different file and 1linked
together for execution.,

The library attribute indicates il the module being
described was crecated as part of the software project or if
the module 1is part of a system library of common module
which were already available for use. Jdany system maintain
an extensive collecction of commonly usecd modules for the
programming languages it supports.

The type attribute indicates if the module being
described is a function or a procedure. A procedure is an
action entity that is executed when called by another action
entity. A function is a action entity which returns a value
vhen called by another action entity.

The project and name attributes form the primary key
for the module relation. Since cach tuple in the relation
describes a particular action entity, only these two
attributes are nccded to uniquely identify cach tuple in the
relation,

The modulce relation is very similar to the process
relation discussed in the structure chart representation
rclations. Both relation secek to provide infornation about

the action entities which constitute a softwarec project.,

et e e e .

h NI SR, S Tl T W S A VA AP TP G PSP LI PP I. VL. QUL P UL W W SR YR AT lead

T T T

AL

| 98 S

L

LR T S S R SR T N T T SR SR A I i Rt ot - e v T T R T Y~ ¥ W T w— w—w—— ey v v

- - -y

y
4
E
)
ifodule_10 Relation.
o
The module_io relation Jdescribes how an action entity]
4
‘ or code module interfaces with the rest of the software 1
4
project. It identifies the data entities the module]
requires to perform its function and the data entities which f _
4
I constitutes the output of the module being described.
Figure 55 displays the attributes which make up the .
module_io relation.]
[
ilodule_[0O Relation
lProjcct Name | Vname | Direction | P_type| Class| Order
3t 3 * 4
) {
* primary key)
Figure 55, ilodule_IO0 Relation.
- - 4
B (® .
The module_io relation 1is identical in foruat and
meaning to the process_io relation discussed carlier. Both)
relations describe the interfacce characteristics of the 1
" E
action entities in their respective represcentations.]
The project attribute identifies the person or group of
persons responsible for this entry into the data dictionarvy., >1
)
The name attributce identifies the module or action entity 1
N~
whose interlace characteristics are being described. The o

vinance attlribute ddentifies a data entity or code variable

which is either a required input or an output

136

B T T B T A M UTT SR e e e e e e . N

LG A WVl ST WA SME Sl el Py

P . a® ettt e T R I L L S E PR N . - S - [A
— S a PEAPRIEA Wl S AL S SN N Sl S T T, SO TR U, T T S . TP WL L, UL U UL P, WL

3
o
a
3
3
-
-
i
o
i
»
).

for the action entity being described. The value in the
vname attribute can represoent a file, local or global
variable, or hardwarc item.

The dircction attribute describes the nature of the
interface between the data entity jdentified in the vname
attribute and the action entity identified in the name
attribute,. The actual wvalue contained in the direction
attribute will depend on the nature of the data entity. For
example, the direction value for a data entity representing
a file or hardvare item would be either read or write to
indicate whether the module writes to or recads from the
subject file or hardware item. In the samc manner, a value
of input or output would be associated with a local data
entity or variable. The value of interest with respect to
plobal variables would be whether or not the modulc or
action entity wusecd or changed the value of the global
variable it interfaced with.

The p_type attribute indicates if a local variable
involved in interfacing with the action module contnins data
or flag information, The order attribute indicates the
order of this variable among the other local varibale which
form the interface with the module.

The «class attribute indicates if the data entity
identified in the vname attribute represents a file,
hardware item, local variable or global variable.

The primary key for the module_io relation is a

137

I
| VPO SR SO

iamchirie . oS ARG il W‘r'r Ty

R

ey T
v |

combination of the values contained in the project, name,
and vname attributes. A combination of these valucs

uniquely identifies each tuple in the module_io relation,

M_Call Relation,
The m_call relation indicates which modules 1in a
software projcect call or use other modules and the names of

the modules called by a particular module. Figure 50

displays the attributes which make up the m_call relation.

tt_Call

Project Calling Calls Type

primary key

Figure 50. 1[f Call Relation.

The m_call relation is similar in format and meéning to
the pr_call relation discussed in the previous section on
relations supporting the structure chart representation.
Both relation describe the calling or use of action entities
by other action entities.

The project attribute indentifies the individual or
proup of individuals responsible for this entry into the
data dictionary. The calling attribute identifies & wmodule
or action entity which calls or uses another action cntity
in performing its function. “The calls attributes identifies
the name of one of the action entities used by the code

module identifed in the calling attribute. The type

138

A

PPN)

fie e =t e e mt o wmm e tw = e

b -
[
2
b
4
; attribute designates the module identified in the calling
i attribute as either a function or procedure.

The combination of the values contained in the project,
calls, and <calling attributes uniquely identify each tuple
in the m_call relation. For this reason, these attributes

serve as the primery key for the relation.

11_Pass Relation.

K.

The m_pass relation describes the transfer of data

entities between modules that talkes place when one module

calls or uses another module. The attributes which make up
y -
| : . , : -

the m_pass relation are displayed in figure 57.
[—
'

tI_Pass Relation
[® Project |ilanc ’DosLination ‘Source Order| P_Type | Class b
an 2 <. &

. * primary key

Figure 57. 1l _Pass Kelation
[The m_pass relation is identical in format and a
L.
. . . 3 . - . .
s similar 1in meaning to the pr_passed relation discussed in
@
i the previous sections concerning the dictionary relations
- which support the structure chart method of software
s
s
< representation. loth relation describe the transfer of
fo
1 information involved a call between two action cntitics.
f
- The project attribute identifies the person or group of
o . . . o :
: persons responsible for this cntry into the data dictionary. '
o
&
s .

. | 139

- . . - - . ~ . ;- DRI . S e ~
L e T T T e e e et s e e T I IR L S St ST SRS S St T LT T A e T st e e
LIRS U S D e S W, P PRSI L. LA R TR AN SISO VAR Sl Tl S VAR S Wl WP ELAY S WL Sl TN TR WL ALY SAPE P TSI IS PLr LS YV V. VUL

v

—

The name attribute identifes the data entity which is being
send or returned during a call between two modules, The
source attribute identifies the module which sent or
transmitted the data entity and the destination attribute
identifies the module which rececives the data entity
identified in the name attribute. The order attribute
indicates the order of the data entity with respect tc the
other dgta entitics involved in the module call, The p_type
attribute indicates if the data entity or variable
represents data or flag information.

The <class attribute indicates if the data entity is
passed from the calling module to the &dlled module or if
the data entity is returned from the called module to the
calling module. This attribute also indicates if the value
being returned to the calling module is the result of a call
to an action entity which is a function. ‘V“hen a function is
called, the value returned by the function does not take the
form of a physical variable. The function sinmply returns
itself as a valuc to the calling module.

The primary key for this relation is a combination of
the values contaiuned in the project, name, source, and
destination attributes. In order to uniquely identify all
tuples contained in the m_pass relation, the combination of

the values in thesc attributes are required.

Variable [KRelation.

The variable relation describes the individual data

140

- PN - S . W e, . . . N R A Y - ..
e e L T e T L ,‘_(‘.;L};LJL\,j

]

1
Aded ot

ot

P

ORI O Y

entities wused 1in the code representation of a software
project. The attributes which make up the variable relation

arc displayed in figure 58.

Variable Relation

Project| Name |[Data_Type |Low | liph | Data_Span

Class]

* primary key

Figure _58. Variable Relaion.

The variable relation is identical in necaning and
format to the parameter relation discussed in a previous
section, Both relations describe the data entities for
their respective software representations,

The project attribute identifies the person or group of
persons responsible for this entry into the data diciionary.
The name attribute identifies the particular data entity
being described by a tuple in the relation. The data_type
attribute indicate the storage structure required to
represent the data entity in a particular programmning
language. The low and hish attributes identify the nmininun
and maximum values the data entity can assumc. he
data_span attribute provides a sixty character description
ol the range of values the data entity can assune., The
class attribute indicotes il the data entity identified 1in
the name attribute is a [ile, local wvariable, global

variable, or a hardwvare iteu.

141

e T e T T T T e T

C AP PP WA VIR DPN VDN IR U 1R VAL RE AR WREAPE VDA R WL Y AL WAE WAL RIS W PR WP WAL RE AL VRt

R

-~

T

The combination of the values contained in the project
and name attribute provide a unigue identi[ier for cach
tuple in the variable relation. For this reason, these
attributes serve as the primary key for this relation.

This concludes the discussion of the relations which
support the code representation. This also concludes the
discussion on the relations which conprise the data
dictionary database,

The folloving sections will examine some of the design
alternatives which were <considered in the design of the

dictionary database.

Database Design Alternatives

Several design alternatives were considered during the
design of the dictionary database. Two of these
alternatives will ©be examined in the following scctions,
The advantages and disadvantages of these alternatives will

be discussed and the rationale behind their rejection

presented. The two alternatives arc rcprescntative of the
types of design decision and tradeoffs which vere

encountercd during the dictionary databasce desigon,

Sharing Common DRelations Amonp The Various goftware

Representations Supported.

The first design alternative or decision to be made was

142

- e e’ - R . IR K -, . . . R . R . RIRCER T T R) R R . K -
QLI PP PR TRV I WM I SO W S SRR S G LI AL S U NS VO P Rt A A VRS W P

H to determine if a relation should be allowed to contain

information about wore than onc software representation.

The current design of the dictionary database provides a

scparate set of relations to support each of the four methods
of software representation. As was continually pointed out

during the database design section, a great dcal of

commonality exists between the relations which support the

various software representation methods. In some cases, the

relations are identical in both format and meaning.

For example, the format of the description, hierarchy,
history, and reference relations are identical in format for
both the action and data entities of .all four software
representations supported by the dictionary.

If the concept of allowing a single relation to contain

(@
information about more than onc type of softwvare
representation had been adopted, the number of relations
nceded to support the dictionary could have been greatly
reduced., As an cxample, a single common reference relation
could have replaced cioht individual relations which are now
included.

This alternative possessed two nmain advantages,
reduction in the number of relations required to support the
data dictionary and possibly the reduction of the amount of
application softwvare recquirecd to manipulate the contents of
the dictionary database. The reduction in application

software would have come about because the nced to access

. - . . . P e . . - . PN .« . PR T Y T
At e m e et P Lo B R T R R S ST SL IS USSR SR ST SN SRR SR
WA VPR WATRE SN, 3PS SRS LI Y Sl Tull Sl Wl Yol WAL S SO, SO 7Y

different relations based upon the type of software
representation wused would nwnot have been required. For
exanple, in the current databasc separate application

software is needed to perform retricval and input operations
on the description reclations for each of the four software
representation supported by the data dictionary. Under the
common relations alternative a single software procedure

could have performed this function for all of the different

software representations.

Although the above alternative posscesses its
; advantages, the accompanying disadvantages were judged to be
@ . . ‘ .
3 sufficient to warrant rejection. There were three main

disadvantages to this alternative.

The wuse of the common relation alternative would have
decreasecd the efficiency of the data dictionary in
performing retrieval, modification, and dcletion opecrations
L on the dictionary database. The use of common relations
would have rcduced the number of relations in the database,

. but it would not have reduced the armount of information the

{ dictionary nmust maintain, In other words, the number of
{

i tuples containcd in the common relation would be equal to
r' : .

E the sum of the number of tuples contained in the various
L . L . .

| individual relations it replaced.

e

L Under the common relation alternative, the tradeoff

would have becen between scveral moderate sized relation or a

rcduced number of extrencely large relations., The increased

144

size of the common relation would have, in gencral,

increased the amount of tiume to search the relation and
locate the particular tuple of interest. This increase 1in
time would have correspondingly reduced the efficiency of

the modification, retrieval, and deletions of information

from the dictionary database.
Another disadvantage of the common reclation approach

would have been the increcased requirement for system memory.

ol When the dictionary information is maintained in individual
relations based upon the software representation and the
; wvhether or not the entity being described represents data or
* actions, there is no necd to explicity state this
information in the 1eclation itself. For example, the

pr_desc relation supports only the description of action
entities involved in the strucéurc chart method of softwvare
representation, If the common relation approach is taken,
two additional attributes must be added to cach tuple in the e
relation: one to identifly the type of entity supported (data

or action) and onec to identify the software represcntation

method (SADT, Code, ctc).

The third and final reason for not utilizing the common

relation alternative had to do with future development of

the automatecd data dictionary tool. By maintaining the

vlﬁ.

individual relations for cach representation, the nenory

requirements and eff{icicency constraints can he better

il ryy
e

studiecd for the different representation supported. -

145

W e T S L. L T R T T e S PO
. L Tt L P A L s T T T S R SR R e
- - - - - » - Tty - AP -t W I ~ " * v » y N 9 *
NGRS AL SN AR LU PEIUPY. PR PR P L)

- N

~ R S S T A st e v —w R S e Btk B aS: A B dem ol Y O ane AL %

Use of Attributes In Une lelation to Indicate the
Lxistence of Information.ln Another Relation.

The wuse of attributes in a relation to provide
information about the information which existed in another
relation was actually implenented on a small scale during
the early development of the data dictionary. As an cxanple
of this concept, figure 59 displays two versions of the SADT
data_item relation, ITn fiosure 59, (A) represents this
relation as it now exists in the dictionary and (L) displavs

an alternative desian,

(A) Data_Item Relation (Actual Format)

Project | Name |Data_Type |Low [High | Data_Span

(B) Data_Itenm Relation (Alternative)

Project [Name{Data_|Low|lligh|{Data_{Is_Value| TIs_ Is_
Span Type Sct Alias|Reference

I'igure 59. Data_Item Relation Design Alternative.

The 1last three attributes displayed in part DB of
figure 59 constitute the only differences between the forms
of the data_item relation displayed in figure 59. The three
attributes would contain a value which represented true or
false (T or F). They would indicated if any information
about the data item identificed by this tuple cxisted in the
value_sct, alias, or reference relations for SADT data

entities.

146

Tt e Tt Tt S S SN R S TR T Y

LR St SR IR S PP VA PRI RS T A R T RSl SR R S St R TR

s
Aol

‘
Y b ol

re

'
P VI

PO S

AR .
P LT M .

A

40

The advantage of this alternative is that it allows
these cxcess attributes to act as a flag or signal for the
dictionary application sdoftware. For example, assume that
the dictionary is attempting to retrieve information about a
particular data itém. Upon accessing the proper tuple in
the data_item relation, the application software can
determine if it is nccessary to access the refercnce, alias
and value_set relations. If the valuc in these attributes
is falsec, the application software has increcased its
efficiency 1in performing its operation because it knows it
does not need to search these relations for additional
information.

The disadvantage of this alternative is that it oreatly
reduces the data independence of the relations. llow the
database relations are closecly tied to the applications
softwvare. Another problem introduced by this alternative is
the potential for data inconsistency. I'or example, 1if the
value_set relation 1is modified so that it contains
information about a particular entity and the attribute in
the data_item relation 1is not changed to reflect this
change, the information in the value_set relation will exist
in the dictionary, but never be retrieved. These two
disadvantages far outweighed any improvement in efficicny
which could be gained by its use. 'or these reasons, the
alternative was rejected.

The following scction will discuss the desipgn of the

147

D RN

- N - . " . . - '.' --’ . -.. --" -,) .." .-' -“ -' ."'.‘ ..' q-.."'.n‘- ..'. A.. . . q-.. .' -_-V._" . ..' .';." >~' ¢". . ‘.-
P RPCRERE WPRE. v W S L W W R VAP E S, U VI VAR, VDR WA VRO VL VNN ML WL WAL SO SO

Aalatan ‘_J

e ‘
St e
.t . Lt
T PSP UPUY By, :

Snd

AT L,
P P T T Ve B

PGP VY

e
S ki

PRI
- .
. .
Ad g

-

)

- NP

data dictionary user interface or the user's view,

[

Design of e User Interface and User's View of the Data

Dictionary.

This section will describe the manner in which the data
dictionary wuser interacts, through application software,
with the dictionary database. Several different methods or
dialog styles can be used in desgining an cffective wuser
interface. "Dialog styles describe the nature of the
interface between the systenm and the user" (20:198)., Some
of the most popular dialog styles used in designing an
effective user interface are: question and answer, conmand
language, menu, and input forn/output form (20:199-202).

With Q/A (question/answer) dialogs, the systcus asks
the wuser a question. The user responds to this question.
This process continues until the system obtains sufficient
informatién to perform the desired operation for the user.
"Q/A dialogs tend to bec most successful for inexperienced or
infrequent wusers..." (20:200). Q/A dialogs tend to be
least successful for sophisticated or frequent wusers, vho
get tired of proceeding through the questions,

A popular dialog style is that of using menus. A menu
dialog lets the usecr sclecct form a menu of alternatives
instead of having to type commands or other information.
"The menu dialog scens to be quite cffective for

inexperienced or infrequent users..." (20:200),

1456

T T T T T T Y T W Y W W W VT T

A

l‘l e

)

o

3!

(®

"The command language dialog style wuses a conuand

language for invoking system functions. "The usual format

of command dialog involves verb-noun pairs (e.g. Plot Sales)

with a short spellings (e.g5. six to eight characters) for

the nouns and verbs(20:200)." "For simple applications, a

command language is easily learned, but it will ©probably

nced to be relearnced by infrequent users. For complicated

applications, a command language can easily become a

progranming language thereby requiring more skill to

use"(20:200),

Input form/output form dialogs provide input forms in

which the user enters command and data, and output forms on

which the system provides responses, "Input form/output

form dialogs can be very successful if there is 2

correspondence between the input/output form ... and paner

forms

or thought patterns which are {amiliar to the user"

(20:202).

The data dictionary generation tool wutilizes a

combination of the question and answer, menu, and command

language dialons to provide user interface with the system.

The question and answer and nenu dialog styles provide the

primary interface between system users and the data

dictionary databasc. These styles allow the user to

communicate the information the system needs to add, delcte,

modify, and retriceve data dictionary information from the

database. The command language dialog is prinarily used in

149

PR " e e e . e e A T S . e .t e e DO
te e T T e A e R .

- LS SRS Ns . R T R LI S R A .
L PV SNVl TATE Yol WA YOAT Thil Vull Wl Wil O . VS . LI UILP WP U P Wi YU PR Uy U0y Y TP WA DT 1A DI PR |

-

R

4

4

9

- L
4

e
4

A-i

4

<

k

dar s

.
.o
aah st

L]

performing
functions.

managcment

dictionary
The query

system which

language

supports

maintenance or

uscd

the dictionary

administrative
by the databasc

database

forms the command language dialog.

by dictionary administrator or

These commands

maintainer to

arc used

modify,

delete, or add relations in the dictionary databasc.

The Data Dictionary Gencration

user with a single view or meth

information maintained in the dict

Tool provides t
od of looking

ionary databas

he systen
at the

o. This

view consists of the definition of a particular data action

entity for any of the four represc tations supported. The
system wusecr is not awvarc of the storage structure used in
the dictionary nor are they awvare that the data dictionary

information about a particular entity is scattered among
several different reclations in the databasec. As far as the
user is concerned, the data dictionmary is simply composed of
the definitions of the action and data cntities associated
with a given softwarc represcntation for a project.

In the scction on Data Dictionary Information Content ,
the information content required to support the data and

action entities for all four softwarc representation were

discussed. The information elements which were required for
cach of these action and data entities constitute the entity
These

definition. information clenents were displaved in

figures 10 and 11.

Vhen a dictionary user inputs an entity definition, the

150

IR I I I IR IR I SRS I St S 10 S S S Y i i Tl Tl Vol S SR P I TS PR Y 1 1ok s

PR PSP B Lo, - I D P R P S S

{

————— afincdese. Bes Binde Jeui et Shas Shve Sg S gn A iran e 2 A T Y

dictionary, by nmnecans of the question and answver and menu
dialog styles, obtains the information necessary to satisfy
all the information content requirements for the specific
entity type and softwarc representation. Vhen the user
retrieves information from the dictionary, the system
provides the definition of action or data entities
maintained in the dictionary database. For exanple, if a
user wanted to know the inputs and outputs associated with
an activity in a software project which was represented Dby
the SADT representation, the system would neced to obtain the
following information: 1. That the inforamtion dealt with a
action entity, 2. That the SADT softwarc representation was
used, 3. The name of the software project involved, and 4.
The name of the action entitv. Vhen this i1nformation was
received by the system, it would respond by reLricving the
complete definition of the action entity and presenting it
to the user. The information desired by the user, in this
example the inputs and outputs associated with a SADT
activity, would be containecd in the definition retrieved
from the dictionary databasc. In other words, all
dictionary operations, with the exception of wodification,

consider the deflinition as the hasic informational unit to
be placed in and retrieved from the dictionary database.
The modification operation does allow user to change or
update conmponents of entity definitions, but all other

operations only manipulate entity definitions.

151

P W S AT

PPN S

PP

L

Add

)

T ow .= T

Data Dictionary Generation Tool Structural ilodel

The objective of the Data Dictionary CGeneration Tool

structural model is to illustrate the hicrarchial
composition of the Data Dictionary Generation Tool
components into a functional cnvironment. This structural

model serves as the framework for the development of the
Data Dictionary Gencration Tool. This nodel identifies the
managerial and functional modulecs neecded to support the
objectives of the system as stated in chapter two of this

paper.

ilethodology Utilized for The Structural iiodel.

Three design techniques are candidates for representing
the structural model of the Data Dictionary Gcnoratién Tool.
These techniques are 1IBil's NIPO (llierarchy plus Input
Process Output), !igher Order Software's 1I0S technique, and
the classical structurc chart technique. All of the above
nawed techniques utilize a hierarchy of design modules and
specify the inputs and outputs of each nodule,

The IIPU technique uses a special digraph called a tree
to illustrate it's Function Chart (25:139). An example fo

a function chart is displayed in f{ipgure 00.

o .'. . .-“._ e -.'(. SO e .._-. D R A

PN P B . L N T T T
ot VTP, Gl s s LR PR PV S WL PO S S VAR N s U SOl WA AT WA S A LI AP

Vet L

Ak b

PP S P Y |

V e—— l_“i P

LU Y

T T T T T Y - - ~—

Figure 60

In figure 60, modulce A

modules B and C. Ifach modul

by the IPO (Input Proces

identifies the inputs, pr

module. A sanmnple [PO chart

Sample HIPO Function Chart

is the main module and it calls
¢ is described in grcater detail

s Output) chart. This chart

ocesses, and outputs of each

is shown in figure 61,

Input Process

Output

Parameters Algorithmic

Description

Parameters

Figure 61. IPO Dianram Sanp

The disadvantage of the
not specify an ordering o
subordinate routines nor
parameters between nodules,
The HOS technique uti
similar to the function

lilowever, each box recpresent

le.

1

HIPO technique are that it does

r conditions on the «calling of

does it depict the passing of

lizes a hierarchial structurece

chart displayed in figure .

s a function with the inputs and

T W

— e

'
H

[v

te

T TN T

the outputs pleced to the left and right of the box

respectively. This use of tiie box is illustrated in figure

62.

Input(s) Function liame Output(s)

Figure 62, 110S Function Specification.

The disadvantage of the H0S technique is that it does

not differentiate betwecen control and data parameters.
The structure chart method also uses the basic function

chart hierarchy shown in figure 0. In addition, the

structure chart method posscsses conventions for

illustrating the passing of parameters between modules and a

means of differentiating heween data and control paraneters.

Of threce <candidate methods for representing the

structural modc] of the tool, the structure chart method is
best suited for display the important aspects of the
structural model. The Data Dictionary Generation Tool

Structural [lodel will need to clearly depict the passing of

parameters between the various functional modules and the
dictionary databasec. bince this is a strong point of the
structure chart representation, it will scerve as the
methodology for the structural model . hecause the
structurc chart wmethod is onec of the four representations
support by the dictionary, its seclection is even nmore

P T T S S TR S A T
. - - - - * Wt o et - P . VoLt o ” N * ~
WL.LLLL‘L%L P A AL VP S Pl S BP W)

. Ta - - - . -
ORI SIS TP
AW ISR W VI VS 20 vy W vl VR W W vy

appropriate as the method of depicting the tool's structural

3

- ’ model.
i

3

3

g

Data Dictionary Generation Tool Structural llodel

Acdead

i! The structural nodel is a specification of the
functional and managerial modules which nmake up the Data

Dictionary Generation Tool. 'The structural model provides a

functional framewvork for the application sofltware nceded to
meet the objecctives of the tool and to provide an interface
between the tool users and the dictionary databhasec.

The structural model, with some cxceptions, display all
the functional modules required to mect the objectives for
the tool as stated in chapter twvo. The above mentioned
- exceptions arce thosc dictionary maintenance and s
\o

administrative functionsg performed‘through the use of the
database management systen (DBIS) which supports the

dictionary database. These functions will be discusscd in .

PO VTS RN P

chapter 5 when an the DBIS selection and use are discussed,
Figure 63 displays the top level of the Data Dictionary

Generation Tool structural ilodel.

.
User Inputs C{S'stcm Prompts
p b p

Q

)
O System Lesponsces

Perform Data
Dictionary
Functions
1.0

Fipgure 63, Top Level Structural liodel (Structure Chart).

.

e e mAhem_a ataa’ala s

155

T e e e e B e e Tt e

. A A SO PR N A N
ROTER SRR PPN P PP P SO U Y W TPRESONT T DG TP DAL Y-

t

\

|
P
L

A

-

'y

T— - Deiun s Aad Bad ana ek e oo

The tool user is provided with prompts by the systen.
These prompts are in the form of wmenu sclections and
questions. The user inputs are the tool users ansver to the

system prompts. Based on the user's input, the tool will

perform the requested data dictionary opceration. These
basic operations will include the addition, retrieval,
deletion, modification, listing, and printing of information
f. | | . y

contained in the dictionary databasc. Figure 64 presents

the decompostion of the structural model top level.

Selection OFf
Dictionary
Opcration
1.1

i L -
Input Entity Qetricve ilodify Lntity
Definition bntity Definition
Definition
1.2 1.3 1.4
i

List bntity | Print Lntity

lianmes Definitiong

1.5 1.6

Figure ©64. Perform Data Dictionary lunctions (Structurc
Chart).
In figure 04 the Sclection of Dictionary Operation

module, represents the managerial modules which, bascd upon

the wuser's inputs, select the correct functional nmodules

required to satisfy the wuser's request. The remaining -
modules represent the collection of modules which perform
the basic dictionary operations on the particular software
représentation and entity type as indicated by the tool
user. For exanmple, the Input Entity Definition module is a

representation of all the functional modules which query the

user for the information required to formulate a entity
definition, format this wuser information in a forn
acceptable by the dictionary database, and append this
® information to the individual relations which make up the
dictionary database.

- A separate collection of functional modules exists to

[—

) support the dictionary operation(for cach entity type
(action or data) and software representation sﬁpported
(SADT, Data Flow Diagrams, Structure Charts, or Code).
Figure 65 displays the decompostion of the Selection of
Dictionary Operation modulec initially displayed in figure
04. These modules perform the managerial tasks necessary to
determine the three pieces of control information required
to select the correct functional module to perform the
operation desired by the tool user. The Determine Operation
from User liodule presents the tool user with a mnmenu of

operation which the tooel can perform. The user selects the

desired operation by responding to the menu with the nunber

associated with the desired menu option. The module accepts

157

R I e P T T R RN IR S AT SR T S SRS SN Y
“

SN L e T e T DN . et T T e e A A T T A A e, et -
LI S A I N PR RS VPRI S S AL U P ILT S ELIP LR it U G S St St T Tt T G S YL G Y T A, TS B8 TP U U P TS S I S I I S|

Y‘J-IV

R R T T T TN TR T Y TR T T T T T Y T Y T T R Y Ty T TR T T Y T e e T Y Ty

the wuser responsc and passes it to nodule Determine Lntity

Type From User.

This module queries thc tool user to find out if the
entity of interest is an action or a data entity. This
module passes this information, along with the selection of
operation

informnation, to module

Determine Software

Representation From User and Call Functional l!odule,

Determine Operation
From Tool User
1.1.1

€ Operation

CREe Jemes Sets S S S

F (o ’
;¥~ Determine Entity -
o Type (Action or -
- Data) From User e
ﬁi 1.1.2 oL
¢ '\Operation

= v $Entity Type

lo Determine Software

f Representation from

3 User and Call

3 [F'unctional llodule

3 1.1.3

5 Figure ©65. Sclection of Dictionary Operation (Structurc

- Chart).

o

.o 158

3 :
e e e e A e e L e e e e e e T e e e e e e e e S R
lq-'- PR PR P PO PP PO E P P P AP A AP R A A P TP TRl U VA U VI VT AT W R A wA w

lo

DR S

b

“ - e . . > - “a
B e e T e e e e e e

R T e e I e e I T 4 -

This module will query the user to determine which of
the four software represcntations supported by the tool the
user wishes to decal with. When this information is obtained
from the user, this module is in posscssion of the three
pieces of <control information neecded to select the proper

functional mnodule to perform the user's desired operation:

dictionary operation, entity type of cffected entity,
software representation used to support the entity. Based
upon this information, the module calls the proper

functional module.

Figure 0606 displays the logical decomposition of the
Input Entity Definition module initially.displayed in figure
64, The modules displayed represent the eight functional
groupings of modules needed to input an entity definition

for Dboth the action and data cntity for all four sofltware

representations supported by the data dictionary.

B It P R e e s TN

- _'..1'. .
PO IR RO AU T T T S

q

[r
E—.
i
’
Eﬁir
%

LN A
) o
.
.

‘o

L

Input SADT
Activity
Definition
1.2.1

{

i Input SADT

Data Item
Definition
1.2.2

L

Input DID
Bubble
Definition
1.2,3

i)

Input DFD
Data Flow
Definition
1.2.4

1

Input SC
Process
Definition
1.2.5

!

Input SC
Paramcter
Definition
1.2,0

L

Input Code |

Module
Definition
1.2.7

|

Figure 660.

The modules displayed in fisure 06 would be called

the managerial

functional

displayed

the tool user,

dictionary

appropriate database relation in the dictionary databasec.

Figure

represcent the
Activity Definition

modules displayed in

information

Input LEntity Definition (Structure Chart).

modul

nnodules r

database,

Input Code
Variable

Definition
1.2.8)

es displa

epresented

format this information

and add

67 displays the

for a

le -ical

initially displayed

particular

1

yed in f

by each

this

functional

decompogition of nodule

database

60

in

igure 65

of the

in figure 606 would obtain entity information from
for addition to

information

fioure 606,
fipure 67 query the tool user to obtain

reclation

modules

Input

Aot s

PR N R TR T AL L AN . N .
‘e 's v e ' a’‘a’a‘a'wn‘a aiatad sl aal LI U LY

N =——

contains a portion of the definition for a SADT activity.
Once this information is obtained, the individual nmnodules
will format this information in a manner which is acceptable
to the database and append a new tuple Lo the subject
rclation.

In Data Dictionary Database section, the individual
relations which support the action and data entity
definitions of the various software represcntation were
described and discussecd. These modules perform the actual
function of placing information in these rclation to support
the definition of the subjcct entity.

The Obtain User Input to Append Tb Activity QRelation
and Control Input Of SADPT Activity Definition module serves
the dual role of actually adding information to a dictionary

database relation and acting as thée control module for the

input of a SADT activity definition. From this module, the
other functional nmodules are called which will add
161

T . A B S, - e LIRS

Lt et et . . TR A CRE DR AR VS
PR LAV B Y b rata alm’ 2 a'a'a" 2" as"s"a a's’a A AR

P P r——

J
4

T d

C At e . T et .
‘4‘.‘-'_"4:.'._‘AJ

L

- - . - T . L. s s - fe e - .
- .. . ot . -~ . - - - - - - ..
DK SRR WAV T AP O S S S PGP PR, I YO L

-

i ey —w— ¥ —w - - - p—

Append To Activity
Definition And
Control Definition

Input
1.2,1.1
Activity .” 0 Project Name
Tuple 7 ¢ Lntity Kame
;?
e 7 1] N .
Append To Append To Append To
Activity_IO A_llierarchy A_History
1.2,1.2 1.2.1.3 1.2.1.4
Activity_I0O A_llierarchy L~ A_listory
Tuple Qj\\\ //<P Tuple ,n"éj Tuple
, P
Y //
Az Y\ £ z - "j;“"*"_~—-;
Append To Append To Append To
A_Reference A_Alias A_Desc
1.2.1.5 1.2.1.6 l1.2.1.7
A_Reference A_Alias = |A_Desc
Tuple g Tuple? //fﬂhple

Data Dictionary Databacse

Figure 67. Input SADT Activity Definition (Structurc Chart).

information to other relations in the databasce. This module
also obtains from the wuser two important picces of
information which are passcd to the other modules, project
name and entity name. Vhen the relations were discussed in
Data Dictionary Database Section, two attributes were alwvays

included in every relation in the dictionary database. The

162

ki

. - '
i ']
f dod T
P .
e L
1 f '
PR 3 "

ION

N

v s Y r & T r T R T T e T T T w Ty e W —w—w— W - w—wT—t- w- % w3~

project name and the name of the entity being described.
d| These two attributes were also a component member of the
primary key for cach relation discussed.

Each module collects the required information from the S

.
. L
PUPL UL . SR,

. user to complecte the attribute values of the particular
relation it supports. When this is complete the modules
interact with the database a append a new tuple to the

r; appropriate relation in the dictionary databasc.

The previous figures and discussion have displayved a
portion of the structural model of the Data Dictionary

i Generation Tool from the abstréct high level of the model
down to the actual low levl functional modules for one
particular operation for one particular represcntation and

ii Lo entity type. The remrainder of the structural nodel is
contained in Appcndix DB,

This concludes the preliminary design of the Data

ii Dictionary Genecration Tool. In the folloving chapter the

detail desiaon phase of the project is discussed.

-

LR R S .- .l L~ T TN D . - . - - ce .
R T Y CEN) R A T et at e - S e e e R TR T} - el .
R e AR . A o . B e e e T N . . e e LI A

» " -
BRI PR RS SRR e T e B I TP R ST L
SCATA A, '.Q_'..l.'l'.liﬁ.r P . TS T T S T ST R P S, I TP A - PPN S AT PURAT AR SIS E LI SL Y S WL PP NP LA N IR VLIPS L PSR .

bla a4 aa

[

- - ‘e - .
e S A

IV, Detailed Design

Introduction

The detailed design stage of the software life «cycle
deals with the development of algorithms or procedures for
performing the functions or tasks assigned to each module
specified during the preliminary design. The modules
specified during preliminary design represent the functions
the system must perform in order to satisfy the objectives
and requirements identified during the requirements
definition stage of development. The main effort during the
detailed design stage of development is the formulation of
precise algorithms which will actually accomplish the
designated tasks or functions of the modules identified
during preliminary design. The objective of this chapter
is to present and describe the algorithms associated with
the functional modules of the Data Dictionary Generation
Tool.

The algorithms for the Data Dictionary Generation Tool

are expresssed in Structured English (21:48-49), In
Structured English, English languace phrases are uscd to
represent the control constructs required to express

functional algorithms,.
Two other software enginecering options that can be used

to specify algorithms are Deccision Tables and Decision

164

.- .‘4‘_ " -'.-.'\-‘_ - B -

AV e e e e R T I Y Ll e e

F NP S R R

AJ

PV

"

PCMNE WRICNE W SNE MV W v DRE WAL WRE WRE IR0 SR TR S AL VR WP AL R WD R w P R IR LA

T L e I S R T - R T B

1 Trees (21:49), Neither of these two methods are very @
b .
applicable to the development of the algorithms for the Data - -

) o

Dictionary Generation Tool, Because of its use of English]

phrases, the Structured English method is flexible and easy

Adicat ol

to learn and usc. For these reasons, Structured LEnglish is

the most appropriate method to wuse 1in expressing the .)
; algorithms for the Data Dictionary Generation Tool.

%“ As stated earlier, the entity definition constitutes,
from the user's point of view, the basic informational unit }
of the data dictionary. The definition of an entity 1is ;
o maintained in the dictionary database by.several different
F relations., Each of these relations maintain a subset of the
information required to formulate an entity definition. The
Ei (e individual functional modules of the Data Dictionary B
Generation Tool are designed to perform a single dictionary
operation (delete, addition, modification, print, modify,
Fi retrieve) on a single database relation. Several of these o
individual relations constitute the <complete dictionary »'i
definition for ecither an action or data entity for one of 3>5f

the four softwarec representations (SADT, Data Flow Diagrams,

Structure Charts or Code) supported by this tool.

A great dcal of commonality exists between the

functional modules which perform the same dictionary]
opcration, For example, the functional module which adds A

information to the Activity relation in support of an SADT

action entity will wutilize basically the same gcneral §

165 723

Clat uk g AN g

¥_5~‘“ e T e e T e e e e e T e e e S e e e l:‘;,: ;

e e T T T T T T, T T T T e T T, T S, e, N R L T S ST S S P S S e
E TS RIS W WP SIS PRI NE . PP e LY AR S ! S U ST S, P’ SO S fa_tallla] DL LS SIL PR Wl Vot SLAF SR AP IR P W AP WS R S) wt et .o a4

T

.

1
i

)

algorithm as the functional module which adds information to
the Variable relation in support of a code data entity
definition. This commonality of algorithms exists
irregardless of the type of entity or software
representation involved,

For the above stated reasons, the algorithms for the
functional modules which make wup the Data Dictionary
Generation Tool will be discussed in terms of the seven
major categories of functional modules which correspond to
the seven basic data dictionary operations, These seven
categories are: selection of the dictionary operation, input
of an entity definition, retrieval of an centity definition,
modification of an entity definition, listing of entity
names, printing of wentity definitions, and deletion of
entity definitions, Each of these seven categories of
modules and their corresponding algorithms will be discussed
in the following sections. The first category to bhe
discussed will he the selection of dictionary operation

modules.

Alporithms for The Selection of Dictionary Operation

Modules

The Selection of Dictionary Operation Hodules determine
from the tool users the exact data dictionary operation they

desire to perform and on what portion of the dictionary

166

P P IR TRV T P I UL S A Tt
Latlatin o "0 araca " ate aat AT S M e te t a L e et e el aa At e

r."’YT‘T-
PN

,——p‘wyvﬁr_'_
. B

-

.. et et D
s "a Tt et ot " o Cs o p g lan o Cm e s Cw CaCep o8 "per e

database this operation is to take place. These modules
then «call or select the appropriate functional modules to
perform this operation. Three pieces of information are
need by these modules in order to correctly identify the
proper functional module to mcet the tool users needs, the
type of operation (addition, deletions, list, print,
modify,or retrieve), the entity type of interest (action or
data), and tﬁe software representation being used (SADT,
Data Flow Diagram, Structure Charts, Codc). When these
three pieces of information are.obtained from the user, the
Selection of Dictionary Operations modules can select the
appropriate functional module to accémplish the users
desired operation. The Selection of Dictionary Operations
modules consist of the modules 1.1.1, 1.1.2, and 1.,1.3 in
the structural model of the Data -Dictionary Design Tool
specified during the preliminary design. The algorithm for

these three modules are presented below.

Selection of DlIctionary Operation Algorithm
(Module 1.1.1 Determine Operation From User)
DISPLAY Menu of Dictionary Uperations
GET User Operation Selection
CALL Module 1.1.2 (Opcration)
(licdule 1.1.2 Determine Entity Type From User)
DISPLAY Menu of kntity Types(Data or Action)
GET User FEntity Type Selection
CAll Module 1.1.3 (Operation, Entity Type)

(Module 1.,1.3 Determine Software Representation And Call
Functional Module)

167

S -t

R T N N TR AT
AT N U I LRI PRLIPAL PN DR T IR D W T W P,

DISPLAY Menu of Software Representations Supported
(SADT, DFD, Structure Charts, Code)
GET User Representation Selection
I1F Operation=Input and Entity Type=Action and
Representation=SADT THEN
CALL Input SADT Action Entity Definition
IF Operation=Delete and Entity Type=Data and
Representation=Code THEN
I CALL Delete Code Data Entity Definition
The IF THEN statement for this module continue until every
possible combination of entity type, dictionary operation,
; and software representation have been tested or the correct
combination 1is found and the functional wmodule which
controls the accomplishment of the user's desired operation
) is called.

This completes the discussion of the algorithms which

accomplish the Selction of DIctionary Operations modules

i te function. The next category of modules and algorithms to be
discussed are the Add Entity Definition modules.

] Add Entity Definition

i

The Add Entity Definition modules query the tool wuser
for the necessary information to formulate the definition of
an entity. These modules then format this information in a
manner which is acceptable to the database relations and
append the information to the proper relation in the
database. There are cight sets of entity definition input
module within the Data Dictionary Generation lool, One set
of modules for both the action and data cntities of the

four software representations supported. Lach set of

168

Lt et e et e T T T S et e
CA e atacialalatnadalatatlat o e e et At et e e, .

Badiaie et Nt Badh ol ihde Sl M S0t 2 SFRe Srae ave A At S Seen 8l IS Ibine Sone e

y

A0 o

Mol ot s 2 8

T T T

dmandl

functional modules <consists of the individual modules

aca 4 Ambel A

responsible for appending new information to cach relation
which maintains information for the definition of a S

particular entity type and representation and a control

module which executes the calls to these modules based on
uscr inputs.

In actually, the control modules performs a dual role.
It not only controls the input of the entity definition, but
also appends a database relation. The prescentation of the
algorithm for a control module will serve to present not
only the algorithm used to control the input of an entity
definition but also to display the algorithm need to add
information to an individual database relation. To present
these algorithms, the control module for inputting an SADT
action entity defintion will be displayed. This module is
the Append To Activity Relation and Control Definition Input

module (1.2.1.1) specified in the preliminary design

structural model. The algorithm is displayed below:) 1

PROMPT User For Project Name

GET Project Name

PROMPT User For SADT Activity Name 1

GET Activity MName]

PROMPT User For Activity Number

GET Activity Number

INPUT NEW TUPLE IN Activity Relation
Project Attribute=Project Name _ j
Name Attribute=Activity Name .
Number Attribute=Activity Number T

CALL Append To Activity IO Relation(Project MName,

Activity Name) LGSL
CALL Append To '_Desc Relation(Project Name, Activity B
Name) - J

169 R
.'“v>. .-1
\

. R A
AL e, . -

[T NP SRR T T T S 90 a0 P P PSSP LS. SV S S S SR Wy S S TSGR W X S o S U S MICAP R WIS WAL AN U PR Sy A P LI TN

- ® e e et . - g - - - - - . .
L PR SR PP P S P P W P 0 PR LI S ML

MR - A — L RIS AR ot i e inge ey e ae —~ T

4
CALL Append To A_llierarchy Relation(Project HName,
Activity)
PROMPT User, Do Any References To Previous Development :
Stages Exist For This Activity? -
GET User Response 1
IF Response=Yes THEN , -
CALL Append To A_Reference Relations(Project Name, i
Activity) -
PROMPT User, Do Any Alias Names Exist For This -]
Activity? -1
GET User Response 3
IF Response=Yes THEN]
CALL Append To A_Alias Relation(Project Name, "4
Activity Name)
CALL Append To A_listory Relation{(Project Name, :
Activity Name)
This algorithm displays both the control of a defintion
input operation and the actual addition of information to a
database relation, Not all relations which support an entity
definition will be called during an actual input operation. '%
As the algorithm displays, in some cases the information ;
e eve 02 o}
maintained in a relation may not exist for the definition .
of a particular entity. This concludes the discussion of f:ﬁ
the algorithms which support the Input An Entity Definition {:;i
ale s

modules. The next category of functional modules to be

discussed will be the Retrieve Entity Definition modules.
y

Retrieve Entity Definition Algorithms

The Retrieve FEntity Definition functional modules
obtain from the tool user the necessary information to
identify the particular entity definition the user wishes to
retrieve,. These modules then extract the relevant

information from the database relations which contain the

170

Te T "A'-'-..~'-." - . e fe Tt .--Q'.-".-.Vc'.-'.-'--‘.'-.‘."--~.‘.'.~‘ '.-'.-'-“‘
e T e e T e S . e N

[N AT L EPR PR Y PRI - o et e
e B Bl e et LAY B AN, RIS PSS .

. '...‘...‘. o ".-_'A S
St A A

- - . C -
ol R, KW

SR Tk Bt T e it EZa A B S A otk iy SUE e are i g v

entity defintion and diplay them to the tool user. As in

the Input Definition modulces discussed in the previous
section, there are eight sets of Retrieve Definition modules
contained in the Data Dictionary Generation Tool. A
particular set of these modules will retrieve either an
action or data entity definition for a particular software
representation. The individual modules which perform the
definition retrieval operation for a particular entity type
and representation will interact with one of the dictionary
database relations which maintains a portion of the entity
definition., One of the modules in ecach of the eight sets of
Retrieve Definition modules will, in addition to retrieving
information from a database relation, also act as the
control module for the entire definition retrieval.

An examination of a Definition Retrieval Control module
will display not wonly the algorithm for controling
definition retricvel, but also the algorithm for retrieving
information from a database relation, The following is the
algorithm for the Retrieve From llodule Relation and Control
Definition Retrievel module which is module number 1.3.7.1
in the structural model developed during the preliminary
design stage. This module controls Lhe retrieval of a
action cntity definition from the code software

represcntation,

171

) Tt e e - N

Tt T T e et T e T e T T T T T e T T s ST T T T e Tt st TN e e e TRty et
L}) 2 L . SO . b, .} S Sy S Y LAY SLAY W W SR Y e B B S o S A s A cala tal b Wy LWy e B,

v

Retrieve From Module Relation and Control Definition
Retrieval (1.3.7.1)

- PROMPT User For Project iame

GET Project Name

PROMPT User For The Name Of The Entity To Be Retrieved
. GLET Entity Name
5 WRITE TO TERMINAL Code lodule Defintion o
i WRITE TO TERMINAL Entity Name .
, WRITE TO TERMINAL Project Name
. Retrieve From Relation Module the Value Contained 1In
Number Attribute for The Relation Tuple Where
Project Attribute = Project Name And Name Attribute =
) Entity Name. ’
E WRITE TO TERMINAL Entity Number

CALL Retrieve From M_Desc Relation
; CALL Retrieve From Module_IO Relation
! CALL Retrieve From M_Alias Relation

Call Retrieve From M_Call Relation i
CALL Retrieve From M_Pass Relation l
CALL Retrieve From M_Reference Relation
CALL Retrieve From M_Hierarchy ’
CALL Retrieve From M_History Relation
CALL Retrieve From M_Alg Relation

[.
S B v.. LN ',
PP VY W S RS PO Y

o e e . deladama s

When attempting to extract information from a relation, U

sufficient information must be provided to identify the

i a

particular tuple or tuples in the relation where the desired

PRSI
a'aaaa’a

information can be located. This requirement is fulfilled

in the above algorithm by using the project and entity names

as qualifiers in the retrieval from the !odule Relation.

The <control portion of the algorithm simply consists of a

sequential call to every relation in the database which B
. might contain a portion of the entity definition, Efﬁy
2 This concludes the discussion of the algorithms for the fﬁi;
Retrieve FEntity Definition functional modules. The next
category of algoritims to be discussed will be those for

the Print Entity Definition modules.

172

T
A A bl ta s

-t et . At et o, e « e . «t e T o', . . A T A . . . R
K‘ NS WO P A R PRUIA. PRI IS TR PR A TR R N, A D D A P P R P P S A I R A I PRI W IATI - N LNyt

{ - R T AP N N S R S g A M v ~ v - —w v T - -_-—f,-—-r—:‘.———r——-———-'-—wﬁﬁ_‘——vj

Print Entity Definition Algorithms

The Print Entity Definition module write the entity
definition for all action or data entities associated with a

particular software project to file. The tool user can then

. .
. . .
et
N
A g b bbb

utilize the procedures associated with the particular
operating system supporting the Data Dictionary Generation
Tool to obtain a printed copy of the wentity definitions.
There are, as in the previous <categories of functional

modules discussed, eight sets of print modules associated

<
<4
.4

with the Data Dictionary Generation Tool. Each of these
sets of functional modules support the printing of the data

or action entities for one of the four software

representations supported by the dictionary.
= , , o . i
{® The algorithm for writing the entity definitions to a

system file are similar to the algorithms used to retrieve

entity definitions from the database. The only difference,

.
ST TP S)

is that instead of writing the entity definition to the %1w1
terminal screcen, these functional modules write the -ﬁ
definition to a system file. The Print lLntity Definition _ B

modules obtain the name of the project of interest from the
tool user. These modules then, wusing project name as a ~1jﬁ
search key, obtain from the dictionary database the name of ‘Ej?
every entity associated with this projcct which is of the

entity type and softwarc representation supported by this f;{

proup of functional print modules. ‘These entity names are

found by searching the main relation for each combination of

173

4 e T e e te e e f. ae, s e e e . Vet e ALt TamT e L . U e S S e E T
P T AL I e I I . . P N . T DT N P PR N ST IR I AT .
e, . S 4 hd .t * . - . . e s 2 - ot L.

B Y. .. AP A A R St S S 2 e e et RN T R R St S T - - bR . .
CPRCINRE DRI T R e J T B, S5 S P S S S Sty e e A e T tats Yat Tt e e e il S e e

entity type and representation. These main relations are .
r‘ those relation which serve as the storage relation for - :
Et identification of entity definitions supported. The eight i
?; main relations are displaved in figure 08 and their ;a
i. corresponding entity type and software representation are -
: also presented in figure 68. ?
The entity names obtained from the search of the main
relations are written to a system file as they are retrieved ;
When the retrieval of entity names is complete, the modules
open the file where these entity names are stored and one at |
a time send the entity name to the functional modules ;
which retrieve the entity definition from the database o
relations and write the definition to a system file. This 3
.6' process continues until all entity definition have been "mj
retrieved and written to the system file.) ;.:
'Main Relation Name Entity Type Software Representation) t;
Activity Action SADT _;f
Data Item Data SADT i{i
SRRES
Bubble Action Data Flow Diagfam fﬁ*w
_ Data Flow Data Data Flow Diagram]
Ef' {Process Action Structure Chart .
i: rﬁarameter Data Structure Chart
® L
- | Module Action Code
@E Variable Data Code
h-
}A Figure 68, lMain Relation For Printing Lntity Definitions

174

PR TSP SR . R e O U L B R T T T T S AT AT S S R S T R SRR R N

[
o
.
b'.
b'_
»
b
-
o

e T T T .-t . T T T T N At e e e R e e . .
S e e ke n BT T Tttt S L I S S S DRI - W L A S0 S L PR PRI T LA PRI PR IME LI IR PR J

The following two algorithms will display one of the -

4

control module for The Print Entity Definition Functional g
modules and one of the actual functional modules involved in T
]

the operation. The algorithms displayed are for the Control -

Print Of SC Parameter Definition (1.6.6.1) , which controls
the printing of structure chart parameter definitions, and

for the Print P_Alias Relation module (1.6.6.5) which prints

2l

to the system file any alias names associated with the
parameters whose definition are being printed,

Control Print Of SC Parameter Definition llodule 1.6.0.1

A R

PROMPT User For Project HName
GET Project Name
OPEN File A For Writing
) Retrieve The entity name for all tuples in the
Parameter lelation Whose Project Attribute Value =
Project HlName
Write entity names to File A
OPEW File A For Reading
WHILE NOT Lnd Of FFile On File A
READ Next Entity Name In File A
CALL Print Parameter Relation(Project, Entity)
CALL Print P_Desc Relation(Project, Entity) i
CALL Print P_llierarchy Relation(Project, Entity) RO
CALL Print P_Reference Relation(Project, kntity) e
CAll Print Process_IO0 Relation(Project, Entity)
CALL Print Pr_Passed Relation(Project, Entity)
CALL Print P_Alias Bclation(?roject,ﬁntity) 3
- CALL Print P Value_Set Relation(Project,Entity)
r CALL Print P His Lory Relation(Project, Entity)

(Values for Project and Entity !Name are passed to this

_ag. -

module from the control functional modulec displayed above.)

Retrieve I'rom P_Alias Relation The value for the liamel

175

e,
el e

..........
.................

L ol e it _aatet o L AR el avah au Ty . —— M T e <0 S Jhne M S i Sue v

Attribute Where The Project Attribute = Project MName
And the Name2 Attribute = Entity Name
WRITE TO FILE B Alias Names:
WRITE TO File B Namel attribute value
This concludes the discussion of the algorithms for the
Print Entity Definition Functional modules. The next

category of algorithms to be discussed are those associated

with the Delete Untity Definition Functional ilodules.

Delete Entity Definition Algorithms

The Delete Entity Definition module remove an entity

definition from the dictionary database. There are eight
different sets of Delete Definition functional modules
contained in the Data Dictionary Gencration Tool. Fach set

of modules handles the delete definition function for a data
or action entity for each oﬁ the four software
representations supported by the dictionary. The'individual
functional modules will delete the appropriate tuples in an
individual relation in the database. As in the previous
categories of modules, one module will act as the «control
module for the definition deletion. A control module and a
functional module will be used to display the algorithms
associated with the deletion of an entity decfinition from
the dictionary databasc.

The modules described in the following algorithms are
the Control SC Process Definition Delction module
(1.7.5.1), which control the deletion of 1 action entity

definition in the structure chart representation, and the

176

.r"fvflv—v‘.*

Delete From Process Relation mpdule (1.7.5.2) which deletes
the tuple from the Process Relation which supports the ' ,
definition of a particular entity definition, The

algorithms for these two modules are displayed below

PROMPT User For Project lame
GET Project Name]
PROMPT User For Entity Hame

GET Entity Name

CALL Delete From Process Relation(Project, Entity)

CALL Delete From Process_IO Relation(Froject, Entity)
CALL Delete From Pr_Call Relation(Project, Entity)

CALL Delete [From Pr_Passed Relation(Project,Entity)
CALL Delete From Pr_llierarchy Relation(Project, Lntity)
CALL Delete From Pr_Alics Relation (Project, Entity)
CALL Delete From Pr_Reference Relation(Project, Entity)

o

CALL Delete From Pr_Desc Relation(Project, CEntity) - 1
CALL Delete From Pr_Alg Relation{(Project, Entity) b
CALL Delete IFrom Pr_History Relation(Project, Lntity)]

Delete Irom Process Relation (1.7.5.2)0

1

(Values for Project Name and Entity Hame are passed from the -
Control module displayed above.)

DELETE From the Process Relation The Tuple T

WHERE Project Attribute = Project Name and Name
Attribute = LEntity Name

LY

This concludes the discussion of the algorithms which
support the deletion of entity definitions from the
dictionary database. The next section discusses the
algorithms associated with the modifiy cntity definition

cataegory of functional modules.

AP P |

177 S

..
.................................
....................................

R e T e I e i die e B e e e e - -

Modify Entity Definition Algorithms

l‘ The Modify Entity Definition Functional modules allow -
E‘ the tool user to modify or change the contents of an entity SRR
definition which is maintained in the dictionary database. g
i- There are eight sets of modify definition functional modules S
contained in the Data Dictionary Generation Tool. Fach set

of functional modules supports either the action or data

entites of one of the four representations supported by the

vﬁﬁy v

dictionary.

The modification operation can take three different

-vlﬁvv_r-

forms: addition of new information to the entity definition,]
X deletion of a portion of the information for an entity

definition, and the changing of information in the

definition from one value to another. Tor example, the tool
user might wish to add to the definition of an action entity

the name of another action entity which the action entity

defined calls or uses. A long the same line the user might
want to delete information about a file which an action :
entity uses. The user may wish to change the minimum value ;5;&
which a parameter defincd in the dictionary can assumec.

As in the other categories of modules discussed, the ;5.}
modification modules for a particular entity typc¢ and
representation arec managed or controlled by a module which

calls the appropriate functional module. 1n the case of the

4

Modify Cntity Definition modules, these control modules will]

o

present the user with a menu selection of the components of , j
178

- PR Coe P LT - P U R S N S S R : < P PR S

D A S P . P T N T I I R RV APIE L N R R SR e . . o et
VAP IRRPILIY T 1P SLEP LI N Y VORI ST TAE S S U TN USRS G el WOl Y TP U TSP W T Yo Y T T G Y S U UL VY TPULIT U S N YL

the entity definition. The user will select the information

component that he wishes to modify. Once the user's
selection is obtained the control module will <call the
appropriate functional module which will perform the

modification operation on the particular database relation

which maintain the portion of the entity definition which
the user desires to modify.
Ia The exact nature of the algorithm will depend upon the
particular information e¢lemecnt the user wishes to modify and
how that particular portion of the entity definition 1is
@ represented in the database relations. The functional
s modules will have to obtain additional information from the
tool wuser in order to ascertain exactly what type of
) modification the user wishes to perfornm (delete, add,
change)
The following algorithm is for the ilodify P_Value Set
Relation (1.4.06.4). This module allows the user to modify
ie, delete, add , or change, a value vhich a parameter can
assunte in the definiton of a structure chart data entity
It is presented here because it provides an ecxample of the
use of all three possible modification operations. The

values for the project name and the entity name arc passecd

to this module from the control module for modification of

structure chart paramcter definitions. R

179

e T e e I T N L L I) '-“."..".‘.‘. ~..-".~-
T e T T e e e T e T e T T e T T T T T T e e e T e T T e LT e e e e T e (T e e e T N L
LR S, P W, SO A TR, S N TR A Wl VY S A SR S Sl Vol ol WO Vhuly W I Vot VRIS WAl Y Wid Ata e e ata" ata‘aalatatetatatatate'nletateteS.atal 8. ¢ Ko YLy

Vv v —i*r*'—' Bfian |

DISPLAY ltenu of Modification Uperations
1. Add new value parameter can assumne
2. Delete a value which the parameter can assune
3. Change the value
GET User Response
II" Response = 1 THLEX
CALL Append To P_Value Set Relation
IF Response = 2 TIHEX
PROMPT User For The Value To Be Deleted
GET Value To Be Deleted
DELETE Tuple From Rclation P_Value Set
WHERE Project Attribute =Project lame AND
Mame Attribute = Entity Name AND Value Attribute
= Value To Be Deleted
IF Response = 3
PROHMPT User For Value To De Changed
GET Value To Be Changed
PROHPT User For lNew Value
GET New Value
REPLACE The Value Attribute In Relation
P_Value_Set New Value In The Tuple
WHERE Project Attribute = Project Name
AND Name Attribute = Entity Name AND
Value Attribute = Value To Be Changed

T T T T
o L

This concludes the discussion of the algorithms which
are used in the [lodify Entity Definition Functional modules,.
The next <category of algorithms to be discussed are those

associated with the List Entity Names Functional llodules.

List Entity Names Alcorithms

The List Entity Names functional modules present to the
tool wusers a list of all entity names associated with a
particular project within a specific entity type and
software represcentation, I'or exanple, these functional
modules allow the user to view all the structure chart
parameter definitions associated with a particular project

designation. There are cight different functional modules

P
LRI

- . R S T B
RIS S I Y I, U IV S I

- « - . . - . . ‘. . ‘- "...‘- DR N . - o . s ..'- - . W - .
e e e e e e et ® Tt tat FURPSINE S WAL PRSI VAT S Wl SO Mol S . Sk, Sk I S, S

data or action entity associated with one of the

In the Print Defintion section, the use of

relations to retrieve all entity names for the

functions was discussed. The main relations for each

I

@ representations were displayed 1in figure 68. The
a
operations use these same main relations to obtain the

of all entities which arc defined for a particular

Cac e o B

A v Jae

directly to the terminal screcn,

project nanec.

This concludes the discussion of the Tist Entity
Functional modules and their associated alrorithms.

also concludes the discussion of the basic algorithns

181

R R L T N R S T o S SR - R T I S

type, software representation, and project designation.

The following is the algorithm for List Names

Fi SC Paramcters (1.5.0). Vhich will print to the tcrminal

. D T St e W Cata tat T Lt ot Lt et B S S
P . o L P 2 1 * L PSR AP C G BN N O \-)Al‘-l;\‘_".‘_ﬂ_'A'¢~A"¢-\;‘L1L' .

T — T—— L Shss Mnec e mten Smes st Saane saas o

which perform the list entitv names function for cither a

four

software represcntation supported by the data dictionary.

main

print
of the

data and entity definitions for each of the four software

list

name

entity

The

only basic difference between the algorithm for obtaining
entity names in the Print Definition section and here 1is
that instead of writing the names to a file, as was done in

the Print Definition section ,the entity names are written

For

screen the names of all parameter defined under a specific

® PRONPT User For Project liame

{ GET Project lLane

L RETRIEVE From Relation Parameter The Hame Attribute lor
{ A1l Tuples WHERE The Project Attribute = Project Hamne
- WRITE TO TERIHIEAL #Hame Attribute

’

Names
This

used

N e e T T e e Tt e ot
LI I LA P T PRI 1P VY

AD-R152 215 AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO 374
GENERATE DHTR DICTIDNRR!ES(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOIJL OF ENGI.. C II MAS

UNCLASSIFIED DEC 82 RFIT/GCS/ENG/B‘D G 9/2

P

W PR T LI Y-V T WS S R S S

o & &
== w 32)
— lt_' lj-: um%
"m T 2
= | EX
JL2s lig e

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREALS OF STANDARDS 1963 4

L.

g

@

. . . L.
B I L G T wt - . PR

M d - A LY a . - - - . . . R -
. «® e . . » o e e . P) -
PIPEPAT Y R N S PO Y »* . IR R
o ol dand. ".L.JL'.'--;-L'.';_'."L'JL”Lu- .

by the functional modules which make up

Generation Tool.

the Data

Dictionary

.
- i

Sl A e b S e e o P

V. Implcuentation

Introduction . -

The 1implementation stage of the software 1life cycle S
involves the conversion of the detailed design specification
into an appropriate programming language. The specific
objectives of the implementation stage for the Data
Dictionary Generation Tool is to fully code and test the
functional modules developed during the preliminary and
detailed design stages.
In phe following sections, the selection of the

database management system (DBilS) to support the dictionary

o database will ©be discussed. An appropriate programming .
Le language for «coding the functional modules of the Data)
Dictionary Generation Tool will also be selected and
discussed. The implementation of the dictionary database) ;
design and the implementation of the Data Dictionary T

Generation Tool's functional modules will be presented. S

This chapter will conclude with a discussion of the use of

the DBMS to perform dictionary maintenance and
- administrative functions and a discussion of the testing of

L the Data Dictionary Generation Tool.

Selection of Databasec ilanagement System

The operation of the Data Dictionary Generation Tool is

dependent upon the existence of a database managepent system

183

-~ e L T TR O P e e e e s T
S N e T Tt T et e T T e e S L IR SRt TR SR ST ST S IR -

R . L P S R S e s L PR LI TR SRS SR AL AUCER e
- . ~ e et et BRI S S R LR, PR N N N A S YL I N PO AL I IR R O L R T T T S o ARG Pt S
W SEILIPLT RPIL I I WINPT SR S IR O TR P PR VAT A Ui T TR, SRR W L e e -

(DBMS) to maintain the dictionary relations designed and
discussed in the Data Digtionury Database section. The DBIIS
selected must also provide support to the Tool's application
software in interacting with the dictionary database
relations to delete, modify, input, and retrieve data
dictionary information.

During the initial development of this project, the
target environment for the tool was as a component tool for
the Software Development VWorkbench (SDW) which resides on
the VAX 11/780 computer utilizing the VIIS operating system.
This system is primarily used to support research and upper
level graduate courses. As the initial development
continued, it was realized that the Data Dictionary
Generation Tool could be developed as an independent tool to
support graduate classes in Software Lngineering and Real
Time Programming Laboratories. For this reason, the tool
was initially developéd on the VAX 11/780 computer utilizing
the UNIX operating system, This system supports the
majority of the graduate students and graduate courses at
the Air Force Institute of Technology. When this project
began, the VAX/VMS supported a network database system known
as TOTAL. llowever, the acquistion of an INGRES Relational
Database system was planned and subsequently completed for
the VAX/VHS system. The VAX/UNIX system alrcady supported
an INGRES DBIlIS. Therefore, the implementation plan for the

Data Dictionary Generation Tool was to develope the tool as

184

., L e e e e e IR UL D N
PRI S AT T H i SN S ST T Wl U I UL S SR PR ErN.N SIPe. N

. PRI SR IR
" s ote 2t Ve e e Y

by

M TN

MY

o

e
-

B
«
‘
.
‘

b

L
2
;_b

&

an independent tool on the VAX/UKIX system and cventually
transfer the tool to the VAX/VIIS system where it would be a
component part of the Software Development Vorkbench (SDW),

Because the IHGRES DBIS existed on the VAY/UNIX system
and was in the process of being acquired for the VAX/VIHS
system, the IHGRLS Relational DBIIS was seclected to support
the Data Dictionary Cencration Tool. In order to maintain
compatability betwecen the two versions of the tool residing
on both the VAX/VIS and VAX/UNIX systems, it was essential
that the samec DBIIS be used by both versions of the Data
Dictionary Generation Tool.

Although the selection of INGRLES as the DPDiS for the
tool was driven mainly by the nced to maintain compatabilty
between the two versions of the tool on both target systen,
INGRES is an excellent DBiIS which fulfilled all the tool's
requirements for DBIS support.

INGRES is a relational database mangement system which
meets all the requirements as a DBIIS for the dictionary tool.
"INGRES is designed for both powerful functions and ease of
use. As such, IIGRLS offers users a range of uscful commands
in QUEL (QUEry Language), the system's data manipulation
language. A databasc 1is a shared resource containing
information about some subjecct. As a data source accessed
by many wusers, a databasc must be managed so that the
different users' needs arc met, The database must also be

managed so that thc computer system is uscd efficiently as
185

. B I AN . e L P T T N

T td T il RS T T T T T W T Y Y TR W YTV Y Y YT S X wCws oy~ v w v T Ty

- B R N T e e e T IR S S I SR T TP
a L. S S T S T S TR S, W LI S A WA TP AL PO P IE WA SRR WS WAL WP AT S PP WY R S

x5

el

Ak

PO R Y

ST T e dhel ande aavt T AL R i G atrs e i or-ait 1o M L et A e oo S dues —— — e

possible. Balancing these two management tasks is the job
of a DBMS, and IHGRS is designed to handle the two tasks -

4
without compromising the utility of the data " (24:1-1). o]

The Data Dicitonary Generation Tool has three general

requirements which the INGRES DBIS must support:

1. Maintain the Dictionary Database Relations.

"..-r""-r'lﬁ.
(E AP

2. Support the interaction of application software
[; the database relations 1in the retrieval, input, l
deletion, and modification of data dictionary

information.

3. Provide a capability for performing dictionary v T
maintenance and administrative functions (I.E <create

new relations, modify format of relation, etc.).

The INGRES DBNMS is a relational DB!MS. As such, it is

able to support the dictionary relations designed in Data

Dictionary Database secction in the format required by the

Data Dictionary Generation Tool. INGRES also possesses

facilities which support the designation of relation ;iij
attributes to serve as primary kecys for the subject i
relation. The actual maintenance of relations in an INGRLS 1

DBMS will be discussed more in the Dictionary Implementation

section when the implementation of the dictionary databasce

- 4

is discussed.]

INGRES, through QUEL {(que.y language), provides a means E:&j

by which the information contained in the database relations 3ﬁjd

_ . ‘1

: . X

: 156 s
.

-
N PRI S, . DR e e RN St S S e R S S AT PR P 4.'_.'_.‘\. T . RN
B A T A L ue R S IESIUR R LSRR e e e e T L e T e T A Y
i' PO AT AEREAR N T BRI L TR P MO AE ALY SR PR ARG, FOPCPRNOPOET S PR R Ty

| A g gt E2d AN S A S I S i g i W P — T —

can be accessed by an INGRES user. The QUEL commands allow
information to be added to relations and rectrieved from
relations. QUEL also ﬁrovides a means of modification of
:ﬁ attribute values within particular tuples in a relation and
L for the deletion of tuples from a relation, The application
software of the Data Dictionary Generation Tool allows the
user to view information in the format of an entity
definition rather than as a series of related but separate
database relations. In order to interact with the database
relations, the application software utilizes EQUEL (LCmbedded
Query Language) commands which the IKNGRLS DBiiS supports.
"EQUEL (Lmbedded QUEL) is an cmbedding of the 1ILGRES
query language into a procedural programming language (25:1-
", EQUEL 1is provided as the progranming language
interface to INGRES because it offers significant advantages
for the programmers. It is nearly identical to QULL, the

INGRES query language. Equel allows the programmer to

utilize the control constructs of a programming language for
looping and <condition checking while interacting with

database. "EQUEL is ecssentially the samec in all languages,

|
:

statements used in different languages are interchangeable

(25:1-2)". The use of EQUEL statements in the application

s

LA

software of the Data Dictionary.Gencration Tool will be R

further discussed in Data Dictionary Generation Tool

WS e

Implementation scction when the actual coding of the Data fﬂjﬁ

Dictionary Generation Tool's functional modules arc

eI T e

)
]

187

.
R

e v vev.wves
. . A AR AR
ot .

PO

A

LA
,

o

- e e - - FS FS S O, e . . PN [
e e L R B FCRUE v, R T T P R

P e T S T T L P S PR ST ST I T - e e . '\ L T
AP - o Lo et v - e o P s T . * - Ce N PRI
DI S Sl VLA WS Wil VAT I .l Yo Sl ST LA il VLA S L WA Sl el o Wi Y PP S I IR WA T W W I W i i I T\ P GR PRPRP W P, Y, I S

| A

discussed.

The INGRES DDiS provides facilities which can be used
to perform the maintcnance and administrative functions
required to support the dictionary database. These
functions allow the creation and deletion of reclations in

the database. IHCRES also provides facilities for database

security and the seclection of the most appropriate storage
structures for database relations. The dictionary
maintenance and administrative functions will be discussed 1
further in the Dictionary Database Implementation section
and the Use of DBIIS To Perform Dictionary liaintenance and

Administrative Functions section,

Choice Of Implementation Language]

-
The programning language selected for the Data)
Dictionary Generation Tool nust be compatable with LRQUEL, 'f‘;
the embedded query languape supported Dby INGRLES. The _:_
language selected must also be available on the two target
machines, VAX/VHS and VAX/UNIX. In order to support
communication betwveen the usecr and the tool, the language
must provide input and output facilities for data as well as 1
other information handling facilitics. The language must -
S
also have facilities for conditional branching and support T

modular design.
As in the sclection of the support BUIS, compatability

between the two target systems is the reason for the

163

B . PR N BN . . R T SRV SR
LI L LB PN A PN DN S e - LI AP TAS R N WA . TPy PRI SN S PRI YD Wl Y THEY TP U I S iir P S S s adhcnstl. . DI Y S WY YO P

[

B

(o

particular language selected for the implementation of the
Data Dictionary Generation Tool. The VAX/UHIX system

supports the embedding'of EQUEL statements in only the C

programming language. The VAX/VHMS system supports the
embedding of LEQUEL statements 1in scveral programming
lanpuapes: Pascal, Fortran, C, Cobol, and Basic(25:1-2).

In order to maintain compatability between the version of
the tool on both the VAX/UNIX and VAX/VIIS systems, the C
programming language was selected as the implementation
languape for the Data Dictionary Generation Tool.

Although compatability was the main reason for the
selection of the C language, it does adequately meet all the
requirements of the tool for an implementation language.

"C is a gencral purpose programming language which
features economy of expression, fmodern control flows and
data structures, and a rich set of operators" (27:3). " C
was originally designed for and implemented on the UNIX
operating system on the DEC PDP-11, by Dennis Ritchie.... C
is not tied to any particular hardwarec or systen, howvever,
and it 1is casy to vwrite prograns that will run without
change on any machine that supports C" (27:5). The C
language docs have some disadvantanes over other languapces
such as Pascal and lortran. C itsclf provides no input or
output facilities and no wired in file access methods, All
of these higher level mechanisms are provided by explicitly

called functions, These functions, however, are provided

189

PR e R S
a e e T T W T TN e e e A

R AL, S S M, WS ViC eI WO S S, SRR OIS Tl oAl LY Solll RO VLIY S S WA WP P AT . - P ISP IP LIPS LN

W et et e
Aaaal

SRR e St B o BN U000 S Lt Rl st L i g Satuka il aens |

' -
J
by a standard C I/0 librarv which 1is supported on all %
X) machines which support C. This standard library allows C]
d programs which rcquire.input, output, and other systen ')
5 functions to be moved from one system to another essentially ?j
: without change (27:4). The actual use of the C language in ;f~:f
I coding the functional modules of the Data Dictionary '
Generation Tool are discussed further in the Implenmentation
, of The Tool's Functional lodules section when the actual .
. implementation of the application software for the Data ')
Dictionary Generation Tool is discussed. :
® '
o Implementation of Dictionary Database
fv The implementation of the dictionary database involves
i e the installation of the database relations discussed in the)
- Data Dictionary Database section in the IHGRES DBHS. The
initial step in installing the dictionary database 1is to
E create an INGRES database to support the data dictionary, :
This is accomplished be the exccution of the INGRES createdb
command ., The crecatedb command creates a nev database under
? the TINGRES DBHS (206:1). The name given to the databasc - |
| which supports the Data Dictionary Generation Tool is
o
swtools. Therefore the f{ollowing command creates the]
- 1
[database: f)
% createdb swtools (5 operating system prompt) ‘i
The database is initially crecated without <containing any "
» . relations or data. The next step is to create within the :
190]
\ N
_ o]
L e T e S e e T e e s e i e e e

: R e e e P S e e Son Jaon e e Do e s ——— T — pr— T — T

aoa oy

swtools database the individual relations which will
maintain the data dictiOqary information. - :

The relation or table is the basic storage wunit in
INGRES (24:6-1). It is easy to create relations, as long as
the following three ©pieces of information are known: -
attributes or columns of the relation, the type of data that
will be placed under cach attribute, and the amount of space
or the allowable size of each attribute.

INGRES supports thfee types of data: character string, f
integer, and floating point (24:6-2), The character string
data type ié appropriate for non-numeric data such as namcs, - 4
dates, addresses,ctc. The inteper data type is appropriate

for numeric data that have no decimal points, integers. The

floating point data type is appropriate [or numeric data T
- 4
with decimal points, recal numbers.]

In addition to the data type of cach attribute, the

size of each attribute must be designated when a relation is u~-+
1

installed into an INGRES supported databasec. Size and data 1

types arc designated by the use of a character immmediately

f.llowed by a nunmber. Characters arc designated by the
1
- b
character c. A nuneric value f{ollowin~ this letter B
.]
designates the size of a charcter (ype attribute. For %

exanple, cl2 indicates ar attribute which contains characters

e,

wvhose maximum size is 12 characters.
For idintecers, the number following the lectter i

(designation for the inteper data type) indicates the byte

191

LA RS 20 TPRE S i SN WA WS AP WA ST AP YRR S AL W VL TAL WAL W VR WAL WA DAL WAL WA /AT W WL WL R SR SR SO L St R, S, |

size supported by the relaticn. The byte size determines
the range of numbers which can be stored under the subject
attribute. TFor example, the designation il indicates a byte
size of onec which allows the attribute to accomodate any
integer number greater than -128 and less than +12%, The
range for an 12 designation (2 byte size) would be any
integer number between -32,708 and +32,768.

"Floating point numbers can be specificed as cither
single precision (4 bytes) or double precision (8 bytes).

Both types designations support a range of from -10 %% 38 to

w
co

#10 wx

indicates exponcntiation). The precision
choosen cffects how many decimal places are retained in the
nunber"(24:6-2), "Sinpgle precision (f4) supports scven
decimal digit precision and double precision (f8) supports
17 decimal digit precision" (24:6-3).

The actual implementation of a relation in an IHIGRLS

supported databasc is done by the cxecution of the create

command. The crecate command creates tables or relations in
a databasec. lu order to use the create command the subject
database must be accessed from the I10CRES DRSS, This 1is

accomplish by entering the following command from the
operating systen:

5 ingres swtools (3 operating system proumpt)
This commands allows the swtools database to by accessed

through the THGRES DWIS,

PR Y

I SRRSO

et e o a mlalaa &

»)

‘

hdnd

a

2 atd ol

'

" a-r*

Lcondll
-

'

s s # ¥ T

B SR S o aan e

L

Chika u'.

P T———— -

The syntax lor the 1IGRE® crcate conmand is as follows.

* create relation name(domain name l=format, domain nane
2=format)

(% INGRES DBIIS prompt)
Relation name 1is the name of the relation being crcated.

Domain name is the nanec of the individual relations which

make up the relation being created. Format is the
designation which indicates the data type and size
associated with each attribute. For example, the following

command :

s,

create activity(project=cl2, name=c25, number=cld)
(#INGRES DBUS pronmpt)

would create the activity relation described in the Data

lictionary Database section. "igure 0Y presents a visual

display of the relation created.

Activity Relation

project name umber
12 characters max 25 character max 15 characters max

Fiqure 6Y., Crecate Relation Example

The IHGRIES crecate command is used to implement all the
dictionary relations described and discussed in the Data
Dictionary Database scction. There arce thr-e other
procedures which are applied to newly created relations:

designation of storare structure and primary lkeys, sctting

permissions on relations, and desirnatine and time
limitation on n relations existence in the database. Sincoe
193

e e e e Te s -
N e PSP WA FEEPLOU Y TIPS P PR AP Y S Y S

e g wavﬁiﬁv e s e aEa o o
’ : N ’ -
-

.rvv.va... ..v‘-r.v

these procedures are useful at times other than the

implementation of new relation, they will be discussed in
the section on the Use of the DBHS To [Perform Dictionary

flaintenance and Adminstration lunctions.

Implementation of Data Dictionary Gencration Tool's

Functional [lodulcs

The actual implcmentation of the application software
associated with the Data Dictionary Cencration Tool consists
of the genecration of C language code which contains embedded
EQUEL statements. The C program statements perform the
necessary communications tasks betwecen the user and the tool
while the cmbedded EQUEL statements handle the necessary
interactions with the dictionary databasc. The pregranm
consisting of LQUEL statements cmbedded in C proéramming
language statemcnts is processed through the EQUEL/C
preprocessor., "Statements beginning with two number signs
(##) are recognized by the LEQULL/C preprocessor. All other
statements nust be standard C or statements acceptable to
another pPreprocessor.... The EQUEL ¢xtension allow table
names, column names, tarpet-list clements, domain values and
qualifier clauscs to be contained in C variables" (25:1-1).

"ach line in the source code which contains an EQUEL
statement nust beoin vwith two number sipns (#4) in the first
colunmn, In order to transfer information between the

dictionary database and the tool user, it is nccessary for C

194

COE TR SRS AR UMY S T ot Sh P SN LI UM, T R Ny

B TR TS S S SO SIS W S S U S S N N SRSUIRIE HP” W SR WA S it S S 3

.v.vvv-v‘ vvvv'vvvrwv_-‘-f,_.
s .

language variables to be refecrenced to the relation names,
and attributes nanes. . In order for this to occur, the
subject C variables must be made known to the EQUEL/C
preprocessor. This is accomplished by beginning the line on
which the C variables are declared with the i signal.

In order for the application software to interact with
the swtools database, which contains the data dictionary
information, it mnust initiate access with the database.
This is accomplisied by including the following statecment in
the source code: #+ingres swvtools. In order to end
database access from the application software, the following
statement must be included in the source code: #lexit,

In the following sections, ecxamnples of the C code with
embedded LQUEL statenents which perform the four major
functions of the tool (input. defintion, retrieve
definition, modify defintion, and delete definition) will be
presented and discussed.

Input Definition.

The algorithm for inputting an cntity defintion was
discussed in the Dectailed Design chapter. The functional
modules that perform this task prompt the tool user for
data dictionary information and append this information to
the proper relation in the dictionary databasc. These
modules utilize calls to the standard ¢ 1/0 library to
accomplish the input and output of information between the

tool and the uscer. The standard C library function "printf"

195

ST ST T T T e e T LT T T e e T e e e e T e T P A R N .
PUIPEI PSP AP SN AP AP €S P TP, PRSP R L DR W PV R WA WAL W WA DAL WP L WA PR W S R i SO

a

‘
«
[l
-

v
y .
AL_A.A-_!‘ b e e e a

+
\ ?
' ’
f .
A A bkt h

, T
. € " . ".' ‘
o oea_daa .

M D

b
b

\o

is used to display formatted output to the terminal screen.
The standard C library funcition "fgets" is used to obtain
user input. The BQUEL comitand "append"” is used to add a
tuple to the appropriate relation in the databasec. The
following is an example of the source code required to input
the information for an entity definition. This exanple only
demonstrates the addition of information to a sincle
relation. liowever the same basic source code is used in all
functional modules involved in the input of an entity
definition. The text displayed betwveen two ¥ synbols
represents an explanation or comment and is not part of the
actual source code.
Inputactivity(proj,actname)
module name and input variables proj(projecct name) and
actname (entity name)
ffchar proj[15], actname[27]; }
® C declaration of input variables, #? indicates that
variables arc known to the EQUEL/C preprocessor and that
variables can be used in EQUEL statementst®

{* Pegin symool in C*¥

##char actno[l5]; % Declaration of a local wvariable in
module which is known to LQUEL/C preprocessor®

printf("#nlnter activity number.*n"); *Uscr Prompt#®
fgets(actno,l4,stdin); #% Input of user response into C
variable actno*®
i#tappend to activity(project=proj,namc=actnanc,number=actno)
* EQUEL Statement which add information to a database
rclation®
_}*End symbol in (¥

The EQUEL append command adds a tuple to the activity

relation, It also obtains values for the attributes in the
tuple (project, name, nunber) from the recferenced C
196

variables(proj, actname, actno),

Retrieve Definition

The definition retrieval algorithm is presented in the
Detailed Design Chapter. The modules which perform the S

retrieval function wuse the tool user's imput as a key or

guide in searching the database for the requested
information. This guide or search information forms the
iﬁ qualifier for an EQUEL rctrieve statement which finds and

o retrieves information from the database. The following 1is
a sample of source code required to retrieve information
¢ from a single relation in the database

getactivity(proj,actname)
#iichar proj[l15], actname([27};

#i#char actno[15];
i#range of ¢ is activity

Y * Establishes the relation of interest, allcws variable e to R
represent the activity relation in the retrieve statement*®
#firetrieve(actno=c.number) *letricves the value of the

number attribute and sets the C variable actno equal to A

this attribute value¥®
#i#wherec e.project=proj and c.namc=actnarne

¥ Qualifier f{or the retrieve statement = e
i
printf("xnACTIVITY LU.BER:#n",actno);
iy
i
The LQULL range statement allows the e variable to
represent the activity relation. The retrieve statement

obtains the value of the number attribute from the database
relation and places the value in the C variable actno. The
where statement is the qualifier for the retrieve statement.
It identifies the proper tunle of the relation from which

the retrieve staternent is to retricve the required

197

R e o T B O T I TIPS URPS L AP S
- R T T P e . B SR R R N L A S RN AN . RSN
VAP YAE AL WL WAL WP WO WA W gL W WA WA WA W WAL WL VRE A oI PP L WY TR o o il R S W R VR R W SAE R PR A Y

attribute. In example, the desired tuple is the one where
the project attribute is cquel to the value 1in the C
variable proj and the name attribute is cqual to the value
in the C variable actnane. The #i& and #i symbols provide
a useful convention. This statement causes the C code in
between the two symbols to be executed once for each tuple
retricved. For exawmple, if two tuples in the activity
relation qualified for the retrieval(two tuples which both
had the same projecct and name attribute values) the € printf
function would display number attribute valuc associated
with both tuples,

Delcte Definition

The alpgorithm for the Dclete Lntity Definition
functional modules 1is prescented in the Uetailed Design
Chapter, These modules, based upon user input, delcte data
dictionary information from relations in the database. Lile
the EQUEL retrieve stat ment, the delete statement use a
wvhere statement as a qualifier for selecting the proper
tuple(s) to be declcted from a relation. The ranpe statement
is also used to set a variable to represcent the relation of
interest, The following is an exanmple of the code used to
delete infornation from o sinale relation in the databasce.

deletcactivity(proj,actname)
#f#char projil5},actnanc{27];

s

“

i#ifrange of ¢ is activitly

#f#fdelete e where c.project=proj and e.namec=actname

R T T S e S T I R T PUI . R
N N VI S S WS N SR T Wl S Sl WA A WA W

st .
R T T TP I
ale' a'saaaata’

F
3

v

—

This «code will delete cvery tuple in the activity
relation where the project attribute and the name attribute
are equal to the valuc for the C variable proj and actname
respectively.

Modify Definition

The algorithm for the functional modulules which modify
an entity definition are presentecd in the Detailed Design
Chapter. The EQUEL replace statement is uscd to change the
value of an attribute 1in a particular tuple of a
relation. This statement uses the range statemcnt to set a
variable to the rclation of interest and a where statement
to identify the proper tuple in the relations for
modification. The following is an example of source code
used to change a value of an information element vhich makes
up an entity defintion.
modifyactivity(proj,actname)

#itchar proj[l5],actname[27];

c

##ichar actno[15];

printf{("#nEnter new number for activity.in");
fgets(actno,15,stdin);

#firange of e is activity

i#replace e(number=actno)vhere e.project = proj and ec.namec =
actnane

1}

The EQUEL replace statement places the new value for
the number attribute in the relation tuple vhere the project
and name attributes are equal to the corresponding values

for the proj and actname C variables.

199

- T) . . Ce e e el Ce T - LN
- e . I R P . - L S CU.
.« s LT T I T R i Y N TR I U T S R TR S
- T et e . ., - ot et T e PR ICTL IR
- oAt et .

R ol o st e e e
LRSI LS/ i S WP PR DAL PR DR T, DA PR . PR DL i Sy 1

o
"

4

]

4

- -
L

b

Y

K
v g

S

v Al S A aa s

s Badi gt o T T —————

Use of The DbBiIS to VPerforinn Dictionary ilaintenance and

Administrative lunctions

The INGRES DBIlS systcem provides facilities which can be

used to perform the maintenance and administrative function

for the Data Pictionary Gencration Tool. These functions

consist of the crecation of new database relations, the

identification of storage structures and primary attribute

———

. . . E |
A keys for database relations, the deletion of reclation from) 1

the database, sctting of access permisssions for relations, J
and setting time limitation on the existence of relations in

f the d . J

e database,

e : '

{ .« . .]

: The creation of database relation was discussed in the -]

b

S

Dictionary Database Implementation scction, The other
“ dictionary maintenance functions will be discussed in the

following scctions. SR

Selecting Storage Structurc and Identif{yving Primary))

Keys For the Dictionary Database Reclations

Vhen a relation is created in an I1.JGRES supported
database, it is automatically stored as a heap. A heap

storage structure has two main characteristics: nothing is

2ACHORE ARDIRANS MAORMRE
e
‘

known about the location of the tuples in the relation and

(J duplicate rows arc not removed from the relation. Hew - |
.

tuples arc added at the bottom of the relation repardless of RN

D '_1

what attribute values are contained. In order for ITLGRES to RS

SN

perform a query on a heap storage structure it must scan the

LR ,“"7. s o

] 200 S
o 3
) .
lo |
b 1
; S - 5) . <. “. o
| SIS BRI SN

T———— Y T P P ey P — ——T

entire relation to be sure of retricving the correct data

i (26:17-1). . | - j

: INGRES supports two other storage structures (other ,J
than heap) that locate tuples without havine to scan the

. entire relation. These two structures, hash and ISAll can) :
greatly accelcrate queries run on relations which contain a ..
large number of rows (24:17-3). 3

tﬁ The hash storage structure stores each tuple in a _)
relation at an addrecss determined by the value of a attribute |

: or combination of attributes contained in the tuple. These 5

i attributes form the key for the relation. These keys allow -

the access to a specific tuple in a relation to be speeded
up. The hash structurc is especially useful in queries

which idinvolve the exact matching of key attribute values

- (24:17-4),

S The ISAll storage structure is useful for retricval

R
—
L]
]
i
OO ¥

Fi based upon a range of values. ISAl is a structure that Tw;j
i supports retrieval based upon both an exact match and and
; ranges of values. "ISAlL stands for indexed sequential fT'ﬂ
? access nethod (23:-17-4) ;
‘ As stated earlicr, a newly created relation is alvays ¢;
3 stored as a heap. The IHNGRES modify command is used to

change the storage structure associaoted with a particular

relation. The following exanmples demonstrate the use of the

et \ .
B . e
PP S S W

modidfy command to change a heap structure to both a hash

o and IS5All storage structure. .
.~ -
'..- Ny 201 . «
. o
% A

R

.:-J
R o . S . T SRS . : e .
N e T e e e e e e T e e e e e e e K|
P P R VAT A WD AT P A P PR U . e et g . it OB NI BRI PG Ul CEP SN S S B Er PITRLIPRLIE T Py DA S R B |

T i T Tdhr s o St o S T g —— Ty Y S vy v e T T W v~ Tw—w _ ~ wew ., v

The command modify enployee to hash on name would change
i the storage structure of_rclation cmployce to hash and causec
the attribute name to be used as a lkey to the relation., In
a similar fashion, the command : modify employee to isam on
i salary would cause the storage structure of rclation
employee to be converted to I5Ail and the salary attribute to

be used as a key for the relation.

Setting Time Limitations on the Lxistence of Relations

in the Database

) The QUEL command save is used to preserve a given
relation in the databasec until a given expiration date.

Unly the owner of the relation (the person who crcatcd the

i .6 relation can save a relation (23:2-30). or example, the
following command will save relation activity until February
28, 1987:
[] save activity until feb 28 1987,
Deletion of Relations lI'rom The Databasc
) The QUEL destroy command is used to renove a relation
}
from the database. Only the owner of a relation (the person
who created the relation can destroy it). Thias conmand is .
) very different from the delete command used 1in the)
application softwarce for the tool. The delete conmand only 4
<
<
removes information [rom a retation. The destroy command
) totally removes the relation from the databasc. If the
202
' -
B e e e e e e e e L

relation activity was removed renmoved fron the databas b
l mecans of the destroy command, an attenpt to retrieve from or
append to the activity relation would causce the 0LILS to

. issue an error mecssanc. The following is an exanple of the

I destroy command being wused to remnove a relation naned

department: dcstroy departuent.

Obtaining Information About

Y aAbou

e Structure Of a Patabase

s

Relation

The QUEL help command is uscd to obtain information

, about the structure of any relation in the databasc. By

entering the command: help relation nzme, a list of the all

the attribute fieclds which are contained in a relation, the

storage structurc supporting the relation, and the Lkey

attributes of a rclationm can be found. The help conmand

also provides uscage information by displaying the nunber of

‘ tuples currcntly stored in a relation. The help conrand

also displays the type of information «contained in cach

attribute in a relation and the allowvable size of a value

) under that attribute.

Testing
)
Testing tne functional modules of the Data Dictionary
- Gencration Tool was gareatly enhanced by the wuse of the
INGRES DBIIS. Since the BEQUEL conmands embedded in the

203

.. ..’ .‘l ~' -" -" .'. .. -.‘ ..‘ .-' .»' ..' ~ . . . - T . -
PR R S I T R S SRR S
PR IPERIPRIN G SIS Wil WA S S T Sl Wl Vol A

L TR R SN SR

R P

IPUT S Y

ol

m?

source code are identical to the QULL comnmands used in
INGRES, the result of LQUIL statements could be tested
without having to actually run the application prooram.
Lach functional module of the Data Dictionary Gencration
Tool was designed to interact with only one individual
database relation. This modular desi¢n made it much easier
to trace errors which occurred during the testing of the
tool.

The implementation testine of the Data Dictionary
Gencration 1Tool was conducted in four phascs. During phasec
onec, the IlGRES QULL commands were used to test the BOULL
statements embedded in the source code. This ensurcd that
the intecractions with the database would obtain the desired
result durine the execution of the dictionary operations,.

The next phase was the testing of the individual
functional modules, Since each functional nodule was
responsible for both obtainina the necessary information
from the wuser and usine this information to perform a
specific operation on an individual databasce relation, these
modules formed a natural building blocl for the systemn.

Phase three of implementation testinn involved the
testing of the functional and nannerial nmodules involved in
performing operations on the basic informational unit of the
dictionary, the cntity definition.

Phase four consisted of placing all functional and

lower level managerial modules under the exccutive modules

— ~ g < —— e - - —-‘71

L g

e

PP S T

Yo e

-

»)

B.:

t

- = e = = =~ - - — y— N Ty

for the tool and testing the systenm as a whole.

During cach of these phase, the IGRUS DLIS

vas used to

validate that the desired operations on the database were

performed as a result of the execution to the

modules of the Tool,

IR R B R T Y8 VAP N S VR0 N SN S TG T WA I SO S G Sl SR SUNF IL AT S S SLC ISP UD S S .

functional

Y PN .L;._.V .

PP

a &L

Y

Introduction

The purpose of this thesis investigation was Lo design
and implement an auwtomated interactive software engincering
tool which would gsenerate data dictionaries from the
information contained in softwarc representations such as
SADTs, Data Flov Diarrans, Structure Charts, and Code. This
tool was to provide its users with an interactive data

dictionary to support the developnent of sofltware throusht

all phases of the solftvare life cylece.

Desion Sunmary

The software 1life cycle approach was utilized in

developing the Data dictionary CGeneration Tool. The tool's
requirenent's definition phase was dirccted toward
identifvinoe the gpoals and objectives of the systen. A list

of objectives and concerns for the tool was developed and
discussed, A model describing and defining systen
requirements was also developed.

The prelinminary desion phase of development identificed
four software representations which would be supported in
the initial version of the Data Dictionary Generation Tool:
SADTs, structurc charts, data flow diagramns, and code. The
information required to forwulate the data dictionaries for

200

"
A

vﬁ—.v

4
b
J-

Y

"

—~—y v;-'vlrrrer‘Vvl

each of these representations was identified and the
database to maintain this information was desigancd. The
structural framework of the application software rcquired to
perform the basic dictionary opecrations (addition of
information, deletion of information, information
modification, ectc) was developed,

During the detailed design phase of developnent a
functional alporithnm was formulated to support cach
functional and managcrial module identified in the
structural model developed during the preliminary design
phasc.

The implementation phasce consisted of the selection of
both a DBIS, IHCRES, to support the dictionary database and
an implementation Jlanguare, C, to code the application
software. The database to support the four software
representation was implcemented and a portion of the

application softvare wvas coded and tested.

Implementation/iTesting Lesults

The Data Dictionary CGeneration Tool vas utilized by the
fii 690, QReal Tirne Procramming Laboratory, class to cenerate
data dictionarics in support of the <class project.
Approxiuwately 24 students utilized the tool and provided
feedback on the tool's performance. The i 020 project
supported by the tool utilized only the portion of the tool

which supported the structure chart and code software

207

L

B Btes e meue)

D Aen i B e M Anfie. S o i Sne It St Jine Jhe A Soee e Jmeen uine Jiutes ShBac Mude JuEbn S0 S s S T — Ry ——

representation, The application software for the Data
Dictionary Generation Tool was improved greatly as a result
of feedback from the students who used the tool for this
project as shown in the following paragraph,

During the initial of use of the tool, several errors
were detected in the excecution of the application software.
These errors, for the most part, were duc to the failure of
the system to sufficiently check user inputs for crrors.
Another problem encounter was systenm rcsponsiveness. The
user would sometines experience delays while waiting for
system prompts to signal the user to enter information into
the dictionary databasc., As a result of the user's initial
experience with the tool, it was recalized that the user
required a small amount of hands.oq cxpericnce with the tool
before they were comfortable vith its operation.

As a result of feecdbacli obtained, the application
software for the tool was modified to include additonal
error checking routines to verify user inputs. The Tool wvas
being supported by the VAX 11/780 computer utilizing the
UHIX operating systen, This systen was experiencing an
extremely heavy workload during time of the tool's initial
usc. The tool was checked during Limes of normnal uscasc on
the VAX/UUIX =systenm and its response time was found to be
adequate for interactive use. llovever, durina peak wvorkload
periods for the system, the tool's responsce time was slow.

The responsce tine problem was due Lo the workload on the

.

208

e

o
o
- 4
4

DR A P TR T

- e - *a . - - . -t at ..
Antadeladalalaladal s ana

Pr——— e

AR R R SRR
PRI AR S W S S Sl Sl Pl

rou Py v e e e e

host system and was not dune to problems in the Data
Dictionary Generation Toql.

With the inclusion of error chechking procedures in the
application softwvare and an increascd level of uscer
experience with the tool, the problems expecricenced by the
L0690 class in using the tool were greatly reduced and the

support provided by the tool was improved.

This effort resulted in the tool only being implemented

on the VAX/UHIX system. The tool should be rehosted on the

VAX/ VIS system and be intecgrated unto the Softwarc

Development Work Bench (SDW).

This tool constitutes an excellent first step towards
the development of a tool which will automatically generate
data dictionaries from the actual graphical representations
or diagrams used in the SADT, Structurc Chart, and Data Flow
Diagram methods of software represcentation, ‘The interfacing
of this tool with the graphical tools supported hosted on
the Software VDevelopment Vorkbench would constitute an
cxcellent start in this developrnent clfort.

During the design of the database for the tool, several
arcas of conmonality amonn the reclations supporting the
various representaltions was pointed out, ltowver, this

commonality was not talken advantage of in cither the desian

209

e e e R O T S s

Sl s e S T N T B B e L PEURP I S
""&("‘.:‘-"L“ L L L P T UL LT . I, L T - P P o P LT UL L. T Y PR P P WY

Y
-

of the database nor the development of the application

softwvare. Investigation into these arcas could lead to
improvement in the tool's spced of operation and reduction

in the memory space required to support the tool's

operation.

210

B N SR P TN " ’

P R T T RS .
PR Ry YRy) FP. PV a2t a - - 4

L4 - — ——— —

Appendix A: Requircnent's ifodel Data Dictionary
Generation Tool

The Data Dictionary Generation Tool is a softvare
engincering tool which zenerates provides data dictionary
sunport for various methods of softwarc representation such

as structurec charts, data flow diagrans, e¢tc. In order to

develope this tool, a thorouch understanding of the goals
and objectives of the tool must be formulated. This model,
utilizing the data flow diacram mcthod of representation,
provides a means of defining and describing the requircments
for this tool. The upper level of the model is presented

and explained in chapter two, Requirenent's befinition.

Requirement's liodel Data Dictionary Gencration Tool

Figure Title

1-1 Top Level Data Dictionary Generation Tool
1-2 Obtain and Use Data Dictionary Intormation
1-3 Generate Dictionary Inputs Irom Software

Representations

1-4 Analyze Software Representation

1-5 Obtain Additional Dictionary Information I'rom
User

1-6 Perform Dictionary Functions

1-7 Interact Vith Dictionary Schema

1-8 ilaintain Dictionary Schema

1-9 Interact Vith Dictionary Database

1-10 Hanipulate Dictionary

1-11 Add ilew Lntity To Dictionary

1-12 Add llew Relationship To Dictionary

1-13 Hodify bxisting Lntity

1-14 llodify Existing Relationship

1-15 Perforu Query Operations On Dictionary

1-106 Perform Query Procedures

1-17 Perforu Query

1-18 Perform General Query

1-19 Perform Intity And Attribute Query

1-20 Perform Alternate ifane And Context Query-

211

. D Tt TR S R SR T TR S IR T T LA L R DRV U S
Sermsthocmmibesnmmsethons PR YT UILY T T S B T UL T Wl W TP U TR St TV G o Tt SR U Y TR TP W S VR S WAL WDV T SR WA U S - Sh/ W TP S Y S)

T e e — N . S e s NagEn e o - —
)
»
)
[]
LQ
f
I
'/_\
User Input .~ ,User lilessage
\\\ /
T Obtain .
and use \
Data Dictionary;

|

Information
o 1

P e

Software ————
Representations

Figure 1-1.

Data
Dictionary
Information

Top Level Data Dictionary Generation Tool.

User Inputs

\ User llessages

[

Generate
Dictionary
Inputs From
Softwarec

Dictionary
Inputs

eprecsentationg
1.1 ,

Software //

teprescntations

Figure 1-2, Obtain and Usc

T
LSS PN

- .~ T T P S PR
e T et T et e TN et . EYLRE B R RS A
WD ST VA WA Sl NP VLI A SLAE Shlr Yol S S L. WP P ¥ Sl PN

Data Dictionary

N T

User Inputs

L

Performn
Dictionary
IFunctions
1,2

Data
Dictionary
Information

(1).

Information

PR WAL W VR WA W W VAT W S LR T R

e

} - \\\\\ 1
L \\ s

#. ' Dictionary |

4 Inputs)

b - Figure 1-3. Cenerate Dictionary Inputs IFrom Software "j}

lepresentations (l.1).

g

213 E

—_

R |

T N T N L e et e s e 'LJ

e

User Input

Software

Representation

S

User
Response

To Prompgg\\\\\\

R R T e e

“rror ilessages

Analyze
Software
\cprcocnratlo Incompletc

Dictionary

/ Input
rd
- Prompts To
/WUser
Obtain
- Dictionary
Information
IFroim User
L.1.2 \
lLaw
Dictionary
Entry

Format

Dictionary
Entry

1.1.3

Formatted
Dictionary

.

// Latry

Add
Lntry To
Dictionary
Database
1.1.4

Software Representation

cess
Software
Representatio
1.1.1.1

twvare Representation User Input

Error

-,
///// ilessages
_* Check For ///////
- Errors In
Softvarc
\eprescntat101

1 1.1.2
\\\\ Softwvare

Representation

Extract
Dictionary
Information
From
epresentatior
1.1.1.3

Extracted ;::\mﬁl/’/
Dictionary)
Information Display ___alser Approval

e a

Extracted Display of
Information |———>Dictionary
To User . Information
1.1.1.4 "T———_ User Indicated
Error
- \\\\\\\Alncomplete
/Lxtracted Dictionary

Correccted
/(D1Ct1onary Input

Dictionary

T~

Perforn
Dictionary
Corrections
Based Upon
User Input

1.1,1.5

v User Input

Figure 1-4. Analvzec Softvarc Representation (l.1.1),

214

- - -. - -~ -' o o P o, .‘ -’ 7. : - PR B . - .' - o - - - - - . - N - - W
" - -. LN \ .. A-. .,. - - u. - - - - - - " -, q\ . .. - .-' . ..‘ .- .- o . .-' .c’ .. ‘.—. . .
P AL AP A AT A T A A I PPN WP Uty D R SR WP YR LT W AR WAy

Pary

; ----- R i e i S SRR A A v CE R N e - i Chadi NS - Sra St S aihs S amh el de A et ,<
- o
:]
) -0
@
: :
. {
. 1
Incomplete)
Dictionary
Input) -j
Determine 1&
Additional
Information
Required
1.1.2.1 o
. Jlissing Information i
——— 1
Incomplete
Dictionary
Input
Prompt Prompt User }
User Tor For Additional -
Additional ,////qlnformation]
Input And]
Collect Additional -t
- lcsponse Information e i od
te 1.1,2.2 From User ,
o \\Uscr Supplied R
Fi Information JHLT
s 8
! Conbine "
ltachine S
Extracted ‘1
Input Uith 1
User Provided -]
Input R
1.,1.2.3 S
B \Vlhnv ’iﬂ
Bictionary 1
3 ntry
Ex 'igure 1-5. Obtain Additional Dictionary Information [l'rom .
O User (1.1.2).)
o]
- 215 :
o 1
O SNSRI RN e e O A AT S A L RIS |

\e

User krror
Input] viicssages
\ — /{/-
N ' /////
Determine

Dictionary
Function
1.2.1

Function
Selection

- // -
”/
User Input _////// Dictionary
- Administrator
// Schena Inputs

— ~?Information \ -
N
Interac;\‘///////// \\‘Pcrform

With ictionary
Dictionary Administrato
Schema Functions

1.2.2 2.4

Changes To
Schema

User\

Input
\\\\\\\ Interact

With

Dictionary

Database

1.2.3

Dictionary
Content
Information

Changes To
Databare

Figure 1-6. Perform Dictionary Functions (1.2).

216
_.."-. I L e e e e e e e e s e T Lt
. . . -.. R -t et T " . ‘.' ‘-O ‘-- ‘.-] et "\ « . - R IR - - “ .:. R “ . .
—— R P I P P PRI IR I N T ol S S ST, S PP Y, S Ry S A T W Y P

.
e
_ "'A'A"

P It Y

.
W W Sy N

Al

T e g

O

Ay 44

»

!

User_Input & User Input \\\\\ Uscr Input
| ~
“ - ™~
Abolish \ k ; ™.
Schena / Schema
) Item ITtem d
1.2.2.2.% W2.2.2,
: N .
N S— \/ . - .
Item Renmnoved sodification ew lanoe
From Schema ol Schera Iten For ltieta Entity
) ew o iteta
Relationship
Create Replace llet
Schema Ttep ™ ilew Item RVclationship
e2.2.2.5 In Schema $2.2.2.0
, Figure 1-8. llaintain Dictionary Schema (1.2.2.2).
217
e e g e e e e e T e DT T

User Input

\ ‘ =,
~ylefernine
Type Of
Schema
nteraction
1.2.2.,1
beclection
,//”// \\\\\\
User Input 7 .. User lnput
prae ~_)
. . 7 S
Haintain leport
Dictionary n Dictionar
Schema Schema
1.2.2.2 1.2.2.3
A ¥
Channaes Dictionary

To Dictionary Schena Schena Report

Figure 1-7. Intcract VWith Dictionary Schena (1.2.2

User Input

Select
Schena
faintenance
F'unction

1.2,2.2,1

Selcction
L

s

NSO

PRI .
PRI A
PRI I VRN S G S Y

L g

B
.
. -‘
wd

PP I

.

User Input

User Input

lanipulat
Dictionary
1.2.3.2

Dictionary
Database
Manipulation

User Input

erform
Query
Operations
On
Dictionary
«2.3.4

|

lesponse
To Query

Fipure 1-9, Interact

Determine

Selection
1.2.3.1
\

Sclection

Dictionary

L B hoit et e mines Sedi R e s

User Input

\\\\ Obtain
Report

1.2.3.3

chort

\ User Input

Perforn
Entity
List
Opcrations
1.2.3.5

\

Of Entitics

LList

Database (1.2.3)

VY

“aa a & e

MECELIY SR T ¥ _.'A‘_xtﬂ

P————y

User

Input

Jetermine
Type Of

Dictionary
danipulatior
1.2.3.2.1

~
Selection
TN
r T o~
* User Input T \\\\ User Input
///// / pa
Xdd tiew N / “ARdd Hew
Entity To / tclationship
Dictionary J To Dictionary
° 1.2.3.2.2 / 1.2.3.2.3
//
A . : I/l’
ew Dictionary
: Entity ,/ Dictionary
= 3 / Relationship
L]
a \ /
/
/
User Input // Uscr Input
| /
tlodify < llodify
Lxisting Lxisting
Lntity Relationchip
1.2.3.2.4 1.2.3.2.5
®
.-'/
N
Modified ltodified
Fntity Relationship
°
':'.- Fieure 1-10. ilanipulate Dictionary (1.2.3.2).
~
o
219
o
—_ A e e e e L ‘; LRIV MV S - N

User Input _ iiew
Dictionary
Cntity
TN
Identify A
New Lntity Add
To Add Tew Entity
£2.3.2,2,1)/ 7 ... _Lntity To
I T T Database
— \\.2.3.2.2.

Figure 1-11. Add ilew Iintity To Dictionary (1.2.3.2.2).

'S
User Input ™
Ad d
b Relationship
! dentify How To Database
New Relationship ~__ W1.2.3.2.3.3
Relationship] =]” T //
s // \\\."
ﬁi ‘e ///// ///// X
- e
5 e
- Identify\ __---—"" "Relationship New
= Type For Type Relationship
g Entity
fﬂ 1.2.3.2.3.2
3 - :
[le-order
- Lntities
(4 In
Relationghip
1.2.3.2.3.4 .
: ~ e
3 e
@ new Dictionary
Relationship)
$. J
9 4
)
j- Ficure 1-12. Add Hew Pelationship To Pictionary =
1 (1.2.3.2.3). .
- |
. 1
N 220
s
g |
p - <

- YTy

®
User lnput
Identifv
Lxisting
Kntity For
fodificatior
L2.3.2.04.1
/S
__._../
Lysor Option Kntity List
Entity Name //,// / Frror liecssage
L //’_,/'
\’,//
. —
[dentify h Identify
Single Entity ~—~——————=Lrror ILntity List
1,2.3.2.4.,2 ilessage .2.3.2.4.,
N—— \) _-2’/
Iintity IB_ T List ID
s \\ ///
Display \ __—"
\o An Bntity ¥<
1.2.3.2.4.4
\ /
o P
/;::::Lﬁntity Display
Desired llodification /Uscr Input Version umber liew llame
PN
P AN
N N W
liodify dodify Y Delcte
An Entity Lotity And Entity Copy Lntity
1.2.3.2.4. Add lew 1.2.3.2.4.7 1.2.3.2.4.5
2.3.2,4.0 /
\/u/ o \\1 .
Nodified liew ntity Copicd
Fntity Version Deletion LEntity
of I'rom Vith few
ntity Datahasc Lame
Figure 1-13. llodify Ixisting Entity (1.2.3.2,4). 4
- : :
x;‘ 221
*
&
- - . AR R
l e iAo RTINS - - AT T ST AR YT T R W WA

f

User Input

lixisting
Relationship
IFor
ilodification
1.2.3.2.5.1

-

Relationship ID

k Display ‘
Relationship
1.2.3.2.5.2

\e

Relationship
Display

Relationship ya User
tlodification Delete
\\\ Input
Modify Delete
Relationship Relationship
1.2.3.2.5.3 1.2.3.2.5.4
N~— R o 7
Modificd Pelationship
Relationship Deleted t'rom

Dictionary

Figure 1-14, llodify ixisting Relationship (1.2.3.2.5).

- . e e e, e .
P e e e e e e e e Tt T T e T e e S . e .
. e P IR A WY L I talal el e LN PGPS UL YA TP YA Ul Uiy G T Y S Wl WY §

A b e A

A N
Attt .

C e m eia aa s ke A

Uscer Input Lrror liessages
\ \
///‘ Type Of \\\
Query Response - Query \\‘ Procedure
‘ Opecration \\ Result
1.2.5.4.1 . —]
L
{Option | Perform
T T \ Query
- TN 1.2.3.4.3
——
Figure 1-15. Perforim Query Operations On Dictionary

(1.2.3.4).

User Input Error liessages
=

Identify
Query
Procedurc
1.2.3.4,2.1

Proccdure Sclection

Run

Query
Procedure

1.2.3.4.2.4

Delete

Query
Procedurec

1.2.3.4.2.3

Save
Query

Procedure
1.2.3.4.2.72

L

Report
On Query
Procedures
1.2.3.4.,2.5

L

Saved Query Deleted Lxeccutoed List Of
Procedurc Query Procedure Query
Procedurec Procedures

Figure 1-16. Perfornm Quecry Procedures (1.2.5.4.2),

]
223
Attt L e e e T e e T e e T e et e e e e e T et e T -

- ———r—u

o vt

DRSS VAT G ST LN L

Dal gk sans e s s aan A

erform
General
Query

1.2.,3.4.1.

User 1nput\\¢///_\x
Identify
Desired
Query
1.2.3.4.1,

firror liessages

h oclcctcd Oucr)

-
%rror HCSSQ"CO

Perforn
Entity And
Attribute
C2.3.4.1.3

Perforn
Alternate

uame And
«3.b4.1

2
i/

_/ SN—— B’/
General Query Ulapla‘ of Display Of
Responses Attributes Lntity liames
Figure 1-17. Perform Query (1.2.3.4.1).

Query Name User Pront General

N Query
Lntity Response
Name \

N

Contents

Option.\\\\J

/

gpocify\\\\

Respond

General To
Query e General
Parancters Query
2.3.4.1.2.1 .2.3.4,1.2,2

Figure 1-18. Perflorm General Ouery (1.2.3.4.1.2).
224
T e s RO R T S e e el N
N o A S NS ORI LN 5 S,

r-—v —— T S —p—. Ty — T — T ———_———— ey,

Entity HNames Errov Messages Display
N L 0of
Entity Types \\\ Attributes
Attribute Types \\‘\
Specif;\b Respond
Fntity JAnd Lntity To Entity
Attribute And And
Query __ Acrribute Attribute
; Parameters Query ' Query
.2.3.4.1.3.1 Paraneters .2.3.4,1.3.
/
3 - -~ \—/ -
L Figure 1-19. Perform Entity And Attribute Query
§ (1.2.3.4.1.3).
8
s
te
Entity Hlames Error ilessages Display
' Of Entity
Entity Types\ lianes or
A Alternate
Alternate , Names 3
flames / /

_wwvvvrv,-—,-, v
[.

Specify X

tespond

Alternate Alternative
o Name And name Query
{ Context Alternate 1.2.3.,4.1.4.,2
! Query dame
[Parameters /77 777 And Context
= 1.2.3.4,1.4.1 Parancters
= " s
e N 7
@ e
L,
p - . +
3 Figure 1-20, [Perfornm Alternate llame And Context Query
; (1.2.3.4.1.4),
3
L;_
; 225
}' .

R
R T R ST
o LU S R S T Tl K

PO LA AP LA RAPILY & ¥ € L PR IR PR R U DAL N L P

[I R el el e S -~ ~— T Y

T YT T haca S Shee Jhne deass e 2 T T T T

: Appendix B: Structural! iiodel Data Dictionary
. Generation Tool

The Preliwminary Design for the Data Dictionary
Gencration Tool establishes a structural framewvorl: for the
application softvare wvhich forms the interface between the
tool wuser and the data dictionary databasec. The model
presented in this appendix depicts the structural {ramework
of the data dictionary generation tool. This model useé the
Structure Chart method to depict the structural francworl,

The model is introduced and discussed in chapter 3.

Structural ffodel For the Data Dictionarv Generation ool

¥

Title

Top Level Structural ilodel

Perform Data Dictiondry lunctions (1.0)
Selection Of Dictionary Operation (1.1)
Input Entity Uefinition (1.2

Input SADT Activity Definition (1.2.1)
Input SADT Data Item Definition (1.2.2)
Input DID Bubble Definition (1.2.3)
Input DI'D Data Flow Definition (1.2.4)
Input 5C Process Definition (1,2.3)

Input $5C Parameter Definition (1.2,06)
Input Code liodule Definition (1,2.7)
Input Code Variable Definition (1.2,.35)
Retrieve hntity Definition (1.3)

Qetricve SADT JMctivity Definition (1.3.1)
Retriceve SADT Data Item Definition (1.3,2
Netrieve DFU Bubble Definition (1.3.3)
Retrieve DD Data Flow Definition (1.3,4)
Retrieve SC Process Definition (1.3.5)
Retrieve SC Parameter Definition (1.3.0)
lctricve Code liodule Definition (1.3.7)
Retrieve Code Variable Definition (1.3.3)
iodify Lntity bDefinition (1.4)

llodify SADT Activity Definition (l.4.1)
dodify SADT Data Itenm itefinition (1.4.2
liodify DI'D Bubble Definition (1.4.3)
Hodify DIFD Data Flow Definition (l.,4.4)

o]
0

1 ¢

\e

v Yy v v

)

LI T T B 1
NN R NN - e = = = O MNP =

®
PSRN NN NIRINDNIN DN NI N NN -
|
MmSHwie—Cc oL~ O

~.
fond

220

et e et et . ce e e S0 B T SeS 0
S T e T TN e e T Y Y L e e e N
- -~ - * * - - . = - . " - D '. 0 cat o P o - q- u " 1‘ Pd . - - - - - B . - - - - -

At ataatslalal ot aS Al A AL S A A s e T A s e a a T A S i e et e e et e

R ST L S IR
A Tt et T, - N -
2 e *ata‘a’a® 0’ s PPN, SO P P

:

@
2-27 illodify SC Process Definition (l1.4.5)
2-28 llodify SC Parorcter Definition (1.4.0)

3 2-29 ilodify Code ilodule Definition (1.4.7)
2-30 liodify Code Variable Definition (1.4.38)
2-31 belete Lntity l'efinitions (1.5)
2-32 Delete SADT Activity Definition (1.5.1)
2-33 Delete SADT Data Item Definition (1.5.2)
2-34 Delete DFD Bubble Definition (1.5.3)
2-35 Delete DFD Data FFlow Definition (1.5.4)
2-36 Delete SC Process Definition (1.5.5)
2-37 Delecte SC Parancter Definition (1.5.6)
2-39 Delete Code llodule Deiinition (1.5.7)
2-39 Delcte Code Variable Definition (1.5.8)

¢ 2-40 List Entity Hawmes (1.0)

s 2-41 Print bntity Definitions (1.7)

F.

o

la

ST e L AP R AP S

R A T AT Nt e tet et - - T ST e v e et et
PTRIIE Bl Yol S YRl WAPILEE THIP ENr SIPELIP AP G VIR U, WAL W WL W T il W W VA WA R W P AT WY W L VPP o SR LS LI S W W U T] .

L oAa Lt A a e al

J O S WP S A PR S MNP S |

h._
h

.
ro
e

Figure 2-1,

User inputs

4

6System Prompts

(SSyStem Responses

Dictionary
Functions

1.0

Perform Data

Top Level Structural Model.

PP LTt .
[CERLIP LI T WS YR TN N Yo |

———— e e

~
Input FEntity
Definition

1.2

L
Delete Entity
Definition

1.5

Figure 2-2.

I S

Perform

Selection Of
Dictionary

Operation
1.1

Retrieve
Entity
Definition
1.3

—

wd
List Entity
Names

].6

Data Dictionary

DR AT . [e T et R BN
WP P .30 U A Sl N P SO0 WO Ul ST LD UIRY T TSP W S Y. A i WS I

Modify Entity

Definition

1.4

N

N

Print Entity
Definitions

1.7

Functions (1.0).

(SR

..‘-.

e

. RN
AR

Y SRERPEP RPN A

PR L
P VP ST T T SR

o .
PUDUTEIE J VPP

")

-

¢]

Lo

»l

‘\‘

Figure 2-3. Selection of Dictionary Operation (l.1).

Determine Operation
From Tool User
I.1.1

4

Operati

Determine Lntity
Type (Action or
Data) iI'rom User
1.1.2

?Operation
? Entity Type

Determine Software
Representation From
User and Call
Functional HModule
1.1.3

& =
Input SADT
Activity
Definition
1.2.1

[——
Input DFD
Data Flow
Definition
1.2.4

Input SADT

Data Jtem

Definition

1.2.2
T E e

Input SC

Process

Definition

1.2.5

o

Input Code
Module
Definition
1.2.7

—
Input DFD
Bubble
Definition
1.2.3

P 2

Tuput SC
Parameter
Definition
1.2.6

Figure 2-4. 1Input

[nput

Variable

Pefinition
2.8

Code

kntity Definition (1.2).

229

L te T
. -

e -
Ak ohadd

A s S o 4

- v ¥

Append To Activity
Relation And Control
Detinition Input

. 1.2.1.1
I Activity l

L.

-

TProjvct hame

’////// ? Lntity Name
e T
’] Append To Append To Append To
b Activity 10 A_lticrarchy A_History
Relation Relation Relation
1.2.1.2 1,2.1.3 F.2.01.4
l
’ '1
Activity_1I10 ‘ A _Hicrarchy A_llistory |
Tuple QV\\\ -Q\ luple /1,/1}3 luple]
'_ Y S R _I_., e e e ,,__/__::___, - i
Append To Append To Append To j
i vy A_Reference A_Alias A _Desc '
Relation Relation Relation k
1.2.1.5 1.2.1.6 1.2.1.7 x
| T :
" A_Reference A_Alias A_Desc)
Tuple (&*\\\ ? Tuple ///////;D Tuple
Y] 2 v v
Data Dictionary Database
J
1
Figure 2-5. Tnput SADT Activity Debtinition (1.2.1). "j
J :

4

4

i 4
R

_'

. 4

- L T ST UL S R S TLrae -
WL T At e e s S et el T e e e e e e
‘‘‘‘‘ I I R S NI R N T I e . 2 T A T DRI P I I i S . Tt St P PURPT U S VAL UG I U WO T W SO SR, (UL S, WL

-—

Tuple O U
e ? Entity Name
y ¥ L T T
Append To Append To Append To
D_Value_Set D_Hierarchy D_History
Relation Relation Relation
1.2.2.2 1.2.2.3 1.2.2.4
' I
D_Value_Set D_hierarchy D_History
. o T
Tuple Q;\\\ 4////,KD Tuple - 0 uple
" ~ - T S
i) Append To Append To Append To .
D_Refercnce D_Alias D_Desc
Relation Relation Relation
1.2.2.5 1,2,2.0 1.2.2.7
| .
D_Reference D_Alias D_Desc
Tuple ? ?'Fuple ?Tuplc 1
' 1
) l/ Z N4 N~
Data Dictionary Database
' 4
. _.j
Figpure 2-6, Input SADT Data Ttem Definition (1.2.2). T
3
]
231 T
)
, - 3
~
RPN e e T i e A e e e e T]

Append To Data Ttem
Relation And Control

Definitiaon In
1.2.2.1

put

Activity

Project Name

[}
[}
Append To Bubble ,
Relation And Control

Definition Input

1.2.3.1
Bubble Project Name
Tuple v
L v Entity Name
. y
/’ %
P
1/ -
I e %
Append To ‘ Append To Append To
Bubble_I0 B_Hierarchy B_History
Relation Relation Relation
1.2.3.2 1.2.3.3 1.2.3.4
Bubble_10 B_Hierarchy B_History
Tuple Qg\\\ OqTuple _//;O Tuple 5
SR U U T
L < L "
Append To ~ Append To Append To

B_Reference
Relation
1.2.3.5

B _Alias
Relation
1.2.3.0

B Desc
Relation
1.2.3.7

]
]
.
B Reference B Alias B History -

Tuple ? Q Tuple ? Tuple
N 30 £ N .
Data Dictionary Database .

Figure 2-7,. Input DFD Pubble Definition (1.2.3).
2732 ‘ni
-
.
- . --\‘u “ . 0 - - - . . . - . . : N

P A R R i, S A L A R P I T . St S R D S D G -'i~;\-'4 R L.“

Lk N R S i
Append To Append To | Append To
DF _Value Set DF_Hierarchy DF_History
) Relation Relation Relation
1.2.4.2 1.2.4.3 1.2.4.4
DF_Value Set™. tPF_Hicrnrchy DF History
g \e Tuple Ch\\\ | o VTuple Tuple o
Append To Append To I Append To
DI _Reference DF _Alias | DF_Desc
Relation Relation Relation
¥ 1.2.4.5 1.2.4.06 1.2.4.7
1
D _Reference i _Alias DF_Desc o
Tuple Q Tuple Tuple 3
) | '.'O,/
? ' // 3
',/ 4
I |
‘. . ! -]
) Data Dictionary Databasce]
Figure 2-8. Input DFD Data Flow Definition (1.2.4). b
b 4
-
e
233 R
»
. . . - " :A“E
'..‘.-v' oy .. ld. .:AI PP ll‘ .l‘ .l. 'l .'. '.;"'A:: Aj..‘;“". l" .L" A_")..'L-.L'.LV.“":. -l‘ A““'A. -‘ .‘. ... S ‘.. l,-. “e a .-Al LY 2 l. ll~4

Append To Data_Flow
Relation And Control
Definition Input

1.2.4.1]

<

Data I'low 0

Tuple

Project Name

|
. |
/ ! g?lintit.y

Name

Fe Tt

g
[
,L

S
- .
\d
SRR

Append To Process
Relation And Control
Definition lnput
1.2.5.1

Process
Tuple

o
je -

/

Project HName

? Entitv Name

Append To
Process_I0
Relation
1.2.5.2

Process_IOl
Tuple

4 ’ L L
Append To i Append To
Pr_Call Pr_Passed
Relation Relation
1.2.5.3 F.2.59.4
T

Pr_Call lrrﬁPuunod

Tuple ; Tuple

ON \ \\. O\, / ”()
I 4

b
Append To
Pr_Hierarchy
Relation
1.2.5.5

Pr_Hierarchy
Tuple Q\\\

N\

N

Append To
Pr_Alias
Relation
1.2.5.06

i‘r_A] ias
fuplozq/‘

-
-

Append To

Pr_Hi tory
Relat on
1.2.5.7

Pr History

|
L y L e |
Append To | Append To t L | Append To
Pr_Reference Pr Ale i Lo 'r_Desc
Relation Relation ; T (Rolatinn
! |
I ; ’ ‘
Pr_Reference Pr_Alg ‘ ‘ P Desac
Tuple 9 ?Tnple ? z i fuple
! { ! ‘]
Y ¥ RN D%
Data Dictionary Database ‘
Figure 2-9., JInput 5C Process Defintion (1.2.5).
234

PORRERINY

LTI SO LI

L

y - - = - v T e L A LN aUte 2 S T T T TN W TTW W Y YW TR Ty W TRt — g -
L]
k‘ Appeﬂd To Parameter
: Relation And Control
- Definition Input
[1.2.6.1
FH Parameter Project Name
Tuple
K’v/ ? ? Lntity Name
+ o
» - :
d 1 L. 1
Append To . Append To Append To
! P_Value_Set P Alias P Desc
{ Relation Relation Relation
[1.2.6.2 1.2.0.3 1.2.6.4
| I
:.. |
[P_Value_SeLl P_Alias P Desc
{ Tuple CL\\\ Ojuple /QTUPIO
\e ~ AN
® > -
L ~ T g
Append To Append To ’ Append To
P_History P Hierarchy P _Reference
Relation Relation Relation
1.2.6.5 1.2.6.6 1.2.6.7
i
P_History P_Hierarchy P _Reference
» Tuple ? Tuple ? Tuple ,;‘,
s ; /
. ! ! s
. /
4 7
a8 d W A 4 3 L k/:
[Data Dictionary Databasce
!
b. ‘
Figure 2-10, Input SC Parameter Definition (1.2.0),
b
L.
@
3
235
°
g _
I A A A A AP P LI IO S SIS NI NN Py

teo

. l»':

ra

? Entity Hame

& 4 k 2
Append To Append To Append To
Module_I0 M_Desc M_Alg
Relation Relation Relation
1.2.7.2 1.2.7.3 1.2.7.4
Module_1I0 M_Desc "M Alg
Tuple o o Tuple Tuple
N P o
~. //
L ~TF) = 1
Append To ' Append To Append To
M_Call M_Pass H_History
Relation Relation Relation
1.2.7.5 1.2.7.6 1.2.7.7
Py !
M _Call s ?H_Pass M _History
Tuple ///// - Tuple Tuple ?
/// ~
s v g e ——— e
. ////,/ \L L S .

Append To
M_Reference
Relation
1.2.7.8

M _Reference

Append To
M_Alias
Relation
1.2.7.9

I

1 Alias

!
QlTuple
v

Tuple
P V4 A A,
Data Dictionary Database
Figure 2-11. [nput Code Module Deftinition (1.2.7).

Wt e S e ST - o T .
PPN WA 2P RN PSP A S S WO P . SO~ Y. S e

2360

a2 3
1@

: 1
"]
“ {
‘ : Append To Module '
*i Relation And Control T
Definition Input X
1.2.7.1 E
Module Tl’roject Name utl

Tuple O '

MPOPRT e o

T T e —— —— —— T

Variable
Tuple,}D//
o,

@

) Append To Variable

‘ Relation And Control
‘ Definition Input

1.,2.8.1

Ve

?Project Name

9 Entity Name

e
{ y L L
Append To Append To Append To
R V_Hierarchy V_Desc V_Value_Set
Relation Relation Relation
: 1.2.8.2 1.2.8.3 1.2.8.4
; V_Hierarchy V_Desc V_Value_Set
Tuple Tuple Tuple
b. p ({, p I /,/ / ?
. /
o
1 -7 [2 N}
] Append To Append To , Append To
\o V_History V_Alias { V_Reference i
Relation Relation Relation
1.2.8.5 1.2.6.06 1.2.8.7
V_History V_Alias V_Reference
Tuple Tuple Tuple '
up o o Tup Tup
A\ \\\ i
;- \ |
\
r. Ny 3 N J,
¢ Data Dictionary Database
}
s

) Figure 2-12, Input Code Variable Definition (1.2.8).
237
-
R T T T e e e e e e T T s e R T T
‘ PSPPI SEIE AL AERE S RO A I MR ROAERLIE IR P PR A SV ADALACI A PEIE FUACROr ST G o

—— . —— T . " S - " r—— - ———

®
¢
f
{
: C | '
¢ Retrieve Retrieve Retrieve
- SADT SADT DFD
. Activity Data Item Bubble
Definition Definition Definition
[1.3.1 1.3.2 1.3.3

il

Retrieve
DFD

Data I'low
Definition
1.3.4

Retrieve
SC

Process
Definition
1.3.5

Retrieve
SC
Parameter
Definition
1.3.6

|

Retrieve
Code
Module
Definition
1.3.7

Figure 2-13,

Retrieve Entity

238

e e e T T T s T e T e Tl
R T A A PR R
iainenbensinadnaindnneinndmmdnsemud ac e al e o

Retrieve
Code
Variable
Definition
1.3.8

Definition

(1.3).

................

a2
-

Qualifier

letricve From Activity
Relation And Control

Definition Retrie

1.3.1.1

val

o
9 [Act1v1ty Tuple

Project lame
? Entity Name

Tuple Qualifier

9

./V < ls

La_atias ¢

\
\
\
~ [\ | |
- Retrieve From Retrieve From Retrieve From
* Activity_T0 A_Hierarchy A_History
Relation Relation Relation
1.3.1.2 1.3.1.3 1.3.1.4
3 QualifierQ |4 Activity IO ‘ Qualifierg|fA_llistory
o ? 6 Tuple Qualifier é A _llierarchy ‘} % Tuple
. -‘\ ZO / T u p 1 e ,//
\, / //
\\ P //
\\ / '//
\ ~ - //
\o 1 / i g L
Retrieve From Retricve IFrom Retrieve From
A_Reference A_Alias A_Desc
Relation Relation Relation
1.3.1.5 1.3.1.0 1.3.1.7
Qualifier? A_Reference Qualifier BA_DCSC

Tuple
Tuple

Data Dictionary D

atabase

Figure 2-14,

Retrieve SADT Activit

y Definition (1.3.1)

" 239
3
. R e . L e e e e - .“-’ e e W T CT . - - R
e T e e et e e e e e e et e e .
A TR ST VRIS Sw TRt i LI . WP U Ny T Pl Wy R Pl W VI TP O D g B DAL w. PRI TN P PPN | a P AV AN AS L RN P N S G NP LI U -2}

Retrieve From Data_Item
Relation And Control
Definition Retrieval

1.3.2.1
Qualifier ¢ gData_Item Project Name
& ~ Tuple g‘ Entity Name
l | |
Retrieve From Retrieve From Retrieve From

b D_Value_Set D_Hierarchy D_History
f Relation Relation Relation
: 1.3.2.2 1.3.2.3 1.3.2.4
o ' (
! Qualifer | b_Value_Set Qualifer éSD_History

0 & Tuple Qualifier |{ D_Hierarchy Tuple

f JO// Tuple

s o N Vs |
;» \\\\ ya -

[7 l ’ 1
Retrieve From Retrieve From Retrieve From
: D_Reference D_Alias D _Desc
h‘ Relation Relation Relation
’ 1.3.2.5 1.3.2.6 ’ 1.3.2.7
Qualifier? +D_Reference Qualifier |{pD_Desc
- 6 Tuple Qualifer 1. D_Alias "1 Tuple
{7 Tuple
1 \ Y
. \\
. N\
. \ y
= N b . . /7
® Data Dictionary Database
}

Figure 2-15, Retrieve SADT Data Jtem Definition (1.3.2).

v
A

240

FRIE VO Wy

N

LRI RS .

{

W—r—fr Yo

\e

Topw e LTy

Qualifier

T T ——

Retrieve From Bubble
Relation And Control
Definition Retrieval
1.3.3.1

Project Name

T ’.Bubhle
& Tuple T OEntity. Na

\ "

\ |

me

\

i X 1 i 1
Retrieve From \ letrieve From Retrieve I'rom
Bubble_10 B_tiierarchy B_History
Relation Relation lelation
1.3.3.2 1.3.3.3 1.3.3.4

|
Qualifierply Bubble_I0 | QualifierOQ|rB_ llistory
Tuple Qualifiereo |CB_Hierarchy Tuple
. ! Tuple
e
N s Ve
\\ /4/ ,./

§) - { 7 L
Retrieve From } Retrieve From l Retrieve From
B_Reference ' B_Alias B_Desc
Relation Relation Relation
1.3.3.5 1.3.3.0 1.3.3.7

| |
Qualifier? B_Reference . Qualifier? 6][_”05c
Tuple Qualifjcr? g’&_Alias Tuple
N i ’ Tuple
N /
\. [,

Data Dictionary Database

Figure 2-16. Retricve DFD Bubble befinition (1.3.3)>

[
o~
[

o« ot Tt N DRI,
OO ISR TR SRS 1 WP T Dot Tel Sl GEPE WA Bat N)

N oa = L ==

R LI

R R R CEC

-

letrieve From Data_Flow
Relation And Control
Definition Yetricval

1.3.4.1
Qualifier ? AData_Flow Project Name
O Tuple G SEntity Name
b , T ;)
Retrieve From Retrieve From Retrieve From
DF_Value_set DI'_Hiecrarchy DI _History
Relation lelation Relation
1.3.4.,2 1.3.4.3 1.3.4.4
=
Qualifier Oy \\\N\DF_Value_Sct QualifierlDF_History
%Tuple 6 {O/g tuple
Qualifier(DF_llierarchy /
L ya
j/
| S L 7 L
Retrieve From ' Retricve From letrieve From
DF_Reference DF_Alias DF_Desc
Relation Relation lelation
1.3.4.5 1.3.4.6 1.3.4.,7

Qualifier DF_Reference
? & Tuple

\

. .ﬂ'_i

Lot '..
Anmiinioiaiete '

Quali[ier? ‘D¥_Desc
' 1 Tuple

Qualifier&F | DI _Alias
t ’ Tuple

IL)

Data Dictionary Database

Figure 2-17. Retriceve DID Data_Flow Definition (1.3.4).

.........
R D

LI S WA R, UL Wy

M t. - - . . Y e T At A et . .“ T et ete Yt -t Y
Sl R Wl Sl AP AT AP R AP S S AP I, WU PUC . VUSSP SPRE W Wi s D W WU

242

vy

e

o

. LNt
A A]
Ala s A A Bmaala e A

Ty ~——r————— ~ - T P CBam a a0, P — > —————— " |

» ' |
1. Qualifier
Retrieve From Process 4
A Relation And Control)
Definition letrieval]
1.3.5.1 RS
I. @ {Process Project Name C
I Tuple ? Entity Name !
o
8 '
RA L , L
Retrieve From Retrieve From Retrieve IFrom
» Process_I0 Pr_Call Pr_Passed
Relation Relation Relation
1.3.5.2 1.3.5.3 1.3.5.4
1. Process_I0 1. Pr_Call 1.? Pr_Passed
® Tuple ? 8 Tuple . 6 Tuple !
\ /
| L ~ 7 T 7 1
- - Retrieve From | Retrieve IFrom / Retrieve From -
a4 \e Pr_Ilierarchy Pr_Alias : i Pr_History
Relation Relation Relation - -
1.3.5.5 1.3.5.60 1.3.5.7 L
> l. ? Pr_llierarchy l.? gPr_Alias 1. gPr llistory
o ‘ Tuple - Tuple #Q. Taple
\~ //) —
-.lz Rt /'1 J/ ‘]/
Retrieve From) Retrieve From ; Retrieve From
Pr_Reference P_Alg : Pr_Desc
Relation Relation i Relation
» 1.3.5.8 1.3.5.9 j 1.3.5.10 ‘
I.Q(Pr_Rcforcnco [. | P _Alg].9 AVr_Uosc R
. {3Q'Fuplo ? 8 Tuple Tuple]
[) \\.\ i ’/ i
il \‘rj..‘-..“./ d .54 .'/ -]
| Data Dictionary Database g
Figure 2-18. Retrieve SC Process Definition (1.3.5). o l
243
aladie bl Sl SR VL LAY LAY SISl Y AP UL el R A'-A .& "L"L_"\"L"M‘ S ﬂt" WL T N L h‘g'—.L'-. .A. ‘.- "‘ '-‘ “- "-‘ \. ‘-. "..:A. 'A-_.‘. \‘ '.‘ by '--

L4

...........

T——" —— T ——

1. - Qualifier

Retyievc From Parameter
Relation And Control
Definition Retricval

1.3.6.1
pd
.| Paramecter Project Name
%, 6 Tuple gEntity fame
i

D

Retrieve From

T

L

Retrieve From

| Retrieve From

P_Value_Set P_Alias P_Desc
Relation Relation Relation
1.3.6.2 1.3.6.3 1.3.6.4
l.? \P_Value_Set 1.? 8P_Alias 1.?(£P_Dcsc
: Tuple b Tuple " Tuple
X J .
\\\\ p //
\\\ % //
~ 7 .
S ~.
\e I \\1 7 B // 1
Retrieve From Retrieve From letrieve I'rom
P_History P_lierarchy P_Reference
Relation Relation Relation
1.3.6.5 1.3.6.6 1.3.6.7

1. P_History
9 8 Tuple

Figure 2-19.

\;L, : o

Retrieve 5C

...........

l.? gp_gigizrchy

l.? SP_Rofcrence

Tuple

Data Dictionary Database

Parameter Definiti

244

on (1.3.0),

......

[P WA

»
1. - Qualificer
: Retricve From Hodule -
| Relation And Control
Definition Retrieval
1.3.7.1 _
— 1
o 9
l 1. lilodule Project lame :
o (Cruple §) AEntity Name |
1
L [' L ,
r- Retrieve From Retrieve From "Retrieve From
ol M_Desc M_Alg M _Call 4
Relation Relation Nelation)
1.3.7.2 1.3.7.3 1.3.7.4
» 1. O |p H_Desc FojH_Alg I,] M_Call - :
Tuple O [Tuple Cc |ln Tuple
\\ ,,-’/' 7
. - N :
r T T] B
Retrieve From Retrieve From Retrieve From :
i (e M_Pass H_HMistory !i_Reference -
Relation Relation Relation 1
1.3.7.5 1.3.7.0 1.3.7.7 :
| |
1.9 M_rass 1. of H_History 1. © li_Reference =
" O Tuple n Tuple Tuple -
N 7 4
. e]
Iy ! -
Retrieve From { L Retrieve From ;
M_Alias W* Module_10]
» Relation Relation
1.3.7.8 1.3.7.9 1
1. O] M_Alias 1.°] todule 10)
o Tuple /0 Tuple |
. h ~_\. - L /“/ l
WL L) s N s
I Data Dictionary Database AJ
IFigure 2-20, Retrieve Code !odule Definition (1.3.7).
» 4
:'- 1
- 245 .
[]
. J
. -) -
T e Rt N e S AP S PN A AL N,

——— r——— ‘
)
1
1. - Qualifier
4
| Retrieve From Variable]
Relation And Control 1
Definition Retrieval]
1.3.8.1 o
'1
)
I 1.n Variable Project Name
J Tuple T .Entity Name]
O
1.]
L Rl L |
Retrieve From Retrieve From Rletrieve From i
V_llierarchy V_Desc V_Value_Set]
Relation Relation Relation)
1.3.8.2 1.3.8.3 1.3.8.4 1
) i S
1. V_Hierarchy l.c. 14V _Desc 1.¢c|pV_Value_Set N
? 6 Tuple & 6 tuple ? 6 Tuple]
™~ / "
- - ™~ Vi 3
. ‘ L4 \\‘ //' 4
\.\ yi 3 ‘q
| A7 1 K 1 o
| Retrieve Fron ’ Retrieve From Retrieve From R
V_History V_Alias V_Reference L
Relation Relation Relation]
% 1.3.8.5 1.3.8.0 1.3.8.7 4
1. [,V_History 1. (. V_Alijas 1.,V _Reference ;
? &iTuple ? é%Tuple Ef 3 Tuple g
| 2
) \\\\\
g //]
\l 2y Sy - ‘
) Pata Dictionary Database 1
i Figure 2-21. Retrieve SC Paramecter Definition (1.3.8).
) !
.
246 :
» !
e S T I D R RSSO

L .]

Modify SADT Hodify SADT Hlodify DID

Activity Data ltem Bubble

Definition Definition Definition)
1.4.1 1.4.2 1.4.,3

l .
L [L
Hodify DFD Hodify SC [ilodify SC
Data Flow \ Process Parameter
Definition Definition Definition >
1.4.4 l 1.4.5 1.4.0 -
]
1
- 1
o
8!
liodify Code liodify Code 1
Module Variable ;
Definition Definition
l.4.7 1.4.8

Figure 2-22, ilodify Entity Definition (1,4),.

et dodestnandhadth,

247 L

- e . - - AT N T T T RS TR U L P S e .
PR AT Vo W I SR ST AT AT WA AT WAL Wl S AT S Sodl WP A SLAE. I N 1IN A W . L PRI RS WP WA VAR WP I WA R WP W Sl Sy N iy s

4
9

,-v.vv

1. - Qualifier
2. - Tuple lodification

CSclect Llement Of SADT |
Activity Definition To |
Be Modified |
].4.1.1 ‘

? Llement Selection

R L | 1
Modify [ilodify Modify
Activity Activity_ T0O A_Hierarchy
Relation Relation lelation
1.4,1.2 1.4.1.3 T.a. 1.4
1. o ‘sz. 1.9] 2. 1. | 2.
| /// v £) o
s u
~ - / e
‘L \ ' J. ’// l/
Modify Modify llodify]
A_History A_Retference A_Alias -
Relation Relation Relation)
l1.4.1.5 1.4.1.6 1.4.1.7 -3
I.§ 2. 1.9 102, 1. 2, ?
? Q, ~ v - ? o
e J i .
//
AT ! 9
;(/ / f
Modify /
A_Desc / 1
Relation /
1.4.1.8 /
/
/
1. 2. /
?las | ; ‘
\-\ r w YN rd ke 1
‘1 Data Dictionary bDatabase '
Figure 2-23. llodify SADT Activity Delinition (1.4.1).
4
248
P
<Y
' _ <
e FRTRIE R a k:f. P L A T, I R AU .'”s-

1. Qualifier
2. - Tuple Modification

s A
-

F'Select Element Of SADT
Pata Item Definition
To Be lodified
1.4.2.1

}
o T 1
; Modify Modifyv Modify
" Data Item D Value_Set D_Hierarchy
hd Relation lelation Relation
1.4.2.2 1.4.2.3 I 1.4.2.4
1. . 2. 1. 2. 1. pl 2.
3? \C\ m/f\ . I al
- eV o
\\‘\ /"/ ,/'/
L 7 L X L
iodif liodify Hodify
D_llistory D_Reference D_Alias
‘e Relation Relation Relation
1.4.2.5 1.4.2.6 1.4.2.7
1.?{92. / l.clo 2. 1.5,
Modify \\\ /
D_Desc
Relation /
1.4.2.8
ool o 2.
o, C,
N '
. | /
™~ /
> N LV ‘. e 1

Data Dictionary Databasc l

Ficure 2-24. HRetricve SADT bata Ttem Detinition (1.4.2).

249

P T et e . . PR T T P P T TR TR SR T S S S S Lot T
PISEPNLSPNE WA AT Wy b PPN h I,) -] - i AT A Ul) b WP P I W AP SN LIPS Vol Vol Sy T WS S TP A b W,

I T S R A S P
PP L WL R YN P

Ty Pl A s et sy o

1. Qualifier

2, Tuple tModification

Sclect

Element Of DFD
To Be

bubble Definition
Modified

FAeAne I SuE Sma Sad o mms e

1.4.3.1

1 L
Modify ' MHodify Hodify
bubble Bubble_I10 D_Hierarchy
Relation Relation Relation
1.4.3.2 1.4.3.3 1.4.3.4
1. 2. Lot 2. 1.Q Q2.

T la < ¥

~ .

™~ Vi .
\\\ /S

-~ s /

L ST L 1
fodify ltodify - iHodif
B_llistory E_Reference: B_Alias
Relation Relation Relation
1.4.3.5 1.4.3.6 1.4.3.7

1. 9[0}42.
~.

d

Modify
B_Desc
Relation
1.4.3.8

1. $

N z N

? 2.

1.010Q 2,
NEE

Data Dictionary Database

Figure 2-25., Hodify DFD Dubble Definition (1.,4.3).

250

PR Tl R GV S R

P SR

s

et g
ala’ e g’ s o 4 o

RPNy WA

dadh

1
1. - Qualifier]
2. - Tuple Modification 1
- 4
Select Element Of DI'D B
Pata Flow Definition 9
For Modification]
1.4.4,1 =
-
[1
Modify ilodify ffodify J
Data Flow DF_Value_Sct DF_Hierarchy
Relation Relation Relation
1.4.4,2 1.4.4.3 1.4.4,4 |
_ f !
ol 2 o)
1.¢ “}. 1.? ‘,2. 1.? ¢ 2.]
\\\\ ’//’ //
o ' / -
1 - - .~ 2]
Modify lodif Hodify -]
DF_History DF_Refecrence DF_Alias T
Relation Relation lelation s
1.4.4.5 1.4.4.,06 1.4.4.7]
4 o) 2
1. 9 Q2. s 1.9 ?‘2. ‘1.9 EZZ. B
' .
Modify -
DF_Desc ™~]
Relation T
1.4.4.8 /)
/ 1
1. 9|9 2. =
_\
~
~. 4
Ny - Y S N b
Data Dictionary Database "3
Figure 2-26, Modify DFD Data l'low Definition (l.4.4).

251

v—— v——r—r-w

KECRC JOME

1. - Qualifier
2. - Tuple Modification
Select Llemcnt Of SC
Process Definition For
Modification 1,4.5.1
| . : L
Modify Modify Modify
Process Process_10 Pr_Call
Relation Relation Relation
1.4.5.2 1.4.5.3 1.4.5.4
1. Q2. 1.0 10 2, 1. J 2.
?j N 1/] ¥ ;9,/‘}“
. T :

.L \\~, L~ 'J’ / l/
Modify] ilodify MHodify
Pr_Passed Pr_llierarchy Pr_Alias
Relation Relation Relation
1.4.5.5 1.4.5.0 1.4,5.7

) 1.?|_Q 2. 1-,9,|;..;° 2. .9 le 2.
\eo \\\\ //// o
PN I -
Modify //Hodify Hodify
Pr_listory Pr_Refecrence Pr_Alg
Relation Relation Relation
1.4.5.8 // 1.4.5.9 1.4.5,10
) LI
1. ¢ l\9 2. 1. Ej P 2. L. o9 2.

........

Hodify
Pr_Desc

Relation
1.4,5.11

L. ?

Q$2.

~
~

[

Y

4

Data b

ictionary Database

Figure 2-28, llodify SC Process Definition

M IR TSP I NS W S Ty TR T

(1.4.5).

calatan

T e —

.......

ke

Dl adabad o)

L L o ~———r v —~ T T T N T N T N T W T W T W T W TN Y W TS Wy e W v, Wl w | vt ows wo v e = w

1. -~ Qualifier
2. ~ Tuple Modification

Select Llement 0f SC
Parameter Definition

For ilodification
1.4.0.1

A - AEODOS

; I , L
. Modify ilodify liodify
Parameter P_Valuce_Set P_Alias
I » Relation Relation lelation
1.4.6.2 1.4,6.3 1.4.6.4
['
; 1. §1q, 2. 1.9‘ o 2.)
® /
b
: L \ 7 .L Ve
{ Modify Modify liodify
. P_Desc P_llistory P_llierarchy :
Relation / Relation Relation v
1.4.6.5 1.4,6.60 ' 1.4.6.7 .
1. § lg 2. Lol o2, 1.9 o 2.
A .\\\
Hodify i
P_Reference
Relation
1.4.6.8
1. © Q2.
\\\\\\\ | i L L

Data Dictionary Database

Figure 2-28. i{lodify $C Paramecter Definition (1.4.6),

CEAIT AP Sl U B Y Dot S My

CL. ‘ <.
A D A T N W

Ladi S i 2hoie st B e M Miea Shae-Segn R e

-‘.'.

.v'rvTEr‘
. . S

o

Y

I

(odar e i e im0 g
et .

)

1.
2.

- Qualifier
- Tuple llodifi

cation

Select

filement Of
Jdodule Definition

Code

F'or ilodification
1.4.7.1
1 L
lHodify ilodify flodify
Hlodule ii_Desc M_Alg
Relation Relation Relation
1.4.7.2 1.4.7.3 1.4.7.4
1. ? CLZ' 1.? ? 2. l. ? ? 2.
. - ’
’,/
2 // -

J . R 1 - 1
Modify b Modify bl Modify
M_Call ll_Pass i_listory
Relation Relation Relation
1.4.7.5 1.4.7.6 1.4.7.7 .

o o
1. v ? 2. 1.41 ? 2. 1.? i? 2.

~ T /’/
: / /

L b :
Modify ~ 1 [liodif - Hodify
!l_Reference il_Alias ilodule_I0O
Relation Relation Relation
1.4.7.8 1.4.7.9 1.4.7.10

. o 2, . 2.,
1. ? 9 2. 1 ?) 1 ? ?
\ .
AN
N /
N
Ny, v N ro //
Data Dictionary Database
Figure 2-29, Nodify Code !odule Definition (1.4.7).
254
------- e .";. L \'.'.'ﬁu'-;"'-’;.;._;;r:.“':;::;"-:. MR q.‘ N m ._ L RO :;'; oy 1

1. - Qualifier

2. - Tuple Modification

Select Element Of Code
Variable Definition
For Modification

1.4.,8.1
N _
Modify Mlodify llodify
Variable V_llierarchy V_Desc
Relation Relation Relation
1.4.8.,2 1.4,8.3 1.4.8.4
10)
oy ’L 2. 1. Cie 2. 1. ? Q 2.

AN

N

Figure 2-30.

| N /A L A
Modify Jodify llodify
V_Value_Set // V_llistory V_Alias
Relation lelation Relation
1.4.8.5 1.4.8.6 1.4.8.7
1. 2. 1. o 2. 1. 2.

7 ‘ST 215 olo

/
Modify 1
V_Reference
Relation
1.4.8.8
1.9 !Q 2.
\\\\

Data Dictionary Databasc

flodify Code Variable Definition (l1.4.8).

LA ama oe Sem oae o e S

- v‘7 - -

:
L.
V_
{
2 :

ST e =N LW W WS YT ¥, o TN

[

I

Delete SADT
Activity
Definition
1.5.1

Deletc SADT
Data Item
Definition
1.5.2

Delete DFD
Bubble
Definition
1.5.3

|

| Delete DFD

Data Flow
Definition
1.5.4

(Delete SC

Process
Definition
1.5.5

|
Delete SC
Parameter
Definition
1.5.60

|

Delete Code
Module
Definition
1.5.7

Figure 2-31.

..........
......

Entity

250

Definition

........

1
Delete Code
Variable
PDefinition
1.5.8

(1.5},

.....

PPN '
L T
g PP G S T

PO RPN

PO SN RRrg

o e e
PRI WPV

. . PR
s oa a0 g

ke ke

e L
Aemdie Boe A o B o>

°

1. - Qualifier

2. - Delete Command
" 'ControL Delction Of -
r SADT Activity

PDefinition
1.5.1.1

F Project Namc?

Fntity Hame ?

- | L T 1
ol Delete From Delete From Delete From
' Activity Activity_10 A_ilierarchy
[Relation Relation Relation
1.5.1.2 1.5.1.3 1.5.1.4
g 1.0 1 1 -
r . . L0
r 2.6 2.9 2.
v \ N y
\\\\ o
- C / I L
Delete Fron delete From: Velete Fron
A_liistory A_Refercence A_Alias o
Relation Relation Relation R
1.5.1.5 1.5.1.6 1.5.1.7]
-]
..A..__.ﬁ
1.? 1, 1.? .
2. 2. ((? Z.Ov
04 (SR 4
[Delcte From
A_Desc 1
Relation Co
1,5.1.8 .
1.‘ /
2. - '
sl / :
_ﬂ Data Dictionary Databasce ‘ ﬁ:ﬁ]
= T
= R
Figure 2-32. Delete SADT Activity Definition (1.,5.1),
]
257 -

r;

1. -Qualifier

2. -Delete Command

vvvvvv

Control Delction Of SADT
Data Item Definition
1.5.2.1

Project Nane
Entity HName o
O 13

P
Aoal g4 4o

I
| L A
Delete From Delete From Delete From
Data_Item D_Valuc_Set D_ilierarchy
Relation Relation lelation
1.5.2.2 1.5.2.3 1.5.2.4
I, L. l.¢ |
2. ? ?’ Zb ? 2. ? /J
Tr— -
\.»” 3‘/" ’/‘/
pd
L) L 1
Delete From Delete From Delcte From
D_History D_Reference D_Alias
Relation’ Relation Relation
1.5.2.5 1,5.2.6 1.5.2.7
1. L l.0j 1.
2. g’ 2.07 2.0
("V‘ - 1 ? l
~.

.
Delete From
D_Desc
Relation
1.5.2.8

-

/

: 4 I, N i
Data Dictionary bDatabasc

Figure 2-34., Delcte SADT Data Ttem Definition (1.5.2).

PR A W S

P SR B T)

-]
4
3
»
1
1. Qualifier 3
2. Delete Command
g
B Control BDeletion Of DIFD - 4
‘ lJubble Definition ;
1.5.3.1 N
.
Project llame ? SRS
Entity lame Q '-;?
i | J
A 1 L
Delete From Deletc From Delete [rom
Bubble Bubble_IO E_Hiecrarchy
Relation Relation Relation .
- 1.5.3.2 1.5.3.3 1.5.3.4]
. J
1. l.oj 1.o
2, ?s?' 2.$?' 2°?Li
. ~\ /’/" ~.:/
~ / 1
’ \[™ - l' Ve l
Delete From Delecte From Delete From
B_listory B_Reference B_Alias .
Relation ‘elation Relation :
1.5.3.5 1.5.3.0 1.5.3.7 .
P - FOT—
g le T. T.0 i. 4
- 2. o 2.0 ¢ 2. 0 .
- ? i " o b]
.- L J
) :
o Delete From ; 1
B_Desc e / S
Relation / R
1.5.3.8 // SRR
T, /]
[
. /
g :
BN Y, - L NP ﬂ_
» | Data Dictionary Database ‘ 1
:3
Figure 2-34., Delete DFD Bubble Definition (1.5.3). j:
[4
:]
R 259
. 1
. .q
) »
: - e e e e e e o KX
;'. '''''''''''' o ‘4 PRSI 4_ Y ' gy AZL '''''' A -, T PRI N .lg\.ﬂ._".a Sttt et e s - ‘J

T i Al Sue S unc e suen 2 T

1. Qualifier
2. Delete Command

e

o
2 ket A

.fF—vv. v

e

e

N

r

NE

Control Delction Of DI'D
Data Flow Definition
1.5.4.1
Project lame
{ Entity Hane
Q
r = 1
Delete PFrom Deletoe Prom Delete I'rom
[Data_l'low DIF_Value_Sct DI'_Hierarchy
1 Relation Relation Relation
! 1.5.,4,2 1.5.4.53 1.5.4.4
*
{ 1. .0 1.0]
5 2. 4 2. L . v
2 9] ? 2 o
i r\ f/_/’ J /‘/]
J - ~ - : P
, Delete From \\\\>(// llelete t'rom - Delete IFrom
! DF_llistory = DI'_Reference DI'_Alias
1 Relation Pelation Relation
g 1.5.4.5 I.5.4.0 1.5.4.,7
’ 1.0 1.c 1.
E te 2. of') . 2.(5 2, 0
1 ~ P .- o [%
\\\\«/’ *
-_' /
.- _L// \)
- Delgte From “\\\ /
ﬁ DF_Desc ~ /
Relation /
A 1.5.4.8 /
/
g . /
o 2. O i
3 L)
ﬁ. $ /
] \ !
. \\ ;

‘ Data

NDictionary

Database

Figure 2-35., Delete Vrom DI'D Data Flow Deflfinition
260
A A e e e L e e AP AN RO

(1.5.4).

o e . . !
P GOSN t

ok ,‘.‘ Yy

PR e T
A L. o
Va'la 0 0 20 e alaa

B o

hd
N
1, Qualifier
2, Delete Command
ki h(IontroL Deletion Of SC -
d Process Definition
. 1.5.5.1
. l
- Projecct Hame
N Fntity Nan o
| Mttty ndmC‘C T
L . L
Delete Irom Delete From Delete I'rom
Process Process_I0 Pr_Call
Relation Relation Relation
1.5.5.2 1.5.5.3 1.5.5.4
1. 1.
2.~ % 2.0 ,
S'\ 4 O L ‘ »
\\\\\7 ¢
| ~
L &) 1
Delete From ~ Delete From ’ Delete From
Pr_Passed { Pr_Hierarchy Pr_Alias
Relation Relation Relation
1.5.5.5 ‘ 1.5.5.60 1.5.5.7
I 1 \ T, T *
- 2 . O . - <
) 2. (E ! ' 2. 1 ’ AR %
- SR TG R AN E
\ \) 4/"/ ‘; 7 0 ‘jr
| B % 1 e
Delete From W Delete From Delete From SRR
Pr_llistory | ‘ Pr_Rc[erencJ P_Alg SR
Relation [{ Relation Relation ’ 1
1.5.5.8 it ! 1.5.5.9 1.5.5.10 o
I
.0 / ‘\ T, T
2.0 ° ! 2. 2.)
b .// i i ¢ " ¢ ?
,,./ 3 ! /]
Delete From |~ _| ' !
Pr_Desc P
. Relation { t //
1.5.5.11 \ { /]
° | ’ j
I | /
R 1] 1
? T~ b . —ur A
Bata Dictionary Database ’
» Figure 2-36., felete SC Process Definition (1.5.3). i
201 S .".*
7
)
» !

3
i
E 1. Qualifier

2. Delete Conmmand

Control beletion Of SC

Parameter Delinition
1.5.0,1

Project {lame
Lntit liame
o

-

! . |5
Nelete From Delete From’ Delete Iron
Parameter P_Valuec_Set P_alias
1 Relation Relation Relation
r“ 1.5.6.2 1.5.6.3 1.5.6.4
. 1
1. ? ' _ 1. 1,
2.? é.? . 9
o

)
L
S —/ ‘///
4

° I \ | . P {
1 Delete From Jelete From ({ Delete Fron
P_Desc P_Hlistory P_llierarchy
Relation Relation Relation
1.5.06.5. 1.5.6.90 1.5.6.7
— 1. (@] i. ! 1. ‘. 2.
‘e j
2.0 ¢ oo o
1 - Vo (I\ I ?
\\/,
VAN
(v N
Delete From W
P_Reference /
A Relation /
: 1.5.6.8 \ ‘ /
_ | | | /
.“ l. [\ s (‘ /,
2- { | ' 3
¥ o N -
’ ~ “ ‘ 1)
} N o ‘ /
= S \ l ; L/
. b | ;
F_ ‘l.L e LJ L '
o L
3 Pata Dictionary Database '
Figure 2-37. Delcte 5C Paranmcter befinition (l.>.0),

262

ERIE .

A A AR AT AT
[TR . Wl AR TSI VY WO T . - k]

S el AT aaVas . . .

B T e T e Bt el e e I 1

1. Qualifier
2. Delete Conmand

Control Delction Of Code
Htodule Definition
1.5.7.1
Projecct Hame O
Entity Vame O !
L
L . 4
Delete Fron Delete I'rom Delete From
llodule Hodule_TI0 vi _Alg
Relation Relation Relation
- 1.5.7.2 1.5.7.3 1.5.7.4
»
1. 1. l.
{ 2. ? 2. 0 2. O
i\\ i v l
ye
| N ’// ///
I 7 L 7 1
Delete Iromw Delete P'rom Pelete [rom
. I Call ii_rass d_ilistory
{ Relation llelation Lelation
, g 1.5.7.5 1.5.7.0 1.5.7.7 -
(o
1 (B .o 1.
2.0 2. v 2. ©
! 7 T
N o T
. AN -
N
AN
I .
- Jj . _ e l
! Delete I'ron 1 Delete I'ron
s l_Reference] ii_Alias
f. Relation ‘ Relation
° 1.5.7.8. ; 1.5.7.9
} !
1. ! l.
‘ 2, { 2. ©
g o .
- \\\‘ .
\d Tegy l , | _/"
; Data Dictionary Database
3
: Figure 2-38. Delete Code Module Definition (1.5.7.).
FL‘
&
o 263
-
3
@
b .
& .

—
.

Qualifier

Project

Delete Command

T Control Delction Of Code
Variable Definition
1.5.8.1

Hame o

Entity Hane O ¥

I

L 1. s
Delete From Delete Fron Delete
Variable \V_Hierarchy V_Desc
relation Pelation Relatio
1.5.8.2 1.h.3.3 1.5.8.4

—_
1. C | 1.
2. Q ? 2. C 2. ©
v N o o !
\\ § //. T/ I/
A / e

L N - 1)

Delete From | Delete ltrom Delete
V_Alias

V_Valuc_Set
Relation

V_Illistory
Relation

1.5.8.5 1.5.8.0

1, 1.
2. ? P 2. ?
¢ /)

~<

Delete TI'rom
V_Reference
Relation
1.5.8.8

2.?1@[\

I"igpure 2-39,

Relatio

Data Dictionary Database

Delete SC Variable

204

Definition

(1.5.8).

T —w v v — " w

L I .
List SADT List SADT List DI'D
Activity Data ltem Bubble
Names Kames flames
1.6.1 1.6.2 1.6.3
L , L L
List DFD List SC List SC
Data Flow Process Paramecter
lames Hames Names
1.6.4 1.6.5 1.6.6
(o
_ & |
List Code List Code
Module Variable
Hames Hames
1.6.7 1.0.8
Figure 2-40., List Lntity tawmes (1.0).
2065
e e e T DRI e e

| ot BaA0e S AU S Brite vigec e B e A e e - T ey T,y A B v
- 3
b -
= o
g)
] i
y
{ |
[T I §
- Print SADT Print SADT Print DID .
il Activity Data Item Bubble h
Definitions Definitions Definitions
: 1.7.1 1.7.2 1.7.3
o)
fu 4
¢
L 1 . 1 .
Print DID Print 5C i Print SC
Data Flow Process Parameter .
Definitions Definitions Definitions | |
1.7.4 1.7.5 1.7.6 ‘ ;
! nq
<
-4
r
L &)
Print Code | Print Code j
lHodule Variable
Definition Definition <
1.7.7 1.7.8
Figure 2-41. Print bntity Definitions (1.7).

200

ORI

B L T

[N

IR DA N i TP U

iy

P

PRI
R

1

'

T e N

Nl anlhdii S SRt Sch Sh Sl Shart Jutt Ate Auntdeen E ol st ahts o g ad TV

Appendix C: User's Guide For The Data Dictionary
Generation Tool
This appendix provides information on how to use the
current implementation of the data dictionary generation

tool.

General Information: Data dictionary information is entered
and retrieved from this tool in two formats; a data
definition and a action definition. A data definition
describes the data or information wused by the action
components of a program. Included under the category of
data definitions are files and hardware accessed and used by
a program. Action definitions apply to those componcnts of
a program which use and manipulate information or data in
performing a functions. Procedures, functions, activities,
processes etc, are described in action definitions.
Introduction: A series of menu driven displays allow the
user to select the particular dictionary operation he or she
desires to perform. The user will also, by means of these
menu driven displays, select ecither a action or data
definition to manipulate. The user will also select by
means of these display menus the type of software
representation they wish to enter or retrieve dictionary
information for. This tool supports four different types of
software representations: SADTs, Data Flow Diagrams,
Structure charts, and Code.

General Instructions: The user will communicate with the

207

‘:‘ et

program in one of the following three mecthods.
1. You will be provided with a menu display of acceptable)]
response to questions. You will indicate your response by

entering the number corresponding to your selection and

T Yy

i. striking the carriage return on the keyboard. L"}i
'
3 2. You will be prompted to enter from the keyboard the
t answer to a question asked by the program. A guideline will i
%ﬂ be drawn on the screen to indicate the allowable length of - j
" 1

- your response. 1f your response exceeds the guideline, that

portion of text will not be accepted by the program. When
you have completed your response, strike the carriage return

?. to inform the progrém that you are ready to continue.

g 3. You will be asked a yes or no question by the program.

. You will indicated your respone by typing a v for yes or a n T

for no and striking the carriagpe return,

The following section will provide more specific guidance on N

how to use the data dictionary tool to input definitions for NS

the structure chart, SADT, data flow dia,rams, and code

software representations.,]
1. STRUCTURE CHARTS .@
A, Process Definition. You will be provided with the

following prompts.
L. Enter project name, You will be given a project name
which will ididentify vyour entries into the dictionary

database. The .ool will check this input. If you enter a

project waame not known to the tool, your input will be

268

EAY

Elel® W T Y Yo I N S

rejected and you will prompted for this information again.

* 2. Enter process name. Typre the name of the process you o
‘ wish to define. Process names mav not exceced 25 characters. . j
o 3. Enter process number. Type the number associated with ﬁ;ﬂ
this process on the structure chart, 'iii
4, Enter process description. UEnter a text description of]
the process being defined. You may enter this description]
in the form of several lines of text each containing 60 4
characters. The guide line will give you a visual fix on j
the allowable line length. When you near the end of a line |
of text, simply strike the carriage return and continue -- i

entering text on the next linec. When you have completed the

description, strike the <carriage return two consecutive _7i

- times to inform the program that you are ready to continue. ek

(. . - 4
5. Enter algorithm. The directions for this entry are

identical to those for the description entry discussed above
except that the information being entered describes the

algorithm used by the process being defined.

6. Enter the name of an input or output parameter for this

process. This prompt asks you to identify the internal '
<

input and output requirements of this process. This is not

a recquest for the parameters which are passed to this
process during a subroutine call. This information will not
always be on the structure charts, You may find it

necessary to create - new name for these parameter., This

information is usecd to define the interface requircements for

269

B
TN

]
b
]

{

N
{

e e e e e T T e e e e e T e T e T T e e e e e T e e e Te e e e e e o ST et e -

. - - - - *. -
T T T T T T T T e T T e e e e
A N (AP NAPRLIP . W I U AP I ILAPUAT LA G Yl Y Ta TP S I S SO SiGE TN SR/ R, B T 'J'Q._A'n‘l'A'A."'_. J'AL--A}J'J‘)')'_'-.AI > *as l‘) Y ‘.-\-

W ———— MRSt R Sath St i it s - s ien s Searin A 1.*.7?

Fs

POV

this process,

7. You will be asked to identify the parmeter entered above

o
as either an input or output of this process. Enter the 1
R
number corresponding to the proper selection in the display e
menu. }7&9
8. You will be asked to classify this parmeter as either !
] data or flag information. This is done by entering the
1 number corresponding to the proper selection in the display
#
menu.

9. You will be asked to enter a number which identifies the
position this parmater has is a call to this process ie 1
for first, 2 for second, etc.

10, You will be asked if any more input or output parameter

lo
&
3
b
3
L.
#i) exist for this process. Items 6 throuph 9 will be repeated
y until you respond n to this query.

. 11. Does this process call any other processes? A response
r_ of y to this questions allows items 10 through 19 to

appear. A responsec of n to this question shifts execution

- to item 20,

L 12, Enter the name of a process called by this process.
b - .
. 13, Are any parameters passed during this process call? A o ?

response of y to this question causes items 14 through 18 to

{.' be executed.

3 - <
14, “inter the name of the parameter being passcd. Enter j
the namec of the parametcr which is involved in the process Tl

- S ~:,‘1

+' call between the process being defined and the process R

270

CIRC R

identified in item 12.

15, Indicate if the parmeter is data or flag information,
Enter the number corresponding to the correct response
listed in the display menu.

16. Indicate the order of this parameter in the process
call. Enter 1 for first or 2 for second etc.

17, Identify this parameter as one of the following:

a. Passed from calling routine to called routine,
Parameter X 1is passed from calling process A to called
process B.

b. Parameter is returned by the called process to the
calling process . Parameter Y is returned by the <called
process to the calling process,

(;- ¢. Parameter is both passed from the calling process to the
called process and returncd by the called process to the
calling ©bprocess. Parmater 7 is both passcd to the called
process and returned to the calling process.

18, Are there any more paramcters passed during this call.
Enter y and the programs executes items l4 through 17.

19, Does this process call any other process? A y response
to this question causes items 12 through 18 to be executed.
20, Does this process use or change any global parameters?
A y responsc to this question causes the program to prompt
you to enter the name of the global parameter and to
indicate if it is used or changed by this process.

21, Enter the parent process of the process being defined.

271

e TV TP N
R T N N S T TR P e .

et . T e S - L
. S IR T TR I R SRR L I T I AP T S I ST AP el et et e e Vet DI I N I AN
o e e T T T e e e T e T T e e - S e Gt o " o ! ty
- PR MR SAE VR R i g R JEIR P P SR IR I, U LIS S AV P T N T T ol i S TP

[|

At el o

L |
RN 4

~ P ——— P—

This prompt askes f{or the parent structure chart of which
the structure chart being defined is its child. For example,
process A with a process number of 1.2 is the parent of
processes C and D with process number 1.2.1 and 1.2.2
respectively.

22, Does a reference to a previous development stage exist
for the process being defined? Ay response to this
question causes the program to prompt the wuser for the
reference type. Acceptable response to this prompt are
provided on a display menu. The program will then prompt
for the reference itself,

23, Do any alias names exist for this process? Ay
response to this question will cause the program to prompt
for the alias name and a comment as to why an alias was
used.

24, Does this process read from or write to any files? A vy
response to this question will cause the program to prompt
for the name of the file and ask for a indication as to
whether the file 1is read from or written to by the process
being defined.

25, Does this process read to or write from any hardware?
A y response to this question will cause the program to
prompt for the name of the hardware item and a indication as
to whether the hardware is written to or recad from.

26. Enter the date.

27. Enter the author's name.

272

- DRAERY
Jle 2o T e e

T

. ',-'
COER ._".

\A 2B o 4

et A

1. SRUCTURE CHARTS
B. Parameter Definition. You will be provided with the
following pronmpts.
1. Enter project name. Enter your team designation. Team
a, Team b, etc.
2.Enter parameter name. Enter the name of the parameter you
wish to define.
3. Classify the parameter as one of the following:

1. Global Parameter

2. Local Paramcter

3. Hardware Input or Output

4, Tile
Enter = the number corresponding to the correct response for
the parameter being defined.
4, Can a data type bec designated for this paramcter? Enter
y or n. If a n response is entered the program jumps to
item 5. If a y response is entered, the following display
appears.
1. Character
2. Real
3. Integer
Enter the number corresponding to the data type for the

paramecter being defined.

5. Can a minimum value be specified for this paramecter?
Enter y or n. A response of n will cause the program to

jump to item 6. A response ol y will causce a prompt for the

S
~]
»

L T TP
PR

- - S e et AT el et A
P - - W

. RO i A e e e T O e PSSP N ._'.'_",_\ S P
AL S Ml SRS PR R AT AP AP SR MR B AL SPSL AU AU VA LD R WSS G v R DA SR R

e e W

Andendoaion

e

'
PP A SR

["".

minimum value of the paramet r, Enter this minimum value

when this prompl appears,

6. Can a maximum valde be specificd for this parameter?)
Enter y or n. A n respone vill the cause the prozram to S
jump to item 7. Ay response will cause a prompt for the i
maximum value of the parameter to appear. bEnter the maximum ‘ ;

value wvhen this prompt appears.

7. Can a description of the range of values assumed by the
) }
parameter be entered? Enter y or n, A n response will
cause the program to jump to item 8. Ay response will
; cause a pronmpt for the range of values to appear. ’
4
L 8. Does a finite and reasonably small set of values exist
o 4
' which the parameter can assume? LEnter y or n. A n response 1
causes the program to jump to item 9. A y response will
- e
: ‘. cause a prompt to appear asking you to ecnter a value the]
parameter can assume, Once you have entered the value, the
o program will ask you if any more values exist. As long as Vi
you respond with a y to this question, you can continue to 4
4
enter a set of values the parameter can assume. When a n

response is detected for this question, the program jumps to

item 9.
9. Enter description. This prompt allows you to enter a

description of the parameter being deflined, The description

bttt dnadend

will be entered in a format which allows 060 characters of

text per line. A puide line will give you an indication of
how much space you have left on a line. When you approach
-
274
.
Ty
2.5 A B Tl L S T CH.IRPE . S -, IV e DU N - T T, T IR, I R SR, S S St I I) aal aados. Ca

r - e 8 T —— —— Ol TR TR TR TR T RSN TATTRCTYTIOWY L v . w I _w e

the end of a line, hit the rarriage return and the cursor

.rfvv. 0

will move to the nexl line ‘down. You can then continue
entering your text description. When you have completed the
description, hit the carriage return | timec enter the last
line of your description and a 2nd time to signﬁ] the

program that the description has been completed,

,cll?rjf;,gz:r*.

10. Is this parameter part of another parameter? Frter y
l or n. A n response to this question will cause the program
" to jump to item 11, A v response will causec a prompt to

appear which asks you to enter the parent parameter of the

parmeter being decfined.

34 1. Can the parancter beinpg defined bhe decomposed into
4 -
S other parameters? Enter y or n. A n response will —cause
p
" . . - .
s the program to jump to item 12, A y response will cause a

* - - -

Lo prompt to appear asking for the name of a parameter which .
L - . . .
1 make up the parameter being defined. After you have entered S
L the name of a parameter which makes up the parameter heing
I :
p defined, the program will ask you if any more parameter ’
. exist which constitute the parameter. A y response to this .
p question will allow you to continue entcring the names of .
\d parametcrs. A n response will causec the pronram to jump to
E item 12.
S
: 12, Does a reference to another developmnent phase exist for
g
i this parameter? Fnter vy or n. A n response will cause the
= progr m to jump to item [3, Ay response will cause the :
< , :
- following display Lo appear.
' 275

e e e A e TR e e L e A e

o T e e e T
- . . ~ - . - e et Lt e DRl - - - - a R ‘e et . - - -t e te t . - - ~"'.‘ et .
Cae'n s a PP ISP PREIPNE AN, VAR WAL VR0 AL VAL AR P PR PR LS. W D W K, WP P WA W L AL R ST S SR S S LIPS A

PP

Indicate the reference type associated with this parameter
by entering the number associated with the selection given
below.

1. REQUIREMENT'S KUMBER

2, SADT DATA ITEN HAME

3. DIFD DATA FLOW KAUE

You will select the appropriate reference type by entering
the number associated with one of the items given in the
menu. Once the reference type is selected, a prompt will
appear which asks you to enter the actual reference to the
previous design phasec. Once you have cntered this
reference, the program will ask you if any othei refercnces
exist for this paramcter. A response of y to this question
will continue to allow you to enter recferences to previous
design phases. A n response will cause the propram to jump

to item 13,

13. Do any alias names exist for this parameter? Fnter v
or n. A n response will cause the program Lo jump to item
14, Ay response will cause the program to prompt for an
alias name for the parameter. Once the parameter is

entered, the program will promzt the user for a comment
concerning the alias, iec , why an alias name was uscd., The
program will then ask the user to enter the name of the
process where the alias is uscd. The propram will then ask
if this alias name is used i1 any other processes, 1f the

response is y, the propgran will allow additional process

270

P—p—

names to be entercd. If the response if no, the program
will ask if any other alias nomes cexist for the parametere.
Ay responses will cause item 13 to be repcated. A n
respouse will cause the program to jump to item 14,

14, Enter the date, cxample mo-day-yr, 12-14-84,

Enter the current date in the above format.

s 15, Enter the authors name, Lnter vour namec

&- The items presented above provide a detailed example of the
scquence of tool prompts which will be provided by the tool
during the input of a structure chart process and parameter.
The input definition routine for the other software

represcntations are similar.

2. Definition Retrieval
In order for the tool to retrieve a definition, it requires
four pieces of information from the wuser: type of

representation, entity type (action or data), project name,

.EE. -7 iﬁifrfffiniw.,
-
®

and the name of the action or data entity. The type of
representation and the entity type arec desipnated by

entering the appropriate sclections from menu displays.

, .,—a——wfv,

Once this information is obtained the tool will prompt the

user to enter the project name and entity name associated

——

v

45 with the definition the user wishes to retricve., The tool
will then display the entity definition to the terminal

fﬁ screen, If the entity name entered by the user does not

correspond to any definition being maintained by the tool,

277

. . RN . R .
. . AN e e et e Tt t B L S R B SN
et bl d T a2 o B S VP P PU I G T RPN VUl Nl S TG PP A Sy AR

AD-A152 215 AN RUTOHHTED/INTERRCTIVE SOF THARE ENGINEERING TO0L TO
GENERATE DATA DICTI ONFIRlES(U) AIR FORCE INST OF TECH
WRIGHT- PRTTERSON AFB OH SCHOOL OF ENGI.. C W THOMAS

UNCLASSIFIED DEC 82 RFIT/GCS/ENG/SQD 29 F/G

TPrEERE

er
r
fr

n

fis

£ 3
HN
[++]

EEE

=
N
N

I

o I

——
— N
= I3

MICROCOPY RESOLUTION TEST CHART
NATIONAI BURFAL OF QTANDARDS 10AT &

&

)

t

a message to that effect will be displayed to the uscr,

3. Definition Deletion

To delete an entity definition from the dictionary, the user
must again select the deletion operation and the
represcntation type and entity type (action or data) from
the display menus. The tool will prompt the user for the
project name and entity name associated with the definition
to be deleted. Two deletion option are available :

1. Delete the results of an input operation. This
option simply removes from the dictionary the effects of an
input operation, This is the option to use when the user
wishes to crase the cffects of an crroneous input defintion

operation.

2. Delete all reference to an entity from the
dictionary. This option removes the entity completely from
the dictionary. Upon completion of this option, no

reference to the deleted entity exists anywhere in the

dictionary.

4, Print Entity Definition.

To print all entity definitions belonging to a particular
project, the user sclectls the appropriate representation
type and cntity type (action or data). The tool then
prompts the user to enter the project name associated with

these definitions. The tool then procceds to write the

278

definition to a file. As cach entity is written to this

file, the tool displays thre entity name on the terminal

screen. The wuser <can then use the conventions of the
operating systems to ohtain a hard copy of these
definitions. The following are the file names to which the

corresponding definitions are written.

FILENAME

prodef Structure Chart Process Definitions
padef Structure Chart Parameter Definitions
modef Code ilodule Definitions

vadef Code Variable Definitions

5. Error Messages.
The tool checks for «certain errors in wuser input and

displays the crror to the user and provides the user with an

opportunity to correct crrors, The tool checks to sce 1if
prompts which ask yes or no questions receive . or n in
response. If not, then the erroneous response is displayed

to the user and he/she is asled to re cnter their response
to the question., The tool also checks to sce if seclection
from menu displays are correct (ie number within the range

of allowable response has been entered.)

6. At current time, the data dictionary generation tool is
made up of several different programs stored under the

EE 690/DD690 directory on the VAX/UNIX system. A synopsis

279

R) * RIS 4 N - PN . e S .
- - D P M S T TR S T T TP R T T e N S I M YU .
e e e e S e ‘.-,.‘(.:',.a*. . _ o e e e N e NG ST TS N -

-~ -'-1.— ‘-- '>'~- . - 7 - - - - " o e Ta"
L. PR S WA S Sl P, O N PRSI AP I W R R W VS

of these programs and the functions they perform are
presented below: . - -
Program Name -
dd.out - Input and Retrieval of SADT Activity and Data ?&
Item Definitions, Structure Chart Process and s
Parameter Definitions.
incodemo.out - Inputs a code module definition.
outcodemo.out - Retrieves a code module definition.
incodeva.out - Inputs a code variable definition.
outcodeva.out - OQutputs a code variable definition.
printpa.out - Prints out all parameter definitions under a ‘
a specific project name.
printpro.out - Prints out all process definitions under a
specific project name. .
printmod.out - Prints out all code module definition'under a ‘

specific project name.

printvar.out - Prints out all code variable defintions under =

a specific project name.

280 T

et e

. PR . - L I e O Y e Tt N et - S et . G e
e, v e et e et -® .. LI AL D L AP SO A .'.'.'.¢.~~¢.~.'-.‘-_ -_'.“..'-_“-_'\'.‘ - ~
) -~ - N - Cet e, " . + et a"e" . t . v - - - - -

F SEIWES. W P W R R L VR L S SR R T T N R Y R Y YR N YT N VA O LY SN TP,

. - . e,
SRR . AT N e e N
[I L S LY
ROAOPADC AT S PR, L{!

AN e o e e e e e e

90

10,

11.

12,

Pressman,

Company,l

Zelkowitz,
Engineering",

1978).
Softech,

Element

A073119, 17 December 1976:

lfiller, Ldward.

Tutorial:
New York:

Roger S.

982.

tfarvin V.

e Lo LEAr I S A A i Snon S e 4

Bibliography

Software
Practitioner's Approach.

Inc. ilodel

Monitors.

Engineering: A

[+ 304

New York: llcGraw-llill Book

"Perspectives On Software
Computing Surveys, 10: 197-215 (June

of the Current Reporting and
Information Retricval System for Air Force Program
Report Number 1032-1, AD Hunber

IEEE, IHKC. 1979,

Requirements/Specification Tools,

Automated Tools For Software Engineering,
IEEE, INC. 1

Peters, Lawrence J.
Composition Techniques",

1085-1093,

Bergland,

Bergland,
Tutorial:

New York:

279,

"Software Representations and
Proceedings of ILEEE, 68:

(September 1980).

G.D. "A Guided Tour of Program Design
Metodologies'", Computer, 11:

13-36 (October 1981),

G.D. "Structured Design Methodologies",
Software Design Stratecgies (Second Edit.).
TEEE, INC. 1

981.

Bergland, G.D. and Ronald D. Gordon. "Software Design

Strategies", Tutorial:
(Second Edition).

Jones, Meilir Page.

Software Design Stratepies
New York:

TEEE, IHC, 1981.

"Transform Analysis'", Tutorial:
Software Design Strategies (Second lidition). HNew
York: IEEE, INC. 1

980.

Peter, Lawrence J. and Leonard L. Tripp. "Comparing
Software Design llethodologies”, Tutorial: Software
Design Strategies (Second Edition) New York: IELE,
INC. 1981,
Lefkovits, lenry C.
Wellisley: Q.E.D.

National

80-2115, Vashington:

Service,

Data Dictionary Systems.
Information Scicences, Inc, 1980,

Burcau of Standards.
Dictionary Systems Standard.

September

1980,

281

Prospectus For Data
leport Series NBSIR

lational Technical Information

s

T R W R O N T T W N e P R e . Pt T T S T T e T E

13, Illadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment., IS Thesis, AFIT/GCS/
EE/82D-17. School of Lngineering, Air Force Institute

) of Technology (AU), Wright-Patterson AFB OH, December

n 1982 (AD-A210 920).-

14. Rullo, Thomas A. Advances In Data Base ilanagement.
Philadelphjia: Heyden and Sons, 1980.

15. Leong-Hong Belkis W. and Bernard K. Plagman, Data
Dictionary/Directory Systems Administration,
Implementation, and Usage. New York: John Wiley And
Sons. 1982,

16, HNational Bureau of Standards. Functional
Specifications for A Federal Information Processing
Standard Data Dictionary System. Report Series NBSIR
82-2619, Hational Technical Information Service,

[January 1983.

17. Date, C.J. An Introduction To Database Systems.
Reading: Addison Wesley Publishing Co., 1981.

18, VWeldon, Jay-Louise. Data Base Administration.
New York: Plenum Press, 1931.

19, Atre, s. Database: Structured Techniques For Design,
Performance, and ilanagement. HNew York: John VWiley —
\e and Sons, 1980.

20. Ralph H. Sprague, Jr and Eric D. Carlson. DBuilding R
Effective Decision Support Systems. London: Prentice -
llall International, INC., 1932. SN

21, VWeinburg, Victor. Structured Analysis. HNew York, New -
York: Yourdon Press, 1978, _:}F

22, National Bureau of Standards. Federal Requirements lor
A Federal Information Processing Standard Data
Dictionary System. Report Series NDSIR 81-2354,
Washington: HNational Technical Information Service,
September 1981.

23. National burcau of Standards. [Iederal Information
Processina Standard For PData Dictionary Systems
Volume 1, General Description of FIPS DDPS, VWashington:
National Technical Information Service, August 1983, - 4

o iohndehe

A

24, INGRES Sclif-Instruction Guide (VAY/Vi!S Version 1.4,
Septemher 1981) Relational Technology Inc., 1982,

O T *
PP W) :

282

]
4":’;'-‘1

o
4 -
.
=
v,
E%
h* o'
.
I. .
x
b, .
.-
1
T
L
-'
)
5
3
.
.
9
=
o
K
S
e
b
8
3
%
.,
ot
-
£
A
L
-,

PR

25. LQUEL/C User's Guide (VAX/VIIS Version 2.1, September
1983) Relational Technology Inc., 1981,

o 26. Woodfill, John et al. "INCRES Version 6.3 Reference
B Manual. February 1981,

27. Brian W, Kernighan and Dennis l. Ritchie. The C
Programming Language. London: Prentice-Hall
International, IHC., 1973,

. 28 INGRES Reference tlanual (Version 2.1, VAX/VMS,
' September, 1983) Relational Technology Inc., 1983.

P P T

283

.
. P .
Sttut e .
SN LS)
PR S SRt

. "‘)
W,
Ia"" .«
| AR

) IR

VITA

Captain Charles W.. Thomas was born on 10 ilay 1954 in
Florence, South Carolina. Ille graduated from high school in
Hartsville South Carolina in 1972 and attended iewberry
College from which he reccived the dearee of Bachlor of

Science in Chemistry and Dusiness Administration in " HMay

1976, Upon graduation, he received a commission in the
USAF, He completed Communications-Electronics Officer
School in October 1977._. lie then served as Maintenance

Supervisor 773rd Radar SqddAron, Montauk AFS, New York until
March 1981. lle then served as Chief of Maintenance
Photographic Processing Interpretation Facility , 16th TRS,
Shaw AFB, South Carolina. While assigned at Shaw AFB, he
\;- completed all requirements and was awvarded a degree of
lMasters Business Administration fro GColden Gate Uni;ersity.
He entered the School of Engincering, Air Force Institute of

Technology in May 1983.

T - -7 B T ‘_,“ BT R BIMCIM R N e e ht Reh i S an T T Ty T — v e T R e
,‘J
) UNCLASSIFIED -
SECURITY CLASSIFICATION OF THIS PAGE ‘
REPORT DOCUMENTATION PAGE
's REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
) : UNCLASSIFILD)
‘ 2. SECURITY CLASSIFICATION AUTHORITY . 3. DISTRIBUTION/AVAILABILITY OF REPORT - J
Approved for public release)
. 7b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited o
4 PERFORAMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S))
.. AFIT/GCS/ENG/84D-29 :
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
. . (If applicabl
School of Engineering applicadle)
AFIT/EN
6c. ADDRESS (City, State and ZIP Code) 7b. ADORESS (City, State and ZIP Code)
Air Force Institute of Technology
w ‘right-latterson AFR, Ohio 45433
of g
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 1
ORGANIZATION (if applicable) 7
8c. ADDRESS (City, Stale and ZIP Code) 10. SOURCE OF FUNDING NOS. 3
. PROGRAM PROJECT TASK WORK UNIT - J
ELEMENT NO NO. NO. NO
11. TITLE (Include Security Classification)
Sce Box 19 j
) ' 12. PERSONAL AUTHOR(. . e
- J Charles I' ﬂxomas, B.S., Captain, USAF .
_ I ., 13s. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Vr . Mo, Day/ 15 PAGE COUNT
1S Thesis FROM 10 1934 becenber 203 1
16. SUPPLEMENTARY NOTATION . .1
.t 4
P b | d
. ' ’
i 17. COSATI CODES ‘IB.@JBJECT TERMS (Continue on reverse 1f necessar and identify by block number) 4
F'E‘IJ-D GROUP SUB. GR. Computer Software Sottware kngincering, 1
3 Automated Tools, Software Development
Data Dictigpnary Database Zoo g Ca
19. ABSTRACT (Continue on reverse tf necessary and identify by block number) . 4
Title: Al AUTOMATED/INTERACTIVE SOFTWARE ENGLIEERIRG TOOL j
b TO CENERATE DATA DICTTONARTIWS . W AFR TROT-
oy putiic TeiemE .-
"wfu\tcvcd ' \:“ K , ,f.',l S . 1
N M s . [N T ave on'
T , . prbf ot ot T e
hesis Chairman: Dr Gary B. Lamont Lews o ' 1
~ : 1o
F Y r
Waghi > E
. Y
. 4
; 1
) 20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
“ R |
: uNncLASSIFIEO/UNLIMITED R same as rer (J oTic users [J UNCLASSIFILD : L 1
. 228. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL o
) tInclude Arva Codet
B 3 . . . R R UIVAN T
Dr Gary B. Lamont (513) 255-5533 AIT/ERG
' DO FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGF oS

{
j

R e e e .. N . - e
. L i T P AU S S B SR SR . ‘ TS T e, T .
e st e T e Tt e e e e e e e e RPN A : T e T TR
LT, U D L AP S AP R L TP P PR P I A I A AR N A WAL IR

R e e . ATl TR o -~ T T AN il St A et S A SED MRS B S M i i T T W —w o i

UNCLASSIFIED

] SECURITY CLASSIFICATION OF THIS PAGE

o . i J;,. d«“u’a
i The purposc of his- investiza'ion is to design and develop
an automated/interactive software engineering tool which generates
data dictionaries, This tool is to provide the user with an
; interactive data dictionary tool to support the develop of software
: in all phases of the software life cycle. The tool supports data
. dictionary information specific mcthods of software representation
. The initial implementation of this tool supported four methods of
softwvare representation: SADT, data flow diagrams, structure charts,
and code. The requirements definition for the tool includes a
discussion of thc objectives and concerns associated with the tool
development.® Data flow diagrams are used to formulate a requirements
model, The preliminary design specifies the type of information to
be contained in the data dictionary for each of the methods of
software representation supported and the database design required
to maintain the data dictionary information. The structural framework
of the application software which provides the interface between the
tool user and the dictionary database is specified and structure
charts are used to model this structural framework. In detailed
design, algorithms are developed for the tool's application
software. | . .gle :-,..,a.&.//yw.—.aé neloolal,; —-> Pt f.

The dictionary database is implemented through the use of the
INGRES database management system. The application software is coded
using the C programming language. The application softwarc interfaces
. vith the dictionary database by means of embedded EQUEL (INGRES
n ® Embedded Query Language) statements in the C language source code.

, The tool was implemented on the VAX 11/780 computer using the UNIX
operating system.

[

" 2" 2 s A

