

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
Nitrolysis of the CN Single lated Chemistry of Nitro and	S. AYPRUSIREPORT & PERIOD COVERED 1/1/84 - 12/31/84			
Groups	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(S)			
J. H. Boyer	N00014-82-K0210 NR659-800			
P. PERFORMING ORGANIZATION NAME AND ADDRES University of Illinois at Ch BOX 4348 Chicago, Illinois 60680	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
II. CONTROLLING OFFICE NAME AND ADDRESS Department of the Navy	12. REPORT DATE February 1985			
Office of Naval Research Cod Arlington, Virginia	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(II dille	15. SECURITY CLASS. (of this report)			
	**	Unclassified		
	154, DECLASSIFICATION/DOWNGRADING SCHEDULE			

This document has been approved for public release and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the apatract entered in Block.20, If different from Report

ELECT

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Tert-Amines, Nitrosamines,

Nitramines, Aplad-Substitution in Mitrosamines, Nitrocyanocarbenes,

Smnl and related reactions/ Electron transfer,

Barrelene derivatives

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

For the efficient conversion of mono-tert-amines to nitrosamines treatment with dinitrogen tetroxide in an inert solvent at 0-45% has been developed, The replacement of dinitrogen tetroxide with other reagents led to lower yields and complicated product mixtures.

Attempts to oxidize the new R-salt carbinols A to RDX-ketones B have been unsuccessful. Apparently the heterocyclic ring was

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

SECTION AND CONTROL OF THE SECTION OF CONTROL OF THE PACE OF White Continues

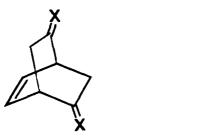
20 ABSTRACT (Continued:

20. B. Continued

attacked and degraded.

 $\frac{A}{X = H, NO_2} \qquad \frac{B}{X = H, NO_2}$

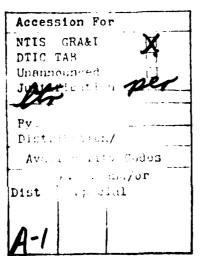
New attempts to achieve C-functionalization of RDX will be examined.


C. Uncatalyzed debromination of nitrodibromoacetonitrile by treatment with tetramethylethylene, dimethyl sulfide, and triethylamine under mild conditions gave respectively 3-cyano-4,4,5,5-tetramethylisoxazol-2-ine-2-oxide, dimethylsulfonium cyanonitromethylide, and triethylammonium cyanonitromethylide.

$$(CH_3)_2^{C} - CCN$$
 $(CH_3)_2^{C} - N^+ - O^ (CH_3)_2^{C} + C(CN)NO_2, (C_2H_5)_3^{N} - C(CN)NO_2$

, Base catalysed conversions (S_{RN}) and related reactions) of nitroacetonitrile and phenylnitroacetonitrile were examined. Benzoyl cyanide was obtained from phenylnitroacetonitrile and from nitrodibromoacetonitrile in benzene.

$$C_6^{H_5}^{CHNO_2} \xrightarrow{C_6^{H_6}} C_6^{H_5}^{COCN} \leftarrow C_6^{U} C_6^{H_6} + Br_2^{C(CN)NO_2}$$


D. The known compounds 5,7-dioxo[2,2,2]bicyclooct-2-ene and 2,6,7-trioxo[2,2,2]bicyclooctane were prepared for investications designed to provide nitro derivatives. Oxime derivatives have been prepared for conversion to nitro derivatives.

X = O, NOH

E. Collaboration with Dr. M. D. Pace of the Naval Research Laboratory on the elucidation of electron transfer to give radical intermediates in the spontaneous conversion of N,N-dimethyl-2,4-dimitrobenzylamine to 6-nitro-2-methylindazole continued.

F. The writing of a book, "The C-Nitro Derivatives of N- and N,O-Five-membered Heterocycles" was completed. The book will be published by VCH Publishers, Inc. (was Verlag Chemie International, Inc.) in 1985.

Contents

		Page
Α.	Nitrosamines and Nitramines from Tertiary Amines	1
	Nitrosamines from Tertiary Amines and Dinitrogen Tetroxide (ms. for publication)	1
	Nitrosamines and Nitramines from Tertiary Amines (ms. for publication)	15
В.	C-Functionalization of R-Salt and RDX	25
	Alkylation of Cyclic Gem-Dinitrosamines (ms. for publication)	25
	1,3,5-Trinitroso- and 1,3,5-Trinitrohexahydro-1,3,5-Triazine-2H ₆ (ms. for publication)	35
c.	Chemistry of Nitrocyanocarbene	41
	Nitrocyanocarbene Derivatives from Nitrodibromaceto- nitrile (ms. for publication)	41
D.	Nitrobarrelene Project	47
Ε.	Collaboration with NRL	52
F.	"The C-Nitro Derivatives of N- and N,O-Five-membered Heterocycles"	52
	Distribution	E 4

A. <u>Nitrosamines and Nitramines from Tertiary Amines.</u>

With T. P. Pillai and V. T. Ramakrishnan

The following two reports were accepted for publication.

Nitrosamines from Tertiary Amines and Dinitrogen Tetroxide (J. Chem. Soc.)

Abstract. A preparative nitrosolysis of aliphatic acyclic and cyclic tertiary monamines to nitrosamines was brought about by treatment with dinitrogen tetroxide in carbon tetrachloride at 0-45°. Dealkylation was restricted, where applicable, to demethylation. Competitive oxidation to an amide was observed in the formation of di-n-butylformamide from tri-n-butylamine. Diamine dinitrate salts, without nitrosamine formation, were obtained from 1,4-dimethylpiperazine and 1,4-diaza[2,2,2]bicyclooctane; however, each dinitrate salt thermolyzed at 180-200° to give a small amount of 1,4-dinitrosopiperazine. In acetic anhydride dinitrogen tetroxide converted amines less efficiently, gave lower yields of nitrosamines, was less selective in dealkylation, and introduced the formation of by-products.

Introduction. Both nitrolyses to give nitramines and nitrosolyses to give nitrosamines from aliphatic tertiary monamines have been erratic and often inefficient. To fulfill a need for the preparative conversion of trialkyl amines to nitramines a search for a reagent as an alternative to nitrous acid to give an improved nitrosolysis was undertaken. For the subsequent conversion of a nitrosamine to a nitramine efficient oxidations

are known.²

Over 50 trialkyl and arylalkyl tertiary monamines showing a wide variety of structures have been investigated for nitrosolysis by nitrous acid. Under optimal conditions the amines $RR^1NCHR^2R^3$ and nitrous acid (4 to 10 molar ratio) in acetic acid (adjusted to pH 3.7 to 5) at 90° for 3 to 16 hours gave nitrosamines RR^1NNO (7% - 70%) and carbonyl compounds R^2R^3CO (up to 80%), often with low conversion of the amine. A reaction between tri-n-butylamine and nitrous acid gave di-n-butylnitrosamine (6%), n-butyraldehyde (7%), di-n-butylamine (2%), an unsaturated tertiary amine, three aminoalcohols, and an aminoketone. $\frac{4}{100}$

Unstable complexes between a tertiary amine and dinitrogen tetroxide were formulated as $R_3^{-1}NO_2^{-1}OO_2^{-1}$ and $R_3^{-1}NO_2^{-1}OO_3^{-$

There is only one report of nitrosolytic dealkylation of tertiary amines by treatment with dinitrogen tetroxide. N,N-Di-methylaniline and its 4-nitro and 2,4-dinitro derivatives in carbon tetrachloride were converted to N-methyl-N-nitroso-2,4-dinitroaniline; ring nitration and nitrosolysis also occurred with the 4,N,N-trimethylaniline but the 2,4,6-trimethyl and the 2,4,6-trichloro derivatives of N,N-dimethylaniline underwent nitrosolysis only and N,N-dimethylpicramide and benzyltrimethylammonium chloride were each unreactive. 12

Explanations for nitrosolyes of tertiary amines by nitrous acid correlated structural effects and kinetic results in mechanism variations which held in common an iminium cation, $R_2^+ = CR_2^-$, as a key intermediate. 3-6 It was presumably formed by an elimination of nitroxyl from a nitrosammonium cation, produced from the amine and the nitrosonium cation, eq (1). 3

An alternative source of the iminium cation intermediate was proposed for the very poor conversions of tertiary aliphatic amines in mixtures of nitric and acetic acids in acetic anhydride to formamides, acetamides, and nitrosamines. It involved α -oxidation initiated by radical α -hydrogen abstraction by nitrogen dioxide generated in situ, eq (2). This α -oxidation was not, however differentiated from α -hydrogen transfer from an aminium cation radical provided for by either an electron transfer from the tertiary amine 14 or by homolytic dissociation of a nitrosammonium cation, eq (3,4). Since amine radical cations abstract hydrogen from CH bonds to form ammonium cations, eq (4), Presumptive evidence for the presence of a dimethylaniline radical cation, from the amine and dinitrogen tetroxide, is now found in the formation of the nitrated nitrosamine $\frac{4}{\alpha}$.

The conversion of an iminium cation intermediate to a nitrosamine and a carbonyl compound has been accounted for by two routes. In one hydrolysis to a secondary amine and a carbonyl compound was followed by nitrosation of the amine, eq (5). 3,6 In the other a dissociation of a hemiaminal nitrite ester occurred, eq (6). 4,5 In at least one example kinetic requirements disallowed the intermediacy of a secondary amine. 5a

$$RCH_{2}NR_{2} \xrightarrow{\dot{N}O} RCH_{2}\dot{N}(NO)R_{2} \xrightarrow{-NOH} R_{2}\dot{N}=CHR \qquad eq (1)$$

$$RCH_2NR_2 + 2NO_2(N_2O_4) \longrightarrow R_2\dot{N} = CHR + HNO_2 \qquad eq (2)$$

$$ONO$$

$$R_{2}NCH_{2}R \xrightarrow{N_{2}O_{4}} R_{2}NCH_{2}R \xrightarrow{R} R_{2}NCH_{2}R + NO$$

$$ONO_{2} ONO_{2} eq (3)$$

$$\underline{1} + R_2 \overset{\dagger}{\text{N}} = \text{CHR} + R_2 \overset{\dagger}{\text{N}} + \text{CH}_2 R = R_2 \overset{\dagger}{\text{N}} + R_2 \overset{\dagger}{$$

$$R_2 \stackrel{\dagger}{N} = CHR \xrightarrow{H_2O} R_2 NH \xrightarrow{+NO} R_2 NNO$$
 eq (5)

$$R_2 \stackrel{\text{HONO}}{=} R_2 \stackrel{\text{HONO}}{=} R_2 \stackrel{\text{NCHR}}{=} R_2 \stackrel{\text{NNO}}{=} R$$

Results and Discussion. Preparative conversions of tertiary aliphatic monamines 2-7 by treatment with dinitrogen tetroxide in carbon tetrachloride at 0°-45° gave nitrosamines 8-13, eq (7), (Table). A competitive oxidation to an amide was detected in the formation of di-n-butylformamide 14 (40%) from tri-n-butylamine 3. Attempts to extend the nitrosolysis to 1,4-dimethylpiperazine 15 and to 1,4-diaza[2,2,2]bicyclooctane 16 were unsuccessful; instead the diamine dinitrate salts (35%, 74%) were obtained. Thermolysis of each dinitrate salt at 180°-200° gave a small amount of 1,4-dinitrosopiperazine 17, eq (8).

<u>Table</u>

Nitrosamines from Tertiary Amines

	Α.	With	Dinitro	gen Tetro	xide in	Carbo	n Tetr	achloride
		XYZ	N				XYNN)
NO.	Х	 	Y	Z	NO.	Yield,	_g a	bp, °C(torr)
2	с ₂ н ₅		с ₂ н ₅	с ₂ н ₅	8	70	(51)	84-86 (50) ^b
3	<u>n</u> -C ₄ H ₉		<u>n</u> -C ₄ H ₉	$\frac{n-C_4H_9}{}$	9	52	(42)	67-70 (0.4) ^c ,d
4	C6H5CH	2	сн3	CH3	10	89	(84)	80 (0.3) ^e
<u>5</u>	с ₆ н ₅ сн.	2 ^{CH} 2	CH ₃	CH ₃	11	81	(70)	117-118 (2) ^f
<u>6</u>		(CH ₂) ₄		CH ₃	12	42	(30)	103-105 (20) ⁹
7		(CH ₂) ₅		CH3	13	82	(58)	95-96 (12) ^h
B. With Dinitrogen Tetroxide in Acetic Anhydridea								
Amin	e	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>	19
Nitr	osamine	8	9	10	11	12	13	10
Yiel	d, ³ª	56 ^j	42 ^{j,k}	65 ^{k,m}	62 ^{j,k}	70	34 j	₂₈ j,r
Yiel	d,iga	16 ^j	o^1	87 ^{k,n}	84 ^{j,k}	Op	10 ^q	o ^{k,s}

aYields determined by gc analysis of product mixture; lower yields in parentheses represent isolation by distillation. Thermolysis during distillation left intractable tar residues. b174.5° (777 mm) report-A. I. Vogel, J. Chem. Soc., 1948, 1833. CW. D. Emmons, K. S. McCallum, and J. P. Freeman, J. Org. Chem., 1954, 19, 1472. dDi-n-butylformamide 14 (403) was also produced (see Experimental). eD. Seebach and D. Enders, Chem. Ber., 1975, 108, 1293. ED. Seebach and D. Enders, Angew. Chem. Internat. Ed. Engl., 1972, 11, 301. Smith and H. G. Parr, J. Org. Chem., 1959, 24, 1325. h218° (760 mm) reported: C. Paal and W.-N. Yao, Chem. Ber., 1930, 63, 57. Hydrochloric acid in the reaction mixture (see Experimental). JAmine conversion complete. KSmall amounts of unidentified by products were also detected. Amine recovered (88%). Mamine recovered (42%). Amine recovered (19%). OAmine recovered (18%). PAmine recovered (19%). qAmine recovered (45%) rBenzaldehyde (58%) produced. SAmine recovered (60%; benzaldehyde obtained (13%).

Each amine 2-7 was completely consumed and gave a remarkably clean reaction. Analysis by gas chromatography of that portion of each product mixture insoluble in water revealed no additional products. By-products from alkyl group oxidation escaped as gases or were discarded with the water layer during workup. In one experiment with the amine 4 water was rigorously excluded from the reaction and was not added during workup. Gas chromatographic analysis of the residue which remained after the removal of volatile materials showed the presence of the nitrosamine 10 (91%) and did not detect the presence of another product. The fate of the methyl group lost in the reaction was not determined; presumably it was converted to formaldehyde and/or other oxidation products.

Favorable conditions permitted the expectation of an intermediate formation of iminium nitrate and nitrite salts (hemiaminal nitrate and nitrite esters), eq (1-4) and an equilibration between them maintained by the presence of dinitrogen tetroxide, eq (9). Nitrosamine formation was then accounted for by a thermolysis of the hemiaminal nitrite ester as was previously proposed, eq (6). Thermolysis of a hemiaminal nitrate ester to a nitramine was not observed. A greater thermal stability of a nitrate ester was shown by the conversion of Eschenmoser's salt 18 to both the hemiaminal nitrate and nitrite esters by treatment with silver nitrate and nitrite, eq (10,11). Dissociation was observed only for the nitrite ester which gave dimethylnitrosamine. A similar observation of the greater thermal stability of a hemiaminal nitrate ester relative to a nitrite ester

was previously reported. 16

$$XYZN + N_2O_4 \xrightarrow{CC1_4} > XYNNO + [ZONO_2]$$

 $2 - 7$ $8 - 13$ eq (7)

$$(\underline{n} - C_4 H_9)_2 NCHO$$
 $XN (CH_2 CH_2)_2 NX$ $N (CH_2 CH_2)_3 N$ $(C_6 H_5 CH_2)_2 NCH_3$
 $\underline{14}$ $\underline{15} X = CH_3$ $\underline{16}$ $\underline{19}$
 $\underline{17} X = NO$

$$\underline{19} \cdot (HNO_3)_2 \xrightarrow{180^\circ} > \underline{17} \leftarrow \underline{16} \cdot (HNO_3)_2 \qquad eq (8)$$

$$R_2 \dot{N} = CHR + N_2 O_4 (\dot{N}O_2 \ddot{O}NO) \longrightarrow R_2 \dot{N} = CHR + [N_2 O_5]$$
 eq (9)
 $\ddot{O}NO_2$

$$(CH_3)_2 \stackrel{\uparrow}{\mathbb{N}} = CH_2 \stackrel{\overline{I}}{\overline{I}} \xrightarrow{AgNO_3} > [(CH_3)_2 NCH_2 ONO_2] \xrightarrow{25^\circ} > (CH_3)_2 NNO_2 \qquad eq (10)$$

$$\frac{18}{18}$$

$$\frac{18}{-\text{AgI}} \xrightarrow{\text{AgNO}_2} \left[(\text{CH}_3)_2 \text{NCH}_2 \text{ONO} \right] \xrightarrow{25^{\circ}} \left(\text{CH}_3 \right)_2 \text{NNO}$$
 eq (11)

Dinitrogen tetroxide in acetic anhydride also converted amines 2-7 to nitrosamines 8-13 but failed to convert dibenzyl-methylamine 19 to benzylmethylnitrosamine 10 (Table). Small amounts of oxidation products (carbonyl derivatives) were detected by ir absorption but were not characterized further. Acetic anhydride was judged inferior to carbon tetrachloride as a solvent since the former failed to promote complete conversions of the amines and afforded lower yields of nitrosamines. Comparable results were obtained from the amines treated with

nitric acid in acetic anhydride. 13,18

Addition of hydrochloric acid to the reaction mixture in acetic anhydride retarded amine conversion (except for amines 2 and 5) and lowered the yield of nitrosamine (except for nitrosamines 10 and 11) (Table). A reported 13 promotion of nitrosamine formation from tertiary amines 2 and 3 by the presence of hydrochloric acid in reactions brought about by treatment with nitric and acetic acids in acetic anhydride under conditions whereby nitrogen dioxide was produced in situ was found to be incorrect for the amine 2 and marginally effective for the amine 3 17 An absence of nitramine formation was evidence for an absence of the formation of a secondary amine as an intermediate insofar as the chloride anion was known to be an effective catalyst for the nitration of a secondary amine to a nitramine. 18

The addition of dinitrogen tetroxide to a tertiary amine, eg, 3 or 7, in finethal sulfornite (DMSO) at -20° brought about a violent reaction with a spontaneous combustion. Although the reaction was moderated by diluting dinitrogen tetroxide with DMSO the system was not investigated further since the efficiency of nitrosamine formation was low.

Dinitrogen tetroxide and nitrous acid were further compared in the nitrosolysis of amines $\underline{4}$ and $\underline{5}$. Under the recommended optimal conditions³ nitrous acid afforded the nitrosamines $\underline{10}$ (68%) and $\underline{11}$ (82%) with recovery of the amines $\underline{4}$ (41%) and $\underline{5}$ (50%). A complete conversion of amine $\underline{5}$ was achieved with a 30 molar ratio of nitrous acid but gave a slightly lower yield (74%) of the nitrosamine $\underline{11}$. As shown in the Table nitrosolysis

by dinitrogen tetroxide completely converted these and other amines with the formation of nitrosamines in high yields. In further contrast with the results afforded by nitrous acid, 4 a minimum of co-products from oxidation in an alkyl group in the reactions with dinitrogen tetroxide is advantageous.

To account for the sole example of the detection of an amide from a tertiary amine and dinitrogen tetroxide in carbon tetrachloride the formation of di-n-butylformamide 14 (40%), was attributed to an α -oxidation. The lack of detectable formation of formamides and/or other oxidation products in the similar reactions with sames 2, 4-7 was unexpected.

The formation of the dinitrate salts $\underline{15} \cdot 2 \text{HNO}_3$ and $\underline{16} \cdot 2 \text{HNO}_3$ from the diamines and dinitrogen tetroxide in carbon tetrachloride was seen as another example of hydrogen abstraction from CH bonds by an amine radical cation, eq (4). In these examples α -hydrogen transfer to leave an iminium cation, eq (4), was not detected.

Certain observations need further clarification. There was unexpectedly an absence of aromatic ring nitration during the nitrosclysis of amines <u>4</u> and <u>5</u> with dinitrogen tetroxide in carbon tetrachloride to nitrosamines <u>10</u> and <u>11</u>. In contrast a similar treatment of dimethylaniline gave N-methyl-N-nitroso-2,4-dinitro aniline (62%). 12,19,20

Nitrosolysis with dinitrogen tetroxide occurred with a strong but unaccounted for predominance of demethylation over alternative dealkylation to give the nitrosamines 10-13. A similar result was encountered in the nitrosolysis of these and

other tertiary amines by nitrous acid. 3-6

Apparently the formation of 1-nitrosopiperidine 13 (82%) in greater efficiency than was observed for 1-nitrosopyrrolidine 12 (42%) revealed a ring-size effect. A similar effect was previously noted. 5b

Experimental

Caution. Nitrosamines may be carcinogenic.

Instruments included Pye-Unicam SP-200 i.r., Varian A-60 and T-60 n.m.r. spectrometers. Elemental analyses were provided by Micro-Tech Laboratory, Skokie, Illinois. Product identifications and yields were determined by gc analysis by comparison with values obtained for the known compounds and were obtained from a HP-5790 instrument with a HP-3390A integrator (column: 3% OV-17 on 80/100 Gas. Chrom Q, stainless steel 6 ft x 1/8 in; carrier gas nitrogen; column temp. between 110° and 150°C, with FID).

The amines 2, 3, 4, 6, 7, 15, 16, and 19 and Eschenmoser's salt were commercially available. N,N-Dimethyl-\$\beta\$-phenethylamine 5 was prepared from \$\beta\$-phenethylamine and formaldehyde. \$^{21}\$ The nitrosamines \$\frac{8-13}{2}\$ were prepared by published procedures (Table). Dinitrogen tetroxide (99.5%) was obtained from Matheson Chemical Co. and used without further purification except where noted otherwise. Dimethyl nitramine and dimethylnitrosamine were obtained from dimethylcarbamoyl chloride and silver nitrate. \$^{22}\$

General Procedure. Dinitrogen tetroxide (excess) was added to a

stirred solution of a tertiary amine (15mmol) in carbon tetrachloride (15 ml) precooled to 0°. During the addition the temperature rose to 40-50°. The mixture was cooled to 25°, stirred for 14 hours, treated with water (50 ml), and extracted with ether (3 x 100 ml) to give the mitrosamine (Table).

From the tri-n-butylamine 3 a mixture of di-n-butylformamide 14 and di-n-butylnitrosamine 9 was isolated after removal of ether and co-distilled at $62-64^{\circ}$ (0.2 mm). The distillate was shown by gc analysis to contain the amide 14 (40% yield) and the nitrosamine (42% yield).

The mixture of 1,4-dimethylpiperazine $\underline{15}$ (1.71 g, 150 mmol) and excess of dinitrogen tetroxide in carbon tetrachloride (15 ml) at 0° gave an immediate precipitation of the diamine dinitrate, $\underline{15}$ (HNO₃)₂. After separation by filtration the slightly hygroscopic salt was dried in a vacuum desiccator for 6 hours to give 1.23 g (35%), mp 212-214° (dec) after recrystallization from ethanol. Anal. calcd for $C_6H_{16}N_4O_6$: C, 30.00; H, 6.71; N, 23.32. Found: C, 29.55; H, 6.92; N, 23.50. The same diamine dinitrate was quantitatively obtained from the diamine $\underline{15}$ (150 mmol) and nitric acid (100%, 2 ml) in dry ether (30 ml) at 0°,

Similar treatment of 1,4-diaza[2,2,2]bicyclooctane $\underline{16}$ (a) with dinitrogen tetroxide in carbon tetrachloride gave the diamine dinitrate $\underline{16}$ (HNO₃)₂ (74%), mp 185-186° (dec) after recrystallization from ethanol and (b) with nitric acid (100 %) in ether gave the dinitrate salt quantitatively. Anal. Calcd for ${}^{C}_{6}{}^{H}_{14}{}^{N}_{4}{}^{O}_{6}$: C, 30.25; H, 5.92; N, 23.52. Found: C, 30.13; H, 5.96; N, 23.46.

When the diamine 15 (150 mmol) and excess of dinitrogen tetroxide were mixed at 15 to 20° (no solvent) a violent reaction occurred with an evolution of flames and brown fumes and left an intractable tar in the flask.

Thermolysis of each salt $15 \cdot (\mathrm{HNO_3})_2$ and $16 \cdot (\mathrm{HNO_3})_2$ (150 mmol) in a small r.b. flask heated to 180-200° evolved copious amounts of brown fumes and left a tar residue. A chloroform extract from the residue gave an ir spectrum that was superposable throughout with an authentic spectrum obtained for 1,4-dinitrosopiperazine 17 prepared from piperazine and nitrous acid. 24

To achieve rigorous exclusion of moisture in one experiment glassware was baked at 90° for 14 hours prior to use, dinitrogen tetroxide was passed through phosphorus pentoxide before it entered the reaction vessel, a tube of anhydrous calcium chloride protected the system from atmospheric moisture, carbon tetrachloride and dimethylbenzylamine 4 were both anhydrous, and the system was flushed with nitrogen after it was dried by passing through Drierite. Water was not added during workup; instead the excess dinitrogen tetroxide and other nitrogen oxides (if present) were removed under vacuum. Gas chromatographic analysis of the residue showed the presence of the nitrosamine 10 (91%); no other material was detected.

Acetic anhydride as solvent. A mixture of dinitrogen tetroxide (excess) and N,N-dimethylbenzylamine 4 (15 mmol) in acetic anhydride (150 mmol), prepared at -5° and stirred at 25° for 14 h, gave the nitrosamine 10 (65%), a trace amount of amides

(ir 1635 and 1705 cm⁻¹), and recovered amine $\underline{4}$ (42%). Gc failed to detect benzaldehyde (10⁻⁷ mole would have been noted). Similar reactions with amines $\underline{2}$, $\underline{3}$, $\underline{5}$, $\underline{6}$, $\underline{7}$, and $\underline{19}$ were carried out (Table).

の対象のなからない。なからのなど、などのなどのは、

A mixture of dinitrogen tetroxide (excess), N,N-dimethylbenzylamine $\underline{4}$ (15 mmole), concentrated hydrochloric acid (5 mmole) and acetic anhydride (150 mmole), prepared at -5° and stirred at 25° for 14 h, gave the nitrosamine $\underline{10}$ (87%), trace amounts of amides (ir 1635, 1705, 1760 cm⁻¹), and recovered amine $\underline{4}$ (19%). Gc did not detect benzaldehyde. Similar reactions with amines $\underline{2}$, $\underline{3}$, $\underline{5}$, $\underline{6}$, $\underline{7}$, and $\underline{19}$ were carried out (Table).

Nitrous acid reactions. A solution N,N-dimethylbenzylamine 4 (2.7 g, 0.02 mol) in acetic acid (60%, 100 ml) buffered to pH 4 - 5 with sodium acetate (13.6 g) was stirred and heated. Sodium nitrite (13.8 g, 0.2 m) in water (50 ml) was adde (45 minutes) and the mixture was stirred at 90° for two hours. It was cooled, diluted with water (50 ml) and extracted with ether (3 x 100 ml). The ether extract was washed with potassium carbonate solution (10%) until the aqueous layer was basic and with saturated salt solution, and dried (MgSO₄). Removal of the solvent left a yellow oil of benzylmethylnitrosamine 10 (1.20 g, 68%). The aqueous layer was made basic with potassium hydroxide and extracted with ether to recover dimethylbenzylamine (1.12 g, 41%).

A similar reaction with N,N-dimethyl- β -phenethylamine 5

gave the nitrosamine $\underline{11}$ (82% based on 50% recovery of the amine $\underline{5}$).

Nitrate and nitrite esters form Eschenmoser's salt.

Equimolar portions (5 mmol) of Eschenmoser's salt $[(CH_3)_2N^2 = CH_2 \ \overline{1}]$, nmr (CF₃CO₂H): 63.16 (s,6) and 6.46 (br s,2), and silver nitrite in acetonitrile (10 ml) was stirred at 25° for 16 hours. Precipitation of silver iodide was noted after 5 minutes and became quantitative. Dimethylnitrosamine was detected after 10 minutes and identified by tlc comparison with an authentic sample. In similar experiments Eschenmoser's salt failed to react with silver nitrate in acetonitrile at 25° for 5 days; however, in dry THF (10 ml) at 25° for 16 h a reaction gave a mixture of the hemiaminal nitrate ester $[(CH_3)_2N^2 - CH_2 NO_3 \longleftrightarrow (CH_3)_2NCH_2ONO_2]$, nmr (CF₃CO₂H): 63.36 (s,6) and 7.50 (br s,2), and silver iodide (quantitative). Dimethylnitramine was not detected by either tlc or nmr; the authentic nitramine gave nmr (CF₃CO₂H): 63.40 (s).

Nitrosamines and Nitramines from Tertiary Amines (Synthesis)

In a newly developed preparative reaction tertiary aliphatic amines have been converted by nitric acid in acetic anhydride to nitrosamines. The method is a modification and extension of an isolated report on the oxidation of triethylamine 2 to diethylnitrosamine 8 (23%) and amides (15%) and of tri-n-butylamine 3 to N,N-di-n-butylformamide (major product) with small amounts of other amides and di-n-butylnitrosamine 9 by treatment with a mixture of nitric and acetic acids in acetic anhydride at 50°. 13,25

The new method offers a preparative alternative to unreliable nitrosolyses of tertiary amines by treatment with nitrous acid. For example tri-n-butylamine 3 and nitrous acid (50°, pH 3, 90 minutes) gave the nitrosamine 9 (6%), n-butyraldehyde (7%), di-n-butylamine (2%), an unsaturated tertiary amine, three aminoalcohols (trace), and an aminoketone.

Since oxidation of a nitrosamine to a nitramine is available 2a,b an overall conversion of a tertiary amine to a nitramine is also offered. A general need for the conversion of a tertiary amine to a nitramine has been cited. 1

The amines examined included 2, 3, N,N-dimethylbenzylaring 4, N,N-dimethyl-ß-phenethylamine 5, N-methylpyrrolidine 6, N-methylpiperidine 7, N,N'-dimethylpiperazine 15, 1,4-diazabicyclo-[2,2,2]octane 16, and N,N-dibenzylmethylamine 19.

A mixture of nitric acid in acetic anhydride (acetyl ni-

trate) and a tertiary amine, e.g., compound $\underline{4}$, was found to be stable at 25° for over ten hours. The mixture was activated by warming at 50° until the evolution of brown fumes of nitrogen dioxide became vigorous. Nitrosolysis, the major reaction, was detected for N-R bonds in amines $\underline{2}$ and $\underline{3}$ and for N-CH $_3$ bonds in amines $\underline{4}$ - $\underline{7}$ and accounted for the formation of nitrosamines $\underline{8}$ - $\underline{13}$ (Table) and aldehydes (undetected). $\underline{3}$, $\underline{4}$ A competitive oxidation accounted for minor amounts of amides. $\underline{25}$

$$R^{1}$$
 N-CH₂R³ $\xrightarrow{Ac_{2}O}$ $\xrightarrow{R^{1}}$ N-NO [O] $\xrightarrow{R^{1}}$ N-NO₂ $\xrightarrow{-R^{3}CHO}$ $\xrightarrow{8}$ - $\xrightarrow{13}$ $\xrightarrow{21}$, $\xrightarrow{22}$

The diamine <u>15</u> gave the expected N,N-dinitrosopiperazine <u>17</u> (27%) but the structurally related bicyclic amine <u>16</u> gave an intractable mixture with no trace of the formation of the dinitrosamine 17.

$$ZN(CH_2CH_2)_2NZ$$
 $N(CH_2CH_2)_3N$
 $15 Z = CH_3$ 16
 $17 Z = NO$ $(C_6H_5CH_2)_2NCH_3$
19

Addition of hydrochloric acid to the reaction mixture introduced the Aqua Regia reaction and lowered the temperature required for the vigorous evolution of nitrogen dioxide. Contrary to an earlier claim 13,25 it did not improve the efficiency in

Amine R ^l		R^2	R ³	Nitros- amine	Yield %	bp, °C (mm)
				amithe	gc	observed
					distilla- tion	literature
2	С ₂ Н ₅	C ₂ H ₅	CH ₃	8	32	84-86 (50)
					24	174.5 (777) ²⁶
<u>3</u>	n-C4H9	<u>n</u> -C ₄ H ₉	n-C3H7	<u>9</u>	47	67-70 (0.4)
					35	$62-64 (0.2)^{23}$
4	CH ₃	С ₆ н ₅ Сн ₂	H	10	76	80 (0.3)
					58	80 (0.3) ²⁷
<u>5</u>	CH ₃	С6H5CH2CH2	H	<u>11</u>	84	117-118 (2)
					73	100 (0.1) ²⁸
<u>6</u> (Ch		CH ₂) ₄	H	12	18	103-105 (20)
					13	$104-106 (20)^{29}$
<u>7</u>	(CH	(₂) ₅	Ħ	<u>13</u>	43	95-96 (12)
					32	218 (760) ³⁰

the conversion of an amine to a nitrosamine with the possible exception of tri-n-butylamine 3 which gave the nitrosamine 9 in 47% yield in the absence of hydrochloric acid and 62% yield in the presence of hydrochloric acid; corresponding yields of 5% and 82% were previously reported. 13,25 A low conversion (14%) of N.N-dimenzylmethylamine 19 to benzaldenyde (33%) and the nitrosamine 10 (44%) was afforded by a similar reaction in the presence of hydrochloric acid. Nitric acid (100%) and anhydrous hydrogen chloride in acetic anhydride converted N.N-dimethylbenzylamine 4 to benzaldehyde (69%) and the nitrosamine 10 (26%). This result sharply contrasted with the conversion to the ni-

trosamine 10 (54%) with no detectable formation of benzaldehyde by treatment with nitric acid (70%) and hydrochloric acid (39%) in acetic anhydride. The formation of dimethylnitrosamine 20 in the former reaction was confirmed by tlc comparison with an authentic sample of the nitrosamine.

The nitrosamines 10 and 11 were oxidized by peracetic acid to N-methyl-N-nitrobenzylamine 21 (R' = $C_6H_5CH_2$, R^2 = CH_3) and N-methyl-N-nitro- β -phenethylamine 22 (R' = $C_6H_5CH_2CH_2$, R^2 = CH_3).

The amines 2, 3, 4, 6, 7, 15, 16, and 19 and the nitrosamines 8 and 9 were commercially available. N,N-Dimethyl-β-phenethylamine 5 was prepared from β-phenethylamine and formaldehyde. Authentic samples of each nitrosamine 10, 31 1128 12, 29 13, 23 and 17 (mp 156-156.5° C) 24 were obtained from the appropriate secondary amine and nitrous acid. Dimethylnitrosamine was obtained from dimethylcarbamoyl chloride and silver nitrate. Caution is advised in working with nitrosamines which may be carcinogenic. Polynitrosamines may be explosive.

Amines and nitric acid in acetic anhydride. General Procedure.

Caution. Mixtures of nitric acid and acetic anhydride (acetyl nitrate) can be explosive at higher temperatures. 32

Nitric acid (70%, 6.2 ml, 0.09 mol) was added dropwise with stirring to acetic anhydride (30 ml, 0.3 mol) maintained at 0°. An amine (0.03 mol) was added dropwise (about 10 minutes), the reaction mixture was warmed and kept at 50° for 30 minutes (evolution of dark brown fumes of nitrogen dioxide) and then stirred at room temperature for 16 hours. The mixture was poured onto crushed ice, treated with an excess of solid sodium hydroxide and thoroughly extracted with ether. After drying $(MgSO_A)$ and concentration analysis by gas chromatography (gc)and distillation determined identification and yield of the nitrosamine (Table). The gc data was obtained from a HP-5790 instrument with a HP-3390A integration (column: 3% OV-17 on 80/100 Gas. Chrom Q, stainless steel 80 cm x 0.31 cm; carrier gas, nitrogen, column temp. between 110° and 150° C, with FID). Product identification and yield were determined by comparison with authentic data. Lower yields by distillation were attributed to thermolyses to intractable tars. The reaction with N,N-dimethylbenzylamine 4 also gave benzaldehyde (28%). The mixtures obtained from amines 2 - 7 also contained amides, 13,25 detected by ir.

A CONTRACTOR OF THE CONTRACTOR - CONTRACTOR - SECURE

After a stream of anhydrous hydrogen chloride bubbled through a solution of N,N-dimethylbenzylamine 4 (4.05g, 30 mmol) and nitric acid (100%, 6.2 ml, 150 mmol) in acetic anhydride (30 ml, 30 mmol) at 0° for 15 minutes, the mixture was stirred at 25° for 16 hours. After the usual workup benzaldehyde (69%) and the

nitrosamine 10 (26%) were obtained.

In a related experiment nitric acid (70%, 6.2 ml, 90 mmol) and acetic anhydride (30 ml, 30 mmol) were mixed at 0°; the amine $\underline{4}$ (4.05g, 30 mmol) was added (10 minutes) and the mixture warmed to 50°. Hydrochloric acid (39%, about 0.5 ml) was added dropwise as a vigorous reaction with evolution of brown fumes of nitrogen dioxide occurred. The reaction mixture was cooled to 25° and hydrochloric acid (39%, 9.5 ml, 9.5 mmol) was added dropwise. After the reaction mixture was stirred at 25° for 16 hours 36% of the amine $\underline{4}$ was recovered and 54% was converted to the nitrosamine $\underline{10}$. Conversion to benzaldehyde was not detected (gc was sensitive to 10^{-7} mole). There was an unidentified product ((5%)).

An experiment with methyldibenzylamine 19 and nitric acid in acetic anhydride with hydrochloric acid at 25° for 16 hours after mixing at 0° gave a low conversion (14%) to N-nitroso-N-methylbenzylamine 10 (44%) and benzaldehyde (33%). Neither dibenzylnitrosamine nor formaldehyde was detected.

Oxidation of nitrosamines to nitramines. N-Nitroso-N-methyl- β -phenethylamine 11 (0.55g, 3.3 mmol) dissolved in glacial acetic acid (10 ml), was treated with hydrogen peroxide (30%, 1 ml) dropwise, neated at 90° for 7 hours, cooled, diluted with crushed ice, and extracted with ether (3 x 50 ml). The ether extracts were washed with water, aqueous sodium bicarbonate, dried (MgSO₄), and evaporated to give N-nitro-N-methyl- β -phenethylamine 22 (0.51g, 85%) as a yellow oil which crystallized from low boiling petroleum ether as a colorless solid mp 39-40°. Anal.

calcd for $C_9H_{12}N_2O_2$: C, 59.99; H, 6.71; N, 15.55. Found: C, 59.95; H, 6.71; N, 15.55. (Elemental analyses were obtained from Mictro-Tech Laboratories, Skokie, Illinois). Ir(CHCl₃): 1510(s) and 1290(s) cm⁻¹ (NNO₂). Nmr (CDCl₃): 62.95(t, 2H), 3.18 (s, 3H), 3.90(t, 2H) and 7.16(5H). (Spectroscopic data was obtained from Pye-Unicam 3-1200 ir and Varian A-60 nmr spectrometers).

When similarly treated N-methyl-N-nitrosobenzylamine 10 gave the nitramine 21 (87%) as a yellow oil, bp 95-97° (0.05 torr); lit bp 94-96° (0.05 torr); 33 ir (CHCl₃): 1510 (s) and 1285 (s) cm⁻¹ (>NNO₂); nmr (CDCl₃): 6 3.37 (s, 3H), 5.02 (s, 2H), 7.37 (s, 5H).

Investigations on the diamines <u>15</u> and <u>16</u> and other unpublished results indicate important contrasts in reactivity with the monamines. The investigation should be extended to poly-tert-amines.

References

- D. A. Cichra and H. G. Adolph, <u>J. Org. Chem.</u>, 1982, <u>47</u>,
 2474.
- (a) W. D. Emmons, <u>J. Am. Chem. Soc.</u>, 1954, <u>76</u>, 3468. (b) F.
 J. Brockman, D. C. Downing, and G. F. Wright, <u>Can. J. Res.</u>,
 1949, 27B, 469.
- P. A. S. Smith and R. N. Loeppky, J. Amer. Chem. Soc., 1967,
 89, 1147.
- 4. G. M. Singer, <u>IARC Sci. Publ.</u>, 1980, No. 31, 139; <u>Chem.</u>
 <u>Abstr.</u>, 1981, 95, 18995z.
- (a) W. Lijinsky and G. M. Singer, <u>IARC Sci. Publ.</u>, 1975, No.
 9, 111; <u>Chem. Abstr.</u>, 1975, 83, 109582f. (b) W. Lijinsky,
 L. Keefer, E. Conrad, and R. Van de Bogart, <u>J. Nat. Cancer Inst.</u>, 1972, 49, 1239.
- 6. R. N. Leoppky and W. Tomasik, J. Org. Chem., 1983, 48, 2751.
- 7. A. E. Comyns, <u>J. Chem. Soc.</u>, 1955, 1557; <u>Nature</u>, 1953, 172, 491.
- 8. D. A. Davenport, H. Burkhardt, and H. H. Sisler, <u>J. Am.</u>
 <a href="https://doi.org/10.1016/j.j.php.1016/j.j.php.1016/j.j.php.1016/j.j.php.1016/j.j.php.1016/j.php.
- 9. C. C. Addison and J. C. Sheldon, J. Chem. Soc., 1956, 1941.
- 10. G. A. Olah, J. A. Olah, and N. A. Overchuk, <u>J. Org. Chem.</u>, 1965, 30, 3373.
- N. N. Makhova, G. A. Karpov, A. N. Mikhailyuk, A. E. Bova,
 L. I. Khmel'nitskii, and S. S. Novikov, <u>Izv. Akad. Nauk</u>
 <u>SSSR</u>, <u>Ser. Khim.</u>, 1978, 226; Engl. transl. 198; <u>Chem.</u>
 <u>Abstr.</u>, 1978, 88, 189300d.

- L. Horner and F. Hubenett, <u>J. Liebigs' Ann. Chem.</u>, 1953,
 579, 193.
- 13. Y. Ogata, Y. Sawaki, and Y. Kuriyama, <u>Tetrahedron</u>, 1968, 24, 3425.
- 14. Y. L. Chow, W. C. Damen, S. F. Nelsen, and D. H. Rosenblatt, Chem. Rev., 1978, 78, 243.
- Jones, and E. Roberts, J. Chem. Soc., 1950, 2671.
- 16. T. G. Bonner, R. A. Hancock, and J. C. Roberts, <u>J. Chem.</u>
 Soc. Perkin Trans.1, 1972, 1902.
- 17. Joseph H. Boyer and T. Perumal Pillai, and V. T. Ramakrishnan, Synthesis, 1985, xx, xxx.
- 18. G. F. Wright, "Methods of Formation of the Nitramino group, its Properties and Reactions," in H. Feuer, ed., "The Chemistry of the Nitro and Nitroso Groups," in S. Patai; ser.ed, "The Chemistry fo the Functional Groups," John Wiley and Sons, New York, 1969, p 633 ff.
- 19. Nitric acid (d 1.5) at -10° to 0° converted (90%) the amine

 4 to its m-nitro derivative (54% yield) and converted (90%)
 the amine 5 to its p-nitro derivative (78% yield). 20
- F. R. Goss, W. Hanhart, and C. K. Ingold, <u>J. Chem. Soc.</u>, 1927, 250.
- 21. R. L. Icke, B. B. Wisegarver, and G. A. Alles, Org. Syn. III, 723.
- 22. W. P. Norris, <u>J. Amer. Chem. Soc.</u>, 1959, <u>81</u>, 3346.
- 23. W. D. Emmons, K. S. McCallum, and J. P. Freeman, <u>J. Org.</u>

 <u>Chem.</u>, 1954, 19, 1472.

- 24. M. V. George and G. F. Wright, <u>J. Amer. Chem. Soc.</u>, 1958, 80, 1200.
- 25. Y. Ogato, "Oxidations with Nitric Acid or Nitrogen Oxides," in W. S. Trahanovsky, ed., "Oxidations in Organic Chemistry" Part C, Academic Press, 1978, pp. 328-330.
- 26. A. I. Vogel, J. Chem. Soc., 1948, 1833.
- 27. D. Seebach and D. Enders, Chem. Ber., 1975, 108, 1293.
- 28. D. Seebach and D. Enders, Angew. Chem. Internat. Ed., 1972, 11 301.
- 29. P. A. S. Smith and H. G. Parr, <u>J. Org. Chem.</u>, 1959, <u>24</u>, 1325.
- 30. C. Paal and W.-N. Yao, Chem. Ber., 1930, 63, 57.
- 31. R. Wegler and W. Frank, Chem. Ber., 1936, 69, 2071.
- 32. E. E. Gilbert, Chem. and Eng. News, 1980, 5.
- 33. B. Unterhalt and D. Thamer, Tetrahedron Lett., 1971, 4905.

B. C-Functionalization of R-Salt and RDX

with G. Kumar

A report published in Heterocycles and one published in J. Label. Cpd. and Radiopharm. follow.

Alkylation of Syclic Gem-Dinitrosamines (Heterocycles, 1984, 22, 2351)

<u>Abstract</u> - Alkylations with benzaldehyde catalyzed by potassium tert-butoxide converted 1,3,5-trinitrosohexahydro-1,3,5-triazine 1,1,3-dinitrosoimidazolidine 3 and 1,3-dinitrosohexahydropyrimidine 4 to the 2-hydroxybenzyl derivatives (76 - 88%) and, in one instance, to the dialkylated product, 2,4-di-(hydroxybenzyl)-1,3,5-trinitrosohexahydro-1,3,5-triazine (40%). Lithium diisopropylamide was a less effective catalyst in alkylations with benzaldehyde or methyl iodide and was converted to diisopropylnitrosamine by transnitrosation. A catalytic amount of triethylbenzylammonium chloride promoted efficient mono- α -benzylations of nitrosamines 3 and 4 in aqueous sodium hydroxide at 25°C; however, simple nitrosamines failed to react and the trinitrosamine 1 was decomposed by the alkaline medium.

We wish to report the first examples of α -alkylation of polynitrosamines. The project was undertaken in a search for ways to incorporate functional C-substituents in 1,3,5-trinitrosohexahydro-1,3,5-triazine 1 for oxidation to derivatives of 1,3,5-trinitrohexahydro-1,3,5-triazine 2 (RDX).

Both 1,3-dinitrosoimidazolidine 3 and 1,3-dinitroshexahy-

dropyrimidine 4 were readily converted to 2-alkyl derivatives. In tetrahydrofuran (THF) at -78°C potassium t-butoxide catalyzed alkylations with benzaldehyde to give the hydroxybenzyl derivatives 5 (88%) and 6 (76%). Attempts to alkylate further the dinitrosamines 5 and 6 in reactions with benzaldehyde and potassium t-butoxide at temperatures from -78° to -60°C were unsuccessful; the starting materials 5 and 6 were nearly quantitatively recovered. Lithium diisopropylamine (LDA) was less effective in a reaction (-80°C) with benzaldehyde to give the product 5 (42%). It also promoted a similar reaction with methyl iodide to give 2-methyl-1,3-dinitrosoimidazolidine 7 (60%). Instead of catalyzing methylation or benzylation of the dinitrosamine 4 LDA (-80°C) underwent transmitrosation to Nnitrosodiisopropylamine 8 (20%). Efficient benzylations of the dinitrosamines 3 and 4 were brought about at 25°C in a phase transfer reaction with benzyl bromide in sodium hydroxide (50%) containing triethylbenzylammonium chloride. After 12 h 2benzyl-1,3-dinitrosoimidazolidine 9 (79%) and 2-benzyl-1,3-dinitrosohexahydropyrimidine 10 (50%) were obtained. The latter yield was raised to 75% when two moles of benzyl bromide were initially present. Attempts to alkylate simple mononitrosamines in similar phase transfer reactions were unsuccessful.

Instead of promoting alkylations of the trinitrosamine $\underline{1}$, LDA underwent transmitrosation to the nitrosamine $\underline{8}$; the best yield of $\underline{8}$ (80%) was obtained from an excess of LDA (3.3 equivalents) at -80°C in the absence of an alkylating agent. The trinitrosamine $\underline{1}$ proved to be an efficient transmitrosating

agent toward amine anions; the highly hindered lithium 2,2,6,6tetramethylpiperidide⁶ was converted (40%) to the nitrosamine
11.⁷

Sodium hydroxide solutions slowly dissolved the trinitrosamine 1 with an evolution of an ammoniacal odor indicating ring degradation. At room temperature the trinitrosamine was unaffected by either sodium or potassium hydride but decomposition on heating with sodium hydride was slow, faster with potassium hydride.

Alkoxides catalyzed mono- and dialkylation of the trinitrosamine 1 with benzaldehyde to give 2-hydroxybenzyl- 12 and 2,4-dihydroxybenzyl-1,3,5-trinitrosohexahydro-1,3,5-triazine 13. Potassium t-butoxide at -80°C afforded the monoalkylation product 12 (79%) and in a separate operation catalyzed the conversion of the latter to the dialkylated product 13 (40%). The assignment as a 2,4-disubstituted derivative 13 rather than a 2,2-disubstituted isomer is tentative. It was supported by examples in which axial but not equatorial hydrogen at an adjacent carbon atom was replaced by an alkyl group in similar reactions with cyclic mononitrosamines. Also the replacement of only one hydrogen (presumably axial) at C-2 in the dinitrosamines 3 and 4 was noted. An unresolved complexity of 1% and 13C nmr spectra was partially attributed to the presence of geometrical nitrosamine isomers.

Attempts to further alkylate compound 13 with benzaldehyde at low temperatures under the catalysis of potassium t-butoxide led to the recovery of compound 13 (75%). At higher temp-

eratures complex mixtures were obtained as shown by tlc. Rever $sibility^{10}$ of the alkylation with benzaldehyde was demonstrated by treatment of product 12 in t-butyl alcohol with a catalytic amount of potassium t-butoxide at 25°C to give benzaldehyde, identified by nmr and the dinitrophenylhydrazone derivative, and the trinitrosamine 1.

Attempts to achieve other base catalyzed reactions between the trinitrosamine 1 and methyl iodide, ethyl iodide, benzyl bromide, formaldehyde, n-propyl nitrite, p-toluenesulfonylazide, and O-methylhydroxylamine were unsuccessful.

$$O_nNN$$
 NO_n
 NO_n
 NO_n
 NO_n
 NO_n

$$\frac{1}{2} \quad n = 1, \quad X = Y = H \\
2 \quad n = 2, \quad X = Y = H \\
\underline{12} \quad n = 1, \quad X = CH(OH)C_{6}H_{5}, \quad Y = H \\
\underline{13} \quad n = 1, \quad X = Y = CH(OH)C_{6}H_{5}$$

$$\frac{13}{13} \quad n = 1, \quad X = Y = CH(OH)C_{6}H_{5}$$

$$\frac{6}{13} \quad n = 3, \quad X = CH(OH)C_{6}H_{5}$$

$$(CH_3)_2CH)_2NNO$$
 $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$

3
$$n = 2$$
, $X = H$
4 $n = 3$, $X = H$
5 $n = 2$, $X = CH(OH)C_6H_5$
6 $n = 3$, $X = CH(OH)C_6H_5$
7 $n = 2$, $X = CH_3$
9 $n = 2$, $X = CH_2C_6H_5$
10 $n = 3$, $X = CH_2C_2H_5$

EXPERIMENTAL

Preparations of 1,3,5-trinitroso-1,3,5-triazine $\underline{1}$, and 1,3-dinitrosohexahydropyrimidine $\underline{4}^{11}$ followed literature procedures. Instruments included spectrometers: Pye-Unicam ir SP200, and Hewlett-Packard GCMS 5985. Elemental analyses were provided by Micro-Tech Laboratories, Skokie, Illinois.

1,3-Dinitrosoimidazolidine 3. To a mixture of ethylenediamine (30.0 g, 0.50 mol) and aqueous formaldehyde (37.5 g, 0.50 mol) prepared and stored at 0°C for 2 h a solution of sodium nitrite (69.0 g, 1.0 mol) in water (200 ml) and sulfuric acid (26%, 235 ml) were added simultaneously as the temperature was kept below 5°C. After the mixture was stirred at 5°C for 1 h the product 3 was separated as a light yellow solid (20.0 g, 31%) mp 38-40°C after purification by recrystallization from a mixture of ether and petroleum ether; ir (KBr): 1440 cm^{-1} (NO). Anal. calcd. for $C_3H_6N_4O_2$: C, 27.70; H, 4.65; N, 43.06; found: C, 27.56; H, 4.71; N, 43.11.

2-Hydroxybenzyl-1,3-dinitrosoimidazolidine 5 .- To LDA (0.59 g, 5.5 mmol) in THF (40 ml) at -90°C 1,3-dinitrosoimidazolidine 3 (0.65 g, 5.0 mmol) in THF (5 ml) followed by benzaldehyde (0.53 g, 5.0 mmol) were added and the mixture was stirred for 3 h. Acetic acid (0.33 g, 5.5 mmol) was added and the solution was allowed to warm to 25°C. THF was removed by evaporation and the residue dissolved in methylene chloride (50 ml) was washed with a saturated solution of sodium chloride, dried, and evaporated to give the product 5 as a yellow gum which became a yellow

solid (0.50 g, 42%), mp 87-90°C after recrystallization from a mixture of ether and petroleum ether. Ir (KBr): 3380 (OH), 1440 cm⁻¹ (NO); m/e (70 eV): 237 (M+1)⁺ (2%), 206 (M-30)⁺ (1%), 79 (C_6H_7)⁺ (100%) Anal. Calcd for $C_{10}H_{12}N_4O_3$: C, 50.84; H, 5.12; N, 23.72. Found: C, 50.76; H, 5.10; N, 23.74.

2-Methyl-1,3-dinitrosoimidazolidine 7. A similar procedure gave the product 7 as a yellow oil (60% yield) purified by pot to pot short path distillation (bath temperature $110-130\,^{\circ}$ C, 0.1 Hg mm). Ir (thin film): 1440 cm⁻¹ (NO); m/e (70 eV): 144 M⁺ (2%), 114 (7%), 70 (100%). Anal. calcd for C₄H₈N₄O₂; C, 33.33; H, 5.59; N, 38.81. Found: C, 33.69; H, 5.54; N, 38.37.

2-Hydroxybenzyl-1,3-dinitrosoimidazolidine 5. A mixture of 1,3-dinitrosoimidazolidine (0.65 g, 5.0 mmol) and benzaldehyde (0.53 g, 5.0 mmol) in THF (5 ml) was added to potassium t-butoxide (0.56 g, 5.0 mmol) in THF (50 ml) at -78°C and the mixture was held at this temperature for 2 h. After workup as described above the product 5 was obtained as a light yellow solid (1.04 g, 88%), mp 86-90°C. A tlc analysis and ir analysis showed the product to be identical with the sample previously obtained.

2-Hydroxybenzyl-1,3-dinitrosohexahydropyrimidine $\underline{6}$. A similar procedure gave the product as a yellow gum (763). Treatment with acetic anhydride gave the acetate ester derivative as a yellow solid, mp 110-114°C after recrystallization from ether. Ir (KBr): 1750 (CO), 1450 cm⁻¹ (NO). Anal. calcd for $C_{13}H_{16}N_4O_4$: C, 53.42; H, 5.52; N, 19.17. Found: C, 53.36; H, 5.58; N, 19.21.

2-Benzyl-1,3-dinitrosoimidazolidine 9. A mixture of 1,3-

dinitrosoimidazolidine 3 (0.65 g, 5.0 mmol), benzyl bromide (0.86 g, 5.0 mmol), and a catalytic amount of benzyltriethylammonium chloride in sodium hydroxide (50%, 5 ml) was stirred for 16 h, diluted with water (25 ml), and extracted with ether (2 x 25 ml). The organic layer was washed with water, dried, and evaporated to leave the product 9 as a yellow viscous oil (0.87 g, 79%) which solidified on standing and gave a mp $70-72^{\circ}$ C after recrystallization from a mixture of ether and petroleum ether. Ir (KBr): 1450 cm^{-1} (NO); m/e (70 eV): 220 M^{+} (0.07%), 91 (100%). Anal. calcd for $C_{10}H_{12}N_4O_2$: C, 54.54; H, 5.49; N, 25.44. Found: C, 54.64; H, 5.56; N, 25.33.

2-Benzyl-1,3-dinitrosohexahydropyrimidine $\underline{10}$. - A similar procedure with two equivalents of benzyl bromide gave the product $\underline{10}$ (75%) as a yellow viscous oil. Ir (thin film): 1450 cm⁻¹ (NO); m/e (70 eV): 235 (M+1)⁺ (0.1%), 91 (100%) Anal. calcd for $C_{11}^{H}_{14}^{N}_{4}^{O}_{2}$: C, 56.40; H, 6.02; N, 23.92. Found: C, 56.49; H, 6.07; N, 23.69.

2-Hydroxybenzyl-1,3,5-trinitrosohexahydro-1,3,5-triazine 12 . - A mixture of 1,3-5-trinitrosohexahydro-1,3,5-triazine 1 (0.87 g, 5.0 mmol) and benzaldehyde (0.53 g, 5.0 mmol) was added to potassium t-butoxide (0.56 g, 5.0 mmol) in THF (50 ml) at -78°C and stirred at this temperature for two hours. Acetic acid (0.30 g, 5.0 mmol) was added and the mixture was warmed to 25°C. THF was removed by evaporation and the residue dissolved in methylene chloride (50 ml) was washed with a saturated solution of sodium chloride, dried, and evaporated to give the product 12 as a light yellow solid (1.10g, 79%), mp 123-126°C

after recrystallization from a mixture of ether and petroleum ether. Ir(KBr): 3450 (OH) and 1500 cm⁻¹ (NO); m/e (70 eV): 281 $(M+1)^+$ (0.13%), 107 (100%). Anal calcd. for $C_{10}H_{12}N_6O_4$: C, 42.86; H, 4.28; N, 30.00. Found: C, 43.00; H, 4.27; N, 30.31. 2,4-Di(hydroxybenzyl)-1,3,5-trinitrosohexahydro-1,3,5-triazine 13

was stirred at -78°C for three hours and stored at -60°C for 2 h before proceeding as described above to give a mixture after washing with a saturated solution of sodium chloride, drying, and removing methylene chloride by evaporation. The crude mixture was applied to a silica gel column. Methylene chloride eluted unreacted benzaldehyde (40%) and the trinitrosamine 12 (29%). Further elution gave the product 13 (40%) as a light yellow gum which became a powder, mp 166-169°C after trituration with a mixture of ether and petroleum ether. Recrystallization from a mixture of ether and petroleum ether gave a yellow solid, mp 170-174°C. Ir(KBr): 3450 (OH) and 1500 cm⁻¹ (NO); m/e (70 eV): 107 (100%). Anal. calcd for C₁₇H₁₈N₆O₅: C, 52.85; H, 4.70; N, 21.75. Found: C, 53.23; H, 5.10; N, 21.89.

1,3,5-Trinitroso- and 1,3,5-Trinitrohexahydro-1,3,5-Triazine-2H₆
(J. Labelled Compounds and Radiopharmaceuticals, accepted).

<u>Summary</u>. Perdeuteration of 1,3,5-trinitrosohexahydro-1,3,5-triazine was brought about by treatment with potassium alkoxide in $CH_3O^2H(99.5\$)$. The important high energy compound, 1,3,5-trinitrohexahydro-1,3,5- triazine (RDX), was obtained in its perdeuterated modification (>99\$ ²H) by oxidation of the perdeuterated trinitrosamine with a mixture of nitric acid (100\$) and hydrogen peroxide (30\$).

We wish to report a preparation of 1,3,5-trinitrosohexahydro-1,3,5-triazine- 2 H₆ $\underline{^{14}}$ by deuterium exchange and its subsequent oxidation to 1,3,5-trinitrohexahydro-1,3,5-triazine- 2 H₆ $(RDX-^2$ H₆, $\underline{^{15}})$ (>99% 2 H). This preparation of the nitramine $\underline{^{15}}$ offers several advantages over an alternative preparation from $O=C^2$ H₂, N^2 H₃, N^2 H₄NO₃, CH₃CO₂ 2 H, and 2 HNO₃. 12 It removes the possibility of contamination by 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane- 2 H₈ (HMX- 2 H₈) an expected by-product since HMX formation can accompany RDX formation in the nitrolysis of hexamethylenetetramine. 13 Also it is more economical in the consumption of deuterium; its efficiency is greater (74% vs 58%), and it is a convenient operation.

The base catalyzed α -deuteration of simple nitrosamines was first reported in 1970¹³ and reviews of the reaction have appeared.^{3,4} Monofunctional nitrosamines generally resist alkaline degradation, have been distilled from 3N sodium hydroxide¹⁴ and have undergone α -deuteration in NaO²H/²H₂O at

100°. 2-4

Attempts to deuterate 1,3,5-trinitrosohexahydro-1,3,5-triazine $\underline{16}$ in the presence of either aqueous alkali or lithium disopropylamide were unsuccessful and resulted, instead, in ring degradation. As the nitrosamine was consumed on treatment with sodium hydroxide (40%) at 25° an ammoniacal odor was noted (a similar degradation of 1-nitroso-3,5-dinitrohexahydro-1,3,5-triazine when heated in sodium hydroxide (10%) was reported). Extensive transmitrosation to the lithium amide gave disopropylnitrosamine ($\underline{18}$), isolated in good yield. Similar reactions were known to be competitive with α -deuteration when certain simple nitrosamines were treated with lithium amides. 3

Potassium tert-butoxide or methoxide catalyzed deuterium exchange at 25° between CH_3O^2H (99.5% 2H) and 1,3,5-trinitroso-hexahydro-1,3,5-triazine (16) to give quantitatively the perdeutero modification 1. Progress of the reaction was monitored by the disappearance, complete in 15 minutes, of 1H nmr signals at δ 5.66, 6.28, and 6.92 characteristic of the nitrosamine 16 . Recyclization insured the quantitative formation of analytically pure product 14 , $^{2}H_6N_6O_3$.

Oxidation of the trinitrosamine $\underline{14}$ by a mixture of nitric acid (100%) in hydrogen peroxide (30%) gave RDX- ${}^{2}\mathrm{H}_{6}$ $\underline{15}$ (70%). A similar oxidation $\underline{16}$ + $\underline{17}$ (74%) was reported. The FD mass spectrum showed the molecular ion M⁺ at 228 (100%) and contained no evidence for the presence of contamination with partial deuteration products with masses 222-227.

((CH₃)₂CH)₂NNO

18

EXPERIMENTAL

Melting points were determined from a Thomas-Hoover mp apparatus and are uncorrected. NMR spectra were recorded on a Varian EM 360A spectrometer using TMS as an internal standard. Mass spectra were obtained from a Field Ionization and from a Field Desorption mass spectrometer (see Acknowledgment).

The 1,3,5-trinitrosohexahydro-1,3,5-triazine ($\underline{16}$) was prepared from the condensation of formaldehyde and ammonia followed by the nitrosolysis of hexamethylenetetramine. ^{13a} Methanol-O-²H (99.5% ²H) was obtained from Aldrich Chemical Company.

1,3.5-Trinitrosohexahydrohexahydro-1.3,5-triazine- $^2\mathrm{H}_{5}$ (14). A solution of the nitrosamine 16 (0.174 g, 1.0 mmol) and potassium methoxide (1.0 ml of a 0.001 M solution of potassium methoxide in $\mathrm{CH}_3\mathrm{O}^2\mathrm{H}$) in $\mathrm{CH}_3\mathrm{O}^2\mathrm{H}$ (5.0 ml) at 25° completed deuterium exchange within 15 minutes as shown by $^1\mathrm{H}$ nmr monitoring. After the solvent was removed by evaporation, the residue, dissolved in methylene chloride, was washed with $^2\mathrm{H}_2\mathrm{O}$ and dried. Removal of methylene chloride by evaporation left perdeuterated 1,3,5-trinitrosohexahydro-1,3,5-triazine (14) as a colorless

solid, 0.16 g (90%) mp 102-103° after recrystallization from ethanol. Anal. Calcd for $C_3^2H_6N_6O_3$: C, 20.00; 2H , 6.71; N, 46.65. Found: C, 20.03; 2H , 6.50; N, 46.29. Ir(KBr): 2280 (C- 2H) and 1475 cm $^{-1}$ (N=O). FIMS m/e: 180 M $^+$ (100%), 179 (15%) To insure complete deuteration the product was recycled under the same conditions.

1,3,5 -Trinitrohexahydro-1,3,5-triazine- 2 H₆ (15). To a mixture of hydrogen peroxide (30%, 0.71 g, 6.3 mmol) and nitric acid (100%, 9.2 g, 142 mmole) the deuterated nitrosamine 14 (0.31 g, 1.7 mmol) was added slowly at -40°. The reaction mixture was warmed and held at 20° for 5 minutes, and poured onto crushed ice (20 g) to precipitate 1,3,5-trinitrohexahydro-1,3,5-triazine- 2 H₆ 15 as a colorless solid (0.27 g, 71%), mp 201-202° after recrystallization from acetic acid. Anal. Calcd for 2 H₆N₆O₆: C, 15.79; 2 H, 5.30; N, 36.83. Found: C, 15.76; 2 H, 5.25; N, 36.55. Ir (KBr): 2300 (C- 2 H), 1525 and 1340 cm⁻¹ (NO₂). FDMS m/e 228 M⁺ (100%).

Molar excesses of either potassium methoxide or sodium hydroxide completely degraded RDX 2; the formaldehyde produced was detected by its characteristic odor. It was assumed that the reaction was initiated by abstraction of a proton and that this left a carbanion which underwent ring degradation faster than it could be captured in an alkylation reaction, eq (1). In partial contrast the anion from R-salt 1 was alkylated by aldehydes and ketones but it also underwent ring degradation on

attack by base.

THE STREET SEASON STORY OF SERVICE SERVICES

はない。これではない。とはあるとはないないないとは国際では、これが、これのは、これのないとは、これをないないない。

$$RDX \xrightarrow{B:} O_2NN \xrightarrow{NNO_2} HC = NNO_2 + 2 CH_2 = NNO_2$$

$$CH_2 = NNO_2 \xrightarrow{?} CH_2O + N_2O$$

eq (1)

R-Salt has been alkylated with benzaldehyde (above), p-nitrobenzaldehyde, and acetone. Attempted alkylation with formaldehyde failed probably due to the existence of formaldehyde as its trimer at -80°, the optimum temperature for alkylations. Stoichiometry expected to lead to dialkylation by p-nitrobenzaldehyde afforded instead only a slightly better yield of the monoalkylation product 19 eq (2).

Acylation of R-salt by ethyl chloroformate went beyond the formation of the expected product to give a product 20, $C_7H_9N_5O_5$. The proposed structure as shown fulfilled analytic and spectroscopic requirements; nevertheless this assigned structure has not been confirmed. Replacement of a nitroso group at nitrogen with a carboethoxy group is unusual, eq (3).

R-Salt
$$\xrightarrow{\text{KOC(CH}_3)_3}$$
 $\xrightarrow{\text{AcOH}}$ R-Salt + $\xrightarrow{\text{NNY}}$ $\xrightarrow{\text{NNY}}$ $\xrightarrow{\text{CICO}_2\text{C}_2\text{H}_5}$ $\xrightarrow{\text{RO}^0}$ $\xrightarrow{\text{20}}$ (25%) X=CO₂C₂H₅, Y=NO or X=NO, Y=CO₂C₂H₅ eq. (3)

Nitrosamine sensitivity to protic acids was an expected property of R-salt. Lewis acids also were found to be reactive. Both nitrosonium and nitronium tetrafluoroborate converted R-salt to the oxide 21¹⁶ and probably the dioxide 22. Dinitrogen tetroxide converted R-Salt to gaseous products with the odor of formaldehyde. RDX was unaffected by similar treatment with these three reagents.

Considerable attention was given to the oxidation of alcohols 12 and 19 to the corresponding ketones. Intractable product mixtures were obtained in reactions with (a) oxalyl chloride in dimethyl sulfoxide, (b) pyridinium chlorochromate, (c) to butylammonium permanganate, (d) dichlorodicyanoquinone, (e) nitrosonium tetrafluoroborate, (f) dinitrogen tetroxide, and (g) activated manganese dioxide.

The alcohol $\underline{12}$ in an excess of nitric acid (100%) gave a light yellow solid, $C_{10}H_{10}N_8O_{12}$, $\underline{23}$ (40%). Similar treatment converted the alcohol $\underline{19}$ to a light yellow solid, $C_9H_9N_5O_8$, $\underline{24}$. It is believed that both reactions brought about changes to the heterocyclic ring. Suggested structures shown are in agreement with analytical and spectroscopic evidence however they have not been more firmly established.

$$O_2NN$$
 O_2
 O_2NN
 O_3
 O_2
 O_2NN
 O_3
 O_2
 O_2NN
 O_3
 O_2
 O_3NN
 O_4
 O_5
 O_5
 O_7
 O_7

References

- 1. Base catalyzed α -deuteration and α -alkylation of simple nitrosamines was reported in 1970.² The development of the reaction has been reviewed.^{3,4}
- L. K. Keefer and C. H. Fodor, <u>J. Amer. Chem. Soc.</u>, 1970, 92, 5747.
- D. Seebach and D. Enders, Angew. Chem. Internat. Ed., 1975,
 14, 15.
- 4. P. Beak and D. B. Reitz, Chem. Rev., 1978, 78, 275, 291.
- 5. Simple nitrosamines with an electron withdrawing substituent at nitrogen also transnitrosated lithium amides to corresponding nitrosamines (D. Seebach and D. Enders, Chem. Ber., 1975, 108, 1293).

- 6. R. Olofson and C. M. Dougherty, <u>J. Amer. Chem. Soc.</u>, 1975, 95, 581.
- 7. W. D. Hinsberg, P. G. Schultz, and P. B. Dervan, <u>J. Amer.</u>
 Chem. Soc., 1982,
 104, 766.
- 8. R. R. Fraser, T. B. Grindley, and S. Passannanti, <u>Can. J.</u> <u>Chem.</u>, 1975, 53, 2473.
- 9. A. T. Nielsen, D. W. Moore, M. D. Ogan, and R. L. Atkins,

 <u>J. Org. Chem.</u>, 1979, 44, 1678. A high resolution ¹H nmr

 spectrum for the trinitrosamine <u>1</u> showed the presence of

 two geometrical isomers in a 1:3 ratio.
- 10. R. N. Loeppky, W. A. McKinley, L. G. Hazlitt, and J. R. Outram, J. Org. Chem., 1982, 47, 4833. A base induced fragmentation of β-hydroxy derivatives of simple nitrosamines was reported.
- 11. R. F. Evans, Aust. J. Chem., 1967, 20, 1643.
- 12. S. Bulusu, personal communication.

などなりませんできなからなり、国内によったないの。国内であるなどのでは、

- 13. F. J. Brockman, D. C. Downing, and G. F. Wright, <u>Can. J.</u>
 <u>Res.</u> 27B, 469 (1949).
- 14. A. H. Dutton and D. F. Heath, J. Chem. Soc., 1892 (1956).
- 15. (a) A. T. Nielsen, D. W. Moore, M. D. Ogan, and R. L. At-kins, <u>J. Org. Chem.</u> 44, 1678 (1979). (b) S. M. Glidewell, <u>Spectrochim. Acta</u> 33A, 361 (1977).
- F. Tabouis, M. Ortigues, and P. Aubertein, <u>Mem. poudres</u>,
 1951, 33, 59; Chem. Abstr., 1954, 47, 56831.

C. Chemistry of Nitrocyanocarbene

With T. Manimarin and V. T. Ramakrishnan

Dibromonitroacetonitrile $\underline{1}$ came to our attention in a search for the preparation of unknown dicyanodinitroethylene $\underline{2.1}$ An examination of the facile loss of bromine from the dibromide $\underline{1}$ brought about the following report accepted for publication in Chemical Communications.

$$Br_2C(NO_2)_2CN$$
 $O_2NC(CN)=C(CN)NO_2$

$$\frac{1}{2}$$

Nitrocyanocarbene Derivatives from Nitrodibromoacetonitrile

Summary. Uncatalyzed debromination of nitrodibromoacetonitrile 1 by treatment with tetramethylethylene, dimethyl sulfide, and triethylamine under mild conditions gave respectively 3-cyano-4,4,5,5-tetramethylisoxazol-2-ine-2-oxide 4, dimethylsulfonium cyanonitromethylide 5, and triethylammonium cyanonitromethylide 6.

Although reactions of nitrocarbenes were considered unknown as recently as 1973, 2 isoxazolines and isoxazoline-N-oxides thought to be derived from such an intermediate have been obtained from the hazardous thermolysis of metal salts of gem-dinitroalkanes $^{3-5}$ and from silyl derivatives of trinitromethane; 6 but other attempts to generate a nitrocarbene failed. 7 We now report simple and efficient uncatalyzed conversions of nitrodibromoacetonitrile 1^8 to 3-cyano-4,4,5,5-tetramethylisoxazol-2-ine-2-oxide 4, 9 dimethylsulfonium and triethylammonium cyanonitromethylides 5 and 6^9 presumably via the intermediacy of nitrocyanocarbene 3.

The methylide $\underline{5}$ was previously obtained from nitroacetonitrile and dimethyl sulfoxide. 10

In methylene chloride at 25°C for 30 minutes two equivalents of tetramethylethylene debrominated the dibromo compound $\underline{1}$ to give 2,3-dibromo-2,3-dimethylbutane $\underline{7}$, 42%, mp 168-169°C (dec) 11 and the heterocycle $\underline{4}$, 45%, mp 68-69°C (with sublimation). The structure $\underline{4}$ was confirmed by an x-ray determination 12

The dibromo compound 1 was also debrominated by similar treatment with dimethyl sulfide and with triethylamine to give the cyanonitromethylides 5, 80%, mp 213-214°C (dec) 10 and 6, 5%, mp 154-155°C (dec). Triethylammonium bromide, 45%, mp 247-249°C (dec) 13 was also obtained.

Further work on the dehalogenation of negatively substituted nitrodibromomethanes is underway.

The dibromide $\underline{1}$ readily reacted with the diamion $\underline{8}$ of nitroacetonitrile but the expected olefin $\underline{2}$ was not detected in the intractable product mixture. Methyl iodide and benzyl bromide each converted the diamion to similar product mixtures; however the latter also offered low yields of the expected dibenzyl derivative $\underline{9}$ and 1,1,2-tribenzyl-1,2-dicyano-2-nitroethane $\underline{10}$. A nitrocarbanion displacement of a nitrite anion can account for the formation of product $\underline{10}$, eq (1). Similar reactions have been described by N. Kornblum, eq (2). They have been designated $S_{RN}1$.

 $R_2\bar{C}NO_2 + R_2C(CN)NO_2 \longrightarrow R_2C(CN)NO_2^{-1} + R_2\dot{C}NO_2$

$$R_2$$
C(CN) NO_2 ----> R_2 CCN + NO_2

$$R_2CCN + R_2CNO_2 \longrightarrow R_2C(CN)CR_2NO_2$$

$$R_2C(CN)CR_2NO_2$$
 + $R_2C(CN)NO_2$ \longrightarrow $R_2C(CN)CR_2NO_2$ + $R_2C(CN)NO_2$ eq (2)

The presence of freshly precipitated copper promoted the formation of benzoyl cyanide 11 (28%) when the dibromide 1 was heated in benzene for 15 hours. α -Nitrobenzyl cyanide 12, a

eq (5)

proposed intermediate, was independently shown to give benzoyl cyanide (97%) in the presence of copper. Insofar as dicyanocarbene combined with benzene by addition rather than by inser $tion^{15}$ it was proposed that the initial reaction between the carbene 3 and benzene gave an isoxazoline intermediate, eq (3). That conversion of compound 12 to product 11 did not proceed from a nitronate was shown by observing no reaction when the sodium salt 13 was heated in benzene in the presence of The conversion can be explained by an isomerization of the nitro compound 12 to a nitrite ester 14 followed by an elimination of nitroxyl, eq (4). A radical process for such an isomerization of an α -nitronitrile has been proposed. 16 olysis of α-bromo-α-nitrobenzyl cyanide 15 to product 11, eq $(5)^{17}$ tends to support the nonparticipation of a nitronic acid tautomer and to support an isomerization to a nitrite ester in the conversion $12 \rightarrow 11$.

15

An unexpected formation of the oxime 16 (29%) of p-nitro-benzoyl cyanide occurred when the cyanide 12 was heated alone in benzene, eq (6). Apparently the C-nitro compound 12 served as both a nitrosating and a nitrating agent. A low yield (2%) of the oxime 16 was previously obtained when the cyanide 12 was treated with sodium nitrite in acetone. 18

$$\frac{12}{10} \xrightarrow{80^{\circ}} p-o_2NC_6H_4C(=NOH)CN \qquad eq (6)$$

$$\frac{16}{10}$$

References and Footnotes.

- 1. Annual Reports 1980 1983.
- W. J. Baron, M. R. DeCamp, M. E. Hendrick, M. Jones, Jr., R. H. Levin, and M. B. Sohn, "Carbenes from Diazo Compounds," in M. Jones, Jr. and R. Moss, "Carbenes," Vol 1, J. Wiley and Sons, New York, 1973, p. 132.
- 3. I. E. Chlenov, M. V. Kashutina, S. L. Ioffe, S. S. Novidov, and V. A. Tartakovskii, <u>Izv. Akad. Nauk SSSR, Ser. Khim.</u>, 1969, 2085; Chem. Abstr., 1970, 72, 12627j.
- 4. A. Rahman and L. B. Clapp, J. Org. Chem., 1976, 41, 122.
- 5. E. Coutouli-Argyropoulou and N. E. Alexandrou, J. Org. Chem., 1980, 45, 4158.
- S. L. Toffe, L. M. Makarenkova, M. V. Kashutina, V. A. Tar-takovski, N. N. Rozhdestvenskaya, L. I. Kovalenko, and V. G. Isagulyants, Zh. Org. Khim., 1973, 9, 905; Chem. Abstr., 1973, 79, 53436j.
- 7. U. Schöllkopf and P. Tonne, Justus Liebig's Ann. Chem., 1971, 753, 135.

- 8. W. Steinkopf and L. Boehm, Ber., 1908, 41, 1044.
- 9. Satisfactory spectral and analytical data were obtained for new compounds (4) and (6).
- 10. O. P. Shitov, V. N. Kondrat'ev, A. P. Seleznev, and V. A. Tartakovskii, <u>Izv. Akad. Nauk SSSR, Ser. Khim.</u>, 1977, 240; <u>Chem. Abstr.</u>, 1977, 86, 170785c.
- A. V. Grosse and V. N. Ipatieff, <u>J. Org. Chem.</u>, 1943, 8,
 438.
- 12. We are indebted to Dr. Richard Gilardi and Dr. Clifford George, Naval Research Laboratory, Washington, D.C. for the x-ray analysis.
- 13. L. Wagner, Z. Kryst. Min., 1907, 43, 177.
- 14. N. Kornblum, H. K. Singh, and S. D. Boyd, <u>J. Org. Chem.</u>, 1984, 49, 358.
- 15. E. Ciganek, J. Amer. Chem. Soc., 1965, 87, 652.
- 16. R. Ketari and A. Foucaud, <u>J. Org. Chem.</u>, 1981, <u>46</u>, 4498.
- 17. W. Wislicenus and R. Schäfer Ber. 1908, 41, 4169.
- 18. A. Garming, D. Kern, G. Cohausz, G. Hillert, and P. Gelbke,
 Liebigs' Ann. Chem., 1977, 1822.

D. Nitrobarrelene Project

The known compounds 5,7-dioxo[2,2,2]bicyclooct-2-ene $\underline{1}^1$ and 2,6,7-trioxo[2,2,2]bicyclooctane $\underline{2}^2$ were prepared for investigations designed to provide nitro derivatives.

The diketoolefin $\underline{1}$ was obtained in three steps. Hydroquinone and maleic anhydride gave the Diels-Alder adduct $\underline{3}$ (14%), eq (1), Hydrolysis to the dicarboxylic acid $\underline{4}$ (66%) and oxidation by lead tetraacetate gave the product $\underline{1}$ (30%), eq (2).1

$$\frac{3}{2} \xrightarrow{H_2O} \xrightarrow{O} \xrightarrow{COOH} \xrightarrow{Pb(OAc)_4} \xrightarrow{Pb(OAc)_4} \xrightarrow{eq (2)}$$

4

The triketone $\underline{2}$ was obtained in four steps. Diethyl 3-oxo-adipate condensed with itself in the presence of sodium to the triester $\underline{5}$ (40%), eq (3). Hydrolysis and decarboxylation gave the acid $\underline{6}$ (40%). Reduction gave the diketoacid $\underline{7}$ (80%), and cyclization by treatment with acetic anhydride gave the product $\underline{2}$ (20%), eq (4).

からいられ、このなりののないなど、これがないかられ

でいるので、これがないなど、これできるのではならればなられば、国内などなど、これがないない。

eq (4)

To establish models for eventual reactions in the bicyclic compounds the transformation of cyclohexanone to 1,2-dinitro-cyclohexene 13, a previously unknown compound, was carried out. Isopropenyl acetate converted cyclohexanone to its enol acetate $\frac{8}{3}$ (77%). Nitration gave α -nitrocyclohexanone, $\frac{9}{3}$ (60%), and then treatment with hydroxylamine gave the oxime $\frac{10}{3}$ (70%), chlorine converted the oxime to the gem-chloronitroso compound $\frac{11}{3}$ (%) which was oxidized by ozone to the chlorodinitrocyclohexane $\frac{12}{3}$ (~40%). Dehydrochlorination by treatment

with 1,5-diazabicyclo[5,4,0]undecane (DBU) afforded the dinitrocyclohexene 13, eq (5).

The diketoolefin 1 readily converted to the mono- and disilylenol ethers 14 and 16 on treatment with sodium ditrimethylsilylamine followed by trimethylsilyl chloride. When the latter was replaced with acetyl chloride the monoenol acetate 15 was obtained. Attempts to prepare the dienol acetate 17 were unsuccessful.

Attempted nitration of the disilyl ether <u>16</u> by treatment with nitronium tetrafluoroborate gave a brown intractable resin; neither the anticipated mononitro compound nor the dinitro compound 18, eq (6) was detected.⁷ Other schemes for nitration

ተመመመመው መመመር እና መርፈር መስፋት በሚያ መስከት እና መስመር መስመር መስመር የመስከት ነው የመጠር መመር የመስከት ነው ነ

were also unsuccessful.

eq (6)

Conversions of ketones 1 and 2 to oxime derivatives 19 and 20 have been carried out. Product identification is not yet complete.

Further attempts will be made to nitrate the enol derivatives 14, 15, and 17.

Oxidation of oximes 19 and 20 to nitro compounds 21 and 22 and conversions of the oximes to nitro olefins 23 and 24 will be investigated. A typical anticipated route is shown, eq (7). The chemistry of the nitrovinyl units in 23 and 24 will be examined for conversion to hexanitrobarrelene 25 and the furoxan 26. The oxidation of the furoxan 26 to hexanitrobarrelene will be investigated.

NO₂

$$0_{2}N$$

$$NO_{2}$$

$$\frac{21}{NO_{2}}$$

$$\frac{22}{NO_{2}}$$

$$\frac{23}{Y} = NO_{2}$$

$$Y = Z = H$$

$$\frac{24}{Y} = Z = NO_{2}$$

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2
 O_2N
 O_2
 O_3
 O_4
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 $O_$

References

- C. W. Jefford, T. W. Wallace, and M. Acar, <u>J. Orq. Chem.</u>,
 1977 42, 1654.
- 2. H. Gerlach and W. Muller, Angew. Chem. Internat. Ed. Engl., 1972, 11, 1030.
- 3. R. H. Fisher and H. M. Wertz, Synthesis, 1980, 261.
- I. Tanaka, H. Mera, and S. Ono, Japan 7505,188; <u>Chem.</u>
 Abstr., 1975, 83, 58266.
- 5. J. M. Patterson, J. Org. Chem., 1976, 41, 733.
- 6. R. Gomper, K. H. Etzbach, Angew, Chem. Internat. Ed. Engl., 1978, 17 603.
- 7. The attempted reaction was patterned after reported nitrations of silylenol ethers: Sh. I. Shvarts, V. N. Yarovenko, M. M. Krayushkin, S. S. Novikov, V. V. Sevost'yana, <u>Izv. Akad. Nauk SSSR, Ser. Khim.</u>, 1976, 7, 1674; <u>Chem. Abstr.</u>, 1976, 85, 176926.

E. Collaboration with NRL

Collaboration with Dr. M. D. Pace of the Naval Research Laboratory on the elucidation of electron transfer to give radical intermediates in the spontaneous conversion of N,N-dimethyl-2,4-dinitrobenzylamine to 6-nitro-2-methylindazole continued.

Samples of R-Salt and of the tetramethylcyanoisox-azoline-N-oxide (cpd $\underline{4}$ p 42) were submitted to Dr. Richard Gilardi for X-ray structure analysis.

F. The writing of a book, "The C-Nitro Derivatives of N- and N,O- Five-membered Heterocycles" was completed. The book will be published by VCH Publishers, Inc. (was Verlag Chemie International, Inc.) in 1985.

DISTRIBUTION LIST

Dr. R. S. Miller Office of Naval Research Code 432P Arlington, VA. 22217 (10 copies)

这么是是这个人的人,也是是这个人的人,他们也是是一个人的人,他们也是是一个人的人,他们也是一个人的人,他们也是一个人的人,他们也是一个人的人,也可以是一个人的人

Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, DC 20380

JHU Applied Physics Laboratory ATTN: CPAI (Mr. T. W. Christian) Johns Hopkins Rd.

Dr. Kenneth D. Hartman Hercules Aerospace Division Hercules Incorporated Alleghany Ballistic Lab P.O. Box 210 Washington, DC 21502

Mr. Otto K. Heiney AFATL-DLJG Elgin AFB, FL 32542

Dr. Merrill K. King Atlantic Research Corp. 5390 Cherokee Avenue Alexandria, VA 22312

Dr. R. L. Lou Aerojet Strategic Propulsion Co. Bldg. 05025 - Dept 5400 - MS 167 P.O. Box 15699C Sacramento, CA 95813

Dr. R. Olsen Aerojet Strategic Propulsion Co. Bldg. 05025 - Dept 5400 - MS 167 P.O.Box 15699C Sacramento, CA 95813

Dr. Randy Peters Aerojet Strategic Propulsion Co. Bldg. 05025 - Dept 5400 - MS 167 P.O. Box 15699C Sacramento, CA 95813 Dr. J. Pastine Naval Sea Systems Command Code 07CT Arlington, VA 22217

Dr. Henry P. Marshall Dept. 93-50, Bldg 204 Lockheed Missile & Space Co. 3251 Hanover St. Palo Alto, CA 94304

Dr. Ingo W. May Army Ballistic Research Lab. ARRADCOM Code DRXBR - 1BD Aberdeen Proving Ground, MD 21005

Dr. R. McGuire Lawrence Livermore Laboratory University of California Code L-324 Livermore, CA 94550

P. A. Miller 736 Leavenworth Street, #6 San Francisco, CA 94109

Dr. W. Moniz Naval Research Lab. Code 6120 Washington, DC 20375

Dr. K. F. Mueller Naval Surface Weapons Center Code Rll White Oak Silver Springs, MD 20910

Prof. M. Nicol Dept. of Chemistry & Biochemistry University of California Los Angeles, CA 90024

Mr. L. Roslund Naval Surface Weapons Center Code R10C White Oak, Silver Spring, MD 20910 Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park,
North Carolina 27709-2211

Mr. R. Geisler ATTN: DY/MS-24 AFRPL Edwards AFB, CA 93523

Naval Air Systems ATTN: Mr. Bertram P. Sobers NAVAIR-320G Jefferson Plaza 1, RM 472 Washington, DC 20361

R. B. Steele Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813

Mr. M. Stosz Naval Surface Weapons Center Code R10B White Oak Silver Spring, MD 20910

Mr. E. S. Sutton Thickol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921

Dr. Grant Thompson Morton Thiokol, Inc. Wasatch Division MS 240 P.O. Box 524 Brigham City, UT 84302

Dr. R. S. Valentini United Technologies Chemical Sys. P.O. Box 50015 San Jose, CA 95150-0015

Dr. R. F. Walker Chief, Energetic Materials Div. DRSMC-LCE (D), B-3022 USA ARDC Dover, NJ 07801 Dr. David C. Sayles Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807

CHING THE CONTROL CONTROL OF THE FOR THE FOREST STANDARD THE TRANSPORT TO THE PROPERTY AND THE PROPERTY AND

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-IBD
Aberdeen Proving Grou, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

T. Yee Naval Weapons Center Code 3265 China Lake, CA 93555

Dr. E. Zimet Office of Naval Technology Code 071 Arlington, VA 22217

Dr. Ronald L. Derr Naval Weapons Center Code 389 China Lake, CA 93555

T. Boggs Naval Weapons Center Code 389 China Lake, CA 93555

Lee C. Estabrook, P. E. Morton Thiokol, Inc., P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J. R. West Morton Thicker, Inc. P.O. Box 30058 Shreveport, Louisiana 71130 Dr. Janet Wall Code 012 Director, Research Administration Naval Postgraduate School Monterey, CA 93943

R. E. Shenton Atlantic Research Corp. 7511 Wellington Road Gainesville, VA 22065

Mike Barnes Atlantic Research Corporation 7511 Wellington Road Gainesville, VA 22065

Dr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center Code D Indian Head, MD 20340

Prof. J. T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M. H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T. F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, Illinois 60606

Mr. J. Consaga Naval Surface Weapons Center Code R-16 Indian Head, MD 20640

Naval Sea Systems Command ATTN: Mr. Charles M. Christensen NAVSEA62R2 Crystal Plaza, Bldg. 6, Rm 806 Washington, DC 20362 Dr. D. D. Dillehay Morton Thiokol, Inc. Longhorn Division Marshall, TX 75670

G. T. Bowman Atlantic Research Corp. 7511 Wellington Road Gainesville, VA 22065

Brian Wheatley Atlantic Research Corp. 7511 Wellington Road Gainesville, VA 22065

Mr. G. Edwards Naval Sea Systems Command Code 62R32 Washington, DC 20362

C. Dickinson Naval Surface Weapons Center White Oak, Code R-13 Silver Spring, MD 20910

Prof. John Deutch MIT Department of Chemistry Cambridge, MA 02139

Dr. E. H. deButts Hercules Aerospace Co. P. O. Box 27408 Salt Lake City, UT 84127

David A. Flanigan Director, Advanced Technology Morton Thiokol, Inc. Aerospace Group 110 North Wacker Drive Chicago, Illinois 60606

Dr. L. H. Caveny Air Force Office of Scientific Research Directorate of Aerospace Sciences Bolling Air Force Base Washington, DC 20332 Mr. R. Beauregard Naval Sea Systems Command SEA 64E Washington, DC 20362

Dr. Anthony J. Matuszko
Air Force Office of Sci. Res.
Directorate of Chemical &
Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky Naval Surface Weapons Center Code Rll White Oak Silver Spring, MD 20910

J. J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Groud, MD
21005-5066

G. A. Zimmerman Aerojet Tractical Systems P.O. Box 13400 Sacramento, CA 95813

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant Naval Weapons Center Code 3205B China Lake, CA 93555

SERVICE STATES OF THE PROPERTY OF THE PROPERTY

Dr. L. Rothstein
Assistant Director
Naval Explosives Div.
Engineering Department
Naval Weapons Station
Yorktown, VA 23691

Dr. M. J. Kamlet Naval Surface Weapons Center Code Rll White Oak, Silver Spring, MD: 20910

W. G. Roger Code 5253 Naval Ordnance Station Indiana Head, MD 20640

,我们就是我们的人,我们就会看到这一个,我们就是我们的,我们就是我们的,我们就会就是我们的人,我们就是我们的人,我们就是我们的人,我们就是这个人,我们就是我们的 第一章

> Dr. Donald L. Bell Air Force Office of Sci. Res. Directorate of Chemical & Atmospheric Sciences Bolling Air Force Base Washington, DC 20332

Dr. H. G. Adolph Naval Surface Weapons Center Code Rll White Oak Silver Spring, MD 20910

U. S. Army Research Office Chemical & Biological Sciences Division P.O. Box 12211 Research Triangle Park, NC 27709

G. Butcher Hercules, Inc., MS X2H P. O. Box 98 Magna, Utah 84044

W. Waesche Atlantic Research Corp. 7511 Wellington Road Gainesville, VA 22065

Dr. John S. Wilkes, Jr. FJSRL/NC USAF Academy, CO 80840

Dr. H. Rosenwasser AIR32OR Naval Air Systems Command Washington, D.C. 20361

Dr. A. Nielsen Naval Weapons Center Code 385 China Lake, CA 93555 Dr. Henry Webster III Manager, Chemical Sciences Branch ATTN: Code 5063 Crane, IN 47522

Dr. G. Neece Office of Naval Research Code 413 Arlington, VA 22217

Mr. C. M. Havlik 0/83-10, B/157-3W Lockheed Missiles & Space Co. Inc. P.O. Box 504 Sunnyvale, CA 94086

Dr. Philip Howe Ballistic Research Laboratory Code DRXBR-TBD Aberdeen Proving Ground, MD 21005

Prof. C. Sue Kim
Department of Chemistry
California State University
Sacramento
Sacramento, CA 95819

Mr. J. Moniz Naval Ordnance Station Code 5253L Indian Head, MD 20640

Dr. R. Reed Jr. Naval Weapons Center Code 38904 China Lake, CA 93555

L. H. Sperling Materials Research Center #32 Lehigh University Bethlehem, PA 18015

Dr. Kurt Baum Fluorochem, Inc. 680 South Ayon Ave. Azusa, CA 91702

Prof. J. H. Boyer University of Illinois at Chicago Department of Chemistry (MC111) P.O. Box 4348 Chicago, Illinois 60680 Dr. Joyce J. Kaufman The Johns Hopkins University Department of Chemistry Baltimore, MD 21218

Dr. Andrew C. Victor Naval Weapons Center Code 3208 China Lake, CA 93555

Dr. J. C. Hinshaw Morton Thiokol Inc. P. O. Box 524 Mail Stop 240 Brigham City, Utah 84302

Dr. V. J. Keenan Anal-Syn Lab. Inc. P. O. Box 547 Paoli, PA 19301

G. E. Manser Morton Thiokol Wasatch Division P.O. Box 524 Brigham City, Utah 84302

P. Politzer Chemistry Department University of New Orleans New Orleans, Louisiana 70148

Mr. David Siegel Office of Naval Research Code 253 Arlington, VA 22217

Dr. Rodney L. Willer Mortion Thiokol, Inc. P. O. Box 241 Elkton, MD 21921

Dr. R. Atkins Naval Weapons Center Code 3852 China Lake, CA 93555

Dr. W. H. Graham Morton Thiokol, Inc. Hunstville Division Hunstville, AL 35807-7501 Prof. J. C. Chien University of Massachusetts Department of Chemistry Amherst, MA 03003

Dr. B. David Halpern Polysciences, Inc. Paul Valley Industrial Park Warrington, PA 18976

Dr. M. B. Frankel Rockwell International Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91304

Dr. R. A. Earl Hercules, Inc. Magna, Utah 84109

Dr. C. Bedford SRI International 333 Ravenswood Avenue Menlo Park, CA 94025

Dr. Robert R. Ryan INC-4, MS C346 Los Alamos National Laboratory Los Alamos, New Mexico 87545

Dr. Robert D. Champman AFRPL/LKLR Edwards AFB, CA 93525

Dr. L. Erwin MIT Room 35-008 Cambridge, MA 02139 Dr. C. Coon
Lawrence Livermore Lab.
University of California
P.O. Box 808
Livermore, CA 94550

ይህ ያሉ ይዜግ ሌርሃ ፣ ዜጊ ዜጋ ዜጋ ዜጋ ዜጋ ዜጋ ዜጋ ይገሄር፣ ፈንዜጋ ዜገ ይገሄርን ይገ ዜግ ምን ይገኛ ያገ ፈላ ዲያደር ፕሪኖዎችህ የሂደና ደጃ ደጃ የጀርር ደጃ የጀርር

Dr. R. Gilardi Naval Research Laboratory Code 6030 Washington, DC 20375

Dr. Alan Marchand Dept. of Chemistry North Texas State University NTSU Station, Box 5068 Denton, Texas 76203

T. B. Brill
Department of Chemistry
University of Delaware
Newark, Delaware 19716

Dr. A. A. Defusco Code 3858 Naval Weapons Center China Lake, CA 93555

Dr. Richard A. Hollins Naval Weapons Center Code 3853 China Lake, CA 93555

Dr. R. Armstrong MIT Room 66-505 Cambridge, MA 02139

Professor Philip E. Eaton Department of Chemistry University of Chicago 5735 South Ellis Avenue Chicago, Illinois 60637