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This paper descrlbes the axht=snsion of a mis

computer cased system t2 analyze the performance of
Jarztus Irid kased line drawing guantization schemes. The
sU3Tem s developed on o a Heathkit H-89 microcomputor wirti
3 oHew et T-rPackard 3874A digitlzer and a Hiplon digital
ToLLT e, The rcapapilities of the =2xlsting system were

<pani-sd *o allow real tflime digiltizing/plotting operations

~r provids for encoding and analysis using variable
j isantTlzanion schemes. Comparisons cf specific
vinN3s werr» “hen made [Or various quantization schemes
cioon oa ilstortion metric (area between original and
anized 1mage), a rate metric (number of bits in the

ntiZatniony, and a supje~tive evaluation of the

rsdlns o otndiTate tnat multi-ring codes usually
R .35 d1stor<ion in the guantized image +than single
: fosownLler tne 3103l ring codes requlre less pits
T, Alsc, neilther metris 135 a gocd indica+tor of

. Teess DD tne juantized 1madee.
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2 analvylse the line drawing. (Reter to references 7 and 3 i
cor 3130ussions of the types Of analysis that can pe i
. . . !
pericrmed on line drawings using =he chaln codes.) Tor :
]
!

Applllanions where extanslve analvsls i3 to be performed,
s i
i

541Th as pattern r=2cognition, thls criteria can taxs
srezodence over others, such as the —-ase of encoding and .
o TLnd. '
ne performance measures used Lor £his thesis are i
I BN ~ ~ + 3 A O agg The 1 3] !
rroeTlslon, ©ompaciness, and smoothness. he precision !
!

meEsuremant Wwlll be an area error per unit l2ngtn; this is
iefined a5 -“he total area enclosed between the coded %
recresenta-_on 25 the line and original line drawing !
]
iivixed oy o=he tozal lengtn of the original line drawing, 1
1
- are i rror unit lengtn. The compactn2ss measurement will 1
1
e omnes mumper 0f Blos requlred for encoding divided by the :
.
~.ta. l=n3xmn 5f rhe original line drawlng, Dbilts/unit :
: , : . :
LT he smoothness measure will be a visual |
L]
yminatlon 2f +she ooded line drawing using the digitzal i
3 o
Loty irnis will be a very suplectlive measurement). A .
- , 1
;o 1o all2d cxplanation of how these measure are g
. Lementod will pe presented In the next chapter of thils :
, Wwon:iTn 13 a4 Jdescriptlion of an exXxlisting }
Lty osasevd Lone drawing system, )
Yot r,  the 310G L ring chawn cod NA3 .
Kl
ST SN i Tnis Iod 1ogizally o0 2 !

T i Do Tl vicer o oand multi-ring
Ti- y
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s1Z2 used during the Iuantizatlon proc-=ss. Thus, using a
small grid size in relation 20 =Zhe smallest radius of
curvature and 1ow order codes re=sults in high pre=cilsion.
This comes, however, at the loss of compactness.

Compactn=2ss 15 the amount »>f 3Ltorace 3pace ragulired

Ll

“0 3tor2  the line drawling or amount o5f candwli<h reqguirs

F

(1:7', The tradecff between compactoness and gr-==-15150 Ian
For a given code level, thes morse
precise the drawling the more nodes that are reguired,
Also, to achleve

r2sulting 1n a loss of compactness.

compaconess, pracision must be sacrificed.

@
L2
b
-
03
@

Smoothness s important only where the cod

T

irawing nerai,

—

s pbe wvisually displayed (3:9). In g

smconhness will depend heavily on the coding lavels used

in tne Juantlzation process, wWlith *the better angularcr
c-30luition and fewer number of nodes of the higher orcder
Obviously, t“here 1s a

“odes guving “hem the advantage.

“raieoff with precision, which regquires a large number of

viod=s and low arder -odes.
Th= =2as= 5f =ncocding and decoding depends on the
iy oalIoritim ssed, [* becomes 1mpor+tant Lf irge
TaAnt Lt s Iotita are nv/olved and 1f£ the foding needs 9o
SR e nooreea Sl M. he 2ase of processing “he data
reefers Cree iTr Loty oand speod b othe alaorithms used
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An example 57 =his proce2ss 15 sh n.ln Figure II-6. Note
that in Figur= [i-na, ~he curve does not remain within the
LGS and the lower order ring must be used; while in Figure

[I-6b, the higher order ring 15 used.

1
6a 6b 1
1
b4
Figure II-6. Example of a Ring 3 LGS for a Line Drawing /
!

Seneralized Chain Code Performance Measures
There are five major criteria for the performance of ;
.4
#n2 cnaln codes for line drawing data: These are: (1) X
T Y
orecision, (2) compactness, (3) smoothness, (4) simplicity 1
2f »ncodiing and decoding, (5) and facility for processing }
e
7). Dbviously, these criteria are very subjective and j
~ne Importance of each depends heavily on the 1ntended :
ipplication of the drawing. Each of these criteria are ‘
3
<olained below and the criteria used for this thesis 1is :
cre:sented. R
Precis510n, or accuracy, 1s a measure of how well the ®
“2ding 3Tneme correchtly gquantizes small changes of a a
funcrion (500 1=9). This is extremely 1important 1f the "
jasa 13 us-=d for gquantitative analysis of the line °
b
. X R . p
drawin®. The preci:slion 1s heavily dependent upon the grid p
K
-]
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II-5.
(a)

(b)

Triangular Quantization Scheme Templates
Ring 1, (b) Ring 2, {(c) Ring 3
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6. If chain does not contain ring i, repeat step

5, else go to step 2.

The set of all LGS of a ring is called a "template”.
T2mplates for rings 1, 2, and 3 are shown in Figure 11-5
(1:1). Note that for ring 1 the generalized quantization

ces to the one discussed for the single ring

U
[}
3
27
3
\D
[
49
o}
C

The quantization procedure simply consists of a

or the highest order ring link for which all LGS

Ui
i
Q
[
i
joj
th

ntersect the curve. This procedurs is as follows (1:1):

l. Set 1=k where K is the order of the highest
order ring in the code.

Z. Posit:.:o0n the template 1 so that its center
lies on the last encoded node and its sides

lie parallel to the grid.

3. Find the 1ntersection points of the curve
with rings i, i-1, i-2, ..., 1.
tog, If the chaln does not contain any ring lower

than ring 1, delete from the above set all
but the 1intersection points which lie on
ring 1i.

5. [f any LGS of ring 1 contains all the
intersection polnts found in step 3 then the

associated link 13 selected and we return to

1y

352=2p 1. Else 3eft 1=1-1 and go to step 3.

I1-7
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Quantization Procedure

The quantization procedure is more complex for the
generalized higher order codes than for the single ring
codes. There are various guantization techniques used for
the generalized codes (5:13), each with different
propertles. The one described here and used for this
theslis 1s the triangular quantizing scheme. Two
definitions will ald in the explanation of the guantizing
scheme. First, a "link" 1is defined as a vector from the
center of a ring to any node on the ring. Now, given a
rarticular chaln code, "sets of link gates" can be defined
which provide a means of selecting the links that best
approximate the curve to be encoded. The "link gate sets"
(LGS) are constructed as follows:

1. Set 1=k, where k 1s the order of the largest

(

ring 1n the selected chain code.

2. Flnd the midpoints of all pairs of adjacent
nodes on this ring.

3. Connec: the midpolnts to the center of the

ring wi=-h straight lines called "midpoint

The parallel line segments -ut out of each

N

ring, 1 through k, by a pair of adjacent
midpoint lines, form the (LGS) for the 1ink
»f ring X lyling between the two midpoin-*
Lines.

S0 Gt 1=1-1. [f 1=0, stop.

I1-6
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times the distance from the current node as it is in the

level 1 code, there are fewer nodes to quantize for any

._XY

‘ given line drawing. This decreases the amount of storage

u

pace required. The disadvantage 1s the loss of ability

to accurately follow curves with a radius of curvature

n which 1s small relative to the size of the ring. ﬁ

. Higher Order Codes ;

Generallzed higher brder chain codes are formed by :

N using a combination of two or more single ring codes of %
E different levels. The advantage of this algorithm 1is that
; where the radius of curvature of the line drawing 1is

small, the lower level ring 1s used; and where the %

curvature is large, the higher level ring is used. In
this way, the accuracy of the drawing is maintained while
the number of nodes for a nearly straight portion of the

drawing 1s reduced (2:I1V-6). Chain codes of this type are

identified by the rings used 1n the code. For example, a

A

chain code uslng rings 1 and 3 would be called a (1,3)
code. A (1,32) code is shown in Figure II1-4. ]
1
g 0 o) o] 0 o) o) L)
- ‘
3 1
- . o) X 1s current node :
. ) 9 o o) o
: o 1s possible next .
5 0 X o} . o) node ®
b
[ y o) o) ) o)
b is unused nocde of
> . . . 0 level 2
’ p B 5 o o o o ®
Figure [1-4. Nodes of a (1,3) Chain Code

—— — v = = =

[1-5
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to become 7012. Now, the drawing moves to the left,
crossing the grid near node 4, causing the chaln code to
become 70124. Finally, the drawing moves to the left
corner, crossing the grid nearest node 3, and then ends.
Therefore, the final chaln code representation 1is 701243
octal.

Extensions of the Single Ring Code

The single ring coding algorithm is easily extended
=0 levels greater than one. A single ring code of level 2

has 16 possible next nodes and 1s shown in Figure II-3.

6 5 4 3 2
o o} o) o o}
7 o . . . o 1 X 1s current
node
8 o X . o O
0 1s possible
9 o . . . o 15 next node
o) o} o) o} o}
10 11 12 13 14

Flgure II-3. Nodes of Level 2 Single Ring Code

This 1dea can be extended to a single ring code of level
n. An n-level code would have 8n possible next nodes. An
opvious advantage Lo 1ncreasing the level of the code 1s

improved angular resolution. Also, since the ring is n
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and added to the chaln. A binary encoding procedure is to

associate a three bit binary number with each node of the

ring. For example, node U would be encoded as 000, node 3

ChS mtan. James 4 45n Snn Juh S Jan S00 m Ll s

as 011, etc. An octal representation of this binary
encoding is shownin Figure I1I-1. The assignment of a
particular integer to each node is arbitrary, but must be
{ zecnsistent for both encoding and decoding (4:1I1-7). An

}! =2xample of the encoding process 1is illustrated 1in

I1-2.

)
—
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Ve ﬁ
) Z mmimgy B4
Figure II-2. Example of Single Ring Code )
P In Figure II-2, 1t can be seen that the first ),
crossing of the grid is closest to node 7 (recall the )
R
- lapelling of the next nodes from Figure 1I1-1), therefore R
]
] the chain code begins with a 7. With this node now the )
R
current node, the next grilid crossing occurs near node 0;
tne chain code 15 now 70. The next <crossing is closest to ]
( node 1l; therefore the chain code becomes 701. The next ]
Crossing 1s now <losest to node 2, Tausing the chailn code ,
[I1-3
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The Single Ring Chain Code

One of the simplest chain codes 1s the single ring
chalin code. The encoding and quantizing algorithm 1s best
described by visuallzing a grid overlaying the line
drawing. For any chain code, a starting point must be
given or assumed, and this starting point must be a node
on the grid. Figure 1I-1 demonstrates this concept. With
the starting point of the line drawing located at point x,
the grid overlays the drawling and surrounds the starting
point (referred to 1in Figure II-1 as the current node)
wlth e1ght nodes. No matter which direction the 1line
drawing takes, it must cross the grid near one of these
nodes; this node is encoded and stored as the beginning of
the chain, and becomes the new current node. This process

repeats until the end of the drawing 1s reached.

2
3 & 1
»
X 1S current node
4 - 0
O 1S possible next
5 7 node
6
Figure [I-1. ©Octal Encoding Assignment for Single
Ring Code

Each £ime the drawlng crosses the grid, the node nearest

the crnossing then becomes the current node and 1s encoded
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IT. Background of Generalized Chain Codes

The generalized chain codes are a family of methods
for guantizing and encoding line drawing 1images. The
quantization is done by superimposing a grid of some
specified gridsize onto the line drawing and selecting a
set of nodes to represent the drawing. A node 1s defined
as the lntersection of the horizontal and vertical grid
lines. The quantization of the 1line drawing 1is
accomplished by selecting the node that 1s nearest to the
intersection of the line drawing and the grid lines; not
allowing a single node to be selected twice in succession.
A line drawing is then described by a sequence of nodes
connected by straight lines with the first node located at
the first point of the line drawing. For encoding, a node
is only identified relative to the node which immediately
preceded it in the segquence, hence the name chain code
(2:1V-1). The nodes are encoded by any method in which
each node is assigned a binary number which represents its
relative position to the previously selected node (3:3).
In this chapter, the guantizing and encoding processes are
explained more fully. The chaln codes themselves are
2xplained starting with the simple single ring codes and
continuing with the more complex higher order generalized
chain cndes. Also, the performance evaluation criteria

for the chain codes are discussed.
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the analysis of several specific line drawings, and

Chapter VI details the conclusions drawn from that

. AEER & .

L‘ analysis and proposes areas for future study.
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developed to efficiently encode line drawings using a set
of schemes known as generalized chain codes (1).

A microcomputer based system for the analysis of line
drawlng quantizations schemes was developed at AFIT by Lt
Joseph E. Rock in 1983 (2). This system utilizes disk
files for intermediate storage of the image data, and
implements a small subset of the generalized chain codes.

The objective of this thesis was to expand the system
developed by Lt Rock to allow real time digitizing,
2ncoding, and plotting operations; and, to provide for
enceding line drawings using variable ring chain code

.
gquantlization schemes. These new capabilities were used to

‘provide gquantitative comparisons of quantizations of.

specific drawings. Comparisons between chain codes were
made on the basis of a rate (number of bits in the
guantization), a distortion (area between original and
gquantlized 1mage), and a subjective evaluation of the
smoothness of the quantized image.

The organization of this thesis parallels the
approach to the problem. Chapter II discusses the
cackground and development of generalized chailn codes. In
Chapter IIl, the existing system developed by Lt Rock 1is

d

D

scriped as well as the modifications that were made to

VT

h 3/sthe

[ e z

3

for this thesis. Chapter 1Y describes the

s5oftware that lmplements the variable ring chain coding

T

zlyoritnm and the software written to allow real time

speration.  TCThapter V 135 a discussion of the= results of
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AN EXTENSION OF A MICROCOMPUTER BASED SYSTEM FOR
ANALYSIS OF LINE DRAWING QUANTIZATION SCHEMES

I. Introduction

In many Air Force and engineering applications, the
abllity to store two-dimenslional 1mage data 1n a digital
format 1s very important. The classical method of
processing this data 1s two-dimensional sampling. This

technique 1s computationally intensive and requires a

™

E large amount of computer memory and storage medla. Fo
some types of 1mages, such as photographs, these problems
are tolerated because of the need to completely reproduce
a8 the original 1mage from the stored version. However, for
KiDE other types of 1mages the two-dimensicnal sampling method

’ 1s not required. An example of such an image 1s the line

drawing. A lin¢ drawing can be defined as an image

L
[ consistling entlirely of thin lines on a contrasting
l’“'.
f background. Examples of line drawings include maps,
g
{ print=ad or written text, graphs, englneering drawings, and
L. temperature charts. Since a line drawing can be seen to
f ce a very limited type of two-dimensional 1mage, 1t seems
L locgizal that there would be a way to sample and store a
p
} 1 - p= e \ ] J + ~
° tn= drawing much more efficiently than more complex
3

rmages, such as photographs. Indeed, methods have been
S
aa
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chain codes. The major performance measures for the chain
L codes and their various tradeoffs were discussed as well
as the performance measures used for this thesis efforrt.
In the next chapter, the existlng microcomputer system

k developed by Lt Joseph E. Rock (2) will be described.
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III. Overview of EXisting System

This chapter presents a brief overview of an existing
microcomputer based system for analysis of line drawing
quantization techniqgues. Also, the modifications to the
system accomplished for this thesis are discussed. This
system was developed by 1lst Lt Joseph E. Rock, Jr. at the
Alr Force Institute of Technology for his master's thesis
(2). This overview consists of a description of the
system hardware and of the software algorithms developed

by Lt Rock.

Existing Hardware

The system as developed by Lt Rock utilizes the

hardware listed below:

1. Heathkit H-89 microcomputer with 64
kilobytes of RAM, 3 serial RS—232 I/0
ports, one 90 kilobyte 5 inch disk drive,
two 594 kilobyte 8 inch disk drives, and
CP/M disk operating system.

2. Heathkit H-25 printer.

3. Hewlett-Packard model 9874A digitizer and
an ICS Electronics'Corporation model 4885A
IEEE-488 to RS-232 bus controller.

4. Houston Instruments model DMP7 x-y plotter

wilth a RS-232 serial interface.

I11-1
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Hardware Modifications

The only major hardware modification accomplished for
this thesls increases the computer clock rate from 2.048
MHz to 4.096 Mhz. This increased speed is necessary to
implement real time operation of the digitizer and coding
algorithms.

Existing Software

v
.

’.

»

;

]

The software developed by Lt Rock allows the user to
trace a line drawing on the digitizer, store this
digitized version on a disk file, and use it as 1f 1t were
the actual line drawing. A single ring chain coding
algorithm 1s then employed using the stored digitized
version of the line drawiling; thls coded version 1s also
stored as a disk file. A performance measurement routine
is available that provides a measurement of the precisicn
of the coded line drawing. Thls measurement 1s the ar=a
error divided by the unit length; this is defined as the

total area enclosed between the coded representation of

(t

the line and the original line drawing divided by =the
length of the original line. The routine also provides the
length of both the digitized and the coded versions of the
line. The plotter routines allow the user to plot both
the digitlized and coded versions of the lline drawilng,
allowling a visual inspection.

The cverview of the algorithms developed by Lt Rock

N11ll consist nf a discussion of the disk file format and

>f *he 1nput and output parameters and the functions of

[1r-2
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each program module. First, the disk file format 1is
discussed. Next, the assembly language routines to
1nterface the digltizer and plotter to the computer are
discussed. Finally, the higher level digitizing, coding,
and performance measurement routines are discussed; these
routines are written in the Pascal language.

Disk File Format

The disk file format created by Lt Rock was designed
so tha+ only one plotting program would be needed to serve
both the digltized and coded files and with ease of
processing 1n the performance measurement routine in mind.
For both types of files, digitized and coded, each point
1n the drawing 1s described by a line in the disk file.
The format of the line for both types of files is standard
for the first three items. These three items are the pen
up/down 1indicator (either a 'U' or a 'D'), the x
coordinate value, and the y coordinate value (x and vy
values are integers from 1 to 32,765 where each unit
represents 0.001 inches). Having these three items first

. ,
in each line of the file made compatibility with the file
plotting program and the performance analysis algorithm a
simple matter; both these files need read only the first
tnree 1tems from each line to gain all the pertinent
information they need to gperform their function.

After the first three 1tems of a line, the format for
the two types of disxk fi1les differ. For the digitized

£ile, =ach line of the fi1le also contains the pen position

I11-3
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indicator of the digitizer and the annotation number
entered from the digitizer keypad. For a file of points
generated by the coding program, the first line of each
line segment contains the gridsize and ring level of the
chain code along with a code value of -1 (Lt Rock used -1
to indicate the first and last points of a line segment).
Every other line in the coded file contains as a fourth
elemént the value of the chain code for that point. For
both types of files, there must be a space between line
elements and each line must be terminated by a carriage
return.

L
Assembly Language Interface Routines

The assembly language interface routines allow the
user to control the interfaces between the digitizer,
plotter and the computer from a Pascal program. Each of
these routines 1is discussed in the following paragraphs.

The BUSINT routine initializes the serial port to
establish communications with the IEEE-488 controller and
then 1nitializes the controller and the digitizer. It 1is
called as an external function from the higher order
program as "BUSINT:CHAR" and returns a value of 'E' if an
error was encountered during execution or a value of 'O
otherwlise.

The BUSIN routine 1s used to input a line from the
digi=lzer to the computer via the IEEE-488 controller. It
1s called as an external procedure by the Pascal program

as "BUSIN (DEVICE:INTEGER; VAR ERFLAG:CHAR; VAR

[II-4
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LINE:ARRAY[1,40] OF CHAR)". DEVICE is the device number
(06 for the digitizer), ERFLAG returns an 'E' if a problem
was encountered or a 'QO' otherwise, and LINE is the array
of characters from the digitizer (the last character will

be a carriage return, CR).

The BUSOUT routine 1is used to output a line of
R characters from the computer to the digitizer via the
ﬁ'  IEEE-488 bus controller. It 1s called as an external
}

‘S‘ orocedure by the Pascal program as "BUSOUT
(DEVICE:INTEGER; VAR ERFLAG:CHAR; VAR LINE:ARRAY([1,40] OF

THAR)". The labels used for this routine have the same

L @ meaning for BUSOUT as they did for BUSIN in the previous
paragraphn.

g

' The PORTIN routine 1s used to initialize the RS-232

(2.4 ine i

) & 52r1al port connected to the plotter. The routine 1s

' cailled as an external procedure from the main higher order

-

o cr3ram as "PORTIN". There are no 1input/output

’

L. parameters,

The CHARIN routine 1s used to 1nput single characters

from the plotter to the computer. This routine 1s called

from *“he main program as an external procedure as "CHARIN
(AR INPUT:CHAR; VAR ERFLAG:CHAR)". INPUT 1s the
character recelved from the plotter and ERFLAG is an error

flag “o 1ndica*e whether Oor not an error 1s encountered.

- vov e Ll TRl ol Bd v‘v—r >t v— v

I1£f an error 1s encountered, an 'E' 1s resturned to the main

s

b orogram, and a 'QO' otherwise.

The CHAROT routine 15 used to output a single

ITI-5
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character from the computer to the plotter. This routine
1s called as an external procedure from the main program
as "CHAROT (VAR OUTPUT:CHAR; VAR ERFLAG:CHAR)". OUTPUT 1is
the address of the character to be sent to the plotter and
ERFLAG is as described above.

The LINOUT routine 1s used to output an array of
characters from the computer to the plotter. This routine
1s called as an external procedure from the maln program
as "LINOUT (VAR LINE:ARRAY[1..40] OF CHAR; VAR
ERFLAG:CHAR); where LINE 1s the address of the array of
characters to be sent (the array must end with a }
character) and ERFLAG is as described above.

This completes the description of the assembly
language 1nterface routines. These routines are hardware
dependent and will require modification if different
hardware 1s used. For a complete listing of these
routines, refer to reference 2, pages A-1 through A-10.

Pascal Routines

The major Pascal programs written by Lt Rock include
DIGITIZE, PLCTFILE, CODER, and, ERROR. These programs as
well as some of the more Lmportant subroutines (procedures
1n Pascal) within these programs are explained in this
section.

DIGITIZE. The purpose of *+he DIGITIZE program 1s to
faxe poln%s from the digitizer and place them 1n a user
specifi=d file. This file of points then serves as the

original line drawing in all further c¢oding and

IT1I-6
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performance analysis programs. The DIGITIZE program is
fully interactive with the user entering the required
digitizer instructions from the computer and operating the
pen up/down and close file controls from the digitizer
keypad. '

In order to properly operate the digitizer under
program control, Lt Rock developed a set of high level
routines which communicate with the digitizer via the
IEEE-488 controller and the assembly language routines
discussed earlier. This set of high level routines was
developed as a module called DIGRTNS. The major procedure
within thilis module 1s called GETPOINT. When called by the
DIGITIZE program, GETPOINT returns with the coordinates of
the aigitized point, the pen up/down indicator, and the
annotation number entered from the digitizer keypad.
Error or out-of-bound conditions are also handled by the
GETPOINT procedure.

When the DIGITIZE program 1s finished, a file has
been created with a separate line for each digitized

volnt. Each line contains a pen up/down indicator (U or

Py

D), the x-y coordinates of the point, and the annotation

numper

]

ntered from the digitizer keypad. This file is
ready for 21ther plotting with PLOTFILE or coding with
TODER.

CODER. The function of the CODER program 1is to

convert a set »f x-y coordinates 1nto a single ring chain

code with gridsize and level specified by the user. The

I11-7
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program reads the polints of a digitized line drawing from
a file and generates a flle containing the chaln codes and
the coordinates of the nodes. This fiie can now be
plotted by the PLOTFILE program for comparison between the
original digitized version and the coded version of the
line drawing.

To use CODER, the user interactively supplies the
input and output file names and the gridsize and level of

the chain code. The program then examines the polnts from

.
o)
4]

input file and calls a subroutine to determine where

t

h

®

drawing crosses the grid and the node that is closest
to thls lntersection. It then outputs the coordznates of
th1s new current node and the corresponding chain code to
rne output file.

The major procedure used by the CCDER program 1is
call=d WHERE. This 1s the routine that, when called,
returns with the polint where the digitized line intersects

the grid. It also returns with the pen up/down

information or 1if the end of the file was found. The

CODER program then finds the closest node and computes the

~na:n code for this node and adds this information as well

a5 the x-y coocrdinate of the node to the output file.
PLOTFILE. The purpose of the PLOTFILE program 1s to
aliow *tne user to plot files generated by the DISZITIZE or
TODER routlines wvia the assembly language routines
i1scussed earlier. In additicn, the program will plot any

file that adheres to the same format as files created by

[11-3
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DISITIZE or CCDER. The program is fully 1nteractive,

prompting the user for al. necessary lnputs and allowing

3

rhe user the capability to scale and translate the drawing

rs
(D
-

W
T
b

ve to its size and position on the digitizer. This
program can provide a visual display of both the digitized
line drawing and the coded version. An effective way of
showing the difference between the digitized and the coded
versions is to plot the two drawings directly on top of
2ach other but using a different pen color.

ERROR. The purpose of the ERROR program 1is to
provide a measurement of the precision, or accuracy, of
~ne coded version of the line drawing. The program
accomplishes this by finding the area difference between
=he digitized drawing and the coded drawing and dividing
oy the length of the digitized version. ERROR calculates
“he length of the digitized line by taking a summation of

~n

{D

sguare root of the sum of the squares of the x and y
deltas for each two consecutive points. The program
calculates the area error by, in effect, overlaying the
w0 drawings and calculating the area of each of the
resilving connecting closed figures and summing these
ir--as 2 for +he total area. An example of the connectling

sd figures =hat result from the overlay are shown 1n

[I1I-9
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Figure [I1I-1. Overlay of Coded Line onto 1

Input Line (2:1IVv-13)

<

, , . . ®

To use ERROR, the user interactively supplies the 1
name 0of the flle contalning the digitized poilints and the
name of the file containing the coded version of the
dr13i%12z24 drawing. The program then utilizes two major
zubroutines to find the area error; these are CLOSELOOP
ani ZRIUND. The CLOSELOOP procecdure finds the

®

1 3 : R} 4
Lnn=rs=cu1ons between the two versions of the drawing and

reooarns 2 ERROR with a set of coordinates that describe a ]

.54 flgure like those shown 1n Figure III-1. These |

®

‘rilinates are thnen sent to the GROUND subroutine which !

"i.Cu4laves the enclosed area and returns to *the ERROR 3

d

program. ERRCR then sums the areas of all tne closed .j

Q

firgures Zn-2ii “he end of the drawlng 15 re2ached. This A

Soocal rveea 13 tnen divided by the length of the digitized ;

q

ey Domne line drawing and displayed on the TRT along !

.<

Mot tiae lenmzen of rhe di3i1-ized and coded lines. ;

d

T

i
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This completes a brief description of the Pascal
programs developed by Lt Rock that are pertinent to this
thesis effort. A complete listing of these programs can
be found 1n reference 2, pages A-11 through C-13. Also, a
user's manual is included 1in pages D-1 through D-é of
reference 2. (Note: An updated user's manual is included

1n Appendix C of this thesis.)

Software Modifications.

Two of the software routlines described above have
been modified for this thesis effort. These are the
PLOTFILE and ERROR routines. These modifications are each
Jdiscussad below.

Modifications to PLOTFILE. The modification to

PLOTFILE is minor; the only change is to allow the user to
plot more than one file without having to call PLOTFILE
from the disk for each file. This 1s accomplished by
lnteractively asking the user how many files are to be
plotted at the beginning of thes program. A "FOR"
statement 1s then used to loop through the original

PLOTFILE program as many times as there are files to be

4o

iotted. The change in the original program listing 1is
shown below (the origilnal program listing can be found in
Appendix B of reference 2).

BEGIN (* MAIN PROGRAM *)
WRITELN('PROGRAM TO PLCT DIGITIZED POINTS FROM A FILE');
WRITELN;
WRITE('ENTER THE NUMBER OF FILES TC BE PLOTTED : ');
READLN (NUMFILES) ;
FOR A := 1 TO NUMFILES DO
BEGIN (* FOR STATEMENT *)

[II-11
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THARIN(SIGNAL, ERROR FLAGH ;
END; (* FOR STATEMENT *)
WRITELN;
WRITELN{"ALL DONE......")
END. (* MAIN PROGRAM *}

Of course, NUMFILES and the FOR loop index variliable,
A, must be declared as 1ntegers 1n the wvariable
declaration section of the progranm.

It can be seen from the listing that the user enters
~n= number of £files, then the program prompts for a file
nam=, poplot+ter line type, scale factor, and X-y
transiacion. The program then plots this file and then
int=ract-.vely orompts for the 1lnformation for the néxt
f£i112 =0 pe plotted. This repeats untll the last file 1s
ciottad, This modification results 1n a more convenient

and =fficien~ program if the user has many files to be

r

Modifications to ERROR. The first modification to

“ne ERRCR program accompllishes the same purpcse as that
descrizced for the PLOTFILE program. The change was
1mplemen-2d in a similar manner; however, the program was
made =2ven more automatic *than the PLOTFILE routine. The
difference 13 +that the user does nct have to wailt until a
file 15 analyzed to enter the data for the next file; this
L3 al. don= at the beginning of program operazion. This
modifiTas1on, along with the JONTROL-P CP/M +tcagle (sends

3.. -RPT »Hutout Lo the rinter), allows the user £o enter

0

(3]
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Pascal code are

BEGIN (*

REPEAT
WRITE(' ENTER DIG
READLN (FILENAME) ;
ASSIGN (D, FILENAME
RESET (D) ;

UNTIL IORESULT <> 2

WRITELN;

WRITE('ENTER NUMBER

READLN (NUMFILES) ;

MAIN PROGRAM

ral hours completely

to be analyzed).

shown pelow.

*)

ITIZED DATA FILENAME ")
) ;

55;

CCDED FILES TC BE ANALYZED

OF ")

{* THE FOLLOWING SECTION OF CODE PRCMPTS THE USER FCR ALL
THE FILENAMES OF THE CODED FILES *)
FCRJ = 1 TO NUMFILES DO
BEGIN
WRIITZV'ENTER 7TCDED DATA FILENAME ',J,' ")
READLN T ILENAME)
ZIDEFILE[Z] = FILENAME;
END;
(* THE ORIZINAL PRCGRAM IS NOW EMBEDDED IN A FCR LOOP *)
FIROS += L TC NUMFILES DO
BEGIN
REPEAT
NRITELN;
WRITELN{( 'ANALYZING ',ZCDEFILE[J]});
FILENAME := CCDEFILEI[J];
ASSIG V(,,rITEVAWE),
RESET(2);
RESET (D]
UNTIL ICRESULT <> 255;
SINISH := FALSE;
END (* FOR OSTATEMENT *)
ZND. oix MAY PRCGRAM *)
The new varlables to be added to the program variable
foclaration i3t oare shecwn below
\qui I ARRAY TL..2310 OF STRING
NUMFILES, [INTZZER;
Mnis medlficarion greatly =2nnances the =2friciency of
oo TYIrarm SrTmootnoe andpoint ~t Yne amount 2f time the




—~

—

It

-t

t

a8

the program begins reading points from the input file and

)

simg the INSERT routine to update the list.

After a node 1s encoded, a routine is needed to

)

»liminate the points in the list that precede the point
nat lntersected the ring. I1f thes2 points were not

2liminat=d, the list might grow large enough to use all

e mlcrocomputer's memmory and program execution would

'nd. The ALICGN subroutine performs +this function. In

aidition to eliminating the points, 1t adjusts the point

3]

r

After tn2 ond of the line segment has been reached,
o JLELIST routline 1s caiied to eliminate all points from

“he llst, This completely clears the computer's memory

voTnee noeext llne soegmont.
INTERSECT.  Tne INTERSECT subroutine 1s the one that
»niz the inters=acticn polints of each ring level out to

eowutermest ring or the end of the line segment. It
150 returns with a boolean varilable for eac ring
niloating wnother or not the ring was intersectod. In

ase of a4 =1ngle ring code, only the intersoection of

D

i ouwsed otno the code is found.  The alcorithm used Lo
s i oo s osroeTtlon points 1s the same as that used by

Tl sl non CLDER porogram (2).

D he T C0OMPCODE mubrout ine 1s calloed aroon
Lot nerae St oo noint s have been found. [v's purnoos
o mrate f e chain code for this particular link oin
. Thrao tooow lorng procodure contalning many
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were not us2d and the encoded node lies on one of the

inner rings, then the points read from the file that were

ol b

between the encoded node and the outer ring would be lost

because Pascal does not have the capabilility to read

backwards through a text file. Since it 1s impossible to i

determine in advance how many polnts there aro pbetween 1

rings and for ease in keeping track of a pointer variaple, )
. 4

1t was deemed appropriate to use a Pascal linked list *

instead of declaring an array large enough to handle the

largest possible number of points. The data structure

most approporiate for the list is the gueue. This 1s a

first in first out (FIFQO) structure. &

Immediately after a point is read in from the input

Fh
Vo
—
)

, the INSERT routline 1s called. This routine inserts

IO

the point into the rear of the queue and updates polnter

variablos to keep track of the front and back of the list

PO SN IY T T

(first and last points).
As soon as a node is encoded, the main program starts
arching for ring intersection points; this searcn always

pegins with the polnts in the linked list. To read a

noint from the 1ist, the READLIST subroutine 1s called.
This subroutine reads in the point and incremonts a

pointer variable that keeps track of the sequence of '
g

points n o the list.,  The points are read from the list

unt il all *he polints In “he 11st are read or the out@rmost
. . . . . . L
ring is agaln intorsected. I1f all the points in the list J
4

are read before thoe cutoermoest ring is intercoctod, fhen
R

1V 6

)
-
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3
*
and wne cnain code to the output file. :
ERIN Zliminate from rtnhe linked list all pelnts up to 1
*oe polnt that determlined tne lntersection coordinates of ®
“ro rin3 tnan was selected for -ncodlng.
.y, I1f the end of -he current line segment has not
- r2ached, ¢g> to step . ﬂ
DI N If the end of the current line segment has been k
"ne i, 30 to step 4 and repeat until the linked list ]
-
noeer 15 onil. wWhen the end of +the linked list 1is %
: T2, utngut tne ccoordinates of the end polnt and a
‘1
Do I£ =ne end of the line drawing has not been g
r=3zIned, 30 2D step 3.
3. If the end of the line drawing has been
4
N\ . . . . ) ) ) o
reached, close the output file, clear the linked list, and :
go to step 2. 4
4
14). Continue until the last coded file 1is created. 1
°
Subroutines :
1
. . . . . . 4
Although *the program listing in Appendix A is .
1
. , 1
thoroughly documented, a brief explanation of the purpose ®
1
. . . 5 . .'
and operation of the most 1mportant subroutines used will
ald 1n the understanding of the program.
INSERT, READLIST, ALIGN, and CLRLIST. [hese are +che ®
=
subroutines that do the housekeeping for the l:nxked list. .
|
K
The list 1s needed £o s3tore the points r=ai n £rom the
. tnpout file until an intersec-ion polnt for *the Sut-ormos* ®
ring 15 found. If some method of storing the 313 points :
I[vV=-5
®
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make it the first node of that line segment, and write the
coordinates to the output file along with a chain code of
-1, the gridsize, and the rings used in the code. Also,
make this point the first in a Pascal linked list.

4). Input points from the linked list, or from the
input file 1f the list pointer is nil, until the innermost
ring of the code has been intersected and calculate the
coordinates of the 1ntersection. As points are read from
the input file, insert them into the linked list.

5). Repeat step 4 for the remaining rings of the

code until the outermost ring is intersected or the end of
the line segment 1s reached.
6). If the code 1is a single ring code, then find the node
closest to the 1ntersection point and compute the chain
code for that node, then go to step 8. 1If the code is a
multi-ring code, then set i1 = k, where k is the order of
the highest order ring in the code.

7). Find the node closest to the intersection point
on the ring 1 and determine whether the drawing passes the
LGS test, described in Chapter II, for that node. If it
does, then compute the chain code for the node. If not,
thnen lat 1 = 1 - 1. If 1 1s the lowest order ring in the
zode, then f£ind the closest node and compute the chain
code; 1f 1 15 not the lowest order code, repeat this step.
Continue *this process until a ring passes the LGS test or
the lnnermost ring 1s reached.

8). OCutpur the coordinates of the new current node

V-4
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gn% 2f ftne current node. Numbering then proceeds

-

seqguentially in a counter-clockwise direction until the

T

A
a

[
t
3
G

la Oof +the 1lnnermost ring 1s reached. The next
number 13 then assigned to the node on the next ring which
13 directly to the right of the current node and the

numpcering proceeds as before. This continues until every

node on =he outermost ring used in the code 1is numbered.

47]

Figure 1vV-1 illustrates thils concept for a (1,2) code.

14 13 12 11 10
Q o) o} o o}
3 2 1
15 © o o o) o 9
X 1s current
node
6 © 4 o X o 0 o 8
0 1ls possible
17 o o o o) o 23 next node
5 6 7
o} o} o o o)
18 19 20 21 22

“igure IV-1. Nodes for a (1,2) Chain Code

The operation of the chain coding procedure 1itself is

described py %he following set of steps:

1. ntoractlvely get parameters from the user such
3s fllaname of di1gitized data file, number of coded files
~o pe created (maxlimum of 25), a name for each coded file,
Jridsize and rings used for esach coded 1l-.

[\]
.
—
3
b
\T
r-

talize variables.

2y, Find *the first polnt of the next lins segment,

1v=-3
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listing for these programs is contalned 1n Appendix A and
a user's manual 1s included in Appendix C.

Overall Operation of CHNCODE Program

The method of chalin coding implemented in thils thesis
is very similar to th= method used by Lt Rock f~r the
single ring CODER program described 1n Chapter II1 (2).
The first point of each line segment inn a line drawing is
used as the origin of the grid and 1s -~ne first polint 1n
the chaln code. The algorithm then follows the line
drawing and constructs the chain code until the end of the
line segment 1s reached, with the last point on the
segment being the last point in the chain code. Following
Lt Rock's convention, the chain code for the first and
last points of each line segment 1s defined to be -1.
Also, as mentioned earlier, the file format of pen up/down
indicator, x-y coordinate of the node, and then the chain
code, 1s adhered to in this program. The first line of
each new line segment also contains the gridsize and ring
levels used by the chain code. The end of line drawing
code 1s the end of file indicator. The program as written
allows a chain code using any combination of the first
five rings (or levels) described 1in Chapter II. The
program 1s written so that it would be a simple matter to
modify the Pascal code to allow more rings.

In thic algorithm, +“he numbering system for the chain
code assigned to each node beglns with a zeroc assigned to

the node on the 1nnermost ring which 1s directly to the

1‘47-2
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IV. Implementation of Multi-ring Chain Coding Algorithm

This chapter describes the design, implementation,
and testing of a multi-ring chain.coding algorithm for use
on the system described 1in Chapter III. The program,
called CHNCODE, allows the user to create chain coded
versions of a digitized line drawing using any combinatiosn
of ring levels one through five. It interactively prompts
the user for the filename, gridsize, and rings used and
allows the user to create up to 25 coded versions of the
digitized input file. This program uses the same file
format as that described in Chapter III and 1s fully
compatible with the ERROR and PLOTFILE programs. Also
described in this chapter is a program that combines the
functions of the DIGITIZE, CHNCODE, and PLOTFILE programs
while eliminating the use of disk files. This progranm
calculates the chain code as the drawing is being traced
on the digitizer and 1mmediately outputs the chiin coded
drawing to the plotter. This process takes place in as
close to real time as the computer processing speed
allows. This program is called PLOTCODE.

First, this chapter presents an overall explanation
of the chain coding algorithm and then briefly describes

he purpose and operation of each subroutine (procedure in
Pascal) in the program. Then, the method used to test and
verify the program 1s discussed. Lastly, the development

of the PLOTCODE proagram is discussed. The complete source

Iv-1

e PP RS S

RS, SN

P




procedure. This procedure is called when the end of the
digitized file 1s reached and there are points remaining
in the coded file; its purpose 1s to read in the rest of
the péints in the coded file. The error 1in the routlne
was that these points were being placed in the digitized
point array 1instead of the coded point array. This
problem was easily corrected and the modified procedure
listing is shown below.

PROCEDURE LASTDIG;

BEGIN (* LASTDIG *)

REPEAT
READLN (C, PEN, XVAL,YVAL) ;
LENGTHC;
NUMNODES := NUMNODES + 1;
NUMCODE := NUMCODE + 1;
CODED [NUMCODE, 1] := XVAL;
CODED [NUMCODE, 2] := YVAL;
UNTIL EOF (C) OR (PEN <> 'D');
FINISH := TRUE

END; (* LASTDIG *)
This completes the modifications to the original

system software.

Summary

This chapter has provided a brief overview of the
programs and algorithms developed by Lt Rock that are used
or modified for this thesis. Each of the major
subroutines and programs of the exlsting system were
described and the modifications required for this thesis

were explalined.
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procedure when the slopes of the coded and digiﬁized
segments being investigated for an intersection did not
match. This problem was easily corrected by creating new
variables that provide the direction of both of these
lines, instead of using only the coded line. The Pascal
code to correct the procedure 1s shown below:

PROCEDURE CHECKPNT;

VAR SIGNXC, SIGNYC, SIGNXD, SIGNYD: INTEGER;

BEGIN (* CHECKPNT *)

SIGNXC := CODED[NOCODE,l] - CODED[NOCODE - 1,1];:
IF SIGNXC <> 0 THEN IF SIGNXC > O
THEN SIGNXC := 1 ELSE SIGNXC := -1;
IF SIGNXC = 0 THEN SIGNXC := 1;
SIGNYC := CODED[NOCODE,2] - ~ZODED[NOCODE - 1,2];
IF SIGNYC <> 0 THEN IF SIGNYC > 0
THEN SIGNYC := 1 ELSE SIGNYC := -1;
IF SIGNYC = 0 THEN SIGNYC := 1;
SIGNXD := DIG[NOPTS,1] - DIG[NOPTS - 1,1];
IF SIGNXD <> 0 THEN IF SIGNXD > O
THEN SIGNXD := 1 ELSE SIGNXD := -1;
IF SIGNXD = 0 THEN SIGNXD := 1;
SIGNYD := DIG[NOPTS,2] - DIG[NOPTS - 1,2];
IF SIGNYD <> 0 THEN IF SIGNYD > O
THEN SIGNYD := 1 ELSE SIGNYD := -1;
IF SIGNYD = 0O THEN SIGNYD := 1;
IF (SIGNXC * ROUND(SEGINTR{[1] - CODED[NOCODE - 1,11])
>= Q) AND
{ (SIGNXC * (CODED[NOCODE,l1] - ROUND(SEGINTR[1]))
- >= 0) AND
] (SIGNYC * (CODED[NOCODE,2] - ROUND(SEGINTR[2]))
f >= 0) AND
® (SIGNYC * (ROUND(SEGINTR([2] -~ CODED[NOCODE - 1,2])
o >= 0) AND
(SIGNXD * (ROUND(SEGINTR[1] - DIG[NOPTS - 1,1])
>= 0) AND
1 (SIGNXD * (DIG[NOPTS,1] - ROUND(SEGINTR[1]))
- ' >= 0) AND
® (SIGNYD * (DIG[NOPTS,2] - ROUND(SEGINTR[2]))
: >= 0) AND
s (SIGNYD * (ROUND{(SEGINTR([2] - DIG[NOPTS - 1,21})
f >= 0) !
t THEN CROSS := TRUE ELSE CROSS := FALSE !
END; (* CHECKPNT *) !
o 4
- The last problem was discovered in the LASTDIG
1
: ITI-19
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XD := XVAL / 1000; j
YD := YVAL / 1000; g
K LX := LASTXD / 1000; .
" LY := LASTYD / 1000; a
LONGDIG := LONGDIG + SQRT(SQR(XD - LX) + SQR{(YD - LY)); k
LASTXD := XVAL; [
LASTYD := YVAL 1
END; (* LENGTHD *) R
PROCEDURE LENGTHC; (* THIS PROCEDURE CALCULATES THE LENGTH a
OF THE CODED LINE *) 4
VAR XC, YC, LX, LY : REAL; 1
BEGIN (* LENGTHC *) 3
‘ XC := XVAL / 1000; »
YC := YVAL / 1000; ! 1
LX := LASTXC / 1000; ]
LY := LASTYC / 1000; 1
LONGCODE := LONGCODE + SQRT(SQR(XC - LX) + SQR(YC - LY}); ]
LASTXC := XVAL; j
LASTYC := YVAL {
END; (* LENGTHC *) ]
_ This modification brought the variables down to a
size the compiler could handle without errors. §
( Do °
Another problem was found 1n several of the j
)
procedures of the program in the decision (IF) statements. j
This problem occurred because the variabl€s used in these _J
)
" decision statements were real variables, and were subject ]
to the normal truncation error common 1in compilers. The
problem was solved by declaring the variables, the CODED ]
o
. ‘ , 1
and DIG arrays, to be integers. Thils solution made 1t -
necessary to use tne ROUND 1nstruction whenever these )
varlables were assigned the value of a real variable, such ]
)
as SEGINTR. This rounding process has no effect on the :
accuracy of the program because the values read into these .
arrays are restricted to integer values anyway. :
1
Another problem was revealed 1n the CHECKPNT ]
K
9
.‘ ‘. -~ J
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The other modifications to the ERROR routine were

added when 1t was discovered that it was not properly

analyzing certain drawings. The first such modification
proved to be caused by a deficiency in the MTPLUS Pascal

compller. The problem surfaced when it was noted that the

Wi ..

length of the drawings being returned by the program could
not possibly be correct. Lt Rock's method of calculating
these lengths was straight forward and obviously correct.

‘

He used a separate subroutine (procedure) to calculate

JO4

each length. These procedures were exactly alike except

LENGTHC calculated the length ¢f the coded line and

Sle,

LENGTHD calculated the length of the digitized line. The
key statement in each procedure was ishown only for the
\ LENGTHC procedure):
[ 4

LONGCODE := LONGCODE + SQRT(SQR(XVAL - LASTXC) + SQR(YVAL -
LASTYC) )

After some testing, 1t was discovered that the d&double

DTN
. .
: 1.- PRSP <P I AP B T

transcendental operation " SQRT(SQR(...)}) could not be
! handled by the compiler 1f the SQR(...) variable was large
(on the order of 103). This problem was corrected by
- eliminating the factor of 1000 at this point instead of
! walting to the OUTDATA procedure as was done for the area

2rror metric. The new code listings for both procedures

® ... .. ....9, . .

are shown below.

PROCEDURE LENGTHD; (* THIS PROCEDURE CALCULATES THE LENGTH
OF THE DIGITIZED LINE *)

VAR XD, YD, LX, LY : REAL; @

. BEGIN (* LENGTHD *)

L [L1-17 i




T Ty

e o T e T L "‘.".‘W—"T vy v T v
- -

TR TT———— " AR A R B e ot B Ae Ui A Svieci e S A 20t PRI A A e S AL Al el Sl Sl A it e el

IF (NODES > 32) AND (NODES <= 64) THEN BITSNODE := 6;
IF NODES > 64 THEN BITSNODE := 7;
NUMBITS := NUMNODES * BITSNODE

END; (* NOBITS *)

Note that the procedure uses the fact that there are
8n nodes to a ring as its basic principal of operation.

Another modification to the ERROR program 1is the
OUTDATA procedure. Before the modification, the output of
the ERROR program gave the area error multiplied by a
factor of 106 and the length of the lines multiplied by a
factor of 10°. The reason for this 1s that the data
points stored in the digitized and coded files are in the
format 1 unit = 1/1000 inches. This modification simply
eliminates the need for the user to perform the correction
arithmetic. In addition, the OUTDATA procedure outputs
the number of bits and (number of bits) / (length of
digitized 1line). The Pascal code to accomplish the
modification is shown below.
PROCEDURE OUTDATA;

BEGIN (* OUTDATA *)

WRITELN; .

WRITELN (' AREA = ',AREA / 1E+06,' SQUARE INCHES' );

WRITELN(' AREA / LENGTH = ', (AREA / 1E+06) / LONGDIG,'
INCHES') ;

WRITELN;

WRITELN (' LENGTH OF CODED LINE = ',LONGCODE,' INCHES');

WRITELN(' LENGTH OF DIGITIZED LINE = ',LONGDIG,' INCHES');

WRITELN;

WRITELN (' THE TOTAL NUMBER OF BITS = ',NUMBITS,' BITS');

WRITELN(' NUMBER OF BITS / INCH = ',NUMBITS / LONGDIG) ;

WRITELN

END; (* OUTDATA *)
The point 1n the main program where OUTDATA is called
was shown earlier in the discussion of the NOBITS

modification.
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LOOP := LOOP + 1;
; READ (C,LEVEL[LOOP])
" END;
h WHILE LOOP <> 5 DO
BEGIN
LOOP := LOOP + 1;
LEVEL[LOOP] := 0
END;

UNTIL FINISH OR ERFLAG;

NOBITS; (* THIS COMPUTES THE NEW METRIC *)

OUTDATA (* ANOTHER MODIFICATION DESCRIBED LATER *)
END (* FOR STATEMENT *)

END. (* MAIN PROGRAM *)

| The NOBITS procedure was added to calculate the
\ number of bits used to encode the chain. The listing of
L the procedure is shown below. Note that the program is

capable of handling up to five code rings (the CHNCODE
{ program handles up to five rings).

PROCEDURE NOBITS; (* THIS PROCEDURE CALCULATES THE TOTAL

-
,‘ e NUMBER OF BITS NEEDED TO REPRESENT
S THE CHAIN CODED DRAWING *)
VAR
i LOOP, BITSNODE, NODES : INTEGER;
¢
\ BEGIN (* NOBITS *)
NODES := 0;
FOR LOCP := 1 TO 5 DO
BEGIN
b CASE LEVEL[LOOP] OF
4 0 : NODES := NODES;
- 1 NODES := NODES + 8
2 NODES := NODES + 16;
3 NODES := NODES + 24;
4 : NODES := NODES + 32:
5 : NODES := NODES + 40
END ( CASE STATEMENT *)

} (* THE CASE STATEMENT CALCULATES THE NUMBER OF
POSSIBLE NEXT NODES FROM ANY CURRENT NODE *)
END; (* FOR STATEMENT ¥*)
{* THE FOLLOWING IF STATEMENT DETERMINES THE NUMBER
OF BITS NEEDED TO ENCODE EACH NODE IN THE DRAWING *)

IF NODES <= 8 THEN BITSNODE := 3;
_ IF (NODES > 8) AND (NODES <= 16) THEN BITSNODE := 4;
t IF (NODES > 16) AND (NODES <= 32) THEN BITSNODE := 5;
ITI-15
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user must spend monitoring the computer when there are
many flles to be analyzed.

Another modification to the ERROR program adds an
output metric fo the program. This metric 1s the number
of bits-and the number of bits divided by the length of
the dlgltized line. This change allows the user to
compare the compactness of the various chain codes for a
particular drawing.

The modification required that the program read the
first line of the coded file to obtain the ring levels
used for the code (the CHNCODE program described 1in
Chapter IV of this thesis 1s a multi-ring coding program}.
This 1s easlly done by slightly modifying the main program
to read these levels from the first line of the codzd
file. A wvarlable, NUMNODES, 1s set to one when ftnis first
point 1s read and incremented by one every time a
subsequent point 1s read from the coded file. This change
to t“he main program listing is shown ktelow beginning with
the line where the first coded point 1s r=ad.
READ(C,PEN,XVAL,YVAL,LEVEL[1],LEVEL[2]);

(*LEVEL IS THE VARIABLE NAME FOR THE RING LEVELS USED--
INTHE ABOVE STATEMENT LEVEL[1] AND (2} TEMPCZRARILY HCLD
THE VALUE OF THE -1 CHAIN CODE AND THE GRIDSIZE; HAD TO
READ THEM BECAUSE THEY ARE IN THE FIRST LINE JF THE

CCDED FILE BEFORE THEACTUAL VALUES v R THE RING
LEVELS *)

NUMNCDES := 1;

TODED({Ll,1] := XVAL;

CODEDI[1,2] := YVAL:

LOOP 1= 0O

WHILE NOT ECLNI(T) DO
BEGIN

[I1-14
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internal subroutines; for this reason, it was written as
a program module and compiled separately. The operation
of the module 1s described below.

Beginning with the outermost ring, each ring 1is
analyzed to determine if it can be used for encoding. The
COMPCODE subvoutine checks one ring at a time until a ring
is found that passes the LGS test and 1s suitable for
encoding, or the lowest ring is reached (in which case no
LGS test is needed). The subroutine contains additional
internal subroutines that find the closest node to the
intersection point on the ring under test and determine if
the LGS test for that node is successful. If it is, then
the node 1is encoded and the COMPCODE subroutine is exited;
if not, the process repeats with the next ring in the code
as described in Chapter II of this thesis.

To perform these functions, COMPCODE contains three
major 1internal subroutines: FINDNODE, RINGTEST, and
ENCODE. The FINDNODE subroutine finds the node on the
ring under investigation that 1s closest to the point
whare the line drawlng intersected the ring. The RINGTEST
procedure then determines where the intersection occurred
on the ring (top, corner, or side) and calls subroutines
that perform the LGS test for the node found 1n FINDNODE.
Thne subroutine called by RINGTEST depends on the location
of the node found in FINDNODE. 1f the LGS test 1s not
paszsed, then the entire process begins agaln with FINDNODE

for the next lowest ring in the code. The process repeats

[V-8
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until a ring that passes the LGS test is found or the
lowest ring in the code is reached. In either case, the
ENCODE routine 1s then called to determine the chain code
for the node. The algorithm used for the ENCODE
subroutine 1s the same one Lt Rock used in his CODER
program. The only modification necessary to allow for
multi-ring codes was to add 8n to the code for each ring
lower than the ring selected for encoding, where n is the
ordzr of the lower ring.

DONE. The DONE subroutine 1s called when the end of
a line segment or <he ond of the drawing 1s reached. This
ahrous e surervises ro2ading through the remainder of the
Lo 110 wns1l * e last possible chain code is found.

I« *i.n s rouco e last polnt  in the line segment to

’ NN n a4 shain code2 of -1.
ol © ormp i3 the dlscussion of the major
CLrrocat s contalnoed within the CHNCODE program. This

i in, altmg with the program listing in Appendix A,

b proviaes sutficlient information for anyone wishing

e e AU RTINS SN
! NS o f HivOODE.

motnndology used to test the CHNCODE program is
ilscoursed below. EBach subroutlne was tested individually
ofore tho complete program was compilled. After each of
the subroutines was verlfied to be performing correctly,

the complete program was compiled and tested 1in several

1v-9
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different ways. The first test was to compare the CHNCODE
program results agalnst Lt Rock's CODER program for single
ring codes. Although this only tested the program for
single ring codes, 1t was the only way to test long,
complex 1input files with known results. After comparing
results against the CODER program at all five ring levels
and for five different drawings, both coding programs were
found to produce exactly the same output for each file.
Therefore, CHNCODE passed this portion of the testing.

The next step in the testing process was to test the
program using simulated files (input files created with a
text editor) that could simulate particular situations and
determine if the coding program would handle them
correctly. These files were always short (none were more
than 20 points) and the correct results were calculated by
hand. Situations were tested in which the drawing left
the current node in all directions and for all possible
ring combinations necessary to include every subroutine in
the program. These tests insured that the correct node was
encoded and that the search for ring inéersections after
the node was encoded started with the correct point. 1In
short, every situation that was conceived of was tested
via the simulated files. After a few minor corrections,
the program passed all testing and is presumed to be

operating correctly.

PLOTCODE

The PLOTCODE program operates using the same basic

Iv-10
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algorithms as the CHNCODE program to calculate the chain
codes. Since these two programs are so similar, a

discussion of thelr differences will suffice to explain

the PLOTCODE program. Since PLOTCODE must of necessity
operate on one drawing at a time, one minor difference
between the twe programs is that the counting loop that »
aliowed IHNTJDE =-o <code 25 1input files has been

2iiminar=3. Tke filconame and text file varilables are also

. N

21i:minar=3. Th~ ma wr 3i:fference between the two programs
i
15 =n2 rncur Hf c<he line drawing and the output of the

~nain coded version of the drawing. Instead of reading in

A

polnts from an input file representing the line drawing, a

wA_J o

sutrcutine 1s call=d that reads the 1input points 1in

directlv from the digiltizer. And, instead of writing the

PO

cnhain code information to an output file, a subroutine 1is »

called +c output this information to the plotter. The

addltionel subrcutines required for the PLOTCODE program
are discussed below.

PLOTIN. The PLOTIN subroutine is a simple routine

ol WL

that builds an array of characters that holds the

inizialization information needed to output information to

e A

! the plotter. The array holds plotter "wake-up" characters

n
a

1 (;:), the communications mode, and line type. Every time
a line 1s output to the plotter, the line consists of this
array with the x y coordinates appended to 1it.

READ DIG. The READ DIG subroutine is called when the ‘

main prcgram 1s ready to read new 1lnput polnts. This

Iv-11




subroutine then calls subrcutines from the DIGRTNS module
(discussed 1n Chepter III) that read the 1nput points from
the digitizer. These points come from the DIGRTNS module
in an ASCII format; READ_DIG translates this ASCII
information into numerical data for the main program.

PLOT. The PLOT subroutine 1s called when the
coordinates of the 1link 1n the chain code have been
determined. The subroutine then transforms the numerical
data representing the x y coordinates of the noce into the
ASCII representations needed to communicate with the
plotter. This information is then appended to the array
discussed in the PLOTIN subroutine and then sent to the
plotter.

A program listing for the PLOTCODE program 1s
included 1n Appendix A, except for the COMPCCDE module.
The only difference between the version of COMPCODE used
for PLOTCODE and the version used for CHNCODE 1s the
counting loop variable in PLOTCODE that allows the user to
create up to 25 files at once. Therefore, the COMPCODE
module need not be 1listed again. Note that the
elimination cf the counting variable reduces the NUMRINGS
and GRIDSIZE arrays to integers and the LEVEL array from a

two dimensional to a single dimensional array.

Effect of Cigitizer Resolution on CHNCODE and PLOTCODE

A important factor to bear in mind when using the
CHNCODE and PLOTCODE programs 1s the hardware limitations

impzsed by the digi+izer. Specifically, this 1is the

[v-12
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resolution of the digitizer, 0.001 inches. To understand
the limiting effect of this resolution, consider as an
example the (1,4) chain code shown in Figure [V-2. In
this example, the line drawing has passed close to the
upper right corner node of the level 4 ring; therefore,
the link gate sets to determine if the fourth ring can be
used for encoding are as shown 1n Figure IV-2. It 1s a
simple matter of geometry to show that the length of the
L3S on ring 1 1s 0.125 of the chosen gridsize. If the
gridsize 1s chosen small enough, this can approcach the
0.001 1nch limitation of the digitizer. For example, if
the gridsize were 0.05 inches, then the LGS region for
ring 1 would be 0.00625 inches,Aonly 6.25 times greater
than the digitizer resolution. This results 1in
significant uncertainty in whether the ring actually
passes the LGS test or not. In an effort to avoid this
problem, all codes used in this thesis will r;sult in a
minimum LGS region of at least 10 times the digitizer
resolution. This is assumed to be large enough to avoid

significant error.
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Figure IV-2. Link Gate Sets for a (1,4) Code

Summary

In this chapter, the design and implementation of the
multi-ring chain coding programs called CHNCODE and
PLOTCODE were discussed. Each of the major subroutines in
the two programs were discussed and thelr purpose and
operation explained. The chapter ended with a discussion
of a limitation imposed on the gridsize chosen for the

encoding process by the resolution of the digitizer.
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V. Analysis of Varicus Line Drawings

This chapter ccntains an analysis of the performance
of the the chain coding system for several different types
of line drawings. These drawings include simple geometric
figures such as circles and squares, as well as a sine
wave and written text. The drawlings were all traced by
hand using either the cursor or stylus of the digitizer:
therefore, they are not geometrically perfect. Hcwever,
this analysis should yield some information on how well
the chain codes perform in a realistic implementation.

The performance of the chain codes 1is analyzed using
the area error per unit length (hereafter referr=d to &as
aepl), the number of bits per unit length reguired for
stocrage (hereafter referred to as bpl), and the smoothness
of the chain coded versions of the drawirgs. The aepl and
bol are analyzed and related to the smoothness of the
coded versions of the drawings. The smoothness analysis

1$ a subjective evaluation based on a visual insp=ction of

ns
5
D

he coded versions of the drawings as drawn 2n the
plo<ter. Each drawlng 1s analyzed at varlous gridsiz-=3 ant
t.r se2veral differert chain codes. The 1intert o0f e

analysis 15 tc discover how well the chain coding

al32rithm performs 1n a realistic <chalin codirn

£2

=nvironm=n%, and to determine 1f there 1s anv correlation
cetwesn the 2epl and bpl metrics and tlhe visual appearance

¢ o+ne drawlings. Appendix B contalns all the tables and
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figures referenced in this chapter pertaining to the

performance of the codes.

Circle

First, a circle with a diameter of approximately 4.5
inches was digitized and the performance of the chain
codes was examined. The circle, hereafter referred to as
CIRCLE, was encoded using several different gridsizes and
chaln codes. The circle is shown 1n Figure B-1. The
chain codes used for analysis are the (1), (2), (3), (4),
(1,2y, (L1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3),
{(1,2,4), (1,3,4), (2,3,4), and (1,2,3,4). Each of these
codes were used at gridsizes of-0.25, 0.2, 0.15, and 0.1
inches. All codes except the (1,3), (1,4), (1,2,3),
(1,2,4), (1,3,4), and (1,2,3,4) were also coded at a
gridsize of 0.05 inches. These codes were not coded at
0.05 inches because of the uncertainty introduced by the
digitizer resolution (see Chapter 1IV).

Trends in aepl and bpl Performance. In this section,

the aepl and bpl metrics were examined from the standpcint
of looking for trends in chain code performance. This
analyslis does not consider the smoothness of the drawing,
which 1s considered in the next section. Tables B-1
~hrough B-5 show the performance of each of the codes for
@aach gridsize.

The aepl 1ncreased with gridsize for most of the

codes. This relationship was almost linear; however, it
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no longer holds for several of the multi-ring codes when
the gridsize reaches 0.2 inches. The bpl was inversely
proportional to the gridsize for all of the codes, and
this relationship held up to the largest gridsize
evaluated, 0.25 1inches.

Analyzing the performance of each of the chain
codes at the various gridsizes and looking for trends, the
single ring (2), (3), and (4) codes consistently provided
the worst aepl performance and the best bpl performance.
The (2,3), (2,4) (3,4), and (2,3,4) codes were sometimes
grouped with these single ring codes; the poor aepl
performance of these codés demonstrates the significant
contribution the first ring level makes 1in aepl accuracy.
The (1) code aepl performance was poor; however, dgenerally
not as pad as the other single ring codes. Its bpl
performance was also consistently among the poorest. It
was even worse than the multi-ring codes which require
more bits per point, thus demonstrating the utility of the
outer rings in reducing the number of points required to
encode the circle. The (1,2) code's aepl performance was
mediocre, usually falling in the middle, and 1ts bpl was
consistently one of the worst. Generally, the (1,3),
(1,2,3)y, (1,2,%9, (i,3,4), and (1,2,3,4) codes had the
pest performance for the aepl and were usually clustered
around the middle for the bpl metric. The (1,2,3,4) code
showed the best aepl performance only for the 0.25 1nch

gridsize and was usually in fourth or fifth place for the
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other gridsizes. Also, it showed consistently poor bpl
performance; therefore, 1t seems that a 4-level code does
not yield any 1mprovement over the 3-level codes.
Apparently, the best combination of aepl and bpl
performance came from the 3-level codes (1,2,3), (1,2,4),
and (1,3,4). The 2-level code (1,3) was also a strong
performer 1n both areas. None of these codes were
superior to the others for all gridsizes; therefore, it is
difficult to say which is the best performing code based
strictly on an examination of the aepl and bpl metrics.

smoothness vs aepl and bpl. This section consists of

subjective comparisons of the smoothness of the different
drawlngs. Also, an attempt is made to try to determine if
there 1s a relatlonship between aepl and smoothness or
bertween bpl and smoothness.

Gridsize of 0.25 Inches. None of the drawings

coded with a gridsize of (.25 inches were of good guality.
The smoothest drawings appeared to be the (4), (3,4),
(2,3,4) and (1,2,3,4) codes. The (1,2,3,4) code 1s shown
in Figure B-2. The rest of the drawings appeared either
somewhat deformed (did not appear round) or suffered from
aprupt changes in slope like those shown in the (1,3) and
{1,4) codes 1n Figure B-3. Easily the worst-drawing was
for the (1) code (see Figure B-4). This was obviously due
to the limited angular resolution of the (1) code. A
problem that occurs for many of the codes and at all the

ridsizes 1s typified by the (2,4) code shown 1n Figure B-
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5. Note that both upper quadrants and the lower left
quadrant contain.straight line segments which detract from
the curvature expected 1n a circle.

Comparing the smoothness evaluation with the aepl of
the codes yields some interesting results. One of the
smoothest codes, the (4) code, possessed the highest aepl.
The other codes with the highest aepl's were the (2), (3),
and (2,4) codes. These codes appeared deformed and
asymmetric. The (1,3,4) and (1,2,3,4) codes had two of
the lowest aepl ratings; however, both contained abrupt
changes of slope in the lower left quadrant which detract
from the appearance of the drawing. In general, while a
low aepl at this gridsize can indicate a smooth drawing,
smoothness 1s more a function of continuity and symmetry
~han of aepl. These two attributes are more pleasing to
~he eve and more resemble a circle than the drawings that
possess asymmetries or abrupt changes in slope.

The bpl seemed to have very little to do with
smoothness. The drawing with the highest bpl (therefore,
rhe one that might be supposed to contaln the most
information) was the (1) code, which was the worst
performing code with respect to smoothness. It seems that
*he number of bits used to encode the nodes or even the
numper of nodes 1s not as important as the placement and
symmetry of the nodes, at least for drawing a circie.

Gridsize of 0.2 Inches. The drawings coded at

0.2 1nches were also of poor gquality. Several of the
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drawings appeared about =2qual 1n smoothness; these were
the (4), (2,4), and (3,4) codes. Others that were almost
as smooth are the (3), (2,3) (1,2,3), (1,2,4), (2,3,4),
and (1,2,3,4) codes. Most of the other codes suffered
significantly from the abrupt change in slope problem (see
the (1), (l1,2), (1,3), and (1,4) codes shown 1n Figure B-
5). Again, the worst drawing was the (1) code. Overall,
rne2 drawings did not appear as smooth as the drawings done
a% the: 0.25 1inch gridsize. None of them seemed

mmetrical and the slope changes were Jenerally more
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vere. Even one of the smoothest drawings, the (4) code,
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>d a long straight line segment on the right side,
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-racting from the expected curvature.

Again, one of the smoothest codes, the (4) code
oss352s5s52ed t“he highest aepl. Two other relatively smooth
irawings, the (2,4) and (3,4) codes, also had a high aepl.
The 3drawlings with the lowest aepl, the (1,2,3), (1,2,4),
(1,3,4), and (2,3,4) were gquite smooth; however, each had

one or more continulty changes that detracted from thelir
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ppearance. In general, the multi-ring cocdes
ros3253.:n3 the (1) ring contailn less aepl; however, they
ar= 3ffl1z%=2d with =he abrupt changes 1n slope. The codes
~L1-9 *n2 nizher rings such as the (2,4) and (3,4) are
smooTner Cecause -“here are2 no abrupt changes in direction.
As n o=ae 3,23 inch gridsize drawings, the value of the

Col geemed =0 have less effe=ct on smoothness than the
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Gridsize of 0.15 Inches. "he drawings coded

with a gridsize of 0.15 inches are orf much beftter quallty

than those coded at the nigher grid

n

1zes. The (3) code,
shown 1In Figure B-7, resulted 1n the smoothest drawling.
Others that are quite good are the (4), (3,4), and (1,2,4)

codes. The worst code was again the (1) code, with many

$u
O
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1ances 1n direction detracting from a smooth
nrvatur=a. Most of the other codes also suffered somewhat
from changes 1in direction. In general, however, the
drawings for thls gridsize did not possess the wide range
O smoothness varlations that characterized the drawings
3% tne larger gridsizes of 0.25 and 0.2 inches. Except
for =he (l) code, the drawings at this gridsize did not
d1ifi=2r from =ach other significantly.

As 1n the larger gridsizes, some of the smoothest
Tndes pess=3324 the highest aepl ratings. These codes,
—ne 3y oand (4) codes, are smooth because of their high
anga.ar ress5luatlion and because the length of the line
5-dments forming the clrcle are constant. Again, this was
\>r2 lmeortant than the aepl accuracy. Also, the codes

“n4as did periorm well 1n aepl were fairly smooth, Just as

oy o wer2 o oat the hlgher gridslzes. However, <chey did
DCsswss aprugt Shand=2s in slope tha detract from a
TLTrZNUL3r ATDearanae., A3ain, *he olacemsnt 2f “he nodes
3=2ems nore ra2lated o smaothness “han o2 bpl metric.
Sridsizs of <L Ineones, The qualisy ot the
drawings Cod=2d at ol inohes was ipproaxkimabel ~gual -o

T\ J7 PPN -, P SR

i,




the (1) ring, and these drawlings still have th= highest

bpl. However, the aepl did not wvary widely at this
gridsize; there 1s only 0.009 square inches difference
between the maximum and minimum ratings. The smoothest
drawing, because it has the least zigzagging, 1s thé (4)
code shown in Figure B-21; it also possesses one of the
nighest aepl ratings and the lowest bpl rating.

The drawings for SQUARE-30 are followlng the pattern
set at the larger gridsizes. The zigzagging problem
remalns; however, the corners are not chopped off as badly
as they have been. The (2,4), and (3,4) codes shown 1in
Figure B-22 produced the smoothest drawings while
poss=ss1inc medlocre aepl ratings. Even at this small
jridsize, the drawings are marginal. Agailn, the drawilngs
Wwl-n the lowest aepl ratings, the multi-ring codes using
the (1) ring, were not the smoothest because of the
33ing. The (1,3) code shown 1n Figure B-22 1is

tyoical of these codes. The bpl ratings followed the
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owest for the single ring high order

codes and nighest for the multi-ring codes using the (1)

Iin smootiness, the drawings for SQUARE-45 look much
tne same Aas they did for the drawings coded using a
gridsizc= 2f 0.15 Lnches. They dc not suifer significantly
from -he Zi13zagging 2ffi=2ct and the chopped off corners are
13 zad. The lower nrder <codes using the (1) ring were

51 . smoonther than the higher order codes be=cause the
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ring. The worst looking drawing was again for the (1) code
shown 1in Figure B-20. None of the drawings at this
gridsize were of acceptable quality. In general, the best
aepl ratings were for the multi-ring codes which used the
(1) ring while they also possessed the highest bpl. The
codes with the lowest bpl were the high order single ring
codes. Also, the smoothest code, the (3,4) code,
possessed a relatively low rating.

At this gridsize, the smoothest drawings werwe agailn
for SQUARE-45. Although these drawings did not appear as
perfect as they did at the 0.2 inch gridsize, they
suffereé less deformities than did the other sqguares.
None of the drawings were so deformed as to be
unrecognizable at this gridsize, but the drawings for
SQUARE-30 and SQUARE-60 are still plagued significantly by

the zligzagging problem.

Gridsize of 0.1 Inches. Interestingly, SQUARE-

0, which had not been plagued by the zigzagging phenomenon
at the larger gridsizes, now suffers from the zlgzaggilng
problem for every code using a gridsize of 0.1 1nches.
The zigzagging always occurs near the upper right corner
of the drawing. Evidently, the «+viginal drawiling 1is
distorted enough to cause the chain coding algorithm to
selact a node one gridsize to the left or right of the
poresent node (recall that the sides of the square are not
eaxactly two inches 1n length). Generally, the drawings

with the lowest aepl are still the multi-ring codes using
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comes from the codes using the outer rings, such as the

(2,4) and (3,4) codes shown in Figure B-19. This 1is true

despite the fact that these codes possess higher aepl than %
the codes using the inner ring. At this gridsize, the ]
lowest aepl ratings again come from the multi-ring codes B
using the (1) ring and the best bpl ratings come from the !
single ring outer 1level codes. ]
The drawings for SQUARE-45 were slightly more 1
deformed at this gridsize than they were for the 0.2 inch !
gridsize. There was very little zigzagging but almost 1
)

every code resulted in a small part of some of the corners 3
.4

chopped off. Again, however, the smoothest codes were the
multi-ring codes using the (1) ring. Just 1like the
drawlngs done with the 0.2 inch gridsize, all the codes
using the (1) ring possessed the lowest aepl, and they
were all equal. The most deformed drawings were the

higher order codes, and they possessed the highest aepl.

The bpl followed the normal pattern: highest for the g
multi-ring codes using the (1) ring and lowest for the ?
high level single ring codes. :
The smoothness for the SQUARE-60 drawilings was again '?
similar to the smoothness for the SQUARE-30 drawings. The ;
high order (3,4) code shown in Figure B-20 was probably ;
~he smoothest drawing, although 1t was deformed by a ]
missing corner and slight zigzagging. Again, this code
“as smoother than codes with a lower aepl because the

Z21g9zagging was more pravalent in the codes using the (1)

V-19
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ratings followed the usual pattern, lowest for the outer
level single ring codes and highest for the multi-ring
codes containing the (1) ring.

At this gridsize, the smoothest drawings were for the
SQUARE=-45 codes. Evidently, the lengths of the sides of
the square coincided with the nodes of the grid used by
the chain coding glgorithm well enough that no corners
were lost, and the drawlings appear almost perfect. The
drawings for SQUARE-0 still suffer from chopped off
corners; otherwise, they are very smooth. For the SQUARE-
30 and SQUARE-60 drawings, the zigzagging caused by the

L ]
lack of a node at 30 or 60 degrees is still the major

problem. The codes with the higher rings tend to smooth .

this out to some extent, but they are more prone to
chooped off corners.

Gridsize of 0.15 Inches. For SQUARE-0, the

drawings coded with a gridsize of 0.15 inches were very
smooth except for chopped off corners. The smoothest
codes were the ones using the (1) ring. These codes also
possessed the lowest aepl, since they have the least
amount of corner chopped off. Just as for the drawings
with gridsizes of 0.25 and 0.2 inches, all the codes using
the (1) ring have essentially equal aepl ratings. Also,
these cndes have the highest bpl ratings; the lowest bpl
again comes from the single ring outer level codes.

The SQUARE-30 drawings still suffer from chopped off

corners and zigzagging. The least amount of zigzagging
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resolution. The best aepl ratings again came from the
multi-ring codes containing the (1) ring and the best bpl
ratings came from the outer 1level single ring codes
followed by the outer level mudlti-ring codes.

The drawings for SQUARE-45 at this gridsize are very
smooth. All the codes containing the (1) ring produced
drawings with no zigzagging and no chopped off corners.
Also, all of these codes possess identical aepl ratings;
therefore, except for the nodes used, the drawings are
identical (see the (1) code shown in Figure B-17). All of
the codes without the (1) ring possessed chopped off
corners and some zigzagging. One, the (4) code, was so
distorted as to be unrecognizable as a square. Smoothness
and aepl correlated well for this drawing, with the
smoothest drawings also possessing the least aepl. The
highest bpl also belonged to the smoothest drawings.

As 1n the case of SQUARE-30, none of the codes for
SQUARE-60 produced a drawing that was clearly superior to
the others, nor ?ere any of the drawings of acceptable
quality. All of the drawings were distorted with chopped
off corners and zigzagging. Agaln 1t appears that the
outer ring codes are slightly smoother even though they
possess higher aepl ratings. Their longer line segments
between nodes do not suffer as much from the zigzagging as
the codes containing the (1) ring. The (1) code shown in
Figure B-18, with its poor angular resolution, was again

the worst code with respect to smoothness. The bpl
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drawings were very smooth, with the only detraction being

chopped off corners. All codes produced a drawing with
the lower left corner chopped off and the codes without
the (1) ring lost other corners as well. The (3), (4),
and (3,4) codes were the ones with the most deformities;
these three codes also had the worst aepl rating. The
best aepl again came from the codes which use the (1)
ring. Like the drawings at the 0.25 inch gridsize, the
aepl ratings for the codes using the (1) ring were
essentially equal. The bpl also followed the same pattern
as the drawings with the 0.25 inch gridsize; the lowest
bpl was.for the codes with the outer rings and the highest
bpl came from the multi-ring codes.

Agalin, the major detraction for the SQUARE-30
drawlngs was the zigzagging effect caused by the lack of a
next node at 30 or 60 degrees. Losing corners was also a
problem for these drawings at this éridsize. None of the
drawings at this gridsize were of acceptable quality.
There were no codes that produced drawings clearly
superior to the others; however, the (2,3), (2,4), and
(2,3,4) codes shown 1n Figure B-16 were slightly smoother
than the rest. The (2,4) and (2,3,4) codes had medioccre
aepl ratings, but the use of the outer rings resulted in
less zigzagging for these drawings. The worst code was
the (1) code (also shown in Figure B-16); it was again a

vicrtim of excessive zigzagging due to 1ts limited angular

. JUBTST . TN

bk b o O

PRSI L. W

PSS ... U

Y . N




pTT———

Ay

PR A s S 3 L —— T p— - (A AR A S B A SRS Aen i el CR S T A i

was not a very good drawing. Both sides were slightly
crushed toward the middle, but it contained the fewest
deformities of all the drawings. Most of the rest of the
codes produced drawings containing chopped off corners and
zlgzagging. The'worst codes were the (1), (1,3), and
(1,4) codes shown in Figure B-15. These codes contained
gquite a bit more zigzagging than the others which
detracted from their smoothness. Their aepl was mediocre
and their bpl was high. The (3) and (4) codes were
deformed but still recognizable as squares. Their aepl
ratings reflected the deformation, as they were the
highest of all the codes.

By far the smoothest drawings were for SQUARE-O.
They contained no zigzagging and suffered no worse from
chopped off corners than the other squares. The next
smoothest were the SQUARE-45 drawings. This could be
expected because there is always a node 45 degrees from
the present node, while this 1is not true for 30 or 60
degrees. Since none of the rings produce a node that 1is
30 or 60 degrees from the present node, SQUARE-30 and
SQUARE-60 suffered more from zigzagging lines as the
coding algorithm tried to follow the sides of the squares
and was never able to find a node that was on the line.
This effect was less noticeable on the outer ring codes
simply because they consist of longer line segments;

therefore, they have fewer corrections to make.
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zigzagging as the chain coding algorithm was required to

compensate for its lack of angular resolution. Both the
aepl and bpl ratings for this code were mediocre. The
high level single ring codes, the (3) and (4) codes, were
very dlstorted. The corners cut off by the coding
algorithm have caused them to lose their identity as
rotated squares. This is reflected by their aepl ratings,
which are the two highest. The bpl ratings were highest
for the multi-ring codes containing the (1) ring and
lowest for the outer ring codes, Jjust the opposite of the
aepl ratings.

For the SQUARE-45 drawing, no particular drawing
stands cut as the smootﬁest; none of the drawings are of
acceptable quality. All of the drawings possess some
zligzagging or missing corners that detract from the
expected shape. The worst codes with respect to the
zigzagging are the (1}, (1,3), (1,4), and (1,3,4) codes.
Again, the high level (4) code and the (3,4) code are so
distorted as to be unrecognizable as squares. Both of
these codes possess very high aepl ratings, with the (4)
code's aepl almost twice as high as the next highest aepl.
The (3) code produced a relatively smooth drawing and
possessed the lowest aepl rating, as well as a low bpl
rating. In general, the codes using the (1) ring had the
lowest aepl and the highest bpl.

The smoothest drawing for SQUARE-60 was produced by

the (3,4) code shown in Figure B-14. Even this, though,
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lost other corners as well. In this case, since the

‘ smoothest drawings are the ones with the least amount of

T ESRy. T

the square chopped off, they also are the drawings with

-

the lowest aepl. The bpl was exactly the opposite; the

| _—

more corners that were missing, the fewer the number of
nodes (and the corresponding number of bits) required to
encode the sgquare. Another interesting observation 1is

that all the codes containing the (1) ring possess the

W NN

same aepl rating. This means that although each code
produced different nodes because of the different ring

levels, they all produced the same drawing when the chain

4 4A!L .

coded versions were plotted.
For SQUARE-30, the smoothness of many of the drawings
\e was reduced because the chain coding algorithm produced a )
zlgzaggling effect. For example, the (1) code shown in
Figure B-12 contains an excessive amount of zigzagging. 5
Therefore, the smoothest drawings were the ones without i
any corners chopped off and those containing the least ]

L4 Tl

zigzagging. The best combination of these two attributes

was the (3,4) code shown in Figure B-13. This code also [ )
possessed a low ae»l and close to the best bpl rating. It

was the only drawing with acceptable quality at this

i e en e 4

gridsize. Codes that were almost as smooth as the (3,4)

. SO

code were the (1,2,3) and (1,2,3,4) codes. These codes

Y

possessed low aepl ratings but had high bpl ratings. By

far =“he worst looking drawing was produced by the (1) code

shown in Figure B-12. This drawing contained a lot of
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there is error for each drawing and for every gridsize.

In general, the best aepl and the worst bpl
performance came from the multi-ring codes that contained
the (1) ring; however, none of these codes were
consistently better than the others. Also, the high
level, (3) and (4) ring codes provided both the worst aepl
and best bpl performance.

No pattern could be discerned when comparing the aepl
for the different squares; no square consistently had more
or less aepl than the others. For the bpl, however,
SQUARE-0 usually had the highest bpl and SQUARE-45 usually
had the lowest. Evidently, the codes for SQUARE-45 were
able to utlilize the outer rings more effectively,
Likewise, the codes for SQUARE-0 were not as effective in
this respect as the codes for the other squares.

Smoothness vs aepl and bpl. 1In this section, the

smoothness of the chain ccded versions of the figures is
evaluated examined for a correlation between the
smoothness and the aepl and bpl metrics. For each
gridsize, each square 1s examined and then the squares are
compared aga:inst each other to determine the effect of the
rctation.

sridsize of 0.25 Inches. For the SQUARE-0
drawings coded at .25 inches, the only detractions from
smoothness are the chopped off corners of the square.
Fach code chopped of the lower left corner of the square

and the hidher osrder codes, the (3), (4), and (3,4) codes,
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squares are shown 1in Figure B-10.

In general, the relationship between aepl and
gridsize was not as linear as it was for the circle, This
suggests that another factor besides gridsize contributes
to the aepl. For a non-rotated square, or any figure
consisting solely of straight lines running parallel to
the coding grid, it seems obvious that the aepl should be
more a function of the ratio of the length of the sides of
and the

the figure to the product of the ring level

gridsize. Also, for a rotated sgquare or similar figure,
the aepl should be a function of how close the lines lie
to the nodes of the coding grid.

For example, a perfect

square with sides that are an exact multiple of the

gridsize encoded with a (1) code should have an aepl of
zero. If the perfect square were not an exact multiple of
the gridsize, the aepl would consist of the sum of the
areas of small rectangles and triangles like those shown
in Figure B-11.

This fact is demonstrated by the aepl data for
SQUARE-0 at the gridsize of 0.15 inches. This is the only
gridslize evaluated that is not a sub-multiple of the two
inch length of the sides of the square. The data shows
that the aepl of almost every code is higher for the 0.15
inch gridsize than fo~

Of course, none of the squares used here are perfect

squares, as they were hand drawn. The sides of these

squares are not exactly two inches in length; therefore,

v-11
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gridsizes. This suggests that a radius to gridsize ratio
of approximately 15 to 1 will result in an adequate
representation of a circle. These results are similar to
those obtained by Thompson in his study of circular waves

(6:V-4) .

Squares

The next figures examined were sqﬁares with sides
approximately two inches in length (recall these figures
were hand drawn and are ncot geometrically perfect). Four
different squares were digitized and coded, each with a
different angle of rotation relative to a Cartesian
coordinate systenm. The angles of rotation examined were
0, 30, 45, and 60 degrees. The different angles of
rotation were used to determine the effect of rotation on
the aepl and bpl metrics and the smonthness. The same
codes and gridsizes used for the CIRCLE drawing were used
for each of the four squares. The performance of the
chain codes for each square are examined relative to the
results for the other squares to determine the effect of
the rotation.

Trends 1in aepl and bpl Performance. The square at an

angle of 0 degrees is referred to as SQUARE-0, the square
rowaned 1) degrees 1s known as SQUARE-30, the square
rorated 4% degrees 1s SQUARE-45, and the one rotated 60
i Lo retaerred to as SQUARE-60. The performance

" “haln codes by gridsize are shown 1n Tables

S D L P
oty + w <

and the digitized versions of each of the
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with the small variation in smoothness between drawings.
Again, the placement of the nodes affects the smoothness
more than a high or low bpl metric.

Summary of Data for CIRCLE. The best aepl

performance generally came from the (1,3), (1,2,3),
(1,2,4), and the (1,3,4) codes, while the worst
performance was for the (2,3), (2,4), and (3,4) codes.
The best performing codes for the bpl metric were
naturally the outer ring, single level codes. For the
circle, 1t was noted at all gridsizes that the outer ring
codes were smoother than the codes including the inner
rings, even though the aepl was generally less for the
inner ring codes. This is true because an abrupt change
in slope usually results when the coding algorithm, £rying
to follow the curvature of the circle, switches from an
outer ring to an inner one. The conclusion is that aepl
1s not a good indicator of smoothness for the circle.
Also, it was clear that a high bpl is not related to the
smoothness. In fdct, many times the code with the lowest
bpl, the (4) code, was one of the smoothest drawings. 1In
all cases, the placement of the nodes, which determines
how symmetrical the circle appears, had more effect on the
smoothness than the bpl did.

The smoothness of the drawings was not good at
gridsizes hiligher than 0.15 1inches. Also, once this
gridsize was reached, there was not as much variation in

smoothness between codes as there was at the larger
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those coded at 0.15 inches. The (3) and (4) codes were
agaln the smoothest and the (1) code was the roughest.
The rest of the drawings were essentlally equal; all
containing two or three of the ab;upt changes in directilon
that detract from the circular appearance. Codes (1,4)
and (3,4) shown in Figure B-8 are typical.

As with all previous gridsizes, the (3} and (4) codes
are the smoothest drawings and possess high aepl ratings.
The roughest code, the (1) code, also had a high aepl.
The drawings at this gridsize did not show much variation
in aepl, with the difference between the highest and the
lowest only approximately 0.008 inches. This fact
corralatz2s well with the low variation in smoothness.
Exceprt for th2 smocthest code, the (3) code, and the
worst, =n2 (l) code, <hese drawings were very close to
=r 1n o smootnness.  The bpl metric again showed no

1

nrorthness, other than its relationship to

Grids.z= of 0.05 Inches. All of the drawings

coded w~ith a gridsize of 0.05 inches were of good gquality.
The (1) nd (2) codes suffered somewhat from abrupt

chnanges 1n slope; however, the gridsize is small enough

fhat 1% 13 not as significant a problam as at the larger
gridsizes. The (4) code shown, in Figur= B-3%, i3 typ:ical

0f the drawings at this gridsize.

The aepl for these drawings vari«=d l-s33 +han 5.)02
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ween maximum and minimum. This Torrelates well
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corners were not chopped off as badly. The bpl ratings
followed the usual pattern.

The characteristics of the SQUARE-60 drawilings are
again very similar to those of the SQUARE-30 drawings.
Although the corners are not chopped off as badly at this
gridsize, the zigzagging 1s still a significant problem.
The drawings least effected by the zigzagging are still
the ones using the higher order codes, while the lowest
“aepl ratings are produced by the multi-ring codes using
the (1) ring. The bpl ratings followed the same pattern
as they have for the larger gridsizes.

The smoothest drawings were again for SQUARE-45. The
SQUARE-0C drawings had deteriorated because of the
introduction of zigzagging, which had been absent for the
larger gridsizes. SQUARE-30 and SCUARE-60 were about
equal in smoothness; both still sufferinsg significant
deformation because of zigzagging. The corner chopping
problem has been vastly reduced for 3ll the squares at
this gridsize.

Gridsize of 0.05 Inches. The drawings for
SQUARE~-0 using a gridsize of 0.05 inches are very smooth.
The drawings using the (1) ring are the smoothest, with
only a small part of one of the corners missing. The
drawings using the outer rings are missing a small amount
more of the corners, but these drawings are still very

The smoothness of all of these drawings 1is

3

! in the aepl ratings. The (1) and (1,2) codes
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have the lowest aepl while the (3) code has the highest;
however, less than 0.002 inches separates the maximum aepl
from the minimum (thes-2 drawlngs are shown in Figure B-
23). Thg relative ppl performance of the codes 1s
| unchanged from the higher gridsizes.

The drawings for SQUARE-30 are much improved over the

[N

larger gridsizes. In general, the zigzagging problem,

o T v
PRI

=

though still noticeable, does not detract from the
appearance of the sguare as much as at the larger
gridsizes. Also, the smoothness of the codes does not
t vary as widely; there 1s no class of codes that 1s clearly ]
' superior to the others. However, the (1) code shown 1in r
|
L

Figure B-24 1s again clearly the worst of the drawings.

g

Its limited angular resolution resulted in significant
zligzagging, even though it had a low aepl rating. The bpl
r again was lowest for the outer ring codes and highest for

the 1nner ring codes.

a
P\ .S TN

The SQUARE-45 drawings for this gridsize are very

4

smooth; however, some zigz3gging is now noticeable that

Y I

had been missing from the drawings coded at larger

! .
" gridsizes. The zigzagging is very minor and only occurs »
" in one or twc places on each drawing. It seems that the .
r . . . . :
, 3ridsize 1s now small enough to cause the drawing to be ;
i
r ; , , _ , =
| affected by the inaccuracies in the slope of the lines of
\ 9
{ the original hand drawn square. In other words, where the

slope of the original drawing was not exactly 45 degrees, ‘

the nodes of the chain code grid are now close enough to B
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each other to result in the selection of a node not 45
degrees from the present node. The smoothest drawings, the

(1,2, (2,3), and (2,3,4) drawings shown in Figure B-25,

also possessed the lowest aepl ratings. The drawings with

the highest aepl were the outer ring codes, which were
also the most distorted. The bpl ratings followed the
usual pattern of lowest for the single ring high level
codes and highest for the multi-ring codes.

Like the drawings for SQUARE-30, the drawings for
SQUARE-60 are much imbroved at this gridsize. The
zligzagglng 1s much 1less significant and most of the
drawings are very smcoth. The (1,2) code produced the
smoothest drawing; however, 1t 1s not significantly better
than the (2,4) and (3,4) drawings (these drawings are
shown in Fligure B=-26). The aepl for the (1,2) code was
the lowest of all the codes, while the aepl for the (2,4)
and (3,4) codes was neither among the highest or lowest
when compared to the rest of the codes. The worst
drawlngs were the (1) and (2,3,4) codes shown in Figure B-
27). These codes contained more zigzagging than the other
drawings, which detracted from their smoothness. The aepl
and bpl ratings followed the familiar pattern set at the
larger gridsizes of low aepl and high bpl for the multi-
ring codes and high aepl and low bpl for the single ring
outer level codes.

Because of the ziagzagging in the drawings for SQUARE-

45, the smoothest drawings at this gridsize were for the

[} ORI .. X

v,
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SQUARE-0 drawings. The drawings fof SQUARE-30 and SQUARE-
60 were very much improved with the zigzagging much less
noticeable than 1t had been at larger gridsizes. Also,
this gridsize is small enough that the problem of chopped
off corners is not as significant, though it is still
noticeable in drawings that do not use the (1) ring.

Summary of Data for Squares. Generally, the

drawings for SQUARE-0 and SQUARE-45 were much smoother
than the drawings for SQUARE-30 and SQUARE-60. This 1is
probably attributable to the fact that a node can always
be found 0 or 45 degrees from the present node for any
chailn code, while no node is exactly 30 or 60 degrees from
a present node. This makes the zigzagging problem more
likely to occur for lines at an angle of 30 or 60 degrees.
The other major problem noted for all the squares was loss
of some of the corners. All of the squares suffered from
this problem to some extent; however, 1t was most
noticeable on SQUARE-0, since it was generally the'only
deformity suffered by that square. Usually, a low aepl
for SQUARE-0 and SQUARE-45 indicated that the drawing
would be smooth, while this was not true for SQUARE-30 and
SQUARE-560. Many times for SQUARE-30 and SQUARE-60, the
smoothest drawings were the ones using the outer rings,
such as the (2,4) and (3,4) codes, the codes with mediocre
or high aepl ratings. The zigzagging was less apparent
for these codes because of the greater distance between

nodes. It appears that the (1) ring is necessary for the
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corners, but detracts from overall smoothness. So,
similar to the circle, the conclusion is that low aepl
does not necessarily indicate smoothness; smoothness is

more a function c¢f the placement of the nodes.

Sine Wave

The next drawing digitized and encoded was two cycles
of a sine wave. The period of the sine wave 1is
approximately 1.5 inches and it has a peak of
approximately 1.625 inches. This drawing is shown in
Figure B-28. The same codes and gridsizes :sed for the
previous drawings were used for the sine wave.

Trends in aepl and bpl Performance. This section

analyzes the'aepl and bpl data for the sine wave to see if
any trends in performance patterns for these metrics
develop. The performance data for each of the codes 1is
shown in Tables B-26 through B-30.

Generally, an in;rease 1n gridsize leads to an
increase in the aepl rating; however, the relationship was
not as close to being linear as 1t was for the circle.
The bpl relationship to l/gridsize is as highly linear as
1t was for the circle and the square.

The outer ring codes, the (3), (4), and (3,4) codes,
consistently provided the worst aepl performance and the
best bpl performance. The best aepl performance was for
the multi-ring codes containing the inner, (1) ring, while
these codes alsp provided the worst bpl performance. The

(1,2,3,4) code's aepl rating was lower than the other

V=26




codes for all gridsizes except 0.1 inches, where it was

the next to the lowest. The performance of the other

codes containing the (1) ring varied over the gridsizes
enough that no conclusion could be drawn as to which one

was the best. The best bpl performance came from the

4
<
E
|
4

codes using the outer rings, the (2}, (3), (4), and (3,4)
codes. This 1s the same pattern noted for the other

drawings.

P

Smoothness vs aepl and bpl. 1In this section, the

smoothness of the chain coded versions of the sine wave is
evaluated and an attempt 1s made to correlate the *
smoothness with the aepl and bpl metrics. The data 1is ' 1
examined for each of the five gridsizes in the following

\a paragraphs. »

Gridsize of 0.25 Inches. None of the drawings

coded with a gridsize of 0.25 inches were of good quality.
i‘ The major problems are chopping off at the peaks of the

sine wave and zigzagging along the straight portions.

e

Also, +the (3) and (4) codes were e tremely distorted

because they could not adequately follow the sine wave due
to +the relatively large gridsize. The smoothest drawings
were for the (1,2,3,4), (1,2,4), and (1,3,4) multi—ring
' codes. The smoothest drawing, the (1,2,3,4) code, shown
[ in Figure B-29, possessed the lowest aepl rating while the

worst two drawings, the (3) and (3,4) codes, possessed the
- . highest aepl. The (1) code suffered the most from the

zigzagging, just as it did for the SQUARE-30 and SQUARE-60

—— ,4_4_‘_-_.4‘-.4!4@_..'_4.{5__';.,&! A.JL....AA.A._M, L
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drawings; it also had a mediocre aepl rating.

Gridsize of 0.2 Inches. The quality of the

drawings coded with a gridsize of 0.2 inches was also very
poor. The (1,2,3,4) code again produced the smoothest
drawing. Other relatively smooth drawings were the (1,2),
(1,2,3), and (1,2,4) codes. The aepl ratings of these
codes were generally low. The (3) and (4) codes were
still very distorted at this gridsize. The (1) code shown
in Figure B-30, with a mediocre aepl ratings, 1is one of
the worst drawings because of excessive zigzagging. The
multi-ring codes seem effective in smoothing out a large
part of the zigzagging at this gridsize.

Gridsize of 0.15 Inches. The quality of the

drawings coded with a gridsize of 0.15 inches was still
poor for most codes. Chopped off peaks and zigzagging are
still significant problems. Again, the (1) code, with its
limited angular resolution, suffered greatly from
zlgzagging. . The smoothest codes were the (1,2,3,4),
{(1,3), and (1,4) codes (the (1,4) code is shown if Figure
B-31). These codes possessed relatively low aepl ratings,
except for the (1,2,3) code, which was in the middle of
the grouping. The (4) code was still very distorted at
this gridsize; this was reflected in its high aepl rating.

Gridsize of 0.1 Inches. Except for the (1)

code, shown in Figure B-232, the zigzagging for the codes
at a gridsize of 0.1 inches is not as severe as 1t was at

the larger gridsizes. Also, the chopping off of the peaks
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1s only noticeable on the outer ring codes, such as the
{3,4) code shown in Figure B-33. Overall, the quality of
these drawings was an improvement over the drawings at the
larger gridsizes. In general, the shoothest coder were
those using some combination of the (1) ring and the
outer, (3) or (4), rings. The worst codes were those with
the peaks chopped off, the (3), (4), and (3,4), and the
(1) code, which still is plagued by zigzagging. The aepl
was generally lower for the smooth codes (those containing
the (1) and an outer ring) than for the rough ones. These
codes still possessed the highest aepl ratings at this
gridsize.

Gridsize of 0.05 Inches. With a gridsize of

0.05 inches, mdst of the codes produced extremely smooth
representations of the sine wave. The zigzagging problem
still exists for the (1) code, see Figure B-34; however,
its much less objectionable at this small gridsize. The
smoothness o©of the other drawings does not wvary
significantly; the (2,3,4) code shown in Figure B-35 1is
typical. The aepl ratings were lowest for the codes using
the (2) ring (recall that the digitizer resolution limits
the codes that can be used at this gridsize).

Summary of Data for the Sine Wave. 1In general, the

besr aepl performance came from the codes which use a

combination of the {l1) ring and the outer, (3) and (4),

YIS, Although the aepl increased with gridsize for
wery 7nde, the relationship was not linear. On the other
v-29
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hand, the relationship between bpl and l/gridsize seems to
be very linear, just as it was for the circle and the
squares.

The smoothest codes for every gridsize were the ones
using the (1) ring in combination with one of the outer
rings, such as the (1,3,4) and the (1,2,3,4) codes. These
drawings also had the lowest aepl ratings. At the higher
gridsizes, the major problems were zigzagging and chopping
off the peaks of the sine wave; these problems were not
nearly as noticeable at the lower (0.1 and 0.05 inch)
gridsizes. The (1) ring suffered the most from the
zigzagging problem and consistently had a relatively high

aepl rating.

The bpl metric for the sine wave followed the pattern.

established by the circle and the squares. That is that
the bpl is lowest for the codes using the outer rings,
such as the (3), (4), and (3,4) codes, and highest for the

multi-ring codes using the (1) ring.

Written Text

The last drawing to be diglitized and coded was a
sample of written text. The word "hello" was chosen
because it possesses a nice blerd of long sloping lines
and curves with both a large and small radius of
curvature. The digitized drawing, hereafter referred to
as TEXT, 1is shown in Figure B-36. The letter "h" 1in

"hello" is approximately one inch high and the letters "e"
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and "o" are approximately 1/2 inch high. Each of the
codes and gridsizes used for the other drawings were used
for TEXT.

For all-of the coded versions of TEXT, the coded
drawing consists of a small number of line segments which
cross each other one or more times before intersecting
with the digitized drawing. This creates multiple closed
loops between intersections of the digitiéed and coded
drawings which the area algorithm in the ERROR program
cannot handle (see page IV-13 in reference 2). For this
reason, the error results are not tabulated. Therefore,
the performance metrics discussed 1in the remaining
paragraphs of this section of the chapter are smoothness
and readability of the text,.

Gridsizes of 0.25 and 0.2 Inches. The drawings

coded with a gridsize 2f 0.25 1nches were unrecognizable.
The (1,3) code shown 1 Fizure B-37 1s an example of one
of the better cod=s, ani 17 .5 unreadable. The drawing

becomes recognizabi-

i
oY)

5 2 W

"

:tten word with a gridsize of

0.2 iInches, but only £

1%
Py

O
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-
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o
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di25 that use the (1) ring. All

of the drawings at rthis g

~
b

ds1ze are extremely jagged and
angular; there 1s no smoothness evident. Codes (1,3) and
(1,2,3,4), shown 1n Figur= B-38, are representative
examples.

Gridsize of 0.15 Inches. With a gridsize of

0.15 inches, a noticeable difference in the quality of the

codes emerges. However, the codes that do not use the (1)
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ring are still unrecognizable. All of the drawings are
still jagged and angular, but the utility of the multi-
ring codes in smoothing the drawing can easily be seen by
comparing the (1) and the (1,2,3,4) codes in Figure B-39.
It seems that the best arawings are the ones that use any
combination of the (1) and (2) rings. "The curves in the
letters are too small to take advantage of the outer
rings, the (3) and (4) rings; therefore, the (1,3) and
{1,4) codes look very similar to the (1) code shown in
Figure B=39.

Gridsize of 0.1 Inches. At a gridsize of 0.1

inches, the drawings with the (2) ring as the lowest ring
are now recognizable; however, the drawings using the
higher rings are still unreadable. The (1), (1,3), and
{1,4) codes still produced drawings at this gridsize that
are jagged and angular, while the (1,2), (1,2,3), (1,2,4),
and (1,2,3,4) codes are beginning to appear smooth. The
(1,2,4) code shown in Figure B=-40 is representative of
these drawings.

>

Gridsiz f 0.05 Inches. With a gridsize of

0.05 1inches, all of the codes produced recognizable
drawings (recall that several of the codes cannot be used
because of the digitizer resolution). The (1) and (4)
codes shown 1n Figure B-41 ar= the worst codes, each for a
different reason. The (1) code 1s jagged and < 3jular
because of its limited angular resolution while the (4)

code Jjust cannot adequately follow the original digitized
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drawing. The (2,4) and {2,3,4) codes shown in Figure B-41
are the smoothest drawings. These codes utilize the 1inner
ring and the outer ring to provide a good combination for
encoding the various radii of curvature encountered in the
drawing.

Summary of Data for TEXT. The TEXT drawing

needed a small gridsize to be readable. With a gridsize
of 0.2% inches, the drawing was unrecognizable, and only
the codes using the (1) ring produced recognizable
drawings at gridsizes of 0.2 and O.LS inches. At the
gridsizes above (0.1 inches, all the drawings were very
jagged and angular and of unacceptable quality. With a
gridsize of 0.1 inches, the drawings began to become
smoother, with the codes using the (1) and (2) rings
performing the best. However, the drawings at this
gridsize were still judged to be of unacceptable quality.
All of the drawings coded with a gridsize of 0.05 inches
were recognizable as written words; however, the quality
of the (1) and (4) codes was unacceptable, and only
marginal for the other codes. These results indicate that
the minimum acceptable letter height to gridsize ratio 1s
approximately 20 to 1 for marginal quality.

For all gridsizes except 0.05 inches, the codes that
use a compination of the (1) and an outer ring, the (3) or
(4) rings, did not perform well. Apparently, the *+twists
and curves 1n the text did not allow the outer rings to be

used, and the (1) ring's limited angular resolution




L e B e M e i me e et Ty e a o m e -

produced véry jagged letters. Therefore, the best

performing codes were those that used the (1) and (2)
rings with some added combination of the outer rings, such

as the (1,2,3) code.

Summary

In this chapter, the results of an analysis of
several line drawings have been discussed. This analysis
was based on the performance of several chain codes at
different gridsizes using the precision, compactness, and
smoothness performance criteria. The next chapter will
discuss the conclusions that have been reached as a result
of this analysis and propose recommendations for future

study.
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VI. Conclusions and Recommendations

This chapter summarizes the conclusions reached as a
result of the analysis of the performance of the chain

codes. Also, recommendations for future study are made.

Conclusions

Generally, the aepl metric was lowest for the multi-
ring codes containing the (1) ring. These codes usually
possessed aepl ratings that were very close to each other;
however, none of these codes were consistently better  than
the others. The aepl was consistently highest for the
outer level (3) and (4) codes. The multi-ring codes that
do not use the (1) ring, such as the the (2,3) and (3,4)
codes, generally had a high or mediocre aepl rating. The
single ring codes, including the (1) code, consistently
had a nigh aepl rating compared to the multi-ring codes.
Another general observation 15 that the aepl usually
increases with gridsize for every code; however, this did
not OCCUr 1ln every case.

No definite cCconcliusicens can pe drawn from these
drawings as o which code 15 “he best to use to obtain a
low aepl rating. Though no par*icular code had the lowest

“every gridsize for any of the drawings, a
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gene=rai fonclusion, how=7er, can be drawn. As m=a2ntioneaq

2arli=r, +=he multi-ring codes *that use the (1) ring
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generally had aepl ratings that were very close. Although
none of these codes were consistently better than the
others, the use o0of any of these codes will almost
certainly result 1n a relatively low aepl rating.

The (2), (3), (4), and (3,4) codes consistently had
the lowest bpl ratings for all drawings, while the codes
using the (l) ring usually had the highest bpl ratings.
The multi-ring codes using the (2), (3), and (4) rings had
mediocre bpl ratings. The bpl ratings were inversely
proportional to the gridsize for all codes. In fact, this
relationship was very close to linear for the gridsizes
and codes analyzed in this thesis. Therefore, 1f the bpl
for any code 1s known for one gridsize, 1t can be
pradicted for the other gridsizes wWwith reasonable
accuracy.

It seems that the codes with the best combination of
aepl and bpl performance are the multli-ring codes that use
the (2), (3), and (4) rings, such as the (2,3,4) code.
The performance of these codes was generally mediocre for
both mektrics; however, since the strong performing codes
for poth metrics are mutually exclusive (the best codes
£or aepl are the worst ones for bpl and vice versa), these
codes are the best compromise.

The results of the smoothness evaluation were largely
dependant upon the drawing belng analyzed. A general
observation for all drawings 1s that a low aepl rating 1s

not a guarantee of a smooth drawing. The codes using the
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high order rings, which generally possessed the highest
aepl ratings, sometimes resulted in smoother drawings
because there was less zlgzagging caused by constant
corrections as the coding algorithm tried to follow the
original drawing. Also, 1t was evident that the placement
of the nodes was more important than a low aepl for
providing a smooth drawing. In other words, if the nodes
of the coded drawing were symmetrically spaced and
followed the shape of the drawing well, this was more
visually pleasing than a drawing that contained abrupt
changes in slope or direction, but possessed a low aepl
rating.

Although the results of the smoothness evaluations
were drawing dependent, general conclusions can be drawn
on which class of codes should be used to provide the
smoothest drawings. If the drawing to be coded consists
mostly of curves with a fairly constant radius of
curvature, such as the CIRCLE drawing used in this
analysis, then the high order codes are generally
smoother, even though they have the highest aepl ratings.
Also, these codes worked best for straight lines at an
angle relative to the coding grid that does not pass
thro'.gh any nodes, such as the SQUARE-30 and SQUARE-60
drawings used in this analysis. The higher order codes
produce less zigzagging for this type of drawing. For
random drawings or those with a wide range of radii of

curvature, such as the sine wave 1in this analysis, the
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smoothest codes were those using the inner, (l), ring in
combination with one or more outer rings.

Another aspect of coding a drawing 1s the selection
of the éridsize used for the encoding process. This
analysis also provides some insight into this area. The
coded versions of the circlé used in this analysis were of
unacceptable quality at gridsizes above 0.15 inches. This
indicates that for drawings with a constant radius of
curvature, that a radius to gridsize ratio of
approximately 15 to 1 will result 1in acceptable drawings
if the proper codes are used. For the drawings containing
lines of arbitrary slope, such as the rotated sguares, no
general conclusions could be reached identifying a line
length to gridsize ratio that would provide adeguate
performance in every situation. The coded versions of the
written text used 1n this analysis were unacceptable at
gridsizes above 0.05 inches. Therefore, a letter height
to‘grLdsize ratio of approximately 20 to 1 1s indicated.

Of course, the selection of the code and gridsize
used are extremely application dependent; and, as
expected, there are trade-offs between aepl, bpl, and
smoothness. The application dictates which parameter 1is
the most importanc; however, these results can provide
guidelines to aid 1in the selection of the code and
gridsize that provide the best compromise for a particular

type of drawlng.
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Recommendations for Future Study

The following recommendations are made for future

study with this system:

1.

Implement the parallel quantizing scheme. This would
be a relatively simple change to the COMPCODE
prccedure of the CHNCODE program.

Implement a procedure 1in the ERROR program to
determine the statistics of the usage o0of the
different’ ring levels.

Using the statlistics gained from recommendation 2,
implement a node encoding procedure thet minimizes
the number of bilts required to encode the node based
on the probability of that node being used.
Implement a procedure 1n the CHNCODE program that
simulates the effect of an additive white Gaussian
nolse communications channel at various bit error

rates and study the effect on the drawings.
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APPENDIX A

This appendix contains the Pascal source code for the

CHNCODE and the PLOTCODE multi-ring chain coding programs.
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This 1s the source listing for the multi-ring chain coding
program CHNCODE.

PROGRAM CHNCODE;

‘l.lAA‘lL. LIEPA

(* *)

(* WRITTEN BY: THOMAS A. MORRIS *) n
(* DATE: 15 AUG 1984 *) "
(* THE PURPOSE OF THIS PROGRAM IS TO CONVERT A DRAWING *)

(*  REPRESENTED BY A SET OF X-Y COORDINATES INTO A *) 1
(*  MULTI-RING CHAIN CODED VERSION OF THE DRAWING. *) 1
(* THE OUTPUTFILEWILLCONTAINTHESTARTINGX-Y *) }

(* CCORDINATE, GRIDSIZE, AND THE RING LEVELS USED FOR ¥*)
{* THE CODE. THE OUTPUT FILE FORMAT IS: PEN UP/DOWN, *)
(* X COORDINATE, Y COORDINATE, CHAIN CODE. A CHAIN *)
{* CODE OF -1 INDICATES THAT THE POINT IS THE FIRST *)

st ttinionivsicstoni [

(* OR LAST IN A LINE SEGMENT. THE INPUT FILE NEED *)
(* ONLY BE A LIST OF X-Y COORDINATES WITH EACH POINT *)
(* SEPARATED BY CARRIAGE RETURN/LINEFEED. *)
TYPE POINTER = “RINGPNTS;
RINGPNTS = RECORD A
LOCATION : ARRAY [l1..2] OF INTEGER; -
\ NEXT : POINTER »
[ 4
END; (* RECORD *) /
(* THIS POINTER AND RECORD ARE USED TO FORM A LINKED *) ;
(* LIST TO STORE THE POINTS AS THEY ARE READ IN FROM *) :
(* THE DIGITIZED FILE. LOCATION IS THE X-Y *) y
(* COORDINATE OF THE POINT AND NEXT IS A POINTER *) of
(* VARIABLE WHICH POINTS TO THE NEXT SEQUENTIAL *) R
(* POINT IN THE LIST *) ;
: VAR -
3 F, G: TEXT; 1
ﬁ A, RESULT, J, NUMFiLES, OUTRING: INTEGER; »
- “CDE: EXTERNAL INTEGER; b
- FILENAME: STRING; 1
- NODE: EXTERNAL ARRAY [l..2; OF INTEGER;
i SRIDSIZE, NUMRINGS: ARRAY [1..25] OF INTEGER;
F LEVEL: ARRAY [1..25,1..5] OF INTEGER; }
CODEFILE: ARRAY [1..25] OF STRING;
: DELTA: ARRAY [1..5] OF INTEGER; 7
| FIRST, FINISH: BOOLEAN; R
¢ PEN: CHAR; -]
: POINT: ARRAY [1..3,1..2] OF INTEGER; 1
{ INTSCT: ARRAY [l..5] OF BCOLEAN; »
X DELTAXY, INTPNT: ARRAY [1..5,1..2] OF REAL: ®;
1 LASTPNT: ARRAY [1..5,1..4] OF INTEGER; ]
( FRONT, BACK, PTR: POINTER; 3
A-2 '
1
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{(* THESE VARIABLES ARE DEFINED AS FOLLOWS:

(*
(*
(*
(*
(*
(*
(*
(*
{*
(*
(*
(*
(*
(*
(‘k
(*
(*
(*
(*
(*
(*
(*
(*
(*
(x
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
‘*
{*
(*
(*
(*
(*
(k
(*
(*
‘*
‘*
(*

F,G: TH
RE
TH

ESE ARE THE NAMES USED FOR THE TEXT FILES
PRESENTING THE INPUT (DIGITIZED) FILE AND
E OUTPUT (CODED) FILE

A,J: INTEGERS USED AS LOOP COUNTING VARIABLES

RESULT:

NUMFILES:

QUTRING:

FILENAME:

GRIDSIZE:

NUMRINGS

LEVEL:

USED FOR

CODEFILE

DELTA:

FIRST:

FINISH:

PEN: HO
A

POINT:

USED AS A STORAGE LOCATION FOR THE TEXT
FILE CLOSE PROCEDURE RETURN VALUE
(INTERNAL TO COMPILER)

THE NUMBER OF FILES TO BE CREATED BY
CODING THE DIGITIZED FILE

OUTERMOST RING THAT HAS NOT FAILED THE
LGS TEST

TEMPORARY VARIABLE TO HOLD NAMES OF THE
TEXT FILES FOR THE INTERNAL ASSIGN
PROCEDURE

ARRAY TO HOLD THE GRIDSIZE USED FOR
EACH FILE TO BE CODED )

:  ARRAY HOLDS THE NUMBER OF RING LEVELS
USED FOR EACH FILE TO BE CODED

ARRAY HOLDS THE VALUES OF THE RING LEVELS
EACH FILE TO BE CODED

:  ARRAY HOLDS THE NAMES OF EACH FILE TO
BE CODED

ARRAY HOLDS THE DISTANCE FROM THE CURRENT
NODE T?2 EACH RING OUT TO RING 5

TRUE IF THE NEXT POINT READ FROM THE
DIGITIZED FILE IS THE FIRST POINT IN A
LINE SEGMENT

TRUE IF THE LAST POINT IN THE DIGITIZED
FILE HAS BEEN READ

LDS A VALUE OF 'D' IF THE PEN IS DCWN AND
VALCE OF 'U' IF THE PEN IS CUP

(1] IS THE X-Y COORDINATES OF THE CURRENT
NODE, (2] AND [3] ARE THE COORDINATES CF
THE LAST TWO POINTS READ IN FROM THE
DIGITIZED FILE

*)

*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
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EXTER
(*
[ *

PRCCE

INTSCT: HOLDS A VALUE OF TRUE FOR EVERY RING
INTERSECTED

DELTAXY: HOLDS THE DIFFERENCE BETWEEN THE GRID
CENTER AND THE INTERSECTION POINT FOR
EACH RING

INTPNT: HOLDS THE INTERSECTION POINT COORDINATES
FOR EACH RING THAT IS INTERSECTED

LASTFHT: HOLDS THE LAST TWO POINTS READ AFTER A
RING IS INTERSECTED.

FRONT: POINTER TO THE FIRST POINT IN THE LINKED
LIST

BACK: POINTER TO THE LAST POINT IN THE LINKED
LIST

PTR: POINTER TO THE CURRENT POINT IN THE LINKED
LIST

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

NAL PROCEDURE CCMPCCDE; (* THIS PROCEDURE PERFORMS *)

THE LGS TEST AND CALCULATES THE VALUE OF THE
CHAIN CODE

DURE INSERT; (* INSERTS POINTS INTO THE REAR OF
(* THE QUEUE

VAR P: POINTER; (* P IS USED AS A TEMPORARY STORAGE
(* POINTER TO MANIPULATE PTR
BEGIN ({(* INSERT *)
NEW(P) ;
PT.LOCATION({1] = POINT([{3,1];
PTL.LCCATION[2] := POINT[3,2];
PTUNEXT := NIL;
IF BACK = NIL
THEN
BEGIN
BACK := P;
FRONT 1= P
END
FL3E
BEGIN
BACKT U NEXT 1= P;
BATK := 2
END
TP = NIL
LNl (* INSERT *)
A-4

N o <« a. L Q- LN WL W

*)
*)

*)
*)

*)
*)
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PROCEDURE READLIST; (* THIS PROCEDURE READS POINTS IN

(*
(*

FROM THE LINKED LIST AND
UPDATES THE PTR POINTER

T T R W Wy W N W W W '\‘1

*)
*)
*)

BEGIN {(* READLIST *)
POINT([3,1] := PTR™.LOCATIONI[1l];
POINT([3,2] := PTR .LOCATION[2];
PTR := PTR”™.NEXT

END; (* READLIST ¥*)

PROCEDURE ALIGN; (* ALIGNS LIST OF POINTS UP TO THE * )
{(* CODED NODE ALSO UPDATES THE FRONT *)
(* PCINTER *
‘AR P: POINTER; (* P IS USED AS A TEMPORARY STORAGE *)
(* POINTER TO MANIPULATE PTR *)
BEGIN (* ALIGN *)
PTR := FRONT;
IF PTR <> NIL THEN
WHILE NOT ((LASTPNT[OUTRING,3] = PTRT.LOCATION{1l]) AND
(LASTPNT [OUTRING, 4] = PTRT.LOCATION([2])) DO
IF PTR <> NIL THEN
BEGIN
P := PTR;
PTR := P~ .NEXT;
DISPOSE(P)
END;
FRONT := PTR
END; (* ALIGN *)
PROCEDURE CLRLIST; (* CLEARS LIST OF ALL POINTS *)
AR P: POINTER; (* P IS USED A5 A TEMPCORARY STORAGE *)
(* PCINTER TO MANIPULATE PTR *)
BEGIN (* CLRLIST *)
PTR := FRONT;
WHILE PTR <> NIL DO
BEGIN
P := PTR;
PTP := P~ .NEXT;
DISPOSE(P)
END;
BATK := NIL

END; (* CLRLIST *)

PROCEDURE STARTUP; (* PARAMETER INITIALIZATICN *)




VAR K

BEGIN

» L: INTEGER; (*

(* VARIABLES

{* STARTUP *)

WRITELN
WRITELN;

WRITE('ENTER THE DIGITIZED DATA FILENAME

READLN (FILENAME) ;
ASSIGN(F,FILENAME) ;
WRITELN;

WRITE ('ENTER THE NUMBER OF CODED FILES YOU WISH TO
CREATE: ');
READLN (NUMFILES) ;
WRITELN;
FOR K := 1 TO NUMFILES DO
BEGIN (* FOR STATEMENT *)
WRITE ('ENTER CODED DATA FILENAME ',K,': '):
READLN (FILENAME) ;
CODEFILE([K] := FILENAME;
WRITE ('ENTER GRIDSIZE DESIRED: ') ;
READLN (GRIDSIZE[K]) ;
WRITE ('ENTER THE NUMBER OF RINGS USED BY THE CODE: ');
READLN (NUMRINGSI[K]);
WRITELN ('ENTER THE RINGS USED BY THE CODE STARTING
WITH THE LOWEST');
WRITE ('(EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3-5):
FOR L := 1 TO (NUMRINGS[K] - 1) DO
READ (LEVELI[K,L]);
READLN (LEVEL[K,NUMRINGS[K]]) ;
WRITELN
END (* FOR STATEMENT *)
END; (* STARTUP *)

PROCEDURE INITIALIZE;

VAR M:

BEGIN

INTEGER;

(* INITIALIZE *)

2EPEAT
WRITELN
FILENAME
ASSIGN
RESET
REWRITE

UNTIL

FOR M 1

FINIGH
BACK := NI
EZMD; (* INIT

("CODING ',CODEFILE[J]);
:= CODEFILE(J];

(G,FILENAME) ;
(F);

(G)

[ORESULT <> 255;

TO LEVEL[J,NUMRINGS[J]]
= GRIDSIZE[J] * M;

O S DO

FALSE;

SE;

=]
o

A~h

DO

")

(* M IS A LOOP COUNTER VARIABLE *)

T e T T T T T e

K AND L ARE USED AS LOOP COUNTING *)

*)

('"THIS PROGRAM COMPUTES MULTI-RING CHAIN CODES'};

")

(* FILE AND VARIABLE INITIALIZATION *)

9
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PROCEDURE FIRSTPNT; (* THIS PRCOCEDURE FIND3 THE [IRST
{* PEN DOWN IN A DATA ¢ ILE AND
(* KEEPS THE LAST PEN UP AS THE
(* FIRST PCQINT IN THE TODED FILLE

* % A %

VAR NUMBER, N: INTEGER;
(* VARIABLE DEFINITIONS: *)
| * *)
{* NUMBEEF I3 A COUNT OF THE NUMBER OF POINTS READ FRCM *)
| * THE FILE TILL A PEN DCWN CCNDITICN IS READ *)
[l *)
xS A LOJpP TOUNTING VARIABLE ' *)
o RSETPENT *)
N FALSE:
(* FIND THE FIRST PEN DOWN... KEEP LAST PEN UP,*)
(| * PCINT(2], AND FIRST PEN DOWN, POINTI[2] *)
ToINT . := PCINTI[3];
FEAZIN P, PEN, POINTI(3,1], POINT[2,2]); .
’ ° := NUMBER + 1;
FINIZEH = EQF(F) )
CNTLL O MTEN = 'D') OR FINISH:;
4 f ‘117:’{

ECIN i* [F STATEMENT *)
IF ONUMBER < 2 (* ? FIRST ELEMENT ALREADY PEM DOWN *)

EESIN (* THEN CLAUSE *)
POINT(2] := POINT([3];
REZADLN (F, PEN, POINTI[3,1]), POINT(3,2});
INSERT
ZND;  (* THEN CLAUSE *)
POINTILD = POINT(2];
POINTUY] o= ﬁ(IVT[2]
WRITE (3, 'C',' '",POINT(l,1]," ', PCINTI[L,2],' -1 ",
SRIDSIZE[J],' ') .
FoRpoN = 1 TO (NLUMRINGS[J]) - 1) DO
NRITE (3, LEVEL[J,NI,' ')
ANPITELN (3, LEVEL[J,NUMRINGS([J]])
SND* [F OSTATEMENT *)
S i*x FIRSTRNT %)
NTERAESCT: 0% THIS PROCEDURE FINDS THE *)
[ * INTERSECT POINTS FOR EACH OF %)
(* THE RINGS OUT TO THE OUTERMOSTY)
[ * PING *)
T, T, TtV INTENER;
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PLOTLINE[LS] = ' !
END; (* PLOTIN *)

PROCEDURE INSERT; (* INSERTS POINTS INTC THE REAR OF
(* THE _UECE
VAR P POINTER; (* 2 I3 USED AS A TEMPORARY STCRAGE
(* POINTER TO MANIPULATE PTR

BECGIN (* INSERT *)
NEW(P) ;
PT.LOCATIONI[1!
PTLULOCATION[ 2]
PT.NEXT := NIL;
It BACK = NIL

THEN
BEGIN
BACK := P;
FRONT := P
END
ELSE
BEGIN
BACK™ .NEXT := P;:
BACK := P
END;

1= POINT(3,11;
POINT([3,2

PROUCEDURE READLIST:; (* THIS PRCCEDURE READS POINTS IN
(* FROM THE LINKED LIST AND
{* UPDATES THE PTR POINTER

2FGIN SADLIST *)
FUINTII, L] = PTRT.LCCATION{1];
CTINT[Y, 2] = PTRT.LOCATION({2];
TR 1= PTRTUNEXT

muly o* READLIST *)

CLOBEDURE CALIGN; (* ALISGNS LIST 2F POINTS P T2 THE
(* C2DED NODE
COINTER; (* D I3 USED AS A TEMPORARY STORAGE
(* POINTER T MANTZ2ULATE =78
oo AL DN R
-, .
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(* SCALE: SCALE FACTOR FOR PLOTTER *)
* *
i* XYDATA: X-Y COORDINATES SENT TO THE PLOTTER *;
* *
2* TRANS: TRANSLATION FACTOR FOR PLOTTER *;
* *
i* KEYNUMBER: VALUE REPRESENTS WHICH FUNCTION KEY ON *i
(* THE DIGITIZER HAS BEEN DEPRESSED - *)

EXTERNAL PROCEDURE BUSIN
VAR INLINE:LINE) ;

EXTERNAL PROCEDURE BUSOUT
VAR OUTLINE:LINE) ;

(DEVICE:INTEGER; VAR ERFLAG:CHAR;

(DEVICE: INTEGER; VAR ERFLAG:CHAR;

EXTERNAL FUNCTION BUSINT:CHAR;

EXTERNAL PROCEDURE PORTIN;

EXTERNAL PROCEDURE CHAROT (VAR OUTPUT:CHAR; VAR ERFLAG:CHAR);
EXTERNAL PROCEDURE CHARIN (VAR SIGNAL:CHAR; VAR ERFLAG:CHAR);
EXTERNAL PROCEDURE LINOUT (VAR CHARAC:LINE; VAR ERFLAG:CHAR});
EXTERNAL PROCEDURE GET_POINT (VAR DATA LINE:LINE; VAR ERFLAG:

CHAR; VAR KEYNUMBER:INTEGER) ;

EXTERNAL FUNCTION PREPARE:CHAR;

EXTERNAL PROCEDURE WHATNUM (VAR CHARAC:LINE; VAR LENGTH, NUMB:
INTEGER) ;

EXTERNAL PROCEDURE WHATCHAR (X:INTEGER; VAR LINEIN:LINE; VAR

CNTR, LENGTH:INTEGER);
EXTERNAL PROCEDURE SAMPLING
EXTERNAL PROCEDURE CALCOCDE;

(VAR ERFLAG:CHAR) ;

PROCEDURE PLOTIN; (* THIS PROCEDURE INITIALIZES THE *)

(* PLOTTER *)

BEGIN (* PLOTIN *)
WRITE('ENTER PLOTTER LINE TYPE
READLN(LINE_TYPE);
PLCTLINE[14] := LINE TYPE;
WRITE('ENTER SCALING FACTOR (DIG:PLOT)- 1:');
READLN (5CALE) ; *
WRITE('ENTER PLOTTER TRANSLATION (X Y): ');
PEADLN(TRANS[1),TRANS[2]); ‘
WRITELN;
PLOTLINE
sLOTLINE

(
(
PLOTLINE]
[
|
f

(0=-8): ")

iwoon

L]
2]
3]
PLOTLINE (4]
PLOTLINE[S] 1= '0';
PLOTLINE(A] =

-
A-C
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The rest of thls appendix contains the sources
for the PLOTCODE program.

{* THIS PROGRAM COMPUTES THE CHAIN CODE OF A D
(* IT IS BEING DRAWN ON THE DIGITIZER AND IM
(* SENDS THE DATA POINTS TO THE PLOTTER FOR

PROGRAM PLOTCODE;

TYPE POINTER = "RINGPNTS;
RINGPNTS = RECORD
LOCATION : ARRAY [1..2] OF I
NEXT : POINTER
END; (* RECORD *)
LINE = ARRAY [1..40] OF CHAR;

VAR
A, RESULT, OUTRING, PLOTCNT: INTEGER;:
COUNTER, LOOP, CNTNUM, LENGTH, I: INTEGER;
CODE: EXTERNAL INTEGER;
NODE: EXTERNAL ARRAY [l1..2] OF INTEGER;
GRIDSIZE, NUMRINGS: INTEGER;
LEVEL, DELTA: ARRAY [l1..5) OF INTEGER;
FIRST, FINISH: BOOLEAN;
PEN, ERROR FLAG, SIGNAL, LINE TYPE, ERFLAG:
POINT: ARRAY [1..3,1..2] OF INTEGER;
INTSCT: ARRAY [l1..5] OF BOOLEAN;
DELTAXY, INTPNT: ARRAY {1..5,1..2] OF REAL;
LASTPNT: ARRAY [l1..5,1..4] OF INTEGER;
FRONT, BACK, PTR: POINTER;
NUMARRAY, DATA, PLOTLINE: LINE;
TEMP, SCALE: REAL;
XYDATA, TRANS: ARRAY [l1..2] OF INTEGER;
KEYNUMBER: EXTERNAL INTEGER;

(* ONLY THE VARIABLES THAT ARE UNIQUE TO PLOTC
(* DEFINED HERE. TH2®» REMAINDER OF THE VARIA
(* DEFINED IN THE CHNCODE PROGRAM LISTING

{* .

{* PLOTCNT: CCUNTER VARIABLE TO KEEP TRACK OF
i * VALUES IN THE PLOTLINE ARRAY

‘*

(* CNTNUM: HOLDS THE NUMBER OF DIGITS READ IN
{* DISGITIZER

LENGTH: USEDAS APARAMETERFCRTHE WHAT THAL

{

¢ * PROCEDURE TO TELL THE PROCEDURE HOW MANY

(* THARACZTERS T TONVERT THE NUMBER T

(*

(* PLiTLINE: THIS ARRAY TONTAINS THE INF FMAT

[ * TO THE PLCOTTER EOR PLOTTING

(*

(* TEMP: USED A3 A TEMPORARY STTRATCE VAR IARLE
A=21

code listing

RAWING AS
MEDIATELY
PLOTTING

NTEGER;

CHAR;

OPE ARE
BLES ARE

THE

FROM THE

*)
*)
*)

*)
*)
*)
*)
*)
*)
* )
*)
*)
* )
* )
* )
* )
*)
*
*
* )

*)
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CODE := CODEB
END {(* THEN CLAUSE *)
ELSE CODE := CCODEB
END; * RNCODE *)

A

EEGIN (* COMPCODE *)
[F OUTRING = LEVEL{J,1]
THEN
BEGIN
FINDNODE;
ENCODE
END
ELSE
BEGIN (* ELSE CLAUSE *)
REPEAT
FINDNODE;
PASSLGS := FALSE;
RINGTEST;
IF PASSLGS
THEN ENCODE
ELSE .
BEGIN (* ELSE CLAUSE *)
VALUE :=_1;
REPEAT
QUTER := LEVEL[J,NUMRINGS([J] - VALUE];
VALUE :{= VALUE + 1
‘e UNTIL OUTER < OUTRING; [ ]
OUTRING := OUTER ]
END (* ELSE CLAUSE *)
UNTIL (OUTRING = LEVEL[J,1]) OR PASSLGS;
IF OUTRING = LEVEL(J,1] ,
THEN B
BEGIN ®
FINDNODE;
ENCODE
END :
END; (* ELSE CLAUSE *) ‘;
POINT(3,1] LASTPNT [OUTRING,1]; , ]
POINT(3,2] LASTPNT [QUTRING, 2] ; %
POINT[1,1] NODE([1]};
POINT([1,2] NODE (2]
END; (* COMPCODE *)

o L

A_J%

nonon

MODEND. (* MODULE COMPCODE *)

;.LJ' .A.;.‘.‘,. "

This <o3ncludes the program listing for CHNCODE.

i
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IF (NODE[2) - POINT[1,2]) = DELTA[OUTRING]
THEN U_L CORNER
ELSE
IF (POINT[1,2] - NODE[2]) = DELTA{OUTRING]
THEN L_L_CORNER
ELSE
BEGIN (* ELSE CLAUSE *)

RIGHT := FALSE;
SIDE

END (* ELSE CLAUSE *)
ELSE (* NODE IS ON TOP OR BOTTOM *)

BEGIN
IF (NODE[2] - POINT([1,2]) = DELTA[OUTRING]
THEN TOP := TRUE
ELSE TOP := FALSE;
TOP_OR_BOT;
END
END; (* RINGTEST *)
PROCEDURE ENCODE; (* THIS PROCEDURE CALCULATES THE *)
: o * CHAIN CODE *)

VAR RING, CODEB, I: INTEGER;

{* VARIABLE DEFINITIONS:

(* >

'e (* RING AND I ARE LOOP CCUNTING VARIABLES
(*
(* CODEB IS THE VALUE OF THE CHAIN CODE FOR A NODE FOR
(* A SINGLE RING CHAIN CODE

* A o A X X

— o — - —

BEGIN (* ENCODE *)
IF XCODE >= YCODE

THEN CODEB := XCODE + YCODE
ELSE CODEB := OUTRING * 8 - XCODE - YCODE:;
IF CODEB < (3 * OUTRING)
THEN CODEB := CODEB + QUTRING * 5
ELSE CODEB := CODEB - OQUTRING * 3;
IF NUMRINGS[J] > 1
THEN
BEGIN (* THEN CLAUSE *)
FOR I := 1 TO NUMRINGS[J] DO
IF OUTRING = LEVEL[J,I] THEN RING := I;
FOR I := 1 TO (RING - 1) DO

BEGIN (* FOR STATEMENT *)
CASE LEVEL([(J,1] OF

i : CODEB := CODEB + 8;
2 : CODEB := CODEB + 1l6;
3 : CODEB := CODEB + 24;
4 : CODEB := CODEB + 32

END (* CASE STATEMENT ¥*)
END; (* FOR STATEMENT *)
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.. . T

L _TULIF S

1%, -

- _



-y

[P

OV W

Ll A i il 2t ey

ELSE PASSLGS := FALSE;
COUNT := COUNT + 1
UNTIL (NOT PASSLGS) OR (COUNT >= QUTRING)
END; (* TOP_OR_BOT *)

PROCEDURE SIDE; (* THIS PROCEDURE PERFORMS THE LGS TEST *)

(* WHEN THEN NODE IS ON EITHER THE *)
(* LEFT OR RIGHT SIDE OF THE RING *)
BEGIN (* SIDE ¥)
MIDPNT([1,1l] := NODE[1l];
MIDPNT (1,2} := NODE[2] + GRIDSIZE[J] / 2:
MIDPNT[2,1] := NODE[1l]:
MIDPNT[2,2] := NODE[2] - GRIDSIZE{J] / 2;
COUNT := 1;
REPEAT
(* ESTABLISH UPPER BOQUND *)
M := (MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1,1] -
POINT([1,1]);
IF RIGHT
THEN X := NODE[l] - GRIDSIZE[J] * COUNT
ELSE X := NODE{l] + GRIDSIZE[J] * COUNT;
CPPER := M * (X ~ MIDPNT([1l,1]) + MIDPNT[1,2];
(* ESTABLISH LOWER BOUND *)
M := (MIDPNT[2,2] - POINT([1,2]) / (MIDPNT[2,1] -
POINT[1,1]);
LOWER := M * (X =~ MIDPNT[2,1]) + MIDPNT[2,2];

I¥ {INTPNT[OUTRING ~ COUNT,2] <= UPPER) AND (INTPNT
[(OUTRING - COUNT,2] >= LOWER) AND (ABS(X - INTPNT
[OUTRING - COUNT,1]) < 1)

THEN PASSLGS := TRUE
ELSE" PASSLGS := FALSE;
COUNT := COUNT + 1

UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (* SIDE *)

BEGIN (* RINGTEST *)
[F (NCDE[1l] - POINT{1,1]) = DELTA[OUTRING]
THEN (* NODE IS ON RIGHT SIDE--MAY BE A CORNER *)
IF (NODE[2] - POINT(1,2]) = DELTA[OUTRING]
THEN U_R_CORNER
ELSE
I (POINT[1,2]) - NODE([2]) = DELTA[OUTRING]
THEN L_R_CORNER
ELSE (* NCDE IS ON THE RIGHT SIDE *)

BEGIN
RIGHT := TRUE;
SIDE
END
ELSE
[ (POINT(L,1] - NODE[1}) DELTA[CUTRING]

Oy o

THEN (* NGODE 15 ON LEFT ZIDE--MAY BE A CORNER *)
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BEGIN

MIDPNT([1,1] := NODE[l] -
MIDPNT[1,2] := NODE[2];
MIDPNT[2,1] := NODE[1l]};
MIDPNT([2,2] := NODE[2] -
COUNT := 1;
REPEAT
TEMPNODE (1] := NODE([1]
TEMPNQDE[2] := NODE([2]

(* ESTABLISH X BOUNDARY ¥*)

GRIDSIZE([J] / 2;

GRIDSIZE[J] / 2;

- GRIDSIZE[J] * COUNT;
- GRIDSIZE(J] * COUNT;

M := (MIDPNT[1,2] - POINT[1,2]) / (MIDPNT[1l,1] -
POINT[1,11);
XBOUND := MIDPNT[1,1] + (TEMPNODE[2] - MIDPNT[1,2]) / M;
(* ESTABLISH Y BOUNDARY *)
M := (MIDPNT([2,2] - POINT[1,2]) / (MIDPNT[2,1] - POINT[1,1]);
YBOUND := M * (TEMPNODE[1l] - MIDPNT({2,1]) + MIDPNT[2,2];
NUMBERL := INTPNT[(OUTRING - .COUNT),1];
NUMBER2 := INTPNT[ (QUTRING - COUNT),2];

IF (NUMBERl <= TEMPNODE[1l]) AND (NUMBER1 >= XBOUND) AND
{(NUMBER2 <= TEMPNODE([2]) AND (NUMBER2 >= YBOUND)

THEN PASSLGS := TRUE
ELSE PASSLGS := FALSE;
COUNT := COUNT + 1

UNTIL (NOT PASSLGS) OR (C

END; (* U_R_CORNER *)

OUNT >= OUTRING)

PROCEDURE TOP OR_BOT; (* THIS PROCEDURE PERFORMS THE *)

(*
(*

LGS TEST WHEN THE NODE IS ON ¥*)
THE TOP OR BOTTOM OF THE RINGY*)

BEGIN
MIDPNT(1,1] := NODE(l] - GRIDSIZE[J] / 2;
MIDPNT(1,2] := NODE(2];
MIDPNT([2,1] := NODE{1l] + GRIDSIZE[J] / 2;
MIDPNT({2,2] := NODE{2];
COUNT := 1;
REPEAT
{* ESTABLISH LEFT BOUND *) °
M := (MIDPNT(1,2] - POINT{.,2]) / (MIDPNT[1l,1] -
POINT (1,11}
IF TOP
THEN Y := NODE[2] - GRIDSIZE[J] * COUNT
ELSE Y := NODE[2] + GRIDSIZE({J] * COUNT;
LFT := MIDPNT[l,l] + (Y - MIDPNT[1,2]) / M;
{(* ESTABLISH RIGHT BOUND *)
M := (MIDPNT(2,2] - POINT[1,2]) / (MIDPNT[2,1] -
POINTI[1,1]);
R := MIDPNT(2,Ll] + (Y - MIDPNTI[2,2]) / M;

IF (INTPNT[QUTRING - COUNT,1l] <= R) AND (INTPNT[OUTRING -
COUNT,1] >= LFT) AND (ABS(Y - INTPNT[OUTRING -

COUNT,2]) < 1)
THEN PASSLGS := TRUE

A-16
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NUMBERL :=
NUMBER2 :=

(NUMBER2 <= YBOUND) AND (NUMBER2 >= TEMPNCDE([2])
THEN PASSLGS := TRUE
ELSE PASSLGS := FALSE;

COUNT := COUNT =+
UNTIL (NOT PASSLGS)
END; (*L_R_CORNER *)

PROCEDURE U_L_CORNER;

L A A AL A

L AN A cunds ase

INTPNT [ (OUTRING - COUNT),1};
INTPNT { (OUTRING - COUNT),2]:
IF (NUMBER1 <= TEMPNODE(1l})

AND (NUMBER1 >= XBOUND)

OR (COUNT >= OUTRING)

(* THIS PROCEDURE IS USED TO

(* THE LGS TEST WHEN THE NODE
(* IS ON THE UPPER LEFT CORNER
(* OF THE RING

VAR NUMBER1, NUMBER2: REAL; (* NUMBER1 AND NUMBER2 ARE
(* INTERMEDIATE VARIABLES
BEGIN
MIDPBENT([1,1] = NODE[l] + GRIDSIZE[J] / 2;
MIDPNT(1,2] = NODE{[2];
MIDPNT([2,1] = NODE[1l];
MIDPNT([2,2] := NODE([2] - GRIDSIZE[J] / 2;:
COUNT := 1;
REPEAT
TEMPNODE [1] = NODE[1l] + GRIDSIZE[J] * COUNT:
TEMPNODE (2] := NODE[2}] - GRIDSIZE[J] * COUNT;
(* ESTABLISH X BOUNDARY %)
M := (MIDPNT[1l,2] - POINT([1,2]) / (MIDPNT[1,1] -
POINT(1,1]);
XBOUND := MIDPNT([1l,1] + (TEMPNODE([2] - MIDPNTI[1,2])

{* ESTABLISH Y BOUNDARY *)

AND

*)
*)
*)
*)

*)
*)

/ M;

M := (MIDPNT[2,2] - POINT{1,2]) / (MIDPNT[2,1] -
POINT[1,1]);
YBOUND := M * (TEMPNODE([l1] - MIDPNT[2,1]) + MIDPNT[2,2];
NUMBER] := INTPNT{ (OUTRING - COUNT),1}:;
NUMBERZ := INTPNT[ (OUTRING - COUNT},2];
I. (NUMBERLl <= XBOUND) AND (NUMBER1 >= TEMPNODE[1]) AND
(NUMBER2 <= TEMPNODE([2]) AND (NUMBER2 >= YBOUND)
THEN PASSLGS := TRUE
ELSE PASSLGS := FALSE;
COUNT := COUNT +
UNTIL (NOT PASSLGS) OR (COUNT >= QUTRING)

ENO; (* U_L_CORNER *)

PROCEDURE U_R_CORNER;

VAR NUMBERl, NUMBERZ:

{* THIS PROCEDURE PERFORMS THE

(* LGS TEST WHEN THE NODE IS CN
(* THE UPPER RIGHT CORNER OF

(* THE RING

REAL; (* NUMBERl AND NUMBERZ2 ARE

(* INTERMEDIATE VARIABLES

A-

15

*)
*)
*)

*)
*)

A M

B VRO IR, JUNDEROTNY | T il b

., S

L IR

e daadatus

L
dd. .-




TR T T AMTR T TR TR T e TR T O

BEGIN (* L L _CORNER *)

MIDPNT({1,1] := NODE[l]:
MIDPNT([1,2] := NODE[2] + GRIDSIZE([J] / 2;
MIDPNT[2,1] := NODE[l) + GRIDSIZE[J] / 2;
. MIDPNT([2,2] := NODE[2];
COUNT := 1;
REPEAT
TEMPNODE([1] := NODE[l] + GRIDSIZE([J] * COUNT;
TEMPNODE (2] := NODE[2] + GRIDSIZE[J] * COUNT;
(* ESTABLISH X BOUNDARY *)
M := (MIDPNT[2,2] - POINT(1,2])) / (MIDPNT[2,1] -
POINT(1,1]);
XBOUND := MIDPNT[2,1] + (TEMPNODE[2] - MIDPNT[2,2]) / M;
(* ESTABLISH Y BOUNDARY *)
M := (MIDPNT(1,2] - POINT(1,2]) / (MIDPNT(1,1] -
POINT(1,1]);
YBOUND := M * (TEMPNODE([1] - MIDPNT[1,1}) + MIDPNT[L1,2];
NUMBER1 := INTPNT({ (OUTRING =~ COUNT),1];
NUMBER2 := INTPNT{ (OUTRING - COUNT),2];

IF (NUMBER1 <= XBOUND) AND (NUMBER1 >= TEMPNODE[1l]) AND
(NUMBER2 <= YBOUND) AND (NUMBER2 >= TEMPNODE[2])

THEN PASSLGS := TRUE
ELSE PASSLGS := FALSE;
COUNT := COUNT + 1

UNTIL (NOT PASSLGS) OR (COUNT >= OUTRING)
END; (* L_L_CORNER *)

PROCEDURE L R CORNER; (* THIS PROCEDURE PERFORMS THE *)
T (* LGS TEST WHEN THE NODE IS ON *)
(* THE LOWER RIGHT CORNER OF *)
(* THE RING *)
VAR NUMBER1, NUMBER2: REAL; (* NUMBER1 AND NUMBER2 ARE *)
(* INTERMEDIATE VARIABLES *)
b
! BEGIN (* L_R_CORNER *)
[ MIDPNT{1,1] := NODE[Ll]; .
. ® MIDPNT[1,2] := NODE[2]) + GRIDSIZE[J] / 2;
‘ MIDPNT[2,1] := NODE[l] - GRIDSIZE[J] / 2;
MIDPNT(2,2] := NODE[2];
COUNT := 1;
REPEAT
, TEMPNODE[1] := NODE[l] - GRIDSIZE[J] * COUNT;
@ TEMPNODE (2] := NODE[2] + GRIDSIZE[J] * COUNT;
[ (* ESTABLISH X BOUNDARY *)
. M := (MIDPNT[2,2] - POINT(1,2]) / (MIDPNT[2,1] ~-
b POINT([1,1]);
, XBOUND := MIDPNT([2,1] + (TEMPNODE[2] - MIDPNT[2,2]) / M;
i (* ESTABLISH Y BOUNDARY *)
;' M := (MIDPNT([1,2] - POINT{1,2]) / (MIDPNT([L,1] -
| POINT(L1,1]});
f YBOUND := M * (TEMPNODE([1] - MIDPNT[1l,1}) + MIDPNT[1,2]:
t
)
b A-14




(* XCODE AND YCODE ARE INTERMEDIATE VARIABLES UGSED IN *)

(*  THE PROCESS OF FINDING THE CHAIN CODE VALUE *)
(* *)
(* TEMP [S AN INTERMEDIATE VARIABLE USED THROUGHOUT THE *)
(*  PROCEDURE *)
PROCEDURE FINDNODE; (* THIS PROCEDURE FINDS THE NODE *)
(*  CLOSEST TO THE RING *)
(*  INTERSECTION POINT *)
BEGIN (* FINDNODE *) ]
TEMP := (DELTAXY[OUTRING,1] + DELTA[OUTRING]) / GRIDSIZE([J]; j
XCODE := ROUND (TEMP) ; 4
TEMP := (DELTAXY[OUTRING,2] + DELTA[OUTRING)) / GRIDSIZE[J]; a
YCODE := ROUND (TEMP) ;
NODE([1] := POINT[1,1] + (XCODE - OUTRING) * GRIDSIZE([J]; ]
NODE[2] := POINT[1,2] + (YCODE - OUTRING) * GRIDSIZE[J] ]
END; (* FINDNODE *) :
:
PROCEDURE RINGTEST; (* THIS PROCEDURE DETERMINES WHERE *) o)
(*  THE INTERSECTION POINT IS AT  *) k
(* UNDER TEST *) )
VAR
‘e RIGHT, TOP: BOOLEAN; |
MIDPNT: ARRAY [1..2,1..2] OF REAL; ®
TEMPNODE: ARRAY [l..2] OF INTEGER;
M, XBOUND, YBOUND, LFT, R, UPPER, LOWER: REAL; >
X, Y: INTEGER; N
(* VARIABLE DEFINITIONS: *) :
(* *) r'1
(* RIGHT IS TRUE IF THE NODE IS ON THE RIGHT SIDE OF *) )
(*  THE RING *) ]
A (* A . * ) {
g (* TOP IS TRUE IF THE NODE IS ON THE TOP OF THE RING *) ]
2 (* . * )
- (* MIDPNT IS AN ARRAY HOLDING THE X-Y COORDINATES OF *) 5
, (* THE GRID MIDPOINTS SURROUNDING A NODE--USED FOR *) _
s (* LGS TEST ' *)
{ (* *)
(* TEMPNODE, M, XBOUND, YBOUND, LFT, R, UPPER, LOWER,  *) ]
(* X, ANDYARE INTERMEDIATE VARIABLESINTHELGS *) »
(* TESTING PROCESS *) 3
1
PROCEDURE L_L_CORNER; (* THIS PROCEDURE PERFORMS THE LGS*) 1
(* TEST IF THE NODE IS ON THE LOWER *) ]
(* LEFT CORNER OF THE RING *) ®
1 1
VAR NUMBER., NUMBER2: REAL; (* NUMBERL AND NUMBER2 ARE *) )
| (* INTERMEDIATE VARIABLES *) R
{ 1
| A-13 ®
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CLRLIST
END (* PEN OF U *)
END (* CASE STATEMENT *)
UNTIL FIRST OR FINISH
END (* IF NOT FINISH THEN CLAUSE *)
END; (* WHILE LOOP *)
CLOSE (G,RESULT)
END; (* FOR STATEMENT *)
WRITELN;

WRITELN ('COMPUTATIONS COMPLETE')

END. (* MAIN PROGRAM *)

MODULE COMPCODE;

VAR
DELTAXY, INTPNT: EXTERNAL ARRAY[1..5,1..2] OF REAL;
DELTA: EXTERNAL ARRAY[1l..5] OF INTEGER;
OUTRING, J: EXTERNAL INTEGER;

NUMRINGS, GRIDSIZE: EXTERNAL ARRAY([l..25] OF INTEGER;

CODE: INTEGER:;

(* VARIABLE DEFINITIONS:

(*

( *

VAR
PASSLGS: BOOLEAN;

TEMP: REAL;

(* VARIABLE DEFINITIONS:

( *

( *

(* TESTED

NN

M _J RN

. N SO

NODE: ARRAY[1l..2] OF INTEGER; a
POINT: EXTERNAL ARRAY([1..3,1..2] OF INTEGER; .
LEVEL: EXTERNAL ARRAY[l..25,1..5] OF INTEGER; -
LASTPNT: EXTERNAL ARRAY[l..5,1..4] OF INTEGER; )
* ) 3
) o
(* NODE IS AN ARRAY CONTAINING THE X-Y COORDINATES OF  *) ]
(*x THE NODE UNDER INVESTIGATION FOR ENCODING *) 3
*) |
(* CODE IS THE VALUE OF THE CHAIN CODE FOR THE NODE *) g
"
PROCEDURE COMPCODE; (* THIS PROCEDURE IS CALLED WHEN *) ;
(*  THE RING INTERSECTIONS ARE *) ]
(*  FOUND. IT CALCULATES THE * 1
(* CHAIN CODE FOR EACH LINK OF *) g
(*  THE DRAWING *) »
3
.
COUNT, VALUE, OUTER, XCODE, YCODE: INTEGER;

®

*)
;) ]
(* PASSLGS IS TRUE IF THE NODE PASSES THE LGS TEST *) 1

*)
(* COUNT, VALUE, AND OUTER ARE USED AS COUNTING *) 1
(*  YVARIABLES TO KEEP TRACK OF WHICH RING IS BEING *) .
*) g
1
d

A-12

[ < kx‘\_ o S ~ -~ P O S U O ._;




»‘_‘T-Y...,

~—r

T g s —— R S R i I S e 2t T Mt Mt 2t i it " AR hes A4 i ern haac AN Ry

CLRLIST
END; (* DONE *)

BEGIN (* MAIN PROGRAM *)
STARTUP;

FOR J := 1 TO NUMFILES DO
BEGIN (* FOR STATEMENT *)

INITIALIZE;
WHILE NOT FINISH DO
BEGIN (* WHILE LOOP *)
FIRSTPNT;
IF NOT FINISH THEN
BEGIN (* THEN CLAUSE *)
PTR := FRONT;
REPEAT
INTERSECT;
CASE PEN OF
'E' : BEGIN
FOR A := 1 TO NUMRINGS{J] DO
If INTSCT[LEVEL[J,A]] THEN
QUTRING := LEVEL[J,A]:
IF INTSCT[LEVEL({J,1l]] THEN
BEGIN
COMPCODE;
ALIGN;
WRITELN(G,'D',"' ',POINT[1,11],

P2INT[L1,2],' ',CODE)
END;
DONE
TLRLISI:
STINISH := TRUE
END; (* PEN TF E *)
'D' : BESIN
SUTRINS 1= LEVEL[J,NUMRINGS([(J]];
TCMPTIDE;
ALIGN;
WRITELN (3,PEN,' ',POINT(1,1],"' ',
PCINTI!L,2]),' ',CODE);

END;
'C' : BEGIN
FOR A := 1 TO NUMRINGS[J] DO
[F INTSCT[LEVEL{J,A]] THEN
OUTRING := LEVELI[J,A];
IF INTSCT[(LEVEL{J,1]] THEN
BEGIN
COMPCODE;
WRITELN(G,'D',"' ',POINT[1,1],
' ',POINTI[1,2],' ',CODE);
ALIGN
END;
DONE;
FIRST := TRUE;
A-11
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UNTIL (DISTX >= 0) OR (DISTY >= 0) OR ((PTR = NIL) AND
FINISH) OR ((PTR = NIL) AND {(PEN = 'C'));
IF (DISTX >= 0) QR (DISTY >=0)
THEN
BEGIN
REPEAT
FINDINT;
LAST;
A := A + 1;
DISTX := ABS(POINT{3,1] - PCINT(1,1]) - DELTA[A];
DISTY := ABS(POINT(3,2] - POINT{1,2]) - DELTA[A]
UNTIL (A >= QUTRING) OR ((DISTX < 0) AND
(DISTY < 0));
IF A <= OUTRING
THEN
IF (DISTX >= 0) OR (DISTY >= 0)
THEN
BEGIN
FINDINT;
LAST
END
ELSE A := A - 1
END
ELSE INTSCT[A] FALSE:;

IF FINISH THEN PEN
UNTIL A >= OUTRING
END; (* INTERSECT ¥*)

PROCEDURE DONE; (* T
(*
(*
(*
(*
(*

VAR A: INTEGER; (* A

BEGIN (* DONE *)
REPEAT
PTR := FRONT;
INTERSECT;
FOR A :=
IF INTSCT[A]

IEI

HIS PROCEDURE IS CALLED WHEN
INTERSECT HAS RETURNED WITH A PEN
VALUE OF 'E' OR 'U', MEANING THAT
THE END OF THE DRAWING HAS BEEN
REACHED BEFORE THE LAST RING WAS
INTERSECTED

IS A LOOP COUNTING VARIABLE *)

1 TO LEVEL[J,NUMRINGS[J]] DO
THEN OUTRING := A;
IF INTSCT(LEVEL(J,1]]

THEN

BEGIN (* IF INTSCT *)
COMPCODE;
ALIGN;
WRITELN!(G,'D',"' ',POINT[1,1],' ',POINT[L,2],
' ',CODE)
END; (* IT INTSCT *)
UNTIL PTR = NIL;
WRITELN(G,'D',' ',POINT(3,1],' ',POINT[3,2],' -1");

A-10
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DELTA[A])
THEN (* INTERSECTS ON LEFT OR RIGHT SIDE *)
BEGIN (* THEN CLAUSE *)
IF POINT[1,1] <= POINT[3,1]

THEN DELTAXY([A,1] := DELTA[A])
ELSE DELTAXY[A,1] := -1 * DELTA[A];
INTPNT(A,1] := POINT[1l,1] + DELTAXY[A,1]
END (* THEN CLAUSE *)
ELSE
BEGIN (* ELSE CLAUSE *)
TEMP := (POINT(3,1] - PCINT[2,1])) / (POINT(3,2]) -
POINT(2,2)});
TEMP := TEMP * (DELTAXY[A,2] - POINT[2,2] +
POINT[1,2])
DELTAXY[A,1] := TEMP + POINT[2,1] - POINTI[1,1];:
INTPNT[A,1] := POINT[1,1] + DELTAXY[A,1l]

END (* ELSE CLAUSE *)
END; (* FINDINT *)

PROCEDURE LAST; (* THIS PROCEDURE STORES THE LAST TWO *)

{* POINTS READ WHEN A RING IS *)
{* INTERSECTED *)
BEGIN (* LAST *)
LASTPNT[A, 1) = POINTI[2,1]:
LASTPNT (A, 2] = POINTI([2,2];
‘e LASTPNT[A, 3] = POINT[3,1];
LASTPNT [A, 4] = POINT({3,2]
END; (* LAST *)

BEGIN (* INTERSECT *)

OUTRING := LEVEL[J,NUMRINGS[(J]];
PTR := FRONT;
A := 0;
REPEAT
IF NUMRINGS(J] = 1 THEN A :=-OQUTRING ELSE A := A + 1;
REPEAT
IF PTR <> NIL
THEN .
BEGIN (* THEN CLAUSE *)
POINT([2] := POINTI(3];
READLIST
END (* THEN CLAUSE *)
ELSE

IF NOT FINISH AND (PEN <> 'U') THEN
BEGIN (* IF NOT FINISH AND PEN <> U *)

POINT([2] := POINT[23];

READLN (F, PEN, POINT[3,1], POINTI[3,2]);

FINISH := EOF(F);

INSERT

END; (* [F NOT FINISH AND PEN <> U *)
DISTX := ABS(POINT[3;l]-POINT[l,l])-DELTA[AI;
DISTY := ABS(POINT{3,2]-POINT[1,2])-DELTA[A]
A-9
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P := PTR
PTR := P~ .NEXT;
DISPOSE (P)
END;
FRONT := PTR

) ~e

END; (* ALIGN ¥*)

PROCEDURE STARTUP; (* PARAMETER INITIALIZATION *)
VAR L: INTEGER; (* L IS USED AS A LOOP COUNTING VARIABLE *)

BEGIN (* STARTUP *)

WRITELN ('THIS PROGRAM PLOTS A MULTI-RING CHAIN CODED
DRAWING AS THE POINTS ARE DIGITIZED');

WRITELN;

WRITE('ENTER THE GRIDSIZE DESIRED: '};

READLN (GRIDSIZE) ;

WRITE {'ENTER THE NUMBER OF RINGS USED BY THE CODE: ‘');

READLN (NUMRINGS) ;

WRITELN('ENTER THE RINGS USED BY CODE STARTING WITH THE

LOWEST"' ) ;
WRITE (' (EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3 5): "}
FOR L := 1 TO (NUMRINGS - 1) DO

READ (LEVELI[L]) ;
READLN (LEVEL [NUMRINGS] ) ;

WRITELN;

FOR L := 1 TO LEVEL[NUMRINGS] DO
DELTA (L] := GRIDSIZE * L;

FCR L := 1 TO 5 DO
INTSCT([L] := FALSE;

FINISH := FALSE;

BACK := NIL;

PORTIN;

PLOTIN;

ERROR FLAG := PREPARE;

SAMPLING (ERROR_FLAG) ; '
WRITELN('NOW BEGIN TAKING POINTS');
WRITELN

END; (* STARTUP *)

PRCCECURE READ DIG; (* THIS PROCEDURE READS THE *)
(* INCOMING DATA FROM THE * )
(* DIGITIZER * )
JAR LCGP, CZCUNTER: INTEGER; {* LOCP AND COUNTER ARE *)
(* COUNTER VARIABLES *)
BEGIN (* READ DIG *)
ERFLAG := ' ';
REPEAT
KEYNUMBER := 0O;

GET_POINT(DATA, ERRCR_FLAG, KEYNUMBER);
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IF KEYNUMBER <> 0 THEN
BEGIN
IF KEYNUMBER 3 THEN PEN := 'D';
IF KEYNUMBER = 2 THEN FINISH := TRUE;
IF KEYNUMBER >= 4 THEN PEN := 'U'
END; |
UNTIL (KEYNUMBER = 0) OR (ERROR_FLAG = 'E'); ]
IF ERROR FLAG <> 'E'
THEN
BEGIN (* IF ERROR_FLA: STATEMENT *)
COUNTER := 1;
FOR LOOP := 1 T2 2 DO
BEGIN (* FOR STATEMENT *)
CNTNUM := 1;
REPEAT
NUMARRAY [CNTNUM] := DATAT 2UNTER] ;
CNTNUM := CNTNJUM + 1;
COUNTER := COUNTER + 1
UNTIL DATA[COUNTER] = ',';
COUNTER := COUNTER + 1;
CNTNUM := CNTNUM - 1;
WHATNUM (NUMARRAY, CNTNUM, : INT :,L_CP)y; »
END (* FOR STATEMENT *) 1
END (* IF THEN *)
ELSE (* IF ERROR_FLAG *) 1
BEGIN (* IF ELSE *) ]
FINISH := TRUE;
\e WRITELN('ERRCR IN READING FRUM DIZITIZER'); »
WRITELN( 'PROGRAM WiLL TERMINATE')
END (* IF ELSE *)
END; (* READ DIG *)

i

. 2O

1

PROCEDURE PLOT; (* THIS PROCEDURE IS USED TO SEND THE *)
(* QUTPUT COORDINATES TO THE FLCTTER *)

VAR LOOP:IyTEGER;V(* oo0P IS A COUNTER VARIABLE *)

PRTIPRENPEA, PO

BEGIN (* PLOT *)
PLOTCNT := 16;
XYDATA[1] NODE[1];
XKYDATA[2] NODE [2] ;
FOR LOOP := 1 TO 2 DO
, BEGIN (* FOR STATEMENT *)
b TEMP := XYDATA[LOOP] * SCALE;
KYDATA[LOOP] := ROUND(TEMP) + TRANS[LOCP]:
LENGTH := 4;
WHATCHAR (XYDATA[LOOP), PLOTLINE, PLOTCNT, LENGTH);
PI..TCNT := PLOTCNT 1;
PLOTLINE [PLOTCNT) = ', ';
PLOTCNT := PLOTCNT 1
END; (* FOR STATEMENT *) ,
PLOTCNT := PLOTCNT 1; \
PLOTLINE[PLCTCNT) = ' '; '

il
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PLOTCNT := PLOTCNT + 1;
PLOTLINE [PLOTCNT] := CHR(13};
PLOTCNT := PLOTCNT + 1;
PLOTLINE [PLOTCNT] = CHR(10};
PLOTCNT := PLOTCNT + 1;

PLOTLINE [PLOTCNT] "1
LINOUT (PLOTLINE, ERROR_FLAG) ;
CHARIN (SIGNAL, ERFLAG)

END; (* PLOT *)

PROCEDURE FIRSTPNT; {(* THIS PROCEDURE FINDS THE FIRST
(* PEN DOWN IN THE DRAWING AND
(* INITIALIZES POINT

VAR NUMBER, N: INTEGER;

BEGIN
FIRST := FALSE;
FINISH := FALSE;
NUMBER := 0; _
REPEAT (* FIND THE FIRST PEN DOWN... KEEP LAST PEN UP
(* ({POINT{2]}]) AND FIRST PEN DOWN (POINT[3}])
READ DIG; (* GETS A POINT FROM THE DIGITIZER *)
NUMBER := NUMBER + 1;
IF KEYNUMBER = 2 THEN
BEGIN
FINISH := TRUE;
PEN := 'E'
END;
IF NOT FINISH THEN
BEGIN
NODE[1]
NODE[2]
PLOT
END
UNTIL (PEN = 'D') OR FINISH;
POINT[1] POINT([3];
POINT(2] POINT([(3];
PLOTLINE([{1l] := 'D'
INSERT
END; ({(* FIRSTPNT *)

POINT([3,1];
POINT[3,2];

! PROCEDURE INTERSECT; (* THIS PROCEDURE FINDS THE

! (* INTERSECT POINTS FOR EACH OF
' (* THE RINGS OUT TO THE
(* OUTERMOST RING

VAR A, DISTX, DISTY: INTEGER;

PROCEDURE FINDPNT; (* THIS PROCEDURE FINDS THE X-Y
{* COORDINATES OF THE ACTUAL

A=-25
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(* INTERSECTION POINT *)
VAR
TEMP: REAL;
SIGNX: INTEGER;

BEGIN (* FINDPNT *)

INTSCT[A] := TRUE; (* THE RING 1S INTERSECTED BEFORE EOF
OR END OF LINE SEGMENT *)
IF POINT({3,1] = POINT[2,1]
THEN

BEGIN (* THEN CLAUSE *)
IF POINT({1,2] <= POINTI[3,2]

THEN DELTAXY([A,2] := DELTA[A]
ELSE DELTAXY(A,2] := -1 * DELTA[A];
INTPNT([A,2] := POINT(1l,2] + DELTAXY[A,2]
END (* THEN CLAUSE *)
ELSE
BEGIN (* ELSE CLAUSE *)
TEMP := (POINT(3,2] - POINT{2,2]) / (POINT{3,1] -
POINT[2,1]};

(* SLOPE OF DIGITIZED LINE CROSSING THE GRID ¥*)
IF POINT[3,1] >= POINT[2,1]

THEN SIGNX := 1
ELSE SIGNX := -1;
TEMP := TEMP * (SIGNX * DELTA[A] - POINT[2,1] +
POINT 1,1]);
DELTAXY([A,2] := TEMP + POINT(2,2] - POINT(1,2};
INTPNT[A,2] := POINT[1,2] + DELTAXY[A,2];

IF ABS (DELTAXY[A,2]) > DELTA[A]
THEN (* INTERSECTS ON TOP OR BOTTOM OF GRID *)
BEGIN (* THEN CLAUSE *)
IF DELTAXY[A,2] > O

THEN DELTAXY([A,2] = DELTA[A]
ELSE DELTAXY([A,2] := -1 * DELTA[A];
INTPNT{A,2] := POINT[1,2] + DELTAXY[A,2]
END (* THEN CLAUSE *)
END; (* ELSE CLAUSE *) .
IF (POINT(3,2}] = POINT([2,2]) OR (ABS(DELTAXY[A,2]) <

DELTA[A])
THEN (* INTERSECTS ON LEFT OR RIGHT SIDE *)
BEGIN (* THEN CLAUSE *)
IF POINT(1,1] <= POINT([3,1]

THEN DELTAXY(A,l] := DELTA[A]
ELSE DELTAXY[A,l] := -1 * DELTA[A};
INTPNT([A,1] := POINT[1,1] + DELTAXY[A,l]
END (* THEN CLAUSE *)
ELSE
BEGIN (* ELSE CLAUSE *)
TEMP := (POINT{3,1] - POINT[2,1]) / (POINTI[3,2] -
POINT[2,2]);
TEMP := TEMP * (DELTAXY[A,2] - POINT(2,2] + POINT{1,2]);
DELTAXY{A,1} := TEMP + POINT([2,1} - POINTI[L,1]};:
INTPNT([A,1] := POINT(l,l] + DELTAXY[A,l]
A-26
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END (* ELSE CLAUSE *)
END; (* FINDPNT *)

PROCEDURE LAST; (* THIS PROCEDURE STORES THE LAST TWO
(* POINTS READ WHEN A RING IS

(* INTERSECTED *)
BEGIN (* LAST ¥*)
LASTPNT([A,1] := POINT(2,1];
LASTPNT (A, 2] = POINTI[2,2];
LASTPNT (A, 3] = POINT[3,1];
LASTPNT[A,4] := POINT(3,2]

END; (* LAST ¥*)

BEGIN (* INTERSECT *)

CUTRING := LEVEL[NUMRINGS]:
PTR := FRONT;
A = J;
REPEAT
IF NUMRINGS = 1 THEN A := OUTRING ELSE A := A + 1;
REPEAT
IF PTR <> NIL
THEN
BEGIN (* THEN CLAUSE *)
POINT[2] := POINTI(3];
READLIST
END (* THEN CLAUSE *)
ELSE

IF NOT FINISH AND (PEN <> 'U') THEN
BEGIN (* IF NOT FINISH AND PEN <> U *)

POINT([2] := POINT[3];
N READ_DIG;
IF KEYNUMBER = 2 THEN FINISH := TRUE;
INSERT
END; (* IF NOT FINISH AND PEN <> U *
DISTX := ABS(POINT{3,1}-POINT([1,1]))~-DELTA]|
DISTY := ABS(POINT([3,2]=-POINT[1,2])-DELTA]|

UNTIL (DISTX >= 0) OR (DISTY >= 0) OR ((PTR
AND FINISH) OR ((PTR = NIL) AND (PEN =
IF (DISTX >= 0) OR (DISTY >=0)

)
Al;
Al
= NIL)
Uty

THEN
BEGIN
REPEAT

FINDPNT;

LAST;

A = A + 1;

DISTX := ABS(POINT{3,1] = POINT(1l,1]) -
DELTA[A];

DISTY := ABS(POINT[3,2] - POINT[1l,2]) -
DELTA[A]

UNTIL (A >= OUTRING) OR ((DISTX < 0) AND (DISTY < 0));:
IF A <= OUTRING
THEN
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[F (DISTX >= Q) OR (DISTY >=

THEN
BEGIN
FINDPNT;
LAST
END
ELSE A := A - 1
END.
ELSE INTSCTI[A] = FALSE;
IF FINISH THEN PEN := 'E'

UNTIL A >= OUTRING
END; (* INTERSECT *)

PROCEDURE DONE; (* THIS PROCEDURE IS CALLED WHEN THE
(* END OF THE DRAWING HAS BEEN REACHED.*)

VAR A: INTEGER;

BEGIN (* DONE *)

REPEAT
PTR := PRONT;
INTERSECT;
FOR A := 1 TO LEVEL[NUMRINGS] DO

[F INTSCT[A] THEN OUTRING := A;

[F INTSCT[LEVEL[1]] THEN

BEGIN (* IF INTSCT *)
CALCODE;
ALIGN;
PLOT

END; (* IF INTSCT *)

UNTIL PTR = NIL
END; (* DONE *)

BEGIN (* MAIN PROGRAM *)
STARTUP;
WHILE NOT FINISH DO *
BEGIN (* WHILE LOQP *)
FIRSTPNT; ¢
[F NOT FINISH THEN
BEGIN (* IF THEN ¥*)

PTR := FRONT;
REPEAT
INTERSECT;
CASE PEN OF
"E', 'U' : BEGIN (* CASE PEN OF E OR U *)
FOR A := 1 TO NUMRINGS DO
IF INTSCT[LEVEL[A]]

OUTRING
IF INTSCT({LEVEL[1])
IF INTSCT *)

BEGIN

( *

CALCODE;
ALIGN;

A-28
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PLOT
END; (* IF INTSCT *)

DONE;
IF PEN = 'E'
THEN FINISH := TRUE

ELSE FIRST := TRUE
END; (* PEN OF E OR U *)

'D' : BEGIN (* CASE PEN OF D *)
QUTRING := LEVEL[NUMRINGS];
CALCODE;

ALIGN;
PLOT

END; (* PEN OF D *)
END (* CASE STATEMENT *)
UNTIL FIRST OR FINISH
END (* IF THEN *)
END; (* WHILE LOOP *)
WRITELN;
WRITELN('ALL DONE"')
END. (* MAIN PROGRAM *)

The only difference between the COMPCODE procedure
for CHNCODE and the COMPCODE procedure for PLOTCODE 1s the
variables NUMRINGS, GRIDSIZE, and LEVEL. For the PLOTCODE
program, NUMRINGS and GRIDSIZE are declared as external
integers 1in the VAR section instead of single dimension
Also, LEVEL 1s now a single dimension array

sread of a two dimensional array. Since these are the

—
3

only differences, the source code for the COMPCODE

procedure for PLOTCODE 1s not listed here.
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Appendix B

This appendix contains all the data and figures
pertaining to the analysis of the chain codes. The data

in the tables 1s arranged in descending order.
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Table B-1
Circlée Coded With 0.25 Inch Gridsize
| i
Code aepl Code bpl
(sq in/in) {bits/1in)
: 4 .0571219 1 11.4869 j
5 3 .0460307 1,2 10.636 i
)
2 .0437804 1,2,4 10.2106
2,4 .0417099 1,4 10.2106 ]
| 1 .0399003 1,2,3,4 9.92697 ?
2,3 .0344327 1,2,3 9.78515 ]
' , 1,2,3 .0340151 2,3 9.35971 ]
i e i
3,4 .029784 2,4 9.35971 :
1,2 .0297006 2,3,4 8.93427 {
1,2,4 .0293341 1,3 8.50883 é
1,3 .0272705 1,3,4 8.50883 ]
1,4 .0271261 2 7.94157 E
1,3,4 .0246575 3, 4 7.65794 ;
2,3,4 .0235653 3 6.38162 ]
1,2,3,4 .0222014 4 4.96248 ]
i
"
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Table B-2

Code aepl
(sq 1n/1n)

4 .0433054
3 .042194
3,4 .038012
2 .0378037
2,4 .0342058
1 .0325768
2,3 .0277863
1,4 .0267378
1,2 .0259034
1,2,3,4 .02580092
2,3,4 .0257596
1,3 .025754
1,3,4 .025387
1,2,4 .0250073
1,2,3 .0237554

B-2

Code

Circle Coded With 0.2 Inch Gridsize

bpl

(bits/in)

16.

14.

14.

12.

12.

11.

11.

11.

11.

11.

11.

5922

1813

0395

4087

3378

9123

9123

9123

416

3451

0614

.64334

.93427

.15429

.38162




Code aepl Code bpl :

(sq in/in) {bits/1in) 1

4 .025238 1 18.2939 1

3 .023449 1,4 17.0176 é

2 .0218877. 1,2 16.6631 f
3,4 0216231 2,3 15.3159

. .0210488 1,2,3 15.3159 é

1,2 .0206047 1,2,3,4 14.3941 |

2,3 0200604 2,3,4 14.3941 .

\eo 2,4 .0195636 1,3 14.1813 i

1,2,4 .017529 1,2,4 14.103 ]

1,4 .01749138 2,4 14.0395 1

1,2,3,4 .0169143 1,3,4 13.6141 J
1,2,3 0167028 2 12.4796
2,3,4 0165344 3,4 11.0614

s, 0161368 3 10.636 %

L .9151618 4 8.15429 ]

J

]

®
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Table B-3

Circle Coded With 0.15 Inch Gridsize

)
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Table B-4

Circle Coded With 0.1 Inch Gridsize

Code

aepl Code
{sg in/in)

.0206494 1
.0181527 1,4
.0178209 1,2
.0164992 1,2,3,4
.0159846 1,2,3
.0159659 1,3,4
.0152976 1,3
.0151722 1,2,4
.0148214 2,3,4
.0139625 2,3
.0139252 2,4
.0138379 2
.0132626 3,4,
.0128413 3
.0126179 4

B-5

DG S S R TP S ROt PR

A

bpl

LA San i en Ms _aas Aas Ras Bwm A en g —

(bits/1in)

27.

27.

25.

25.

25.

24.

24.

23.

23.

22.

21.

18.

17.

15.

11.

2282
2282
881

3137
101

6756
1083
3992
3283
9738
6975
4358
0176

5995

6996

CYRPIE NP, SUPE S SR SR
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Table B-5 v

Circle Coded With 0.05 Inch Gridsize {

Ccde aepl Code ppl @

(sq 1n/1n) (bits/1n) )
2 .00899887 1 54.2438
4 .0088706 1,2 53.8832
2,4 .00825768 2,3,4 45.1677
3,4 .0082074 2,3 42.5441

-
3 .00798065 2,4 42.1187
2,3,4 .00789176 2 36.3043
2,3 L.00740921 3,4 32.753

. .00721703 3 20.4899
1,2 .006866394 4 23.0447

) ’1

]

k

)

d

]

{

d

]

2

4

B=4
g
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Table B-6

SQUARE-0 Coded With 0.25 Inch Gridsize

Code ~ aepl Code bpl

(sg in/1n) (bits/1n)
3 .0865381 1,4 14.593
4 .0782665 2,3,4 13.1337
3,4 .0524139 1,3,4 13.1337
Z .033646 1,3 12.1609
2,3 .03357 1 11.6744
2,4 .0333724 1,2,3,4 ° 11.0664
2,3,4 .0257822 1,2 10.9448
JPIN .023153 1,2,3 10.9448
N .023153 2,3 10.2251
L3 .0231:3 1,2,4 10.2151
2, 2,4 LJ23153 2,4 8.75584
Ll 3 J23153 2 7.78297
1,2,4 223153 3,4 7.29654
1,3,4 0235033 3 65.08044

Lad

W
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Table B-20

SQUARE=-45 Coded With 0.05 Inch Gridsize

Code aepl Code bpl
(sg in/1in) (bits/1in)
4 .0120054 1,2 56.7843
3,4 .0113016 2,3,4 45.3053
3 .0112894 1 43.2293
2,4 .0106233 2,4 40.2985
2 .0106233 2,3 39.5658 "
1 .0104661 2 28.8195 X
1,2 .0101697 3,4 28.5753 ;
-4
2,3,4 .00993329 3 24.4233 Y
2,2 .00992719 4 18.3175 )
':l
4
[ J
4
)
7]
’
B-21 ]
1
>
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Table B-19

SQUARE-45 Coded With 0.1

Code

aepl

{(sq in/1in)
.0170141
.014881
.0148688
.0126287
.0126165
.0123596
.0123596
.0119108
.0119108
.0119108
.0119108
.0119108
.0119108
.0119108

L0119108

LAREL b S sl um ot o e Lt e aae hiE st it o RIS IR

Inch Gridsize

Code bpl
(bi1ts/1n)
1,4 32.2388
1,2,3,4 28.209
1,3,4 27.8426
1,2,4 25.6445
1,2,3 25.6445
1,2 24.4233
1,3 23.8127
1 21.6146
2,3,4 20.5156
2,3 19.0502
2,4 18.3175
2 14.654
3.4, 13.9213
3 12.8222
4 9.76925

rwT e W w v -
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Table B-18

SQUARE=-45 Coded With 0.15 Inch Gridsize

Code aepl Code bpl
(sg in/in) (bits/in)
4 .0360339 1,4 19.7829
3,4 .0278093 1 14.2876
3 .027791 1,2 14.0434
2,4 .0195481 1,3,4 . 13.9213
2 .0195431 1,2,4 13.9213
2,3.,4 | .0168188 1,2,3,4 13.677
2,3 .0168004 1,3 12.8222
1,2,4 .0140711 2,3,4 12.8222
1,3,4 .0140711 2,4 12.4559
1,2 .0140711 1,2,3 12.4559
1,2,3,4 0140711 2,3 11.7232
1 .0140711 2 9.76935
1,3 .0140711 3, 4e 9.52511
1,4 .0140711 3 8.54818 ’
1,2,3 .0140711 4 6.71643
{
1
:
)
i
B=-19 I
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Table B-17

AR B W b A aan At han et T ey T

Ty ——

SQUARE=-45 Coded With 0.2 Inch Gridsize

Code

1,2,3,4

aepl Code
(sg 1n/1in)
.0787137 1,2,3,4
.0494789 1,4
.0494545 1,2,4
.0397096 1,3,4
.0396852 1,2,3
.0396852 1,2
.0348249 1,3
.0299402 2,3,4
.0299402 1
.0299402 2,3
.0299402 2,4
.0299402 -2
.0299402 3, 4.
.0293402 3
.0299402 4
B-13

PN Y WY S S S e

D

bpl
(bits/1in)
17.0963
16.8521
15.3867
15.3867
15.3867
14.0434
12.8222
11.1126
10.6241
10.2578
9.52511
7.32701
7.32701
6.71643

4.88467
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Table B-16

SQUARE-45 Coded With 0.25 Inch Gridsize:

Code aepl

(sg in/1in)

4 .106124

3,4 .0617745
1 .0410334
1,4 .0410334
2 .0392058
2,4 .0392058
1,2,4 .0390922
1,2 .0390922
2,3,4 .0388089
2,3 .0387783
1.3 .0372728
1,3,4 .0372728
1,2,3,4 .0372357
1,2,3 .0372357
3 .035274

Code

1,3,4
l,2’3,4
1,2[4

1,2

bpl

(bits/in)

14.654
13.1886
12.8222
11.7232
10.9905
10.9905
10.9905
9.52511
9.403
8.05971
8.05971
6.59431
6.35007
5.49526

4.27409
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Table B-15

LM BRI Ae e i an Je aney o

SQUARE-30 Coded With 0.05 Inch Gridsize

Code

aepl

(sq in/1in)
.01024438
.00979521
.00971353
.00939931
.00915299
.008925456
.00798058
.00722729

.0049792

Code

bpl
(bits/1in)
51.6472
51.1656
46.35
44.0626
40.4509
34.1906
31.0605
28.8935

21.6701




e
' Table B-14
SQUARE-30 Coded With 0.1 Inch Gridsize
® Code aepl Code bpl
(sgq in/in) (bits/1n)
4 .027109 1,4 29.6158
‘5 2,3,4 .0214104 1,2 25.8837
2,3 .0202131 1 25.643
3 .0193276 1,2,3,4 25.2818
® 2 .0182949 1,3 24.6799 ¢
1,2 .0170821 - 1,2,3 24.5595
2,4 .0170821 . 2,3,4 24.4391
a . 3,4 .0168885 1,3,4 23.1148
1 .0149234 1,2,4 23.1148
1,3 .0149234 2,3 22.3924
-
) 1,2,4 .0143164 2,4 20.2254
1,4 .0137629 2 17.3361
1,2,3 .0137092 3,4 16.6137
* 1,3,4 .0136997 3 14.4467
1,2,3,4 .0130003 4 10.835
°
[ J
B-15
™

“

ST . o C. - " = . ) : ' ° *
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Table B-13

SQUARE-30 Coded With Q.1

Code

8]

aepl

(sg in/1n)
.0406664
.0355717
.0314643
.0302024
.0296651
.026365
.0239979
.0224846
.0224699
.0218679
.0208045
.0205804
.0186802
.0185656

.0175606

5

Inch Gridsize

Code bpl
(bits/in)
L,4 23.8371
1,2,3,4 20.2254
1,2,4 19.5031
1,2,3 18.0584
1 17.3361
1,3,4 16.6137
2,3,4 16.0118
1,3 15.6506
2,3 15,1691
2,4 - 13.7244
3,4 11.5574
2 11.5574
3 ] 9.63117
1.2 8.30635
4 7.22338

A L 4 s e a

e

w3




Table B-12
SQUARE-30 Coded With 0.2 Inch Gridsize
Code aepl Code bpl
{(sgq in/in) {(bits/in)

3,4 .061025 1,4 17.3361

3 .052909 1,2,3,4 16.8545

2 .0481822 1,3,4 15.8914

4 .0476209 1,2,4 15.1691 J

2,4 .0456853 1,2 15.0487 :

1 .0338033 1,2,3 13.7244 |

1,3 .0330289 1,3 13.2428 i

- 1,4 .0325602 1 13.002 "

1,2,4 .0317454 2,3,4 11.7981

2,3,4 .030705 2,3 10.835 J
Fi 1,3,4 .0302271 2,4 10.1127 ?
: 1,2,3 .0297057 2 . 8.66806 i
; 2,3 .0282764 3.4 7.94572 3
r’ 1,2,3,4 026627 3 7.22338 :
E 1,2 .0259995 4 6.01948
; \
+‘ ﬂ
>
[c .
] B-13
r

(]

b
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Table B-11

SQUARE-30 Coded With 0.25 Inch Gridsize

Code aepl Code bpl
(sgq in/1in) {bits/1in)
4 .0764967 1,4 13.002
3 .0679133 1,2 11.437
2 .0466314 1,2,3,4 10.9554
2,4 0466163 1 10.835 ]
'l
2,3,4 .0410383 1,3 10.835 j
2,3 .0369186 1,2,4 10.835 ;
\
1 .0364514 2,3,4 10.1127 )
‘e [
1,3 .0352499 1,3,4 10.1127 1
: 1,2,3 .0313723 1,2,3 10.1127
’
\ 1,2,4 .0287189 2,4 9.3904
C ’
] 1,4 .0284036 2,3 9.3904 j
1,2 .0272566 2 7.22338 3
E 1,3,4 .0258869 3,4 6.50104 ]
[
o 3,4 .0249573 3 6.01948 ‘
3
o K
; 1,2,3,4 .0231457 4 4.81559 1
- :
P »
‘: ;
: 3
, )
| ~4
! - Y
3 .
»
1
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Table B-10

SQUARE-0 Coded With 0.05 Inch Gridsize

Code aepl Code bpl
(sq in/in) (bits/1in)
3 .00995035 1,2 61.4125
3,4 .00916263 1 59.1019
2,3 .00874405 2,3,4 51.0757
4 .00861047 2,3 48.1571
*
2,3,4 .00844003 2,4 46.6978
2,4 .00842635 2 -39.4013
2 .00841455 3,4 35.753
N

1 .00818465 3 32.8344
1,2 .00818465 4 24.9298

F. .

]

L

b

[ ]

L

[

[

b

L

’
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Table B-9

Ty vy w Pl aar)

SQUARE-0 Coded With 0.1 Inch Gridsize

Code

aepl

(sq in/in)
.0253283
.0205395
.0186636
.0184423
.0183207
.0178789
.0176783
.0169646
.0168308
.0166915
.0166063
.016587
0165201

.J1in307n

3 LTIANEST

Code

bpl
(bits/1in)
37.2123
31.3751
30.6454
29.7942
29.5509
28.4565
28.4565
27.362
24.6866
24.0785
22.6192
19.9438
17.5117
15.8091

12.7689

.

........
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Table B-8

T Y, T
f

SQUARE~0 Coded With 0.15 Inch Gridsize

n..lAA,_L._\

Code aepl Code bpl
(sg in/in) {bits/in)
4 .0480225 1,2,3,4 29.7942 f
3 .0433962 1,2,3 26.9972 Y
3,4 .0432776 1,4 26.9972
2 .0387158 1,3,4 26.2675 )
2,3 .0385793 1,2,4 26.2675 >
2,4 .0385269 1,2 24.9298 :
2,3,4 .0385269 1,3 23.7137 ]
‘e °
1 .0315528 1 19.3358 y
1,3 .0313704 2,3,4 17.8765 i
1,3,4 .0312792 2,3 16.0523 ]
1,4 .0312792 2,4 15.3227 .
[ 1,2 031259 .2 | 12.6473 .
‘ 1,2,3 .0311678 3,4, 11.6744 ;
I 1,2,3,4 .0310766 3 10.9448 ]
1,2,4 .0310766 4 8.51263
.<
[
5
: ‘
3 B-9 ]
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L DO
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Table

B-7

SQUARE-0 Coded With 0.2 Inch Gridsize

Code

aepl
{sq in/in)
.0764335
.0617601
.0401376
.0286988
.028496

.0283501
.0283014
.0217971
.0216755
.0215539
.0215539
.0214323
.0214323
.0214323

.0214322

P A e

Code

SO I 2N

bpl

(bits/in)

16.174
16.0523
16.0523
15.3227
15.2011
14.593
14.593
13.8634
12.7689
11.6744
10.9448
9.72872
8.51263
8.02619

6.08044

................

ram
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Table B-21

SQUARE-60 Coded With 0.25 Inch Gridsize

Code

aepl Code
(sq in/in)
.0694956 1,4
.066€37 1,3
.0501826 1,2,3,4
.0500789 1,3,4
.041145 1,2
.0367181 1
.0328972 1,2,4
.0321207 1,2,3
.0316774 2,3,4
.0313565 2,3
.0307504 2,4
.0301129 2
.0287303 3,4,
.0228083 3
.0220892 4
B-22

bpl

(bits/L1ln)

12.

11.

11.

11.

11.

10.

10.

10.

8518
61438
3778
e

2593
6667
6667

6667

.95559

.53336

.53336

.11113

.40002

.33335

.74075
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Tab

le B-22

SQUARE-60 Coded With 0.2 Inch Gridsize

Code

aepl

{(sq in/1i
.0519887
.0496305
.0431296
.0431296
.0415733
.0390647
.0357547
.0326856
.0315811
.031371
.030425
.0303095
.0282973
.0266533

.0251806

[s9)
|

Code
nj}

23

bpl

(bits/in)

14.

14.

14

14.

13.

13.

12.

12.

11.

10.

10.

9333

2222

L2222

1037

5111

037

8

0889

6148

6667

6667

.53336
.82225
.70373

33335

% e e~
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Table B-23

SQUARE-60 Coded With 0.15 Inch Gridsize

Code

aepl
(sq 1n/1n)
0448341
.036445

.0289377
.0279655
.0268246
.024342

.0236559
.0236198
.0228392
.0214367
.0207672
.0202818
.0193619
.0192783

.01703

24

Code

112
l'4

1,2,3,4

bpl

(bits/1n)

19.

19.

19.

18.

17

17

16.
16.
14.
14.
13.
11.

10.

5556

2

0815

4889

.0667

.0667

5926

5926

9333

2222

5111

3778

6667

.48151

.11113
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Table B-24

SQUARE-60 Coded With 0.1 Inch Gridsize

Code aepl Code bpl

[ (sq in/in) (bits/in) f
1
g 4 .0283¢57 1,4 27.7334 ]
L‘ %’
‘ 3 .0193231 1,2 26.6667 ,
2 .0189168 1 25.6
i 2,4 .0186962 1,2,3,4 24.8889 ]
1 ' !‘
s 3,4 .0166949 1,3 23.7037 ;
2,3,4 .0156298 1,3,4 23.4667
2,3 .0149809 1,2,4 23.4667 ]
{4 ‘e U
s 1 .0148037 1,2,3 23.4667
¢ 1,2,4 .0141943 2,3,4 21.5704 }
b E
‘? 1,4 .0138881 2,4 20.6223 .
‘ 1,3 .013315 2,3 20.6223 ;
b 4
q 1,2 .0124786 2 17.0667
t. 1,3,4 .0121346 3,4 15.6445 R
. E
' 1,2,3,4 .0118581 3 14.2222 R
q 1,2,3 .0114837 4 10.6667 ]
]
] .l
> 3
-
[]
} ?
} >-<.
s
t B-25 1
| ’
3
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Table B-25

SQUARE~-60 Coded With 0.05 Inch Gridsize

-
WL o W L IR s N

h Code aepl Code bpl
(sq in/in) (bits/in) j

' 4 .00939215 1,2 50.3705 ]
( Y
% 2 .00916857 1 50.1335 ,
}

2,3,4 .0090146 2,3,14 46.4594

3 .00898931 2,3 40.5334 j
r‘ . '
f 2,4 .00836145 2,4 37.689 )
: 3,4 00777994 2 33.6593 :
! I .00696494 3,4 30.5779 g
(‘e >

2,3 .00631943 3 27.8519

1,2 .00464985 4 21.3334

»
- 1
g ]
{ g
]

>
[ ‘
\ »
J
} 4
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Sine Wave Coded With 0.25 Inch Gridsize

Code

Table B-26

aepl

(sq in/1n)
.177014
.101479
.0674033
.057571
.0547971
.0516681
.0500062
.0469225
.0404034
.0393538
.0371786
.0333935
.0326867
.0312101

.0276557

Code ' bpl
(bits/1n)
1,4 12.8262
1,2,4 11.585
1,3,4 11.585
1,2 11.0333 |
1 10.9644 ?
1,2,3 10.7575 |
1,3 10.6885 b
4
1,2,3,4 10.6196 Y
2,3 9.93002 ,
2,3,4 9.65418 3
2,4 9.51626 %
2 7.17168 ]
3 6.20626 ' ¥
)
3,4 5.37876 7
4 3.44792 i
4
]
»
‘1
)
1
71
”;
? 1
»
.
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Table B-27

Sine Wave Coded With 0.2 Inch Gridsize

Code

(o)

(8]

to

aepl

(sq in/in)
.0951982
.066723
.0563303
.0447947
.0387108
.0383211
.0351407
.0319325
.0294085
.0267438
.0264903
.0258608
.0253898
.0235785

.022521

P PTINY G w3

Code

bpl
(bits/1in)
16.55
14.4812
14.4812
14.4812
14.0675
13.1021
13.0331
12.8262
11.9987
11.585
11.1023
9.37835
7.44751
7.24064

5.17188

s b

AW
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Table B-28

TR Tmre—

Sine Wave Coded With 0.15 Inch Gridsize

Code

aepl

{(sq in/in)
.059578
.0405581
.0300417
..0275403
.0272906
.0266828
.0242809
.0222929
.0220264
.0190452
.0190356
.0178728
.0167421
.0166428

.0152194

Code

bpl
(bits/in)
19.86
19.86
18.9635
18.8256
18.205
17.8602
17.3775
16.9637
16.8948
16.1362
14.9639
12.6883
11.1712
10.3437

7.58543
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Table B-29

Sine Wave Coded With 0.1 Inch Gridsize

Code aepl Code bpl
{sq in/in) (bits/1in)

4 .0285503 1 28.135

3 .0244672 1,4 27.3075

3,4 .0200061 1,2,3 26.8938

1 .0180841 1,2 26.549 )

2,3 0172292 1,3 26.2042 ?

2 .0160311 1,2,4 25.2388 | j

1,2,3 .0142483 1,2,3,4 25.1008 :

1,3 .0140129 2,3 24.4113 %

1,2 .0135987 2,4 23.17

< 2,4 .0128029 2,3,4 22.2046 j

2,3,4 .0127397 1,3,4 21.9288 %

1,2,4 .0120049 2 18.7567 %

1,4 .0115023 3,4 16.55 :

1,2,3,4 .0111887 3 15.5156 ?

1,3,4 .00914258 4 11.7229 :
]
L]
]
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Table B-30 1

Sine Wave Coded With 0.05 Inch Gridsize

Code aepl Code bpl
{sg in/1in) {bits/in)

4 0135482 1 56.4769

ol

3 .0091371 PPN 51.7188

1 .00859574 <yl 47.5813

2 .008341122 Satad 4n.8228

2,3 L00735e34 i 44.6585
3,4 LU0 Tdd S0 1TL U882
1,2 NEVEE I .t 1.3275
2,4 JO0RIIIIS Si1.i760
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(1,2,3,4) Code With 0.25 Inch Cridsize
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Figure 3-18. SQUARE-60:
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(1) Code With 0.2 Inch Gridsize

®

3-48
®
it it e . o

AP N




LA I Aren Aann aene A e adn | Sy g \

~

NP SO, o

N
W .

PO ST )

L .
P,

izure 2-17. SQUARE-45: (1) Code With 0.2 Inch Gridsize




Ll St i A i Bt s wE TR T R ————— CRie AL IR Al saibAnh Sl S dind Nl Sl Sed iRl e AL SRANLIEFUL MRS Syt gied el s — 1

-~
-
« -
— e’

o oy PO
4 A ’
/’ \ Vd .
e \ , v ad’ .
./ \ Josv— ‘
// v P
i A 7 ™
- N e

¢ N o’ '

. N . i

" ]

\ N 1 i

\ N
\ Y N 1
" i ' |
. ] ot !
\ i ;
N e . 4
e ! /
’-‘—‘/
\ p—
A} /t
e
N J—

izure 2-156. SQUARE-30: (2,3),(2,4),(2,3,4), and (1) Codes
Nith ¢.2 Inch 3Gridsize

PP . L U - O I P S T YU G Yy PP WS WL U, PP W




e Y .

(1)

1,3)

e (1,4)
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Figure B-22. SQUARE-30: (2,4),(3,4), and (1,3) Codes With
0.1 Inch Gridsize
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Digitized Sine Wave Drawing
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Fizure B-29. SINE WAVE: (1,2,3,4) Code With 0.25
' Inch Gridsize
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Fizure 3-32. SINE WAVE: (1) Code With 0.1 Inch Gridsize
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Figure B-36. Digitized Written Text Drawing
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Figure B-40. TEXT: (1,2,4) Code With 0.1 Inch Gridsize
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Appendix C

}

h This appendix 1is a user's manual for the software

{ .
: described 1in this thesis. 1
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User's Manual

A list of the available programs and a brief
statement of their purpose is shown below.

DIGITIZE : digitize a line drawing on the digitizer
and store the data in a disk file.

PLOTFILE : plot the data stored in a‘disk file.

DIGPLOT : echo the points being digitized on the
digitizer to the plotter.

LABELS : provide direct control of the plotter.

CHNCODE: compute the multi-ring chain code of®a line
drawing described by a series of coordinates stored in a
disk file and output the coordinates of the nodes and the
chain code tc a disk file.

ERRCR : compute the area error between the line
drawings described by the data in two disk files, also
computes the length of the line in each disk file and the
number of bits needed to store the chain code.

PLOTCODE: plots a multi-ring chain coded version of
a drawing as it 1s drawn on the digftizer.

A more complete guide to using each of these programs

follows.

DIGITIZE

An example of program operation 1s shown below.

Program operation will be shown as a sequence of steps 1n

et e o IR AL

e AW

—rd
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i el
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which the user interactively communicates to the computer
all necessary input data.
‘ Step 1: In response to the CP/M prompt, A>, type
DIGITIZE.
The computer will respond with:
E PROGRAM TO PLOT DIGITIZED POINTS IN A FILE

SINGLE QR CONTINUOUS SAMPLING MODE (SG/CN)

Step 2: If you want to digitize selected points on a
] drawing, enter SG, then go to step 5. If you want
continuous sampling of the points on the drawing,
enter CN and go to step 3. 1
-l
‘ Step 3: The computer responds with: ?
5
CONTINUOUS SAMPLING MODE SELECTED: 2
DEFAULTS ARE : ]
DELTA 4 = 20.25 inches .
( Ve DELTA t = 20 msec »
; DELTA t = ? (20 to 32767 msec) {(CR for default) : |
User responds with the minimum sampling time f
required for the digitizer. 1
(] o
= The computer then prompts for the DELTA 4 with: b
DELTA 4 = ? (.001 to 20.25 in.. 1 = .001 in) (CR d
FOR DEFAULT) : ]
| The user then responds with the minimum sampling é
: R
distance. 3
Step 4: The computer prompts: K
4
SWITCH NORMAL OR SWITCH FOLLOW MODE (SN/SF): !
The user then enters SN for the switch normal
mode or SF for the switch follow mode. In the ;
swlitch normal mode, the DIGITIZE switch on the »

cursor must be depressed for points to be taken.

C=3




Step 5:

Step 6:
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In the switch follow mode, the DIGITIZE switch
acts as a toggle; if points are not being taken,
pressing the switch causes the digitizer to start
taklng points, pressing it agailn causes 1t to
stop.

The computer then prompts:

THIS PROGRAM WILL WRITE OVER ANY EXISTING FILE
WITH THE SAME NAME

ENTER FILENAME FOR DATA POINTS (EX: A:DATAL1.DAT):
The user then enters any CP/M acceptable
filename. If there are no problems with the
disk, such as the disk being full, the computer
will respond with:

FILE OPENED SUCCESSFULLY

CONTROL KEYS ON THE DIGITIZER ARE:

Fa = RESET DIGITIZER MODE

Fb CLOSE CURRENT FILE AND ASK FOR MORE

Fc PEN DOWN

ANY OTHER KEY = PEN UP

-

NOW BEGIN TAKING POINTS

The user now begins taking points. If the cursor
is being used, then the DIGITIZE switch must be
depressed; if the stylus 1% being used, then the
DIGITIZE switch 1s activated by the pressure of
writing.

The diglitizer control keys are necessary for
proper operation of the program. If you wish to
change digitizer modes (single or continuous
sampling or the DELTA t or DELTA d) then press

Fa. Pressing Fc puts the pen down for the

c-4

.
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PLOTFILE

drawing while any key other than a, b, or c puts

the pen up. When the drawing is completed, press
Fb to close the file.

An important fact to note 1s that the ERROR
routine needs at least one point at the beginning
of the digitized file to have the pen 1n the up
position. Therefore, the user should press the
digitize switch and then the Fc key in order to
get a few points with the pen up at the beginning
of the file.

When the drawing has been digitized, the user
should press the Fb key on the digitizer to close
the file. The computer will respond with:

MORE TO DIGITIZE (Y/N)?

I1f there 1is more to diglitize, press Y and the
program repeats starting with Step 2.

I1f there is no more to digitize, press N. The
computer responds with:

ALL DONE ......

The computer then returns to CP/M.

The program to plot a set of data points 1s invoked

A>PLCTFILE (CR)

The program will prompt the user for the number of files

to be plotted. Beginning with the first file, the program

C-5
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b

then prompts for the filename and the parameters for the
plotter. The plotter parameters are

Line Type (integer 0-8) : The avalilable line types are:

LG

L1

R

L3

L4 e

LS

L6 -

L7 crmreemrmr e =

L8

Scaling Factor: In order to give the user complete
control over the size and location of the plotted drawing,
*he scaling factor and translation factors were
implemented. The X and y coordinates of the input file
are multiplied by the scaling factor, added to their
respective translation factors, and output tn the plotter.
The scaling factor is a real number and must be entered as
X.y (a 7alue of .2 would be entered as 0.2). The
cnordinates in the files normally have units of 0.00L 1in.

. . .
e DLt brer

anits of 0.005 inches tor all numbers.
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Therefore, a 1 in = 1 in scale for a digltized drawing

would be:

X * (in / 1000) * (200 / in) = X * 0.2 (scaling factor

= 0.2)

Translation factor: The translation number 1s 1in

units of 0.005 in (200 = 1 in).

DIGPLOT
The digitizer to plotter program 1s i1nvoked by

A>DIGPLOT (CR)

The digitizer to plotter program prompts the user for

all of the input it reqguires. The 1input required has been

described 1n the 1nstructions for DIGITIZE and PLOTFILE

(except for the difference 1in the function of the

digitizer keys shown below). The program is exited by

entering

a CONTROL-C from the keyboard.

The digitizer special function keys are defined as:
Fa reset digltizer éampling parameters
Fb reset plotter parameters
o indicate pen down .
¥4 - prefix Fe indicate pen up

(e .
The mliotmar dire *ontrol proegram is invoked by
A-LABELS (7F)
T Cr.3ram prompts tne uaser for o oall o oinput. [f a mistake
(- TAal~ n entering the command line "hen rhe anly way to
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correct it is to specify a repetition number cf zero. The
x and y inc. -ments are integer numbers with unit of 0.005

1n.

A summary of the plotter commands follows:
D - set origlin: the current pen location becomes
the new origin

D - pen down: puts the pen down at the current

@}
O
eV
ot
b
9
jo]

U - penup: rmmedlately picks the pen up

H - home: moves the pen to the home location (lower

r
8

£~ =orner) and iefines +hat location as the new origin

T
|
o
0
Ui
O
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T
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o
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stoing mode:  all coordinates will be
5l_+=+*ai wih resgect <o the currently defined origin

T - rolative plotting mode: all coordinates will be
Tliteed Wit respess £ the point plotted immediately
Crioro s> the point belng currently plotted

n - 5=+ l.ne type: defline line type as n (see line
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Srnpsss - symbol plotting: plot ASCII character
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and height h ('_' indicates end
£ character s-ring, b is a space) (r is an integer 1 - 4
and the rotation 1s: rotation = (r=1)*90 degrees, 0
wgrees 13 stralght right and the rotation angle 1is

cos31-1v2 ~Tlockwlise) (h 1is an integer 1 - 5 which

1]
I

corr=spnnds to helghts of: 1 = 0.07", 2 0.14", 3
2.2%", 4 = 0.56", and 5 = 1.12")

T - self-test routine: perform self-test program
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X,¥y - move pen to X,vy: move the pen £o X,y wlth
respect to the orig:.n or previous oolnt (A vs R) with the
gen up or down (U vs D) (x and y are integers sent as

ASCII <Cnaracter strings)

CHNCODE »

3
oy
T
@)
O
T
[

ation of the multi-ring chain coding program

3 descripad by the following sequence of steps:
_
]
sm=2p L:  T> use the program, enter CHNCODE 1in response to
che CP/M prompt.
Zn=pn 2:  The program responds with: J
-
THIS PROGRAM COMPUTES MULTI-RING CHAIN CODES 1
ENTER THE DIGITIZED DATA FILENAME:
‘e AT thls polnt, 2nter the name of the diglitized »
data f1le. The program then responds wilth: ?
ENTER THE NUMBER OF CODED FILES YOU WISH TO CREATE: ‘
)
. 1
No mcre than 25 different files can be created at ®
one “1m=. Enter now the number of files you wish 1
{
“o Create f2ntry must be an lnteger). ;
- - - , . .o . L
Imen D ThE DISGSraT nNow beglns lnteractively obtaining J
“ne= necessary data for each coded file. For )
wxampl-, “2 Zre=a%s 3 (1,3) code with a gridsize j
ttou3T tnones oand a (12,4 oode with a gridsyooe of [
]
L nTReS, The usery Wwould have antered 2 for tne '
1
: - 1
numper L Elles 2o pe Sreated and “he program :
. -~ 3 EUE S =R B N 1
WOl od TS pond a3 Dol LW S: .‘
sNTEE U DED DATA FILENAME 1 (nere  the a13ey g
=9
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enters a filename, say CODE.CDI1)

ENTER GRIDSIZE DESIRED: 50 (remember 1 = .001
inches)

ENTER THE NUMBER OF RINGS USED BY THE CODE: 2
ENTER THE RINGS USED BY THE CODE STARTING WITH
THE LOWEST

(EXAMPLE FOR A (1,3,5) CODE: ENTER 1 3 5): 1 3

ENTER CODED DATA FILENAME 2: CODE.CD?2

ENTER GRIDSIZE DESIRED: 100

ENTER THE NUMBER OF RINGS USED BY THE CODE: 2
ENTER THE RINGS USED BY THE CODE STARTING WITH

THE LOWEST
(EXAMPLE FOR A (1,2,5) CODE: ENTER 1 3 5): 2 4
Step 4: The program ncw neglns creatlng the coded files.

It provides =he user wWwlth updates »f its progress
as shown:

CODING CODE.CD1 (program informs user that it 1is
creating the first coded file)

CODING CODE.CD2 (program informs user that 1t 1is
creating the second coded file)

COMPUTATIONS COMPLETE (program informs user that
it 1s finished)

The program now returns the user to CP/ M.

ERROR

The area error computation program 1s invoked by
A>ERROR (CR)
The program then prompts the user for all the information
that 1t needs. As an example, consider the example used
for the CHNCODE program. The sequence of events would be

as follows:

Step 1: <Call the ERROR program by entering ERROR (CR) in
response to the CP/M A> prompt.

Step 2: The program responds with:

. e, . D - - - i . . o7 P
ambmtmbn il A nbntnin o balal ol uoninn alalalons 2 i WO e ) PR W DL P WLy
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ENTER DIGITIZED DATA FILENAME: enter the
digitized data filename

ENTER NUMBER OF CODED FILES TO BE ANALYZED: 2
ENTER CODED DATA FILENAME 1: CODE.CD1 (first
coded file)

‘ENTER CODED DATA FILENAME 2: CODE.CD2 (second
coded file) '

Step 3: The program then starts analyzing CODE.CD1l. It

keeps the user informed on which file is being

analyzed as follows:

ANALYZING CODE.CD1 d
The program then lists the output when the
analysis 1s completed and proceeds to the next

coded file. *

A useful way to obtain the results for many files 1is
to have the CRT output also sent to the line printer. ]
. This 1s easily done by invoking the CONTROL-P toggle from 'i
CP/M before calling the ERROR program. This prevents the
user from having to sit in front of the CRT during program )
operation to obtain the ERROR results, since these results ’
)

are also automatically recorded by the line printer. * 4

PLOTCODE

To call the PLOTCODE program, the user simply enters
A>PLOTCODE (CR)
'. The program then interactively prompts the user for all
necessary ilnput data using similar menus to the CHNCODE
: and DIGPLOT programs. These menus prompt for the chain

q ) code ring levels and gridsize, the plotter translation and

scale factors, and the digitizer sampling parameters. The

Cc-11
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digitizer keys have the same meaning for PLOTCODE that
they do for DIGITIZE except Fb does not close a file, it

simply allows the user to start a new drawilng.
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