
7 D-.8152 008 N EXTENSION OF Al MICROCOMPUTER BSED
SYSTEM FOR

/
ANALYSIS OF LINE DRAMdING..CU) AIR FORCE INST OF TECH
RIGHT-PATTERSON AlF8 OH SCHOOL OF ENGI. I A MORRISMUSIIDDEC 84 AFIT/GE/ENG/84D-48 F/G 9/2 N

Mhhhmhhh

.0

1 11_2 1.

ME J RC P [L>UE,(U (

REPROOUCFD AT GOVEhNMENT FXPE,,,l J / "

/ a

00
0o

S ~OF

AN EXTENSION OF A MICROCOMPUTER BASED
SYSTEM FOR ANALYSIS OF LINE DRA19ING

QuANTIZATION SCHEMES

F E THES IS

Thomas A. Morris
Captain, USAF

E E CTEr0J
LA. MAR 2 8 ia~f-~1

DEPARTMENT OF THE AIR FORCE E
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

d- xP Wright-Patterson Air Force Base, Ohio

L8:.5. 3 1 3 079... J85 03 13 079

.4 P D

AFILT/GE/ENG! 84D-48

AN EXTENSION OF A MICROCOMPUTER BASED
SYSTEM FOR ANALYSIS OF LINE DRAWING

Q :ANTIZATION SCHEMES

I THESIS

Thomas A. Morris
Captain, USAF

AF IT/G-E/ ENG/ 8 4D-4 8

A~pov~dfor public rc-1 ase; distribution unlimited

i

AFIT/GE/ENG/84D-48

AN EXTENSION OF A MICROCOMPUTER BASED SYSTEM FOR

ANALYSIS OF LINE DRAWING QUANTIZATION SCHEMES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Ni ... 1

Thomas A. Morris, B.S.

Captain, USAF

D e e m- 19.,4 i . ,December 1984 I , L.:,o

iDi-,t c , ir ,i

IS

Acknowledgments

I would like to thank my advisor, Major Ken Castor of

the Air Force Institute of Technology, for proposing this

thesis topic. I am grateful for his assistance throughout

the project. I would also like to thank my family for

their constant support and encouragement.

II

6i

I Ii

Table of Contents

Page

Acknowledgments......................ii

List of Figures.......................v

List of Tables.....................viii

Abstract..........................x

I. Introduction...................I-1

Ii. Background of Generalized Chain Codes . . . IL-i

*The Single Ring Chain Code- 2
Extensions of the Single Ring Code . .- 4
Higher Order Codes..............-5
Quantization Procedue- 6
Generalized Chain Code Performance

Measures..................-9
Summary....................-11

III. Overview of Existing System........ Ill-i

Existing Hardware.........-
Hardware Modifications............-2

@1 Existing Software...............-2
Disk File Format...............-3
Assembly Language Interface Routines -4
Pascal Routines- 6
Software Modifications............-11
Summary....................-20

IV. implementation of Multi-ring Chain Coding
Algorithm..................IV-1

overall Operation of CHNCODE Program -2
Subroutines..................-5

0 Testing of CHNCODE...............-9
PLOTCODE...................-10
Effect-- of Digitizer Resolution on

CHNCODE and PLOTCODE...........-12
Summary....................-14

V. Analysis of Various Line Drawings V-1

~i ~....................-2

Squares 0
Sine Wave -26
Written Text -30
Summary -34

VI. Conclusions and Recommendations VI-i

Conclusions -

Recommendations for Future Study . . -5

Appendix A: Program Listings A-i

Appendix B: Line Drawing Data and Figures . . B-i

Appendix C: User's Manual C-i

Bibliography BIB-i

0

L V

List of Figures

Figure Page

II-1 Octal Encoding Assignment for Single

Ring Code .I.............11-2

11-2 Example of Single Ring Code 11-3

11-3 Nodes of Level 2 Single Ring Code . . 11-4

11-4 Nodes of a (1,3) Chain Code -5

11-5 Triangular Quantization Scheme
Templates 11-8

11-6 Example of a Ring 3 LGS for a Line
Drawing 11-9

II[-i Overlay of Coded Line onto Input Line II1-10

IV-l Nodes for a (1,2) Chain Code IV-3

IV-2 Link Gate Sets for a (1,4) Code . . . IV-14

B-1 Digitized Circle Drawing B-32

B-2 CIRCLE: (1,2,3,4) Code With 0.25 Inch
Gridsize B-33

B-3 CIRCLE: (1,3) and (1,4) Codes With 0.25
Inch Gridsize B-34

B-4 CIRCLE: (1) Code With 0.25 Inch
Gridsize B-35

B-5 CIRCLE: (2,4) Code With 0.25 Inch
Gridsize B-36

B-6 CIRCLE: (1) , (1,2) , (1,3) and (1,4)
Codes With 0.2 Inch Gridsize B-37

B-7 CIRCLE: (1) Code With 0.15 Inch
Gridsize B-38

B-8 CIRCLE: (1,4) and (3,4) Codes With 0.1
Inch Gridsize B-39

B-9 CIRCLE: (4) Code With 0.05 Inch
Cr;dsiz B-40

B-10 Digitized Square Drawings B-41

B-il Example of Error for Non-rotated
Square B-42

B-12 SQUARE-30: (1) Code With 0.25 Inch
Gridsize B-43

B-13 SQUARE-30: (3,4) Code With 0.25 Inch
Gridsize B-43

B-14 SQUARE-60: (3,4) Code With 0.25 Inch
Gridsize B-44

SQUARE-60: (1), (1,3), and (1,4) Codes
With 0.25 Inch Gridsize B-45

SQUARE-30: (2,3), (2,4), (2,3,4), and
(1) Codes With 0.2 Inch Gridsize . . . B-46

SQUARE-45: (1) Code With 0.2 Inch
GridsLzeB-47

B-13 SQUARE-60: (1) Code With 0.2 Inch
Gridsize B-48

B-I SQUARE-30: (2,4) and (3,4) Codes With
0.15 Inch Gridsize B-49

B-20 SQUARE-60: (3,4) and (1) Codes With
0.15 Inch Gridsize B-50

3-2L SQUARE-0: (4) Code With 0.1 Inch
Gridsize B-51

B-22 SQUARE-30: (2,4), (3,4) , and (1,3)

Codes With 0.1 Inch Gridsize .8... . B-52

B-23 SQUARE-0: (1), (1,2), and (3) Codes
With 0.05 Inch Gridsize B-53

B-24 SQUARE-30: (1) Code With 0.05 Inch
Gridsize B-54

B-25 SQUARE-45: (1,2), (2,3), and (2,3,4)
Codes With 0.05 Inch Gridsize B-55

B-26 SQUARE-60: (1,2) , (2,4), and (3,4)
Codes With 0.05 Inch Gridsize B-56

B-27 SQUARE-60: (1) and (2,3,4) Codes With
0.05 Inch Cridsize B-57 7

B-28 Digitized Sine Wave Drawing B-58

B-29 SINE WAVE: (1,2,3,4) Code With 0.25
Inch Gridsize.................-59

B-30 SINE WAVE: (1) Code With 0.2 Inch
Gridsize....................-59

B-31 SINE WAVE: (1,4) 'Cod-e With 0.5Inch
GI-r idsize...................B-60

B-32 SINE WAVE: (1) Code With 0.1 Inch
r id s ize...................B-60

B-33 SINE WAVE: (3,4) Code Wlth 0. 1 Inch
C ridsize....................-61

B-34 SINE W~AVE: (1) Code Wqit-h 0.0 5 Inch I

Gridsize...................B-61

B-35 SINE WAVE: (2,3,4) Code With 0.05 Inch
Gridsize....................-62

B-36 Digitized Written Text Drawing B-63

B-37/ TEXT: (1,3) Code With 0.25 Inch
Gridsize....................B-64

3-38 TEXT: (1,3) and (1,2,3,4) Codes With
0.2 Inch Cridsize..............B-64

B-39 TEXT: (1) and (1,2,3,4) Codes With 0.15
Inch Gridsize................B-65

3-40 TEXT: (1,2,4) Code With 0.1 Inch
Gridsize...................B-65

B-41 TEXT: (1) , (4) , (2,4), and (2,3,4)
Codes With 0.05 Inch Gridsize B-66

List of 'rabies

T~b le Page

B-' Cicle Coded With C.25 Inch Gridsize . . B-2

3-2 Circle Coded With 0.2 Inch Gridsize B-)

B- Circle Coded With 3.15 Inch Gridsize . . . B-4

3-4 Circle Coded With 0.1 Inch Gridsize B-5

3-5 'ircle Coded With 1).05 Inch Gridsize . . . B-6

3-6 SQUARE-0 Coded With 0.25 Inch Sridsize B-7

3-7 SQUARE-0 Coded With 0.2 Inch Gridsize . . . B-8

E-8 SQUARE-) Coded With 0.15 Inch Gridsize B-9

3-) SQUARE-0 Coded With 0.1 Inch Gridsize . . . B-10

3-li SQUARE-0 Coded With 0.05 Inch Gridsize B-I

SQUARE-30 Coded With 0.25 Inch Gridsize B-12

3-12 SQUARE-30 Coded With 0.2 Inch Gridsize B-13

B-13 SQUARE-30 Coded With 0.15 Inch Gridsize B-14

SQUARE-30 Coded With 0.1 Inch Gridsize B-15
3-14 SQUARE-30 Coded With 0.05 Inch Gridsize B-16

SQUARE-45 Coded With 0.25 Inch Gridsize B-17

1-- SQ UARE-45 Coded With 0.2 Inch ridsize B-18

- r;A R-4I WLPd . . Inch ridsiz e B-20

1 Inch, Cridsize .. 32

,-iAWK-6> IC n -..1 In r. r, s: e B-22

3- 24

VS

B-24 SQIJARE-60 Coded With 0.1 Inch Gridsize B-25

B-25 SQUARE-60 Coded With 0.05 Inch Gridsize B-26

B-26 Sine Wave Coded With 0.25 Inch Gridsize B-27

B-27 Sine Wave Coded With 0.2 Inch Gridsize B-28

B-28 Sine Wave Coded With 0.15 Inch Gridsize B-29

B-29 Sine Wave Coded With 0.1 Inch Gridsize B-30

B-30 Sine Wave Coded With 0.05 Inch Gridsize B-31

B-30 Sin Wav Coed Wth .05 nchGridizeB-p

'S I

I

L].I

AlIT E ENC 34D-48

Abstract

This caper descr'CeS t Ihe exensIon ,of a micro-

-a020 ter cased Ss tern to analyze th- performance of

or:: cased line r awing cuan t zation scnemes. She

11- sov 1 ocec on a PeathKt H-89 mLcrocomquoer wLTC

a c.<a--:-7ackari 98?4A igtIzer an- a Hiplot di3t l

The capailities or the existino sYstem were

:<. .< aliow real time digitizing/plottingp 1 aoian o.era. ons

..-. -7.- 1 ,1 r inoding and analys s using varia b l

a n: a tron schemes. Comparisons of specific

1 :-, . , then made for various quantization schemes

n -IaL. :n -stIri; metric (area between original and

J _mace) , a rate metric (number of bits in the

-1:t:c , and a sub-e,-tive evaluation of the

n . toe cuantized image.

Sin::ate that m.lt i-ring codes usually

o As r _,torton In tne ouantized image than single

..o3 codes require less bits

i -.:- AIso, o ther metri: s a co3 / ndscator of

m:,

'DnS0ft hnDer o caIn te

netrm D n inr, d ra witngs q sing' th chan codes) o

o c-ations where extensive a3naly s is is to be Oe r for med,

a s pa t tr n r ecog n it on, ths criteria can t ae

onc ove r oDth er s, s ,i - a s t ne -Asse o f en co diLn g a nd

p0 er for mance measu,-res used foDr +-n :-s h es 'Ls ar e

ipactness, and Smoot! ness. TheP qrec is i an

.ilbe an area error per- onL- 1entn nis

1 3 xi tot-al area enclosed between tne coded

S Dr thiie line and original I In e draw in g

v IDal length of the orro- nal line d~rawing,

1 4t The comractness measurement will

:7ne 2- r euied for encoding d-'Ivided by the

-,~ ~~~ ;~eoinl line drawing, bits/unit

S -I sDootnhne ss measu-re w ill be a visualI

.'X ~.' A. 1_ wnqusnqt

. 1 be a v- rv suic-e c i ve m ea-s u rem en t) A

x 3n- of h these measures are

2. 'A or Sln t:--d r,~ next- charter of this

a 7 r-p on of n e 1i5nn

.L. c 3 n code- was

F~~ ~ -;q:li

SLZeus ed dur tng t- iu a n~ z a t n p r 3 -1s TS, JS Ln 3

~mal1 r~o s~e 'n r elto S, a m 10I letrsiu5

cu r ,a fre and low o r~ codes resu-s pnh~ pr cion

This romes, however, at the loss of compac< ess

~omoacr-ness is thIe amount D' storCe nc'

'2 StOre- th1e lin-e drawino or amount rI nnwlt

a n smt t -e -aa 4:1I1- 15) Thisio :

Dmo - an,:7e 1o or'_ awincfs wner-e la1 :s

4rawing- da- -are involved, such as ais3s~r3o1

IV' The tradeof f between compactness 300 rr-c is n

no(w easi ly be en. For -a given codeiv te more-

fre Lse the dIrawing the more nodes tnat are rhurc

re-sul ting in a loss of compactness. Also, to achieve

<-Dopactness, orecislon must be sacrificed.

Sm-oot1hniess is i mpor tant onlIy where the coded l ine

-a w ing s3 be vis,:5uallIy d is pIayed- (3:-9. In gn e ral

.cohnes S w I de pe nd haiyon the codina levels used

~o oeIjuntzatonorocesS, with the better angular

r D 1 l i an d few er .inmb er o f nodes of the higher or der

I Vs vnCT thm-he advantage. Obviously, there is a

a -,q-,: wto crec s on, whiLch reguires a I argp number of

*."Thr j0 eo --odes.

-h ase r, ~cdi ing andc d e~ c g dq ep en d s o n th'ne

~C~0O ~e It becomes Lmrortant ft Ir g

_i~ < rit : i sr; ~n v ovId a nd -1 the qoin needso

'n;-~ 30 j s-~ w~ re -s ths IusedJaI

-3 th .-i "

• , -' -r- -. . .- - , - : - _ . - , . • - . . - .

An example L uocess is sh n.in Figure 11-6. Note

that inFi ure [-63, thecurve does not remain within the

LGS and the lower crier ring must be used; while in Figure

11-6b, the higher order ring is used.

,S

6a 6b

S

Figure 11-6. Example of a Ring 3 LGS for a Line Drawing

3e neralized Chain Code Performance Measures

There are five major criteria for the performance of
4S

,n- cain codes for line drawing data: These are: (1)

cr-e:isLon, (2) compactness, (3) smoothness, (4) simplicity

e nccing and decoding, (5) and facility for processing S

S: . Obviously, these criteria are very subjective and

mortance of each depends heavily on the intended

ir.n Lcation of the drawing. Each of these criteria are

/. 13ned below and the criteria used for this thesis is

-'ed .

PrecIsion, or accuracy, is a measure of how well the

n scheme correctly quantizes small changes of a

.n (6: 1-9). This is extremely important if the

-d : :se for guantitative analysis of the line

Jr-3 wni. he pr-c:sion is heavily dependent upon the grid

11-9

stI

(a)(b

(C)

E:gure 11-5. Triangular Q uantlzation Scheme Temniates
(a) Ring I, (b) Ring 2, (c) Ring 3

6. If chain does not contain ring i, repeat step

5, else go to step 2.

The set of all LGS of a ring is called a "template".

Templates for rings 1, 2, and 3 are shown in Figure 11-5

I:L). Note that for ring 1 the generalized quantization

s :heme reduces to the one discussed for the single ring

-aIn code.

The quantization procedure simply consists of a

searcn for the highest order ring link for which all LGS

i:tersect the curve. This procedure is as follows (1:1):

i. Set ,=k where k is the order of the highest

order ring in the code.

2. Pos .n the template i so that its center

lies on the last encoded node and its sides

lie parallel to the grid.

3. Find the intersection points of the curve

with rings i, i-l, i-2, ... , 1.

4. If the chain does not contain any ring lower

than ring i, delete from the above set all

but the intersection points which lie on

ring i.

D. If any LGS of ring i contains all the

intersection points found in step 3 then the

!ssocited link is selected and we return to

s-p . Else set i= -1 and go to step 3. 0

11-7

Quantization Procedure

The quantization procedure is more complex for the

generalized higher order codes than for the single ring

codes. There are various quantization techniques used for

the generalized codes (5:13), each with different

properties. The one described here and used for this

thesis is the triangular quantizing scheme. Two

definitions will aid in the explanation of the quantizing

scheme. First, a "link" is defined as a vector from the

center of a ring to any node on the ring. Now, given a

particular chain code, "sets of link gates" can be defined

which provide a means of selecting the links that best

approximate the curve to be encoded. The "link gate sets"

(LCS) are constructed as follows:

1. Set i=k, where k is the order of the largest

ring in the selected chain code.

2. Find the midpoints of all pairs of adjacent

nodes on this ring.

3. Connect the midpoints to the center of the

ring with straight lines called "midpoint

i nes"

4. The parallel line segments cut out of each

inJ, 1 through k, by a pair of adjacent

m-jpoint lines, form the (LGS) for the i.nk

-,f r~ng k lying between the two mildpo~nt

5 . 1=1- . If i=O, stop.

I1-6

tLaies the distance from the current node as it is in the

level i code, there are fewer nodes to quantize for any

given line drawing. This decreases the amount of storage

space required. The disadvantage is the loss of ability

to accurately follow curves with a radius of curvature

which is small relative to the size of the ring.

Higher Order Codes

Generalized higher order chain codes are formed by

using a combination of two or more single ring codes of

different levels. The advantage of this algorithm is that

where the radius of curvature of the line drawing is

small, the lower level ring is used; and where the

curvature is large, the higher level ring is used. In

this way, the accuracy of the drawing is maintained while

the number of nodes for a nearly straight portion of the

drawing is reduced (2:IV-6). Chain codes of this type are

identified by the rings used in the code. For example, a

chain code using rings I and 3 would be called a (I,3)

code. A (I,3) code is shown in Figure 11-4.

- 0 0 0 0 0 0

0 x is current node

0 0 0 0

o is possible next
o x o o node S

0 0 0 0
is unused node of

o level 2

3) 3 0 0 0 0

1igure 11-4. Nodes of a (1,3) Chain Code

I1I-5

• . ". . " .

-- 4

to become 7012. Now, the drawing moves to the left,

crossing the grid near node 4, causing the chain code to
become 70124. Finally, the drawing moves to the left

corner, crossing the grid nearest node 3, and then ends.

Therefore, the final chain code representation is 701243

octal.

Extensions of the Single Ring Code

The single ring coding algorithm is easily extended

so levels greater than one. A single ring code of level 2

has 16 possible next nodes and is shown in Figure 11-3.

6 5 4 3 2

0 0 0 0 0

7 o o 1 x is current
node

8 o x 0 0

o is possible
9 o o 15 next node

0 o 0 0 0

10 11 12 13 14

Figure 11-3. Nodes of Level 2 Single Ring Code

This :ea can be extended to a single ring code of level

n. An n-level code would have 8n possible next nodes. An

oIoious advantage to increasing the level of the code is

improved angular resolution. Also, since the ring is n

11-4

- - - . .-.- - - - . -----..--. - - - - -

and added to the chain. A binary encoding procedure is to

associate a three bit binary number with each node of the

ring. For example, node U would be encoded as 000, node 3

as 011, etc. An octal representation of this binary

encoding is shown in Figure 11-1. The assignment of a

particular integer to each node is arbitrary, but must be

:onsistent for both encoding and decoding (4:11-7). An

example of the encoding process is illustrated in

Figure 11-2.

I a

Figure 11-2. Example of Single Ring Code

In Figure 11-2, it can be seen that the first

crossing of the grid is closest to node 7 (recall the

lacelling of the next nodes from Figure II-i), therefore

the chain code begins with a 7. With this node now the

current node, the next grid crossing occurs near node 0;

tne chain code is now 70. The next crossing is closest to

node 1; therefore the chain code becomes 701. The next

crossing is now closest to node 2, causing the chain code

II -

4 ,q

The Single Ring Chain Code

One of the simplest chain codes is the single ring

chain code. The encoding and quantizing algorithm is best

described by visualizing a gr-id overlaying the line

drawing. For any chain code, a starting point must be

given or assumed, and this starting point must be a node

on the grid. Figure II-I demonstrates this concept. With

the starting point of the line drawing located at point x,

the grid overlays the drawing and surrounds the starting

point (referred to in Figure II-i as the current node)

with eight nodes. No matter which direction the line

drawing takes, it must cross the grid near one of these

nodes; this node is encoded and stored as the beginning of

(the chain, and becomes the new current node. This process

repeats until the end of the drawing is reached.

2

31

x is current node
44 ×<- 0

o is possible next
57 node

6

F1ure l-1. Octal Encoding Assignment for Single
Ring Code

Each time the Jrawing crosses the grid, the node nearest

the zr)s~ng -hen bpcomes the current node and is encoded

11-2

IT. Background of Generalized Chain Codes

The generalized chain codes are a family of methods

for quantizing and encoding line drawing images. The

quantization is done by superimposing a grid of some

specified gridsize onto the line drawing and selecting a

set of nodes to represent the drawing. A node is defined

as the intersection of the horizontal and vertical grid

lines. The quantization of the line drawing is

accomplished by selecting the node that is nearest to the

intersection of the line drawing and the grid lines; not

allowing a single node to be selected twice in succession.

A line drawing is then described by a sequence of nodes

\ S connected by straight lines with the first node located at

the first point of the line drawing. For encoding, a node

is only identified relative to the node which immediately

preceded it in the sequence, hence the name chain code

(2:IV-l). The nodes are encoded by any method in which

each node is assigned a binary number which represents its

relative position to the previously selected node (3:3).

In this chapter, the quantizing and encoding processes are

explained more fully. The chain codes themselves are

explained starting with the simple single ring codes and

cont'nuing with the more complex higher order generalized

chain codes. Also, the performance evaluation criteria

for the chain codes are discussed.

I I-i

the analysis of several specific line drawings, and

Chapter VI details the conclusions drawn from that

analysis and proposes areas for future study.

1-

'O '

I- !

1-3l

developed to efficiently encode line drawings using a set

of schemes known as generalized chain codes (1).

A microcomputpr based system for the analysis of line

drawing quantizations schemes was developed at AFIT by Lt

Joseph E. Rock in 1983 (2). This system utilizes disk

files for intermediate storage of the image data, and

implements a small subset of the generalized chain codes.

The objective of this thesis was to expand the system

developed by Lt Rock to allow real time digitizing,

encoding, and plotting operations; and, to provide for

encoding line drawings using variable ring chain code

quantization schemes. These new capabilities were used to

provide quantitative comparisons of quantizations of

specific drawings. Comparisons between chain codes were

made on the basis of a rate (number of bits in the

quantization), a distortion (area between original and

quantized image), and a subjective evaluation of the

smoothness of the quantized image.

The organization of this thesis parallels the

approach to the problem. Chapter II discusses the

background and development of generalized chain codes. In

Chapter III, the existing system developed by Lt Rock is

described as well as the modifications that were made to

-he system for this thesis. Chapter IV describes the

software that implements the variable ring chain coding

a14orithm -and the software written to allow real time

rerat ron. Chapter V is a discussion of the results of

1-2

• , "

AN EXTENSION OF A MICROCOMPUTER BASED SYSTEM FOR
ANALYSIS OF LINE DRAWING QUANTIZATION SCHEMES

I. Introduction

In many Air Force and engineering applications, the

ability to store two-dimensional image data in a digital

format is very important. The classical method of

processing this data is two-dimensional sampling. This
S

technique is computationally intensive and requires a

large amount of computer memory and storage media. For

some types of images, such as photographs, these problems

are tolerated because of the need to completely reproduce

the original image from the stored version. However, for

other types of images the two-dimensional sampling method

is not required. An example of such an image is the line

drawing. A line drawing can be defined as an image

consisting entirely of thin lines on a contrasting

background. Examples of line drawings include maps,

printed or written text, graphs, engineering drawings, and

temperature charts. Since a line drawing can be seen to

be a very limited type of two-dimensional image, it seems

logical that there would be a way to sample and store a

line drawing much more efficiently than more complex

Lmages, such as photographs. Indeed, methods have been

1-1

chain codes. The major performance measures for the chain

codes and their various tradeoffs were discussed as wellI
as the performance measures used for this thesis effort.

In the next chapter, the existing microcomputer system

developed by Lt Joseph E. Rock (2) will be described.

1

(1

a

11-12

III. Overview of Existing System

This chapter presents a brief overview of an existing

microcomputer based system for analysis of line drawing

quantization techniques. Also, the modifications to the

system accomplished for this thesis are discussed. This

system was developed by Ist Lt Joseph E. Rock, Jr. at the

Air Force Institute of Technology for his master's thesis

(2). This overview consists of a description of the

system hardware and of the software algorithms developed

by Lt Rock.

Existing Hardware

The system as developed by Lt Rock utilizes the

hardware listed below:

1. Heathkit H-89 microcomputer with 64

kilobytes of RAM, 3 serial RS-232 I/O

ports, one 90 kilobyte 5 inch disk drive,

two 594 kilobyte 8 inch disk drives, and

CP/M disk operating system.

2. Heathkit H-25 printer.

3. Hewlett-Packard model 9874A digitizer and

an ICS Electronics Corporation model 4885A

IEEE-488 to RS-232 bus controller.

4. Houston Instruments model DMP7 x-y plotter

with a RS-232 serial interface.

[I-I

Hardware Modifications

The only major hardware modification accomplished for

this thesis increases the computer clock rate from 2.048

MHz to 4.096 Mhz. This increased speed is necessary to

implement real time operation of the digitizer and coding

algorithms.

Existing Software

The software developed by Lt Rock allows the user to

trace a line drawing on the digitizer, store this

digitized version on a disk file, and use it as if it were

the actual line drawing. A single ring chain coding

algorithm is then employed using the stored digitized

version of the line drawing; this coded version is also

stored as a disk file. A performance measurement routine

C is available that provides a measurement of the precisi:n

of the coded line drawing. This measurement is the area

error divided by the unit length; this is defined as tne

total area enclosed between the coded representation of

the line and the original line drawing divided by the

length of the original line. The routine also provides the

length of both the digitized and the coded versions of the

line. The plotter routines allow the user to plot both

the digitized and coded versions of the line drawing,

allow~ng a visual inspection.

The overview of the algorithms developed by Lt Rock

,Vl1 consist of a discussion of the disk file format and

of the input and output parameters and the functions of

I11-2

• .I

I

each proqram module. First, the disk file format is

discussed. Next, the assembly language routines to

interface the digitizer and plotter to the computer are

discussed. Finally, the higher level digitizing, coding,

and oerformance measurement routines are discussed; these

routines are written in the Pascal language.

Disk File Format

The disk file format created by Lt Rock was designed

f so that only one plotting program would be needed to serve

both the digitized and coded files and with ease of

processing in the performance measurement routine in mind.

4 For both types of files, digitized and coded, each point

in the drawing is described by a line in the disk file.

The format of the line for both types of files is standard

for the first three items. These three items are the pen

up/down indicator (either a 'U' or a 'D'), the x

coordinate value, and the y coordinate value (x and y

values are integers from I to 32,765 where each unit

represents 0.001 inches). Having these three items first

in each line of the file made compatibility with the file

4
plotting program and the performance analysis algorithm a

simple matter; both these files need read only the first

three items from each line to gain all the pertinent

information they need to perform their function.

After the first three items of a line, the format for

the two types of disk files differ. For the digitized

file, each line of he file also contains the pen position

111-3

indicator of the digitizer and the annotation number

entered from the digitizer keypad. For a file of points

generated by the coding program, the first line of each

line segment contains the gridsize and ring level of the

chain code along with a code value of -1 (Lt Rock used -1

to indicate the first and last points of a line segment).

Every other line in the coded file contains as a fourth

element the value of the chain code for that point. For

both types of files, there must be a space between line

elements and each line must be terminated by a carriage

return.

Assembly Language Interface Routines

The assembly language interface routines allow the

user to control the interfaces between the digitizer,

plotter and the computer from a Pascal program. Each of

these routines is discussed in the following paragraphs.

The BUSINT routine initializes the serial port to

establish communications with the IEEE-488 controller and

then initializes the controller and the digitizer. It is

called as an external function from the higher order

program as "BUSINT:CHAR" and returns a value of 'E' if an

error was encountered during execution or a value of '0'

otherwise.

The BUSIN routine is used to input a line from the

ditizer to the computer via the IEEE-488 controller. It

is called as an external procedure by the Pascal program

as "BUSIN (DEVICE:INTEGER; VAR ERFLAG:CHAR; VAR

I1-4

LINE:ARRAY[l,40] OF CHAR)". DEVICE is the device number

(06 for the digitizer), ERFLAG returns an 'E' if a problem

CT was encountered or a '0' otherwise, and LINE is the array

of characters from the digitizer (the last character will

be a carriage return, CR).

The BUSOUT routine is used to output a line of

cnaracters from the computer to the digitizer via the

IEEE-488 bus controller. It is called as an external

procedure by the Pascal program as "BUSOUT

(DEVICE:INTEGER; VAR ERFLAG:CHAR; VAR LINE:ARRAY[1,401 OF

CHAR)". The labels used for this routine have the same

meaning for BUSOUT as they did for BUSIN in the previous

paragraph.

The PORTIN routine is used to initialize the RS-232

serL31 port connected to the plotter. The routine is

called as an external procedure from the main higher order

cr arm as "PDRTIN". There are no input/output

parameters.

The CHARIN routine is used to input single characters

from the plotter to the computer. This routine is called

from the main program as an external procedure as "CHARIN

C;AR INPUT:CHAR; VAR ERFLAG:CHAR)" INPUT is the

character received from the plotter and ERFLAG is an error

0
flag to indzcate whether or not an error is encountered.

If an error is encountered, an 'E' is reLurned to the main

program, and a '0' otherwise.

Th- CHAROT routine is used to output a single

0

character from the computer to the plotter. This routine

is called as an external procedure from the main program

as "CHAROT (VAR OUTPUT:CHAR; VAR ERFLAG:CHAR)". OUTPUT is

the address of the character to be sent to the plotter and

ERFLAG is as described above.

The LINOUT routine is used to output an array of

characters from the computer to the plotter. This routine

is called as an external procedure from the main program

as "LINOUT (VAR LINE:ARRAY[I..40] OF CHAR; VAR

ERFLAG:CHAR); where LINE is the address of the array of

characters to be sent (the array must end with a

character) and ERFLAG is as described above.

This completes the description of the assembly

language interface routines. These routines are hardware
C

dependent and will require modification if different

hardware is used. For a complete listing of these

routines, refer to reference 2, pages A-i through A-10.

Pascal Routines

The major Pascal programs written by Lt Rock include

DIGITIZE, PLOTFILE, CODER, and, ERROR. These programs as

well as some of the more important subroutines (procedures

in Pascal) wlthin these programs are explained in this

section.

DIGITIZE. The purpose of the DIGITIZE program is to

tak-e points from the digitizer and place them in a user

specified file. This file of points then serves as the

original line drawing in all further coding and

--6

I

performance analysis programs. The DIGITIZE program as

fully interactive with the user entering the required

digitizer instructions from the computer and operating the

pen up/down and close file controls from the digitizer

keypad.

In order to properly operate the digitizer under

proaram control, Lt Rock developed a set of high level

routines which communicate with the digitizer via the

IEEE-488 controller and the assembly language routines

discussed earlier. This set of high level routines was

developed as a module called DIGRTNS. The major procedure

within this module is called GETPOINT. When called by the

DIGITIZE program, GETPOINT returns with the coordinates of

the aigitized point, the pen up/down indicator, and the

annotation number entered from the digitizer keypad.

Error or out-of-bound conditions are also handled by the

GETPOINT procedure.

When the DIGITIZE program is finished, a file has

been created with a separate line for each digitized

point. Each line contains a pen up/down indicator (U or

D), the x-y coordinates of the point, and the annotation

number entered from the digitizer keypad. This file is

ready for either plotting with PLOTFILE or coding with

CODER.

CODER. The function of the CODER program is to

:onvert a set of x-y coordinates into a single ring chain

code with gridsize and level specified by the user. The

I111-7

program reads the points of a digitized line drawing from

a file and generates a file containing the chain codes and

the coordinates of the nodes. This file can now be

plotted by the PLOTFILE program for comparison between the

original digitized version and the coded version of the

line drawing.

To use CODER, the user interactively supplies the

input and output file names and the gridsize and level of

the chain code. The program then examines the points from

tne input file and calls a subroutine to determine where

the drawing crosses the grid and the node that is closest

to this intersection. It then outputs the coordinates of

this new current nod6 and the corresponding chain code to

tne output file.
S\0 The major procedure used by the CODER program is

called WHERE. This is the routine that, when called,

returns with the point where the digitized line intersects

'he grid. It also returns with the pen up/down

information or if the end of the file was found. The

CODER program then finds the closest node and computes the

cnain code for this node and adds this information as well

as tne x-v coordinate of the node to the output file.

PLOTFILE. The purpose of the PLOTFILE program is to

3ilow the user to plot files generated by the DIGITIZE or

WDER routines via t he assemb ly language routines

'Iscussed earlier. In additLon, the program will plot an.,

file that adheres to the same format as fLl',s c-rated by

r i-

DrSrTIZE or CODER. The program is fully interactive,

prompting the user for all necessary inputs and allowing

tne user the capability to scale and translate the drawing

relative to its size and position on the digitizer. This

program can provide a visual display of both the digitized

1-ne drawing and the coded version. An effective way of

showing the difference between the digitized and the coded

versions is to plot the two drawings directly on top of

each other but using a different pen color.

ERROR. The purpose of the ERROR program is to

provide a measurement of the precision, or accuracy, of

tce coded version of the line drawing. The program

accomplishes this by finding the area difference between %

te digitized drawing and the coded drawing and dividing

by the length of the digitized version. ERROR calculates

the length of the digitized line by taking a summation of

the square root of the sum of the squares of the x and y

a for each two consecutive points. The program

calculates the area error by, in effect, overlaying the

-wo drawings and calculating the area of each of the

r-.;m tLnq connecting closed figures and summing these

rr t or -he total area. An example of the connecting

ioures that result from the overlay are shown in

• :u '.. . . [. p

Figure IIl-i. Overlay of Coded Line onto
Input Line (2:IV-13)

To use ERROR, the user interactively supplies the

name ot the f ile containing the digitized points and the

name of the file containing the coded version of the

ii iz e -,d ira w ingq The program then utilizes two major

uzr-utines to find the area error; these are CLOSELOOP

P,~ 3~D~ Th 1- CLOSELOOP proced ure finds the

~--rect~ns etWeen t'ne two versions of the drawing and

irn toERROR with a set of coordinates that describe a

'.qur- like those shown in Figure 111-1. These

.na-s ar the sent to the GROUND subroutine which

i.:iestne encloDsed area and returns to 'he ERROR

~r CTr a . EROR then s umns the areas OL -all 1-' l cloDsed

f~oue3 at:.tseDn the d-rawing Ls reacn d. This-

>5 tIen !,1iVLJd by; the' length Of '-he digitiJzed

fth~ulne r aw Lng nd displayed on the CRT a long

.~ _- ~~BTzedand coded lines.

This completes a brief description of the Pascal

programs developed by Lt Rock that are pertinent to this

thesis effort. A complete listing of these programs can

be found in reference 2, pages A-1I through C-13. Also, a

user's manual is included in pages D-1 through D-6 of

reference 2. (Note: An updated user's manual is included

in Appendix C of this thesis.)

Software Modifications.

Two of the software routines described above have

been modified for this thesis effort. These are the

PLOTFILE and ERROR routines. These modifications are each

discussed below.

Modifications to PLOTFILE. The modification to

PLOTFILE is minor; the only change is to allow the user to

plot more than one file without having to call PLOTFILE

from the disk for each file. This is accomplished by

interactively asking the user how many files are to be

plotted at the beginning of the program. A "FOR"

statement is then used to loop through the original

PLOTFILE program as many times as there are files to be

plotted. The change in the original program listing is

shown below (the original program listing can be found in

Appendix B of reference 2).

BEGIN (* MAIN PROGRAM *)
WRITELN('PROGRAM TO PLOT DIGITIZED POINTS FROM A FILE');
WRITELN;
WRITE('ENTER THE NUMBER OF FILES TO BE PLOTTED
READLN(NUMFILES);
FIDR A := 1 TO NUMFILES DO

BEGIN * FOR STATEMENT *}

I Il-Il

1'-HARIN(SLGNAL,ERRORFLAG);
END; (* FOR STATEMENT *

WRITELIN;
WRITELN('ALL DONE........)

END. (* MAIN PROGRAM *)

Of course, NUMFILES and the FOR loop Index variable,

A, musti be declared as integers n the variable

iecl~ration section of thie orogram.

1It can be seen fromn the listing that tne user enters

tenumber 3-f fIles, then the program prompts for a file

na me plotter l ine type, scale factor, and x-y

~r a n SIa t Ion. The program then plots this file and then

inte r a--t:ve ly prompts for the inf ormat ion f or the next

_,D bec lotd This repeats until the last file is

.~:te. T-is modiLficatIon results in a more convenient

andi e ff~n program if the user has many files to be

Mod~fication1S to ERROR. The first mod-ification to

EPRIOR program accomplishes the same purpose as that

descr LDe d fo-r the PLOTFILE program. The chanme was

:mceinnte ina similar manner; however, the program was

maeeven more automatic than the PLOTFILE ro)utine. The

dLt:erenc- ..s that the user does not have to0 Wait intil a

til-? ii analyzed to enter the dlata f-or tne next fl;ti

-.3 i 1 Dne at- the begi -ningq of progra m Dpe rat-on. This

modf : 7 ~'naling with the _CONTROL-P P 1 oqgle (sends-

13.. PT Dutut1o r-he cr_,nter) , allows the uer toenr

111-1.2

n e file s tbe cod e d and he n le3v-? mh 17 ou rer 'I

programn can run fir several hours completelyv inattended if

inere are many; files to be analyzed). The changes in the

Pascal code are shown below.

BEGIN (* MAIN PROGRAM *

REPEAT
WRITE(' ENTER DIGITIZED DATA FILENAME
READLN(FILENAME);
ASS IGN(D, FILENAME);
RESET(D);

UNTIL IORESULT <> 255;
WRITE LN;
WRITEW ENTER NUMBER OF CODED FILES TO BE ANALYZED
READLN (NUMFILES);
*THE FOLLOWING SECTION OF CODE PROMPTS THE USER FOR ALL

THE FILENAMES ?F THE CODED FILES *
F7R J := 1 TO NUMFILES DO

BEGCI N
WRI YE ENTER CODED DATA FILENAME ,J' :f
READENiF ILENAME)

_ __ IL[CJ := FILENAME;
END;

i* THE .RIINAL PROGRAM IS NOW EMBEDDED IN A FOR LOOP *
FCR C := L CC NUMFILES DO

BEGIN
RE PEAT

WR ITELN;

WPITELNW ANALYZING ',CCEFILE[JI)
F ILENAME:,= CODEFI:LE[J]
ASS ICN (FILENAME);
RESET(C);
RESET (C,

NTIL ICRESULT <> 255;
FNISH :=FALSE;

END (~FqR STATEMENT *

ED.* MAIN PROGRAM *

The -w var tables to be added to the program variable

13 ira L n list Tire snewn below:

-DFL : APRAY 11_251 OF STRING;

F~i 7,.fLatin greaj y enhances the efrictene'; ot

,M-P;:o 1 fr~n =i- 3t3ndp"Lnt 7f "h amount at "imp 'he

the program begins reading points from the input file and

ising the INSERT routine to update the list.

After a node is encoded, a routine is needed to

eliminate the points in the list that precede the point

toat intersected the ring. If these points were not

eliminated, the list might grow large enough to use all

tne microcomputer's memory and program execution would

en. The ALIGN subroutine performs this function. In

addition to eliminating the points, it adjusts the pointer

vriables.

After the end of the line segment has been reached,

t'- J'LLIST routine is called to eliminate all points from

the 1ist. s completely clears the computer's memory

f• .. .-- , . t line segmcnt.

INT .. The !NTEIRSECT subroutine is the one that

:n is tn i n secs inn points of each ring level out to

,rrmt rin 7 or the end of the line seqmnt. It.

. - , urns wi+h a boolean variable far each ring

:, i t ig w ether or not the ring was int rsected. In

An" of a Fingle ring code, only the intersction of

ing u- 'n the code is found. The alqorithm used to

n r "- . .Lon points is the same as that u -d by

DKP: : -: r qr.am (2).

: .* C() D E, u r.i D, ur i: its a a l.. d a :f -

S:..-. I ,, "j, ,5 n! j. .

Iorq °y-- r i n tic

were not used and the encoded node 1i-s on one of the

inner rings, then the points road from the file that w-v0

between the encoded node and the outer ring would be lost

because Pascal does not have the capability to read

backwards through a text file. Since it is imssible to

determine in advance how many points there are between

rings and for ease in k'eeping track of a pointer variable,

it was deemed anproriate to use a Pascal linked list

instead of declaring an array large enough to handle the

largest possible number of points. The data structure

most appropriate for the list is the queue. This is a

first 1n first out (FIFO) structure.

Immediately after a point is read in from the input

* file, the INSERT routine is called. This routine inserts

the point into the rear of the queue and updates pointer

v-iriabl-s to keep track of the front and back of the list

(first and last points).

As soon as a node is encoded, the main program starts

... rchn~g for ring intersection points; this search always

r gins with he points in the linked list. To read a

rt from the list, the READLIST subroutine is called.

-ubrout ine re-a,ls in the point and incr', r int s a

S; c_,arial that k(ueps track of the seqence or

<:rif s in th list.. The no int s are rad from the 1list

11 a :1 'l i he po ints in the list are r,-ad cc t Pc o a' r-21st

r ,iq is aa.in intcrs,,ctd. If all the' norr n in the list

ar" ' r" ad bef r~-o t ,co r most r ng s rit,- . c , , t :.

I v- G

S

1-1 Cn :.a n de 0 0o U ou p Ut fIle.

. m3!nate fr-om toe linked list all points up to

P:- ,- 1 that determined tne intersection coordinates of

".:r ns that was selected f -r encodirn.

I. if the end of the current line segment has not

-reached, g) to step 4.

If the end of the current line segment has been

S c to step 4 and1 repeat until the linked list

s nI l. When e end of the linked list is

.te coor-iinates of the end point and a

7f t1e end of the line drawing has not been

7. -o step 3.

13). if the end of the line drawing has been

reached, close the output file, clear the linked list, and

go to step 2.

14). Continue until the last coded file is created.

Subroutines

Although 'the program listing in Appendix A is

thoroughly documented, a brief explanation of the purpose 0

and operation of the most important subroutines used will

aid in the understanding of the program.

INSERT, READLIST, ALIGN, and CLRLIST. Phese 3re the

subroutines that d!o the housekeeping for the lI-:K-d list.

The list is needed to store the points reas -n n cm the

Lncut fle until an intersection point for th u'rmost

rdng is founi. If some method of s-r:ng the pcilns

I V-5

make it the first node of that line segment, and write the

coordinates to the output file along with a chain code of

-1, the gridsize, and the rings used in the code. Also,

make this point the first in a Pascal linked list.

4). Input points from the linked list, or from the

input file if the list pointer is nil, until the innermost

ring of the code has been intersected and calculate the

coordinates of the intersection. As points are read from

the input file, insert them into the linked list.

5). Repeat step 4 for the remaining rings of the

code until the outermost ring is intersected or the end of

the line segment is reached.

6). If the code is a single ring code, then find the iiode

closest to the intersection point and compute the chain

code for that node, then go to step 8. If the code is a

multi-ring code, then set i = k, where k is the order of

the highest order ring in the code.

7). Find the node closest to the intersection point

on the ring i and determine whether the drawing passes the

LGS test, described in Chapter II, for that node. If it

does, then compute the chain code for the node. If not,

then le v : i - I. If i is the lowest order ring in the

-ode, then find the closest node and compute the chain

code; If :s not the lowest order code, repeat this step.

Continue this process until a ring passes the LGS test or

the innermost ring is reached.

9). Output the coordinates of the new current node

IV-4

r nt of the current node. Numbering then proceeds

seoueftiaily In a counter-clockwise direction until the

last node of the innermost ring is reached. The next

number _s then assigned to the node on the next ring which

:s A=reclv to the right of the current node and the

nuMcernna proceeds as before. This continues until every

node on the outermost ring used in the code is numbered.

Figure IV-I illustrates this concept for a (1,2) code.

14 13 12 11 10
o 0D 0 0 0

3 2 1
15o 0 0 0 o9

x is current
node

16o 40 x o 0 o8

o is possible
17o o o 0 o 23 next node

5 6 7

o o 0 0 0

18 19 20 21 22

Figure IV-1. Nodes for a (1,2) Chain Code

The operation of the chain coding procedure itself is

described by the following set of steps:

o. teracti'ely get parameters from the user such

as -iename of digitized data file, number of coded files

to ce cre--d (maximum of 25), a name for each coded file,

g sz and rings used for each coded t].

2). :nit.alize variables.

3>. Find the first point of h next line segment,

17- 3

listing for these programs is contained in Appendix A and

a user's manual is included in Appendix C.

Overall Operation of CHNCODE Program

The method of chain coding implemented in this thesis

is very similar to the method used by Lt Rock f-r the

single ring CODER program described in Chapter III (2).

The first point of each line segment ir. a line rawing Ls

used as the origin of the grid and LS first point in

the chain code. The algorithm then follows the line

drawing and constructs the chain code until the end of the

P line segment is reached, with the last point on the

segment being the last point in the chain code. Following

Lt Rock's convention, the chain code for the first and

last points of each line segment is defined to be -1.

Also, as mentioned earlier, the file format of pen up/down

indicator, x-y coordinate of the node, and then the chain

code, is adhered to in this program. The first line of

each new line segment also contains the gridsize and ring

levels used by the chain code. The end of line drawing

code is the end of file indicator. The program as written

allows a chain code using any combination of the first

five rings (or levels) described in Chapter II. The

program is written so that it would be a simple matter to

modify the Pascal code to allow more rings.

in this algorithm, the numbering system for the chain

code assigned to each node begins with a zero assigned to

the node on the innermost ring which is directly to the

I V- 2

IV. Implementation of Multi-ring Chain Coding Algorithm

This chapter describes the design, implementation,

and testing of a multi-rtng chain coding algorithm for use

on the system described in Chapter III. The program,

called CHNCODE, allows the user to create chain coded

versions of a digitized line drawing using any combination

of ring levels one through five. It interactively prompts

the user for the filename, gridsize, and rings used and

allows the user to create up to 25 coded versions of the

digitized input file. This program uses the same file S

format as that described in Chapter III and is fully

compatible with the ERROR and PLOTFILE programs. Also

described in this chapter is a program that combines the

functions of the DIGITIZE, CHNCODE, and PLOTFILE programs

while eliminating the use of disk files. This program

calculates the chain code as the drawing is being traced

on the digitizer and immediately outputs the chain coded

drawing to the plotter. This process takes place in as

close to real time as the computer processing speed

allows. This program is called PLOTCODE.

First, this chapter presents an overall explanation

of the chain coding algorithm and then briefly describes

the purpose and operation of each subroutine (procedure in

Pascal) in the program. Then, the method used to test and

verify the program is discussed. Lastly, the development

of the PLOTCODE program is discussed. The complete source

IV-i

procedure. This procedure is called when the end of the

digitized file is reached and there are points remaining

in the coded file; its purpose is to read in the rest of

the points in the coded file. The error in the routine

was that these points were being placed in the digitized

point array instead of the coded point array. This

problem was easily corrected and the modified procedure

listing is shown below.

PROCEDURE LASTDIG;

BEGIN (* LASTDIG *)
REPEAT
READLN(C,PENXVALYVAL);
LENGTHC;
NUMNODES NUMNODES + 1;
NUMCODE NUMCODE + 1;
CODED[NUMCODE,1] XVAL;
CODED[NUMCODE,2] YVAL;

UNTIL EOF(C) OR (PEN <> 'D');
\ FINISH := TRUE

END; (* LASTDIG *)

This completes the modifications to the original

system software.

Summary

This chapter has provided a brief overview of the

programs and algorithms developed by Lt Rock that are used

or modified for this thesis. Each of the major

subroutines and programs of the existing system were

described and the modifications required for this thesis

were explained.

111-20

procedure when the slopes of the coded and digitized

segments being investigated for an intersection did not

C74 match. This problem was easily corrected by creating new

variables that provide the direction of both of these

lines, instead of using only th-e coded line. The Pascal

code to correct the procedure is shown below:

-- PROCEDURE CHECKPNT;

VAR SIGNXC, SIGNYC, SIGNXD, SIGNYD: INTEGER;

BEGIN (* CHECKPNT *)
SIGNXC := CODED[NOCODE,11 - CODED[NOCODE - 1,11;
IF SIGNXC <> 0 THEN IF SIGNXC > 0

THEN SIGNXC := 1 ELSE SIGNXC := -1;

IF SIGNXC = 0 THEN SIGNXC := 1;
SIGNYC := CODED[NOCODE,2] - CODED[NOCODE - 1,2];
IF SIGNYC <> 0 THEN IF SIGNYC > 0

THEN SIGNYC := 1 ELSE SIGNYC := -1;
IF SIGNYC = 0 THEN SIGNYC := 1;
SIGNXD := DIG[NOPTS,1I - DIG[NOPTS - 1,1];
IF SIGNXD <> 0 THEN IF SIGNXD > 0

THEN SIGNXD := 1 ELSE SIGNXD := -1;
IF SIGNXD = 0 THEN SIGNXD := 1;
SIGNYD := DIG[NOPTS,2] - DIG[NOPTS - 1,2];
IF SIGNYD <> 0 THEN IF SIGNYD > 0

THEN SIGNYD := 1 ELSE SIGNYD := -1;
IF SIGNYD = 0 THEN SIGNYD := 1;
IF (SIGNXC * ROUND(SEGINTRl] - CODED[NOCODE - 1,1])

>= 0) AND
(SIGNXC * (CODED[NOCODE,1] - ROUND(SEGINTR[1]))

>= 0) AND
(SIGNYC * (CODED[NOCODE,2] - ROUND(SEGINTR[21))

>= 0) AND
(SIGNYC * (ROUND(SEGINTR[2] - CODED[NOCODE - 1,2])

>= 0) AND
(SIGNXD * (ROUND(SEGINTR[1] - DIG[NOPTS - 1,1])

>= 0) AND
(SICNXD * (DIG[NOPTS,1] - ROUND(SEGINTR[l]))

>= 0) AND
* (SIGNYD * (DIG[NOPTS,2] - ROUND(SEGINTR[2]))

>= 0) AND
(SIGNYD * (ROUND(SEGINTR[21 - DIG[NOPTS - L,21)

>= 0
THEN CROSS := TRUE ELSE CROSS := FALSE

END; (* CHECKPNT *)

The last problem was discovered in the LASTDIG

II I -1 9

XD XVAL / 1000;
YD YVAL / 1000;
LX LASTXD / 1000;
LY LASTYD / 1000;
LONGDIG LONGDIG + SQRT(SQR(XD - LX) + SQR(YD -LY);
LASTXD XVAL;
LASTYD YVAL

END; (* LENGTHD *)

PROCEDURE LENGTHC; (* THIS PROCEDURE CALCULATES THE LENGTH

OF THE CODED LINE *

VAR XC, YC, LX, LY REAL;

BEGIN (* LENGTHC *)
XC XVAL / 1000;
YC YVAL / 1000;
LX LASTXC / 1000;
LY LASTYC / 1000;
LONGCODE := LONGCODE + SQRT(SQR(XC - LX) + SQR(YC -LY));

LASTXC XVAL;
LASTYC YVAL

END; (* LENGTHC *)

This modification brought the variables down to a

size the compiler could handle without errors.

Another problem was found in several of the

procedures of the program in the decision (IF) statements.

This problem occurred because the variables used in these

decision statements were real variables, and were subject

to the normal truncation error common in compilers. The

problem was solved by declaring the variables, the CODED

and DIG arrays, to be integers. This solution made it

necessary to use the ROUND instruction whenever these

variables were assigned the value of a real variable, such

as SEGINTR. This rounding process has no effect on the

accuracy of the program because the values read into these

arrays are restricted to integer values anyway.

Another problem was revealed in the CHECKPNT

11 1-18

The other modifications to the ERROR routine were

added when it was discovered that it was not properly

analyzing certain drawings. The first such modification

proved to be caused by a deficiency in the MTPLUS Pascal

compiler. The problem surfaced when it was noted that the

length of the drawings being returned by the program could

not possibly be correct. Lt Rock's method of calculating

these lengths was straight forward and obviously correct.
4

He used a separate subroutine (procedure) to calculate

each length. These procedures were exactly alike except

LENGTHC calculated the length of the coded line and

LENGTHD calculated the length of the digitized line. The

key statement in each procedure was (shown only for the

LENGTHC procedure):

LONGCODE := LONGCODE + SQRT(SQR(XVAL - LASTXC) + SQR(YVAL -

LASTYC));

After some testing, it was discovered that the d ouble

transcendental operation " SQRT(SQR(...)) could not be

handled by the compiler if the SQR(...) variable was large

(on the order of 103). This problem was corrected by

eliminating the factor of 1000 at this point instead of

waiting to the OUTDATA procedure as was done for the area

error metric. The new code listings for both procedures

are shown below.

PROCEDURE LENGTHD; (* THIS PROCEDURE CALCULATES THE LENGTH

OF THE DIGITIZED LINE *)

VAR XD, YD, LX, LY REAL;

BEGIN (* LENGTHD *)

111-17

IF (NODES > 32) AND (NODES <= 64) THEN BITSNODE 6;

IF NODES > 64 THEN BITSNODE := 7;
NUMBITS := NUMNODES * BITSNODE

END; (* NOBITS *)

Note that the procedure uses the fact that there are

8n nodes to a ring as its basic principal of operation.

Another modification to the ERROR program is the

OUTDATA procedure. Before the modification, the output of

the ERROR program gave the area error multiplied by a

factor of 106 and the length of the lines multiplied by a

factor of 10. The reason for this is that the data

points stored in the digitized and coded files are in the

format 1 unit = 1/1000 inches. This modification simply

eliminates the need for the user to perform the correction

arithmetic. In addition, the OUTDATA procedure outputs

the number of bits and (number of bits) / (length of

digitized line). The Pascal code to accomplish the

modification is shown below.

PROCEDURE OUTDATA;

BEGIN (* OUTDATA *)
WRITELN;
WRITELN(' AREA = ',AREA / 1E+06,' SQUARE INCHES');
WRITELN(' AREA / LENGTH = ',(AREA / 1E+06) / LONGDIG,'

INCHES');

WRITELN;
WRITELN(' LENGTH OF CODED LINE = ',LONGCODE,' INCHES');
WRITELN(' LENGTH OF DIGITIZED LINE = ',LONGDIG,' INCHES');
WRITELN;
WRITELN(' THE TOTAL NUMBER OF BITS = ',NUMBITS,' BITS');
WRITELN(' NUMBER OF BITS / INCH = ',NUMBITS / LONGDIG);
WRITELN

END; (* OUTDATA *)

The point in the main program where OUTDATA is called

was shown earlier in the discussion of the NOBITS

modification.

111-16

S

LOOP LOOP + 1;

READ (C, LEVEL [LOOP])
END;

WHILE LOOP <> 5 DO
BEGIN S

LOOP := LOOP +1; 1
LEVEL[LOOP] := 0

END;

UNTIL FINISH OR ERFLAG;
NOBITS; (* THIS COMPUTES THE NEW METRIC *)
OUTDATA (* ANOTHER MODIFICATION DESCRIBED LATER *

END (* FOR STATEMENT *)
END. (* MAIN PROGRAM *)

The NOBITS procedure was added to calculate the

number of bits used to encode the chain. The listing of

the procedure is shown below. Note that the program is

capable of handling up to five code rings (the CHNCODE

program handles up to five rings).

PROCEDURE NOBITS; (* THIS PROCEDURE CALCULATES THE TOTAL4 NUMBER OF BITS NEEDED TO REPRESENT
THE CHAIN CODED DRAWING *)

VAR
LOOP, BITSNODE, NODES INTEGER;

BEGIN (* NOBITS *)
NODES := 0;
FOR LOOP := I TO 5 DO

BEGIN
CASE LEVEL[LOOP] OF

0 : NODES := NODES;
1 : NODES := NODES + 8;
2 : NODES NODES + 16;
3 : NODES NODES + 24;
4 : NODES NODES + 32;
5 : NODES := NODES + 40

END (* CASE STATEMENT *)
• THE CASE STATEMENT CALCULATES THE NUMBER OF

POSSIBLE NEXT NODES FROM ANY CURRENT NODE *)
END; (* FOR STATEMENT *)

• THE FOLLOWING IF STATEMENT DETERMINES THE NUMBER
OF BITS NEEDED TO ENCODE EACH NODE IN THE DRAWING *)

IF NODES <= 8 THEN BITSNODE := 3;
IF (NODES > 8) AND (NODES <= 16) THEN BITSNODE 4;
IF (NODES > 16) AND (NODES <= 32) THEN BITSNODE := 5;

I111-15

user must spend monitoring the computer when there are

many files to be analyzed.

Another modification to the ERROR program adds an

output metric to the program. This metric is the number

of bits and the number of bits divided by the length of

the digitized line. This change allows the user to

compare the compactness of the various chain codes for a

4particular drawing.
The modification required that the program read the

first line of the coded file to obtain the ring levels

used for the code (the CHNCODE program described in

Chapter IV of this thesis is a multi-ring coding program).

This is easily done by slightly modifying the main program

to read these levels from the first line of the coded

file. A variable, NUMNODES, is set to one when this first

point is read and incremented by one every time a

subsequent point is read from the coded file. This change

to the main program listing is shown below beginning with

the line where the first coded point is read.

READ(C,PEN,XVAL,YVAL,LEVEL[1] ,LEVEL{2]);

(*LEVEL IS THE VARIABLE NAME FOR THE RING LEVELS USED--
INTHE ABOVE STATEMENT LEVEL[]] AND [2] TEMPCPARILY HOLD
THE VALUE OF THE -l CHAIN CODE AND THE CPIDSIZE; HAD TO
READ THEM BECAUSE THEY ARE IN THE FIRST LINE -F THE
CODED FILE BEFORE THEACTUAL VALUES iP THE PING
LEVELS *)

NUMNODES := 1;
SOODED[l,1: XVAL;
CODED[,21 YVAL;
LO;OP := 0;
WHILE NOT EOLN(C) DO

BEGIN

I I -14

internal subroutines; for this reason, it was written as

a program module and compiled separately. The operation

of the module is described below.

Beginning with the outermost ring, each ring is

analyzed to determine if it can be used for encoding. The

COMPCODE sub-outine checks one ring at a time until a ring

is found that passes the LGS test and is suitable for

encoding, or the lowest ring is reached (in which case no

LGS test is needed). The subroutine contains additional

internal subroutines that find the closest node to the

intersection point on the ring under test and determine if

the LGS test for that node is successful. If it is, then

the node is encoded and the COMPCODE subroutine is exited;

if not, the process repeats with the next ring in the code

as described in Chapter II of this thesis.

To perform these functions, COMPCODE contains three

miajor internal subroutines: FINDNODE, RINGTEST, and

iNCODE. The FINDNODE subroutine finds the node on the

rtni uniJr investigation that is closest to the point

whr- che line drawing intersected the ring. The RINGTEST

o!r ocure then determines where the intersection occurred

on fhe ring (top, corner, or side) and calls subroutines

that perform the LGS test for the node found in FINDNODE.

The subroutine cqlled by RINGTEST d-pends on the location

of the, rode found in FINDNODE. If the LGS test is not

pazs-d, then the entire process begins again with FINDNODE

for the ne xt]ow.st ring in th- c-ode. The process repeats

I V-8

until a ring that passes the LGS test is found or the

lowest ring in the code is reached. In either case, the

ENCODE routine is then called to determine the chain code

for the node. The algorithm used for the ENCODE

subroutine is the same one Lt Rock used in his CODER

program. The only modification necessary to allow for

multi-ring codes was to add 8n to the code for each ring

4 lower than the ring selected for encoding, where n is the

order of the 1ower ring.

DONE. The P5)1NE subroutine is called when the end of

a line s.igmen' or t -,nJ of the drawing is reached. This

--,. r ;'o , <V' s L ing through the remainder of the

1 t: , 1 !,a -t possible chain code is found.

\i . " 1 ,st point in the line segment to

, .:n code of -1.

- . he discussion of the major

. d within the CHNCODE program. This

1 r: h he program listing in Appendix A,

-f~icnt information for anyone wishing

.' is proc'ram.

'I " , "lI JoIogy used to test the CIINCODE program is

v<u.%-d i-o),w. Each subroutine was tested individually

Sore fh, complete program was compiled. After each of

t h- ::i,*routirne. was verified to be performing correctly,

,e conmplete program was compiled and tested in several

IV-9

different ways. The first test was to compare the CHNCODE

program results against Lt Rock's CODER program for single

r tring codes. Although this only tested the program for

single ring codes, it was the only way to test long,

complex input files with known results. After comparing

*] results against the CODER program at all five ring levels

and for five different drawings, both coding programs were

found to produce exactly the same output for each file.

Therefore, CHNCODE passed this portion of the testing.

The next step in the testing process was to test the

program using simulated files (input files created with a

text editor) that could simulate particular situations and

determine if the coding program would handle them

correctly. These files were always short (none were more

than 20 points) and the correct results were calculated by

hand. Situations were tested in which the drawing left

the current node in all directions and for all possible

* ring combinations necessary to include every subroutine in

the program. These tests insured that the correct node was

encoded and that the search for ring intersections after

the node was encoded started with the correct point. In

short, every situation that was conceived of was tested

via the simulated files. After a few minor corrections,

the program passed all testing and is presumed to be

operating correctly.

PLOTCODE

The PLOTCODE program operates using the same basic

IV-10

0 '

algorithms as the CHNCODE program to calculate the chain

codes. Since these two programs are so similar, a

discussion of their differences will suffice to explain

the PLOTCODE program. Since PLOTCODE must of necessity

operate on one drawing at a time, one minor difference

between tne two programs is that the counting loop that

a zw~ d HN 7 3D- o code 25 input files has been

e.1:na 2 7n f.-~ename and text file variables are also

1ilm~natei. It- ma'<r _Lfference between the two programs

is <he Ln'u of the lne drawing and the output of the

cnabn ccdev~version of the drawing. Instead of reading in

points from arn nput file representing the line drawing, a

suorcutine is called that reads the input points in

directly from the digitizer. And, instead of writing the

chain code information to an output file, a subroutine is

called to output this information to the plotter. The

additional subroutines required for the PLOTCODE program

are discussed below.

PLOTIN. The PLOTIN subroutine is a simple routine

that builds an array of characters that holds the

initialization information needed to output information to

the plotter. The array holds plotter "wake-up" characters

(;:), the communications mode, and line type. Every time

a line is output to the plotter, ihe line consists of this

array with the x y coordinates appended to it.

READ DIG. The READ DIG subroutine is called when the

main program is ready to read new input points. This

IV-ll

subroutine then calls subroutines from the DIGRTNS module

(discussed in Chapter III) that read the input points from

the digitizer. These points come from the DIGRTNS module

in an ASCII format; READ DIG translates this ASCII

information into numerical data for the main program.

PLOT. The PLOT subroutine is called when the

coordinates of the link in the chain code have been

determined. The subroutine then transforms the numerical

data representing the x y coordinates of the noae into th,

ASCII representations needed to communicate with the

plotter. This information is then appended to the array

discussed in the PLOTIN subroutine and then sent to the

plotter.

A program listing for the PLOTCODE program is

included in Appendix A, except for the COMPCODE module.

The only difference between the version of COMPCODE used

for PLOTCODE and the version used for CHNCODE is the

counting loop variable in PLOTCODE that allows the user to

create up to 25. files at once. Therefore, the COMPCODE

module need not be listed again. Note that the

elimination of the counting variable reduces the NUMRINGS

and GRIDSIZE arrays to integers and the LEVEL array from a

two dimensional to a single dimensional array.
0

Effect of Digitizer Resolution on CHNCODE and PLOTCODE

A important factor to bear in mind when using the

* CHNCODE and PLOTCODE programs is the hardware limitations

imposed by the diaitizer. Specifically, this is the

IV-12

resolution of the digitizer, 0.001 inches. To understand

the limiting effect of this resolution, consider as an

example the (1,4) chain code shown in Figure IV-2. In

this example, the line drawing has passed close to the

upper right corner node of the level 4 ring; therefore,

the link gate sets to determine if the fourth ring can be

used for encoding are as shown in Figure LV-2. It is a

simple matter of geometry to show that the length of the

LGS on ring 1 is 0.125 of the chosen gridsize. If the

gridsize is chosen small enough, this can approach the

0.001 inch limitation of the digitizer. For example, if

the gr.dsize were 0.05 inches, then the LGS region for

ring I would be 0.00625 inches, only 6.25 times greater

than the jig.tizer resolution. This results in

significant uncertainty in whether the ring actually

passes the LGS test or not. In an effort to avoid this

problem, all codes used in this thesis will result in a

minimum LGS region of at least 10 times the digitizer

resolution. This is assumed to be large enough to avoid

significant error.

IV-13

Figure IV-2. Link Gate Sets for a (1,4) Code

Summary

in this chapter, the design and implementation of the

multi-ring chain coding programs called CHNCODE and

PLOTCODE were discussed. Each of the major subroutines in

~the two programs were discussed and their purpose and

operation explained. The chapter ended with a discussion

of a limitation imposed on the gridsize chosen for the

101 encoding process by the resolution of the digitizer.

IV-14

V. Analysis of Various Line Drawings

This chapter contains an analysis of the performance

of the the chain coding system for several different types

of line drawings. These drawings include simple geometric

figures such as circles and squares, as well as a sine

wave and written text. The drawings were all traced by

hand using either the cursor or stylus of the digitizer;

therefore, they are not geometrically perfect. However,

this analysis should yield some information on how well

the chain codes perform in a realistic implementation.

The performance of the chain codes is analyzed using

the area error per unit length (hereafter referred to as

aepl), the number of bits per unit length required for

storage (hereafter referred to as bpl), and the smoothness

of the chain coded versions of the drawings. The aepl and

bpl are analyzed and related to the smoothness of the

coded versions of the drawings. The smoothness analysis

is a subjective evaluation based on a visual inSpeCtion of

tie coded versions of the drawings as drawn on th

pIotrer. Each drawing is analyzed at various gridsi:-is n

several differert chain codes. The inter.- of "'-

inal'vs5s is to discover how well the chain Dcdn-

i r :thin performs in a realistic chain cod rn

r nm nt, and to determine if There is any correlation

ae',A;n cn i -pi and bpl metlrics and the visual appearance

:.e A awzngs. Appendix B contains all the tables and

V- I

figures referenced in this chapter pertaining to the

performance of the codes.

Circle

First, a circle with a diameter of approximately 4.5

inches was digitized and the performance of the chain S

codes was examined. The circle, hereafter referred to as

CIRCLE, was encoded using several different gridsizes and

chain codes. The circle is shown in Figure B-i. The

chain codes used for analysis are the (1), (2), (3), (4),

(1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3),

(1,2,4), (1,3,4), (2,3,4), and (1,2,3,4). Each of these

codes were used at gridsizes of 0.25, 0.2, 0.15, and 0.1

inches. All codes except the (1,3), (1,4), (1,2,3),

(1,2,4), (1,3,4), and (1,2,3,4) were also coded at a

gridsize of 0.05 inches. These codes were not coded at

0.05 inches because of the uncertainty introduced by the

digitizer resolution (see Chapter IV).

Trends in aepl and bpl Performance. In this section,

the aepl and bpl metrics were examined from the standpoint

of looking for trends in chain code performance. This

analysis does not consider the smoothness of the drawing,

which is considered in the next section. Tables B-I

through B-5 show the performance of each of the codes for

each gridsize.

The aepl increased with gridsize for most of the

codes. This relationship was almost linear; however, it

V-2

• _ ., -

I -- w7

no longer holds for several of the multi-ring codes when

the gridsize reaches 0.2 inches. The bpl was inversely

proportional to the gridsize for all of the codes, and

this relationship held up to the largest gridsize

evaluated, 0.25 inches.

Analyzing the performance of each of the chain

codes at the various gridsizes and looking for trends, the

single ring (2), (3), and (4) codes consistently provided

the worst aepl performance and the best bpl performance.

The (2,3), (2,4) (3,4), and (2,3,4) codes were sometimes

grouped with these single ring codes; the poor aepl

performance of these codes demonstrates the significant

contribution the first ring level makes in aepl accuracy.

The (i) code aepl performance was poor; however, generally

not as bad as the other single ring codes. Its bpl

oerformance was also consistently among the poorest. It

was even worse than the multi-ring codes which require

more bits per point, thus demonstrating the utility of the

outer rings in reducing the number of points required to

encode the circle. The (1,2) code's aepl performance was

mediocre, usually falling in the middle, and its bpl was

consistently one of the worst. Generally, the (1,3),

(1,2,3), (1,2,4), (1,3,4), and (1,2,3,4) codes had the

best performance for the aepl and were usually clustered

around the middle for the bpl metric. The (1,2,3,4) code

showed the best aepl performance only for the 0.25 inch

gridsize and was usually in fourth or fifth place for the

V-3

_Ju ln u '

other gridsizes. Also, it showed consistently poor bpl

performance; therefore, it seems that a 4-level code does

not yield any improvement over the 3-level codes.

Apparently, the best combination of aepl and bpl

performance came from the 3-level codes (1,2,3), (1,2,4),

and (1,3,4). The 2-level code (1,3) was also a strong

performer in both areas. None of these codes were

superior to the others for all gridsizes; therefore, it is

difficult to say which is the best performing code based

strictly on an examination of the aepl and bpI metrics.

Smoothness vs aepl and bpl. This section consists of

subjective comparisons of the smoothness of the different

drawings. Also, an attempt is made to try to determine if

there is a relationship between aepl and smoothness or

between bpl and smoothness.

Gridsize of 0.25 Inches. None of the drawings

coded with a gridsize of 0.25 inches were of good quality.

The smoothest drawings appeared to be the (4), (3,4),

(2,3,4) and (1,2,3,4) codes. The (1,2,3,4) code is shown

in Figure B-2. The rest of the drawings appeared either
I

somewhat deformed (did not appear round) or suffered from

abrupt changes in slope like those shown in the (1,3) and

(1,4) codes in Figure B-3. Easily the worst-drawing was
D

for the (1) code (see Figure B-4). This was obviously due

to the limited angular resolution of the (1) code. A

problem that occurs for many of the codes and at all the

ridsizes is typified by the (2,4) code shown in Figure B-

V-4
S

5. Note that both upper quadrants and the lower left

quadrant contain straight line segments which detract from

the curvature expected in a circle.

Comparing the smoothness evaluation with the aepl of

the codes yields some interesting results. One of the

smoothest codes, the (4) code, possessed the highest aepl.

The other codes with the highest aepl's were the (2), (3),

and (2,4) codes. These codes appeared deformed and

asymmetric. The (1,3,4) and (1,2,3,4) codes had two of

the lowest aepl ratings; however, both contained abrupt

changes of slope in the lower left quadrant which detract

from the appearance of the drawing. In general, while a

low aepl at this gridsize can indicate a smooth drawing,

smoothness is more a function of continuity and symmetry

than of aepl. These two attributes are more pleasing to

the eye and more resemble a circle than the drawings that

possess asymmetries or abrupt changes in slope.

The bpl seemed to have very little to do with

smoothness. The drawing with the highest bpl (therefore,

the one that might be supposed to contain the most

information) was the (1) code, which was the worst

performing code with respect to smoothness. It seems that

the number of bits used to encode the nodes or even the

number of nodes is not as important as the placement and

symmetry of the nodes, at least for drawing a circle.

Gridsize of 0.2 Inches. The drawings coded at

0.2 inches were also of poor quality. Several of the

V-5

- mm m mmddw

drawings appeared about equal in smoothness; these were

the (4), (2,4), and (3,4) codes. Others that were almost

as smooth are the (3) , (2,3) (1,2,3) , (1,2,4), (2,3,4) ,

and (1,2,3,4) codes. Most of the other codes suffered

significantly from the abrupt change in slope problem (see

the (1), (1,2), (1,3), and (1,4) codes shown in Figure B-

6). Again, the worst drawing was the (1) code. Overall,

tne drawings did not appear as smooth as the drawings done

at the; 0.25 inch gridsize. None of them seemed

symmetrical and the slope changes were generally more

severe. Even one of the smoothest drawings, the (4) code,

possessed a long straight line segment on the right side,

ietracting from the expected curvature.

Again, one of the smoothest codes, the (4) code

possessed the highest aepl. Two other relatively smooth

Irawings, the (2,4) and (3,4) codes, also had a high aepl.

T-e rawi-gs with the lowest aepl, the (1,2,3), (1,2,4),

(1,3,4), and (2,3,4) were quite smooth; however, each had

one or more continuity changes that detracted from their

D:erall appearance. In general, the multi-ring codes

: ssess55g the (I) ring contain less aeol; however, they

s:v.: 1 7LZred with the abrupt changes in slope. The codes

n L er rings such as the (2,4) and (3,4) are

5m oter iecsuse t here are no abrupt changes in direction.

A-h-; i.25 Lnch]thisize drawings, the value of the

2p, seeme- to ave !e* ee on smoothness than the

C1ac-ment :f he nodes.

Sridsize of 0.15 Inches. The drawings coded

with a gridsize of 0.15 inches are of much better quality

than those coded at the higher gridsizes. The (3) code,

shown in Figure B-7, resulted in the smoothest drawing.

Others that are quite good are tne (4), (3,4), and (1,2,4)

codes. The worst code was again the (1) code, with many

abrupt changes in direction detracting from a smooth

curvature. Most of the other codes also suffered somewhat

from changes in direction. In general, however, the

fiawings for this gridsize did not possess the wide range

of smoothness variations that characterized the drawings

at the larger "gridsizes of 0.25 and 0.2 inches. Except

:-,r the 1) code, the drawings at this gridsize did not

......r r m eacn other significantly.

As in the larger gridsizes, some of the smoothest

c~des possessed the highest aepl ratings. These codes,

-,I and (4) codes, are smooth because of their high

nr res~i iton and because the length of the line

:? mer- f0 :-7Lng the circle are constant. Again, this was

7, r e2 nornan the aepi accuracy. Also, the codes

tm] o m well in aepl were fairly smooth, just as

-a- higher n ds i zs. However, te did

',3S -na-ss Ln slope tha etr ac from a

: 1. r~3r 3: 3N an':e. , a n e_ ol acme.nt Dr ' nodes

seeams mon a d -o -L, tnes n hme npl met ric

s .se 7 rulio thef....Lc

r f s ."I -a .a I I y

the (1) ring, and these drawings still have th- highest

bpl. However, the aepl did not vary widely at this

gridsize; there is only 0.009 square inches difference

between the maximum and minimum ratings. The smoothest

drawing, because it has the least zigzagging, is the (4)

code shown in Figure B-21; it also possesses one of the

highest aepl ratings and the lowest bpl rating.

The drawings for SQUARE-30 are following the pattern

se< at the larger gridsizes. The zigzagging problem

remains; however, the corners are not chopped off as badly

as they have been. The (2,4), and (3,4) codes shown in

Figure B-22 produced the smoothest drawings while

possessino mediocre aepl ratings. Even at this small

gridsize, the Jrawings are marginal. Again, the drawings

with the lowest aepl ratings, the multi-ring codes using

the (K) ring, were not the smoothest because of the

zigzaggIn4. The (1,3) code shown in Figure B-22 is

typical of these codes. The bpl ratings followed the

usual pattern of lowest for the single ring high order

codes and highest for the multi-ring codes using the (1)

ring.

In smootoness, the drawings for SQUARE-45 look much

tne same as they did for the drawings coded using a

r~isize ;f 0.15 inches. They do not suffer significantly

from he ziozagging effect and the chopped off corners are

n ad. Thq lower -rder c-odes using the (1) ring were

smoother than 'h higher crer codes b-cause the

7-21

ring. The worst looking drawing was again for the (1) code

shown in Figure B-20. None of the drawings at this

gridsize were of acceptable quality. In general, the best

aepl ratings were for the multi-ring codes which used the

(1) ring while they also possessed the highest bpl. The

codes with the lowest bpl were the high order single ring

codes. Also, the smoothest code, the (3,4) code,

possessed a relatively low rating.

At this gridsize, the smoothest drawings werd again

for SQUARE-45. Although these drawings did not appear as

perfect as they did at the 0.2 inch gridsize, they

suffered less deformities than did the other squares.

None of the drawings were so deformed as to be

unrecognizable at this gridsize, but the drawings for
DI

SQUARE-30 and SQUARE-60 are still plagued significantly by

the zigzagging problem.

Gridsize of 0.1 Inches. Interestingly, SQUARE-

0, which had not been plagued by the zigzagging phenomenon

at the larger gridsizes, now suffers from the zigzagging

problem for every code using a gridsize of 0.1 inches.

The zigzagging always occurs near the upper right corner

of the drawing. Evidently, the ('7iginal drawing is

distorted enough to cause the chain coding algorithm to
I

select a node one gridsize to the left or right of the

present node (recall that the sides of the square are not

exactly two inches in length). Generally, the drawings

with the lowest aepl are still the multi-ring codes using

V-20

I

comes from the codes using the outer rings, such as the

(2,4) and (3,4) codes shown in Figure B-19. This is true

despite the fact that these codes possess higher aepl than

the codes using the inner ring. At this gridsize, the

lowest aepi ratings again come from the multi-ring codes

using the (1) ring and the best bpl ratings come from the

single ring outer level codes.

The drawings for SQUARE-45 were slightly more

deformed at this gridsize than they were for the 0.2 inch

gridsize. There was very little zigzagging but almost

every code resulted in a small part of some of the corners

chopped off. Again, however, the smoothest codes were the

multi-ring codes using the (1) ring. Just l-ike the

drawings done with the 0.2 inch gridsize, all the codes

using the (1) ring possessed the lowest aepl, and they

were all equal. The most deformed drawings were the

higher order codes, and they possessed the highest aepl.

The bpl followed the normal pattern: highest for the

multi-ring codes using the (l) ring and lowest for the

high level single ring codes.

The smoothness for the SQUARE-60 drawings was again

similar to the smoothness for the SQUARE-30 drawings. The

high order (3,4) code shown in Figure B-20 was probably

the smoothest drawing, although it was deformed by a

missing corner and slight zigzagging. Again, this code

was smoother than codes with a lower aepl because the

zigzagging was more prevalent in the codes using the (1)

V-19

ratings followed the usual pattern, lowest for the outer

level single ring codes and highest for the multi-ring

codes containing the (1) ring.

At this gridsize, the smoothest drawings were for the

SQUARE-45 codes. Evidently, the lengths of the sides of

the square coincided with the nodes of the grid used by

the chain coding algorithm well enough that no corners

were lost, and the drawings appear almost perfect. The

drawings for SQUARE-0 still suffer from chopped off

corners; otherwise, they are very smooth. For the SQUARE-

30 and SQUARE-60 drawings, the zigzagging caused by the

lack of a node at 30 or 60 degrees is still the major

problem. The codes with the higher rings tend to smooth

this out to some extent, but they are more prone to
'S

chopped off corners.

Gridsize of 0.15 Inches. For SQUARE-0, the

drawings coded with a gridsize of 0.15 inches were very

smooth except for chopped off corners. The smoothest

codes were the ones using the (1) ring. These codes also

possessed the lowest aepl, since they have the least

amount of corner chopped off. Just as for the drawings

with gridsizes of 0.25 and 0.2 inches, all the codes using

the (1) ring have essentially equal aepl ratings. Also,

Scos have the highest bpl ratings; the lowest bpl
A

again comes from the single ring outer level codes.

The SQUARE-30 drawings still suffer from chopped off

corners and zigzagging. The least amount of zigzagging

V-18
-S

resolution. The best aepl ratings again came from the

multi-ring codes containing the (1) ring and the best bpl

ratings came from the outer level single ring codes

followed by the outer level multi-ring codes.

The drawings for SQUARE-45 at this gridsize are very

smooth. All the codes containing the (1) ring produced

drawings with no zigzagging and no chopped off corners.

Also, all of these codes possess identical aepl ratings;

therefore, except for the nodes used, the drawings are

identical (see the (1) code shown in Figure B-17). All of

the codes without the (1) ring possessed chopped off

corners and some zigzagging. One, the (4) code, was so

distorted as to be unrecognizable as a square. Smoothness

and aepl correlated well for this drawing, with the

smoothest drawings also possessing the least aepl. The

highest bpl also belonged to the smoothest drawings.

As in the case of SQUARE-30, none of the codes for
S

SQUARE-60 produced a drawing that was clearly superior to

the others, nor were any of the drawings of acceptable
b

quality. All of the drawings were distorted with chopped

off corners and zigzagging. Again it appears that the

outer ring codes are slightly smoother even though they

possess higher aepl ratings. Their longer line segments

between nodes do not suffer as much from the zigzagging as

the codes containing the (1) ring. The (1) code shown in

Figure B-18, with its poor angular resolution, was again
S

the worst code with respect to smoothness. The bpl

V-17

, . ".

Gridsize of 0.2 Inches. For SQUARE-0, the

drawings were very smooth, with the only detraction being

chopped off corners. All codes produced a drawing with

the lower left corner chopped off and the codes without

the (1) ring lost other corners as well. The (3), (4),

and (3,4) codes were the ones with the most deformities;

these three codes also had the worst aepl rating. The

best aepl again came from the codes which use the (1)

ring. Like the drawings at the 0.25 inch gridsize, the

aepl ratings for the codes using the (1) ring were

essentially equal. The bpl also followed the same pattern

as the drawings with the 0.25 inch gridsize; the lowest

bpl was.for the codes with the outer rings and the highest

bpl came from the multi-ring codes.

Again, the major detraction for the SQUARE-30

drawings was the zigzagging effect caused by the lack of a

next node at 30 or 60 degrees. Losing corners was also a

problem for these drawings at this gridsize. None of the

drawings at this gridsize were of acceptable quality.

There were no codes that produced drawings clearly

superior to the others; however, the (2,3), (2,4), and

(2,3,4) codes shown in Figure B-16 were slightly smoother

than the rest. The (2,4) and (2,3,4) codes had mediocre

aepl ratings, but the use of the outer rings resulted in

less zigzagging for these drawings. The worst code was

the (L) code (also shown in Figure B-16); it was again a

victim of excessive zigzagging due to its limited angular

V-16

was not a very good drawing. Both sides were slightly

crushed toward the middle, but it contained the fewest

deformities of all the drawings. Most of the rest of the

codes produced drawings containing chopped off corners and

zigzagging. The worst codes were the (1), (1,3), and

(1,4) codes shown in Figure B-15. These codes contained

quite a bit more zigzagging than the others which

detracted from their smoothness. Their aepl was mediocre

and their bpl was high. The (3) and 14) codes were

deformed but still recognizable as squares. Their aepl

ratings reflected the deformation, as they were the

highest of all the codes.

By far the smoothest drawings were for SQUARE-0.

They contained no zigzagging and suffered no worse from

chopped off corners than the other squares. The next

smoothest were the SQUARE-45 drawings. This could be

expected because there is always a node 45 degrees from

the present node, while this is not true for 30 or 60

degrees. Since none of the rings produce a node that is

30 or 60 degrees from the present node, SQUARE-30 and

SQUARE-60 suffered more from zigzagging lines as the

coding algorithm tried to follow the sides of the squares

and was never able to find a node that was on the line. 9

This effect was less noticeable on the outer ring codes

simply because they consist of longer line segments;

therefore, they have fewer corrections to make.

V-15

zigzagging as the chain coding algorithm was required to

compensate for its lack of angular resolution. Both the

aepl and bpl ratings for this code were mediocre. The

high level single ring codes, the (3) and (4) codes, were

very distorted. The corners cut off by the coding

algorithm have caused them to lose their identity as

rotated squares. This is reflected by their aepl ratings,

which are the two highest. The bpl ratings were highest

for the multi-ring codes containing the (1) ring and

lowest for the outer ring codes, just the opposite of the

aepl ratings.

For the SQUARE-45 drawing, no particular drawing

stands out as the smoothest; none of the drawings are of

* acceptable quality. All of the drawings possess some

zigzagging or missing corners that detract from the

expected shape. The worst codes with respect to the

zigzagging are the (1), (1,3), (1,4), and (1,3,4) codes.

Again, the high level (4) code and the (3,4) code are so

distorted as to be unrecognizable as squares. Both of

these codes possess very high aepl ratings, with the (4)

code's aepl almost twice as high as the next highest aepl.

The (3) code produced a relatively smooth drawing and

possessed the lowest aepl rating, as well as a low bpl

rating. In general, the codes using the (1) ring had the

lowest aepl and the highest bpl.

The smoothest drawing for SQUARE-60 was produced by

the (3,4) code shown in Figure B-14. Even this, though,

V-14

lost other corners as well. In this case, since the

smoothest drawings are the ones with the least amount of

the square chopped off, they also are the drawings with

the lowest aepl. The bpl was exactly the opposite; the

more corners that were missing, the fewer the number of

nodes (and the corresponding number of bits) required to

encode the square. Another interesting observation is

that all the codes containing the (1) ring possess the

same aepl rating. This means that although each code

produced different nodes because of the different ring

levels, they all produced the same drawing when the chain

coded versions were plotted.

For SQUARE-30, the smoothness of many of the drawings

was reduced because the chain coding algorithm produced a

zigzagging effect. For example, the (1) code shown in

Figure B-12 contains an excessive amount of zigzagging.

Therefore, the smoothest drawings were the ones without

any corners chopped off and those containing the least

zigzagging. The best combination of these two attributes

was the (3,4) code shown in Figure B-13. This code also

possessed a low aeol and close to the best bpl rating. it

was the only drawing with acceptable quality at this

gridsize. Codes that were almost as smooth as the (3,4)

code were the (1,2,3) and (1,2,3,4) codes. These codes

possessed low aepl ratings but had high bpl ratings. By

f,3r tihe worst looking drawing was produced by the (1) code W

shown Ln Figure B-12. This drawing contained a lot of

V-13

there is error for each drawing and for every gridsize.

In general, the best aepl and the worst bpl

performance came from the multi-ring codes that contained

the (1) ring; however, none of these codes were

consistently better than-the others. Also, the high

level, (3) and (4) ring codes provided both the worst aepl

and best bpl performance.

No pattern could be discerned when comparing the aepl

for the different squares; no square consistently had more

or less aepl than the others. For the bpl, however,

SQUARE-0 usually had the highest bpl and SQUARE-45 usually

had the lowest. Evidently, the codes for SQUARE-45 were

able to utilize the outer rings more effectively,

£ ' Likewise, the codes for SQUARE-0 were not as effective in

this respect as the codes for the other squares.

Smoothness vs aepl and bpl. In this section, the

smoothness of the chain coded versions of the figures is

evaluated examined for a correlation between the

smoothness and the aepl and bpl metrics. For each

gridsize, each square is examined and then the squares are

compared against each other to determine the effect of the

rotation.

*fridsize of 0.25 Inches. For the SQUARE-0

drawings coded at 0.25 inches, the only detractions from

smoothness are the chopped off corners of the square.

Each code chopped of the lower left corner of the square

and the nLr r ';rder codes, the (3), (4), and (3,4) codes,

V-12

j-

squares are shown in Figure B-10.

In general, the relationship between aepl and

gridsize was not as linear as it was for the circle, This

suggests that another factor besides gridsize contributes

to the aepl. For a non-rotated square, or any figure

consisting solely of straight lines running parallel to

the coding grid, it seems obvious that the aepl should be

more a function of the ratio of the length of the sides of

the fig.ure to the product of the ring level and the

gridsize. Also, for a rotated square or similar figure,

the aepl should be a function of how close the lines lie

to the nodes of the coding grid. For example, a perfect

square with sides that are an exact multiple of the

gridsize encoded with a (1) code should have an aepl of

zero. If the perfect square were not an exact multiple of

the gridsize, the aepl would consist of the sum of the

areas of small rectangles and triangles like those shown

in Figure B-lI.

This fact is demonstrated by the aepl data for

SQUARE-0 at the gridsize of 0.15 inches. This is the only

gridsize evaluated that is not a sub-multiple of the two

inch length of the sides of the square. The data shows

* that the aepL of almost every code is higher for the 0.15

inch gridsize than fo- the other gridsizcs.

Of course, none of the squares used here are perfect

* squares, as they were hand drawn. The sides of these

squares are not exactly two inches in length; therefore,

V-11

gridsizes. This suggests that a radius to gridsize ratio

of approximately 15 to 1 will result in an adequate

representation of a circle. These results are similar to

those obtained by Thompson in his study of circular waves

(6:V-4).

Squares

The next figures examined were squares with sides

approximately two inches in length (recall these figures

were hand drawn and are not geometrically perfect). Four

different squares were digitized and coded, each with a

different angle of rotation relative to a Cartesian

coordinate system. The angles of rotation examined were

0, 30, 45, and 60 degrees. The different angles of

(. rotation were used to determine the effect of rotation on

the aepl and bpl metrics and the smoothness. The same

codes and gridsizes used for the CIRCLE drawing were used

for each of the four squares. The performance of the

chain codes for each square are examined relative to the

results for the other squares to determine the effect of

the rotation.

Trends in aepl and bpl Performance. The square at an

angie of 0 degrees is referred to as SQUARE-0, the square

r 9 9~3 rees is known as SQUARE-30, the square

A ,i 4: iegrees s SQUARE-45, and the one rotated 60

:... rred to as SQUARE-60. The performance

codhin odes by gridsize are shown in Tables

ji':gL+tLzed versions of each of the

V- LO

with the small variation in smoothness between drawings.

Again, the placement of the nodes affects the smoothness

more than a high or low bpl metric.

Summary of Data for CIRCLE. The best aepl

performance generally came from the (1,3), (1,2,3),

(1,2,4), and the (1,3,4) codes, while the worst

performance was for the (2,3), (2,4), and (3,4) codes.

The best performing codes for the bpl metric were

naturally the outer ring, single level codes. For the

circle, it was noted at all gridsizes that the outer ring

codes were smoother than the codes including the inner

rings, even though the aepl was generally less for the

inner ring codes. This is true because an abrupt change

in slope usually results when the coding algorithm, trying

to follow the curvature of the circle, switches from an

outer ring to an inner one. The conclusion is that aepl

is not a good indicator of smoothness for the circle.

Also, it was clear that a high bpl is not related to the

smoothness. In f~ct, many times the code with the lowest

bpl, the (4) code, was one of the smoothest drawings. In

all cases, the placement of the nodes, which determines

how symmetrical the circle appears, had more effect on the

smoothness than the bpl did.

The smoothness of the drawings was not good at

gridsizes higher than 0.15 inches. Also, once this

gridsize was reached, there was not as much variation in

smoothness between codes as there was at the larger

V-9

those coded at 0.15 inches. The (3) and (4) codes were

again the smoothest and the (1) code was the roughest.

The rest of the drawings were essentially equal; all

containing two or three of the abrupt changes in direction

that detract from the circular appearance. Codes (1,4)

and (3,4) shown in Figure B-8 are typical.

As with all previous gridsizes, the (3) and (4) codes

are the smoothest drawings and possess high aepl ratings.

The roughest code, the (1) code, also had a high aepl.

The drawings at this gridsize did not show much variation

in aepl, with the difference between the highest and the

lowest onlv approximately 0.008 inches. This fact

correlates w-_I1 with the low variation in smoothness.

Except totroe smoothest code, the (3) code, and the

worst, e 1) rode, these drawings were very close to

each o ner : smoothness. The bpl metric again showed no

relevance - s- ,rhness, other than its relationship to

the oiacememn - Di th nodes.

> c os"o: of 0.05 Inches. All of the drawings

coded a.'-r : 4rijs:ze of 0.05 inches were of good quality.

The (1) and (2) codes suffered somewhat from abrupt

changes in slope; however, the grids ize is small enough

that .t is not as significant a problem as at the larger

grids zes. The (4) code shown, in Figure B- , is tvp'_cal

off the drawings at this gridsize.

Th aepl for these drawings vari,..e 1-,ss than

inches between maximum and minimum. This torrelats wel

V-8

corners were not chopped off as badly. The bpl ratings

followed the usual pattern.

(The characteristics of the SQUARE-60 drawings are

again very similar to those of the SQUARE-30 drawings.

Although the corners are not chopped off as badly at this

gridsize, the zigzagging is still a significant problem.

The drawings least effected by the zigzagging are still

the ones using the higher order codes, while the lowest

4 aepl ratings are produced by the multi-ring codes using

the (1) ring. The bpl ratings followed the same pattern

as they have for the larger gridsizes.

The smoothest drawings were again for SQUARE-45. The

SQUARE-0 drawings had deteriorated because of the

introduction of zigzagging, which had been absent for the

larger gridsizes. SQUARE-30 and SQUARE-60 were about

equal in smoothness; both still sufferini, significant

d'formation because of zigzagging. The corner chopping
I

problem has been vastly reduced for ill the squares at

this gridsize.

Gridsize of 0.05 Inches. The drawings for

SQUARE-0 using a gridsize of 0.05 inches are very smooth.

The drawings using the (i) ring are the smoothest, with

only a small part of one of the corners missing. The

drawings using the outer rings are missing a small amount

more of the corners, but these drawings are still very

The smoothness of all of these drawings is

in the aepl ratings. The (1) and (1,2) codes

7-22

have the lowest aepi while the (3) code has the highest;

however, less than 0.002 inches separates the maximum aepl

from the minimum (these drawings are shown in Figure B-

23). The relative bpL performance of the codes is

unchanged from the higher gridsizes.

The drawings for SQUARE-30 are much improved over the

larger gridsizes. in general, the zigzagging problem,

though still noticeable, does not detract from the

appearance of the square as much as at the larger

gridsizes. Also, the smoothness of the codes does not

vary as widely; there is no class of codes that is clearly

superior to the others. However, the (1) code shown in

Figure B-24 is again clearly the worst of the drawings.

Its limited angular resolution resulted in significant

zigzagging, even though it had a low aepl rating. The bpl

again was lowest for the outer ring codes and highest for

the inner ring codes.

The SQUARE-45 drawings for this gridsize are very

smooth; however, some zigzagging is now noticeable that

had been missing from the drawings coded at larger

gridsizes. The zigzagging is very minor and only occurs

in one or two places on each drawing. It seems that the

gridsize is now small enough to cause the drawing to be

affected by the inaccuracies in the slope of the lines of

the original hand drawn square. In other words, where the

slope of the original drawing was not exactly 45 degrees,

the nodes of the chain code grid are now close enough to

V-23

each other to result in the selection of a node not 45

degrees from the present node. The smoothest drawings, the

(1,2), (2,3), and (2,3,4) drawings shown in Figure B-25,

also possessed the lowest aepl ratings. The drawings with

the highest aepl were the outer ring codes, which were

also the most distorted. The bpl ratings followed the

usual pattern of lowest for the single ring high level

codes and highest for the multi-ring codes.

Like the drawings for SQUARE-30, the drawings for

SQUARE-60 are much improved at this gridsize. The

zigzagging is much less significant and most of the

drawings are very smooth. The (1,2) code produced the

smoothest drawing; however, it is not significantly better

than the (2,4) and (3,4) drawings (these drawings are
5,

shown in Figure B-26). The aepi for the (1,2) code was

the lowest of all the codes, while the aepl for the (2,4)

and (3,4) codes was neither among the highest or lowest

when compared to the rest of the codes. The worst

drawings were the (1) and (2,3,4) codes shown in Figure B-

27). These codes contained more zigzagging than the other

drawings, which detracted from their smoothness. The aepl

and bpl ratings followed the familiar pattern set at the

larger gridsizes of low aepl and high bpl for the multi-

ring codes and high aepl and low bpl for the single ring

outer level codes.

Because of the ziazagging in the drawin.gs for SQUARE-

45, the smoothest drawings at this gridsize were for the

V-24

07

SQUARE-0 drawings. The drawings for SQUARE-30 and SQUARE-

60 were very much improved with the zigzagging much less

noticeable than it had been at larger gridsizes. Also,

this gridsize is small enough that the problem of chopped

off corners is not as significant, though it is still

noticeable in drawings that do not use the (1) ring.

Summary of Data for Squares. Generally, the

drawings for SQUARE-0 and SQUARE-45 were much smoother

than the drawings for SQUARE-30 and SQUARE-60. This is

probably attributible to the fact that a node can always

be found 0 or 45 degrees from the present node for any

chain code, while no node is exactly 30 or 60 degrees from

a present node. This makes the zigzagging problem more

likely to occur for lines at an angle of 30 or 60 degrees.

The other major problem noted for all the squares was loss

of some of the corners. All of the squares suffered from

this problem to some extent; however, it was most

noticeable on SQUARE-0, since it was generally the only

deformity suffered by that square. Usually, a low aepl

for SQUARE-0 and SQUARE-45 indicated that the drawing

would be smooth, while this was not true for SQUARE-30 and

SQUARE-60. Many times for SQUARE-30 and SQUARE-60, the

smoothest drawings were the ones using the outer rings,

sucn as the (2,4) and (3,4) codes, the codes with mediocre

or high aep. ratings. The zigzagging was less apparent

for these codes because of the greater distance between

nodes. It appears that the (1) ring is necessary for the

V-25

corners, but detracts from overall smoothness. So,

similar to the circle, the conclusion is that low aepl

does not necessarily indicate smoothness; smoothness is

more a function of the placement of the nodes.

Sine Wave

The next drawing digitized and encoded was two cycles

of a sine wave. The period of the sine wave is

approximately 1.5 inches and it has a peak of

approximately 1.625 inches. This drawing is shown in

Figure B-28. The same codes and gridsizes :sed for the

previous drawings were used for the sine wave.

Trends in aepl and bpl Performance. This section

analyzes the aepl and bpl data for the sine wave to see if

any trends in performance patterns for these metrics

develop. The performance data for each of the codes is

shown in Tables B-26 through B-30.

Generally, an increase in gridsize leads to an

increase in the aepl rating; however, the relationship was

not as close to being linear as it was for the circle.

The bpl relationship to l/gridsize is as highly linear as

it was for the circle and the square.

The outer ring codes, the (3), (4), and (3,4) codes,

consistently provided the worst aepl performance and the

best bpl performance. The best aepl performance was for

the multi-ring codes containing the inner, (1) ring, while

these codes alsp provided the worst bpl performance. The

(1,2,3,4) code's aepl rating was lower than the other

V-26

codes for all gridsizes except 0.1 inches, where it was

the next to the lowest. The performance of the other

codes containing the (1) ring varied over the gridsizes

enough that no conclusion could be drawn as to which one

was the best. The best bpl performance came from the

codes using the outer rings, the (2), (3), (4), and (3,4)

codes. This is the same pattern noted for the other

drawings.

Smoothness vs aepl and bpl. In this section, the

smoothness of the chain coded versions of the sine wave is

evaluated and an attempt is made to correlate the

smoothness with the aepl and bpl metrics. The data is

examincd for each of the five gridsizes in the following

\ * paragraphs.

Gridsize of 0.25 Inches. None of the drawings

coded with a gridsize of 0.25 inches were of good quality.

The major problems are chopping off at the peaks of the

sine wave and zigzagging along the straight portions.

Also, The (3) and (4) codes were e t-remely distorted

because they could not adequately follow the sine wave due

to the relatively large gridsize. The smoothest drawings

were for the (1,2,3,4), (1,2,4), and (1,3,4) multi-ring

codes. The smoothest drawing, the (1,2,3,4) code, shown

in Figure B-29, possessed the lowest aepl rating while the

worst two drawings, the (3) and (3,4) codes, possessed the

highest aepl. The (1) code suffered the most from the

zigzagging, just as it did for the SQUARE-30 and SQUARE-60

V-27

drawings; it also had a mediocre aepl rating.

Gridsize of 0.2 Inches. The quality of the

drawings coded with a gridsize of 0.2 inches was also very

poor. The (1,2,3,4) code again produced the smoothest

drawing. Other relatively smooth drawings were the (1,2),

(1,2,3), and (1,2,4) codes. The aepl ratings of these

codes were generally low. The (3) and (4) codes were

still very distorted at this gridsize. The (1) code shown

in Figure B-30, with a mediocre aepl ratings, is one of

the worst drawings because of excessive zigzagging. The

multi-ring codes seem effective in smoothing out a large

part of the zigzagging at this gridsize.

Gridsize of 0.15 Inches. The quality of the

drawings coded with a gridsize of 0.15 inches was still

poor for most codes. Chopped off peaks and zigzagging are

still significant problems. Again, the (1) code, with its

limited angular resolution, suffered greatly from

zigzagging. The smoothest codes were the (1,2,3,4),

(1,3), and (1,4) codes (the (1,4) code is shown if Figure

B-31). These codes possessed relatively low aepl ratings,

except for the (1,2,3) code, which was in the middle of

the grouping. The (4) code was still very distorted at

this gridsize; this was reflected in its high aepl rating.

Gridsize of 0.1 Inches. Except for the (1)

code, shown in Figure B-32, the zigzagging for the codes

at a gridsize of 0.1 inches is not as severe as it was at

the larger gridsizes. Also, the chopping off of the peaks

V-28

- . p

is only noticeable on the outer ring codes, such as the

(3,4) code shown in Figure B-33. Overall, the quality of

these drawings was an improvement over the drawings at the

larger gridsizes. In general, the smoothest coder were

those using some combination of the (1) ring and the

outer, (3) or (4), rings. The worst codes were those with

the peaks chopped off, the (3), (4), and (3,4), and the

(1) code, which still is plagued by zigzagging. The aepl

was generally lower for the smooth codes (those containing

the (1) and an outer ring) than for the rough ones. These

4 codes still possessed the highest aepl ratings at this

gridsize.

Gridsize of 0.05 Inches. With a gridsize of

S0.05 inches, most of the codes produced extremely smooth
representations of the sine wave. The zigzagging problem

still exists for the (1) code, see Figure B-34; however,

its much less objectionable at this small gridsize. The

smoothness of the other drawings does not vary

significantly; the (2,3,4) code shown in Figure B-35 is

typical. The aepl ratings were lowest for the codes using

the (2) ring (recall that the digitizer resolution limits

the codes that can be used at this gridsize).

Summary of Data for the Sine Wave. In general, the

cest aepl performance came from the codes which use a

:)rnrznation of the (1) ring and the outer, (3) and (4),

S:.s. Although the aepl increased with gridsize for

*. =ode, the relationship was not linear. On the other

V-29

hand, the relationship between bpl and 1/gridsize seems to

be very linear, just as it was for the circle and the

squares.

The smoothest codes for every g-ridsize were the ones

using the (1) ring in combination with one of the outer

rings, such as the (1,3,4) and the (1,2,3,4) codes. These

drawings also had the lowest aepl ratings. At the higher

gridsizes, the major problems were zigzagging and chopping

off the peaks of the sine wave; these problems were not

nearly as noticeable at the lower (0.1 and 0.05 inch)

gridsizes. The (1) ring suffered the most from the

zigzagging problem and consistently had a relatively high

aepl rating.

The bpl metric for the sine wave followed the pattern

established by the circle and the squares. That is that

the bpl is lowest for the codes using the outer rings,

such as the (3), (4), and (3,4) codes, and highest for the

multi-ring codes using the (1) ring.

Written Text

The last drawing to be digitized and coded was a

sample of written text. The word "hello" was chosen

because it possesses a nice blerd of long sloping lines

and curves with both a large and small radius of

curvature. The digitized drawing, hereafter referred to

as TEXT, is shown in Figure B-36. The letter "h" in

"hello" is approximately one inch high and the letters "e"

V-30

and "o" are approximately' 1/2 inch high. Each of the

codes and gridsizes used for the other drawings were used

for TEXT.

For all *of the coded versions of TEXT, the coded

drawing consists of a small number of line segments which

cross each other one or more times before intersecting

with the digitized drawing. This creates multiple closed

loops between intersections of the digitized and coded

drawings which the area algorithm in the ERROR program

cannot handle (see page IV-13 in reference 2). For this

reason, the error results are not tabulated. Therefore,

the performance metrics discussed in the remaining

paragraphs of this section of the chapter are smoothness

and readability of the text.

Gridsizes of 0.25 and 0.2 Inches. The drawings

coded with a gridsize of C .25 inches were unrecognizable.

The (1,3) code shBwn ' re B-37 is an example of one

of the better codes, a .. s unreadable. The drawing

becomes recognizatbe as a written word with a gridsize of

0.2 inches, but only for codes that use the (1) ring. All

of the drawings at this grisize are extremely jagged and

angular; there is no smoothness evident. Codes (1,3) and

(1,2,3,4), shown in Fi-ure B-38, are representative

examples.

Gridsize of 0.15 Inches. With a gridsize of

0.15 inches, a noticeable difference in the quality of the

codes emerges. However, the codes that do not use the (1)

V-31

S

ring are still unrecognizable. All of the drawings are

still jagged and angular, but the utility of the multi-

ring codes in smoothing the drawing can easily be seen by

comparing the (1) and the (1,2,3,4) codes in Figure B-39.

It seems that the best drawings are the ones that use any

combination of the (1) and (2) rings. The curves in the I

letters are too small to take advantage of the outer

rings, the (3) and (4) rings; therefore, the (1,3) and

(1,4) codes look very similar to the (1) code shown in

Figure B-39.

Gridsize of 0.1 Inches. At a gridsize of 0.1

inches, the drawings with the (2) ring as the lowest ring

are now recognizable; however, the drawings using the

higher rings are still unreadable. The (1), (1,3), and

(1,4) codes still produced drawings at this gridsize that

are jagged and angular, while the (1,2), (1,2,3), (1,2,4),

and (1,2,3,4) codes are beginning to appear smooth. The

(1,2,4) code shown in Figure B-40 is representative of

these drawings.

Gridsize of 0.05 Inches. With a gridsize of
I

0.05 inches, all of the codes produced recognizable -1

drawings (recall that several of the codes cannot be used .1

because of the digitizer resolution). The (1) and (4)

codes shown in Figure B-41 are the worst codes, each for a

different reason. The (1) code is jagged and -- qular

because of its limited angular resolution while the (4)

code just cannot adequately follow the original digitized

V-32

drawing. The (2,4) and (2,3,4) codes shown in Figure B-41

are the smoothest drawings. These codes utilize the inner

ring and the outer ring to provide a good combination for

encoding the various radii of curvature encountered in the

drawing.

Summary of Data for TEXT. The TEXT drawing

needed a small gridsize to be readable. With a gridsize

of 0.25 inches, the drawing was unrecognizable, and only

the codes using the (1) ring produced recognizable

drawings at gridsizes of 0.2 and 0.15 inches. At the

gridsizes above 0.1 inches, all the drawings were very o
jagged and angular and of unacceptable quality. With a

gridsize of 0.1 inches, the drawings began to become

smoother, with the codes using the (1) and (2) rings

performing the best. However, the drawings at this

gridsize were still judged to be of unacceptable quality.

All of the drawings coded with a gridsize of 0.05 inches

were recognizable as written words; however, the quality

of the (1) and (4) codes was unacceptable, and only

marginal for the other codes. These results indicate that

the minimum acceptable letter height to gridsize ratio is

approximately 20 to I for marginal quality.

For all gridsizes except 0.05 inches, the codes that

use a combination of the (1) and an outer ring, the (3) or

(4) rings, did not perform well. Apparently, the twists

and curves in the text did not allow the outer rings to be

used, and the (1) ring's limited angular resolution

V-33

produced very jagged letters. Therefore, the best

performing codes were those that used the (1) and (2)

rings with some added combination of the outer rings, such

as the (1,2,3) code.

Summary

In this chapter, the results of an analysis of

several line drawings have been discussed. This analysis

was based on the performance of several chain codes at

different gridsizes using the precision, compactness, and

smoothness performance criteria. The next chapter will

discuss the conclusions that have been reached as a result

of this analysis and propose recommendations for future

study.

V-34

VI. Conclusions and Recommendations

This chapter summarizes the conclusions reached as a

result of the analysis of the performance of the chain

codes. Also, recommendations for future study are made.

Conclusions

Generally, the aepl metric was lowest for the multi-

ring codes containing the (1) ring. These codes usually

possessed aepl ratings that were very close to each other;

however, none of these codes were consistently better than

the others. The aepl was consistently highest for the

outer level (3) and (4) codes. The multi-ring codes that

do not use the (1) ring, such as the the (2,3) and (3,4)

codes, generally had a high or mediocre aepl rating. The

single ring codes, including the (1) code, consistently

had a high aepl rating compared to the multi-ring codes.

Another general observation is that the aepl usually

increases with gridsize for every code; however, this did

not occur in every case.

No !efi-Ite .ov:c i miurw ri Ie drawn from these

drawings as to which code is the best to usk- to obtain a

low aeol rating. Though no particular code had the lowest

aepi rating a- ,ey griJsize for any of the drawings, a

general ronclusLon, however, can be drawn. As mentiDned

earlier, -n- multi-ring codes that use the (i) ring

V I - 1

- - ' " . .. - ,- ,,-I~m lnm , mma:- ,,,mn,,d~m monm~m n' m dl mummn

FID-fli52 $08 N EXTENSION OF A MICROCOMPUTER ORSED SYSTEM
FOR2/

ANALYSIS OF LINE DRANING.. (U) AIR FORCE INST OF TECH
IRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. T A MORRIS

UNLSIIDDEC 84 RFIT/GE/ENG.'84D-48 F/G 9/2 N

1 1111 2 2

flII1.25 lil= jff1.

RI ';OL U I ION I fp

generally had aepl ratings that were very close. Although

none of these codes were consistently better than the

others, the use of any of these codes will almost

certainly result in a relatively low aepl rating.

The (2), (3), (4), and (3,4) codes consistently had

the lowest bpl ratings for all drawings, while the codes

using the (1) ring usually had the highest bpl ratings.

The multi-ring codes using the (2), (3), and (4) rings had

mediocre bpl ratings. The bpl ratings were inversely

proportional to the gridsize for all codes. In fact, this

relationship was very close to linear for the gridsizes

ano codes analyzed in this thresis. Therefore, if the bol

for any code is known for one gridsize, it can be

predicted for the other gridsizes with reasonable
C'.

accuracy.

It seems that the codes with the best combination of

aepl and bpl performance are the multi-ring codes that use

rd the (2), (3), and (4) rings, such as the (2,3,4) code.

The performance of these codes was generally mediocre for

both metrics; however, since the strong performing codes

for both metrics are mutually exclusive (the best codes

for aepl are the worst ones for bpl and vice versa), these

codes are the best compromise.
aI

The results of the smoothness evaluation were largely

dependent upon the drawing being analyzed. A general

observation for all drawings is that a low aepl rating is

not a guarantee of a 5mooh drawing. The codes using the

V [-2

high order rings, which generally possessed the highest

aepl ratings, sometimes resulted in smoother drawings

'd because there was less zigzagging caused by constant

corrections as the coding algorithm tried to follow the

original drawing. Also, it was evident that the placement

of the nodes was more important than a low aepl for

providing a smooth drawing. In other words, if the nodes

I of the coded drawing were symmetrically spaced and

followed the shape of the drawing well, this was more

visually pleasing than a drawing that contained abrupt

changes in slope or direction, but possessed a low aepl

rating.

Although the results of the smoothness evaluations

were drawing dependent, general conclusions can be drawn

on which class of codes should be used to provide the

smoothest drawings. If the drawing to be coded consists

mostly of curves with a fairly constant radius of

curvature, such as the CIRCLE drawing used in this

analysis, then the high order codes are generally

smoother, even though they have the highest aepl ratings.

Also, these codes worked best for straight lines at an

angle relative to the coding grid that does not pass

thro,,gh any nodes, such as the SQUARE-30 and SQUARE-60

drawings used in this analysis. The higher order codes

produce less zigzagging for this type of drawing. For

random drawings or those with a wide range of radii of

curvature, such as the sine wave in this analysis, the

VI-3

smoothest codes were those using the inner, (1), ring in

combination with one or more outer rings.

Another aspect of coding a drawing is the selection

of the gridsize used for the encoding process. This

analysis also provides some insight into this area. The

coded versions of the circle used in this analysis were of

unacceptable quality at gridsizes above 0.15 inches. This

indicates that for drawings with a constant radius of

curvature, that a radius to gridsize ratio of

approximately 15 to 1 will result in acceptable drawings

if the proper codes are used. For the drawings containing

lines of arbitrary slope, such as the rotated squares, no

general conclusions could be reached identifying a line

length to gridsize ratio that would provide adequate

performance in every situation. The coded versions of the

written text used in this analysis were unacceptable at

gridsizes above 0.05 inches. Therefore, a letter height

to gridsize ratio of approximately 20 to 1 is indicated.

Of course, the selection of the code and gridsize

used are extremely application dependent, and, as

expected, there are trade-offs between aepl, bpl, and

smoothness. The application dictates which parameter is

the most important; however, these results can provide

guidelines to aid in the selection of the code and

gridsize that provide the best compromise for a particular

type of drawing.

VI-4

Recommendations for Future Study

The foIlo.wing recommendations are made for future

Cf study with this system:

1. Implement the parallel quantizing scheme. This would

be a relatively simple change to the COMPCODE

procedure of the CHNCODE program.

2. Implement a procedure in the ERROR program to

determine the statistics of the usage of the

differenti ring levels.

3. Using the statistics gained from recommendation 2,

implement a node encoding procedure that minimizes

the number of bits required to encode the node based

on the probability of that node being used.

4. Implement a procedure in the CHNCODE program that

simulates the effect of an additive white Gaussian

noise communications channel at various bit error

rates and study the effect on the drawings.

VI-5

0 ..

0

APPENDIX A

This appendix contains the Pascal source code for the

CHNCODE and the PLOTCODE multi-ring chain coding programs.

0

A-1

0

This is the source listing for the multi-ring chain coding
program CHNCODE.

PROGRAM CHNCODE;

* WRITTEN BY: THOMAS A. MORRIS
* DATE: 15 AUG 1984
* THE PURPOSE OF THIS PROGRAM IS TO CONVERT A DRAWING *

(* REPRESENTED BY A SET OF X-Y COORDINATES INTO A *
(* MULTI-RING CHAIN CODED VERSION OF THE DRAWING.
* THE OUTPUTFILEWILLCONTAINTHESTARTINGX-Y
(* COORDINATE, GRIDSIZE, AND THE RING LEVELS USED FOR *
(* THE CODE. THE OUTPUT FILE FORMAT IS: PEN UP/DOWN, *
(* X COORDINATE, Y COORDINATE, CHAIN CODE. A CHAIN *
(* CODE OF -1 INDICATES THAT THE POINT IS THE FIRST *
(* OR LAST IN A LINE SEGMENT. THE INPUT FILE NEED
(* ONLY BE A LIST OF X-Y COORDINATES WITH EACH POINT *
(* SEPARATED BY CARRIAGE RETURN/LINEFEED.

TYPE POINTER = -RINGPNTS;
RINGPNTS = RECORD

LOCATION : ARRAY [1..21 OF INTEGER;
NEXT : POINTER

END; (* RECORD *)

* THIS POINTER AND RECORD ARE USED TO FORM A LINKED *

LIST TO STORE THE POINTS AS THEY ARE READ IN FROM *
THE DIGITIZED FILE. LOCATION IS THE X-Y

* COORDINATE OF THE POINT AND NEXT IS A POINTER
VARIABLE WHICH POINTS TO THE NEXT SEQUENTIAL
POINT IN THE LIST

VAR
F, G: TEXT;
A, RESULT, J, NUMFLL-ES, OUTRING: INTEGER;
CODE: EXTERNAL INTEGER;
FILENAME: STRING;
NODE: EXTERNAL ARRAY [1..2] OF INTEGER;
:RIDSIZE, NUMRINGS: ARRAY [1..25] OF INTEGER;
LEVEL: ARRAY [1..25,1..5] OF INTEGER;
CODEFILE: ARRAY [1..25] OF STRING;
DELTA: ARRAY [1..5] OF INTEGER;
FIRST, FINISH: BOOLEAN;
PEN: CHAR;
POINT: ARRAY [1..3,1..2) OF INTEGER;
INTSCT: ARRAY [1..5] OF BOOLEAN;
DELTAXY, INTPNT: ARRAY [1..5,1..2] OF REAL;
LASTPNT: ARRAY [1..5,1..4] OF INTEGER;
FRONT, BACK, PTR: POINTER;

A-2

• " ..1

4

* THESE VARIABLES ARE DEFINED AS FOLLOWS:

(* F,G: THESE ARE THE NAMES USED FOR THE TEXT FILES *((* REPRESENTING THE INPUT (DIGITIZED) FILE AND *
THE OUTPUT (CODED) FILE

* A,J: INTEGERS USED AS LOOP COUNTING VARIABLES

(* RESULT: USED AS A STORAGE LOCATION FOR THE TEXT *
FILE CLOSE PROCEDURE RETURN VALUE

(INTERNAL TO COMPILER)

* NUMFILES: THE NUMBER OF FILES TO BE CREATED BY
CODING THE DIGITIZED FILE

(* OUTRING: OUTERMOST RING THAT HAS NOT FAILED THE *
LGS TEST

(* FILENAME: TEMPORARY VARIABLE TO HOLD NAMES OF THE *
TEXT FILES FOR THE INTERNAL ASSIGN
PROCEDURE

* GRIDSIZE: ARRAY TO HOLD THE GRIDSIZE USED FOR
EACH FILE TO BE CODED

(NUMRINGS: ARRAY HOLDS THE NUMBER OF RING LEVELS *
(* USED FOR EACH FILE TO BE CODED

(* LEVEL: ARRAY HOLDS THE VALUES OF THE RING LEVELS *
(* USED FOR EACH FILE TO BE CODED

(* CODEFILE: ARRAY HOLDS THE NAMES OF EACH FILE TO *
BE CODED

* DELTA: ARRAY HOLDS THE DISTANCE FROM THE CURRENT *
NODE TO EACH RING OUT TO RING 5

* FIRST: TRUE IF THE NEXT POINT READ FROM THE
DIGITIZED FILE IS THE FIRST POINT IN A
LINE SEGMENT

* FINISH: TRUE IF THE LAST POINT IN THE DIGITIZED *
FILE HAS BEEN READ

~* PEN: HOLDS A VALUE OF 'D' IF THE PEN IS DOWN AND *

A VALUE OF 'U' IF THE PEN IS UP

* POINT: [I] IS THE X-Y COORDINATES OF THE CURRENT *
NODE, [2] AND [31 ARE THE COORDINATES OF *
THE LAST TWO POINTS READ IN FROM THE *

DIGITIZED FILE

A-3

•* INTSCT: HOLDS A VALUE OF TRUE FOR EVERY RING
INTERSECTED

• DELTAXY: HOLDS THE DIFFERENCE BETWEEN THE GRID
CENTER AND THE INTERSECTION POINT FOR
EACH RING

(* INTPNT: HOLDS THE INTERSECTION POINT COORDINATES *
FOR EACH RING THAT IS INTERSECTED

•* LASTSIT: HOLDS THE LAST TWO POINTS READ AFTER A *
RING IS INTERSECTED.

(* FRONT: POINTER TO THE FIRST POINT IN THE LINKED *
LIST

• BACK: POINTER TO THE LAST POINT IN THE LINKED
LIST

(* PTR: POINTER TO THE CURRENT POINT IN THE LINKED *
LIST

EXTERNAL PROCEDURE COMPCCDE; (* THIS PROCEDURE PERFORMS *)
(* THE LGS TEST AND CALCULATES THE VALUE OF THE
(* CHAIN CODE

PROCEDURE INSERT; (* INSERTS POINTS INTO THE REAR OF
(* THE QUEUE

VAR P: POINTER; (* P IS USED AS A TEMPORARY STORAGE
(* POINTER TO MANIPULATE PTR

BEGIN (* INSERT *)
NEW(P) ;
P-.LOCATION[l] POINT[3,1];
P>.LOCATION[2] := POINT[3,2];
P-.NEXT := NIL;

LF BACK NIL
THiEN

B EG I N l

BACK : P;
FPNT P

EN D)

B3 E S I N

BA:: -K P :
EN DBA7K , . .N L T:

"NID; T* NSFT

A-4

PROCEDURE READLIST; (* THIS PROCEDURE READS POINTS IN *)
(* FROM THE LINKED LIST AND

(* UPDATES THE PTR POINTER

BEGIN (* READLIST *)
POINT[3,1] PTR-.LOCATION[l];
POINT[3,2] PTR-.LOCATION[2];
PTR PTR-.NEXT

END; (* READLIST *)

PROCEDURE ALIGN; (* ALIGNS LIST OF POINTS UP TO THE
(* CODED NODE ALSO UPDATES THE FRONT *)
(* POINTER

VAR P: POINTER; * P IS USED AS A TEMPORARY STORAGE
(* POINTER TO MANIPULATE PTR

BEGIN (* ALIGN *
PTR: FRONT;
IF PTR <> NIL THEN
WHILE NOT ((LASTPNT[OUTRING,3] = PTR>.LOCATION[I]) AND

(LASTPNT[OUTRING,4] = PTR^.LOCATION[21)) DO
IF PTR <> NIL THEN

BEGIN
P := PTR;
PTR := P-.NEXT;
DISPOSE(P)

END;
FRONT := PTR

END; i* ALIGN *)

PROCEDURE CLRLIST; (* CLEARS LIST OF ALL POINTS *)

VAR P: POINTER; (* P IS USED AS A TEMPORARY STORAGE
(* POINTER TO MANIPULATE PTR

BEGIN (* CLRLIST *)
PTR := FRONT;
WHILE PTR <> NIL DO

BEGIN
P := PTR;
PTR := P>.NEXT;
DISPOSE(P)

END;
BACK := NIL

END; (* CERLIST *)

~PREDURE STARTUP; (* PARAMETER INITIALIZATION *)

A-5

VAR K, L: INTEGER; (* K AND L ARE USED AS LOOP COUNTING *
(* VARIABLES

BEGIN (* STARTUP *
WRITELN ('THIS PROGRAM COMPUTES MULTI-RING CHAIN CODES');
WRITELN;
WRITE('ENTER THE DIGITIZED DATA FILENAME
READLN(FILENAME);
ASSIGN(F,FILENAME);
WRITELN;
WRITE ('ENTER THE NUMBER OF CODED FILES YOU WISH TO

CREATE: ');
READLN (NUMFILES) ;
WRITELN;
FOR K := I TO NUMFILES DO

BEGIN (* FOR STATEMENT *)
WRITE ('ENTER CODED DATA FILENAME ',K,': ');
READLN (FILENAME);
CODEFILE[K] := FILENAME;
WRITE ('ENTER GRIDSIZE DESIRED: ');
READLN (GRIDSIZE[K]);
WRITE ('ENTER THE NUMBER OF RINGS USED BY THE CODE: ');
READLN (NUMRINGI[K]) ;
WRITELN ('ENTER THE RINGS USED BY THE CODE STARTING

WITH THE LOWEST');
WRITE ('(EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3-5):);
FOR L := I TO (NUMRINGS[K] - 1) DO
READ (LEVEL[K,L]);

READLN (LEVEL[K,NUMRINGS[K]]);
WRITELN

END (* FOR STATEMENT *)
END; (* STARTUP *)

PROCEDURE INITIALIZE; (* FILE AND VARIABLE INITIALIZATION *)

VAR M: INTEGER; (* M IS A LOOP COUNTER VARIABLE *)

BEEGIN (* INITIALIZE *)
REPEAT
WRITELN ('CODING ',CODEFILE[J]);
FILENAME := CODEFILE[J];
ASSIGN (G,FILENAME);
RESET (F);
REWRITE (C)

UNTIL IORESULT <> 255;
FOR M := I TO LEVEL[J,NUMRINGS[J]] DO B

DELTA[M] := GRIDSIZE[lJ] *M;

FOR M := I TO 5 DO

INTSCT[Ml := FALSE;
FINISH := FALSE;
BACK := NIL

ZND; * INITIALIZE *

A-6~

PROCEDURE FIRSTPNT; * THIS PROCEDURE FINDS THE FIRST *

(* PEN DOWN IN A DATA I ILE AND

(* KEEPS THE LAST PEN VP AS THE *

(* FIRST POINT IN THE CODED FILE *

VXR NUMBER, N: INTEGER;

• VARIABLE DEFINITIONS:
1**

* NUMBER IS A -CUNT OF THE NUMBER OF POINTS READ FROM *)
* T{F FILE TILL .A PEN DOWN CONDITION IS READ

P - . t_ P OUNTING VARIABLE *1

...... FALSE;

4 FIND THE FIRST PEN DOWN... KEEP LAST PEN UP,*)
* PcINT[2], AND FIRST PEN DOWN, POT NT[

.. PCINT[3];
A N F N, POINT[3,I1 , POINT[3,2])

: LMBER 1;
p ." .S2' -= COF(F)
L-' DEN = D') OR FINISH;

IN * IF STATEMENT *)
NUMBER < 2 (* ? FIRST ELEMENT ALREADY PE' DOWN *

BEGIN (* THEN CLAUSE *)
PQ-INT[2] := POINT[3];
READLN (F, PEN, POINT[3,1], POINT[3,2]);
ISERT

END; (* THEN CLAUSE *)

:Ci' NT[3] := ?OINT[2] ;

WRITE iC, 'U' ' ,POINT(1-, II,' ', POINT[I,21,' -L
PIDSIZE[J] ,); -

: N : = 1 TO (NUMRINGS[J] - L) DO
WRITE 3, LEVEL[J,N] , I);

WPITELN (f, LEVEL[J,NUMRINGS[JJ])
: IF STATEMENT *

ii.. * !' IRSO NO *1

.......................... ; * THIS PROCEDURE FINDS THE

* INTERSECT POINTS FOR EACH OF *
* THE RINGS, OUT TO THE OUTERMOST*)

(* RING*
I

R I .,: T

Ep

SV'ARIABLE DE§IITII.NS:

A IS A LOOP C'OUNT INC VARI ABLE

* I STX AND DI STY ARE USED TG DETERM INE LY W'U' LAST
* POE NT is THE ONE THAT INTERSECTS A P N: *

POCCEDURE 5 INDENT; THIS PROCEDURE FINDS UHE X-Y
(* COORDINATES OF THE ACTUAL
1* INTERSECTION POINT 4

TEMP : REAL;
a-1NX: INTEGER;

T ARIABLE DFFINITITNS:

* W\MP AND SEINX ARE USED AS INTERMEDIATE VARIABLES IN ~
THE"q JvCSSC FIN'DING THE INTERSECTION '<OPDINATES*

RH :N * FNDNT *)

:NSTA -TRUE; TH RING i INTERSECTED BEFORE ~
EQ O ED WF LINE SEGMENT *

7N 1* THENJ :__ A

2(F PCNm {,3] <-

THN DELTA!'? - '' '~nA'
L ELPAXY'AZ - VIETAWLA

KN * THEN '-r,"SE*

PET IN *ELSE 7LAUZF

TEMP : IN' , -: ., I (POINT[3,11

PINTL,1
THE S' 'z.-'IN XN HE OI

4' YI,2 TEMP * OIN T m ',?' POINT[T,?1;
:NTPN A,2 PINTLi2 - DELTAXY[A,:]

.-xS (DELTA> [A,?' 0 DEL1 A[AJ
TURN I * INTEPSEJTS IN TOP OR BOTTOM OF BRIED*

DMN ELTA 'A,?] DELLA[Q

ELSET[,2 D :- >'''R'I> :. T* LTAX[A 2

. C, THEN'- -'.'-

PLCTLIN E '5J

END; (* PECTIN *

9 DQ ED UPS INSER I'; (*INSERTS PO"INTS INTO3 THE REAR GEF

T THE YE

''AR 9: PO'INTER; (* 9 f5' US ED AS A TEMPORARY STO PAGE j
(* POINTER TO MANIPULATE 9CR

BEG IN (* INSERT*
NEW 9);
P- LOCAT IONIJ ! POINT HI, L1

9>OCATIGN[2] : POIINT[,2];
P>.NEXT :=NIL-;

IF BACK NIL
THEN

B EG' I N
BACK P~ ;
FRONT P=C

END

BEGI N
BACK-.NEXT P= ;
BAC-K :=P

END;
9CR := NIL

END r INSERT *

79 ~ READLIST; {*THIS PROCEDURE READS POINTS IN *

)*FROM THE LINKED LjIST AND
(* UPDATES THE 9CR POINTER

9t~ r*READLIST *

PTR .LCTCN
IN 1 := TR- rOCATIC N[2]

PTR- NEXT
(EADLI1ST *

ALGN *ALIG',NS L IST -F PO INTS U-P 7T THE
CODED NODE

* "EDI A A TEM-PORP,Y STORAGE

'A N AN

* SCALE: SCALE FACTOR FOR PLOTTER

* XYDATA: X-Y COORDINATES SENT TO THE PLOTTER

* TRANS: TRANSLATION FACTOR FOR PLOTTER

* KEYNUMBER: VALUE REPRESENTS WHICH FUNCTION KEY ON *

(* THE DIGITIZER HAS BEEN DEPRESSED

EXTERNAL PROCEDURE BUSIN (DEVICE:INTEGER; VAR ERFLAG:CHAR;
VAR INLINE:LINE);

EXTERNAL PROCEDURE BUSOUT (DEVICE:INTEGER; VAR ERFLAG:CHAR;
VAR OUTLINE:LINE);

EXTERNAL FUNCTION BUSINT:CHAR;
EXTERNAL PROCEDURE PORTIN;
EXTERNAL PROCEDURE CHAROT (VAR OUTPUT:CHAR; VAR ERFLAG:CHAR);
EXTERNAL PROCEDURE CHARIN (VAR SIGNAL:CHAR; VAR ERFLAG:CHAR);
EXTERNAL PROCEDURE LINOUT (VAR CHARAC:LINE; VAR ERFLA-:CHAR);
EXTERNAL PROCEDURE GET POINT (VAR DATA LINE:LINE; VAR ERFLAG:

CHAR; VAR KEYNUMBER:INTEGER);
EXTERNAL FUNCTION PREPARE:CHAR;
EXTERNAL PROCEDURE WHATNUM (VAR CHARAC:LINE; VAR LENGTH, NUMB:

INTEGER);
EXTERNAL PROCEDURE WHATCHAR (X:INTEGER; VAR LINEIN:LINE; VAR

CNTR, LENGTH:INTEGER);
EXTERNAL PROCEDURE SAMPLING (VAR ERFLAG:CHAR);
EXTERNAL PROCEDURE CALCODE;

PROCEDURE PLOTIN; (* THIS PROCEDURE INITIALIZES THE
(* PLOTTER

BEGIN (* PLOTIN *)
WRITE('ENTER PLOTTER LINE TYPE (0-8): ');
READLN(LINE TYPE);
PLOTLINE[14T := LINE TYPE;
WRITE('ENTER SCALING FACTOR (DIG:PLOT)- 1:');
READLN(SCALE);
WRETE('ENTER PLOTTER TRANSLATION (X Y) :
-E ADLN(TRANS[l],TRANS[2]);

WP I TELN;
PL1TLLNE[[:=;
-'D I- INE[2 :

PLTLINE[3 : 'I;
TLiNE [4 :

L-, T' I NE '7

.:NE f -

7 .I:'il " - A '

A-2
1A 7 1

The rest of this appendix contains the sourc- code listing
for the PLOTCODE program.

{* THIS PROGRAM COMPUTES THE CHAIN CODE OF A DRAWING AS *)

(* IT IS BEING DRAWN ON THE DIGITIZER AND IMMEDIATELY *)
(* SENDS THE DATA POINTS TO THE PLOTTER FOR PLOTTING *)

PROGRAM PLOTCODE;

TYPE POINTER = RINGPNTS;
RINGPNTS RECORD

LOCATION : ARRAY [1..2] OF INTEGER;
NEXT : POINTER

END; (* RECORD *)
LINE = ARRAY [1..40] OF CHAR;

VAR
A, RESULT, OUTRING, PLOTCNT: INTEGER;
COUNTER, LOOP, CNTNUM, LENGTH, I: INTEGER;
CODE: EXTERNAL INTEGER;
NODE: EXTERNAL ARRAY [1..2] OF INTEGER;
GRIDSIZE, NUMRINGS: INTEGER;
LEVEL, DELTA: ARRAY [1..5] OF INTEGER;
FIRST, FINISH: BOOLEAN;
PEN, ERROR FLAG, SIGNAL, LINE TYPE, ERFLAG: CHAR;
POINT: ARRAY [1..3,1..2] OF INTEGER;
INTSCT: ARRAY [1..5] OF BOOLEAN;
DELTAXY, INTPNT: ARRAY [1..5,1..2] OF REAL;
LASTPNT: ARRAY [1..5,1..4] OF INTEGER;
FRONT, BACK, PTR: POINTER;
NUMARRAY, DATA, PLOTLINE: LINE;
TEMP, SCALE: REAL;
XYDATA, TRANS: ARRAY [I..2] OF INTEGER;
KEYNUMBER: EXTERNAL INTEGER;

* ONLY THE VARIABLES THAT ARE UNIQUE TO PLOTCODE ARE *
1* DEFINED HERE. TH9 REMAINDER OF THE VARIABLES ARE *
* DEFINED IN THE CHNCODE PROGRAM LISTING

* PLOTCNT: COUNTER VARIABLE TO KEEP TRACK OF THE
* VALUES IN THE PLOTLINE ARRAY

* CNTNUM: HOLDS THE NUMBER OF DIGITS READ IN F:(M THE *
* DIGITIZER

* LENGTH: USED AS A PARAMETEP F'P T1E WAT
* PROCEDURE TO TELL THE PROCEDURE "PW MAN': *
* CHARACTERS TG CONVERT THE NUMBER "

* PL)TLINE: rHIS ARRAY -CNTAINS "NIAY N iVNT *

* TO THE PLOTTER FOR PLOTTING *1

* EMP: VrSED AS A TEMPOPAPY ST'-PA--i . A *1

A- 2

CODE CODEB
END (* THEN CLAUSE *)

ELSE CODE CODEB
END; * LNCODE *)

.-ECIN * COMPCODE *)
IF OUTRING = LEVEL[J,1]
THEN

BEGIN

FINDNODE;
ENCODE

END
ELSE

BEGIN (* ELSE CLAUSE *)
REPEAT

FINDNODE;
PASSLGS := FALSE;
RINGTEST;
IF PASSLGS
THEN ENCODE
ELSE

BEGIN (* ELSE CLAUSE *)
VALUE 1;
REPEAT
OUTER LEVEL[J,NUMRINGS[J] - VALUE];
VALUE VALUE + 1

UNTIL OUTER < OUTRING;
OUTRING := OUTER

END (* ELSE CLAUSE *)
UNTIL (OUTRING = LEVEL(J,1]) OR PASSLGS;
IF OUTRING = LEVEL[J,1]
THEN

BEGIN
FINDNODE;
ENCODE

END
END; (* ELSE CLAUSE *)

POINT[3,1] LASTPNT[OUTRING,1];
POINT[3,2] := LASTPNT[OUTRING,2];
POINT [,1, := NODE[I] ;
POINT[1,2] := NODE[2]

END; (* COMPCODE *)

MCDEND. (* MODULE COMPCODE *)

Thlis concludes the program listing for CHNCODE.

A-19

, .

IF (NODE[2] - POINT[1,2]) : DELTA[OUTRING]

THEN U L CORNER
ELSE

IF (POINT[1,2] - NODE[2]) = DELTA[OUTRING]
THEN L L CORNER
ELSE

BEGIN (* ELSE CLAUSE *)
RIGHT := FALSE;
SIDE

END (* ELSE CLAUSE *)
ELSE (* NODE IS ON TOP OR BOTTOM *)

BEGIN
IF (NODE[2] - POINT[1,2]) = DELTA[OUTRING]
THEN TOP TRUE
ELSE TOP := FALSE;

TOPORBOT;
END

END; (* RINGTEST *)

PROCEDURE ENCODE; (* THIS PROCEDURE CALCULATES THE
CHAIN CODE

VAR RING, CODEB, I: INTEGER;

• VARIABLE DEFINITIONS:

• (* RING AND I ARE LOOP COUNTING VARIABLES

• CODEB IS THE VALUE OF THE CHAIN CODE FOR A NODE FOR *
•* A SINGLE RING CHAIN CODE

BEGIN (* ENCODE *)
IF XCODE >= YCODE
THEN CODEB := XCODE + YCODE

ELSE CODEB := OUTRING * 8 - XCODE - YCODE;

IF CODEB < (3 * OUTRING)
THEN CODEB := CODEB + OUTRING *

ELSE CODEB := CODEB - OUTRING * 3;
IF NUMRINGS[J] > 1

THEN
BEGIN (* THEN CLAUSE *)

FOR I := I TO NUMRINGS[J] DO
IF OUTRING = LEVEL[J,I] THEN RING := I;

FOR I := I TO (RING - 1) DO
BEGIN (* FOR STATEMENT *)

CASE LEVEL[J,I] OF
1 : CODEB := CODEB + 8;

2 : CODEB := CODEB + 16;
3 : CODEB:= CODEB + 24;

4 : CODEB := CODEB + 32
END (* CASE STATEMENT *)

END; (* FOR STATEMENT *

A-18

ELSE PASSLGS FALSE;
COUNT :=COUNT +* 1

UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (* TOPORBOT *

PROCEDURE SIDE; (*THIS PROCEDURE PERFORMS THE LOS TEST *
(*WHEN THEN NODE IS ON EITHER THE
(* LEFT OR RIGHT SIDE OF THE RING

BEGIN (* SIDE *
MIDPNT[l,l] NODE[1];
MIDPNT[1,21 NODE[21 + GRIDSIZE[J] / 2;
MIDPNT[.2,1] NODE[l] ;
MIDPNT[2,2] NODE[2] GRIDSIZE[J] / 2;
COUNT :=1;I REPEAT
(ESTABLISH UPPER BOUND *

M :=(MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1,1]-
POINT[I,1) ;

IF RIGHT
THEN X NODE[13I - GRIDSIZE[J] * COUNT
ELSE X NODEti] + GRIDSIZE[J] * COUNT;

UPPER :=M * (X - MIDPNT[l,11) +- MIDPNT[1,2];
(ESTABLISH LOWER BOUND *

M : MIDPNT[2,2] - POINT[1,2]) / (MIDPNT[2,1]
POINT [1,13);

LOWER :=M * (X - MIDPNT[2,11) + MIDPNT[2,2];
IF (INTPNT[OUTRING - COUNTf2] <= UPPER) AND (INTPNT

[OUTRING -COUNT,2] >= LOWER) AND (ABS(X - INTPNT
[OUTRING -COUNT,1]) < 1)

THEN PASSLGS TRUE
ELSE PASSLGS FALSE;

COUNT :=COUNT + I
UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)

END; (*SIDE *

BEGIN *RINGTEST *
IF (NODE~l] -POINT[1,1]) = DELTArOUTRINGI 0THEN (* NODE IS ON RIGHT SIDE--MAY BE A CORNER ~

IF (NODE[2] - POINT[1,2]) =DELTA[OUTRING]
THEN URCORNER
ELSE

IF (POINT[1,21 - NODE[21) = DELTAIOUTRING]
THEN LRCORNER
ELSE (V NCDE IS ON THE RIGHT SIDE *

13 E GI N
RIGHT := TRUE;
S IDE

END
ELSE

IF (P'O1'TKl3 NOD-[I(= DELTA[CUTRING]
THEN I~NODE IS ON LEFT S-IDE--MAY BE A CORNER *

A- 17

BEG IN
MIDPNT[1,11 NODE[1] - GRIDSIZE[J] / 2;
MIDPNT[1,2] NODE[2];

C MIDPNT[2,1] :NODE[11;
MIDPNT[2,21 NODE[2] - GRIDSIZE[J] / 2;
COUNT :=1;
REPEAT

TEMPNODE[l] NODEfi] - GRIDSIZE[J] * COUNT;
TEMPNODE[21 NODE[21 - GRIDSIZE[JI * COUNT;

(ESTABLISH X BOUNDARY *)
M :=(MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1,1]-

POINT[11,11
XBOUND :=MIDPNT[1,1] + (TEMPNODE[2] - MIDPNT[l,21) /M;

(ESTABLISH Y BOUNDARY *)
M :=(MIDPNT[2,2] - POINT[1,2]) / (MIDPNT[2,1I - POINT[1,11]
YBOUND M * (TEMPNODE[1] - MIDPNT[2,1]) + MIDPNT[2,21;
NUMBER1 INTPNT[(OUTRING - .COUNT),1];
NUMBER2 INTPNT[(OUTRING - COUNT) ,2];
IF (NUMBER1 <= TEMPNODE[1]) AND (NUMBER1 >= XBOUND) AND

(NUMBER2 <= TEMPNODE[2]) AND (NUMBER2 >= YBOUND)
THEN PASSLGS TRUE

*ELSE PASSLOS FALSE;
COUNT :=COUNT + 1

UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (* URCORNER *

U PROCEDURE TOP OR BOT; (kTHIS PROCEDURE PERFORMS THE
(* LGS TEST WHEN THE NODE IS ON *
(* THE TOP OR BOTTOM OF THE RINC*)

BEGIN
MIDPNT[1,l] NODE lii - GRIDsIZE[JI / 2;

MIDPNT[I,2] NODE[2];
MIDPNT[2,1] NODE [1] + GRIDSIZE[J] / 2;
MIDPNT[2,21 NODE[2];
COUNT :=1;
REPEAT
(ESTABLISH LEFT BOUND *

M :=(MIDPNT[1,21 - POINT[I,2]) /(MIDPNT[1,l]-
POINT[1,11)

IF TOP
THEN Y NODE[2] - GRIDSIZE[J] * COUNT
ELSE Y NODE[2] + GRIDSIZE[J] * COUNT;

0 LET :=MIDPNT[1,1] + (Y - MIDPNT[1,2]) / M;
(ESTABLISH RIGHT BOUND *)

M :=(MIDPNT[2,21 - POINT[1,2]) / (MIDPNT[2,I]-
POINT [1, 11]

R :=MIDPNT[2,I1 + (Y - MIDPNT[2,21) / M;
IF (INTPNT[OUTRING - COUNT,1] <= R) AND (INTPNT[OUTRING-

* COUNT,1] >= LET) AND (ABS(Y -INTPNT[OUTRING-

COUNT,21) < 1)
THEN PASSLGS TRUE

A- 16

KNUMBER1 INTPNT[(OUTRING - COUNT),1I;
NUMBER2 INTPNT[(OUTRING - COUNT),2];
IF (NUMBER1 <= TEMPNODE[11) AND (NUMBERI >= XBOUND) AND

(NUMBER2 <= YBOUND) AND (NUMBER2 >= TEMPNODE[21)
ITHEN PASSLGS TRUE

ELSE PASSLGS FALSE;
COUNT :=COUNT + 1

UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (*LRCORNER *

PROCEDURE U L CORNER; (*THIS PROCEDURE IS USED TO
(* THE LGS TEST WHEN THE NODE *
(* IS ON THE UPPER LEFT CORNER *

(* OF THE RING

VAR NUMBERI, NUMBER2: REAL; (*NUMBER1 AND NUMBER2 ARE *
(* INTERMEDIATE VARIABLES *

BEGIN
MIDPNT[1,1] NODE[1] + GRIDSIZE[J] 72;

4MIDPNT[1,21 NODE[2];
MIDPNT[2,11 NODE[lI;
MIDPNT[2,21 NODE[2] - GRIDSIZE(J] /2;
COUNT :=1;
REPEAT

TEMPNODE[l] NODE~l] + GRIDSIZE[J] * COUNT;
TEMPNODE[21 NODE[21 - GRIDSIZE[JJ * COUNT;

(ESTABLISH X BOUNDARY *
M :=(MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1,1]-

POINT[1, 11)
XBOUND :=MIDPNT[1,1] + (TEMPNODE[2] - MIDPNT[1,2]) /M;

(ESTABLISH Y BOUNDARY *
4 M :=(MIDPNT[2,2] - POINT11,21) / (MIDPNT[2,1]-

POINT [1, 1])
YBOUND M * (TEMPNODE[1] - MIDPNT[2,1]) + MIDPNT[2,21;
NUMBER INTPNT[(OUTRING - COUNT),1];
NUMBER2 INTPNT[(OUTRING - COUNT),21;
1. (NUMBER1 <= XBOUND) AND (NUMB.RI >= TEMPNODE[1]) AND

(NUMBER2 <= TEMPNODE[2]) AND (NUMBER2 >= YBOUND)
THEN PASSLGS TRUE
ELSE PASSLGS FALSE;

COUNT :=COUNT+I

U;NTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (* U L CORNER *

PROCEDURE U R CORNER; (~THIS PROCEDURE PERFORMS THE
(* LOS TEST WHEN THE NODE IS ON *
(* THE UPPER RIGHT CORNER OF
(* THE RING

VAR NUMBERI, NUMBER2: REAL; (~NUMBERI AND NUMBER2 ARE *

(* INTERMEDIATE VARIABLES *

A- 15

BEGIN (*L L CORNER *
*MIDPNT[1,11 NODE[1];
CMIDPNT[l,2] NODE(2] + GRIDSIZE[JI / 2;

MIDPNT[2,1] NODE[1l] + GRIDSIZE[J] / 2;
MIDPNT[2,2] NODE[2];
COUNT :=1;
REPEAT

TEMPNODE[1] NODE~l] + GRIDSIZE[J] * COUNT;
TEMPNODE[2] NODE[2] + GRIDSIZE[J] * COUNT;

(ESTABLISH X BOUNDARY *)
M :=(MIDPNT[2,21 - POINT[1,2]) / (MIDPNT[2,1]

POINT [1, 1]);
XBOUND :=MIDPNT[2,1] + (TEMPNODE[2] - MIDPNT[2,2]) /M;

(ESTABLISH Y BOUNDARY *)

4'M :=(MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1,1I -
POINT[1,11) ;

YBOUND M * (TEMPNODE[l] - MIDPNT~l,l]) +MIDPNT[1,21;
NUMBERi INTPNT[(OUTRING - COUNT),1];
NUMBER2 INTPNTH(OUTRING - COUNT),]
IF (NUMBERi <= XBOUND) AND (NUMBER1 >= TEMPNODE[11) AND

* (NUMBER2 <= YBOUND) AND (NUMBER2 >= TEMPNODE[2])
THEN PASSLGS TRUE
ELSE PASSLGS FALSE;

COUNT :=COUNT + 1
UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)

END; (* LLCORNER *

PROCEDURE L R CORNER; (*THIS PROCEDURE PERFORMS THE
(* LGS TEST WHEN THE NODE IS ON *
(* THE LOWER RIGHT CORNER OF
(* THE RING

VAR NUMBERI, NUMBER2: REAL; (*NUMBERi AND NUMBER2 ARE *
(* INTERMEDIATE VARIABLES *

BEGIN (* L R CORNER *)
MIDPNT[1,lT NODE[1J;

*MIDPNT[1,2] NODE[2] + GRIDSIZE[J] / 2;
MIDPNT[2,1] NODE(11 - GRIDSIZE[J] / 2;
MIDPNT[2,21 NODE[21;
COUNT :=1;
REPEAT

TEMPNODE[1] NODE~l] - GRIDSIZE(J] * COUNT;
0 TEMPNODE[2] NODE[2] + GRIDSIZE[J] * COUNT;

(ESTABLISH X BOUNDARY *
M :=(MIDPNT[2,2] - POINT[1,2]) / (MIDPNT[2,1] -

POINT[1,11);
XBOUND :=MIDPNT[2,1] + (TEMPNODE[2] - MIDPNT[2,2]) /M;

(ESTABLISH Y BOUNDARY *
6 M :=(MIDPNT[1,21 - POINT(1,21) / (MIDPNT[1,JJ -

POINT [1,1)1]
YBOUND M *(TEMPNODE[I] -MIDPNT[1,1]) + MIDPNT[1,2];

A-14

(* XCODE AND YCODE ARE INTERMEDIATE VARIABLES USED IN *
(* THE PROCESS OF FINDING THE CHAIN CODE VALUE

(* TEMP IS AN INTERMEDIATE VARIABLE USED THROUGHOUT THE *
(* PROCEDURE

PROCEDURE FINDNODE; (* THIS PROCEDURE FINDS THE NODE
(* CLOSEST TO THE RING

(* INTERSECTION POINT

BEGIN (* FINDNODE *)
TEMP := (DELTAXY[OUTRING,I] + DELTA[OUTRING]) / GRIDSIZE[J];
XCODE := ROUND(TEMP);
TEMP := (DELTAXY[OUTRING,2] + DELTA[OUTRING]) / GRIDSIZE(J];
YCODE := ROUND(TEMP);
NODE[Il] POINT[1,1] + (XCODE - OUTRING) * GRIDSIZE[J];
NODE[2] POINT[1,2] + (YCODE - OUTRING) * GRIDSIZE[J]

END; (* FINDNODE *)

PROCEDURE RINGTEST; (* THIS PROCEDURE DETERMINES WHERE *
(* THE INTERSECTION POINT IS AT *)
(* UNDER TEST

VAR
RIGHT, TOP: BOOLEAN;
MIDPNT: ARRAY [1..2,1..2] OF REAL;
TEMPNODE: ARRAY [1..2] OF INTEGER;
M, XBOUND, YBOUND, LFT, R, UPPER, LOWER: REAL;
X, Y: INTEGER;

(VARIABLE DEFINITIONS:

• RIGHT IS TRUE IF THE NODE IS ON THE RIGHT SIDE OF
(* THE RING

• TOP IS TRUE IF THE NODE IS ON THE TOP OF THE RING

• MIDPNT IS AN ARRAY HOLDING THE X-Y COORDINATES OF

(* THE GRID MIDPOINTS SURROUNDING A NODE--USED FOR

(* LGS TEST

• TEMPNODE, M, XBOUND, YBOUND, LFT, R, UPPER, LOWER, *
(* X, ANDYARE INTERMEDIATE VARIABLES INTHELGS
(* TESTING PROCESS

PROCEDURE L LCORNER; (* THIS PROCEDURE PERFORMS THE LGS*)
(* TEST IF THE NODE IS ON THE LOWER
(* LEFT CORNER OF THE RING

VAR NUMBERI, NUMBER2: REAL; (* NUMBERI AND NUMBER2 ARE *
(* INTERMEDIATE VARIABLES *

A-13 0

CLRLIST
END (* PEN OF U *)

END * CASE STATEMENT *)
UNTIL FIRST OR FINISH

END (* IF NOT FINISH THEN CLAUSE *)
END; (* WHILE LOOP *)

CLOSE(G,RESULT)
END; (* FOR STATEMENT *)

WRITELN;
WRITELN ('COMPUTATIONS COMPLETE')

END. (* MAIN PROGRAM *)

MODULE COMPCODE;

VAR
DELTAXY, INTPNT: EXTERNAL ARRAY[1..5,1..2] OF REAL;
DELTA: EXTERNAL ARRAY[1..5] OF INTEGER;
OUTRING, J: EXTERNAL INTEGER;
NUMRINGS, GRIDSIZE: EXTERNAL ARRAY[I..25] OF INTEGER;
NODE: ARRAY[I..2] OF INTEGER;
POINT: EXTERNAL ARRAY[I..3,1..2] OF INTEGER;
LEVEL: EXTERNAL ARRAY(..25,1..5] OF INTEGER;
CODE: INTEGER;
LASTPNT: EXTERNAL ARRAY[I..5,1..4] OF INTEGER;

(* VARIABLE DEFINITIONS: *)

(* NODE IS AN ARRAY CONTAINING THE X-Y COORDINATES OF *)
(* THE NODE UNDER INVESTIGATION FOR ENCODING

(* CODE IS THE VALUE OF THE CHAIN CODE FOR THE NODE

PROCEDURE COMPCODE; (* THIS PROCEDURE IS CALLED WHEN
(* THE RING INTERSECTIONS ARE

(* FOUND. IT CALCULATES THE
(* CHAIN CODE FOR EACH LINK OF
(* THE DRAWINC

VAR
PASSLGS: BOOLEAN;
COUNT, VALUE, OUTER, XCODE, YCODE: INTEGER;
TEMP: REAL;

• VARIABLE DEFINITIONS:

• PASSLGS IS TRUE IF THE NODE PASSES FHE LGS TEST

COUNT, VALUE, AND OUTER ARE USED AS COUNTING

(• VARIABLES TO KEEP TRACK OF WHICH RING IS BEING *
•* TESTED

A-12

CLRLIST

END; (* DONE *)

BEGIN (* MAIN PROGRAM *)
STARTUP;
FOR J := I TO NUMFILES DO

BEGIN (* FOR STATEMENT *)
INITIALIZE;
WHILE NOT FINISH DO

BEGIN (* WHILE LOOP *)
FIRSTPNT;
IF NOT FINISH THEN
BEGIN (* THEN CLAUSE *)

PTR FRONT;
REPEAT4]

INTERSECT;
CASE PEN OF

'E' BEGIN
FOR A := L TO NUMRINGS[J] DO

IF INTSCT[LEVEL[J,A]] THEN
OUTRING := LEVEL[J,A];

IF INTSCT[LEVEL[J,I]] THEN
BEGIN
COMPCODE;
ALIGN;
WRITELN(G, 'D',' ' ,POINT[1,1],

PC'INT[i,2] ,' ',CODE)
END;

DQNE;
-LPL 1 o

FINISH TRUE
END; (* P EN E

D'. : BE IN
>VT F N, := LEVEL[J,NUMRINGS[J]];

MC, MPI- ODE
SALIS'N ;
WRITELN (.3,PEN, ' ',POINT[1,1] , ' '

PCINT[1,2) ,' ',CODE);

END;
'U' : BEGIN

FOR A := 1 TO NUMRINGS[J] DO
IF INTSCT[LEVEL[J,A]] THEN
OUTRING := LEVEL[J,A];

IF INTSCT(LEVEL[J,1]] THEN
BEGIN
COMPCODE;
WRITELN(G, 'D' , ' ',POINT[I,1],

' ,POINT[1,2] ,' ',CODE);
ALIGN

END;

DONE;
FIRST TRUE;

A-il

" < ' -' ' " -" '- " -, - .d , -*Z ... j .,, , = = ,, ,. , j ., , ..j ... , .. ." . .._ ,

UNTIL (DISTX >= 0) OR (DISTY >= 0) OR ((PTR = NIL) AND
FINISH) OR ((PTR = NIL) AND (PEN 'U'));

IF (DISTX >= 0) OR (DISTY >=0)
THEN

BEGIN
REPEAT

FINDINT;
LAST;
A := A + 1;
DISTX := ABS(POINT[3,1] - POINT[l,1]) - DELTA[A];

DISTY :: ABS(POINT[3,2] - POINT[1,2]) - DELTA[A]

UNTIL (A >= OUTRING) OR ((DISTX < 0) AND
(DISTY < 0));

IF A <= OUTRING
THEN

IF (DISTX >= 0) OR (DISTY >= 0)

THEN
BEGIN

FINDINT;

LAST
END

ELSE A := A - I
END

ELSE INTSCT[A] := FALSE;
IF FINISH THEN PEN :='E

UNTIL A >= OUTRING
END; (* INTERSECT *)

PROCEDURE DONE; * THIS PROCEDURE IS CALLED WHEN
(* INTERSECT HAS RETURNED WITH A PEN *
•(VALUE OF 'E' OR 'U', MEANING THAT *
• (THE END OF THE DRAWING HAS BEEN *
(* REACHED BEFORE THE LAST RING WAS *
(* INTERSECTED

VAR A: INTEGER; * A IS A LOOP COUNTING VARIABLE *)

* BEGIN (* DONE *)
REPEAT

PTR := FRONT;

INTERSECT;
FOR A := . TO LEVEL[J,NUMRINGS[J]] DO

IF INTSCT[A] THEN OUTRING := A;
IF INTSCT[LEVEL[J,1]] THEN
BEGIN (* IF INTSCT *)

COMPCODE;
ALIGN;
WRITELN(G,'D',' ',POINT[I,l],' ',POINT[I,2] ,

I ',CODE)

END; (* IF INTSCT *)
UNTIL PTR NIL;
WRITELN(G,'D',' ',POINT[3,1],' ',POINT[3,21,' -I');

A-10

DELTA [A)
THEN (* INTERSECTS ON LEFT OR RIGHT SIDE *)

BEGIN (* THEN CLAUSE *)
IF POINT[1,1] <= POINT[3,11

THEN DELTAXY[A,] DELTA[A]
ELSE DELTAXY[A,]: -1 * DELTA[A];

INTPNT[A,I] := POINT[1,1] + DELTAXY[A,1]
END (* THEN CLAUSE *)

ELSE
BEGIN (* ELSE CLAUSE *)
TEMP (POINT(3,1] - POINT[2,1]) / (POINT[3,2] -

POINT[2,2]);
TEMP := TEMP * (DELTAXY[A,2] - POINT[2,2] +

POINT[1,21);
DELTAXY[A,] TEMP + POINT[2,1] - POINT[1,1];
INTPNT[A,I] POINT[I,1] + DELTAXY[A,I]

END (* ELSE CLAUSE *)
END; (* FINDINT *)

PROCEDURE LAST; (* THIS PROCEDURE STORES THE LAST TWO *
(* POINTS READ WHEN A RING IS
(* INTERSECTED

BEGIN (* LAST *)
LASTPNT[A,] POINT[2,1];
LASTPNT(A,2] POINT[2,21;

(o LASTPNT[A,3] POINT[3,1];
LASTPNT[A,4] POINT[3,2]

END; (* LAST *)

BEGIN (* INTERSECT *)
OUTRING := LEVEL[J,NUMRINGS[J]] ;

4PTR := FRONT;
A := 0;
REPEAT

IF NUMRINGS[J] = 1 THEN A := OUTRING ELSE A A + 1;
REPEAT

IF PTR <> NIL
THEN

BEGIN (* THEN CLAUSE *)
POINT[21 := POINT[3];
READLIST

END (* THEN CLAUSE *)
ELSE

IF NOT FINISH AND (PEN <> 'U') THEN
BEGIN (* IF NOT FINISH AND PEN <> U *)

POINT[2] := POINT[3];
READLN (F, PEN, POINT[3,11, POINT[3,2j);
FINISH := EOF(F);
INSERT

END; (* IF NOT FINISH AND PEN <> U *)
DISTX ABS(POINT(3,1]-POINT[i,i] (-DELTA[A;
DISTY ABS(POINT[3,2]-POINT[1,2])-DELTA[A]

A-9

P PTR;
PTR := P .NEXT;

DISPOSE(P)
END;

FRONT := PTR
END; (* ALIGN *)

PROCEDURE STARTUP; (* PARAMETER INITIALIZATION *)

VAR L: INTEGER; (* L IS USED AS A LOOP COUNTING VARIABLE *)

BEGIN (* STARTUP *)
WRITELN ('THIS PROGRAM PLOTS A MULTI-RING CHAIN CODED

DRAWING AS THE POINTS ARE DIGITIZED');
WRITELN;
WRITE('ENTER THE GRIDSIZE DESIRED: ');

READLN(GRIDSIZE);
WRITE('ENTER THE NUMBER OF RINGS USED BY THE CODE:);
READLN (NUMRINGS) ;
WRITELN('ENTER THE RINGS USED BY CODE STARTING WITH THE

LOWEST');
WRITE('(EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3 5): ');
FOR L := I TO (NUMRINGS - 1) DO

READ(LEVEL[L]);
READLN(LEVEL['NUMRINGS]);
WRITELN;
FOR L := I TO LEVEL[NUMRINGS] DO

DELTA[L] := GRIDSIZE * L;
FOR L := I TO 5 DO

INTSCT[L] := FALSE;
FINISH := FALSE;

BACK := NIL;
PORTIN;
PLOTIN;
ERROR FLAG := PREPARE;
SAMPLING(ERROR FLAG);
WRITELN('NOW BEGIN TAKING POINTS');
WRITELN

END; (* STARTUP *)

PRCCEDURE READ DIG; (* THIS PROCEDURE READS THE
INCOMING DATA FROM THE
DIGITIZER

VAR LOOP, OINTER: INTEGER; (* LOOP AND COUNTER ARE
COUNTER VARIABLES

BEGIN (* READ DIG *
ERFLAG :=

REPEAT
KEYNUMBER :=
GET POINTfDATA, ERROR FLAG, KEYNUMBER);

A-23

IF KEYNUMBER <> 0 THEN
BEGIN

IF KEYNUMBER = 3 THEN PEN
IF KEYNUMBER = 2 THEN FINISH := TRUE;
IF KEYNUMBER >= 4 THEN PEN := 'U'

END;
UNTIL (KEYNUMBER = 0) OR (ERROR FLAG ='E');
IF ERROR FLAG <> 'E'

THEN
BEGIN (* IF ERRORFAK S TATEMENT *)

COUNTER 1;
FOR LOOP :=I LA 2 DO

BEGIN (* FOR STATEMENT *)

CNTNUM := 1;
REPEAT

NUMARRAY[CNTNUM] := DATA[KfUNTE'R];
CNTNUM CNTNJM + i;
COUNTER := COUNTER + I

UNTIL DATA[COUNTER] = ',';
:COUNTER := COUNTER + 1;
CNTNUM := CNTNUM - 1;
WHATNUM(NUMARRAY, CNTNUjM, :NT. I ,Ld>Pj ; •

END (* FOR STATEMENT *
END (* IF THEN *)

ELSE (* IF ERROR FLAG *j
BEGIN (* IF ELSE *)

FINISH := TRUE;
* WRITELN('ERROR IN READING FlIGM DI-ATIZER'I);

WRITELN 'PROGRAM WILL TERMINATE')
END (* IF ELSE *)

END; (* READDIG *)

PROCEDURE PLOT; * THIS PROCEDURE IS USED TO SEND THE *)
(* OUTPUT COORDINATES TO THE PLCTTER *)

VAR LOOP:INTEGER; (* LOOP IS A COUNTER VARIABLE *)

BEGIN (* PLOT *)

PLOTCNT := 16;
XYDATA[I1 := NODE[l];
XYDATA[2] NODE[2];
FOP LOOP I TO 2 DO

BEGIN (* FOR STATEMENT *)

TEMP XYDATA[LOOP] * SCALE;
XYDATA[LOOP] := ROUND(TEMP) + TRANS[LOOP];

LENGTH = 4;
WHATCHAR(XYDATA[LOOP] , PLOTLINE, PLOTCNT, LENGTH);
Pl.-TCNT := PLOTONT + 1;
PLOTLINE[PLOTCNT]
PLOTCNT := PLOTCNT 1

END; (* FOR STATEMENT *)

PLOTCNT := PLOTCNT - 1;
PLOTLINE[PLOTCNT] . ;

A-24

iS

K

PLOTCNT PLOTCNT + I;
PLOTLINE[PLOTCNT] := CHR(13);
PLOTCNT := PLOTCNT + 1;
PLOTLINE[PLOTCNT] := CHR(10);
PLOTCNT := PLOTCNT + 1;
PLOTLINE[PLOTCNT] ' ';
LINOUT(PLOTLINE, ERROR FLAG);
CHARIN(SIGNAL, ERFLAG)

END; (* PLOT *)

PROCEDURE FIRSTPNT; (* THIS PROCEDURE FINDS THE FIRST *)
(* PEN DOWN IN THE DRAWING AND

(* INITIALIZES POINT

VAR NUMBER, N: INTEGER;

BEGIN
FIRST := FALSE;
FINISH := FALSE;
NUMBER := 0;
REPEAT (* FIND THE FIRST PEN DOWN... KEEP LAST PEN UP *)

(* (POINT[2]) AND FIRST PEN DOWN (POINT13] *)
READ DIG; (* GETS A POINT FROM THE DIGITIZER *)
NUMBER := NUMBER + 1;
IF KEYNUMBER = 2 THEN

BEGIN
4 FINISH := TRUE;

PEN := 'E'
END;

IF NOT FINISH THEN
BEGIN

NODE[i] := POINT[3,1];
NODE[2] := POINT[3,2];
PLOT

END
UNTIL (PEN = 'D') OR FINISH;
POINT[I] := POINT[3];
POINT[2] := POINT[3];
PLOT'LINE[II] := D';
INSERT

END; (* FIRSTPNT *)

PROCEDURE INTERSECT; (* THIS PROCEDURE FINDS THE
INTERSECT POINTS FOR EACH OF *)
THE RINGS OUT TO THE
OUTERMOST RING

VAR A, DISTX, DISTY: INTEGER;

PROCEDUPE FINDPNT; (* THIS PROCEDURE FINDS THE X-Y
(* COORDINATES OF THE ACTUAL.

A-25

(* INTERSECTION POINT

VAR
TEMP: REAL;
SIGNX: INTEGER;

BEGIN (* FINDPNT *
INTSCT[A3 : TRUE; (*THE RING IS INTERSECTED BEFORE EOF

OR END OF LINE SEGMENT *
IF POINT[3,1] POINT[2,1]
THEN

BEGIN (* THEN CLAUSE *
IF POINT[1,2] <= POINT[3,2]
THEN DELTAXY[A,2] DELTA[A]
ELSE DELTAXY(A,23 -1 * DELTA[A];

4 INTPNT[A,2] : POINT(1,21 + DELTAXY[A,2]
END (* THEN CLAUSE *

ELSE
BEGIN (*ELSE CLAUSE *

TEMP (POINT[3,21 -POINT(2,2j) / (POINTW31I
POINT[2,]) ;

(SLOPE OF DIGITIZED LINE CROSSING THE GRID *
IF POINT[3,1] >= POINT[2,1]
THEN SIGNX 1
ELSE SIGNX -1;

TEMP :=TEMP *(SIGNX * DELTALA] - POINT[2,1] +
POINT i,1]);4 *DELTAXY[A,2] TEMP + POINT[2,21 - POINT[1,21;

INTPNT[A,2] POINT[1,2] + DELTAXY[A,2];
IF ABS (DELTAXY[A,2]) > DELTA(A]
THEN (* INTERSECTS ON TOP OR BOTTOM OF GRID *

BEGIN (* THEN CLAUSE *

IF DELTAXY[A,2] > 0
*THEN DELTAXY[A,21 DELTA[A]

ELSE DELTAXY[A,2] -1 * DELTA[A];
INTPNT[A,2] : POINT[1,21 + DELTAXY[A,2]

END (* THEN CLAUSE *

END; (* ELSE CLAUSE *
IF (POINT[3,2J = POINT[2,2]) OR (Aj3S(DELTAXY[A,2]) <

DELTA [A])
THEN (* INTERSECTS ON LEFT OR RIGHT SIDE *

BEGIN (* THEN CLAUSE *
IF POINT[1,1] <= POINT[3,l]
THEN DELTAXY[A,1] : DELTALA]
ELSE DELTAXY[A,1] : -1 * DELTA[A];

INTPNT[A,1] := POINT[1,1] + DELTAXY[A,1]
END (* THEN CLAUSE *

ELSE
BEGIN (*ELSE CLAUSE *

TEMP :=(POINT[3,1] -POINT[2,1]) / (POINT[3,2]
POINT[2,2]) ;

TEMP :=TEMP *(DELTAXY[A,2] - POINT[2,2] + POINT[1,2]);
DELTAXY[A,1) : TEMP + POINT[2,11 - POINT[1,1];
INTPNT[A,1] :=POINT[I,1] + DELTAXY[A,I]

A- 26

END (* ELSE CLAUSE *)
END; (* FINDPNT *)

PROCEDURE LAST; (* THIS PROCEDURE STORES THE LAST TWO *)
(* POINTS READ WHEN A RING IS
(* INTERSECTED

BEGIN (* LAST *)
LASTPNT[A,] : POINT[2,1];
LASTPNT[A,2] POINT[2,21;

LASTPNT[A,3] POINT[3,1];
LASTPNT[A,4] POINT[3,21

END; (* LAST *)

BEGIN (* INTERSECT *)
OUTRING := LEVEL[NUMRINGS];
PTR FRONT;
A 0;
REPEAT

IF NUMRINGS 1 1 THEN A OUTRING ELSE A A + 1;
REPEAT

IF PTR <> NIL
THEN

BEGIN (* THEN CLAUSE *)
POINT[2] := POINT[3];
READLIST

END (* THEN CLAUSE *) S
ELSE

IF NOT FINISH AND (PEN <> 'U') THEN
BEGIN (* IF NOT FINISH AND PEN <> U *)

POINT[2] := POINT[3];
READ DIG;
IF KEYNUMBER = 2 THEN FINISH := TRUE;
INSERT

END; (* IF NOT FINISH AND PEN <> U *)
DISTX ABS(POINT[3,1]-POINT[l,1i)-DELTA[A];
DISTY ABS(POINT[3,2]-POINT[1,2])-DELTA[A]

UNTIL (DISTX >= 0) OR (DISTY >= 0) OR ((PTR = NIL)
AND FINISH) OR ((PTR = NIL) AND (PEN = 'U'));

IF (DISTX >= 0) OR (DISTY >=0)
THEN

BEGIN
REPEAT

FINDPNT;
LAST;
A := A + 1;
DISTX :z ABS(POINT[3,1] - POINT[1,1]) -

DELTA[A];
DISTY := ABS(POINT[3,2] - POINT[1,2]) -

DELTA [A]
UNTIL (A >= OUTRING) OR ((DISTX < 0) AND (DISTY < 0);
IF A <= OUTRING
THEN

A-27

IF (DISTX >= 0) OR (DISTY >= 0)
THEN

BEGIN

FINDPNT;
LAST

END
ELSE A A - 1

END.
ELSE INTSCT[A] FALSE;

IF FINISH THEN PEN 'El
UNTIL A >= OUTRING

END; (* INTERSECT *)

PROCEDURE DONE; (* THIS PROCEDURE IS CALLED WHEN THE
(* END OF THE DRAWING HAS BEEN REACHED.*)

VAR A: INTEGER;

BEGIN (* DONE *)
REPEAT

PTR := FRONT;
INTERSECT;
FOR A := I TO LEVEL[NUMRINGS] DO

IF INTSCT[A] THEN OUTRING A;
IF INTSCT[LEVEL[l]] THEN

BEGIN (* IF INTSCT *)
CALCODE;
ALIGN;
PLOT

END; (* IF INTSCT *)
UNTIL PTR : NIL

END; (* DONE *)

HEGIN i* MAIN PROGRAM *)
STARTUP;
WHILE NOT FINISH DO

BEGIN (* WHILE LOOP *)
FIRSTPNT;
IF NOT FINISH THEN
BEGIN (* IF THEN *)

PTR := FRONT;
REPEAT

INTERSECT;
CASE PEN OF

'E', 'U' : BEGIN (* CASE PEN OF E OR U *
FON A := 1 TO NUMRINGS DO

IF INTSCT[LEVEL[A]] THEN
OUTRING := LEVEL[A];

IF INTSCT[LEVEL[I] THEN
BEGIN (* IF INTSCT *

CALCODE;

ALIGN;

A-2H

PLOT
END; (* IF INTSCT *)

DONE;
IF PEN = 'E'
THEN FINISH := TRUE
ELSE FIRST TRUE

END; (* PEN OF E OR U *)
'D' BEGIN (* CASE PEN OF D *)

OUTRING := LEVEL[NUMRINGS];
CALCODE;
ALIGN;

PLOT
END; (* PEN OF D *)

END (* CASE STATEMENT *)
UNTIL FIRST OR FINISH

END (* IF THEN *)
END; (* WHILE LOOP *)

WRITELN;
WRITELN('ALL DONE')

END. (* MAIN PROGRAM *)

The only difference between the COMPCODE procedure

for CHNCODE and the COMPCODE procedure for PLOTCODE is the

variables NUMRINGS, GRIDSIZE, and LEVEL. For the PLOTCODE

program, NUMRINGS and GRIDSIZE are declared as external

integers in the VAR section instead of single dimension

arrays. Also, LEVEL is now a single dimension array

instead of a two dimensional array. Since these are the

only d fferences, the source code for the COMPCODE

proc'edure for PLOTCODE is not liste here.

A- 2')

Appendix B

This appendix contains all the data and figures

pertaining to the analysis of the chain codes. The data

in the tables is arranged in descending order.

B-I

Table B-i

Circle Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0571219 1 11.4869

3 .0460307 1,2 10.636

2 .0437804 1,2,4 10.2106

2,4 .0417099 1,4 10.2106

1 .0399003 1,2,3,4 9.92697

2,3 .0344327 1,2,3 9.78515

1,2,3 .0340151 2,3 9.35971

3,4 .029784 2,4 9.35971

1,2 .0297006 2,3,4 8.93427

1,2,4 .0293341 1,3 8.50883

1,3 .0272105 1,3,4 8.50883

L,4 .0271261 2 7.94157

1,3,4 .0246575 3,4. 7.65794

2,3,4 .0235653 3 6.38162

, ,4 .0222014 4 4.96348

B-2

Table B-2

(-rcle Coded With 0.2 Inch Gridsize

ode aepi Code bpl
(sq in/in) (bits/in)

4 .0433054 1,4 16.5922

3 .042194 1,2 14.1813

3,4 .038012 1 14.0395

2 .0378037 1,2,3,4 12.4087

2,4 .0342058 1,2,4 12.3378

1 .0325768 1,3,4 11.9123

2,3 .0277863 2,4 11.9123

1,4 .0267378 1,2,3 11.9123

1,2 .0259034 2,3,4 11.416

1,2,3,4 .0258092 1,3 11.3451

2,3,4 .0257596 2,3 11.0614

1,3 .025754 2 9.64334

1,3,4 .025387 3,4 8.93427

1,2,4 .0250073 3 8.15429

L,2,3 .0237554 4 6.38162

Table B-3

Circle Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .025238 1 18.2939

3 .023449 1,4 17.0176

2 .0218877. 1,2 16.6631

3,4 .0216231 2,3 15.3159

.0210488 1,2,3 15.3159

1,2 .0206047 1,2,3,4 14.3941

2,3 .0200604 2,3,4 14.3941

N 2,4 .0195636 L,3 14.1813 S

1,2,4 .017529 1,2,4 14.103

1,4 .0174938 2,4 14.0395

1,2,3,4 .0169143 1,3,4 13.6141 S

1,2,3 .3167028 2 12.4796

,,4 .0165344 3,4 11.0614

1,: .0161368 3 10.636 S

.0151618 4 8.15429

B-4

p
Table B-4

Circle Coded With 0.1 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0206494 1 27.2282

2,4 .0181527 1,4 27.2282

2 .0178209 1,2 25.881

3,4 .0164992 1,2,3,4 25.3137

3 .0159846 1,2,3 25.101

1 .0159659 1,3,4 24.6756

2,3,4 .0152976 1,3 24.1083

2,3 .0151722 1,2,4 23.3992

1,2,3,4 .0148214 2,3,4 23.3283

1,4 .0139625 2,3 22.9738

1,3,4 .0139252 2,4 21.6975

1;2,4 .0138379 2 18.4358

1,2,3 .0132626 3,4. 17.0176

1,2 .0128413 3 15.5995

1,3 .0126179 4 11.6996

B-

Table B-5

Circle Coded With 0.05 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

2 .00899887 1 54.2438

4 .0088706 1,2 53.8892

2,4 .00825768 2,3,4 45.1677

3,4 .0082074 2,3 42.5441

3 .00798065 2,4 42.1187

2,3,4 .00789176 2 36 .3043

2,3 .00740921 3,4 32 .759
0

.00731703 3 30.4899

.0'686694 4 23.0447

.!

"I

Table B-6

SQUARE-C Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

3 .0865381 1,4 14.593

4 .0782665 2,3,4 13.1337

3,4 .0524139 1,3,4 13.1337

.033646 1,3 12.1609

2,3 .03357 1 11.6744

2,4 .0333724 1,2,3,4 11.0664

2,3,4 .0257822 1,2 10.9448

4 023153 1,2,3 10.9448

2 .023153 2,3 10 .2151

,3 .23153 1,2,4 10.2151

.12,3,4 .023153 2,4 8.75584

,2,3 *3231% U2 7 .78297

2,4.2313 3,4 7.29654

1,3,4 .323L33 3 6.08044

S23153 4 4.86436

Table B-20

SQUJARE-45 Coded With 0.05 Inch GridsizeI

Code aepi Code bpl
(sq L i/i n) (bits/in)

4 .0120054 1,2 56.7843

3,4 .0113016 2,3,4 45.3053

3 .0112894 1 43.2293

2,4 .0106233 2,4 40.2985

2 .0106233 2,3 39.5658

1.0104661 2 28.8195

1,2 .0101697 3,4 28.5753

62,3,4 .00993329 3 24.4233

2, .9 9 2 719 4 18 .3175

Table B-19

SQUARE-45 Coded With 0.1 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0170141 1,4 32.2388

3 .014881 1,2,3,4 28.209

3,4 .0148688 1,3,4 27.8426

2,3 .0126287 1,2,4 25.6445

2,3,4 .0126165 1,2,3 25.6445

2,4 .0123596 1,2 24.4233

2 .0123596 1,3 23.8127
a

1,2,4 .0119108 1 21.6146

1,3,4 .0119108 2,3,4 20.5156

2 .0119108 2,3 L9.0502

',2,3,4 .0119108 2,4 18.3175

.0119108 2 14.654

I, .0119108 3,4 13.9213

1,4 .0119108 3 12.8222

,.19108 4 9.76935

4
I

S

Table B-18

SQUARE-45 Coded With 0.15 Inch Gridsize

Code aepi Code bol
(sq in/tn) (bits/in)

4 .0360339 1,4 19.7829

3,4 .0278093 1 14.2876

3 .027791 1,2 14.0434

2,4 .019548L 1,3,4 13.9213

2 .0195481 1,2,4 13.9213

2,4.0168188 1,2,3,4 13.677

23.0168004 1,3 12.8222

'24.0140711 2,3,4 12.8222

1 ,3,4 .0140711 2,4 12.4559

1,2 .0140711 1,2,3 12.4559

1,2,3,4 .0140711 2,3 11.7232

1 .0140711 2 9.76935

1,3 .0140711 3,4* 9.52511

1,4 .0140711 3 8.54818

,2 , .0140711 4 6 .71643

B- I)9

Table B-17

SQUARE-45 Coded With 0.2 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0787137 1,2,3,4 17.0963

3 .0494789 1,4 16.8521

3,4 .0494545 1,2,4 15.3867

2,3 .0397096 1,3,4 15.3867

2,4 .0396852 1,2,3 15.3867

2 .0396852 1,2 14.0434

2,3,4 .0348249 1,3 12.8222

1,2,4 .0299402 2,3,4 11.1126

1,3,4 .0299402 1 10.6241

1,2 .0299402 2,3 10.2578

1,2,3,4 .0299402 2,4 9.52511

1 .0299402 2 7.32701

1,3 .0299402 3,4- 7.32701

1,4 .0299402 3 6.71643

1,2,3 .0299402 4 4.88467

0

B-I8

[% " " t. " •

Table B-16

SQUARE-45 Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .106124 1,4 14.654

3,4 .0617745 1,3,4 13.1886

1 .0410334 1,2,3,4 12.8222

1,4 .0410334 1,2,4 11.7232

2 .0392058 1,2 10.9905

2,4 .0392058 1,3 10.9905

1,2,4 .0390922 1,2,3 10.9905

1,2 .0390922 1 9.52511

2,3,4 .0388089 2,3,4 9.403

2,3 .0387783 2,4 8.05971

1,3 .0372728 2,3 8.05971

1,3,4 .0372728 3,4 6.59431

1,2,3,4 .0372357 2 6.35007

1,2,3 .0372357 3 5.49526

3 .035274 4 4.27409

B-17

Table B-15

SQUARE-30 Coded With 0.05 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

2,3 .0102448 1 51.6472

2 .00979521 1,2 51.1656

4 .00971353 2,3,4 46.35

2,4 .00939931 2,3 44.0626

3 .00915299 2,4 40.4509

2,3,4 .00892546 2 34.1906

3,4 .00798058 3,4 31.0605

1 .00722729 3 28.8935

1,2 .0049792 4 21.6701

B

B-16

I

Table B-14

SQUARE-30 Coded With 0.1 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .027109 1,4 29.6158

2,3,4 .0214104 1,2 25.8837

2,3 .0202131 1 25.643

3 .0193276 1,2,3,4 25.2818

2 .0182949 1,3 24.6799

1,2 .0170821 1,2,3 24.5595

2,4 .0170821 2,3,4 24.4391

3,4 .0168885 1,3,4 23.1148

1 .0149234 1,2,4 23.1148

1,3 .0149234 2,3 22.3924

1,2,4 .0143164 2,4 20.2254

1,4 .0137629 2 17.3361

1,2,3 .0137092 3,4 16.6137

1,3,4 .0136997 3 14.4467

1,2,3,4 .0130003 4 10.835

B-i5

0 t m - | h ' -

Table B-13

SQUARE-30 Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0406664 L,4 23.8371

3 .0355717 1,2,3,4 20.2254

2 .0314643 1,2,4 19.5031

2,4 .0302024 1,2,3 18.0584

2,3 .0296651 1 17.3361

2,3,4 .026365 1,3,4 16.6137

3,4 .0239979 2,3,4 16.0118

1 .0224846 1,3 15.6506

1,2,3 .0224699 2,3 15.1691

1, 3 .0218679 2,4 13.7244

1,3,4 .0208045 3,4 11.5574

1,2,3,4 .0205804 2 11.5574

1,2,4 .0186802 3 9.63117

1,4 .0185656 1,2 8.30635

,2 .0175606 4 /.22338

B-14

Table B-12

SQUARE-30 Coded With 0.2 Inch Gridsize

Code aepi Code bpl
(sq in/in) (bits/in)

3,4 .061025 1,4 17.3361

f3 .052909 1,2,3,4 16.8545

2 .0481822 1,3,4 15.8914

4 .0476209 1,2,4 15.1691

I2,4 .0456853 1,2 15.0487

1 .0338.033 1,2,3 13.7244

1,3 .0330289 1,3 13.2428

C1,4 .0325602 1 13.002

1,2,4 .0317454 2,3,4 11.7981

2,3,4 .030705 2,3 10.835

61,3,4 .0302271 2,4 10.1127

L,2,3 .0297057 2 ,8.66806

2,3 .0282764 3,4 7.94572

1,2, 3,4 .026627 3 7.22338

1,2 .0259995 4 6.01948

I -B- I 3

Table B-li

SQUARE-30 Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0764967 1,4 13.002

3 .0679133 1,2 11.437

2 .0466314 1,2,3,4 10.9554

2,4 .0466163 1 10.835

2,3,4 .0410383 1,3 10.835

2,3 .0369186 1,2,4 10.835

1 .0364514 2,3,4 10.1127

1,3 .0352499 1,3,4 10.1127

1,2,3 .0313723 1,2,3 10.1127

1,2,4 .0287189 2,4 9.3904

1,4 .0284036 2,3 9.3904

1,2 .0272566 2 7.22338

1,3,4 .0258869 3,4. 6.50104

3,4 .0249573 3 6.01948

1,2,3,4 .0231457 4 4.81559

IB 1

I S

Table B-10

SQUARE-0 Coded With 0.05 Inch Gridsize

MRCode aepi Code bpl
(sq in/in) (bits/in)

3 .00995035 1,2 61.4125

3,4 .00916263 1 59.1019

2,3 .00874405 2,3,4 51.0757

4 .00861047 2,3 48.1571

2,3,4 .00844003 2,4 46.6978

2,4 .00842635 2 -39.4013

2 .00841455 3,4 35.753

1 .00818465 3 32.8344

1,2 .00818465 4 24.9298

B-I11

Table B-9

SQUARE-0 Coded With 0.1 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

3 .0253283 1,4 37.2123

3,4 .0205395 1,3,4 31.3751

4 .0186636 1,2,3,4 30.6454

2 .0184423 1,2 29.7942

2,4 .0183207 1 29.5509

1 .0178789 1,2,3 28.4565

1,4 .0176783 1,2,4 28.4565

1,2 .0169646 1,3 27.362

1,2,4 .0168308 2,3,4 24.6866

2,3 .0166915 2,3 24.0785

2,3,4 .0166063 2,4 22.6192

1,3 .016587 2 19.9438

.,3,4 .0165201 3,4 17.5117

1 2,3 . 1630'6 3 15.8091

1,2,3,4 .<<4 4 12.7689

B-10

[p

Table B-8

SQU'ARE-0 Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0480225 1,2,3,4 29.7942

4 3 .0433962 1,2,3 26.9972

3,4 .0432776 1,4 26.9972

2 .0387158 1,3,4 26.2675

2,3 .0385793 1,2,4 26.2675

2,4 .0385269 1,2 24.9298

2,3,4 .0385269 1,3 23.7137

1 .0315528 1 19.3358

1,3 .0313704 2,3,4 17.8765

1,3,4 .0312792 2,3 16.0523

1,4 .0312792 2,4 15.3227
1,2 .031259 2 12.6473

1,2,3 .0311678 3,4, 11.6744

1,2,3,4 .0310766 3 10.9448

1,2,4 .0310766 4 8.51263

B-9

/4

Table B-7

SQUARE-0 Coded With 0.2 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0764335 L,2,3,4 16.174

3,4 .0617601 1,3,4 16.0523

3 .0401376 1,4 16.0523

2,3 .0286988 1,2,3 15.3227

2 .028496 1,2 15.2011

2,3,4 .0283501 1,3 14.593

2,4 .0283014 1 14.593

1 .0217971 1,2,4 13.8634

1,2 .0216755 2,3,4 12.7689

1,2,3 .0215539 2,3 11.6744

1,3 .0215539 2,4 10.9448

1,2,3,4 .0214323 2 9.72872

1,2,4 .0214323 3 8.51263

1,3,4 .0214323 3,4 8.02619

1,4 .0214323 4 6.08044

B-8

Table B-21

SQUARE-60 Coded With 0.25 Inch Gridsize

Code aepi Code bpl

(sq in/in) (bits/in)

3 .0694956 1,4 12.8

4 .066637 1,3 11.8518

2,4 .0501826 1,2,3,4 11.6148

2 .0500789 1,3,4 11.3778

2,3,4 .041145 1,2 11.2593

1 .0367181 1 10.6667

1,4 .0328972 1,2,4 10.6667

1,3 .0321207 1,2,3 10.6667

1,3,4 .0316774 2,3,4 9.95559

1,2,4 .0313565 2,3 8.53336

3,4 .0307504 2,4 8.53336

2,3 .0301129 2 7.11113

1,2,3,4 .0287303 3,4. 6.40002

1,2 .0228083 3 5.33335

1,2,3 .0220892 4 4.74075

B-22

Table B-22

SQUARE-60 Coded With 0.2 inch Gridsize

S
Code aepl Code bpi(sq in/in) (bits/in)

3,4 .0519887 1,4 14.9333

4 .0496305 1,2,3 14.2222

2 .0431296 1,2 14.2222

2,4 .0431296 1,2,3,4 14.1037

3 .0415733 1,2,4 13.5111

2,3,4 .0390647 1,3 13.037

2,3 .0357547 1 12.8

1,2,4 .0326856 1,3,4 12.0889

1 .0315811 2,3,4 11.6148

1,2,3,4 .031371 2,4 10.6667

1,3,4 .030425 2,3 10.6667

1,4 .0303095 2 8.53336

1,3 .0282973 3,4. 7.82225

1,2,3 .0266533 3 7.70373

1,2 .0251806 4 5.33335

B

B-23

• , •. .0

Table B-23

SQUARE-60 Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0448341 1,2 19.5556

3 .036445 1,4 19.2

2 .0289377 1,2,3,4 19.0815

2,4 .0279655 1,2,4 18.4889

2,3,4 .0268246 1 17.0667

1,3 .024342 1,3,4 17.0667

1 .0236559 1,3 16.5926

1,4 .0236198 1,2,3 16.5926

3,4 .0228392 2,3,4 14.9333

1,2,3 .0214367 2,4 14.2222

1,2,4 .0207672 2,3 13.5111

1,3,4 .0202818 2 11.3778

1,2,3,4 .0193619 3,4 10.6667

2,3 .0192783 3 9.48151

1,2 .01703 4 7.11113

B-24

Table B-24

SQUARE-60 Coded With 0.1 Inch Gridsize

Code aepl Code bpl

(sq in/in) (bits/in)

4 .028357 1,4 27.7334

3 .0193231 1,2 26.6667

2 .0189168 1 25.6

2,4 .0186962 1,2,3,4 24.8889

3,4 .0166949 1,3 23.7037

2,3,4 .0156298 1,3,4 23.4667

2,3 .0149809 1,2,4 23.4667

1 .0148037 1,2,3 23.4667

1,2,4 .0141943 2,3,4 21.5704

1,4 .0138881 2,4 20.6223

1,3 .013315 2,3 20.6223

1,2 .0124786 2 17.0667

1,3,4 .0121346 3,4 15.6445

1,2,3,4 .0118581 3 14.2222

1,2,3 .0114837 4 10.6667

B-25

Table B-25

SQUARE-60 Coded With 0.05 Inch Gridsize

Code aepl Code bpl

(sq in/in) (bits/in)

4 .00939215 1,2 50.3705

2 .00916857 1 50.1335

2,3,4 .0090146 2,3,4 46.4594

3 .00898931 2,3 40.5334

2,4 .00836145 2,4 37.689

3,4 .00777994 2 33.6593

1 .00696494 3,4 30.5779

2,3 .00631943 3 27.8519

1,2 .00464985 4 21.3334

B-26

4 5J

i ' m .. . ! " mt-i " -m i' i i -l l i i i ~ i i i - l l l i i i i

Table B-26

Sine Wave Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .177014 1,4 12.8262

3,4 .101479 1,2,4 11.585

3 .0674033 1,3,4 11.595

2 .057571 1,2 11.0333

2,3 .0547971 1 10.9644

2,4 .0516681 1,2,3 10.7575

2,3,4 .0500062 1,3 10.6885

1 .0469225 1,2,3,4 10.6196

1,2,3 .0404034 2,3 9.93002

1,2 .0393538 2,3,4 9.65418

1,3 .0371786 2,4 9.51626

1,4 .0333935 2 7.17168

1,2,4 .0326867 3 6.20626

1,3,4 .0312101 3,4 5.37876

1,2,3,4 .0276557 4 3.44792

B-27

Table B-27

Sine Wave Coded With 0.2 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0951982 1,4 16.55

.066723 1,2 14.4812

3,4 .0563303 1,2,3 14.4812

.0447947 1,2,4 14.4812

2,3 .0387108 1 14.0675

2,4 .0383211 1,3 13.1021

1 .0351407 1,2,3,4 13.0331

1,2 .0319325 1,3,4 12-8262

2,3,4 .0294085 2,3 11.9987

1,4 .026748 2,4 11.585

1,2,3 .0264903 2,3,4 11.1023

1,2,4 .0258608 2 9.37835

1,3,4 .0253898 3,4 7.44751

1,3 .0235785 3 7.24064

1,2,3,4 .022521 4 5.17188

B-28

" - p - " . . . " -'' , ,, ,, ,,, i - --- ' -

Table B-28

Sine Wave Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .059578 1,2,3 19.86

3 .0405581 1,4 19.86

3,4 .0300417 1,2 18.9635

2 .0275403 1 18.8256

2,3 .0272906 1,3,4 18.205

1 .0266828 1,2,3,4 17.8602

2,4 .0242809 1,2,4 17.3775

1,2,3 .0222929 2,4 16.9637

1,2 .0220264 1,3 16.8948

1,3,4 .0190452 2,3 16.1362

2,3,4 .0190356 2,3,4 14.9639

1,3 .0178728 2 12.6883

1,2,4 .0167421 3,4 11.1712

1,4 .0166428 3 10.3437

1,2,3,4 .0152194 4 7.58543

B-2

Table B-29

Sine Wave Coded With 0.1 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/in)

4 .0285503 1 28.135

3 .0244672 1,4 27.3075

3,4 .0200061 1,2,3 26.8938

1 .0180841 1,2 26.549

2,3 .0172292 1,3 26.2042

2 .0160311 1,2,4 25.2388

1,2,3 .0142483 1,2,3,4 25.1008
'S

1,3 .0140129 2,3 24.4113

1,2 .0135987 2,4 23.17

2,4 .0128029 2,3,4 22.2046

2,3,4 .0127397 1,3,4 21.9288

1,2,4 .0120049 2 18.7567

1,4 .0115023 3,4 16.55

1,2,3,4 .0111887 3 15.5156

1,3,4 .00914258 4 11.7229

I

B-30 "

Table B-30

Sine Wave Coded With 0.05 Inch Gridsize

Code aepi Code bpl
(sq in/in) (bits/in)

4 .0135882 1 56.4769

3 .0091371 51.7188

1 .00859574 4-.5813

2 .00834132 ,,.46.8228

2,3 QT5i44.5

3,4 .D 4 45 -, 2

12 4.143 1

2,34 2-1321:

2,3,4.0C535 2.4458

B-31

7S

/

I
/

/

/

a

/

/

p

i~re 3- ~i~>izec~ IIKCLE Drain:

I

p

--~r -2. CIRCLE: (1,2,3,24) Code With 0.25 Inch 3ridsize

3-33

(I

/ -' -

7-

N. *1

/

K
/

/

/

(1,'4)

/

K

/

(I

I

I

~L7Jre - (is> Etrd ~ Codes: ./1~tfl D.2~

I

0

1.

/

3-~. XEFCLE: (1) Thde Nith 0.25 lion liidsize

p

I

(2,

(3,4)

F>~r 3-1. 2LTAF--E-7O0: (2 ,4) and (3,4) Codes With

C.15Crch Cridsize

N-''

"'N

Figure 3-18. SQUARE-60'. (1) Code With 0.2 Inch Gridsize
S

• - ,,. . . m - a " i a " nu n u n i " i 1' ' u' "- ,,,, --, mm ' ,, .,,,. ,,o,,m .-.,,.,.- -..

I

B

/,/

"\\ /
" //

N.

.B

7 >~ure B-i?. SQUARE-45: (i) Code With 0.2 Inch Gridize I

B-4.7

, -,

(2,3) (2,4)

jliu!6. SQUAE-30 (23,24,234) n/1 oe

4 -h0.2 nch ;risiz

/3

(1,)

-74o-ur/ 33 1 .\ 6 : () (,3 ,a d (,)C d s W t

/-5Ic isz

B-45

9
j

/
/

N.
'0 N.~.

Figure B-124. SQUARE-60: (3,4) Code With 0.25 Inch Gridsize p

I

p

B -44

Fi.-re -12.SQURE-0, () Cde Wth .25InchGrisi4

.........

-1- SUAR-10 (34) odeWit 0.5 Ich ridiz

3-/

ii
I

I'
I.''-

p
Ti gu>r-e B-il. Example of Error For Non-Rotated Square

p

B-42

p

~ -

SQUARE-O SQ UARE -30

SQUARE- 145 SQUARE-6 0

Figure B-10. Digitized Squ~are Drawing~s

,N,

0

FiueB-.CRLE 4,od ih0.5Ic.Gisz

0

S!

3-4S

(1,4)

'0 (3,4)

0. InhGisz

IB -

-J . -' -. -

A

1 1

I
.1

I ___________ I
4I

I

I '. I

I'.

I - -I I

I I

Figure B-'?. CIFOLE: (3) Code With 0.15 Inch Gridsize

I.
2

4
*~1

B- 38

(1) (1,2)

?i,-re B-6. CIRCLE: (1),(1,2),(1,3), and (1,4) Codes With

0. nTch Gridsize (Reduced to original size)

B-37

I

4 S

I

4 S

S

4 "9 S

4 5

S

?1g~re B-5. CL~CLE: (2,2...) Code With 0.25 Inch ridsize

S

S

36

S

C' (3,4)

k PO ,

* figure3-20. SQUARE-60: ('3,4) and (1) Codes Jith

0.15 Inc, Grridsize

3-50

Figure B-21. SQUARE-0: (4) Code With 0.1 Inch Gridsize

B65

(2,4

a " (2,4)

4\\, -S.

(3,4)

)

S(1,3)

Figure B-22. SQUJARiE-30: (2,4),(3,4), and (1,3) Codes With

0.1 Inch Gridsize

B-52

/S

03

Fi-ur 3-21 S(ARE-C 1) (1)2 ad ()CdsWt

C, ___nc, ris

L______

0

Figure B-24. SQUARE-30: (1) Code With 0.05 Inch Gridsize

0

0

-B- 54

- .

(1,2)

(2,3)

//

/
/ "N
/•

.(2,3,4)

S/ SUA "n

/

/' N

• //

W ith 0.05 Inch Gridsize

B-55

5'
"

// (1,2)

'0 2 (2,4)

1 / (3,4)

Fiur B2. QURE6: 1,),24) ad 34)Coe
Wih00 nhGisz

B-5'

(2, 3 ,4P)

,1N

-B-5

1,-ur B-28. Digitized Sine Wave Drawing

B- 58

I , I I _ II I I -- -I .I_ - - - I -

(1

Figure B-29. SINhE WAVE: (1,2,3,4) Code With 0.25

Inh ridsize

B-59

I

~1

Figue B-0. INE AVE (i)CodeWit 0.2Inc Grisi,
tS

B-59

L.S

it /

I 'I

\: / j

I /

Figre B-3. SNE WAVE: (1) Code With 0.15 Inch Gridsize

r--"., 3-60

/4/

\I

i/i

/

~/

Figure B-33. SINE WAVE: (3,4) Code With 0.1 Inch Gridsize

, f

J i

I I &

Figure 3-34. SINE WAVE: (1) Code With 0.05 Inch 'Thidsize

B-6

I p

-J

I
/ I

II,I I
/,

\
, i

\I

,~~~33.SN ~AE 234 Cod Wi
0.05 nch Gidsiz

t
I

\ " ,

\
i "

3-62

p

p

I<212
;/ :/

I
Figure >36. Digitized written Text Drawing

I

I

p

S

S

B-63

S

7 D-Ri52 88 RN EXTENSION'OF A MICROCOMPUTER BSED
SYSTEM FOR

3/2
ANALYSIS OF LINE DRARdING--(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI. T A NORRIS3UNCLASSIFIED DEC 84 RFIT/G.E/ENG/84D-48 F/G 9/2 M

EEE hE

IIIIJi 3 2

IIIII1 I 1 1111.6

ill1 -l -. "1.

M L () ! jQ ,() ' Ui LI 1(N I f 1 T r A I

4 ,: ! : . .

B-6

- -' - i - -

q I

(1) (1,2,3,4)
/ / I "A

.J , /

.... /..

Figure B-39. TEXT: (1) and (1,2,3,4) Codes With
0.15 Inch Gridsize

I iI
. ., , , A .

Figure B-40. TEXT: (1,2,4) Code With 0.1 Inch Gridsize

B-65

(1) (4)

/ r/
1"i1[13- /.

(2,4) (2,3,4)

/1 . K' #~_ __ -rK '~-~ j

Figure B-L-1. TEXT: (1),(4),(2,4), and (2,3,4) Codes

With 0.05 Inch Gridsize

B-66

Appendix C

This appendix is a user's manual for the software

described in this thesis.

i

\4

c-6

User's Manual

A list of the available programs and a brief

statement of their purpose is shown below.

DIGITIZE : digitize a line drawing on the digitizer

and store the data in a disk file.

PLOTFILE plot the data stored in a disk file.

DIGPLOT echo the points being digitized on the

digitizer to the plotter.

LABELS : provide direct control of the plotter.

CHNCODE: compute the multi-ring chain code of'a line

drawing described by a series of coordinates stored in a

disk file and output the coordinates of the nodes and the

chain code to a disk file.

ERROR compute the area error between the line

drawings described by the data in two disk files, also

computes the length of the line in each disk file and the

number of bits needed to store the chain code.

PLOTCODE: plots a multi-ring chain coded version of

a drawing as it is drawn on the digitizer.

A more complete guide to using each of these programs

follows.

DIGITIZE

An example of program operation is shown below.

Program operation will be shown as a sequence of steps in

C-2

which the user interactively communicates to the computer

all necessary input data.

Step 1: In response to the CP/ M prompt, A>, type

DIGITIZE.

The computer will respond with:

PROGRAM TO PLOT DIGITIZED POINTS IN A FILE

SINGLE OR CONTINUOUS SAMPLING MODE (SG/CN)

Step 2: If you want to digitize selected points on a

drawing, enter SG, then go to step 5. If you want

continuous sampling of the points on the drawing,

enter CN and go to step 3.

Step 3: The computer responds with:

CONTINUOUS SAMPLING MODE SELECTED:
DEFAULTS ARE

DELTA d = 20.25 inches
J, . * DELTA t = 20 msec

DELTA t = ? (20 to 32767 msec) (CR for default)

User responds with the minimum sampling time

required for the digitizer.

The computer then prompts for the DELTA d with:

DELTA d = ? (.001 to 20.25 in.. 1 = .001 in) (CR
FOR DEFAULT)

The user then responds witA the minimum sampling

distance.

Step 4: The computer prompts:

SWITCH NORMAL OR SWITCH FOLLOW MODE (SN/SF):

The user then enters SN for the switch normal

mode or SF for the switch follow mode. In the

switch normal mode, the DIGITIZE switch on the

cursor must be depressed for points to be taken.

C-3

Li

In the switch follow mode, the DIGITIZE switch

acts as a toggle; if points are not being taken,

pressing the switch causes the digitizer to start

taking points, pressing it again causes it to

stop.

Step 5: The computer then prompts:

THIS PROGRAM WILL WRITE OVER ANY EXISTING FILE
WITH THE SAME NAMEENTER FILENAME FOR DATA POINTS (EX: A:DATAI.DAT):

The user then enters any CP/M acceptable

filename. If there are no problems with the

disk, such as the disk being full, the computer

will respond with:

FILE OPENED SUCCESSFULLY

CONTROL KEYS ON THE DIGITIZER ARE:
Fa = RESET DIGITIZER MODE
Fb = CLOSE CURRENT FILE AND ASK FOR MORE
Fc = PEN DOWN
ANY OTHER KEY = PEN UP

NOW BEGIN TAKING POINTS

Step 6: The user now begins taking points. If the cursor

is being used, then the DIGITIZE switch must be

depressed; if the stylus it being used, then the

DIGITIZE switch is activated by the pressure of

writing.

The digitizer control keys are necessary for

proper operation of the program. If you wish to

change digitizer modes (single or continuous

sampling or the DELTA t or DELTA d) then press

Fa. Pressing Fc puts the pen down for the

C-4

drawing while any key other than a, b, or c puts

the pen up. When the drawing is completed, press

Fb to close the file.

An important fact to note is that the ERROR

routine needs at least one point at the beginning

of the digitized file to have the pen in the up

position. Therefore, the user should press the

digitize switch and then the Fc key in order to

get a few points with the pen up at the beginning

of the file.

Step 7: When the drawing has been digitized, the user

should press the Fb key on the digitizer to close

the file. The computer will respond with:

MORE TO DIGITIZE (Y/N)?

If there is more to digitize, press Y and the

program repeats starting with Step 2.

If there is no more to digitize, press N. The

computer responds with:

ALL DONE

The computer then returns t'o CP/M.

PLOT F ILE

The program to plot a set of data points is invoked

by:

A>PLOTFILE (CR)

The program will prompt the user for the number of files

to be plotted. Beginning with the first file, the program

C-5

then prompts for the filename and the parameters for the

plotter. The plotter parameters are :

Line Type (integer 0-8) : The available line types are:

kl

L2

L3

L4 -----------------

LS --

L6

L7 - - - - - - - - - - - *- - - - -

LB

Scaling Factor: In order to give the user complete

control over the size and location of the plotted drawing,

the scaling factor and translation factors were

impIlemented. The x and y coordinates of the input file

are multiplied by the scaling factor, added to their

respective translation factors, and output to the plotter.

The scaling factor is a real number and must be entered as

x. Y 3 val ue of .2 would be entered as 0.2). The

'cor~nates Ln the files normally have units of 0.001 in.

7 [ci :us units of 0.005 inches Lor all numbers.

Therefore, a 1 in 1 in scale for a digitized drawing

would be:

X * (in / 1000) * (200 / in) = X * 0.2 (scaling factor

= 0.2)

Translation factor: The translation number is in

units of 0.005 in (200 = I in).

DIGPLOT

The digitizer to plotter program is invoked by

A>DIGPLOT (CR)

The digitizer to plotter program prompts the user for

all of the input it requires. The input required has been

described in the instructions for DIGITIZE and PLOTFILE

(except for the difference in the function of the

Ye digitizer keys shown below). The program is exited by

entering a CONTROL-C from the keyboard.

The digitizer special function keys are defined as:

Fa : reset digitizer sampling parameters

Fb :reset plotter parameters

c indicate pen down

i - prefix Fe : indicate pen up

D nt o program is invoked by

A>LAPFLS -. HP

Pr m pr:mots the usr :or a; I tnput. If a mistake

.n , entering the command 7,-> 1nn the on ly way to

I

correct it is to specify a repetition number of zero. The

x and y inc- -ments are integer numbers with unit of 0.00 5

in.

A summary of the plotter commands follows:

o0- set origin: the current pen location becomes

t-he new origin

D - pen down: puts the pen down at the current

locatio 'n

-_ n uo Q mmediately picks the pen up

H nome: moves t.ne pen fto the home location (lower

-: :rner) and jefines Thnat location as the new origin

A-acso Pte pltLing T.oade~ all coordinates will be

wi-hresectto-he currently def ined origin

- reatie rlot~tgMode: all coordinates will be

o reseot o tne point plotted immediately

- The ccn' being currently plotted

- ln ~Po dIefine line type as n (see line

S r nt s 3 6'1Mtoi c~lotting: plot ASCII character

_'o S3 wit-h roa nr -and heignit h (' indicates end

i:oraace s-ring , b is a space) (r is an integer I - 4

ndterotati_-on Ls: rotation = (r-1)*90 degrees, 0

Ar--s --s straight- right and the rotation angle is

Costv cl3 ; -Io ckw is e) (hn is an integer 1 - 5 which

corr-soonds to heights of: 1 0.07", 2 =0.14", 3

. 28"9 4 =0.56", and 5 =1.12")

T - self-t-s routine: perform self-test program

x,y - move pen to x,v: move the pen to xy with

respect to the orig -n or previous poinlt (A vs R) with the

pen up or down (U vs D) (x and y are integers sent as

AS C-II naracter strings)

THNCCDE

The operation of the multi-ring chain coding program

's described by the following sequence of steps:

Sc To use the program, enter CHNCODE in response to

the CP"M prompt.

-i n i: e croeram responds with:

THI!S PROGRAM COMPUTES MULTI-RING CHAIN CODES

ENTER THE DiLiTIZED DATA FILENAME:

0 At this point, enter the name of the digitized

data file. The program then responds with:

ENTER THE NUMBER OF CODED FILES YOU WISH TO CREATE:

No more than 25 different files can be created at

one time. Enter now the number of files you wish

Screate (entry must be an integer).

T-he ,rogar' now begins interactively obtaining

hernecessar% sata for each coded file. For

< X~m e, M 7 r_-e a a ,3) code with a gr-jsize1

" t.,'7L2n tke an a 12,4) codie with a grids : ',off

n tn, '-~ woud ha e entered 2 for the

:- :mh- r 3: fk ['.6 'O S ' 7r., 'h-< rN: -hi or ,:r m

: ' ED DATA I L ENAMI 1: 1 n ra , ur

a0

j

enters a filename, say CODE.CD])

ENTER GRIDSIZE DESIRED: 50 (remember 1 = .001
inches)
ENTER THE NUMBER OF RINGS USED BY THE CODE: 2
ENTER THE RINGS USED BY THE CODE STARTING WITH
THE LOWEST
(EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3 5): 1 3

ENTER CODED DATA FILENAME 2: CODE.CD2
ENTER GRIDSIZE DESIRED: 100
ENTER THE NUMBER OF RINGS USED BY THE CODE: 2
ENTER THE RINGS USED BY THE CODE STARTING WITH
THE LOWEST
(EXAMPLE FOR A (,,5) CODE: ENTER 1 3 5): 2 4

Step 4: The program now :eqins creating the coded files.

It provides ffhe user with updates -f its progress

as shown:

CODING CODE.CD1 (program informs user that it is
* creating the first coded file)

CODING CODE.CD2 (program informs user that it is
creating the second coded file)

COMPUTATIONS COMPLETE (program informs user that
C it is finished)

The program now returns the user to CP/M.

ERROR6
The area error computation program is invoked by

A>ERROR (CR)

The program then prompts the user fbr all the information6

that it needs. As an example, consider the example used

for the CHNCODE program. The sequence of events would be

as follows:

Step 1: Call the ERROR program by entering ERROR (CR) in

response to the CP/M A> prompt.

4 Step 2: The program responds with:

C-10

" I< .

II

ENTER DIGITIZED DATA FILENAME: enter the
digitized data filename

ENTER NUMBER OF CODED FILES TO BE ANALYZED: 2
ENTER CODED DATA FILENAME 1: CODE.CD1 (first
coded file)
ENTER CODED DATA FILENAME 2: CODE.CD2 (second
coded file)

Step 3: The program then starts analyzing CODE.CD1. It

keeps the user informed on which file is being

analyzed as follows:

ANALYZING CODE.CD1

The program then lists the output when the

analysis is completed and proceeds to the next

coded file.

A useful way to obtain the results for many files is

to have the CRT output also sent to the line printer.

This is easily done by invoking the CONTROL-P toggle from

CP/M before calling the ERROR program. This prevents the

user from having to sit in front of the CRT during program

operation to obtain the ERROR results, since these results

are also automatically recorded by the line printer.

PLOTCODE

To call the PLOTCODE program, the user simply enters

A>PLOTCODE (CR)

The program then interactively prompts the user for all

necessary input data usLng similar menus to the CHNCODE

and DIGPLOT programs. These menus prompt for the chain

code ring levels and gridsize, the plotter translation and

scale factors, and the digitizer sampling parameters. The

C-11

digitizer keys have the same meaning for PLOTCODE that

they do for DIGITIZE except Fb does not close a file, it

simply allows the user to start a new drawing.

C-12

BIBLIOGRAPHY

1. Freeman, Herbert. The Generalized Chain Code for Map
Data Encoding and Processing. Technical Report CRL-
59. Air Force Office of Scientific Research. June
1978.

2. Rock, Joseph R., Jr. A Microcomputer Based System
for Analysis of Line Drawing Quantization Techniques.
MS thesis, AFIT/GE/EE/83D-77. School of Engineering,
Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1983.

3. Jones, Keith R. Grid Based Line Drawing
Quantization. MS thesis, AFIT/GE/EE/82D-41. School
of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB MH, December 1982.

4. Christensen, Eric R. Grid Based Line Drawing
Quantization. MS thesis, AFIT/GE/EE/83D-16. School
of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1983.

5. Saghri, John A. Efficient Encoding of Line Drawing
Data with Generalized Chain Codes. Tech Report IPL-
TR-79-003, Image Processing Laboratory, Rennsselaer
Polytechnic Institute, Troy, New York, August 1979.

6. Thompson, Edward A. Grid Based Line Drawing
Quantization. MS thesis, AFIT/GCS/EE/83D-20. School
of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1983.

7. Freeman, H. "Analysis of Lize Drawings", in J.C.
Simon and A. Rosenfeld, Digital Image Processing and
Analysis, Noordhoff, Leyden, 1977, pp 187-199.

8. Freeman, Herbert. Computer Processing of Line
Drawings, Tech Report 403-30, Department of
Electrical Engineering and Computer Science, New York
University, Bronx, New York, May 1973.

BIB-l

VITA

Captain Thomas A. Morris was born on 25 July 1953 in

Gilmer, Texas. He graduated from Gilmer High School in

1971 and enlisted in the Air Force in 1973. He attended

Texas A&M University under the Airman Education and

Commissioning Program and he received the degree of

Bachelor of Science in Electrical Engineering. Upon

graduation, he attended Officers' Training School and

received a commission. He then served as a

Communications-Electronics engineer with the 1842

Electronics Engineering Group, Scott AFB, Illinois, until

entering the School of Engineering, Air Force Institute of

Technology, in June 1983.

Permanent address: Route 6, Box 104

Gilmer, Texas 75644

1

~1

o •-

.6 Unclassified PG

SECURITY CLASSIFICATION OF THIS PG

REPORT DOCUMENTATION PAGE
III REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified______________________
ECURITY CLASSIFICATION AUTHORITY 3. DiSTRIBTION/A VAI LABILITY OF REPORT

2b OECLASSIFICATION,DOWNGRADiNG SCHEDULE Approved for public release;
distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBERS) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

AF :-T/ 3S/E-N: ;8 4D -48
6&. NAME OF PERFORMING ORGANIZATION Eb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

fi applicabie)

- h~ool of En- irnee-in; AI/N _____________________

6c. ADDRESS City. State and IIP Code) 7b. ADDRESS (City, State and ZIP Codel

Air Force :nstitute of Technology
~ ~ n~-a~ersr.AFE-r, Ohio 454133
8. N4AME OF FUNDING.SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Bc ADDRESS C:0y. State and ZIP Code) 10. SOURCE OF FUNDING NOS.______

PROGRAM PROJECT TASK WORK UNIT
*ELEMENT NO, NO. NO. NO.

11 TI TLE Inctude Security Classifica iton,

:See 3ox__19______ _____ ___________

12. PERSONAL AUTHOR(S)
ThI-orna' A. Ylorris,3.S., Cap)tain, USAF

TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo.. Day) .PG ON

"Is Lesis FROM _ __ TO ____ 1984 December T5 PAECUN

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1B. SUBJECT TERMS 'Continue on reverse it necessary and iden tiry by block, number)

FIELD GROUP suB. GR Line Drawving
22 Chain. Codes

19 ABSTRACT -Continue on reverse if necesary and identify by bloc), number)

e:A';XT S OF A V1IC-OCCMPUTER E'-ASEID SYSTEM FOR ANALYSIS OF
* LU';E DRA. JDGI- UANTIZATION SCHEMES-

isCairm~an: Kenneth .Castor, Mtajor, USAF

* 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

-ASSIFIEDUNLIMITEDXI SAME AS RPT OTIC USERS -j N C LAS 3 F 1EL
22a- NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Include Areya Code,

Kenneth '3. Castor, Major, UDF513-255- 553L' A.FT/E N,,
* DO FORM 1473, 83 APR EDITION OF 1 jAN 73 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

*o -- = o .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Thi paper describes the extension of a microcomputer based
system to analyze the performance of various grid based line -_

drawing quantization schemes. The system is developed on a
Heathkit H-89 microcomputer with a Hewlett-Packard 9874A
digitizer and a Hiplot digital plotter. The capabilities of
the existing system were expanded to allow real time
digitizing/plotting operations and to provide for encoding
and analysis using variable ring quantization schemes.
Comparisons of specific drawings were then made for various
quantization schemes based on a distortion metric (area between
original and quantized image), a rate metric (number of bits
in the quancization), and a subjective evaluation of the
smoothness of the quantized image.

Results indicate that multi-ring codes usually produce
less distortion in the quantized image than single ring codes
while the single ring codes require less bits for storage.
Also, neither metric is a good indicator of the smoothness of
the quantized image.

S

C1

SECURITY CLASSIFICATION OF THIS PAGE

FIME

5-85

DTIC

