OPTIHRL PRRRLLEL HLGORITHHS FOR GRHPH I:IJNNECT!VITV(U)
RVARD UNIY CAMBRIDGE MR RIKEN COHPUTRTION LAB
J H REIF 1984 TR-08-84 NO0014-80-C-0647
UNCLASSIFIED F/G 9/2

" AD-A152 995

1

1.0 ke

"" = iR
=ik

L &< R

| RS

HLzs s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURFAU OF STANDARDS 1963 A

Aanac-aia_ e e -

OPTIMAL PARALLEL ALGORITHMS FOR
GRAPH CONNECTIVITY

John H. Reif

TR-08-84

AD-A152 095

‘Harvard University

Center for Research
in Computing Technology

TTIY KW v e
.3 . s, . v
N K] ¢ o

9

Aiken Computation Laboratory

33 Oxford Street
Cambridge, Massachusetts 02138

N
AR

T
Y "
o \
AORS §
. b
D S —————— I Viase

LABRG. mfun s Sy Mot ant

-, S RCAE R e it A ot S s keI il P SRR R

OPTIMAL PARALLEL ALGORITHMS FOR
GRAPH CONNECTIVITY

John H. Reif

TR-08-84

.
gy T .
¢ ™~ 2 i
f o \ :
Y 1 .
: A
£

I ————

SN D Sk b A

SECUMITY CLASGFICATION QF THIS PAGE (When Date Pntered)

- READ INSTRUCTIONS L
REPORT DOCU“ENTAT'ON PAGE BEFORE COMPLETING FOPM - ®
I. REPORT NUMBER 2. GOVY ACCCS?ION a 3. RECIPIENT'S CATALOGC NUMJERN :
4. TITLE (and Subdttile) S. TYPE OF REPORT & PERIOD COVERZD
OPTIMAL PARALLEL ALGORITHMS FOR GRAPH
CONNECTIVITY port - o -
6. PERFORMING ORG. AEPORT NUMBER L
] TR-08-84 R
7. AUTHOR(Y) 8. CONTRACT OR GAANT NUMBER(S) I
John H. Reif N00014-80-C~0647 : 1:- - '
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENTY, PROJECT, TASK ®
AREA & WORK UNIT NUMBERS
Harvard University
Cambrdige, MA 02138
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOAT DATE
Office of Naval Research 1984 ®
800 North Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 23
14. MONITORING AGENCY NAME & ADORESS(I! different trom Controlling Oltice) 15. SECURITY CLASS. (of thie report)
same as above]
134, OECLASSIFICATION/ DOWNGRADING B)
SCHEOULE ®
18. DISTRIBUTION STATEMENT (of this Reporr)
unlimited
. @
17. DISTRIBUTION STATEMENT (ol INe abetract sntered in Black 20, I dilferent lrom Repert) .‘ S :'
unlimited RO
°
18. SUPPLEMENTARY NOTES g
19. REY WORDS (Continue on teverse side It necoscary and idontily by block number) o
graph connectivity, parallel algorithms, optimal algorithms, :
randomized algorithms , N
20. ABSTRACT (Continue on reverse eide Il necessary and identily by sleck number) .
see reverse side. ':_ o
o

0D

FOMM
FILR:

1473

EDITION OF 1 NOV 6815 OUSOLETE
S/N 0102-018- 4401 !

' .
e bLHUNITY CLASSIFICATION OF THIS PASE ' When Date Faterad) -
L
]
0. Abstract o
- We give a new randomized parallel RAM algorithm for finding a spanning
‘ forest of an undirected graph in logarithmic time. These time bounds hold -
L
wich arbitrary high probability for any input graph (i.e., we do not assume
-
random input; these bounds hold for the worst case input graph). This result ‘
assumes a parallel RAM mocel which allows both concurrent writes and con- - o o
4
current reads. o
Furthermore, we show that if the graph is not very sparse (i.e., if
the number of edges is at least a logarithmic sguared factor more than the - ° v e
®
. . - 1
number of vertices) than we can achieve a linear processor- time proauct .
(even for logarithmic time bounds) for finding a spanning tree--which is ?".jj
optimal for the parallel RAM model. Furthermore, we can also achieve a _..b_.4
®
linear processor, time product for even sparser graphs with only slight time]
increase. !]
? ®
. 1
® ® |
-
<Y
o ° <

PRI IR S P -
Y R A e L UL P SR}
. R e A A T S A

R T AT ISR ST S
. g [e DU WY = ata'a L R LT G W

R LRI A b St O S Pl aren o T
~ Tl A K Ty T Y N T Y N N N e R Y Y e v e T Y - — . -

OPTIMAL PARALLEL ALGORITHMS FOR GRAPH CONNECTIVITY

»
s aitate

John H., Reif —_——
crnnien Bop ! -
Aiken Computation Laboratory ;5 CEMEY N S --j
Division of Applied Sciences A ét -

Harvard University R .
Cambridge, Mass. 02138 BRI !

1

0. Abstract A'l i ;

We give a new randomized parallel RAM algorithm for finding a spanning

forest of an undirected graph in logarithmic time. These time bounds hold

with arbitrary high probability for any input graph (i.e., we do not assume
random input; these bounds hold for the worst case input graph). This result
assumes a parallel RAM mocel which allows both concurrent writes and con-
current reads.

Furthermore, we show that if the graph is not very sparse (i.e., if

the number of edges is at least a logarithmic sgquared factor more than the

number of vertices) than we can achieve a linear processor- time rroduct O
E;: (even for logarithmic time bounds) for finding a spanning tree--which is :
*‘ ' optimal for the parallel RAM model. Furthermore, we can also achieve a i
linear processor, time product for even sparser graphs with only slight time 1
increase.
®
:)
. i
: o
=

e et At e ma e s .- . .)
Tt s T R UP S S 3
. . FRIAN - '« a

P L 4'_?‘ S el
(L S P UEPR U S LS A P T TP S S PR ST S AR . . N\
‘ re < 2 Py - - N T "™
. 3 A F e] T, Sy A A P Uy A'Aa' A 2 ' aa"n

- . w MM PG SEn vt ovnsen pae s)

® R

n 1. introduction -

The performance of a parallel algorithm can be specified by bounds on

its principle resources: time and processors. For most nontrivial graph
il problems, the product ».-Tof the number of processors P and the execution T

time T is lower bounded by §l(n+m), where n,m are the number of vertices
. and edges, respectively of the input graph in adjacency list representation.
[; Thus for these graph problems, an algorithm is optimal if P-T =0(n+m). Of R
course if we have an optimal algorithm with time T, then we also have ‘

(by the obvious processor simulation) optimal algorithms for any time bound

T', where T<T'<0O{n+m).

The depth first search algorithm of [Tarjan, 72] was very successful in
producing optimal sequential RAM algorithms for a large number of graph
problems such as undirected graph connectivity and biconnectivity [Hopcroft
and Tarjan, 73]. No optimal graph searching method has been proposed for

parallel RAM, for polylog time bounds, except in the special case where the

graph is extremely dense (i.e., n|=Q(n2)).
Previous work in parallel RAM algorithms has yielded few optimal results

for graph connectivity. [Chin, Lam and Chen, 82]) give Of(log n)2 time con-

! nectivity algorithms requiring (n2+m)/(log n)2 processors, which is optimal
only if n\=Q(n2). [Reif, 82a] gives a O(log n)T time connectivity algo-
rithm for undirected graphs using randomization (see also [Reif, B82b] for a

’ description of randomized P-RAMs), but requiring an processors. All these
algorithms assumed the parallel RAM model generally known as the P-RAM, (see

TNote: We use the notation T(n) =0(f(n)) if Vo>13¢>0 such that - 2
Prob(T(n) Sc £(n))> 1-n~ > for sufficiently large n. .

- - DI -, K

A AN) EaE S L T i T P A S TR

S I I I P o T A T S e R S S C. CUASRY

' la’a’a ot CAN R S A S AT _.-_-.._...',-\,__.- o et e e em T e e v T Lt Lt T T T T et e e s T e,
- Saa e S A Al Tt et et Toetl e N T L T et e s e

[]

»

o W
. RIS et SNt et e,
R W ettt T T e e B . S PR SRR R N}

NS SO S Tl Wl -~ L PR ALV R S S PR N AR WAL R A, S S U S T

Y T T ———————

-3~

[Fortune and Wyllie, 78]) where concurrent writes on the same memory cell are
disallowed.

The WP-RAM (see [Shiloach and Vishkin, 81]) is a stronger parallel RAM
model where concurrent writes on the same memory cell are allowed, and re-
solved arbitrarily. This machine model has the advantage that graph problems
appear to be easier to solve on this model. The P-RAM can simulate the WP-
RAM with only logarithmic factor of time increase and the same number of
processors, by use of the parallel sorting algorithm of [Reischuk, 81].

In particular, [Shiloach and Vishkin, 82) give an 0O(log n) time,
O(n+m) processor WP-RAM algorithm for undirected graph connectivity and
[Tarjan and Vishkin, 83] recently extended this result to biconnectivity.
These algorithms have processor, time product {((m+n)log n), which is a
logarithmic factor more than optimal. [Vishkin, 84] gives an almost optimal
n processor, and O(log n log*n) time bound for finding the number of
successors on a linear list of length n. Vishkin conjectured that random-
ized techniques would also be needed to get optimal parallel graph connec-

tivity algorithms.

1. Organization of our Paper and Statement of Results

In Section 2, we give our randomized WP-RAM algorithm for finding a
spanning forest of a graph in simultaneously O(log n) time and n+m
processors. The randomized algorithm is surprisingly simple {in fact con-
siderably simpler than previously known algorithms), and so seems to be

useful in practice.

In Sections 3 and 4 we describe some modifications of our algorithms

which results in an optimal processor-time product of O(m+n). In particular

B UL S P T N O
D s STt e St L e

"

PSP T TV

. f
PP

Section 3 gives an O(log n) time and m/log n processor algorithm for the

. 2 .
case the number of edges m is at least n(log n) . Furthermore, Section 4

gives an O(log n loglog n) time and m/(log n loglog n) processor algorithm

for the case the number of edges m 1is at least n logn loglog n.

In Section 5 we give as an interesting application of these techniques
an optimal parallel algorithm for finding the biconnected components of any
undirected graph. This algorithm has the same complexity bounds as our
parallel spanning forest algorithms. In the full paper we give applications

to finding minimum spanning trees and Euler cycles.

2. A Randomized Parallel Algorithm for Spanning Forests

Let G=(V,E) be an undirected graph with vertex set V=1{1,...,n}

and undirected edge set E of size m. Let its directed edges be

D(E) = {(u,v)|{u,v} €E} U {(v,u)|{u,v} €EE}. We shall associate a distinct
processor with each vertex and edge of G. For each vertex v €V, we shall
have integer variables R(v), sex(v), and 1link(v), and for each directed
edge (u,v) ED(E) we have a boolean variable tree-edge{u,v). The
following algorithm is to be executed by a WP-RAM as defined in Section 1.
We assume that each processor v €V is provided with an independent random

bit generator RANDV(O,l).

Algorithm RANDOM-MATE
Input graph G = (V,E)

Initialization:

begin

for each v €V in parallel do R(v) «v

for each (u,v) €D(E) in parallel do tree-edge(u,v) «false

end

et N 7 .- - - MR T IR R S T L L AU A AR S .‘.'.'.‘-'\.
IR RIS PP SR N S S AR S R I L T A S NP S
et b B A" tataal afa’ata'a"asa’a%r'a atuta"a"

LT WY

i

SR ~\ ARG)

Main Bodys

¢ntil (R{u) =R(v)) for all (u,v) €ED(E) do

for vach v €V in parallel such that R(v) =v do
if RANDV(O,l) =1 then sex(v) +female
else sex(v) +male
for vach (u,v) €D(E) in parallel do mate(u,v)

fur each v €V in parallel do R(v) +R(R(v))

we define:

y recvedure mate(u,v):

— e aa

Fa——

[E—

if wex(R(u)) = female and sex(R(v)) = male then 1
begin
i sliempt to assign link(R(u)) + (u,v)
;‘.,‘.A;A
. if link(R(u)) ={(u,v) then]
5 begin . f
.
' t.ree~edge(u,v) < true :
»
R(R(u)) « R(v) 1
| end .
| -]
X end 2
D .
4
i ywndix I proves: g
. THLUREM 1. The total number of parallel steps executed by RANDOM-MATE ts]
)
J G({log n) (Note: see the footnote in the Introduction for the definition - 4
-~ - —— vy
:‘ of our ©O{) notation.) - -]
- S
- L4
) s
1
1
i RO O e S S S R A I T L e e e -

A ~ < g LT T T T T e S s e e W v w, v

-6~

3. An Optimal Algorithm for at Least n(log n)2 Edges

Let G=(V,E) be an undirected graph with n vertices and m2n(log n)2
edges in adjacency list representation (we use a vector for each adjacency .. 5.}
list).)

Our modified algorithm RANDOM-MATE' will first reduce (with high likeli-

hood) the number of edges and nodes to m/log n. This is done by modifying

RANDOM-MATE to execute its Main Body exactly doflog n' times, where do is)
a constant. We shall assign a set Pv of dlflog n' distinct processors for
each vertex v €V where dl>2 is a constant. Each processor p€PV
independently chooses a random list E(p) of do'log n' directed edges ia DI(E))
(not necessarily distinct) departing vertex v.
In the Main Body of the resulting procedure RANDOM-MATE' is the same
as that of RANDOM-MATE except that the statement)
"for each (u,v) €ED(E) in parallel do mate(u,v)"

is replaced with

:
’

"for each v €V and p€P_ in parallel do y
1
begin :
choose and delete the first edge e from E(7) ?;}: ;

mate (e) o

end")

After the doflog n' iterations of this modified Main Body, RANDOM-MATE'
deletes each "loop" edge {u,v) €E such that R(n) =R(v) using time
O(log n) and m/log n processors. With high likelihoocd, the resulting graph ’ 4 ‘]

is of size m/log n. The final stage of RANDOM-MATE' is to apply the original

k
¥
b
)
%
X

algorithm RANDOM-MATE to this resulting graph, using m/log n processors. ' ,}

Appendix II proves: ’ J
THEOREM 2. The total nwrber of parallel steps exccuted by RANDOM-MATE'

ig *(log n) using d;m/log n processors. N

c I L T I O P N I P R e A T

. gt R o LR SR At S A T ST S L IR S L SR e e e
- D T RN WA W WP D A A P P P P A A N A AT A I S A T L AT S SRS T
3 A el - . »

MR 'rj.-_.'.v v F

T.

e

COROLLARY 2. For all T such that log n<TSn+m, we find a spaming tree
in time O(T) using an optimal number of processors P =m/T assuming

m 2n(log n)z.

4, An Optimal Parallel Algorithm for at Least n log n loglog n Ecces

let G=(V,E) again be an undirected graph with v={1,...,n} and
m=]E| edges which we assume are in adjacency list representation (when each
adjacency list is given by a vector). To obtain optimal processor bounds for
the case m2n log n loglog n, we assign a processor p to each
Tlog n loglog n' distinct consecutive directed edges in the adjacency 'ist
of each vertex v €V. We name these processors by distinct numbers in
P={1,...7(n+m)/(logn loglog n)'}; so for each p €P, E(p) initially con-
tains at most log n loglog n edges departing the same vertex, and
D(E) =Up€P E(p).
Algorithm RANDOM-MATE"

Input graph G=(V,E)

Initialization
n+ |v|
m <~ |E]|

p+ {1,..."(m#n)/(logn loglog n)'}

for each vEV in parallel do R(v) «v

for each p€P in parallel do
construct E(p) as described above

for each (u,v) €E(p) do tree-edge(u,v) +false
end

end

.."~.'- -."- RO -"‘v'.‘-‘ .-'.‘-' = ."'.'.'."' e e T e e A : L
P N L I A O P T T n i T L PN T
o - T A T e T

D A i -aivn o

DL e e - - o

4 o Aa 4 o s s .

. ;
Py "

o e
e e T e
DI SRR b S I

. .
— gl

—rr ﬁ"vrfr“. 0 <..-

v

.

T
B)

Outer Loop:
for j=1,...,"loglog n' do
Inner loop:

for i=1,...,c,flog nl do

1
begin

for each v €V in parallel such that R{(v) =v do

if RAND (0,1) =1 then sex(v) «female
else sex(v) *male
for each p €P in parallel do

begin
choose a random (u,v) €E (p)

mate (u,v)
end

for each v €V in parallel do R(v) «R(R(V))
end
for each p €P in parallel
do delete each ecdge (u,v) €E(p) such that R(u) =R(v)
end

Execute until termination Main Body of RANDOM-MATE

Output Spanning forest F ={{u,v} €E|tree-edge(u,v)}

(Note the constants ¢ are chosen so as to achieve any given

1’ %2
likelihood of success as bounded in Lemma 8.)

In Appendix III we prove:
THEOREM 3. RANDOM-MATE" takes O(log n loglog n) steps using

(m+n) /(log n loglog n) processors.

18 e
A

BT B PP U T TP VP Y- %

........

- » .. - - - - - - .t -
L AP SRR L L VRN SR S AL R R A T

COROLLARY 3. For all T such that 1log n loglog n €T <n+m, we can find a
spanning tree in time O(T) using an optimal number of processors P =m/T,

assuming mZn log n loglog n.

5. Optimal Parallel Computation of Biconnected Components

let G=(V,E) be an undirected graph with n = IVI vertices and m= |E|

edges, In Appendix IV we show

THEOREM 4. The bicomnected components of G can be computed in time 0O(T)
using P =m/T processors, in the case eitier (T2logn and m>n(log n)z)
or (T2log n loglogn and m2n log n loglog n).

The key idea is to reduce the problem (by repeated use of our optimal
graph connectivity algorithms) to computing the biconnected components of a

smaller graph G" with only 0O(n) edges and vertices.

R T SO

ST I A e A P P I e, .

] Vet et e e T e te b R T L R T A P DR D L K «™ytan
- .

e s il

-‘ h--- ". ...-\~., ‘.. 'k\'« a “ I. .!. .-- - “‘
RSOV RIS P DI

LT T N T W T W T e g ——— - r -
Ty P v Janit Tl T

REFERENCES

Angluin, D. and L.G. Valiant, "Fast Probabilistic Algorithms for Hamiltonian -
Paths and Matchings,” J. Comp. Syst. Sei. 18 (1979), pp. 155-193. e

Awerbuch, B. and Y. Shiloach, "New Connectivity and MSF Algorithms for
Ultracomputer and PRAM," IEEE Conf. on Parallel Comput., 1983.

Chin, P.Y., J. Lam and I. Chen, "Efficient Parallel Algorithms for Some
Graph Problems”, CACM, Vol. 25, No. 9 (Sept. 1982), p. 659.

Chernoff, H., "A Measure of Asymptotic Efficiency for Tests of a Hypothesis
Based on the Sum of Observations,” Annals of Math. Statistics, Vol.
23, 1952,

Fortune, S. and J. Wyllie, "Parallelism in Random Access Machines," Proc.
%. 11th ACM Symp. on Theory of Computing, May, 1978.
!

L Hirschberg, D.S., A.K. Chandra and D.V. Sarwate, "Computing Connected
i Components on Parallel Computers,” CACM, Vol. 22 (1979), p. 461.

Hoeffding, W. "On the Distribution of the Number of Successes in Indepen-
dent Trials," 4nn. of Math. Stat. 27 (1956), 713-721.

Hopcroft, J.E. and R.E. Tarjan, "Efficient Algorithms for Graph Manipula-
tion," Comm. ACM 16(6), 372-378 (1973).

Kucera, L., "Parallel Computation and Conflicts in Memory Acces," Informa-
tion Processing Letters, Vol. 14, No. 2, April 1982.

Nath, D. and S.N. Maheshwari, "Parallel Algorithms for the Connected Com-
ponents and Minimal Spanning Tree Problems,” Information Processing
Letters, Vol. 14, No. 2, April 1982.

Preparata, F.P. and J. Vuillemin, "“The Cube-Connected Cycles: A Versatile
Network for Parallel Computation," CACM 24 (1981), 300-310.

Rabin, M.O., "Probabilistic Algorithms,” in: Algorithms and Corplexity,
J.F. Traub (ed.), Academic Press, New York, 1976.

Reif, J., "Symmetric Complementation,” 14th ACM Symp. on Theory of Com-~
puting, San Francisco, Cal., May 1982a, pp. 201-214.

Reif, J., "On the Power of Probabilistic Choice in Synchronous Parallel
Computations," 9th Colloquium on Automata, Languages and Programming, N
Aarhus, Denmark, July 1982b, pp 442-456. ,_{}

Reif, J.H., and P.G. Spirakis, "The Expected Time Complexity of Parallel
- Graph and Digraph Algorithms,” TR~11-82, Aiken Computation Lab.,
o Harvard Univ., Cambridge, Mass. (1982).

Reif, J.H. and L.G. Valiant, "A Logarithmic Time Sort for Linear Size Net-
works," Proc. Fifteenth Annual ACM Symp. on the Theory of Computing,
pp. 10-16 (1983).

R. Reischuk, "A Fast Probabilistic Parallel Sorting Algorithm," Proc. of
22nd IEEE Symp. on Foundations of Computer Science (1981), 212-219.

Savage, C. and J. Ja'Ja', "Fast Efficient Parallel Algorithms for Some
Graph Problems," SIAM J. on Computing, Vol. 10, No. 4 (Nov. 1981),
p. 682.

Shiloach, Y. and U. Vishkin, "Finding the Maximum Merging and Sorting in a
Parallel Computation Model,” J. of Algorithms, vol. 2, (1981), p. 88.

Shiloach, Y. and U. Vishkin, "An 0(log n) Parallel Connectivity Algorithm,"
J. of Algorithms, Vol. 3 (1983), p. 57.

Tarjan, R.E., "Depth Forest Search and Linear Graph Algorithms," SIAM
J. Computing 1(2), pp. 146-160 (1972).

Tarjan, R.E. and U. Vishkin, "An Efficient Parallel Biconnectivity Algo-
rithm," Technical Report, Courant Institute, New York University,
New York, 1983.

Ullman, J. "Computational Aspects of VLSI," Computer Science Press, 1983.

Vishkin, U., "Randomized Speed-Ups in Parallel Computation," Prcc. cf the
- 16th Annual ACYK Symp. on Theory of Computing, Washington, D.C.,
April, 1984, 230-239.

-
-

et et e e e e gt il e e e T ., .t . “ . - DR SN

e T e T e T T T T e S e e e T B . . RS

AU IR AL A I RPN IV IR 2 SN PN RSN A W I AN 3 P IS ARAAEALS et e it Vs Ve
. -~ ata a

Al

APPENDIX |, Proof of RANDOM-MATE

LEMMA 1. On termination, F = {{u,v} €E|tree-edge(u,v)} is a spaming forest

of G.

Proof. We use an induction argument (easily seen to hold for the first

iteration) that for just before iteration i=1,2,... of the until loop,

T p——

(1) Fi ={{u,v} €E|tree-edge(u,v)} is a forest, and

(2) for all u,v€v, R(u) =R{v) iff u,v are in the same tree in

R

F,
p 8

(3) for all v €V, R(R(V)) = R(v).

Let 'rw be the tree in Fi with root w=R(w). (By the induction
hypothesis, there is some such w). Suppose 1link(w) is assigned some
edge (u,v). Then sex(R(u)}) # sex{(R{v)) and hence w = R{u) # R(v).

This implies by the induction hypothesis that v 1is in a tree of

TR(v)

Pi distinct from Tw' Observe that {u,v} is the only edge departing orx

entering Tw for which tree-edge(u,v) is assigned true on the i-th

iteration. Hence Fi+1 must be a forest. At the last step of the i-th

iteration each vertex of Tw has R(v) assigned R(v), establishing the

induction hypothesis for the state just before the i+l iteration. a
A maximal tree spans an entire connected component of G,

let nj be the number of trees in Fi that are not of maximal size.

LEMMA 2. If n, 21, PIOb(ni+l < (3/q)ni) 21/2.

Proof. Llet Tw be a tree of Fi which is not of maximal size. Then
there exists at least one edge (u,v) €D(E) departing T, to a distinct

tree TR(v) where R(u) = w ¥ R(v). With probability 1/4, sex(w) = female

and sex(R(v)) = male. Hence with probability at least 1/4, 'I‘w is

merged into some other tree (not necessarily TR(V)) on the i-th iteration.

g e RS P Iy e T A A e A R T TN Y L I N R
EACREACAURC RGN FCPCICATI R, SR Pl R, I Ay e T s T e e e e e e e e e e

RGN

A i 4 S SR SFa S By B AFI e SUA i e e Ao il am o pa e o o0 >

ﬁ. T rT———r——— Nt
3 i
p Sl

A2

In the worst case, each nonmaximal size tree 'I‘w in F:. has orly .
¥l S
one such departing edge (u,v) where w # R(v), and each targct v has
a distinct R(v). The random variable noa is upper beourAcd ir this f-_;.-_::
worst case by a binomial variable B (which is the sur. of n - o
ni,3/4 1 R
independent Bernoulli variables, each with success probabhility 774,
3 3 i ,
Observe Bni’3/4 has mean (./4)ni and n, ., is upper
ded B . < P B <€{3/4'n)
bounded by ni,3/4' so Prob(nl_u (3/4)ni) 2 Prob(“1’3/4 3/))
Z1/2. s}
Our time analysis will utilize the following prob.atilistic inczrality
{
4
k‘ which can be derived (see [Angluin and Valiant, 79)) from the heilln of -

[Chernoff, 52] and ([Hoeffding, 56].

LEMMA 3. Let g be the sum of N <independent genmeiy’p> wapiotlon 7oy

be the mean of qg. Ther for all o >0 there exis's a c>1 surl *h

Prob(g €c w< %u for N sufficiently lav;..
2

let i0 = 1 and inductively for k=1,2,... let ik be the~ ninimum
number such that n, <(3/4)n, . By Lemma 2, each i ie uwyiey reounded -
1, lk—l k
by an independent geometric variable with expectation 2. Si-..
k
o .
< = = i arl ey o dtirge
nik 1 for ko log4/3 n, I zk=l i is the total w a

0
tions of the until loop executed until termination. The ¢ o+ +% - -F

I is O(log n). Each execution of this loop takes only o cor-t -t ter -,)
of steps. Hence by Lemma 3, we have Theorem 1. o :'_:;::-_:
NI
ST

L' <

. -

' R

o i A . R T NI NS R A . A . - . C NP

a® et s ettt T et PR e e e e e e et CRE T -~ - P A R T I IR S S IR Jel e
P R AP IATCH S S SR, T P P AP P el P S AP I IR IR AR A I A LIS L I R S 0 I SR P

{ . - . T - ST TR S ._J'_'."L-L.- - e, e N SOME AR s Ll RaCa N e it 0 sEs sl SR e > —p——

3 =

A3

h APPENDIX 11. Proof of RANDOM-MATE'

It is easy to show that Lemma 1 holds and further more its induction

hypothesis also holds. Let F! = {(u,v) €E|tree-edge(u,v)} be the

forest defined on the i-th iteration of the modified Main Body of RANDOM~
MATE'. Let a i-loop be on edge which on the i-th iteration departs and
enters the same tree of Fi. Let a tree T of Fi be semi-active if at
least l/log n of the set of edges departing Tw are not i-loops. Let ni

be the number of semi-active trees of Fi.
] -]
LEMMA 5. If ni>1, Prob(ni+1<(1 1/4e)n) 21/2.

Proof. Let Tw be a semiactive tree of Fi which is not of maximal size
with root w=r(w). By the pigeon-hole principal, there are at least one
vertex v of Tw where R(v) =w and at least 1l/log n of its departing
edges are not i-loops. Let (u,vl) ""'(u’vdllog n) be the edges chosen

by the d. log n processors of Pv on the i-th iteration. For each

1
i=1,... ,dllog n, with independent probability at least 1/log n, R(u) ¥
R(vj). (Note: the independence is due to the fact that the processors
initially choose random edges independently of each other.) Further-
more, if R(u) ¥ R(vj) then, Prob(sex(R(u)) = female and sex(R(vj))=
male) = 1/4. Since 6122, the probability that T does not merge into
some other tree on the i-th iteration is at most (1/4)(1-1/log n)log n
<(1/4) e-l. An argument similar to Lemma 2 then shows that n1!+1 is upper

bounded by a binomial with expectation (1-1/4e)ni' and hence Prob(n;_+1

< (1-1/4e)ni)) Z 1/2. D

Recall that do'log n!' is the number of iterations of the Main Body

of RANDOM-MATE'.

~

DI TR U S L | g e . I . . .
- DR ., S . - e v w
. LA * . LT A P I e, e e e v

AN AT]
. . IR Y - - Y - - - * A » .
ARSI AT S e Ry I I L R PP P A LA i

ol d

M as o s o |

A4 »

f R S Y

LEMMA 6. Ya >0 3a.>1 suoch that there are no semtactive trees in F
0 doflog n?
with probability of least 1 - 1/m". 2
A Proof. Let io=0 and inductively for k=1,2,... let ik be the
minimum number such that n{k < (1—1/4e)q{ . By Lemma 5, each is bounded g
k-1 ’
by an independent geometric variable with expectation 2. Let k1 be the
3 k R
1

. 1 ,
maximum number such that Zk-l i < dlflog n'. Now suppose there is an]
. . . - a -
active tree in F! with probability more than 1/n . Then the - 4
X doflog nl »
bound on zkil ik given by Lemma 3 is violated, a contradiction.

Since each iteration of the Main Body of RANDOM-MATE' takes only

. . . . R Q -
constant time, Lemma 6 implies that with probability at least 1-1/n, » 1
the number of the "nonloop edges” after execution of Main Body is tf}?:i
at most m/log n. By Theorem 1, the final execution of RANDOM-MATE on this :.FﬁTE
-4 . . -.r; —
reduced graph takes O{(log n) time using m/log n processors. Hence we [] |
have proved Theorem 2. a

- S
4

|
- h
{ .
..'::1
»]

i

.
b
13
'V
)
)

Camlt AR A DAY . LR N A S
S NN PPN SOl e P PPN - 2. PRI AT WA ISP S T S . et .
PAL WL Sy) PESL AN N B LT L LI PP S ARL I T IR PRI DI PR N S R SR

——w

Palian T ——
-~ . —

. RO I S e e T R RN ————y,

A5

APPENCIX 111, Proof of RANDOM-MATE"

Again, it is easy to show by induction that lemma 1 holds

LEMMA k. On termination, F = {{u,v} €E|tree-edge(u,v)} is q spanning
tree of G.

Furthermore, the induction hypothesis stated in the proof of Lemma 1,
also holds for RANDOM-MATE".

On the j-th iteration of the Outer Loop and the i-th iteration of the

Inner Loop,

(1) let F, ;= {{u,v} €E|tree-edge (u,v)}

(2) let E; jED(E) be the set of edges remaining
’

(3) 1let D; j(Tw) c E, 3 be the set of edges departing vertices in
’ ’

T , where T is a tree of F,
w w

i,]
(4) let a tree T, of F., . be agetive if at least half cf the edges
’
of D, .(T) do not enter a vertex of T
i, 7w w
(5) 1let n, 3 be the number of active trees in Fi 3 that are
’ ’

not of maximal size.

The following lemma is similar to Lemma 5.

LEMMA 7. If n, ., 21, Prob(n,

i, ' <(7/8)ni'j) 2 1/2.

+1

Proof. Let 'I‘w be an active tree of Fi 3 which is not of maximal size,

’

and containing vertex w = r(w). Then, since 'I"“v is not of maximal size,

there exists at least one edge (u,v) €Di j(Tw) entering a distinct tree
?

TR(v) where w ¥ R(v). Furthermore, since 'rw is assumed to be active,

by the pigeon-hole principal for some p €P such that E(p) CDi j('Tw) at
Y

least one half of the edges (u,v) €E(p) have R(v) ¥ R(u). Let (u,v) be

any edge of E(p). With probability 1/4, sex{(w) =female and

S UL LTI S R e .- m . R .
“ PN P T S PR s s TR P ILR Sr SRUC R E STSLEPE SPO SPR S

)

. - LT TR T s T T ——————.
A 5 T e e e H

A6 ®

sex(R(v)) = male when R(u) =w and R{(v} # w. Furthermore, if
(u,v) is a random edge of E(p), Prob(R(v) # R(u)) 2 1/2. Hence with »
probability of least 1/8, ’I‘w is merged into some other tree on the i,j .
iteration. As in the proof of Lemma 1, we observe that the worst case is
where there is exactly one edge (u,v) €Di,j(Tw) such that R(v) # w, and °

when each R(v) is distinct. 1In this worst case, ni+1 3 is upper bounded
’

by a binomial variable B which is the sum of ni j independent Bernoculli !
’ |
- 4

variables, each with success probability 7/8. But since the mean of B is »)
7 < . 3 , <
{ /8)111’:1 and B upper bounds ni+1,j PIOb(ni+1,j (7/8)ni'j)
2 Prob(B <(7/8)ni j) 2 1/2. o
! . y
»
Recall that clflog n' is the number of iterations in Inner Loop. T
‘.f;
LEMMA 8. va>o0 3c; >1 such that there are no active trees in _ -
. .o a -
cl’].og n'+1,3 with probability at least 1 - 1/n . 1
Proof. Let i . =0 and inductively for k=1,2,... let i . be
e o,] k,]
the minimum number such that n. <(7/8)n, . By Lemma 7, each i, ., .
1 . 1 . li
k,j k-1,3 !
is bounded by an independent geometric variable with expectation 2. Let
k
k. be the maximum number such that I 2 . € c,'log n’. Now suppose DR
2 k=1 "k,j 1 Sl
there is an active tree in F_ | . ., with probability more than
x 1 log n'+1,j »
a . , . - P
1/n. Then the bound on Zkfl lk 3 given by Lemma 3 is violated, a ; .,1
= ’
o

contradiction.

. -,
S

Since each iteration of the Inner loop takes only constant time, each

iteration of the Outer loop takes total time 0(maxp€P IE(p) |+ log n).

lemma 8 implies that with probability at least 1 -l/na, the number of edges

assiqned to each E(p) dcecreases by at least a factor of two on eath iteration] J

o o v . et ., .
..-\".-..,Q'..‘ AP e S N s e e e e
AW et et et e T R TR S I T -
= U IR W RN LA LI W T AT e e T R S N S A CR IR
o PR VA N W PN T R SR UL ST A P S WAL A

- - -
ALY > % e . -,
PO AN AR I I

AT LT T R T R T T T e Ty

A7

of the Outer loop. Furthermore, the number of vertices also decrease by at S

least a factor of two on each iteration of the Outer loop. Thus the total

L e . '
LIRS
—x A" . .

execution time of the floglog n' iterations of the Outer loop is
O(maxpEP |E(p)|(1 +1/2 4+ ...) + loglog n log n) € O(log n loglog n)

with probability at least 1 - l/na_l, and hence is O(log n loglog n). B
After completing allthese iterations, the size of the graph has
decreased to (m+n)/log n with probability 1 - 1/n® 1. We then can C]

apply Theorem 1 to bound the execution time of the call to RANDOM-MATE

(using (m+n)/(log n loglog n) processors)to be O(log n loglog n).
Thus the total execution time of RANDOM-MATE" is O(log n loglog n) using

i{n+m) /{log nloglog n) processors, proving Theorem 3.

P U S e P LUPL I) O
*, W T Ot et e T T - - Tt et e e et et
N SN I N e L e el

: e R

- CIAN -,
St At N e e, PRI
LW N VN W W W R R R o T e A I A M X LN

- . A -~ - - N —o

P

[S PSR T o AT

v ——— ——— —— —y ~y —
—— " Pl e g ooy T " I Al

A8

PP Y

i APPENDIX V. Finding Biconnected Components
Algorithm BICONNECT]
l input undirected graph G = (V,E) ‘
{
begin
[1) compute a spanning forest F of G
; [2] Root each tree in F and compute its preordering and the number r
of tree descendants of each vertex.
[3] Construct a forest F' derived from F by adding a new induced
) vertex v_ for each edge e €F and in place of edge e = {ul,uz} -]
substitute edges f{u ,v .} and {v_,u,}.]
[4] Construct a graph G' = (V',E')
i where V' = {ve]e €F} is the set of induced vertices .
— i -]
and E {f(ul,uz)‘{ul,u2} € E-F} e
and f(u ,u,)) = {ve A } where
: 1 2 B
' if u,, u, are unrelated in F (i.e., one is not the ancestor e
: 1
of the other) then el, e, €EF are the tree edges entering ul,u2
from their parents, or if (without loss of generality) Uy is the 7%
' ancestor of u, in F, then e1.€F is the tree edge departing u, on
| 1
the tree path from ul to u, and e, €F 1is as previously described. ;
o)
[5] Compute the set C(G') of connected components of G°.]
7
J [6] Construct graph G" = (VUC(G'),E") from F' by collapsing
together all vertices in V' which are the same connected compo- ;3
- 4
nent of G'. ©
‘ {7] Compute the set B(G") of biconnected components of G".
. ~4
. ‘d
: n
. "
]
A
e
- T TP P .'-“-‘-" \\"..‘--'.-.' .-'1
AL UL SRR TSR

v

A9

[8] Merge together all biconnected components of G" connected by
articulation points in C(G'). (To do this, we construct a graph
G"' = (B(G") ,E"') whose vertices are the biconnected components
of G" and each edge {Bl,Bz} € E"' connects biconnected compo-
nents 81,32 €B(G") with a common articulation point in C(G').
Then we compute the connected components of G"'.)

[9] For each edge e €E, let v be its induced vertex in V', let

Ce be the connected component in C(G') containing Ver let

Se be the set of biconnected components in B(G") with articula-

tion point Cor let Be be the connected component of G"'

containing Se'

Qutput Be for each e €E.

e, are in the same biconnected component of G

LENMA 7. \v’el,e2 €E, e 5

tiff B =B .
€ €

1

Proof. 1If Ce = Ce , then we can find a path of tree edges in F from
1 2
e, to e, and also a disjoint path of nontree edges in E-F from e,

to ey and hence e., e are in the same biconnected component of G

1’ 2

(however, the reverse is not necessarily true).

Suppose S = S but € # C_ . Any biconnected component BES
e e e e
1 2 1 2 1
is thus connected in G" to both articulation points Ce and Ce .
1 2
Using the fact that B is biconnected, we can find two disjoint paths

i ' ' = = .
2L p, in G Dbetween edges e!, e, such that Ce' Ce and Ce, Ce

1 1 1 2 2
But since C , = C , we can find disjoint paths pi, pi in G from e,
1 1
to e! and since C , = C_, we can find disjoint paths p!, p% in G
1 2 e, 1 2
from eé to e,. Moreover, pi, pl, p{ can be shown to be disjoint from

pé, P, P5. Hence pi- " p{ and Pé’Pz'Pg are disjoint paths in G

LR S P
LN - T S e S .- e et e .
- LAY) P T O TR Tl L AP S

A Te N - TN ot

. . et - -

PRS0 e
DRI 8 - Ca
IV 0 I R R U .. L i IR SR T T I S I I T Lot . et

e T DU N S P T ST T S o S N P e AR

)

I
PP O L

t e A A B e e o e B T o~ e

W

AlQ

(
|
|
}
i‘ from el and e24 so el, e2 are in the same biconnected component (again, J

the reverse may not be true). d

- Suppose B = B but S # S . By induction on the minimum length
. e e e e
a 1 2 1 2
of paths in G"' from Se to Se , we can similarly construct two
1 2
disjoint paths in G from e to e,. Hence e,r e, are in the same]

biconnected component.

On the other hand, suppose e, e' are in the same biconnected compo-
nent. Then there is a simple cycle C of G containing both e and e'.
C can be written as the mod-two sum of some Kk basis cycles Cl""’ck
with respect to the tree of F which is the spanning tree of the connected 3
component of G containing e1 and e, These can be ordered so that for 1
each 1 >1, Ci has at least one edge, say e in common with Cj from ;;?F

j <i. It is easy to verify that B =B if e, e' are on the same basis
e e'

graph. Suppose they are on the distinct basic cycles.

We assume an induction hypothesis that Be = ... = Be for some
1 i+l
i, 1<i<k. Then since e, is in both Ce and Ce for some j <i,
i 3
. we can show B =B . Thus we have B = ... =B ., But e€C, and
. e, e, e e i
2 j i 1 k
- e'€C., for some i and j. Hence B =B =B =B ,. G
. e e, e. e
u. The spanning forest F computed in step [l1], and the connected compo-

nents computed in steps [5] and [8] can all be computed using our randomized
algorithms RANDOM-MATE' or RANDOM-MATE". Since F and G" have each only
?. O0(n) edges and vertices, steps (2] and [7] can be computed in time 0(log n)
time with n processors by the results of [Tarjan and Vishkin, 83]. Note

that the ancestor tests required in step [4] can be done (see [Tarjan, 72])]

in constant time using the preordering and descendant numbering computed in
step [2]. The graph constructions in steps [3), [4) and [8] can easily be
done with a processor-time product O©O{(m+n). Theorem 4 follows from

Theorems 2 and 3. a

[N

2 a% o - e RO . Te 4 N, - P T R P e .
b b ol s e S UP Tl WL S PR U IS

{

5—85

