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0. Abstract 0 0

We give a new randomized parallel RAM algorithm for finding a spanning

forest of an undirected graph in logarithmic time. These time bounds hold
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with arbitrary high probability for any input graph (i.e., we do not assume

random input; these bounds hold for the worst case input graph). This result

assumes a parallel RAM model which allows both concurrent writes and con-

current reads.

Furthermore, we show that if the graph is not very sparse (i.e., if

the number of edges is at least a logarithmic squared factor more than the

number of vertices) than we can achieve a Zinear processor- time product

(even for logarithmic time bounds) for finding a spanning tree--which is

optimaZ for the parallel RAM model. Furthermore, we can also achieve a

linear processor, time product for even sparser graphs with only slight time

increase.
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0. Abstract A
We give a new randomized parallel RAM algorithm for finding a spanning

forest of an undirected graph in logarithmic time. These time bounds hold

with arbitrary high probability for any input graph (i.e., we do not assume

random input; these bounds hold for the worst case input graph). This result

assumes a parallel RAM model which allows both concurrent writes and con-

current reads.

Furthermore, we show that if the graph is not very sparse (i.e., if

the number of edges is at least a logarithmic squared factor more than the

number of vertices) than we can achieve a linear processor- time rroauict

(even for logarithmic time bounds) for finding a spanning tree--which is

optimal for the parallel RAM model. Furthermore, we can also achieve a

linear processor, time product for even sparser graphs with only slight time

increase.
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1 Introduction

The performance of a parallel algorithm can be specified by bounds on

its principle resources: time and processors. For most nontrivial graph

problems, the product ).Tof the number of processors P and the execution

time T is lower bounded by 0(n+m), where n,m are the number of vertices

and edges, respectively of the input graph in adjacency list representation.

Thus for these graph problems, an algorithm is optimaZ if P.T =O(n+m). Of

course if we have an optimal algorithm with time T, then we also have

(by the obvious processor simulation) optimal algorithms for any time bound

T', where T 4<T' < O(n+m).

The depth first search algorithm of [Tarjan, 72] was very successful in

producing optimal sequential RAM algorithms for a large number of graph

problems such as undirected graph connectivity and biconnectivity [Hopcroft

and Tarjan, 73]. No optimal graph searching method has been proposed for

parallel RAM, for polylog time bounds, except in the special case where the

graph is extremely dense (i.e., m=Q(n 2 )).

Previous work in parallel RAM algorithms has yielded few optimal results

for graph connectivity. [Chin, Lam and Chen, 82] give O(log n)2 time con-
2 2

nectivity algorithms requiring (n +m)/(log n) processors, which is optimal

only if m= (n 2). [Reif, 82a] gives a O(log n)t time connectivity algo-

rithm for undirected graphs using randomization (see also [Reif, 82b] for a

description of randomized P-RAMs), but requiring n m processors. All these

algorithms assumed the parallel RAM model generally known as the P-RAM, (see

*1.

tNote: We use the notation T(n) =O(f(n)) if V>l 3c>O such that

Prob (T(n) <c f(n))> 1-n for sufficiently large n.

- .
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[Fortune and Wyllie, 78)) where concurrent writes on the same memory cell are

disallowed.

The WP-RAM (see [Shiloach and Vishkin, 81]) is a stronger parallel RAM

model where concurrent writes on the same memory cell are allowed, and re-

solved arbitrarily. This machine model has the advantage that graph problems

appear to be easier to solve on this model. The P-RAM can simulate the WP-

RAM with only logarithmic factor of time increase and the same number of

processors, by use of the parallel sorting algorithm of [Reischuk, 81].

In particular, [Shiloach and Vishkin, 82] give an O(log n) time,

O(n+m) processor WP-RAM algorithm for undirected graph connectivity and

[Tarjan and Vishkin, 83] recently extended this result to biconnectivity.

These algorithms have processor, time product Q((m+n)log n), which is a

logarithmic factor more than optimal. [Vishkin, 84] gives an almost optimal

n processor, and O(log n log*n) time bound for finding the number of

successors on a linear list of length n. Vishkin conjectured that random-

ized techniques would also be needed to get optimal parallel graph connec-

tivity algorithms.

1. Organization of our Paper and Statement of Results

In Section 2, we give our randomized WP-RAM algorithm for finding a

spanning forest of a graph in simultaneously O(log n) time and n+m

processors. The randomized algorithm is surprisingly simple (in fact con-

siderably simpler than previously known algorithms), and so seems to be

useful in practice.

In Sections 3 and 4 we describe some modifications of our algorithms

which results in an optimal processor~time product of O(m+n). In particular

. . . ' .

• -4ii
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Section 3 gives an O(log n) time and m/log n processor algorithm for the

2
case the number of edges m is at least n(log n) Furthermore, Section 4

gives an O(log n loglog n) time and m/(log n loglog n) processor algorithm

for the case the number of edges m is at least n logn loglog n.

In Section 5 we give as an interesting application of these techniques

an optimal parallel algorithm for finding the biconnected components of any

undirected graph. This algorithm has the same complexity bounds as our

parallel spanning forest algorithms. In the full paper we give applications

to finding minimum spanning trees and Euler cycles.

2. A Randomized Parallel Algorithm for Spanning Forests

Let G= (V,E) be an undirected graph with vertex set V={l,...,n}

and undirected edge set E of size m. Let its directed edges be

D(E) = {(u,v)I{u,v} EE} U {(vu)]{u,v) EE}. We shall associate a distinct

processor with each vertex and edge of G. For each vertex vEV, we shall

have integer variables R(v), sex(v), and link(v), and for each directed

edge (u,v) ED(E) we have a boolean variable tree-edge(u,v). The

following algorithm is to be executed by a WP-RAM as defined in Section 1.

We assume that each processor v EV is provided with an independent random

bit generator RAND (0,1).V

Algorithm RANDOM-MATE

Input graph G = (V,E)

Initialization:

for each vEV in parallel do R(v) -v

for each (u,v) ED(E) in parallel do tree-edge(u,v) -false

end -.. ...

o=. .o .... .. . .* .'o.- .-..... o"o°.-o. .o., ..... j . . , .. .... .... .. • ...--

. . . . . . . .. .. . . . . . . ....... . ..+ 5?I" .". LL tL . LLi. .. . %...--.q
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*';>ti1 (R(u) =R(v)) for all (u,v) ED(E) do

begin

fur each v EV in parallel such that R(v) =v do

if RAND (0,I) =1 then sex(v) -female
--- V

else sex(v) -male

e. ,ach (u,v) ED(E) in parallel do mate(u,v)

f _ each v EV in parallel do R(v) 4-R(R(v))

end

S. :iiring forest F={{u,v} EE tree-edge(u,v)}

We define:

L_( -3 re inate(u,v):

f .ex(R(u)) = female and sex(R(v)) = male then

begin

t,_- .npt to assign link(R(u)) (u,v)

if link(R(u)) = (u,v) then

begin

tree-edge(uv) 4 true

end

end

A..-ndix I proves:

111LOREM 1. The total nunber of parallel steps executed by RANDOM-MATE Is I
C.(log n) (Note: see the footnote in the Introduction for the definition

uf our 6( ) notation.)

. ..".

. ... .. ... . . . .. .. ....... . - .,............. .':1,- .. ;- -.. .
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2
3. An Optimal Algorithm for at Least n(log n) Edges

2I
Let G =(V,E) be an undirected graph with n vertices and m.>n(log n)

edges in adjacency list representation (we use a vector for each adjacency

list).

Our modified algorithm RANDOM-MATE' will first reduce (with high likeli-

hood) the number of edges and nodes to m/log n. This is done by modifying

RiANDOM-MATE to execute its Main Body exactly d rlog n' times, where d0 is

a constant. We shall assign a set P of d rlog n ' distinct processors for

each vertex v EV where d1 >2 is a constant. Each processor p EPv

independently chooses a random list E(p) of d0 rlog n' directed edges in D(E)

(not necessarily distinct) departing vertex v.

In the Main Body of the resulting procedure RANDOM-MATE' is the same

as that of RANDOM-MATE except that the statement

"for each (u,v) ED(E) in parallel do mate(u,v)"

is replaced with

"for each v EV and p EP in parallel do~V
begin

choose and delete the first edge e from E)

mate (e)
end"

After the d 0rlog n' iterations of this modified Main Body, RANDOM-MATE'

deletes each "loop" edge (u,v) EE such that R(n) =R(v) using time

O(log n) and m/log n processors. With high likelihood, the resulting graph P

is of size m/log n. The final stage of RANDOM-MATE' is to apply the original

algorithm RANDOM-MATE to this resulting graph, using m/log n processors.

Appendix II proves:

THEOREM 2. The total number of parallel steps executed by RANDOM-MATE'

is '(log n) using dlm/log n processors.

I
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COROLLARY 2. For aZ T such that log n <T <n+m, we find a spanning tree

in time 6(T) using an optimal number of processors P =m/T assu.ing

m >n(log n) 2

4. An Optimal Parallel Algorithm for at Least n log n loglog n Eckes

Let G =(V,E) again be an undirected graph with V ={l,...,n} and

m =!EI edges which we assume are in adjacency list representation (when each

adjacency list is given by a vector). To obtain optimal processor bounds for

the case m>n log n loglog n, we assign a processor p to each

flog n loglog n' distinct consecutive directed edges in the adjacency list

of each vertex v EV. We name these processors by distinct numbers in

P ={ ... r(n+m)/(logn loglog n)1}; so for each p EP, E(p) initially con-

tains at most log n loglog n edges departing the same vertex, and

D(E) =U E(p).
pEP

Algorithm RANDOM-MATE"

Input graph G = (V,E)

Initialization

begin "

n I vi
m* tEl

p {i,... r(m+n)/(logn loglog n)'}

for each vEV in parallel do R(v) v

for each pEP in parallel do

begin

construct E(p) as described above

for each (u,v) EE(p) do tree-edge(u,v) -false

end

end
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Outer Loop:

d for j =1,... ,rloglog n1 do

begin

Inner loop:

for i =, ... ,c rlog n1 do

for each v EV in parallel such that R(v) =v do

if RAND (0,1) =1 then sex(v) -female- v

else sex(v) -male

for each p EP in parallel do

begin

choose a random (uv) E-E (p)

mate (u ,v)

end

for each v EV in parallel do R(v) -R(R(v))

end

for each p EP in parallel

do delete each ecge (u,v) EE(p) such that R(u) =R(v)

end

Execute until termination Main Body of RANDOM-MATE

Output Spanning forest F ={{u,v} EEltree-edge(u,v) }

(Note the constants cI , c2  are chosen so as to achieve any given

likelihood of success as bounded in Lemma 8.)

In Appendix III we prove:

THEOREM 3. RANDOM-MATE" takes O(log n loglog n) steps using

(m+n)/(iog n loglog n) processors.



-9-

COROLLARY 3. For all T such that log n loglog n <T n+m, we can find- a

spanning tree in time 6(T) using an optimal number of processors P =mn/T,

assuming m~on log n loglog n.

5. Optimal Parallel Computation of Biconnected Components

Let G = (V,E) be an undirected graph with n =Ivi vertices and m = JEJ

edges. In Appendix IV we show

THEOREM 4. The biconnected components of G can be computed in time b(T)

*using P =m/T processors, in the case eiter (T ,log n and m 'n (log n)2

* or (T; log n loglog n and m >n log n loglog n).

The key idea is to reduce the problem (by repeated use of our optimal

graph connectivity algorithms) to computing the biconnected components of a

* smaller graph G" with only 0(n) edges and vertices.
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APPENDIX I. Proof of RANDOM-MATE

LEMMA I. On termination, F = {{u,v} EEltree-edge(u,v)} is a spanning forest

of G.

Proof. We use an induction argument (easily seen to hold for the first

iteration) that for just before iteration i =1,2,... of the until loop,

(1) F. ={{u,v} EEltree-edge(u,v)} is a forest, and

(2) for all u,vEV, R(u) =R(v) iff u,v are in the same tree in

F.

(3) for all vEV, R(R(v)) = R(V).

Let T be the tree in F. with root w =R(w). (By the inductionw 1

hypothesis, there is some such w). Suppose link(w) is assigned some

edge (u,v). Then sex(R(u)) sex(R(v0) and hence w = R(u) 7' R(v).

This implies by the induction hypothesis that v is in a tree TR(v) of

F. distinct from T . Observe that {u,v} is the only edge departing or
1 w

entering T for which tree-edge(u,v) is assigned true on the i-thw
iteration. Hence F must be a forest. At the last step of the i-th

i+l
iteration each vertex of T has R(v) assigned R(v), establishing the

w

induction hypothesis for the state just before the i+l iteration. 0

A maximal tree spans an entire connected component of G.

Let ni be the number of trees in F. that are not of maximal size.1

LEMMA 2. If n 1, Prob(ni 1 ( (3/4)n i) i1/2.

Proof. Let T be a tree of F. which is not of maximal size. Then
- w1

there exists at least one edge (u,v) ED(E) departinq TV to a distinct

tree T where R(u) = w # R(v). With probability 1/4, sex(w) = female
R (v

and sex(R(v)) = male. Hence with probability at least 1/4, T is
w

merged into some other tree (not necessarily TR(v)) on the i-th iteration.

V . , U . .................
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In the worst case, each nonmaximal size tree T in F has Orly
W 1

one such departing edge (u,v) where w 7 R(v), and ea-b t;rj v h,.s

a distinct R(v). The random variable n+ 1  is upper . i

worst case by a binomial variable B (which is the m. rT r
n. ,3/41

independent Bernoulli variables, each with success prcbr,-h.'itv "!1'

Observe B has mean (3/4)n. and n is upper
n, 3/4 1i+l1

bounded by Bn., 3 / 4 , so Prob(n <(3/4)n.) > Prob(n <(3/4'r"
n 13/4 i+ ni. 3/4  I'1 1

> 1/2.

Our time analysis will utilize the following pro.~i-i i},ic ir,::lity

which can be derived (see [Angluin and Valiant, 79]) f?,n, th-t b.'.., c-f

[Chernoff, 52] and [Hoeffding, 56].

LEMMA 3. Let g be the sum of N independent PC/m P..: .

be the mean of g. Then -cr al Zl a 0 there exi..'. ( c >1 s ,4 ,,=t

Prob(g<c W) < for N sufficientI 'di

Let i = 1 and inductively for k=1,2,... let i b-- T.inimum
0 k

number such that n (3/4)n . By Lemma 2, each i i i .cenubrsc ta i k-l 'k "

by an independent geometric variable with expectAtinr 2....
k 0

n. <1 for k 0  log n, I =l i is the total r , r7-" "'ra-
ko 4/3 k= k

tions of the until loop executed until termination. The , - ... r

I is O(log n). Each execution of this loop tak, coI" .c .r

of steps. Hence by Lemma 3, we have Theorem 1. --

-. . . . . . .. . .. - . *..%**~*~*... -S.. -,-. . .
. .. . .. S . * S. * * *... . .
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APPENDIX II. Proof of RANDOM-MATE'

It is easy to show that Lemma 1 holds and further more its induction

hypothesis also holds. Let F! = {(u,v) EEltree-edge(u,v)l be the

forest defined on the i-th iteration of the modified Main Body of RANDOM-

MATE'. Let a i-Zoop be on edge which on the i-th iteration departs and

enters the same tree of F. Let a tree T of F! be semi-active if at
I w I

least l/log n of the set of edges departing T are not i-loops. Let n'
w

be the number of semi-active trees of F'.1

LEMMA 5. If n ;i, Prob(n!+l(1-I/4enl) ; 1/2.1+1 1

Proof. Let T be a semiactive tree of F! which is not of maximal size
- w 1

with root w =r(w). By the pigeon-hole principal, there are at least one

vertex v of T where R(v) =w and at least 1/log n of its departing

edges are not i-loops. Let (u,v ).....(u.v ) be the edges chosen
1 dlog n

by the d log n processors of P on the i-th iteration. For each
1 v

j =1,... ,d1log n, with independent probability at least l/log n, R(u) .

R(v.). (Note: the independence is due to the fact that the processorsJ

initially choose random edges independently of each other.) Further-

more, if R(u) 7e R(v.) then, Prob(sex(R(u)) = female and sex(R(vj))

" male) 1/4. Since d ;2, the probability that Tw does not merge into
1"" log n '

some other tree on the i-th iteration is at most (1/4)(l-i/log n) n

-1
(1/4)e . An argument similar to Lemma 2 then shows that n' is upper

bounded by a binomial with expectation (l-l/4e)ni and hence Prob(n'
1 i+1

(l-i/4e)ni)) P 1/2. D

Recall that d0 rlog n' is the number of iterations of the Main Body

of RANDOM-MATE'.
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LEMMA 6. Va >0 3d >I such that tnere are no semiactive trees in Tog nF
0 d.Fogn

with probability of least 1 - 1/n%.

Proof. Let i0 =0 and inductively for k =1,2,... let ik  be the

minimum number such that n' < (1-1/4e)n! . By Lemma 5, each is bounded

by an independent geometric variable with expectation 2. Let k be the
k 1

maximum number such that 1 ik < dlIFlg n'. Now suppose there is an

active tree in F'
kcv de io F with probability more than 1/n . Then the
k1 d0 flog n1

bound on Z--1 ik given by Lemma 3 is violated, a contradiction.

Since each iteration of the Main Body of RANDOM-MATE' takes only

constant time, Lemma 6 implies that with probability at least 1-1/n ,

the number of the "nonloop edges" after execution of Main Body is

at most m/log n. By Theorem 1, the final execution of RANDOM-PIATE on this

reduced graph takes O(log n) time using m/log n processors. Hence we

have proved Theorem 2. 0

Si

.

............................ . .... ...
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APPENDIX III. Proof of RANDOM-MATE"

Again, it is easy to shou by induction that Lemma 1 holds

LEMMA 4. On termination, F ff {{u,v} EEjtree-edge(u,v) } is a apannin.

tree of G.

Furthermore, the induction hypothesis stated in the proof of Lemma 1,

also holds for RANDOM-MATE".

On the j-th iteration of the Outer Loop and the i-th iteration of the

Inner Loop,

(1) let F. = {{u,v) EEltree-edge(u,v)}

(2) let E. .cD(E) be the set of edges remaining1,)--

(3) let D. (T) _ E.. be the set of edges departing vertices in

Tw , where Tw  is a tree of F

(4) let a tree T of F, . be active if at least half cf tne edges

of D. .(T) do not enter a vertex of T
i,] W W

(5) let n. be the number of active trees in F. , that are

not of maximal size.

The following Lemma is similar to Lemma 5.

LEMMA 7. If ni' j > 1, Prob(ni+l,j 4(7/8)n. .) > 1/2.
1,)

Proof. Let T be an active tree of F. . which is not of maximal size,w,)

and containing vertex w - r(w). Then, since T is not of maximal size,w

there exists at least one edge (u,v) EDij (Tw ) entering a distinct tree

TR(V) where w yf R(v). Furthermore, since Tw  is assumed to be active,

by the pigeon-hole principal for some p EP such that E(p) C Di j (Tw ) at

least one half of the edges (u,v) EE(p) have R(v) R(u). Let (u,v) be

any edge of E(p). With probability 1/4, sex(w) =female and

. .. .. _ ... _ .'. . -. .. ,". .•,., .. .- . .. * . , . . . , . ,. , .- .. . . .. - . . . . .-. .-.- . . - . ,,. . ., - '
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sex(R(v)) --male when R(u) --w and R(v) 3' w. Furthermore, if

(u,v) is a random edge of E(p), Prob(R(v) R(u)) > 1/2. Hence with p

probability of least 1/8, T is merged into some other tree on the i,j

iteration. As in the proof of Lemma 1, we observe that the worst case is

where there is exactly one edge (u,v) ED. , (T ) such that R(v) # w, and

when each R(v) is distinct. In this worst case, ni~l . is upper bounded

by a binomial variable B which is the sum of n. independent Bernoulli

variables, each with success probability 7/8. But since the mean of B is

(7/8)n. .and B upper bounds ni 1 , Prob(ni~l. < (7/8)n. .)

> Prob(B -<(7/8)n..) >i 1/2. 0

1,3 I

Recall that cl'log n' is the number of iterations in Inner Loop.

LEMMA 8. Vc >0 3c1 >1 such that there are no active trees in

F with probability at least 1 - 1/nt.
S1 rlog nl+l,j poaiih

Proof. Let i 0 0 and inductively for k =1,2,... let i be
or]jkj

the minimum number such that n. <(7/8)nikl,j. By Lemma 7, each ik, jik,jk-jkj

is bounded by an independent geometric variable with expectation 2. Let
k

2k be the maximum number such that I i , cl log n'. Now suppose
2 k=1 k,j 1

there is an active tree inkFClrlog n'+l,j with probability more than

1/n . Then the bound on 1k21 i given by Lemma 3 is violated, a
k=l k~j

contradiction. o.

Since each iteration of the Inner loop takes only constant time, each S

iteration of the Outer loop takes total time O(maxEP IE(p)l+ log n).

Lemma 8 implies that with probability at least 1 -1/n , the number of edges

assiqned to each E(p) decreases by at least a factor of two on e&ch iteration

S. .. f .-.. . . . . .

!.ift.°.- *. ao. . '°...... .o'. o•. .- , - . . M.... f . *-.. .. .~ .. .. . . -. . .-... .-.
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of the Outer loop. Furthermore, the number of vertices also decrease by at

least a factor of two on each iteration of the Outer loop. Thus the total

execution time of the 'loglog n' iterations of the Outer loop is

O(max p P IE(p) l(l + 1/2 + ... ) + loglog n log n) 4 O(log n loglog n)

-1
with probability at least 1 - 1/n ' , and hence is O(log n loglog n).

After completing all these iterations, the size of the graph has

decreased to (m+n)/log n with probability 1 - 1/n - I. We then can

apply Theorem 1 to bound the execution time of the call to RANDOM-MATE

(using (m+n)/(log n loglog n) processors)to be O(log n loglog n).

Thus the total execution time of RANDOM-M.TE" is O(log n loglog n) using

in+m)/(log n loglog n) processors, proving Theorem 3.

7.....



A8

APPENDIX IV. Finding Biconnected Components

Algorithm BICONNECT

input undirected graph G = (V,E)

I1l compute a spanning forest F of G

[2] Root each tree in F and compute its preordering and the number

of tree descendants of each vertex.

[3] Construct a forest F' derived from F by adding a new induced

vertex ve  for each edge e EF and in place of edge e = {lu 2

substitute edges {UlVe } and {VeU 2 .

[4] Construct a graph G' = (V',E')

where V' = {vele EF) is the set of induced vertices

and E' = {f(ul,u )'{u u } E E-F}
12 1' 2

and f(ul,u 2) = {vl,Ve} where
1 e ye 2 hr

if Ul, u2  are unrelated in F (i.e., one is not the ancestor

of the other) then eI, e2 EF are the tree edges entering u1 ,U2

from their parents, or if (without loss of generality) uI is the

ancestor of u2  in F, then e1 EF is the tree edge departing u on

the tree path from u1 to u2  and e2 EF is as previously described.

[5] Compute the set C(G') of connected components of G'.

[6] Construct graph G" = (V UC(G'),E") from F' by collapsing

together all vertices in V' which are the same connected compo-

nent of G'.

(7] Compute the set B(G") of biconnected components of G".

. . . . . . . .. . . . . . . . . . . . . ."*.

<..-.,...-...., ..-.. •., .. ,.. ...............-........... ,... ..................... . .......... .... . .. ,. .. ..... .. ,,,, .....
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[8] Merge together all biconnected components of G" connected by

articulation points in C(G'). (To do this, we construct a graph

G"' (B(G"),E"') whose vertices are the biconnected components

of G" and each edge {BIB E E"' connects biconnected compo-
1'2

nents B I,B2 EB(G") with a common articulation point in C(G').

Then we compute the connected components of G"'.)

[91 For each edge e CE, let ve be its induced vertex in V', let

C be the connected component in C(G') containing ye let
ee

S be the set of biconnected components in B(G") with articula-e

tion point Ce, let Be be the connected component of G"'

containing Se

Output B for each eEE.
e

LEMMA 7. Vel,e2 EE, el,e2 are in the scae biconnected component of G

iff B =B.

1 2Proof. If C e C e then we can find a path of tree edges in F from-

e to e2, and also a disjoint path of nontree edges in E-F from e

to e2, and hence eI, e2  are in the same biconnected component of G

(however, the reverse is not necessarily true).

Suppose S e S but C e C e Any biconnected component B ESe

is thus connected in G" to both articulation points C and C

Using the fact that B is biconnected, we can find two disjoint paths

P p in G between edges e, e es h and C C e
u 2 e sc t htC C adC C

*But since Ce =C .,we can find disjoint paths pp in G frome
we can fin "

to e and since Ce we can find disjoint paths pl p- in Gel eeI

from e! to e2. Moreover, pl, pl, rl can be shown to be disjoint from

p, p,, p". Hence pl. p1. p" and are .p" disjoint paths in G
,2

* * * * * . . * . . .
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from e and e. so el, e 2 are in the same biconnected component (again,

the reverse may not be true).

Suppose B B but S S By induction on the minimum lengthe e e e1 2 1 2
of paths in G"' from S to S , we can similarly construct two

disjoint paths in G from eI to e2 . Hence el, e2 are in the same

biconnected component.

On the other hand, suppose e, el are in the same biconnected compo-

nent. Then there is a simple cycle C of G containing both e and e'.

C can be written as the mod-two sum of some k basis cycles C1 , ... ICk

with respect to the tree of F which is the spanning tree of the connected0

component of G containing e1  and e These can be ordered so that for

each i >1, C. has at least one edge, say ei , in common with C. fromi J

j <i. It is easy to verify that B = Be, if e, e' are on the same basise e

graph. Suppose they are on the distinct basic cycles.

We assume an induction hypothesis that B = = B for someeI  ei+ .

i, 1 <i <k. Then since e. is in both C and C for some j <i,i e. e. ...

we can show B =B . Thus we have Be= ... =B . But e EC. and
e e e ek I

e' EC. for some i and j. Hence B = B =B B.
e e. e. e'i J

The spanning forest F computed in step [1], and the connected compo-

nents computed in steps [5] and [8] can all be computed using our randomized

algorithms RANDOM-MATE' or RANDOM-MATE". Since F and G" have each only

O(n) edges and vertices, steps [2] and [7] can be computed in time O(log n)

time with n processors by the results of [Tarjan and Vishkin, 83]. Note

that the ancestor tests required in step [4] can be done (see [Tarjan, 72])

in constant time using the preordering and descendant numbering computed in

step [2]. The graph constructions in steps [3], [4] and [81 can easily be

done with a processor- time product Q(m+n). Theorem 4 follows from

Theorems 2 and 3. 0

. . . -,
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