AD-A151 786 SIHULRTION NODEL_OF ﬂ CSNA/CD BUS LOCAL AREA NETWORK 173
HITH MULTIPLE VARIABLES(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J M SCHRIML

UNCLASSIFIED DEC 84 AFIT/GE/ENG/84D-57 F/G 12/1 NL

— - _

||||| 1.0 &0 2
= @
il
L &
= |

22 it e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BiIRFAU OF STANDARDS:1963 A

e G

v L n
R RN

GTIC FILE COPY

SIMULATION MODEL OF A CSMA/CD BUS LOCAL
AREA NETWORK WITH MULTIPLE VARIABLES
THESIS
John M. Schriml, B.E.E.

Captain, USAF

AFIT/GE/ENG/84D-57

— DTIC

DISTRIBUTION STATEMENT A ELECTE |
Approved fx public releasel o MAR2 8 1985
Distribution Unlimited =

DEPARTMENT OF THE AIR FORCE -—--‘B.._....u./
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

A

Wright-Patterson Air Force Base, Ohio

i (e

SIMULATION MODEL OF A CSMA/CD BUS LOCAL

AREA NETWORK WITH MULTIPLE VARIABLES
THESIS
John M, Schriml, B.E.E,
Captain, USAF

AFIT/GE/ENG/84D-5T

_DTIC

9 ELECTE
'&x@, MAR2 8 1985 ;

B .

DISTRIBUTION STATEMENT A

Approved fox public releaset &
F’Dnnﬁbuﬁon Unlimited -}

AFIT/GE/ENG/84D-57

.....
PRl . e

SIMULATION MODEL OF A CSMA/CD BUS L"CAL

AREA NETWORK WITH MULTIPLE VARIABLES

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technolégy
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

John M. Schriml, B.E.E.

Captain, USAF

December 1984

Approved for public release; distribution unlimited

e o o AN ani 4 n e e B o— SR e hes v St Sben Jbat Jie Shen Bt Jate e v Sene A e San T

e T —— g T WV~ w
- . N . . . P . . B RS A A S i " R

PREFACE

The computer simulation model developed by this report will allow you
to determine the expected performance of a CSMA/CD bus local area network
under various loads. This simulation model is the first model that I
have seen which will allow you to load up to 500 input sources, all with
a different input rate and packet length. I feel this simulation model
is one of the most realistic simulation models developed to date, because
of the multiple variables of input sources.

I wish to express my thanks to Major Walter D. Seward, my advisor, and
CaptainlDavid A. King for their assistant and patience during our
technical discussions. In addition, I would like to extend my gratitude
to Anne'SIOne of HQ AFLC, my sponsor, and her associate, Larry Johnson,
for their support of time and the use of their micro-computer. A special
thanks goes to my proof reader of 35 years, my mom, and finally, a
special appreclation to my wife, Rieko, my daughters, Mana and Michele,
and my soon to be son, Joseph, for their support, love and patience

during the time they had to put up with a part-time husband and father.

VLot
f?p.af_: iﬂl

ii

L
ok

..
e

DA
LIPRIY

N

Table 2£ Contents

Preface.too..o.ooonoo.-o..oo-.no.oo00ooonobl.ootoo..-o-.ooun.--o--'

List Of Fisures--tool‘..cvn.ocoo..c.lt'.o.oo..aooo..o00000000000000

List Of Tables-..-.-.-.--...-...-.....--...-.................--....

Abstraet-......-o-.t'.0.0...-...00-0.0.!.t.l..o;.ooo.ooo.ooooo'co..

I.

II.

III.

Iv.

Introductionoont.!..-oooo.t..-.ol.o..co.0..0.-000..00.'0000..

Backgroundeseeseeeseesscesssescsssscssssossscssssssnnssas
ProblemMecsececsescsscscscassoososcscssancncsssscscansscsnss
SCOPCecscesssesrssonessssssssssessseassscscsssscssssssssssasns
Current Knowledgeeecocsseossecscvscsscscsscosscacscasscnns
APProOACheccceosscsossncsvocsococvcscssesscssssscsssssssscs

Overview of Remaining SectionS.cscccscccssccscccscssnscns

TheOPy-Local APea Networkooﬁni.o.ooo.oconocoo.o..looouo.c.oa.

IntroduCtioONecececsccoscsscosscscsccossscsssscassncnoscnce
DefinitioNeeccecsccecsacssesocscoscccscssscsscsncacssessccne
LAN'S ImpOrtancC@escececssccscsccsstascssvcscsoscsncsnsosncne
LAN UtilizatioNeeeeccecsocssesscacccesccscoscsnssncscnnses
BUS TOPOlOYeeeesecscsonscesoscasssasscscscsscsccssacsnnose
Bus Interface Unit.isececeecececcccscecscncsnossscnsosccnnnne
Baseband vS Broadbande..ccceescssssscsccssesscsccsscsssses
LAN Management Methodesecocesccecscssecovecsssconvcscconse
Time SlOCeceecscccscsscessesoscsrsescsccssasoscacessacasoce
TOK@Necooosoasnsstocsccsssscssossssasacsasanssnoassonssncss
ContentiONeceseccocscescoscssccsscnsscssasesnssscctancss
PersistenNtececccccsccccccocncscscosccssssscscsssscvsoscscsncse
Binary Exponential Backoffes.cecacoccccccsscscscccsccens

summaryo.o.o.'CccOOOOlooo..0.!.000.0.0.00.0....0.o.oo.oo.

SimUIation Modelso‘.oo.o....0..o.lo.oolocuoo.ooo..o.ooooooo..

Bus

Introduction.....’.ll...‘...I..O.ll.’.l...0-..-..0.0....-
Resident vS Transient.scececsctiocecerssccscssosccscscascscsncs
Continuous vs Discrete Eventevescecereccoossvensnsossncss
Pascal and MinicomputerSceiecctececessccccsocssscsccsncncs

Summary.oool.o.-o..ol..0.0cc.Qo.Ot.oo.ool.o.to..u.o.ool0.

Network Design and Modelingooocoa..o'ooocooo-o.ooocoooao.

IntroductioOnNececacecscsesecossncosnsosscssccsscosscscssnsoses
Design ConCeptecscecccsccsessosscsccsccsssssvscscscsescnnsne
Customers vS SeSS10NSececesccccsoscccerossssscccssssccscscns
Model ASSUMPLiONSeeecocsscsccscssssssssssvsscssosssscssosns
Model ImplementatioONeccecseccscecssscesnsssssscsssssonsne
Simulation AlgOrithmessescescsccsccsscscsocsacssassssnssans

114

Page
i1
vi
vii

viii

19

19
19
21
22
23
28

R T———— — nd

Demonstration..oooooool.o.c..lo.cn.no.-.o.....l.looo...oo 39

Summary..oootooc'o.c.o.ocoo.oooooo..o.n-oo‘otaolooocoo.oo u3
V. Test Results..l.0.-..0.0.0....0.00000..oono..o..o.oool.ol..t. uu

IntPOduction.....-o-...--..--o--..--.--.........-.....-.. uu

Test 1.....".....0...“".‘...............l..'.......... uu
Test 2........"......'.........Q.....'...............'l. u6
Further Discussion TeSt 2.ceecsccsscscascsscccscssccsssces U8
Test 3...'......‘....0............‘....l.......'......... 50
Test u.....'..l....‘.............l....‘.I‘..'....l....... 55
Test 5.............I..Q.‘.C.."........'0...............‘ 55
Summary.‘..I.'..'Q.O..'..Q........‘....‘.I.........OII'I' 57

VI. Discussions and RecommendationS.:sseeseccesessescassssccascces 00

INtroductioNeecessseescessssscsacncsoscssscscososcsasenssasse 00
Limitation Teesececoscccoosssecsscsscsscssssssscsnssssnssse DO
Limitation 2eeeccessccecesscsscsscscescsassccsasesssssscssse 02
Limitation 3eeececcsvcceessccsosscscssssssasscescssssanss D3
Limitation H.eeeecececscsssssasoscssccsassssssassassssanas O3
LimitaAtion Secececcscoccosscsscssccscsccsesssossssossscssss 0O
Limitation Geececeecsscccossssocsscsccscssssscscrssssssenss DO

Summary-.o.ool.otuoo...o-.ooc'lOoo'.Coo.o....oooo.a...o'o 66
Appendix A: Simulation USGP'S Guidenool.co.o..ooo...co.ooo...oo'-. 68

|@ Part A1: Program Input_teseecececsecccececccencccnconcanne 69
Part A2: Program SeSSiONS.eceescssccccccesscscsscscnsencscs 11
Part A3: Program Input Necececceccessscecscessccssascscses T4
Part A4: Program NetWorKeseeesesscsscoscsscasscscsscassaes T0
Part A5: Program ParameterS..ccseccescecscceccscsscsccaacsecs 80
Part A6: Program Simulat@..ceescsssccssccscsassscsssscccee 83
Part A7: Program Evaluate.esscesecccsscssesscssscccecssses 88

Appendix B: Pascal Computer ProgramS.scccccccccecceccccccoscocences 92

Part B1: Pascal Program Input teeeececceccccocscsssscccccsse 93
Part B2: Pascal Program SeSSiONS.cescececcccsscsseccsscass 96
Part B3: Pascal Program INpuUt Necececcocsccsccacscccscsess 104
Part Bl4: Pascal Program NetWorK.eeessoesossecsscssessscasses 107
Part B5: Pascal Program ParameterS..cccescecescocecvoseses 117
Part B6: Pascal Program Simulat@eescssccsccsccscsscccnsses 128
Part B7: Pascal Program Evaluat@escscecesssessssescssecssss 159

Appendix C: Simulation Model's Input LimitationS.sececessccccsceasse 177

Simulator's Basic Unit of Time.sseceeccssacsoccncasescaceas 177 -
Number oOf SesSSioNS.ececscscscscssscscssescsoscosnsesnsoses 177 B
Terminal Speed.escessccscsccscsassccscsccssassccscnscscoanse 178 o
Simulation TiMeeeeceececcsccaascessossscossccssssasscsasnass 178 T
Time Interval Between INPutSeeecesccescossvsacesscescacscacse 178
Actual Cable Delay.eeeceseosecoscacconssssscscssassscasssssece 178

iv .: .El

Bibliography-.‘...0....o.00-...0.00.0.c..o.oooon...o.on.o....'.to.o 179

vitaogontllootﬁoolooo..n.o...l.ol.0...0"0..-.00ot....oooooo.too..- 180

List of Figures

Figure

1. Bus Type Local Area NetwoOrK.seoeseeooosossascsecocsscccces
2. Example of 1 Character Input tO BuS.ececoceecosocscscccnne
3. Model ImplementatioNecececescesascaccsncscscsceccscsccaccens
4, Block Diagram of Simulation AlgorithMececececscsccsccccccs
5. Constant Packet Length DistributionN.ceccecsecccccccecsess
6. Discrete Uniform Distribution Packet Lengtheccesecccccsss
T. Discrete Exponential Distributed Packet Lengthesececsecece
8. Transfer Delay-Throughput Characteristics for a

CSMA/CD at 1 MB/Scsceacssssasscscssoscossccsscosssssassose
9. Transfer Delay-Throughput Characteristics for a

CSMA/CD at 10 MB/Sceecencsoesscsccssscssscsscsecssssansne
10. Transfer Delay-Throughput Characteristics for a

........

CSMA/CD at 5 MB/S.........0....Il...O.......It........l..

vi

Page

10
24
32
51
51

51

54

56

58

I SAdA Mene umn hane namt et s

P ————

TR T — - T T Ty

List 2£ Tables

Table Page
1. Sessiocns Stored for Simulationescececscecrccssscscscess 29
2. Calculated Values for the SimulatioNesceecescsccsccecesss 30
3. Start of the Simulation..iievieseceensersssnsesenssassssas 33
4, Simulation Prepares for First EveNteecececccccessosscess 34
5. Simulation Adjusts for Input..eceeccesscscnssscssssacces 35
6. Simulation Prepares for Second Event.cecevececesceveeas 36
T. Simulation Adjusts for Bus InpUtececececccsvescenscsceees 37

8. Simulation Results for Delay for Various Bus Data Rates U1

vii

T LARE ShIL S0 Sun AEE avE e S AaE e e Bt o e S auasnd b RaBalie s e e i et e o e s Y

ABSTRACT

~ Numerous statistical studies of the expected performance of a CSMA/CD
bus local area networkfhave been completed. With the statistical
approach, the numbter of input sources is normally limited. Also, input
sources normally possess the same statistical parameters with respect to
input rate and the amount of dafa pe; input, Th;*CSMA/CD bus Gocal area -
network.simulation model -developed by this thesis;éan handle up to 500
input sources, all with a different input rate and amount of data per
inpit. The limitation of 500 is due only to the fact that the simulation
model was implemented on a 128K memory micro-computer.. The number of
sources can be increased by implementing the simulation model with a
computer with a larger memory.

The simulatioq;model takes the approach that once an input is made,
the time for the input to travel through the various stages of a network
can be easily calculated. Therefore, the simulation model generates
traffic based on the statistical parameters of each individual source,
then tracks the input as the simulation clock ticks. Using the memory
power of the computer to keep track of the location of all inputs, the
simulation model is able to determine the effect of an input on all other
inputs. In some cases, an input has no direct effect on other inputs,

and at the other extreme, when inputs want to use the bus at the same

time, they have a drastic effect on each others performance. Numerous

tests were performed to demonstrate the ability of the simulation model

to model a CSMA/CD bus LAN., ' The simulation model will accept the

P
RTINS RN

following multiple variables prior to each simulation run: data rate of

the bus, length of the bus cable, overhead bits of the bus, actual delay

viii

- [TR T S A TR TR SN NP TRIE SR e W R
. taa el AP S S I S I U U G Y Y TN G U Iy

of the bus cable, data rate of each source terminal, time interval

between each input, amount of data per each input, and whether the

CSMA/CD is 1-persistant or p-persistant.

ix

B T IR St N TS S N EPCIE TRt IE T SR R
(A NGl AP Sl WA SIS A WL AP, I . UL A AP P P AT

Tl

Y

PRIAEAT SN

I. INTRODUCTION

This introductory chapter begins by providing a background as to why a
bus local area network (LAN) simulation model is needed. 1In addition,
this chapter defines the scope of the simulation model that is develnped
by this thesis. Also, it provides the author's interpretation of the
current knowledge of network models and the approach this thesis will
take. Finally, it concludes with a brief overview of the remaining

chapters and appendixes of this thesis.

Background

Air Force Llogistic Command (AFLC) has decided to procure commercially
available data communication equipment to interconnect asynchronous
devices over a broadband local area network (LAN). The LAN is to be
installed in buildings 262 and 266, HQ AFLC, at Wright-Patterson Air
Force Base, Ohio. The bus cable topology being employed will have over
9000 outlets for computer and terminal connections. The bus cable being
used has a frequency operating range of 40 MHz to 400 MHz. The cable's
frequency spectrum can be divided into 60 channels by using broadband
equipment, each channel with a 6 MHz bandwidth. Since each channel
operates at a different frequency, the terminal/computer bus interface
unit (BIU) must operate at a given channel's assigned frequency. How
many BIUs for a given channel should be bought/installed? 1In order to
answer this question accurately, it must first be determined how many
sessions (established communication links) can be supported on one
channel, given a maximum amount of allowable delay. The number of

sessions vs required channel performance would be determined by trial and

implemented to delay how soon a BIU can attempt a re-transmission after a
collision. One method used to determine how long a BIU must wait before
attempting a re-transmission is called binary exponential backoff.
Tanenbaum (7:294) describes a binary exponential backoff in this manner.
"After a successful transmission, all BIUs may compete for the first
contention slot. 1If there is a collision, all colliding BIUs set a lccal
parameter, L, to 2 and choose one of the next L slots for
re~transmission. Every time a BIU is involved in a collision, it doubles
its value of L. In effect, after k collisions, a fraction 2exp(-k) of
the BIUs will attempt to re-transmit in each of the succeeding slots. As
the LAN becomes more and more heavily loaded, the BIUs automatically
adapt to the load." The binary exponential backoff used by this thesis,
uses a modified version of the one described by Tanenbaum. The thesis
defines a slot as the amount of time that the BIU wants to use the busy.
After the first collision, the BIU randomly picks some waiting time
between 0 and 2 x the time interval the BIU wants to use the bus. If
another collision occurs, the BIU randomly picks some waiting time
between O and 4 x the time interval the BIU wants to use the bus. As
with Tanenbaum version, as the LAN becomes more and more heavily loaded,

the BIUs automatically adapt to the load.

Summary

Local area networks are becoming a popular and efficient means to
transfer local information. Within the next few years more and more
military organizations will be utilizing LANs. From the current trends,
it can be expected that the majority of these new military LANs will be

bus topology, using the broadband and CSMA/CD configurations.

L
.Y

PP

el

d o

. .
. et

. St

SN . i .

'
el

bus is found busy. Persistent can be defined into three classes;

1-persistent, p-persistent, and non-persistent (7:289-291). When a BIU
has data to send, it first listens to the channel to see if the bus is
busy. If the bus is busy, the BIU waits until it becomes idle. When the
BIU detects an idle channel, it transmits its data. This type of
protocol is called t-persistent because the BIU transmits with a
probability of 1 whenever if finds the bus idle. With the second class,
non-persistent, an attempt is made to be less greedy. If the bus is
detected to be in use, the BIU does not continually sense it for the
purpose of seizing it immediately upon detecting the end of the previous
transmission. Instead, it waits a random period of time and then repeats
the algorithm. The third class, p-persitent, falls in between the
l-persistent and non-persistent protocols. Like the l-persistent, the
BIU for the p-persisten. senses a busy channel for the time when the bus
goes idle. But when the bus does go idle, there is only a probability of
p that the BIU will transmit, with a probability of ¢ = 1 -~ p it will
defer until later to transmit. The p-persistent is more greedy than
non-persistent but not as greedy as persistent. The p-persistent and
non-persistent leads to better channel utilization and longer delays than

1-persistent.

Binary Exponential Backoff. Even though a CSMA/CD senses the bus cable

to avoid collisions, collisions do occur when two or more BIUs begin
transmitting at approximately the same time. Once the BIUs detect a
collision they stop transmitting. If these same BlIUs tried to transmit
again as soon as the collision clears up, another collision will occur.

To break this cycle of repeated collisions, protocols have been

14

Token. The token management method places a token on the bus when
the cable is idle. If a terminal needs to transmit, it removes the
token, transmits its traffic, and when completed, places the token back
onto the bus. A lack of a token on the bus indicates that the bus is
busy. This method is more efficient than the slot time when there is one
terminal with a large amount of traffic and others have none. As with
the slot time, if the terminals have no traffic to send the channel
remains idle. A problem with the token is that it does not allow equal
access to all users. A terminal does not share the bus until it fini;hes

with transmitting all of its traffic.

Contention. The contention method is called random access. That
is, when a terminal has information to transmit and the bus is idle, it
transmits. All terminals are in contention for the cable media. The
most popular version of the contention method is the Carrier Sense
Multiple Access/Collision Detection (CSMA/CD) (7:291). A widely used
configuration, the Ethernet, employes the CSMA/CD method (11:90). The
CSMA/CD applies various rules to the randomness of the contention process
in order to increase efficiency. The CSMA/CD requires that all terminals
listen to the cable. If the cable is idle the terminal can transmit, and
if the cable is busy, the terminal must wait. HQ AFLC has picked CSMA/CD
as its LAN management system. With proper application, the contention

method can be very efficient.

Persistent. The protocol used with the CSMA/CD is called persistent.

This protocol is used to determine what action traffic will take if the

13

expensive, because of additional equipment, it 1s becoming the preferred
method. As stated by the Sytek Corporation, "the broadband versus
baseband issue is dead. Users are now sophisticated enough to see the
requirements for a mix of services, and therefore media, usually on a
broadband cable backbone®™ (9:55.5). The system being installed at HQ

AFLC is a broadband LAN.

LAN Management Method

Even though a user utilizes the bus cable a very short time with
respect to its input -rate, the possibility of collisions occurring
increases as the number of users are increased. A problem with the bus
topology is that all terminals have the same path for transferring
information. There must be some method to manage the terminals' access
to the cable in order to prevent traffic from colliding. When using a
bus topology, there are three basic methods to manage the network

according to Byers (10:68): time slot, token, and contention.

Time Slot. The time slot method of management divides access time to
the bus into slot intervals. Each terminal is then allocated one of
these slot intervals to transmit. There are no collisions, since each
terminal has a specific time interval to transmit. This method is very
good in giving all terminals equal access to the cable. It is also a
very efficient method when all terminals have data to transmit. A
problem with the time slot method occurs when one user has a large amount
of traffic to transmit and the others have little or no traffic to send.
This results in the channel being idle (wasted) for most of the time,

even though one terminal has data to send.

12

Iy

'

v e l.r
PSP I A]

O T Ay

Bus Interface Unit

The bus interface unit (BIU), as indicated earlier in Figure 2, is the
device which connects the user to the bus cable. On the bus side, the
BIU can transmit and receive data in the megabit/sec range. On the user
side, the BIU normally accepts and sends data at a rate between 75 -
19,200 bits/sec. The BIU implements the protocol for the network, such
as, initialization, framing, link management, error control, flow
control, transparency, abnormal condition recovery, and user data
encryption. As stated by Hopkins (8;232), "the BIU accepts data from the
subscriber, buffers the data until the channel is free, and then
transmits the data as an addressed packet. The BIU also scans each packet
on the bus for its own address. If the packet is intended for the
subscriber, the BIU reads the complete packet from the channel into a
buffer, and then clocks the data to the subs:criber device at the proper

data rate."

Baseband vs Broadband

There are two basic methods to utilize a bus cable topology, baseband
or broadband (6:157). The baseband method allows the terminals access to
the entire frequency spectrum of the cable. In effect, this limits the
cable to one channel. The other method, broadband, allows the terminals
access to only a portion of the cable's frequency sprectrum. The unused
portion of the cable's frequency spectrum can be used for additional

channels or other uses. The broadband system is very similar to the home

cable television system except that in addition to receiving, there is

also a capability to transmit. Even though the broadband system is more

11

A
FONPIN S0V I SR RN)

R T ——p——

The bus is simply a cable that is routed throughout the organization's
office areas. Terminals are then tapped into the bus cable. The bus
gives each user the ability to interact directly with all other users and
host computers. A simple example is shown in Figure 2 to help illustrate
why numerous users are able to utilize the same bus cable. Figure 2
depicts a user inputing 1 character of information every 200 msec

(milliseconds).

128 usec 833 umsec 200 msec
Bus ' BIU Terminal LQ— ~ —User
1M b/s 9600 b/s 1 character

Figure 2. Example of 1 Character Input to Bus.

The terminal then transposes the 1 character of information into an 8 bit
ASCII code plus parity. The 8 bit code is then output at a rate of 9600
bits/sec. It will take approximately 833 psec (microseconds) for the
modem to transfer 8 bits of information to the bus interface unit (BIU).
It will then take the BIU, operating at 1 megabit/sec, approximately 128
Msec to transfer the information (plus 120 bits of overhead) along the
bus. Based on the user's input rate and the bus's operating speed, the
bus is idle 99.936% of the time. Even if the input rate was increased to
1200 characters/sec, the maximum rate the terminal could handle (9600
b/s), the bus would still be idle 99.028% of the time. The quick
response of the bus, in comparison to rate at which a user inputs data,

allows the same bus to be shared by numerous users.

10

Le

planning and acqusition stages of putting in LANs at its Headquarters and
all five of its Air Logistic Centers. (Long term plans will interconnect
these centers with the HO). Ry the middle of 1085, HQ AFLC's LAN should

be operational. In the near future, government personnel will be

expected to utilize, engineer, monitor, and/or mairtzisr Y9237 =3r2n

networks as part of their routine duties.

LAN Utilization

The usefulness of a local area network is limited only by the user's
imagination. In the case of HQ AFLC, the prime use will be to assist in
the management of the Air Force's logistic resources. With the Air
Force's resources distributed all over the world, the LAN will provide
virtual real time location and accountability of these resources.
Possible secondary uses of the AFLC network may be for electronic mail,

security monitoring, live video broadcasts, and fire detection.

Bus Topology
Cne of the most utilized topolgies for a LAN is the bus. The bus

topology has been choosen by HQ AFLC. for its network. A bus topology is

illustrated in Figure 1.

o Terminals/Computers

Figure 1. Bus Type Local Area Network.

II. THEORY-LOCAL AREA NETWORKS

Introduction

The local area network (LAN), with the advent of the information
explosion, is the natural outgrowth of the need, and finally, the ability
(due to the micro-computer) to exchange information between locations.
This chapter briefly discusses some of the theory behind a bus local area

network.

Definition

"A local area network is a network within a small confined area and it
is the piece of the communication net thap interconnects equipment such
as word processors, computers, terminals, and telefacsimile machines and
ties them altogether™ (6:137). Tanenbaum (7:286) describes the local

area network as generally having three distinctive characteristica:
- A diameter of not more than a few kilometers
~ A total data rate exceeding 1 Mbps

- Ownership by a single organization

LAN's Importance

The importance of local area networks, with respect to the military,

should be quite evident. The difference between success or failure of a

military operation can depend heavily on the ability to gather and ’ 1
exchange information. In the past, LANs were normally confined to the
academic environment. But within the next few years a rapid increase in

the military's use of the LAN is expected. Already HQ AFLC is in the T

approaches in designing a simulation model. Chapter 4 provides the
design concepts, model assumptions and implementation, and the simulation
algorithm for the bus simulation model developed by this thesis. Chapter
5 provides the test results of various simulation runs made with the
thesis model and Chapter 6 discusses some recommendations. Appendix A
provides the User's Guide and examples of a simulation run. Appendix B
provides the actual Pascal computer programs, and finally, appendix C

provides the design input limitations of the network model.

T T "

- Adjust for the various numbers of characters per input

- Adjust for the terminal/modem to BIU bit rate
- Adjust for the bus bit rate
- Adjust for overhead bits
- Adjust for cable length and added delay
- Generate various traffic loads
- Monitor all traffic
- Collect data on:
-~ Number of inputs
-- Number of collisions
-= Delay due to collisions
-~ Delay due to the bus being busy
-~ Delay due to flow control
-- Amount of data being inputed
-- Traffic being passed by the bus
- Set the amount of simulation time
= Clock and keep track of all events
- Store necessary data for analysis

= Analyze simulation results

The computer programs are flexible enough to allow for hundreds of

customers and for each customer to be transmitting at a different data

rate.

Overview of Remaining Sections

Chapter 2 provides the novice with some of the theory behind a bus '’

local area network. Chapter 3 provides some insight on the various

DASA ok ok 0 o' g "

-
»

LR TR A e
[P I AL W

KRS Ar Ao ear)

to amount of traffic a station can input. With these assumptions, many
of the input variables reduce to statistical parameters. In addition,
results of these previous models normally provided a chart depicting
network performance as delay vs inputed traffic. The results of this
thesis model indicate that a simple delay vs inputed traffic chart does
not adequately define the performance of a network. The thesis model
demonstrates that sessions which input different amounts of traffic, will
have different amounts of delay. Network models built with statistical
parameters are very good for comparing the performance of the various
types of networks against each other, but they are very poor for
analyzing an individual network where all input parameters could be

different.

Approach

As indicated above, previous network models have been developed
primarily for academic discussions. The anticipated solution to modeling
the AFLC network is to build a scale model. In this case, a scale model
does not imply a model that looks like the AFLC network, but a model that
exhibits all the time characteristics of the AFLC network. Having
researched the various characteristics of typical local area networks, it
was necessary to construct a computer program that modeled the time
characteristies of an actual LAN. The requirements for the model

developed in this thesis include computer programs that are able to:

- Select typical sessions from a file
- Adjust for the various inputs rates of the sessions

- Adjust for the deviation of the various input rates

........

BRSO

Y Ty TI——r———~"

are the work of Tokero and Tamaru for Acknowledging

Ethernet (2), Franta and Bilodeau for Priority

CSMA, Hughes and 1.1 (3) for Ethernet, and Almes and 1
Lazowska (4) for What are Termed Ethernet-Like ;t;i
Networks. These studies are all dirscted 2% low l:ivil ;fffi
protocols and few consider more than a dozen or so 1
stations. Apparently neither the experimental nor > l
simulation approach has adequately addressed the A .}
performance of CSMA/CD networks loaded with hundreds of
stations and including several protocol layers.™ ‘
o
Even though O'Reilly and Hammond (1) developed a model which takes ;}
into account hundreds of station, their model still limits itself to the ?f
fact that all stations have one mean packet length and all stations have _;;:
identical Poisson arrival rates. In addition, as do many previous models,) .
O'Reilly and Hammond's model disregards the effects of flow control. ffﬁj
Their model, as does the model developed by Tobagi and Hunt (5), assunmes ;fﬁji
that there are no restrictions on the amount of traffic a station can 4
input. In reality, there are normally two restrictions on the amount of j}i??

traffic a user can input. The first restriction is that the user is ':?64
limited by the terminal/modem interfacing the user with the BIU, normally
this rate is 9600 bits/sec. The second restriction is that most BIUs will
have some type of connection, such as a RS-232 interconnection, which

will limit the amount of traffic inputed if the BIU is having trouble et
moving the traffic it already has. Many previous models assume that all ::;:

customers transmit data at the same statistical data rate, all traffic

placed on the bus has the same mean packet length, and there is no limit

- The number of active sessions

- The input rate of each session

- The input rate variance of each session

- Each terminal/modem bit rate to the BIU

- The number of characters per input

- Bit rate of the BIUs

- Bus propagation delay

- Delay introduced by the active and passive components of the cable
- The CSMA/CD network media access scheme

- The BIU overhead

Originally, the model was planned to be limited to the performance of
a single channel. Traffic generated by any future gateway connections,
to other AFLC LANs, would not be considered. Actually, if the average
amount of traffic from gateways and other channels can be anticipated and

represented as sessions, this model can be used.

Summary of Current Knowledge

Numerous articles have been.published in recent years concerning the
performance of various local area networks. These articles have
discussed mathematical, statistical, and computer simulation models of
various networks. The main problem with these articles has been that
they dealt with the ideal case. As stated by O'Reilly and Hammond

(1:427),

"A number of simulation studies have been reported

in the last several years. Typical of these studies

error unless a formal method is developed to predict LAN performance.
Such a trial and error method would result in wasted effort, in time and

money .

Problem

The problem as stated by the thesis proposal of BQ AFLC/LMSC is, "we
need a model of the proposed network to determine what performance we can
expect under various loads and to help make decisions such as how many
users can be accommodated on a channel. The model is to aid us in
effective network management." 1In short, the problem is that without
some indication of a channel's performance, the channel will be loaded
with customers until finally it reaches an unacceptable level of
performance. Or a slightly different viewpoint, a channel may be
operating satisfactorily and there may be a new requirement to add more
customers. Will the channel support these new customers or should a new
channel be added? If an attempt is made to add more customers to a
channel and its performance drops below an acceptable level, resources in
time and money would have been wasted. In addition, if a new channel is
added when it is not necessary, again resources would have been wasted.
The problem of inefficient network management can be overcome by
designing an accurate model of the network with delay and channel

utilization as output parameters.

Scope
The local area network simulation model developed by this thesis takes

into account the following parameters:

P P

III. SIMULATION MODELS

Introduction

This chapter touches on some of the methods used to build simulation

models. The three areas dicussed in this chapter are; the resident vs

YT
f :

transient viewpoint, continuous vs discrete event, and using

minicomputers and Pascal for model building.

RESIDENT vs. TRANSIENT

In Lee Schruben's article, "Modeling Systems Using Discrete Event
Simulation"(12:101-102), he discusses two categories or viewpcints in
modeling systems using simulation, resident and transient. He
illustrates the two categories by comparing the two approaches in
simulating a factory. A simulation model of a factory using the resident
viewpoint would take into account the machines, workers, storage spaces,
material handling equipment, production schedules, etc. The transient
point of view would take into account the parts being produced by the
factory. For example, he states, we might model the factory by
describing what happens to parts as they travel through the production
process or we might model the same factory by describing what happens to

the machines and inventories.

The local area newtork simulation model developed by this thesis takes
the transient point of view. That is, the thesis model simply monitors
all traffic as it enters, travels through a theoretical network, and

finally as it exits the bus.

16

Clhalh gt Bedh S ook b aan ot

Continuous vs Discrete Event Simulation

A continuous simulation involves a simulation whose clock counts
through each increment of time. A continuous simulation model would be '
used if the states within the model change often with respect to the
simulation increment of time. In contrast, discrete simulation involves
the realization of a system model that changes state only at discrete)
points in time, called events (13:41). In developing the thesis model,
discrete event simulation was used. In the thesis model, instead of
counting each increment of time, the model determines when the next

important event will occur, and then steps the clock to that event.

Pascal and Micro-computers

As stated by Seila and Chan (13:41), in order to realize a discrete
event simulation, the language used must provide facilities for
representing entities, attributes and sets, for manipulating the entities
in sets (inserting and removing them, and searching through the set), and
for doing scientific computations. The simulation languages SIMSCRIPT,
SIMULA, GPSS, GASP, and SLAM, which are normally available only on large

mainframe computers, provide these features.

The author of this thesis being unfamiliar with these simulation
languages, selected the Pascal language to write the simulation programs.
(Pascal was selected because the author had an opportunity to study
Pascal prior to the start of the thesis project.) To support the
author's selection of Pascal, Seila and Chen article (13:42) further
states, "that their research showed that it is possible to develop

discrete event simulation using Pascal with essentially the same level of

17

effort that is required using a special purpose simulation language.
This means that relatively sophisticated, realistic simulations are not
only possible, but practical on microcomputers costing as little as
$3,000 - $4,000. The limitation on the possible size and complexity of
the simulation is imposed primarily by the size of the computer memory

and the programmer's imagination."

Summary
The simulation model developed by this thesis uses the transient point
of view, discrete events, Pascal programming language, and a

micro-computer.

18

———— - ——-

1

IV, BUS NETWORK DESIGN AND MODELING

Introduction

This chapter reviews the design concepts of the bus simulation model
created by this thesis. It explains the difference between sessions and
customers, and provides the assumptions made with the simulation model.
Finally it concludes with discussions of how the model was implemented

and how the simulation algorithm works.

DESIGN CONCEPT

The design concept of the network simulation model is very simple. It
assumes that, given the type of traffic being input into a network, the
performance of a network can be determined by monitoring the time it
takes for the traffic to progress through a theoretical network. The
design concept relies heavily on the memory capabilities of the computer
to keep track of the location of all traffic. As stated earlier, the
simulation takes the transient point of view. That is, the simulation
model is only interested in monitoring the time it takes traffic to
progress through a network. Also the concept relies on the fact that the
time it takes for the traffic to travel through the various stages of the
network can be easily calculated. A simple example of these calculated

times is as follows:

EXAMPLE. Suppose it is known that one customer is inputing one
character of traffic every 200 msec with an input deviation uniformly
distributed between +/- 10 msec. With this information, it is known that

an input, on the average, will occur every 200 msec. It is also known

19

. LR AN AR
DN PR P
EP O SV SR ALY S P

-

...........

d EELASEL Aru e Sng afhts sl aSR o o

that one character of information will generate 8 bits of traffic (7 bit
ASCII code plus a parity bit). It can also be calculated that a
terminal, capable of transmitting data to the BIU at a rate of 9600
bits/sec, will need approximately 833 usec to transfer the data to the
RTT, At the RIN, an overhead of 120 bits are added to the 8 bits of
information. It can then be calculated that a bus operating at 1

megabit/sec will need 128 usec to pass the information.

From the example, it can be seen that once an input is made, the times
required for the input to progress through the stages of a network can
easily be determined. If this idea is taken one step further and the
time for the first input is randomly selected, then the time interval for
the second input can be randomly picked to occur somewhere between 190
and 210 msec later. If the simulation model is provided the randomly
picked time for the first input and the expected interval for the next -
input, and the model has already calculated the times required for the
input to travel the network, then the simulation model (computer) can
keep track of the location of the traffic as the simulation clock counts. .
The simulation model can be expanded to include as many customers as
desired, with the only limitation being the memory capacity of the
computer being used. These additional customers can all have different
input rates and different amounts of traffic being inputed. The computer
simply calculates the individual travel time and input interval for each
customer, and adjusts their location in the theoretical network

accordingly as the simulation clocks counts.

The design concept, as stated in the beginning, is very simple. The

20 . -'_;_ ~:::

R T . R .
A NG SICH TR U Yl S Yl Sl PP AP T S W '| S

simulation model simply generates traffic based on the types of customers
loaded, then tracks the traffic as it would normally progress through a
theoretical network. At any instant in time, the memory of the computer
has the exact location of the traffic generated. Data collected on any
difficulties of the traffic to pass through the network will provide the
performance of the bus network being simulated. Before going into more
detail on how the concept is implemented, it is important to clarify two

terms, customers vs sessions.

CUSTOMERS vs SESSIONS

In order to eliminate any confusion, it is important to define the
difference between cus;omers and sessions. In a local area network, a
customer may wish to communicate with another customer or a host
comupter. A communication link (session) must be established in order to
communicate. A session, as used by this thesis, is composed of the data
rate of the terminal, number of characters inputed with each input, the
average amount of time between each input, and the maximum +/- deviation
from the average time between inputs. The +/- deviation of the input is
uniformly distributed between the maximum +/- values of the deviation.
The simulation model developed by this thesis, simulates sessions, not
necessarily individual customers. The model simulates a network based on
the number and types of sessions a group of customers may generate. For
example, a LAN may have a 1000 customers connected to it. The actual
performance of the network depends directly on the type of traffic each
of these customers generate. If each customer seldom used the network,
the perfomance of the network could be expected to be satisfactory. On

the other hand, if all customers tried to transfer a large amount of data

21

R e e .

s v » — ﬁ‘-m
. A pufiaidi e A A Ay v e P e S S O e e~ e orere g~

at the same time, network performance could be expected to be
unsatisfactory. Therefore, it is impossible to determine network
performance based solely on the number of customers attached. The
performance of the network can be determined if the expected type of
traffic (sessions) generated by the 1000 customers is known or estimated.
It is acceptable to think of the sessions being simulated as customers,
but it must be realized that the customers/sessions being simulated, is
the amount of traffic being produced by the entire population of
customers attached to the network and that a simulation customer/session
is a typical customer, not necessarily a particular customer attached to

the network.

MODEL ASSUMPTIONS

The following assumptions were used in designing the bus, CSMA/CD (1=~

and p- persistent) simulation model.

- Each BIU can sense the traffic of all other BIUs.

- The amount of traffic input by a particular session is constant.

- The amount of traffic input by various types of sessions may be
different.

- The time interval between each input of a particular session may

vary.

- The sessions/customers being simulated is a composite of the traffic

produced by thg entire population attached to the LAN.

. .
NPT

- Flow control allows the BIU to handle only one input at a time
- The BIU, when starting to transmit data, will wait for the time

interval equal to two round trip delays of the bus cable before allowing

22

PR DA I I

new traffic to be inputed.

- Traffic waiting at the bus to be transmitted, will wait an
additional time interval equal to one round trip delay of the bus before
transmitting.

- A modified version Af the hinany avnarantial hackaff is used for
collisions. The local parameter used for binary exponential backoff is

reset to 2 after each successful transmission.

MODEL IMPLEMENTATION

This thesis has implemented the LAN simulation model around seven
Pascal computer programs. The user's guide and examples of the programs
outputs can be found in Appendix A. The actual programs can be found in
Appendix B and the input limitations of the network simulation model can

be found in Appendix C. The names of the seven program are:

1. Input_t(ypical sessions)
2. Sessions

3. Input_n(etwork sessions)
4, Network

5. Parameters

6. Simulate

7. Evaluate

These programs and how they interact with created files and user
inputs are shown in Figure 3 on the next page. A brief description and

function of each program follows:

TP——

T T o r——y e -

FILES PROGRAMS

/

4 Input_t

- e em e e - - o

INPUTS

-terminal speed
-input interval
-input deviation
-# characters/input

‘ [Zsessions added

-sessions deleted

i -# of repetitions

l

|

I Zbus data rate
-bus cable length
~BIU overhead

-actual delay of cable
-1 or p persistant

-transition clock time
-simulation clock time

/// : Sessions |
/ |
/ |
|
Sessions | |
| Input n
e - !
& |
e ' |
e | |
Network : Network
|
|
|
ﬂf/rl//,,/ Parameters '
! |
Net_Data | |
k\\\$\\\‘* |
' Simulate (
I |
' | —
Simulate | {7
| [
|
| |
] Evaluate
| }
|
I]
1 1

OUTPUTS

-session's delay
-session's input rate
-gsession's throughput
-bus's performance
-collisions/sec

Figure 3. Model Implementation

24

Program Input-t(ypical sessions). The function of this program is to

establish a file which will contain the list of typical
customers/sessions which can be selected for simulation. The file is
established after the program prompts the user for the terminal data
rate, number of characters per input, time interval between inputs, and
the time deviation of inputs for the first typical sessicn. The time
deivation entered, is the maximum +/- deviation uniformly distributed
around the average time interval between inputs. The program then
prompts the user to use 'program Sessions' for any further deletions

and/or additions to the typical session file.

Program Sessions. The function of this program is to make changes to the
established file of typical'sessions/customers. The logic behind having
two programs, Input_t and Sessions, was to prevent the user from
inadvertently destroying the file of typical sessions. Program Input_t
creates a one customer file, while program Sessions can only make changes
to that file. Program Input_p would only be used to start a file or, if
desired, to destroy the complete file of customers. Program Sessions is
the main program used for maintaining the file of typical sessions. The
main reasons for this program are to allow the user to keep a directory
of all possible sessions needed for simulation and to elimimate the user

from having to continuously key in sessions for simulation.

Input-n(etwork sessions). The function of this program is to establish a

file which will contain the list of sessions to be simulated. The file
is established after the program prompts the user for the terminal data

rate, number of characters per input, time interval between inputs,

25

deviation of time interval between inputs, and the number of times this
session will be duplicated in the network simulation. The program then
prompts the user to use 'program Network' for any further changes to the

file of network customers.

Network. The function of this program is to make changes to the file of
sessions that will be simulated. It allows the user to review the list
of typical sessions, upon request, and prompts the user to specify which
sessions are to be simulated. Again, the logic behind having two
programs, Input_p and Network, was to prevent the user from inadvertently
destroying the file of network sessions. Program Input_p would be used
to start a file or, if desired, to destroy the complete file of network
customers. Program Network is the main program used for maintaining the
file of network customers. The main reasons for this program are to
allow the user to build a file of customers for simulation from the file
of typical customers and to eliminate keying in of customers for each

simulation run.

Program Parameters. The function of this program is to calculate the

travel times required for each session to travel through the various
stages of the theoretical network. Calculations are made using the
information from the file of sessions to be simulated and the program's
prompts for data rate of the bus, round trip length of the bus cable, and
the BIU overhead. The calculated times are based on the increments of
the simulation clock. Increments of the simulation clock are based on
1/2 the bus cable's round trip propagation delay. That is, one tick of

the simulation clock will equate to 1/2 the propagation delay of the bus

26

. T S
A a4 t_F_ V)P

g ———— e e e

cable. There are two main reasons for using increments of 1/2 the
propagation delay of the cable. First, because the simulation is
counting in discrete steps of time, the simulation will appear to be more
continuous and have less error, if the increments are small compared to
the time for events to happen, The second reason is that collision
avoidance and detection is based on the propagation delay of the cable.
The simulation model is better able to handle these situations by having

the clock based on increments of delay.

Program Simulate. The function of this program is to perform the actual

simulation of the bus LAN. It prompts the user for the amount of time
they wish the model to run before collecting data (transition time) and
for the amount of time the model should run while collecting data
(simualtion time). It also prompts for the type of network management,
1-persistent or p-persistent, and if p-persistent, what percentage. In
addition, it prompts the user for the actual delay of the bus cable, if
known. Prior to starting the actual simulation, it loads the values
calculated by the program Parameters. While the simulation is running,
tables collect the amount of time the bus is passing data, the amount of
time the terminals are passing data, the amount of data the customers are
inputing, number of inputs, number of collisions, the amount of time
traffic is delayed due to the bus being busy, the amount of extra waiting
time due to collisions, and the amount of time inputs are held up because
the BIU can't get rid of the traffic it has. Once the simulation has
stopped, the data collected is filed away for use by the last program,

Evaluate.

27

M T Py P—— " n T P T P W W W=\~ - ——

Program Evaluate., The main function of this program is to evaluate the

data collected during the simualtion. The first part of the program
displays to the user the parameters that the results are based on. The
second part displays to the user the performance of each type of session
loaded into the network. The performance results indicate the session's
delays for collisions, flow control, and the bus being busy. It also
shows the amount of traffic the terminals were passing and the amount of
traffic the sessions were inputing. The third part of the program
indicates the total traffic being passed by the terminals and the total
amount of traffic all sessions were inputing. In addition, it shows the
total traffic being passed by the bus, as indicated by the time the bus
was busy, as indicated by the amount of traffic the terminals were
passing, and finally as indicated by the amount of traffic being inputed

by the sessions.

SIMULATION ALGORITHM

In the following discussion, using a block diagram of the simulation
algorithm and a sample simulation run, the simulation algorithm is

explained.

In order to perform a simulation, programs Sessions and Network would
be used to establish the sessions/customers to be simulated. Assuming
these programs have been used, the sessions selected for this sample

simulation are stored in the Network file. They are:

28

AR
Lt
oo
4 AN

s

PRI

L. e - et AL D S L B S S - ST e T e e . I St
. A PR RN S TR TR DR PR TP S AT LI P TR LsT L. B S, e T R P PR e
R I P ALIP S P I L A PNL D, PL I, . (N IR W AT PR S WS L R T Y ML AR AR AV AR NS TSRS L'i

T T w -

char/ input

ID terminal rate input input interval deviation quantity)
5 9600 b/s 1 100 msec 10 msec 2
7 19200 b/s 80 200 msec 20 msec 2 '

Table 1. Sessions Stored for Simulation.

From Table 1, it can be seen that one session has an typical session ID
number of 5, terminal data rate of 9600 b/s, one character per input, the
interval between inputs is 100 msec, the uniform deviation of the
interval bewteen inputs ranges between +/- 10 msec, and finally the

session is to be be duplicated twice for the simulation run.

Having selected the sessions to be simulated, program Parameters is
then called. Program Parameters prompts the user for the bus data rate,
round trip length of the cable, and the BIU overhead bits. For this
sample simulation run, the bus data rate is 1 mega b/s, the bus cable
length is 2000 ft, and the BIU overhead bits is 120 bits. With this
information and the file of network customers, the program calculates the
times for the traffic to progress through the various stages of the Sy

theoretical network. Table 2 depicts these calculated values.

29 *

TR LT pvpwa e —

respect to how much traffic can be handled and the expected amount of
delay, for a given situation. Once the actual bus data rate for the
system to be installed at HQ AFLC is known, then the model can be run to
determined what kind of performance can be expected for the anticipated
lrnad, Or in the future, if the LAN is performing satisfactory and a new
requirement for additional loading is made, the model can be run with the
present load plus the new additional loading, to determine the impact of

the new loading on the network.

Summary

In this chapter the design concept, assumptions, and the simulation
algorithm concerning the thesis network simulation model were discussed.
Finally the chapter concluded with a demonstration of the model's ability
to provide the user with the expected network performance for a given

situation.

e

S e e, st .
T B .o
PSS S POV DURY Py N .

e

43

RN
R e '

E e e et . B I, S e ULt L S L. N
T T e e e T T T AT e e s et e e e T e T T T T s T T e S T I e N
SR Bt Bt et LSS ERUEU SRS RE SEREREREAEASAENE SEAENERIRE ST RS SS SYGVEF SO S ¥

Simulation #1. The results of simulation #1 indicate an average delay of

480.9015 msec from the time the source BIU has the traffic to the time
the first character reaches the destination BIU. Also Table 8 shows that
flow control was employed on an average of 301.3 msec for each input.
This implies that each user wished to input blocks of data every 1000
msec, but the LAN would only accept inputs on the average of every 1301.3
msec for the given configuration. A 300K b/s bus could not handle the
combined user input rate of 360K b/s and far exceeded the maximum delay

of 100 msec.

Simulation #2. The results of simulation #2 indicate an average delay of

38,1645 msec from the time the source BIU has the traffic to the time the
first character reaches the destination BIU. Also Table 8 shows that
flow control was employed on an average of 1.233 msec for each input.
This implies that each user could only input blocks of data on an average
of every 1001.233 msec. The 500K b/s bus passes the 100 msec delay
requirement but falls slightly short of being able to handle the 360K b/s

combined input rate of the sessions.

Simulations #3 and #4. The results indicated in Table 8 for simulations

#3 and #4, show that either the 750K b/s or the 1000K b/s bus can pass

the 360K b/s of input data with a delay much less than 100 msec.

The demonstration was performed to show that, given the expected type
of traffic being generated by the users and the configuration of the bus,

the simulation model will give the expected performance of the LAN with 9

42

c - »_".“ ."'._'.._V <" _\‘.. e LTl e T - > - R v_<' T .‘~' N e "._' ."'._' E R S A
..... e Y

DR S T PRI I I R U P ST N A S S S NS S S Y IR IR N SR P T
Ve tatletaal.altoal [W AL WL B WL L‘J-S"L‘A‘L'-\"A“LL“‘.' L'M'x‘s‘ P a St e s a2

*s37ey BARQ SNGg SNOTJep JOJ Aelsq J40J £3TNSdY UOTIeTNUYIS °g S[QAB]
G605 S100° 919°1 888°1 0°0 %09¢ A09¢ 99t A0001
Glgh°6 SL00° 28L°G hOE "t 0°0 A09¢ A09¢ ¥99¢ N0GL
Gh9l °8¢ S100° nl9°€2 68t til 12 TAd! N6GE A09¢ AE ©G9¢ A005
S1L06°08% G100° G HLE f°99¢ g*10¢€ q9.L2 A09¢ X6°082 J00¢E
oosu ut Aeraqg S/8 @3By eIlRQ

(m)+(€)+(2) () (¢) (2) (1) suotTssag | suorssag| sng Aq

Asng 1043U0) | Jo a3ey Jo 23ey passeq | a31ey
TR30] uotiefedodyq | sSUOTSTITIO)D sng MOT 4 anduy anduy | ot13yedl sng uoT3eINUIS
18Nn10y paJTsaq 1en1oy
101 ang Keyaq 3BedsAy

i1

indicated in Table 8, the following parameters were loaded into the

simulation model for each of the 50 user devices:

9600 b/s terminal rate

- Qo

[]

characters per input

1000 msec between inputs

100 msec +/- uniform deviation from mean input rate

The parameters loaded for the bus were:

- 2000 ft maximum bus length
- 120 bits of overhead at the BIU
- Bus rate 300K b/s for simulation #1, 500K b/s for simulation #2,

750K b/s for simulation #3, and 1000K b/s for simulation #4

The simulation model, after each simulation, provided the following

information to the user:

- Bus rate of LAN

- Actual traffic passed by bus

- Desired combined input rate of all sessions

- Actual combined input rate of all sessions

- Average amount of time flow control was employed
- Average delay due to the bus being busy

- Average delay due to collisions

The results of the four simulations are shown in Table 8.

40

—————r—y

'.._l

. .‘
ek A o

A

time the bus is busy, and the amount of time between inputs. Once the
simulation is completed, these records are stored in the file Simulate

until needed by the program Evaluate.

Demonstration

As stated previously in Chapter 1, HQ AFLC/LMSC indicated that, "we
need a model of the proposed network to determine what performance we can
expect under various loads and to help make decisions such as how many
users can be accommodated on a channel." The following four simulation
runs were performed to demonstrate how the simulation model developed by
this thesis, fulfills that need. The scenario used for this
demonstration, is based on one of the specifications identified in the
'AFLC Headquarters Local Area Network, Bus Interface Unit Specification
(Draft)', dated 30 Nov 83. Summarizing the specification used for this
demonstration, it states that the LAN shall provide sufficient
transmission speed to support a population of 50 user devices, with each
generating an average of one 900 character stream of data per second
(small number of file transfer oriented user devices). Also, that the
first character in a continuous character stream shall be delivered to
its destination BIU device port within 100 milliseconds after the
presentation of the last character in the stream to the source BIU device
port under the given loading configuration. HQ AFLC was interested in
knowning what kind of performance would be expected for various bus rate
of a CSMA/CD system, and would the performance meet the required
specification. Four separate simulations were run with the bus rates of
300K b/s, 500K b/s, 750K b/s, and 1000K b/s. The results of these four

simulations are indicated in Table 8. For each of the simulations

39

N .
PRV B L I I Y

P

LR JRNE TR . . T A
P S SR T B TR T ST TP WP I Y YU

would be found, as the clock passes through the place in time the
collision occurred. In the case of p-persistent, the sessions waiting to
transmit goes through an addition block, adjust further, as depicted in
Figure 4. In this block sessions are randomly picked to remain at their
current value in Table 3 or have an addition delay factor added to column
3, based on the percentage of the p-persistent. If more than one session
remains at their present value in column 3, there will be a collison and
new backup times will be added to column 3. The program recycles back to
find the next event if one or zero sessions remain at their current value
in column 3.

-If it has not been apparent, the simulation algorithm never counts
down to an actual event. It counts down to 1 clock tick before the event
is'to occur, evaluates the location of all network traffic and inputs,
adjusts all traffic and inputs that would be effected by the next clock
tick, adjusts the clock time if needed, then continues to count through
the actual event. This action, of using the value of 1 to depict upcoming
events, allows the simulation to determine that a zero in column 3 means
that no traffic is present between the bus and the BIU. Also a zero in
column 5 indicates that follow control is employed and no more traffic
can be input for a particular session until the traffic already inputed
is passed by the bus. A number 1 showing up in columns 3 and/or 5 allows
the model to identify that an event will occur. In addition to
simulating the network, program Simulate establishes an additional 7
columns of matrix space for each session simulated. These additional
columns keep track of the number of inputs, number of collisions, amount
of time spent waiting at the bus due traffic, amount of time flow control

is employed, amount of extra time waiting due to collisions, amount of

38

st d

in column 8 (row 2), and by one propagation delay of the cable. The
'ad just bus' procedure test the values of columns 3 and 5 of each session
and calls the appropriate adjuster procedure (4A - JJ) to adjust each

session the proper amount. Table 7 indicates the results of adjust bus.

3 4 5 6 7 8
time interval next input input bus busy
to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14164 65640 656 84

0 547 65307 65640 656 84

0 21880 83355 131280 13128 498

0 21880 36606 131280 13128 498
CLOCK:9981624

Table 7. Simulation Adjusts for Bus Input.

Having performed 'adjust bus', Figure 4, indicates a recycle back to
'find next event', The algorithm ;imply repeats itself until the clock
time goes negative. The only situation not illustrated as depicted in
Figure 4, is when there are more that one customer wanting to use the bus
or another customer will arrive within one propagation delay of the time
a BIU starts transmitting. In the case of one persistent, this situation
Wwill create a collision. Once it has been determined that a collision
will occur, new backup times are randomly generated and added to column
3. Collisions, similiar to adjust input, does not advance the clock, but

simply puts the sessions colliding at the appropriate place in time they

37

T ————————

the input just input. Again since the next event is not a 1, procedure

'prepare for event' is performed. Table 6 depicts the prepare for event.

3 4 5 6 7 8
time interval navyt innnt input bus busy
to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14251 65640 656 84

1 547 65394 65640 656 84

0 21880 83442 131280 13128 498

0 21880 36693 131280 13128 498
CLOCK:9981711

- et ar” %

Table 6. Simulation Prepares for Second Event.

The procedure 'prepare for next event' while preparing, would have
noted that there is only one input at the bus ready for transmission.
Besides noting the number of sessions ready to use the bus, it checks to
see if any traffic would arrive in a time interval equal to one round
trip propagation delay of the cable. It knows if other traffic arrives
in this interval of time, there will be a collision. Therefore, in
preparing for the event, the procedure has determined that it is a bus
event, only one customer is ready to transmit, and that the customer is
in the second row. As depicted in Figure 4, the next step is to 'adjust
bus'. Procedure 'adjust bus' notes that no collision will occur and the
traffic can be passed on the bus. All other customers/sessions must be

adjusted by for the next clock tick, the time the bus is busy as depicted

36

noted that the next event was an input event. Having prepared for the
event as depicted in Table 4, Figure 4 indicates that for an input event
it is necessary to 'adjust input'. ‘'Adjust input' simply places the
value from column 4 into column 3, for the session indicating a 1 in
column 5. At the same time, a new time for the next input to occur is

generated by using the values from columns 6 and 7. Table 5 depicts the

ad justments for an input event.

3 4 5 6 7 8
time interval next input input bus busy
to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14798 65640 656 84
548 547 65941 65640 656 84

0 21880 83989 131280 13128 498

0 21880 37240 131280 13128 498

CLOCK:9982258

Table 5. Simulation Adjusts for Input.

It should be noted that an adjust for input does not move the clock.
Tables U and 5 both indicate the same time. The simulation knows that an
input will occur in one more tick of the clock and simply adjusts the
time in column 3 by a factor of 1. It also randomly picks a new time for
the next input between 65640 +/- 656 and adds 1. Having made the input

adjustment, Figure U4, indicates the next step is to repeat 'find next

event'. From Table 5, it can be seen that the next event will be in 548,

35 L]

I3

the accuracy of the simulation run. In this particular sample
simulation, the results would be based on 304 inputs for session id #5
and 152 inputs for session id #7.) As indicated in Figure U4, the first
step the program does is scan columns 3 and 5 in order to 'find next
event' to occur. Since the simulation is based on discrete events, the
procedure 'find next event' searches for when the next important event is
to occur. In scanning columns 3 and 5, the program will note that the
next non-zero event to happen is at 17743. Since the next event is not a
1, the program will then 'prepare for the event' by reducing all times in
columns 3 and 5 by next event minus 1, If 'find next event' had
indicated that the next event would occur in 1 tick of the simulation
clock, 'prepare for next event' would have been by-passed. This action

is depicted in Table 4.

3 Yy 5 6 7 8
time interval next input input bus busy
to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14798 65640 656 84
0 547 1 65640 656 84
0 21880 83989 131280 13128 498
0 21880 37240 131280 13128 498
CLOCK:9982258

Table 4, Simulation Prepares for First Event,

While the program was scanning for the next event in Table 3, it also

34

L A . . :
A
R I I L

BRSPSV I RN SR IP A 2P AP O

R
il a

fo

first clock time loaded, is the transition time. The transition time
simply runs the simulation for a period of time to allow transient
situations to die out. The second clock time loaded, is called the
simulation time. It is the actual clock time that data will be collected
on the performance of the simulated network. With the clock times
entered, the simulation begins. Table 2, without the ID numbers, is

repeated in Table 3.

3 y 5 6 T 8
time interval next input input bus busy
to bus to bus input interval deviation time

Time in Clock Ticks

0 547 32540 65640 656 84
0 547 17743 65640 656 84
0 21880 101731 131280 13128 498
0 21880 54982 131280 13128 498

CLOCK: 10000000

Table 3. Start of the Simulation.

For this simulation, the clock has been set to 10000000 ticks.
(Comment: The simulation time entered is with respect to the ticks of
the simulation clock. One method for determining how long the simulation
should run is to review the data loaded for simulation. Having reviewed
the data, pick the session with the largest amount of time between
inputs, then multiply that quantity by the number of inputs you wish to

see simulated. The more inputs a session is allowed to input, the better

33

g

' P
e el
A b Ao

S
t ot alat A AN

e—r—

Load
Parameters

Set
Clock

—t#*

Find Next
Event

No

Prepare for
Next Event

Bus or
Input

AA=e=dd

Event

Bus

Adj_pus

No More
Than One
Waiting

Yes

1 or P
Persistant

1

Input

Collision

Yes

Adj_Input

Adj Further

Mo, ..
Than One
Waiting

No

e,

Figure 4.

Block Diagram of Simulation Algorithm

32

»a ceta cet .t D IR N
“ e NI «t e L U PSS DL I S
D P e I T I AT R
SRR PP IR VR L L P . RIS I S S AT PP O Wy

terminal.

- column 4: 'Interval to bus' indicates how much time, once an input is
made, that must elapse before the input reaches the bus. Once an input
is made, this value is placed in column 1 and column 1 reflects the
2ctnu2l enunting down as the input travels to the bus,

- column 5: 'Next input' indicates the amount of time that must elapse
before the next input is made. This time is randomly picked by the
program Parameters.

- column 6: 'Input interval' indicates the average elapse time between

inputs. Once an input is made, this value, modified by the input _
deviation of column 7, is placed in column 3 and column 3 reflects thé
actual counting down of time before the next input is made.

- column 7: 'Input deviation' is the maximum +/- uniformly distributed
deviation of column 6.

- column 8: 'Bus busy time' indicates the amount of time the busy is

bus, once an input reaches the bus.

Once the values in Table 2 are calculated, they are stored in the file
net_data. The next step is to call program Simulate. Figure 4 is the
block diagram of the simulation algorithm and is used for the remaining

discussion of the sample simulation run.

Program Simulate will load the calculated values produced by the
program Parameters into a matrix table. The ID and extended ID are not
used during the simulation and only columns 3 - 8 of Table 2 are loaded.
This action is depicted in the algorithm block diagram, Figure 4. The

next action of the program is to prompt the user for clock times. The

31

L R S S S St Y N R Y
M VRSP T VI AP U I WL I I Sl S AT LI AP .

1 2 3 4 5 6 7 8

time interval next input input bus busy

ID |ext ID to bus to bus input interval dev time

Time im Mlanl Tialks

5 1 0 547 32548 65640 656 84
5 2 0 547 17743 65640 656 84
7 1 0 21880 101731 131280 13128 498
7 2 0 21880 54982 131280 13128 498

Table 2. Calculated Values for the Simulation.

It should be remembered that the times given in table 2 are with
respect to the ticks of the simulation clock, which are based on 1/2 the
propagation delay of the bus cable. In this particular simulation, the
interval between inputs for session #7 is 200 msec, which equates to
131280 1/2-propagation delays of the cable. An explanation of the
columns in Table 2 are as follows:

= column 1: Indicates the ID number of the typical session picked for
simulation.

- column 2: Indicates the extended ID number of the typical session
picked for simulation. The maximum extended ID number for each type of
session should match the number of times the session was to be
duplicated.

- column 3: 'Time to bus' indicates the remaining time that must elapse
before an input reaches the bus. A zero in this case indicates that no

input has been made, and there is no traffic between the bus and the

30

- P . R S TR TR Wt T T e e e e AR P . . - Y
PR P " PR W, W ORI, ¥ . SURL " L VU S AT Sl WL YRAY S S SR S TAY Sl VAT G WA S VIR PRI, . S -

V. TEST RESULTS

Introduction

It is impossible to test the simulation model for all the possible
combinations of the variables associated with a local area network.
These variables are terminal data rate, data input rate, bus data rate,
bus length, bus overhead, amount of data per input, cable delay, and
deviation of the input rate. The following 5 tests were performed to
demonstrate that the simulation model developed in this thesis does, in

fact, adequately simulate a bus CSMA/CD local area network.

Test 1

The following test was performed to validate the model's algorithm
that a BIU will wait a time interval equal to two round trip delays of
the bus cable before accepting more input. This waiting period of the
BIU insures a successful transmission of the traffic it has, before

accepting more inputs.

TEST SETUP:

-Bus
-~ 1 M bit/sec data rate
-~ l-persistent
-~ length of cable 2000 ft
-~ overhead 120 bits
-~ cable delay 3.046 usec

-Sessions

-~ number of sessions 1

Ly

ARSI A e g

-- terminal data rate 9600 bits/sec
-~ input interval mean 50 msec

-=- uniformly distributed input interva

-
[+ 5
i)
S
|
10
5
.
O
'3
[>]
'y
"
~
]
(§V)
£3
1¢]
(o]
0

-- number of characters per input 80

Synopsis: The one session being simulated is attempting to input an
overall data rate of 12,800 bits/sec. It is expected that the network
model will limit the session's input to approximately the data handling
capability of the terminal, 9600 bits/sec.

Calcllate Results: It can be calculated that the amount of time for
the terminal to transfer 640 bits (80 char x 8) is 66,666.667 usec. Also
the time the BIU must wait before accepting more inputs is 6.092 usec (2
x round trip delay). Therefore, the allowable interval between inputs
that the terminal can handle is 66,672,759 usec. This equates to the
terminal passing data at a rate of 9599.1228 bits/sec.

Simulation Results: The results of the network simulation model, for
a 6.134 sec simulation time, indicates a 66,680 usec interval between
inputs and traffic being passed by the terminal at a rate of 9598
bits/sec.

Test Conclusion: For the given set of parameters, the simulation
model was able to provide the expected interval between inputs within
.0199% and the expected amount of traffic being passed by the terminal
within .0116% of the calculated values. The small amount of error is
introduced by the conversion from real to integer values for the
simulation.

Test Setup: Test 1 was repeated again, but this time the delay of the

network was 379.341 usec.

4s

.. AT

R R T N S eI S I P P L Y
PPN LIPS, LI UL TP WL, PR, W PR KM P ST i,

Calculated Results: For the given setup and the new network round
trip delay, the calculated interval between inputs is 67425.349 usec with
a terminal handling capability of 9491.979 bits/sec.

Simulation Results: The results of the network simulation model

indicated a 67440 usec interval between inputs with the terminal handling
data at the rate of 9489 bits/sec.

Test Conclusion: For the given set of parameters, the model was able
to provide the expected interval between inputs within .02173% and the
expected amount of traffic being passed by the terminal within .0313% of
the calculated values. Again the small amount of error is due to real to

integer conversion.

TEST 2

As discussed later in the user's guide, Appendix A, when the program
Parameters is run to calculate the values needed for the simulation, a
warning may be given if the calculated value for the time the bus is
busy, for a given session, is in error more than 1%. An example of this
is, if the bus was operating at 5 mega bits/sec, an input of one
character plus 120 bits of overhead would require the bus to be busy for
16.8T, where T equals one tick of the simulation clock (T equals the time
associated with 1/2 the propagation delay of the cable). Since the
simulation runs on integer values, it would use the value 16 instead of
16.8. The value being used is in error more than 1% and a warning would
be given. There are three methods being used to determine the amount of
traffic being passed by the bus; method 1 by monitoring the time the bus :fﬁf
is busy, method 2 by monitoring the amount of traffic being passed by the

terminals, and method 3 by monitoring the amount of traffic being inputed T

U6

T

by the user. The warning only advises the user to disregard the results
of method 1, 'traffic on the bus indicates' when using program Evaluate.

r

F The following test was run to validate the warning and to illustrate
that the other two methods can be regarded as accurate.

. TEST SETUP:

~Bus
-- 1 mega bits/sec data rate
-- l-persistant
-~ length of cable 2000 ft

-=- overhead 120 bits

cable delay 3.0U46 usec
~Sessions
-=- number of sessions 1

terminal data rate 9600 bits/sec

-- input interval 200 msec, dev 0 msec

number of characters per input 1

Calculated Results: With the session inputing 1 character of

infomation 5 times a sec, the overall input of the session is 40 bits/sec

(1 X8 X5). Also with an overhead of 120 bits, it can be calculated
that the bus should be passing 640 bits/sec ((1 x 8) + 120) x 5).
Simulation Results: The results of the network simulation, for a 7.8
sec simulation run, indicates that the traffic being passed by the bus as
indicated by method 1 is 639 bits/sec, as indicated by method 2 is 640
bits/sec, and as indicated by method 3 is 640 bits/sec. s

Test Conclusion: The result using method 1 indicates an error from

."‘.“ R

AL R
P PN ST o

T et et - - . " .
AP AP VPR NP W WAL

the expected value of .156% In this particular case, the error produced
by calculating the bus busy time is .02%. The additional error can be
attributed to the integer display to the user. Methods 2 and 3 indicate
no error. Also in this case, a warning would not have been given because
the calculated error in the time the bus is busy is less than 1%.

TEST SETUP: Test 2 is repeated again, but this time the operating
speed of the bus is 50 mega bits/sec.

Calculated Results: As indicated above, the expected traffic being
passed by the bus is 640 bits/sec.

Simulation Results: The results of the network simulation, for a run
of 7.8 sec, indicates that the traffic being passed by the bus as
indicated by method 1 is 380 bits/sec, as indicated by wethod 2 is 640
bits/sec, and as indicated by method 3 is 640 bits/sec.

Test Conclusion: In this case, program Parameters gave a warning and
indicated the error of the time the bus is busy was over 40% and that the
results of method 1 should be disregarded. It can be seen that the error
of method 1 is also in error by 40%, but again it can be noted that
methods 2 and 3 provided the expected result and that a 40% error in the

bus busy time used for the simulation had no real impacp.

Further Discussion of Test 2

In reality, the extreme accuracy of methods 2 and 3 in test 2 can not
always be expected. To help demonstrate what is happening, lets look at
the way method 1 works and compare it to method 3. Method 1 simply sums
up the amount of time the bus is busy because of each session. Once the
simulation is completed, the total time the bus was busy is divided by

the total time the simulation was run. The resulting fraction represents

48

L R I DR

P W T T W W W W W —h =y —a = -

WA S ST |

the percentage of the time the bus was busy, and is multiplied by the bus
operating speed. If the bus busy time being summed up during the
simulation is 40% inaccurate, the resulting traffic being passed by the
bus will be 40% inaccurate. On the other hand, method 3 takes a
different approach.

Method 3 sums up the amount of time between each input. Knowing the
amount of time between each input, can be equated to how much traffic the
bus is passing. In this case, the calculated time between inputs, 200
msec, equates to 131280 ticks of the simulation clock. As the simulation
runs, time between inputs is counted down by what ever event is happening
next. In test 2, assuming an input is ready to be transmitted, the clock
will be reduced by the amount equal to the bus busy time. Also the time
before the next input, will also be reduced by the bus busy time.

Because of the inaccuracy of the bus busy time (for the 50 mega b/s
example), the time interval between inputs will appear to be 131279.32
instead of 131280. The 40% error in bus busy time caused an error of
only .00051% for method 3, which doesn't even show up in the results.

To illustrate even further, lets take a network with a 1000 sessions
all inputing 1 character at a time. Again the interval between inputs is
200 msec, but this time the bus is operating at U4 mega bits/sec. The
interval between inputs is still 131280 ticks of the simulation clock.
With the high bus rate and a 1000 sessions, the interval between inputs
will be reduced 1000 times by the inaccuracy of the bus busy time before
an input is actually made. Because of the inaccuracies, the time
interval between inputs will appear to be 130380 instead of 131280. Even

with this extreme case of bus busy time error of 47% and a 1000

customers, the error introduced to method 3 is only .7%.

49

...........
.........

Test 3

The following test was performed to validate the ability of the
simulation model, developed by this thesis, to adequately model the
performance of a CSMA/CD bus network. In Werner Bux's article [14],
'Local Area Subnetworks: A Performance Comparison', he compares the
performance of various types of networks. One of the networks he
compares is the CSMA/CD bus. Test 3 runs the network simulation model
various times, for various loads, and compares the results with the
performance curve used by Bux.

One ma jor d;fference between Bux's analytical model and the thesis
simulation model, is that Bux uses a continuous exponential distributed
packet length, while the thesis model uses a constant packet length for
each individual session. In order to validate the comparison of Bux's
analytical model with the simulation model, three test simulations were
run with various distributions of packet length. The results of Bux's
analytical model, with bus rate of 1 M b/s and 50% loading, gave an
average packet delay of 1130 usec. The thesis simulation model using the
constant packet length of Figure 5 gave an average packet delay of 1121
usec. The simulation model using the discrete uniform distribution of
Figure 6 gave an average packet delay of 1107 msec. And finally, the
simulation model using the discrete exponential distribution of Figure 7
gave an average packet delay of 1106 usec. The factor held constant for
all four packet distributions, is the mean packet length of 1000 bits.

The results indicated approximately the same amount of delay (1130, 1121,

1107, and 1106 usec) for a given mean of 1000 bits. Someone could draw ift’
the conclusion that the average packet delay is independent of the type

of distribution and is dependent only on the mean packet length. This

50

et et e g LA AT A e e aadt m‘_ . (Ri-g A et S SBA_ S afh ASE AR S EECEUS S inc. 0% Sute Sen et St e a4 Sre At dat n e are g

500 1000 1500
packet length (mean 1000 bits)

Figure 5. Constant Packet Length Distribution

.24.

40 400 1000 1600 1960
X packet length (mean 1000 bits)

Figure 6, Discrete Uniform Distribution Packet Length.

.
N
‘l".i L

I

200 1000 1800 2600 3400
600 1400 2200 3000 3800
packet length (mean 1000 bits)

S
e T et
o .
PAPU S PR {

Figure 7. Discrete Exponential Distributed Packet Length. .

51

thesis is not prepared to take this position (at this time) and would
suggest further research in this area. Based on these test simulations,
the thesis does take the position that it appears that it would be valid
to compare the results of Bux's analytical model using exponential
distribution packet length, with the simulation model using constant
packet lengths. In addition, the results of test 3 indicated in Figure
8, seems to support this position. With this position in mind, the
discussion of test 3 is continued.

The information provided with Bux's performance curve was:

1 M bit/sec transmission rate

2 km cable length

- 50 stations
- Exponentially distributed packet length (mean 1000 bits)

24 bit header

Packets generated according to poisson process

The test setup used for the simulation model was:

TEST SETUP:
= Bus
-=- 1 M bit/sec
-- l-persistent

length of cable 6561 ft

-- overhead 24 bits
-- cable delay 9.993 usec

- Sessions

52

——— —— T — — T —— g - S ———p—————— - ———

-~ number of sessions 50

-- terminal data rate 19200

-- input interval mean varied to give various loads)
-- input interval uniformly distributed +/- 10% around mean

-- number of characters per input 125

Calculated Results: Bux's performance curve is indicated by a solid
line in Figure 8.
Simulation Results: The results of the various runs by the simulation
model developed by this thesis are indicated by the plotted points in
Figure 8 on the next page. |
Test Conclusion: The results indicated in Figure 8 demonstrates the)
ability of the simulation model to exhibit the characteristics of a
CSMA/CD. To demonstate further the ability of the simulation model, an
additional run was made using the packet length distribution of Figure 6.

The delay results of these five groups were:

Group 1 (40 bits - 5 characters) - 505 usec
Group 2 (400 bits - 50 characters) - T77 msec
Group 3 (1000 bits ~ 125 characters) - 1066 usec
Group 4 (1600 bits -~ 200 characters) - 1334 usec
Group 5 (1960 bits -~ 245 characters) - 1855 usec

The average delay vs throughput for these five groups is indicated in
Figure 8 by a star. As can be seen, the curve of Bux gives the overall
effect, but the simulation model developed by this thesis, can give the

performance of each type of session on the network. With this particular 0

53 B

LS, SRR S S R LU WL T AP AP ..

T] [
Bux Curve
Sluulation e
Simulation #

7
- P///ql/f/)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean Transfer Time/Mean Packet-Transmission Time

Throughput Rate/Transmission Rate

P
o
A

Figure 8. Transfer delay-throughput characteristics for a CSMA/CD
at 1 MB/S.[14:1469]

Py

54

ey ST
PR PGP T SOy

T —————— g P —p—p T ——— Liae SRSt fhan e M Jae She ee e -anenCanen 2

setup, a session inputing 245 characters per input can expect a delay 3
times as much as a customer inputing data at a rate of 5 characters per
input. Also in this particular case, the delay for groups 4 and 5 is
great enough that they can no longer input data at the rate they desire,
while the delay for groups 1, 2, and 3 is not great enough to effect
their input rate. Therefore, three groups are satisfied with the network
performance while the other two groups are having trouble getting their

data in as fast as they wish.

Test 4

This test is basically a repeat of test 3, but the bus transmission
rate has been increased to 10 mega bits/sec. The results of two
simulation runs are plotted on Figure 9. The solid line is the curve

used by Bux [14:1470].

Test 5

This test was performed to reinforce the users confidence in the
ability of the thesis model to simulate a CSMA/CD bus network. Again the
characteristic curve used for comparision came from the Bux article. In
this case, he used a constant packet length. The information provided

with the Bux curve was:

5 M bit/sec transmission rate

1 km cable length

50 stations

packet length fixed 1000 bits

24 bit overhead

55

..........

PR BT Y ¢

20--

DUX LUPVE ==
Simulation e

10--
9

ol
|
|

T

-3
]
1

o
i
[}

W
|
[}

=
|
]

w
\
|

n
|
|

Mean Transfer Time/Mean Packet-Transmission Time

T =

0.0 0.1 0.2

0.3 0.4 0.5

0.6

0.7

Throughput Rate/Transmission Rate

0.8

0.9

1.0

Figure 9. Transfer delay-throughput characteristics for a CSMA/CD

at 10 MB/S.[14:1470]

56

ey

ST

"
WP

The test setup used for the simulation model was:

TEST SETUP:

- Bus
-~ 5 M bit/sec
-~ l-persistent
-- cable length 3280 ft
-- overhead 24 bits
-~ cable delay 4.996 usec

- Sessions
-~ number of sessions 50
-- terminal rate 100000
-~ input interval varied, +/- 0

-- number of characters per input 125

Calculated Results: The curve used by Bux for the 5 M bit/sec
network is indicated by the solid line in Figure 10 on the next page.

Simulated Results: The results of various simulation runs are
indicated by the plotted points in Figure 10.

Test Conclusion: Again, the simulation results basically follow the

results used by Bux.

Summary

In this chapter, 5 tests were run to demonstrate the ability of the
thesis simulation to model a CSMA/CD bus local area network. The results
of test 3, 4, and 5 were compared with the analytical model of Bux. The

comparison showed that the thesis simulation model does exhibit the

57

e D e IR SR
P .-_".\ o P O - A . ./ M o}

PART AZ2: nggram Sessions

Comment. This program will allow you to update your list of typical
sessions that you may wish to use in some future simulation. Having
established a 'sessions' file, we will then £all program Sessions to make

some changes to the typical sessions file.

user's command: sessions

program's response:

The following is the current list of typical sessions.
input input

ID speed(b/s) #char/input interval(msec) variance(msec)

1 9600 1 200 10

Do you wish to modify the current listing of typical sessions? (Y/N) <CR>

user' response : y <cr>

(comment: If 'n' had been answered, the program would have terminated.

Any input other than a 'y' or 'n', would have repeated the question, do

you wish to modify.)

program's response: Do you wish to make an addition or deletion? (A/D)

<CR>

user's response: a <cr>

T

- L L R S R L M A A S T R AR R PO e

P N T T T S B S T I R S P S St L NP P AL B B N IR TP EL T SRS Nl JRUTRC R Sa R S }
Vet ata® A At A A LIPS - AP P P LS SRS L S I PSR . L_‘u,_ -

PR R R G IR L

characters per input, input interval in msec, and input interval variance

in msec. <CR>

user's response: 9600 1 200 10 <er>

program's response: A new typical session file has been established.

Any further changes should be done by executing program "sessions".

'program terminates!

70

o -

.........

Py

PART A1: Program Input t(ypical sessions)

Comment. This program is normally used only once. It will create the
file necessary to store typical sessions/customers that may be used in
the future for simulation. Once the file has been created, program
Sessions should be used to perform any necessary updating. This program
could also be used if the user desired to completely erase the typical
sessions file clean. If by some mistake the file named 'sessions' is
destroyed, this program must be run to re-establish the 'sessions' file.
The file 'sessions' is established by loading the first typical session
into the file. Assuming that you have not created a 'sessions' file yet,

we will then call program Input_t.

user's command: input t

program's response: WARNING: This program should be used only to
establish a new typical sessions file. If a typical sessions file
presently exists, this program will erase that file and establish a new
typical sessions file. Do you want to establish a new typical session

file? (Y/N). <CR>

user's input: y <erd

(comment: If you enter 'n' at this point, the program will simply

terminate.)

program's respond: Please enter the terminal speed (b/s), number of

69

e T e T T T s e T e e
PR R WA WA R W P R ol ¥

P

APPENDIX A: SIMULATION USER'S GUIDE

Introduction. Appendix A provides the user the necessary information to

run the seven programs necessary to simulate a bus local area network
utilizing either 1-persistent or p-persistent CSMA/CD. Appendix A is
broken into seven parts, one part for each program. The seven parts and

programs are:

- Part 1: Program Input_t(ypical sessons)

Part 2: Program Sessions

Part 3: Program Input n(etwork sessions)
- Part 4: Program Network
- Part 5: Program Parameters

- Part 6: Program Simulate

Part 7: Program Evaluate

These parts will take the user step-by-step through the operation of
each program, with the final result being a simulation run. All user
responses to the program prompts should be in integer values or a one

character letter.

WARNING: The program Evaluate uses files generated by programs Network,
Parameters, and Simulate. Therefore, users inputs to these programs
should not be changed until after the program Evaluate has completed its

run.

Program Input_; begins on the next page.

68

T —

which prevents the simulation model from perfectly mimicking an actual
CSMA/CD bus local area network. The chapter further attempts to show
that these 6 known limitations have a minimal effect on the ability of

the simulation model to model an actual LAN.

N
. Lty
PG SEErOPULT S 1 I W Yt)

67

of the cable.

Limitation 5

Discussion: One major limitation of the present simulation working
model is the restriction of the number of sessions to 500, This
limitation is due solely to the size of the memory of the micro-computer
being used.

Recommendation: If it is determined that more than 500 sessions are
needed to be simulated, it is recommended that the Pascal computer

programs be loaded into a computer with a larger memory capability.

Limitation 6

Discussion: Based on the built-in function 'in' of the Pascal
language used, the maximum actual cable delay the simulation can use is
125 times the propagation delay of the cable. That is, if the actual
delay of the bus cable is not known, the simulation defaults to the delay
equal to the propagation delay of the cable being used. In the case of
the 2000 ft HQ AFLC cable, the propagation delay is approximately 3.0
usec. Based on the way the function 'in' is used, the simulation model
will accept an actual cable delay of 125 x 3 usec, or 375 usec.

Recommendation: If it is determined that the actual cable delay is

greater than 125 times the propagation delay of the cable being used,

then a new function or procedure must be used to replace the function

‘in®.

Summary

4

The limitations discussed in this chapter, points out known areas

66

e e T T L A Tt S . BN
A TR WP A W S P Wty WS T W ST WY Sa S

of the simulation clock is 3/131280 or .00002285, with a probabilty of no
input of .99997715. Now using the 1000 customers and the Bernoulli
Trials, the probability of no input for the 1000 customers is 97.74% and
the probability of 1 input is 2.233%, with the probability of more than
one input of .027%. Now assuming that each customer is inputing 80
characters per input, the amount of simulation time necessary for a 3
mega bits/sec bus to pass one input is 166. Assuming that one of the
inputs is ready to transmit on the bus, the probability that another
input will arrive at the bus while it is busy, is 166/131280 or .00126.
Again using the remaining 999 customers and the Bernoulli Trials, the
probability of no inputs reaching the bus while it is busy, is 28.38% and
the probability of one session's input reaching the bus while it is busy,
is 35.76%. In this particular case, the probability that more than one
input will reach the bus while it is busy, is 35.86% and more than one
customer waiting to use the bus will cause a collision. As can be seen
from the figures, it is over a 1000 times more likely that a collision
will occur because of traffic waiting for the bus, than because of inputs
following closely behind each other.

Recommendation. The author's contention should hold for any local
area networks which generates traffic from a large number of sources, at
a relatively slow input rate. If the simulation model is to be used for
simulation of a small number of sources with a relatively fast input
rate, the error introduced by treating all collision the same, should be

re-evaluated. Intuitively, it is felt that the error would not become

excessive, since the time lost due to packets colliding is only a
fraction of the total time lost because of collisions. Normally the

amount of time waiting for re-transmission is much greater than the delay

65 N

cable, the average time, that would be lost due to collisions for
sessions starting to transmit at the same time, is the time equating to
1/2 the delay of the cable.

In some cases, it is possible that one session will start to transmit
and shortly before the input reaches the other end nf the cable, somecne
else begins to transmit. In this particular case, the time lost due to
collisions, can be as much as twice the round trip delay of the cable.
So why isn't the average time lost due to colliding packets 1 delay of
the cable instead of 1/2 the delay of the cable? As stated earlier in
Chapter 4, the algorithm of ‘the simulation model does take into account
this case by insuring that no new inputs are made to a BIU transmitting
data until the BIU has been transmitting for at least the time equal to
two delay times of the cable. Also collisions are detected by scanning
to see if another session will want to transmit within one delay time of
the cable, from the time a session starts to transmit. Even though the
simulation model allows for the possibility of a collision occurring
because one input arrives at the bus a short time after another, the

author contends that this occurrence is very rare and that most

collisions occur because sessions try to transmit at approximately the
same time. That is the reason, when collisions occur, that the simulation

uses the average of 1/2 the delay of the cable for the amount of time

.
PSPy

lost due to colliding packets. To illustrate this contention, lets look
at 1000 customers inputting data every 200 msec. Using the AFLC network
for our example, the 200 msec will convert to 131280 ticks of the]
simulation clock. The time for the next input to be made can be anywhere 5i::
between 1 and 131280 ticks of the simulation clock. Taking one customer

first, the probabilty that an input will be made within the next 3 ticks

6u

e BT B T A T

. o e, e . e e ...‘.,‘-.. e T T T e
IR S R St I Tt S Tl S . g OO0 MDA et balass o AL.;'L"“‘--'-".'J. A . R N MEAERENEE NS

that a new pseudorandom number generator be found.

Limitation 3

Discussion: Limitation 3 is due to the fact that the expected type
of traffic to be generated by the users was unknown, The 4/- deyiation
of the interval between inputs represents an uniformly distributed
deviation. It may be found in the future, that the input deviation is not
uniform but normal or some other type of distribution.

Recommendation: If in the future, it is determined that the +/-
uniform deviation of the interval between inputs is unacceptable, it is
recommended that a function be written to weight the random numbers
generated by the appropriate amount, to give the desired distribution

needed.

Limitation 4

Discussion: Limitation 4 is that the simulation model treats all
collisions the same. That is, when a collision occurs, a time interval
equal to 1/2 the delay of the cable is added to the table summing up the
delay time due to collisions. By doing this, the simulation model
assumes the time lost due to colliding packets, is a fixed average
amount. This average 1s determined from the following examples. If two
sessions at opposite ends of a bus cable were to transmit at the same
time, it would take the complete delay time of the cable before each knew
there was a collision and stop transmitting. On the other hand, if two
sessions side-by-side on the bus cable started to transmit at the same
time, they would know almost instantaneously that a collision occurred

and stop transmitting. With sessions uniformly distributed along the bus

63

AP)

P
’ .
alatata's atal

S

oy

[P

for transmission, instead of 131280 ticks.

Limitation 2
Discussion: Limitation 2 occurs with the pseudorandom number

generator function used by the program Simulate. A test of 10000 random
numbers conducted by the writer of the random rumber function, indicates
a .72% preference for higher numbers, as opposed to lower valued numbers.
This .72% preference for higher numbers tends to skew sightly to the
left, the +/- deviation of the interval between inputs. This skewing to
the left occurs because random numbers are used to determine if the input
deviation is + or -. Once the amount of the deviation is randomly
picked, another random number is picked to determine if the deviation is
+ or -. The random numbers generated can appear anywhere between 1 and
65536. 1If the random number picked is greater than 32768, it becomes a

i . o negative deviation. Since the generator favors higher numbers slightly
more, the average interval between inputs will be slightly less than the

expected mean and the traffic passed by the terminals will be slightly

21

higher than the expected mean. Some examples of the skewing effect are:
an error of .018% is introduced for a 200 msec interval between inputs
with a +/~ 5 msec deviation, an error of .072% is introduced for a 200
msec interval with a +/- 20 msec deviation, and an error of .36% is
introduced with a 200 msec interval with a +/- 100 msec deviation. The

amount of error introduced depends on the size of the interval between

inputs, in comparison to the size of the deviation. The larger the ratio

of the deviation over the interval, the larger the error will be.]

BESA
Recommendation: If the user feels that the accuracy of the N
pseudorandom number generator is unacceptable, then it is recommended -

62 -]

N . .o L
PRI T G S, P

o e e e e e e e e —

eight bit ASCII code word and the time it takes the BIU to add on the
overhead to the information bits. These times were not available to the
V] author since the terminals and BIUs to be used on the network were
. unknown. On the other hand, the author considers these times to be
insignificant in the normal operation of the network. It can be imagined
l that these times would be only equal to a few microseconds or less (the
time it takes a few shift registers to shift), and would only come into
play if the terminal was passing data at its maximum capacity (such as a
E continuous stream of data at 9600 bits/sec). Normally the terminal will
. pass data at a set rate, such as 9600 bits/sec, and once the data has
; been passed, the terminal is idle. Limitation 1 only comes into play if
the idle time between inputs is less than the time it takes to convert an
input to an ASCII code word and the time it takes the BIU to add on
overhead. An example of limitation 1 is; if the user was inputing data
every 200 msec and 240 characters per input, and the time for conversion
was b6 usec, the error caused by limitation 1 would only be .003%. And
again, this error only occurs if the idle time between inputs is less
than 6 usec.
Recommendation: If the user determines that the limitation needs to
be eliminated, it can be done by a simple modification to the program
Parameters. In program Parameters, the time it takes an input to travel

from the terminal to the BIU is calculated. To eliminate limitation 1,

it is only necessary to add an additional correction factor to this
calculated value, in order to account for the delay caused by converting ' 1
an input to an ASCII code word and the delay caused by adding overhead to
the information bits. In the example given, it would now take the

information 131284 ticks of the simulation clock for an input to be ready

61

VI. DISCUSSIONS AND RECOMMENDATIONS

Introduction

In Chapter 1, the need of HQ AFLC for a simulation model of a CSMA/CD

bus LAN was discussed. It was also discussed that previously developed f;;:i
network models are very limited in the number of network variables they
can handle. The problem was to develop a CSMA/CD bus simulation model
which could handle the numerous variables associated with a real local
area network. The thesis takes the approach that once an input is made,
the time for the input to travel through the various stages of the
network can be easily calculated. Therefore, the simulation model
generates traffic based on the statistical parameters of each individual
customer, then tracks the input as the simulation clock ticks. Using the
_ memory power of the computer to keep track of the location of all inputs, 251:;

‘ ¢ the simulation model is able to determine the effect of an input on all B '
other inputs. In some cases, an input has no effect on other inputs, and
at the other extreme, when inputs want to use the bus at the same time,
they have a drastic effect on each others performance. In Chapter 5
numerous tests were performed to demonstrate the ability of the
simulation model to model a CSMA/CD bus LAN. The thesis simulation model
attempts to mimic the characteristics of an actual LAN as close as
possible. In the remaining portions of this chapter, various limitations

of the simulation model to perfectly mimic a true LAN are discussed.

Limitation 1
Discussion: The first limitation of the simulation model is the time

associated with the time it takes the terminal to convert an input to an

60

St L=

s e T T T
~ oA A Wt PRS, ERTG)

e g sk s B d st i i aam and aum

characteristics of a CSMA/CD bus LAN.

Bux Curve —
Simulation e

10©~°
o 9. -
g8
-~
E-‘ 8--
: [
g - -
a T [
2]
r-si - -
5 6 /
=
o o
: 5--]
[}
-
[+1]
S Yo
g 4 /
A
o /
o
a2
o 3
=]
ot
&~
| 9
Q
G
2 -
[} 2- /
$
=
[=]
o
(]
b5

1--

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Throughput Rate/Transmission Rate

Figure 10. Transfer delay-throughput characteristic:, for a CSMA/CD
at 5 MB/S.[14:1470]

58

- Jhi 1 R I NI i ST Rt i e

program's response: Enter the data rate of the terminal (b/s), number of
characters per input, the time interval between inputs (in msec), and the

input variance (in msec) of the new session. <CR>

user's response: 19200 80 1000 10 <er>

program's response: Please enter the ID number of the session you wish

the new session to follow. <CR>

user's response: 1 <er>

program's response:
The following is the current list of typical sessions.
input input
ID speed(b/s) #char/input interval(msec) variance(msec)
1 9600 1 200 10
2 19200 80 1000 10

Do you want to make more changes? (Y/N) <CR>

user's response: y <cr>

program's response: Do you wish to make an addition or deletion? (Y/N)

<CR>

user's response: d <cr>

+rosram's response: Please enter the ID number of the session you wish to

72

"*".wﬁ.m

delete. <CR>

user's response: 1 <cr>

nrogramfs raspaAnca:
The following is the current list of typical sessions.
input input
ID speed(b/s) #char/input interval(msec) variance(msec)
1 19200 80 1000 10

Do you want to make more changes? (Y/N) <CR>

user's response: n <cr>

'‘program terminates'

(comment: The cycle to make changes car be repeated as many times as you

wish. The size of the file is only limited by the memory space of the

computer being used.)

73

T T e TR —— Badradireedins Attt

PART A3: Program Input n(etwork sessions)

Comment. This program, similar to input_p, is normally naeed anly
once. It establishes the file necessary to store sessions for
simulation. Once the file has been created, program Network should be
used to perform any necessary changes to the list of customers to be
simulated. This program could also be used if the user desired to
completely erase the network sessions file clean. If by some mistake the
file named 'network' is destroyed, this program must be run to
re-establish the 'network! file. The file 'network' is established by
loading the first session to be simulated into the file. Assuming that

you have not created a 'network' file yet, we will call program Input n.

user's command: input n

program's response: WARNING: This program should be used only to
establish a new network sessions file. If a network sessions file
presently exists, this program will erase that file and establish a new
network sessions file. Do you want to establish a new network sessions

file? (Y/N) <CR>

user's response: y <cr>

(comment: A 'n' response would have simply terminated the program.)

program's response: Please enter terminal speed(b/s), number of

characters per input, input interval in msec, input interval variance in

T4

msec, and the number of times you wish this session repeated in the

simulation. <CR>

-

user's response: 9600 80 100 10 3 <er>

. program's response: A new network sessions file has been established.

Any further changes to this file should be done by executing program

Network.

'program terminates'

75

PR T T T .
EoaJE P L S SR SN WY L SPYL I SeP P T Sl Sl il 2 T P UL s

PART Ald: Program Network

Comment: This program will allow you to update your list of
customers/sessions you plan to simulate. Having established a 'network'
file, we will then call program Network to make some changes to the

network file.

user's command: network

program's response:
The following is the current list of network sessions.
input input

ID speed #char/input interval variance quantity

(b/s) (msec) (msec)
‘ ¢ 2 9600 80 100 10 3
y 9600 80 50 1 2

Do you wish to make changes to the network sessions? (Y/N) <CR>

user's response: y <e¢r>

(comment: A 'n' response would have terminated the program.)

program's response: Do wish to make an addition or deletion? (A/D) <CR>

user's response: a <cr>

program's response: Do you need to see a copy of the current typical

76

P R N R Y

AT
et A

sessions list before making your choice on your addition? (Y/N) <CR>

user's response: y <cr>

(comment: A 'n' response would have caused the program to bv pass showing

you the current file of typical customers.)

program's response:
The following is the current list of typical sessions.
input input

ID speed(bs/s) #char/input interval(msec) variance(msec)

1 19200 80 500 20
2 9600 80 100 10
3 9600 80 100 25
) 3600 80 50 1

Enter the ID number of the typical session you wish to add to the

network. <CR>

user's response: 3 <cr>

program's response: Enter how many times do you wish to duplicate this

session in the network. <CR>

user's response: 4 <cr>

program's response:

The following is the current list of network sessions.

77

. - PR
) . PPN
D WS/ S I

ot T
RN
ek

e

- v I'l'.ll ll l I'! l !.l.'l' l!l l_l.!."‘A".'."-"vV.' AR S A A S e A S ies Sie SRU y<Be it 4

input input

ID speed #char/input interval variance quantity

(brs) (msec) (msec)
2 9600 80 100 10 3
] 9600 80 50 1 2
3 9600 80 100 50]

Do you want to make more changes? (Y/N) <CR>

user's response: y <cr>

program's response: Do you wish to make an addition or deletion? (A/D)

<CR>

user's response: d <cr>

program's response: Please enter the ID of the network session you wish

to delete. <CR>

user's response: 2 <cer>

program's response:
The following is the current list of network sessions.
input input

ID speed #char/input interval variance quantity

(b/s) (msec) (msec)
4 9600 80 50 1 2
3 9600 80 100 50 y -

78 s

- N ’m g v s Y Ty wyvY - A il e s g S Saee SreUie - S Ael G

Do you want to make more changes? (Y/N) <CR>

user's response: n

‘program terminates®

PART AS5: Program Parameters

Comment: Having established the list of sessions/customers to be
simulated, the next step is to call program Parameters. This program
will calculate the various travel times associated with each session to
progress through the theoretical network. Bus characteristics will be
loaded with this program. The user's responses indicated below are
examples only. You should enter the particular information unique to

your network.

user's command: parameters

program's response: Please enter thg data rate of the bus (b/s). <CR>
user's response: 1000000 <er>

program'’s response: Please enter, in feet, the round trip length of the

bus cable. <CR>

user's response: 2000 <cr>

program's response: Please enter the overhead, in bits, of the BIU., <CR>

user's response: 120 <cr N

program's response: Enter the time of day in hours and minutes.

(example: for 8:45 enter BU5) ‘;)

80

user's response: 1546 <er>

(comment: The time of day is used only as a seed for the random number

generator.)

program's response: Do you wish to see a display of the calculated data?

(Y/N) <CR>

user's response: n <cr>

(comment: If 'y' is entered, the program will show a display of the

calculated parameters before terminating.)

'program terminates!'
(comment: In some cases the following note may be given by the program:
"#ENOTE#® The error in calculating the bus busy time for session #3 is
4g. The error is high because the bus busy time is approaching the basic

unit of time for the simulator, one way propagation. One or more of the

following factors may be contributing to the high error.

high bus bite rate

long length of bus cable

low overhead

- low # of characters per input

Due to the high error, the results of the bus busy time indicated during

81

DA
e e

.....

o e L e ;A-.v."L'L‘*‘q IR Rl RN

Y

the data evaluation stage, should be ignored.”

This note indicates that only one of the three methods used to
calculate the amount of traffic being passed by the bus should be
ignored. The three methods used to calculate the traffic being passed by

the bus are discussed further in Chapter 5, Test 2.)

gz DRI

- B e

82

S S T T S S ST S S

PART A6: Program Simulate

Comment. Up to this point, we have selected the customers/sessions we
Wwish to simulate and have calculated the necessary parameters for the
simulation run. Now it is time to perform the actual similatinan, Thig
program will prompt you for some last minute information prior to
starting the simulation. Again, as before, user's responses are only

examples and you should enter the information unique to your network.

user's command: simulate

program's response: (number of sessions being simulated) sessions were

loaded for this simulation run. Do you wish to review the data loaded?

(Y/N) <CR>

user's response: n <cr>

(comment: A 'y' input would have instructed the program to let you review

the values calculated in the previous program Parameters and loaded for

the simulation run.)

program's response: Is the actual round trip delay of the network known?

(Y/N) <CR>

user's response: y

(comment: If 'n' was inputed, the program defaults and uses the basic

83

Tt e e
I O
N Y SN N

R O S

L T A
ko R, e/ VI, "W L S L ST Wy, WSS TP

propagation delay of the cable length enter before, for the bus delay. A
'y'! answer implies that you known the actual delay of bus cable due to

propagation, amplifiers, splitters, etc.)

program's response: Please enter, in nano seconds, the known round trip

delay of the bus. <CR>

user's response: 6000 <er>

program's response: Please re-enter, in feet, the max round trip length

of the bus cable. <CR>

user's response: 2000 <cr>

program's response:

Is this simulation a 1- or p~ persistent?

Enter a 1 for a 1-persistent simulation or a 2 for a p-persistent

simulation. <CR>

user's response: 1 <cr>

(comment: If a '2' is entered, the program will further prompt for the e

percentage between 1 and 100%.) S

program's response: Please enter the transition clock time. <CR>

user's response: 250000 <cr>

84

I BRI
DT U N L S
[T N I T S S S R LIPN I WAL Y

a g

P - g ey " —y -
v . B - e DM S g iaas Ate 4 oy

program's response: Please enter the simulation clock time. <CR>

user's response: 10000000 <er>

(comment: The times enter are with respect to the ticks of the simulation
clock. One method for determining how long the simulation should run is
to review the data loaded for simulation. Having reviewed the data, pick
the session with the largest amount of time between inputs, then multiply
that quantity by the number of inputs you wish to see simulated. The
more inputs you allow a session to input, the better the accuracy of the

simulation run.)

program's response: Please enter the time of day. (example: for 13:15

enter 1315) <CR>

user's response: 1548 <cr>

(comment: The time of day is used only as a seed for the random number

generator.)

program's response: Do you need a display of the simulation run? (Y/N)

<CR>

user's response: n <cr>

(comment: A 'y' answer will give you a display of every step the

85

e e

AD-A151 706 SIHULHTIDN HODEL oF A CSHﬂ/CD BUS LOCRL RREH NETHDRK 2/3 .
WITH MULTIPLE VARIABLES(U)> AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J H SCHRIHL

UNCLASSIFIED DEC 84 AFIT/GE/ENG/84D-57

M

" n CRCuN st o S r—-——.—,—-——“—v-.—-v-vr—v -v..','v_""' .

T

L 2% 208 asaasn

TR T W TR ST

2 2

o

1.0
llm-—_' E WI% ““ é
£ =
|| £.%= Iz
| — =

I fles

22 i nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL RURFALI OF STANDARDS 1963 A

LIRA A o

gonses uocasne:

oo
LT e A T SR S . L T A e T e e e e T e e T el Y PV TR L AN,
LI IR AR L DAL DA DR A W T DU SO S e % ’. s PR, SRR TP 5 - LI S Ry R ..} O CXNESME WAL TR MNP el Wolll Folif A RviE W WS SO S T S, BRI SR WAt} LIS

simulation performs. This option was originally used to help trouble
shoot the program during the design stage. The option was left in to
allow the user to actually watch the performance of a network in action.
It is highly recommended, that if time allows, a few simulations using
this option be performed. Real insight to the effects of different types
traffic on network performance can easily be seen. Since there are no
headings with this option, the list of functions for each column of the

display is indicated below at the end of part 6.)

program's response: <Running clock time of the simulation counting down

and the word 'collision' when collisions occur.>

program's response: Actual simulation clock is < time >.

'‘program terminates'

The following is a list of the functions of each column being displayed,

if the option to watch the simulation run is used.

column 1 - This column keeps track of the time that must elapse
before the traffic inputed by the terminal reaches the BIU. A zero value
indicates no traffic and a one value indicates that the BIU is ready to
transmit on the next tick of the clock.

column 2 - This column remains constant with the time that a
particular session needs for its' traffic to travel from the terminal to
the BIU.

column 3 - This column keeps track of the time that must elapse

86

''''''''''

before the next input is made. A zero value indicates that flow control
is being employed. A one value indicates that an input is about to be
made to the terminal.

column 4 - This column remains constant with the time interval

between inputs for each particular session,

column 5 - This column remains constant with the time that the bus
will be busy once a BIU is able to transmit for a particular session.
{ column 6 - This column sums up the waiting time a session's traffic
?; must wait because the bus is busy.
column 7 - This column sums up the waiting time a session's inputs

must wait because of flow control.

column 8 - This column sums up the number of collisions for each
session. Only the row for the first session is used to record
collisions, all other rows will remain at O.

. b column 9 - This column sums up the number of inputs each session

makes.

¢olumn 10 - This column sums the time the bus is busy for each
session.

column 11 - This column sums up the extra waiting time a session’'s
traffic must wait because of collisions.

column 12 - This column keeps track of the local variable needed for
the exponential binary backoff.

column 13 - This column is used for storage of the amount of set back
time due to a collision. As events occur, the length of time the event
takes, is removed from storage and added to column 11.

column 14 - Tris column remains constant with the variance of the

interval between inputs.

87

L o P g N R T AL M I LR
MR A S L S A RN A S AL R WD SR ST WS . T S AT S S APy

PART A7: Program Evaluate

Comment: Once the program Simulate is completed, the results of the

simulation are filed away in the file 'simnlate! far nee hy the nrogram

rr.-_vvw;. T Ty
et P

Evaluate. Having completed a simulation run, let's call the program

Evaluate and review the performance of cur network.

[2] o

user's command: evaluate

program's response:
The results of the simulation run are based on the following network

parameters.

Data rate of the bus was 1000000 bits/sec.

Round trip length of the bus cable 2000 feet.

Round trip delay of the cable 3046 nano seconds.

The BIU overhead was 120 bits.

l-persistent was used.

The actual transition clock time was 256293.

The actual data collecting time was 25000756.

The transition clock time approx equals 390 msec of real network run
time.

The data collecting time approx equals 38087 msec of real network run
time.

The performance of various types of sessions are as follows.

Please enter <CR> to continue.

88

. . oL . e e e e e e A e e e e A e
I I T R T T R L N AR I ARSI VR VRN T VLR Tl St W LR R S i e LA
S A c - BN B T FE e s A R T O R e R N N Y
P PRC RIS W WAL P L S ML WL SR S WA W PR A L R P L S T PP P U PGPS S RET A S R €S S

user's response: <cr>

program's response:
10 typical sessions were set up as follows: ~“iﬁ

ID: 1

TERMINAL RATE: 9600 bits/sec
of CHARACTERS PER INPUT: 80
TIME INTERVAL BETWEEN INPUTS: 50 msec var 0 msec
'; #AVE MAX INPUT RATE: 12800 bits/sec®
i . The perfomance was as follows.
DELAY PER INPUT:
-due to traffic on the bus: 0O usec
-due to collisions: 0 usec

-due to flow control: 16668 usec

THROUGHPUT RATE PER SESSION:

-time interval between inputs:
--terminals indicate 66668 usec
-~inputs indicate 66668 usec

-transmission rate:

-~terminals indicate 9599 bits/sec
-~inputs indicate 9599 bits/sec

Please enter <CR> to continue
user's response: <cr>

(comment: If additional types of sessions had been simulated, then a

performance summation would have been displayed for each session type.)

89 o

[I P R T I T S N B
MRV R AP AT I O Wl S ALY G Sy i

program's response:
[i #8% BUS PERFORMANCE ### —.‘
: The bus is set up to operate at 1000000 bits/sec. -
Traffic on the bus indicates a rate of 113799 bits/sec.

Traffic being passed by the terminals indicate a rate of 113997 bits/sec.

Traffic being inputed by the user indicates a bus rate of 113997 o

bits/sec.
Collisions were at the rate of 0 collisions per sec. 4
#2% NETWORK INPUT TRAFFIC #%##%

The MAX traffic rate which the terminals can pass is 96000 bits/sec.

The simulation indicates that the terminals were passing traffic at 95998 :J
bits/sec.]
The users are attempting to input 128000 bits/sec. :;:j
The simulation indicates that the network is allowing an input of 95998 ‘__j
bits/sec. ;;;:

Please enter <CR> to continue.

. user's response: <c¢cr>

3 program's response: Do you wish to review the raw data? (Y/N) <CR>

1

user's response: n <cr>

4 s a.al

(comment: A 'y' would have displayed a copy of the raw data collected by

the simulation run before terminating the program.)

90

R 3 e Al . .t et el e T, LR T TN S TR R T S . - o
S L e AT T e e e el Lt e e e e PRI I A IPAEIRE AL TS TP I AP PP U S PP P LD LI Wy PRI PN PR ay

T — — Y T

'program terminates'

91

APPENDIX B: SIMULATION COMPUTER PROGRAMS

Introduction. Appendix B provides the actual seven Pascal computer

programs written to simulate a bus local area network utilizing either
1-persistent or p-persistent CSMA/CD. The programs are centered arnund a
Zenith Z2-100 micro-computer using the 16 bit MS/DOS Pascal Language. The
micro-computer's 128K memory limits the number of simulation
customers/sessions to 500. By making the minor modification necessary to
make the Pascal programs compatible with a computer with larger memory,
the number of sessions can be greatly extended. The computer programs
were written using only standard Pascal language. The only anticipated
modifications, necessary to use these Pascal programs on other types of
computers, are how the version of the Pascal language being used, handles
external files and integers. The integer value allowed in these programs
range between +/- 32768. The version of the Pascal language being used
in this thesis also allows for an extended integer called integerid. The
integerd4 values range between +/- 2147483648,

Appendix B is broken into seven parts, one part for each program. The
identifiers used as variables were picked with the hope that they would
make it easier for future readers to follow and understand the programs.
To assist the reader even further, a list of variables used and their
purpose are given prior to each Pascal program. A variable followed by a
*(G)' indicates a global variable while a '(L)' indicates a local
variable. The second character indicates the type of variable, if
applicable; '(I)' indicates integer, '(Ild)' indicates integerl, '(C)?
indicates character, and '(R)' indicates real. The first Pascal program

begins on the next page.

92

......

PART B1: Pascal Program Input-t(ypical sessions)

The variables and their purpose, as used with the program Input_t, are

as follows:

VARIABLES:]
answer (G)(C) - Represents the user's response to a question. ’ 1
datafile (G) - Represents a file of records containing typical

sessions.

sessien (G) - Represents a record of a typical session.

Aca A4 4

session.id (G)(I) - Represents the ID number of the typical

session.

session.interval (G)(I4) - Represents in msec the time interval

¢ o between inputs. .‘ 1
session.number (G)(I4) - Represents the number of characters
inputed by each input. t:i }
session.speed (G)(I#) - Represents in bits/sec the data rate of the -1
session's terminal. «ﬁ
session.variance (G)(I4) - Represents in msec the maximum +/-
deviation of the interval between inputs. 1

The actual Pascal program, Input_t, begins on the next page.

93

T R A
PRI R Y

....................

Bl i S e et e e T S S e e Ao e A L En B —— — e Y AT A T = = g g~ E— . — W= - w y— -

{* PROGRAM:INPUT T(YPICAL_SESSIONS) *}

{(ERRE AR RARERARRR BRI R AR RARAR R AR R AR NG RN RN B RN BB R RN RARR RN REBRRARNDEE]

{ DATE: 29 Aug 84 }
{ VERSION: 1.0 }
{ NAME: input_t(ypical_sessions) }
{ FUNCTION: This program will establish a new typical session file, }
{ A typical session file is a file which contains various }
{ types of sessions which may be used in the simulation. }
{ of the local area network, If a typical session file }
{ already exists, this program will erase that file and }
{ create a new typical session file. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: answer, session, datafile }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
f FILES READ: none }
{ FILES WRITTEN: sessions }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: none }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
BRARRERARER AR R AR R RRRRER R R RN BR BN B RRERRR R RN RA RN SR RN NN RN RRNRRNRRN

program input_t (input,output);
type typical session = record

idsinteger;
speed,number,interval,variance:integery

end;
var session:typical session;]
datafile:file of typical_ session; l
answer :char; -
begin 1
writeln;]

write ('WARNING: This program should be used only to establish a ');

writeln ('new typical session ');

write ('file. If a typical session file '}; e

writeln ('presently exists, this program will erase that '); B

writeln ('file and establish a new typical session file.'); |

writeln;

writeln ('Do you want to establish a new typical session file?',
' (YN

writeln ('<CR>');

read (answer); -

writeln; J

writeln; -

94

- - - - A T T T T T e R AT AL R NN -
Pt T T T Tt Tt e T T T e Ty IR S T T A PR SN A S ST R L I R J
B N R R R P RPN S ACIME R TN, e T S Toll S-S iR S Rl Al SOt Sl LS TR Sl AL AL A, S R UL S AL AL L PO Ml L S AP S R,

e et tata e et ek o el h e e Ao Sablen o 2t PRI AP T R S AT Wi GLI W, D S AN DN S 1P P WY el CLE T J_L‘“

if (answer =z 'y') or (answer ='Y') then
begin
assign (datafile,'sessions');
rewrite (datafile);
write ('Please enter the terminal speed(b/s), number of ');
writeln ('chararters per input, input ');
write ('interval in msec, and input ');
writeln ('interval variance in msec.<CR>');
read (session,speed,session,number,session.interval);
readln (session.variance);
session.id := 1;
datafile”™ := session;
put (datafile);
close (datafile);
writeln;
write ('A new typical session file has been established. Any ');
writeln ('further changes to this');
write ('new file should be done by executing program ');
writeln ('"sessions".')
end
end.

re

"

- oy

v

PRI X B I

95

R
Tala A e Ao At oot

.........

PART B2: Program Sessions

The variables and their purpose, as used with the program Sessions,

are as follows:

VARIABLES:
ans (G)(C) - Represents the user's reponse to a question.
answer (G)(C) - Represents the user's reponse to a question.
counter (L)(I) - Is used as a counter to renumber the typical
sessions.
datafile (G) - Represents a file of records containing typical
sessions.

datatemporary (G) - Represents a temporary file of records

containing typical sessions.
remove (L)(I) - Represents the ID number of the session to be
removed from the file of typical sessions.
session (G) - Represents the record of a typical session.
session.id (G)(I) - Represents the ID number of a typical session.

session.interval (G)(IY4) -~ Represents in msec the time interval

between inputs. <]

session.number (G)(I4) - Represents the number of characters 1

inputed by each input.

session.speed (G)(I4) - Represents in bits/sec the data rate of the

S e
[RRER

ot .

USRI N S W .

session's terminal.

session.variance (G)(I4) - Represents in msec the maximum +/~

RPN .
PP e i |

deviation of the interval between inputs.

temporary session (G) - Represents a temporary record of a typical

96 Jifig

MU W N Y

A SR LD PSR S T S DI SO UL R T - S ACILN S-S IIPORSL O T SIS 2

session.

temporary session.id (G)(I) - Represents the temporary ID number of

a typical session.

temporary session.interval (G)(I4) - Represents in msec the

temporary time interval between inputs.

temporary session.number (G)(I4) - Represents the temporary number

of characters inputed by each input.

temporary session.speed (G)(I4) - Represents in bits/sec the

temporary data rate of the sessons's terminal.

temporary session.variance (G)(I4) - Represents in msec the

temporary maximum deviation of the interval between inputs.

The actual Pascal program, Sessions, begins on the next page.

97

R ATy VLT VAP UL AP UL NPUE A VLI WA AT WA S Sl S VLl Sl So SR A SN Vol Yoty Salr WA S W WAL WU St WP S FRLI LIPS S S S

PR WA SO

P

. s e T W T W< ¥ - ¥ =X T —F ~ - - - ~—-

OUTPUTS: none }
GLOBAL VARIABLES: T_session, datafile }
GLOBAL TABLES USED: none }
GLOBAL TABLES CHANGED: none }
.................... }
FILES WRITTEN: none }
PROCEDURES CALLED: none }
CALLING PROCEDURES: addition }
AUTHOR: Zant John M, Schrinml !

}

}

HISTORY: none
ERRBRBRARRNERBFR RSB RBERRBRERRBRERBRRERBERERRRER BRSNS RERARRERERNRRN

e e e R N e e T e T e N aeme B e W ama)

procedure display typical sessions;

begin
writeln;
writeln('The following is the current list of typical sessions.');
writeln;
writeln;
write (' id speed #char/input ')
writeln ('input interval(msec) input variance(msec)');
reset (datafile);
while not eof (datafile) do
begin
T_session := datafile”;
get (datafile);
write (T_session.id:3,T_session,speed:9,T_session.number:12);
writeln (T_session.interval:17,T session.variance:24)
end;
close (datafile)
end;

{ll!llllll!llllllllllill'!""lillillllllllllllIll.llillllllllll.ll!lll}

DATE: 30 Aug 84 }
VERSION: 1.0 - }
NAME: display network sessions }
FUNCTION: Displays the current sessions that will be used in the }
simulation of the local area network. }

INPUTS: none }
OUTPUTS: none }
GLOBAL VARIABLES: N_session, netfile }
GLOBAL TABLES USED: none }
GLOBAL TABLES CHANGED: none }
FILE READ: network }
FILES WRITTEN: none }
PROCEDURES CALLED: none }
CALLING PROCEDURES: addition, delete }
AUTHOR: Capt John M, Schriml }
}

}

HISTORY: none
(22X 22 2R X SRR SRR SRS RE RSS2SR S SRR SR SRS XSS 22

P el e R e N e N e R e e R R e N e N e R R e N ene R a

S e Tt et et et e
RN Sl VAP AP LI Vol Sl VLA S L.

T S

{* PROGRAM:NETWORK ¥}

['llil!lll!llllllil!'ii!lill!lll!l!!!l!!!!!El!!!l::5:::!:55!!!;5;;!*

DATE: 30 Aug 84

VERSION: 1.0

NAME: network

FUNCTICON: This program gives the user access to the file which
contains the list of sessions that will be used in the
simulation of the local area network. The user has the
option to add or delete sessions from the network session
file.

INPUTS: none

OUTPUTS: none

GLOBAL VARIABLES: ans(wer)

GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: display network sessions

CALLING PROCEDURES: none

AUTHOR: Capt John M. Schrimi

HISTORY: none
R RR AR A SRR R R RN SRR R RN R RN RN AR RSN R R R R RN R RN BN RN AR R R RNR NN

L
»®
1

L R e I e N e B B Y s R e e T a R e e N e N e B e T)
vl Mgef et gt gt bgnd At Vgt Ayt gl gt Ampd oyt o Mgt gt S Aget Smgnd s et

program network (input,output);

type typical_session = record
id:integer;
speed,number,interval ,variance:integeri
end;

network session = record
id:integer;
speed,number,interval,variance,
quantity:integery
end;

var T_session,T temporary session:typical session;
N_session,N_temporary session:network session;
datafile:file of typical_ session;
netfile,nettemporary:file of network session;
answer ,ans:char;

{ll!l!lllll!’ll!!Il'llllilllllllill!!lllll!‘i‘!l!llllllllll*il!llllllll}

DATE: 30 Aug 84

VERSION: 1.0

NAME: display typical_ sessions

FUNCTION: Displays a copy of the typical session file,
INPUTS: none

p— - - —
et St et

110

L st et At e Al el e iatd At talata A k) L . ~ % A A > - ¥ -

T-session.number (G)(I4) - Represents the number of characters

inputed by each input.

T-session.speed (G)(I4) - Represents in bits/sec the data rate cf

the session's terminal.

T-session.variance (G)(I4) - Represents in msen the mavimym 4/-

deviation of the interval between inputs.

T-temporary session (G) - Represents a temporary record of a

session.

T-temporary session.id (G)(I) - Represents the ID number of a

session.

T-temporary session.interval (G)(IY4) - Represents in msec the time

interval between inputs.

T-temporary session.number (G)(I4) - Represents the number of

characters inputed by each input.

T-temporary session.speed (G)(I4) - Represents in bits/sec the data

rate of the session's terminal.

T-temporary session.variance (G)(I4) - Represents in msec the

maximum +/-~ deviation of the interval between inputs.

The actual Pascal program, Network, begins on the next page.

109

Cal gl a4

C - - - . . - e ® A ™At . - -- 0 - o - - L . . - . . - - - P - - P . .".‘ - - - P ." -...'--"-' Ry
EN A R IR I Pl Sy T -y WRCIVRE TP SRS T TRT ST WP s S . Ore P U Y, L A . TR . L. S S SO W N S WLIE S VU Vol Wl Ui VAR S Vi WLl SR Vel v

— T T e T Mdiege D Jud Sulh mnd. o ailh SRS iR o W T T T b ey e T RN

N-session.speed (G)(IY4) - Represents in bits/sec the data rate of

the session's terminal.

N-session.variance (G)(I#) - Represents in msec the maximum +/-

deviation of the interval between inputs.

N-temporary session (G) - Represents a temporary record of a

network session.

N-temporary session.id (G)(I) - Represents the ID number of the

network session.

N-temporary session.interval (G)(I4) - Represents in msec the)

interval between inputs.

N-temporary session.number (G)(IlY) - Represents the number of

- 4
characters inputed by each input. 1

N-temporary session.quantity (G)(I4) - Represents the number of

times a session is to be repeated in a simulation.

.f. N-temporary session.speed (G)(I4) - Represents in bits/sec the data f :
rate of the session's terminal. .:
N-temporary session.variance (G)(I4) - Represents in msec the jfﬁii
maximum +/- deviation of the interval between inputs. :—j
remove (L)(I) - Represents the ID number of the session being]
removed from the network file. r‘ﬂd

repetitions (L)(I4) - Represents the number of times a session is 1
to be repeated in a simulation.

T-session (G) - Represents a record of a typical session. : . f

T-session.id (G)(I) - Represents the ID number of the typical ‘ 1

session.

LN

T-session.interval (G)(I4) - Represents in msec the time interval

between inputs.

. T v ° 'l ‘,' .l .

. - . . r‘ l‘ :. .
.o P
. RN
NP S FUR TN

108

I PN P T T P P S e tat .

PART BU4: Pascal Program Network

The variables and their purpose, as used with the program Network, are

as follows:

VARIABLES:

add (L)(I) - Represents the ID number of the typical session to be
added to the network for simulation.

ans (G)(C) - Represents the user's response to a question.

answer (G)(C) - Represents the user's response to a question.

check (L)(I) - Is used to insure a valid ID number was entered by
the user.

datafile (G) - Represents a file of records containing typical
sessions.

netfile (G) - Represents a file of records containing typical
sessions that were selected for :cimulation.

nettemporary (G) - Represents a temporary file of records
containing the typical sessions selected for simulation.

N-session (G) - Represents a record of a network session.

N-session.id (G)(I) - Represents the ID number of the network
session.

N-session.interval (G)(I4) - Represents in msec the interval

between inputs of a network session.

N-session.number (G)(I4) - Represents the number of characters

inputed by each input.

N-session.quantity (G)(I4) - Represents the number of times a

session is to be repeated in the simulation network.

107

7.

P

P

. ety

S N "

. LT .
. 1; [y Y

Yy

P . ¥ Y

A S ek g LI S Bt G S A B A S I - - Aca SR i e ———— T T Y TV v T —— T

writeln;
if (answer = 'y') or (answer = 'Y') then
begin
assign (datafile,'network');
rewrite (datafile);
write ('Please enter terminal speed(b/s), number of ');
writeln ('characters per input, input ');
write ('interval in msec, input ');
writein('interval variance 1n msec, and quantity of session.,');
writeln ('<CR>');
read (session.speed,session,number,session.interval);
readln (session,.,variance,session.quantity);
session.id := 1;
datafile” := session;
put (datafile);
close (datafile);
writeln;
write('A new network session file has been established. Any ');
writeln ('further changes to this'); :
write ('new file should be done by ');
writeln ('executing program "network".')
end
end,

o
. .
O Sy S S

L

RPN SR .

106

PP P R O VD R SRS SRS

T A e e T s et e e . B I e e B R S R
LR, WO TSR R Sl T SR SO S) PR TRIEIRAY ST Wil TR TAAE S i SRR Sl Wl Yol WAL YO TP S VP SRl Gl S .0 PG, Y. ¥ 'AlllA.\A-hi‘;A'-L“

{* PROGRAM:INPUT_N(ETWORK SESSIONS) #*}

r‘ {lllIl!!lll!ll‘!llllllIll“ll‘i“llllll"llilll'lllllilll!ll.il'lllil...l}

{ DATE: 29 AUG 84 }
{ VERSION: 1.0 }
{ NAME: input_n(etwork sessions) }
{ FUNCTION: Tnis program will establish a new network session file, }
{ A network session file is a file of the sessions that }
{ will be used in the simulation of the local area network. }
{ If a network session file already exists, this program }
{ will erase that file and create a new typical network }
{ file, }
' { INPUTS: none }
[y { OUTPUTS: none }
. { }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

GLOBAL VARIABLES: answer, session, datafile
GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: none

FILES READ: none

FILES WRITTEN: network

PROCEDURES CALLED: none

CALLING PROCEDURE: none

AUTHOR: Capt John M, Schriml

HISTORY: none
EAERRRRRERRR AR NN AR NN RN AR AR RN R RN BN RN RN RR RN R RNRRNSRBRBRNRRANRN

4 .. ’
Co . AN
e iLAA‘J'_‘— PP

program input_n (input,output);

: type network_session = record

- id:integer;

;o speed,number,interval,variance, —

Fi quantity:integery
end;

Bl .‘“ -

var session:network session;
datafile:file of network session;
answer :char;

begin
writeln; T
write ('WARNING: This program should be used only to establish '); -;;ﬁ
writeln ('a new network session '); e
write {'file, If a network session file '); Y
writeln ('presently exists, this program will erase that '); o

writeln ('file and establish a new network session file.');
writeln;]
write ('Do you want to establish a new network session file? ');]
writeln ('(Y/N)');]
writeln ('<CR>'); ' '%
1

read (answer);
writeln;

105

..
..

a4

PART B3: Pascal Program Input-n(etwork sessions) B

The variables and their purpose, as used in the program Input_p, are

as follows:

‘e . .
PRI WY Sy 4

Ala '

VARIABLES:
answer (G)(C) - Represents the user's response to a question.
datafile (G) - Represents a file of records containing network
sessions.
session (G) - Represents a record of a network session.
session.id (G)(I) - Represents the ID number of the typical session T

being used in the simulation run.

session.interval (G)(I4) - Represents in msec the time interval f iﬁ

between inputs. :.{;

session.number (G)(I4) - Represents the number of characters o ﬁ
inputed by each input. ;;ﬂ
session.quantity (G)(I4) - Represents the number of times to repeat 2
a typical session in the simulation network. -‘dj
session.speed (G)(Il4) - Represents in msec the data rate of the
session's terminal.
session.variance (G)(I4) - Represents in msec the maximum +/- 1
deviation of the interval between inputs.
The actual Pascal program, Input_p, begins on the next page. ‘ S

104

. Lottt
. L e e e
L W S S R

R < L - R P T

.
- - 3
1
writeln]
until (answer ='n') or (answer ='N')
end;
- 3
begin .
assign (datafile,'sessions'); SOA
assign (datatemporary,'datatemp'); T
display;
repeat
writeln;
write ('Do you wish to modify the current listing of typical');
writeln (' sessions. (Y/N)');
] writeln ('<CR>');
. readln (ans); '
writeln; 4
[: writeln !

until (ans = 'Y') or (ans ='y') or (ans = 'n') or (ans ='N');
if (ans = 'Y') or (ans = 'y')
then modify
end.

Tryv'.q—vﬁ

103

e e T e T e e e e e e e T T T - - - - « L . . e
LU APLIPR IR, WL P WAL WA AP WSS RC T WA Wl W uiiy SuPA 4 P SR S R T S T WL S Sy

= e AN .‘_‘- '.‘~.
bl e eaie ol 3 CICIN

2

T T T TN T T T—— N GIns Sauh Ay S Suae) M2 i e e q YT Y Y T T T Y Y T YW W

v temporary session.id := counter;
' datafile” := temporary_session;
put (datafile)
end;

close (datafile);

close (datatemporary);

display o
end; o

{l!l‘l!‘l!l'.‘llllll'ill.lli!!llll'lllllllll'l!lllllllllllllIi!lllllllll!l}

{ DATE: 29 Aug 84 }
{ VERSION: 1.0 }
{ NAME: modify }
{ FUNCTION: This procedure prompts the user for what type of changes 1}
{ they wish to make to the typical session file and then }
{ calls the appropriate procedure, }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: answer }
{ GLOBAL TABLES USED: none } .
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: addition, delete }
{ CALLING PROCEDURES: sessions }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
AR RSN E RN RN RN RN R RN RN A R RN R NN AR R RAR AR NN RN R ARNERNRRRAR RN

procedure modify;

begin
repeat
writeln ('Do you wish to make an addition or deletion? (A/D)');
writeln ('<CR>');
readln (answer);
writeln;
if (answer = 'a') or (answer = 'A')
then addition
else if (answer = 'd') or (answer = 'D')
then delete
else
begin
writeln;
writeln ('An invalid character was entered.')
end;
writeln;
writeln ('Do you want to make more changes? (Y/N)');
writeln ('<CR>');
readln (answer);
writeln;

102

LR IPaIN

S IPCIY

TR TR TR TN N N W Y N W N TV TN T VY T T T T T Y Ty TV PR S A A SR AT S SR SR B AR e

{RERRRRRR AN RR R RN RN RSN AR RN RN RN RRAN RN ARG RHANRANGURRNBRNRNE]

{ DATE: 29 Aug 84 }
{ VERSION: 1.0 }
{ NAME: delete }
{ FUNCTION: Allows the user to delete a typical session from the }
{ typical session file. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: none }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: sessions, datatemp }
{ FILES WRITTEN: sessions,datatemp }
{ PROCEDURES CALLED: display }
{ CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M. Schr1m1 }
{ }
{ }

HISTORY: none
ERRBRRRRERNRRBANR AR RN R E RN R RN RN RN R RN RN R RN N RN RER NN AR

procedure delete;

var remove,counter:integer;

begin --
writeln; .
writeln ('Please enter the id of the session you wish to delete,'
'<CR>?);

readln (remove);
rewrite (datatemporary); :
reset (datafile); *
while not eof (datafile) do
begin
session := datafile”;
get (datafile);
if session,id <> remove then
begin
datatemporary” :=session;
put (datatemporary)
end
end;
close (datafile);
close (datatemporary);
rewrite (datafile);
reset (datatemporary);
counter := 0; ({The counter is used to renumber the sessions.}
while not eof (datatemporary) do
begin
temporary_session := datatemporary”;
get (datatemporary);
counter := counter + 1;

101

MR et gt st e s P p—r RASMAL N MR s o e Bl P dae S e S e e gt Ji. s e e e/t Suget

begin
writeln;
write ('Enter the data rate of the terminal(b/s), ');
writeln ('number of characters per input,');
writeln ('the time interval between inputs (in msec),',
' and the input interval');
writeln ('variance (in msec) of the new session.');
writein ('<CR>');
read (temporary_session.speed,temporary_session.number);
readln (temporarx_session.interval,temporary_session.variance);
write ('Please enter id number of the session you wish the');
writeln (' new session to follow.');
writeln ('<CR>');
readln (temporary session.id);
writeln;
rewrite (datatemporary);
X reset (datafile);
’ while not eof (datafile) do
{ begin
session := datafile”;
El get (datafile);
= if temporary_session.id = session.id then
o begin
- datatemporary”™ := session;
. put (datatemporary);
datatemporary” := temporary_session;
put (datatemporary)
end
else
begin
datatemporary”™ :zsession;
put (datatemporary)
end
end;
close (datafile);
close (datatemporary);
rewrite(datafile);
reset (datatemporary);
counter := 0; {The counter is used to renumber the sessions}
while not eof (datatemporary) do
begin
" temporary session := datatemporary“;
get (datatemporary);
counter := counter + 1;
temporary_ session.id := counter;
datafile” := temporary session;
put (datafile)
end;
close (datafile);
close (datatemporary);
display
end;

100

..
.....................................

CALLING PROCEDURE: program sessions, addition, delete
AUTHOR: Capt John M. Schriml

}
}
HISTORY: none }
AR AR RN RN RN RN NN RN RN RN RN RRRANRE)

P B e a3 anal

procedure display;

pegin
writeln;
write ('The following is the current list of typical ');
writeln ('sessions.');

writeln;

writeln;

write (' id speed(b/s) #char/input ')

writeln ('input interval(msec) input variance(msec)');
writeln;

reset (datafile);
while not eof (datafile) do

A begin
3 session := datafile”;
h. get (datafile);

write (session.id:3,session,speed:11,session.number:14);
writeln (session.interval:16,session.variance:25);

end;

close(datafile)

5

3

* d
. end;

e

[lllllllillli!I.Illl!l'lii'lllllll.llllill‘ilIlﬁllllillilllll!l.llllllil!}

{ DATE: 29 Aug 84 }
{ VERSION: 1.0 }
{ NAME: addition }
{ FUNCTION: Allows the user to make additions to the file of typical }
{ sessions., }
{ INPUTS: none }
{ OUTPUTS: none }
- { GLOBAL VARIABLES: session, temporary_session, datafile, }
' { datatemporary }
%’ { GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: sessions, datatemp }
{ FILES WRITTEN: sessions, datatemp }
{ PROCEDURES CALLED: display }
{ CALLING PROCEDURES: modify)
{ AUTHOR: Capt John M, Schriml }

{ }

{ }

HISTORY: none
AR RARERRR AR A R RN BN AR R RSB RGN NN R RN RN RN RN RN RS RN NN AR ANRRAY

procedure addition;

var counter:integer;

99

...

P —— Py e — v R A e g T

{* PROGRAM:SESSIONS #*}

(RN RN AR SRR RN R AR R NN E RN E RGN RN RN R RO RSN B AR RRE R NN RNNRNREREEN)

{ DATE: 29 Aug 84
{ VERSION: 1.0
{ FUNCTION: This program gives the user access to the file which
{ contains a list of typical sessions that may be selected
{ for use in the simulation of the local area network. The
{ user has the option to add or delete sessions from the
{ typical session file.
{ INPUTS: none
{ OUTPUTS: none
i { GLOBAL VARIABLES: ans(wer)
; { GLOBAL TABLES USED: none
: {
{
{
{
{
{
{
{

GLOBAL TABLES CHANGED: none
FILES READ: none

FILES WRITTEN: none
PROCEDURE CALLED: modify
CALLING PROCEDURE: none
AUTHOR: Capt John M, Schriml

HISTORY: none
AR RN RN RN RN RN AR RN BN R R R AR R RN R R NAR N RN R ERENNN N RN RN RN

gt gt Nt Nt (gt gd gl gt gt Srgt Nyt gt gl Mgl ngd Cgut Nmgpd Nyt Nmget Srgd

N
:i program sessions (input,output);

type typical session = record

_ id:integer;

i. speed,number,interval,variance:integerd
end;

var session,temporary session:typical_session;
datafile,datatemporary:file of typical session;
answer ,ans:char;

(CREBRERSRAERRRNBUR NN R AR AR RRRNB RN AR R ARE R RN R R RBRR N AR R DR RO RRN RN SRR RREN)

DATE: 29 Aug 84

VERSION: 1.0

NAME: display

FUNCTION: Displays the current file of typical sessions.
INPUTS: none

OUTPUTS: none

GLOBAL VARIABLES: session, datafile
GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: none

FILES READ: sessions

FILES WRITTEN: none

PROCEDURES CALLED: none

— g A ey A ey g - -
[EEPR P END S D VR S VD g D S S S e}

98

................. wt Lt e T e e S et e * e i T W .
"""" PP S R A Sl L . R DI

N
. PRSI I S SO FARRPPY ALY

procedure display network sessions;

begin
writeln;
writeln('The following is the current list of network sessions.');
writeln;
writeln;
write (' id speed #ichar/input input interval(msec)');
writeln (' input variance(msec) quantity');
writeln;
i reset (netfile);
while not eof (netfile) do
begin

{ N_session := netfile”;
}:

get (netfile);
write (N_session.id:3,N_session.speed:8);
write (N_session,.number:10,N_session.interval:20);
writeln (N_sessjon.variance:21,N _session.quantity:16);
end;
close (netfile)
end;

{'llillll!!l‘l’i"illlll!!lllllI!!!!l!llllllll.lllllll!..l!Illﬁllllll'lli}

{ DATE: 30 Aug 84 }
{ VERSION: 1,0 }
{ NAME: addition }
{ FUNCTION: Allows the user to copy a typical session from the }
{ typical session file and place it into the file of }
{ network sessions. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: T_session, N temporary_ session, datafile, }
{ netfile, nettemporary }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: sessions, network, nettemp }
{ FILES WRITTEN: network, nettemp }
{ PROCEDURES CALLED: display network_sessions }
{ CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M, Schriml }
{ HISTORY: none }
{ }

AR RN N NN NN R RSN NN R AR R AR RN R AR RN RN R RN RN REREN R
procedure addition;

var add,check:integer;
repetitions:integeri;

begin
writeln;

112

........................
......................

Cagii S e ——— ra s LA el and ek i AR e sunfora . Suae Save e S 4

write ('Do you need to see a copy of the current typical ');
writeln ('sessions 1list before making');
writeln ('your choice on your addition.(Y/N)');
writeln ('<CR>');
readln (answer);
writeln;
if (answer = 'y') or (answer = 'Y')
then display_typical_sessions;
writelin;
write ('Enter the id number of the typical sessions you wish ');
writeln ('to add to the network.');
writeln ('<CR>');
readln (add);
write ('Enter how many times you wish to duplicate this ');
writeln ('session in the network.');
writeln ('<CR>');
readln (repetitions);
reset (datafile);
check := 0;
while not eof (datafile) do
begin
T_session := datafile”;
get (datafile);
if add = T_session.id then
begin
N_temporary session,id := T_session.id;
N_temporary session,speed := T_session.speed;
N_temporary_sessioit.number := T_session.number;

N_temporary_session,interval := T_session.interval;
N _temporary session,variance := T session.variance;
N _temporary session.quantity := repetitions;
check :=

end

end;
close (datafile);
rewrite (nettemporary);
reset (netfile);
while not eof (netfile) do
begin
N_session := netfile”;
get (netfile);
nettemporary” := N_session;
put (nettemporary)
end;
if check = 1 then
begin
nettemporary” := N_temporary_session;
put (nettemporary)
end;
close (nettemporary):
close (netfile);
rewrite (netfile);
reset (nettemporary);

113

T p—— e e e ey —————

while not eof (nettemporary) do
begin
N_temporary_session := nettemporary”;
get (nettemporary);
netfile® := N_temporary session;
put (netfile)
end;
close (netfile);
close {(nettemporary);
display network sessions
end;

{l'llIlIll'iillllll'llillli&i!ll!*llillllli!'lll'l"li!lllllllli'l!lilllil’lll}

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: delete }
{ FUNCTION: Allows the user to remove a session from the network }
{ session file, }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: netfile, nettemporary, N_session }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: network, nettemp }
{ FILES WRIITEN: network, nettemp }
{ PROCEDURES CALLED: display network sessions }
{ CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
RN RN R R RN R R RN RN RN RN R RN RN RN RN R RN NN RN RR R R RN RN RN RN

procedure delete;
var remove:integer;

begin
writeln;
write ('Please enter the id of the network session you wish ');
writeln ('to delete,');
writeln ('<CR>');
readln (remove);
rewrite (nettemporary);
reset (netfile);
while not eof (netfile) do
begin
N_session := netfile”;
get (netfile);
if N _session.id <> remove then
begin
nettemporary” := N_session;
put (nettemporary)

114

......

*i end
I

A _ end;
close (netfile);
{ close (nettemporary);

s rewrite (netfile);
. reset (nettemporary);
S while not eof (nettemporary) do
N begin

) N_temporary session := nettemporary”;
F get (nettemporary);

netfile” := N_temporary_session;
put (netfile)

end;
close (netfile);

. close (nettemporary);

L] display network sessions
end;

DATE: 30 Aug 84
VERSION: 1.0
NAME: modify

{

{

{

{

{

{ calls the appropriate procedure,
{ INPUTS: none

{ OUTPUTS: none

{ GLOBAL VARIABLES: answer
{

{

{

{

{

{

{

{

{

GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: addition, delete
CALLING PROCEDURES: network

AUTHOR: Capt John M. Schriml
HISTORY: none

procedure modify;

begin
repeat

readln (answer);
writeln;
if (answer = 'A') or (answer = 'a')
then addition
else if (answer = 'd') or (answer = 'D')
then delete
else
begin

115

PR I O T R ST S SC TR U S SN PSR S SO PO R
R L et S PR LTt

FUNCTION: This procedure prompts the user for what type of changes
they wish to make to the network session file and then

R Y RS2SRRSR 2SR AR 222A0SRRSRRS2 222222222}

e e RN : . N L R N
. I T T S N T S, B IR St PSR T. S . PP PY AL VU C PR

1 {l!ll!llll!lll!llllll'llilll!lli’ll!lll!.ll!'ll‘l’!illllllllll!!l!il!ll}

}
}
}
}
}
}
}
1
}
}
}
}
}
}
}
}
}
}

writeln('Do wish to make an addition or deletion? (A/D)');

writeln;
writeln ('An invalid character was entered.')
end;
writeln;
writeln ('Do you want to make more changes? (Y/N)');
readln (answer);

writeln;
writeln
until {answer ='n') or {answer z='"N')
end;
begin

assign (datafile,'sessions');
assign (netfile,'network');
assign (nettemporary,'nettemp');
display_network sessions;
repeat
writeln; .
write ('Do you wish to make changes to the network ');
writeln ('sessions. (Y/N)');
readln (ans);
writeln;
writeln
until (ans ='y') or (ans ='Y') or (ans ='n') or (ans = 'N');
if (ans = 'Y') or (ans = 'y')
then modify
end,

116

P P N U A T UL T T L RN SO VPO TR T S

..................

T TwSw o - -~ o~ a w w7

PART B5: Pascal Program Parameters

The variables and their purpose, as used with the program Parameters,

are as follows:

VARIABLES:
answer (G)(C) - Represents the user's response to a question.
bus (G) - Represents a record of the bus information inputed by the
user.

bus.bus-one-way-length (G)(I4) - Represents in feet the one way

length of the bus cable.

bus.bus-overhead (G)(I4) - Represents the number of management bits

(overhead) added by the BIU to the user's information bits prior to

transmitting on the bus.

bus.bus~-speed (G)(I4) - Represents in bits/sec the data rate of the

bus cable.
busfile (G) - Represents the file that contains the bus information

inputed by the user. File is used later by program Evaluate.

bus-length (G)(I) ~ Represents.in feet the one way length of the
bus cable.

bus-rate (G)(I4) - Represents in bits/sec the data rate of the bus : 1
cable.

datafile (G) - Represents the file of network sessions that will be
simulated.

overhead (G)(I) - Represents the number of management bits %ﬁ%:
(overhead) added by the BIU to the user's information bits prior to ?'”;‘

transmitting.

17

.......

T —— T — > ——— A P M g 2] Pt Seea et Sean aves Jae JMaCHoes ZLun Bt hat AN ANl APEI SN P et

parameters (G) - Represents the file of records containing the
: times for a session's input to travel though a theoretical network.
range (G)(I) - Represents the number of sessions to be simulated.
Since the number of sessions to be simulated is unknown prior to a
simulation, range counts the number of sessions inputed and is used when
loops are involved.

recipical-delay (G)(R) - Represents the recipical of the

propagation delay of the bus cable. Its value is in 1/sec.
seed (G)(I4) - Represents the seed for the pseudorandom number
generator. Seed is obtained by the user inputing the time of day.
session (G) - Represents the record of a network session.
session.id (G)(I) - Represents the ID number of the network
session.

session.interval (G)(I4) - Represents in msec the time interval

between inputs.

session.number (G)(I4) - Represents the number of characters

inputed by each input.

session.quantity (G)(I4) - Represents the number of times a session

is repeated in a simulation run.

session.speed (G)(I4) - Represents in bits/sec the data rate of a

session's terminal. 1

vvfiffrv
,

session.variance (G)(I4) - Represents in msec the maximum +/- _f

deviation of the interval between inputs. “~_5
2 - Is not an actual variable used in the program. T represents

the time interval of the simulation clock. One T equals the time interval - N

equating to 1/2 the round trip propagation delay of the cable.

table(x,1] (G)(I4) - Represents the ID number of a session k

118

o o L e ettt e e e T e e e e e T e e T T T e e s e s
. A TR e T e e e L e G T '__.,__..‘_.“,‘y_.._._.l._.'.... B S P
et Tl el L RSP B S S I PRI T Yol Tl W SV L L P R W Wil iy W T ey Poy s 1 WG DUL I D DAL DU B PP

vvvvv —w b She" Ste Tine i s Bena SR Sre gven an T Ty —— T ™Y T P B

corresponding to the value of x. 1

table[x,2] (G)(I4) - Represents the number of characters per input :

i for a sessions corresponding to the value of x. f
tem - same as temp ,T;3£
! temp (G) - Represents a record of a session's parameters for use in -
4
I the simulation run.)
temp.bus-busy-time (G)(I4) - Represents the total time the bus is %
busy because of a particular session. Time is in T intervals and is set ‘
; to 0 in this program. ..;
temp.busy-time-on-bus (G)(I4) - Represents the calculated time that
the bus is busy once an input reaches the BIU. Time is in T intervals.
e
) temp.extended-id (G)(I) - Represents the extended ID number of a |
)
session. 1
temp.extra-time-to-tx (G)(I4) - Represents the additional amount of A;
i e

waiting time for each session because the bus is busy. Time is in T 1
intervals and is set to 0 in this progranm.

temp.flow-control (G)(I4) - Represents the amount of time that

inputs must wait because of the BIU having trouble passing the traffic it
has., Time is in T intervals and is set to 0 in this program.

temp.input-interval (G)(I4) - Represents the calculated time that

g elapses between each input. Time is in T intervals. 1
temp.input-variance (G)(I4) - Represents the calculated time _j
deviation of the input interval. Time is in T intervals. E
' temp.interval-to-bus (G)(I4) - Represents the calculated time that » ;
an input takes to travel from the terminal to the BIU. Time is in T ‘ i

intervals.
P temp.number-of-collisions (G)(I4) - Represents the number of 3
-z
- 119)
- R
’]
2

L T T TR T TSP G . RN B
T et T, . T e T e e e e e e T e e e Tt e A T T e S e T e T T T ST T e et T e e Lt At T et T e .-.-J
PRSI R S el 1l YA IR SR IR E ST RN T Shor LA T S S0 M N SR I T W SRS S YD B BT B T S T T Yl Bl G ST S P OT WIS TU G PO W A I T DR W W e e 1

.-

St At et et et e .
S e et Wt T et .

collisions for a particular session and is set to 0 in this program.

temp.session-id (G)(I4) - Represents the ID number of the session.

temp.time-before-next-input (G)(I4) - Represents the randomly

picked time for the first input to occur. Time is in T intervals.

temp.time-to-bus (G)(IlU) - Represents the needed elapse time before

an input reaches the BIU. Time is in T intervals and is set to O in this

program.

temp.total-input-time (G)(IYU) - Represents the total elapse time of

time between inputs. Time is in T intervals and is set to zero in this

program.

temp.traffic-inputed (G)(I4) - Represents the number of inputs by a

particular session. Is set to 0 by this program.

valuel (L)(R) - Represents the time the bus will be busy once a
BIU is ready to transmit. Time is in real values of T intervals.

valued (L)(R) - Represents the fraction difference between a real
value of busy-time-on-bus and an integer value of busy-time-on-bus.

valued (L)(R) - Represents the percentage of error introduced by
using an integer value of busy-time-on-bus instead of a real value.

W (L)(R) - Is used for calculations involving large numbers, where
intermediate calculations may exceed the allowable range of the integerll.

wild (L)(C) - Represents user's response to a question to continue.

x (G)(I) - Is used as a counter in loops.

y (L)(I) - Is used as a counter in loops.

2z (L)(I) - Is used as a counter in loops.

The actual Pascal program, Parameters, begins on the next page.

120

AR VAR WAL A P LA P PP I R U I SRS SO U T S S S

AT T
e e .

aerndnde etk

ud

BT U MY

{®* PROGRAM:PARAMETERS #}

{II!II!!!llilllllli!l'|l!lll!*lllllllllilﬁ'i!ill‘illililil"!llllllll!ll}

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: parameters }
{ FUNCTION: This program, using the network session tile and the }
{ parameters of the bus, calculates the parameters that }
{ will be used during the simulation run. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: none }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: input_data, adjust_data, display_ results, }
{ check_bus_busy_time }
{ CALLING PROCEDURES: none }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
SRR RRR N RN RN EE RN RN R RN RN RN RN RN SRR E RN R RN N RN R R RN RN E RN R NN

program parameters {(input,output);
const propagation = 656400000; {ft/sec}

type adjust = record
session_id:integer;
extended_id:integer;
time_to_bus:integeri;
interval_to_bus:integerl;
time_before next_input:integerd;
input_interval:integeri;
input_variance:integeri;
busy time_on_bus:integeri;
traffic delay integerd;
flow_control_delay:integeri;
number_pﬁ_collisions integeri;
traffic_inputed:integeri;
bus_busy time:integerh;
extra_ uime to tx'lnteger4'
total input time: integery

end;

network session = record
id:integer;
speed,number,interval,variance,

quantity:integeri
end;
121
e et e O T W N SIS

—— ——— T— W—p———T — Y T T

bus_setup = record
bus_speed:integeri;
bus_one_way_length:integery;
bus_overhead:integery
end;

var sessioninetwork session;
bus:ibus_setup;
temp,tem:adjust;
datafile:file of network session;
busfile:file of bus_setup;]
parameters:file of adjust; g
table:array[1..500,1..2] of integery; .
bus rate,seed:integerl; 1
recipical_delay:real;
bus_length,overhead,x,range:integer;
answer :char;

P

{III!l'llllllllllllIlll.ll!l!’!l!'l'l!llI'llllll!!lllllllll!lll!llll.li}

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: randominteger }
{ FUNCTION: To generate a pseudorandom number between 1 and 65536. }
{ INPUTS: seed }
{ OUTPUTS: randominteger }
{ GLOBAL VARIABLES: seed }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{f CALLING PROCEDURES: adjust_data }
{ AUTHOR: Doug Cooper and Michael Clancy }
{ HISTORY: This randominteger function is taken from the text book, }
{ }
{ }

'Oh! Pascal', by Doug Cooper and Michael Clancy.
SRR NN RN NRNERNRRNRERNG RN ERIRERARNBERRERERNERNR RN RRRBANRAREERARAARRERS

function randominteger (var seed:integeri):integerid; 1

const modulus = 655363 1
multiplier = 25173; -]
increment = 13849;

begin 1
seed := ((multiplier ®* seed) + increment) mod modulus; C
randominteger := 1 + trunc4(modulus * (seed/modulus)) :

end;

rY

{'lllIlll!l'!ll.llll!lll.llllllll.l‘!llll!ll'lllll'!llllllllll.llllllll}

122

Lot
PP S

T A i 2 s ey - Ty —— Y p———

DATE: 30 Aug 84

VERSION 1.0

NAME: input_data

FUNCTION: This procedure prompts the user for bus parameters, such
as, bus speed, bus length and bus overhead, It also
request a seed for the random number generator.

INPUTS: none

OUTPUTS. none

...... fmeamr s Niim e o 1 ‘V

()
m

GLOBAL TABLES USED: none
GLOBAL TABLES CHANGED: none
FILES READ: none

FILES WRITTEN: busfile
PROCEDURES CALLED: none
CALLING PROCEDURES: parameters
AUTHOR: Capt John M, Schriml

HISTORY: none
SRBERAERRRNRAER AR RABRRERRREER BB RARBRAARRERBERBARREBERERRERRERGERRRRRRER

{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ recipical delay, busfile }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

procedure input_data;

begin
writeln;
writeln ('Please enter data rate of the bus.<CR>');
readln (bus_rate);
writeln;
write ('Please enter, in feet, the maximum round trip length ');
writeln ('of the bus.<CR>');
readln (bus_length);
bus_length := bus_length div 2;
writeln;
writeln ('Please enter the overhead of the BIU.<CR>');
readln (overhead);
writeln;
writeln ('Enter the time of day in hours and minutes.');
writeln ('(example: for 8:45 enter 845)');
writeln ('<CR>');
readln (seed);
writeln;
recipical delay := propagation / bus_length;
rewrite (busfile);
bus.bus_speed := bus_rate;
bus.bus_one_way length := bus length;
bus.bus overhead := overhead;
busfile™ := bus;
put (busfile);
close (busfile)
end;

(l"l!llllllll!l!lllll'ﬂll!ll!l’il*!!lIl!l!'llllll.llliilIlllllllllll‘l}

123

P L L N Co. O . . P AU PR K R) T . ¥ * ' - LI T =
P, I S POVEE AL AL MM PSSR S, | O) s S LV L. JU. S) L) e e e A e ey e e e A e et e At e Vet e e e e e s s

P

L Y

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

DATE: 3G Aug 84

VERSION: 1.0

NAME: adjust_data

FUNCTION: Using the inputed networks sessions and the bus
parameters, thls procedure calculates the actual values
that will be used during the simulation.

INPUTS: none

OUTPUTS: none

GLUBAL VARIABLES: datariie, paramecers, range, session, temp,

recipical delay, bus rate, overhead, x

GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: table

FILES READ: network

FILES WRITTEN: parameters

PROCEDURES CALLED: function randominteger

CALLING PROCEDURES: parameters

AUTHOR: Capt John M, Schriml

HISTORY: none

(22222222 2R S22 R 2R R XX2R 222 222 222X R 2R RS R 2222 RX2 22222 R X)

procedure adjust_data;
const modulus = 65536;

var z,y:integer;

wireal;
begin
y = 03

reset (datafile);
rewrite (parameters);
while not eof (datafile) do
begin
Yy = + 1
range := Y
" session :=z datafile”;
get (datafile);
table(y,1] :z= session.id;
tablely,2] :z session.number;
2 := ord(session.quantity);
for x := 1 to z do
begin
temp.session_id :z session,id;

temp.extended id := x;

. oW o3z (recipiczl_delay ® 3 # gession.number)/session, speed

temp.interval _to_bus ;= trunci(w);
temp.time_to_bus := 0;

w := (session.interval * recipical d=lay)/1000;
temp.input_interval := trunc4(w);

w := (w * randominteger(seed)) / modulus;
temp.time_before next_input := trunci(w);

w := (session.variance * recipical_delay) / 1000;

124

PRI UG U G0 G AP G W TP G Tl W WP Tl Sl St W U S S T SRR LI S I SRS TR ¥

(SN W WD R VD S S S i N i v D D N DR S PR

L3
’

vvvvvvv

[SR WS Y

temp.input_variance := truncl(w);
w := (((session,number * 8) + overhead) * recipical_delay)
/ bus_rate;
temp.busy time_on_bus := trunci(w); '
temp.traffic_delay := 0;
temp.flow_control delay := 0;
temp.number of collisions :=
temp.traffic_inputed := 0; .
temp.bus_busy time := 0; 4
temp.extra_time_to_tx := O
temp.total _input_time := O
parameters” := temp;
put (parameters)
end
end; 3
close (datafile);
close (parameters)
end;

P PR VY SD P

03

{I"l!l.l!l!Iliﬁlilllllil‘lillilli!illll'I'lilllllI!llil'llllll!l'!'lll.l’}]

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: display results

{ FUNCTION: Upon user's request, the procedure displays a copy of
{ the data that will be used in the simulation.
{ INPUTS: none

{ OUTPUTS: none

{ GLOBAL VARIABLES: parameters, tem
{ GLOBAL TABLES USED: none

{ GLOBAL TABLES CHANGED: none

{ FILES READ: parameters

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: parameters

{ AUTHOR: Capt John M, Schriml

{

{

HISTORY: none
AR RN N NN RN RN R RN RN R RN RN AN R R R RN RN RN RN RN R RGN R RN RRRE

i

ORI S P VDR VDS D N R S S VP S S G R W By W W U Sy ey

procedure display results;

var wild:char;

begin
writeln; aé
write (' TIME BUS NEXT'}; S
writeln (' INPUT INPUT BUS'); AR
write (' ID EXT ID TO BUS INTERVAL INPUT') ; e
writeln (' INTERVAL VARIANCE BUSY TIME");
writeln;
writeln;

reset (parameters);

125

PR ARSI I S DL,

TR e el e e e Lot . . Lt e L . L LT . P . S S
I T A I P P P A VA T I S0 SRR DA UL WP S . PRTUIIE WAL S TR i S S |

end;
if (bus_event <z input_event) and (bus_event <> 0)
then begin
next_event := bus_event;
event_tlag := 'b'
end
else if (bus_event < input_event) and (bus_event = 0)
then begin
next_event := inpul_event;
event flag := 'i'
end
else if (input_event < bus_event) and (input_event <> 0)

then begin
next_event :
event flag :

end

else begin
next_event := bus event;
event_flag := 'b'

end

= input event;
= riv

end;

{l.'!!llll!l"lli!lllllllllll!ll'llll!lll!llll!lillﬁllliiiil'llllilllli

DATE: 30 Aug 84

VERSION: 1.0

NAME: prepare_for_event

FUNCTION: Having found the next_event, this procedure reduces all
appropriate table values by next event - 1. The next
event can then be identified by the value 1, Also how
many and what sessions have a number 1 is determined.

INPUTS: none

QUTPUTS: none

GLOBAL VARIABLES: waiting, whose_waiting, range, bus_event,

next_event, table

GLOBAL TABLES USED: table

GLOBAL TABLES CHANGED: table

FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: none

CALLING PROCEDURES: simulate

AUTHOR: Capt John M, Schriml

HISTORY: none
SRRRBRRERBARAARBERRRRERRBRRRRRRBRABRRRRRRRERERRERBRRRTRARRRBRERRRRRENN

P b, gyl gt [b ey g, [P g gl g, e i i gty g

procedure prepare_for_event;

var templ,temp2,temp3:integeri;
ztinteger;

begin
waiting := 0;

139

PP AP Ay Y h PGPS Sl S Sl AT Sl Vil A LA W, B AP A S A el . P UL LAY W Whalt Skl G Whal ShEP LI Ul Sl CLIP SO S S S|

}

[i S VI R T S L I Seir oy D Sy Wy i A ED A WU i Wy W R W)

Lt
Aok Al

—

PR S I

INPUTS: none
OUTPUTS: none

GLOBAL VARIABLES: waiting, whose_waiting, bus event,
next_event, table, event_ flag

{

{

{

{

{ GLOBAL TABLES USED: table

{ GLOBAL TABLES CHANGED: none
{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{f CALLING PROCEDURES: simulate
{ AUTHOR: Capt John M. Schriml
{ HISTORY: none

{

2 2 222222228222 2222222222222 222222222 ¢832X2223 222222222222 222224

procedure find next_event;

var temp,tem:integeri;
y,z:integer;

begin
walting := 0;
whose_waiting := 0;
bus_event := 0;
for z := 1 to range do
begin
if tablelz,1] = 1
then whose_waiting := z;
if table[z,1] < 1000
then limiter := trunc(table(z,1])
else limiter := 1000;
if limiter in limitset
then waiting := waiting + 1;
if table(z,1] <> 0
then begin
tem := table[z,1];
if bus_event = 0
then bus_event := tem
else 1f tem < bus_event
then bus_event := tem
end
end;
input_event := 0;
for y := 1 to range do
begin
if tablely,3] <> 0
then begin
temp := tablely,3]:
if input_event = 0
then input_event := temp
else if temp < input_event
then input_event := temp
end

138

N ame aes e g 4

input_event,

PN G DY

}
}
}
}
}
}
}
}
}
}
}
}
}

gl g a4 g

alamalie.

LY VR LI U WY S

OUTPUTS: none }
GLOBAL VARIABLES: table, datafile, range }
GLOBAL TABLES USED: table }
GLOBAL TABLES CHANGED: table }
FILES READ: parameters }
FILES WRITTEN: none }
PROCEDURES CALLED: none }
CALLING PROCEDURES: simulate }
AUTHOR: Capt John M. Schriml }

}

}

HISTORY: none
SRBRABERBAERBERREBBERBRRARRRRAERARR AR RRRRRERBERNERRR AR AR A RRRERRERRRRREN N

L I N Y e e el e e N e

procedure get_data;

begin

reset (datafile);

x = 0;

while not eof (datafile) do

begin

comp := datafile”;
get (datafile);
X = X + t;

table[x,1] := comp.time_to_bus;
table[x,2] := comp.interval_to_bus;
table(x,3] := comp.time_before next_input;
tablel(x,4] := comp.input_interval;
table(x,5] := comp.busy time_on_bus;
table(x,6] := comp.traffic_delay;
table(x,7] := comp.flow_control_delay;
table(x,8] := comp.number_of collisions;
table(x,9] := comp.inputed_traffic;
table(x,10] := comp,bus_busy time;
table(x,11]) := comp.extra_time to_tx;
table(x,12] := 0;
table{x,13] := 0;
table(x,14] := comp.input_variance;
table[x,15]) := 0;

end;

range :z Xx;
close (datafile)
end;

{I!lllllIll.!ll’l!!lllll!!llll!ll!l!ill!il!lllllil’!l!!!l!!l!llll!lllll}

{ DATE: 30 AUG 84

{ VERSION: 1.0

{ NAME: find_next_event

{ FUNCTION: To scan the matrix table and to determine what event will
{ occur next., Also to determine if the event is a bus event
{ or an input event, If the next event is a one, the

{ procedure determines where the event is located in the

{ matrix table,

et St At g Syt At gt gt

137

W VAP SN USRI A VAT TR S il W S B G Vi Sl S A P A AP I R S 3 s h] LN WA VAR Y P

Aa A PSR TR

‘ala g oaaa s,

St - .
A ,

S e e

PR ST SPEN SR

.
PRIPRIr

b

T T T Y W Y W e R TN W T = we = iy v v w T gT v W v S- -

var table:array[1..500,1..15] of integeri;
event_flag,screen,answer :char;
waitlng,whose waiting,x,range,limiter ,N:integer;
percentage,persistant:integer;
seed:integeri;
sclock,tclock,clock,next_event,bus_event,input_event:integery;
comp,sim:data;
cle:icleks
clockfile:file of clck;
datafile,simfile:file of data;
limitset:limit;

{llllllllllllll!lllilll'"lli!llill!llI!illi!l'll!.l!llll.l!lil!llli"i}

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: randominteger

{ FUNCTION: To generate a pseudorandom number between 1 and 65536.
{ INPUTS: seed

{ OUTPUTS: randominteger

{ GLOBAL VARIABLES: seed

{ GLOBAL TABLES USED: none

{ GLOBAL TABLES CHANGES: none
{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: collision, adj_input, BB, CC

{ AUTHOR: Doug Cooper and Michael Clancy

{ HISTORY: This randominteger function is taken from the text book,
{

{

'Oh! Pascal', by Doug Cooper and Michael Clancy.
AR NN RN R RN RN RSN N R R R RN NN RN RS BN R RN RERN RS

(NSRRI P VPR U VS Ry G VUL W S GH PR W S Py S S G g N)

function randominteger (var seed:integerd):integeri;

const modulus = 65536;
multiplier = 25173;
increment = 13849;

begin

seed := ((multiplier * seed) + increment) mod modulus; '
randominteger := 1 + truncd(modulus * (seed/modulus)) .
end; C

{IIIllllliIllllI'll'l'll!llllllllll'lliﬁl.lI!I‘lI!IIIIIIIII!!..I!'.'I!!}

DATE: 30 AUG 84

VERSION: 1.0

NAME: get_data

FUNCTION: This procedure loads the parameters file into the matrix
table in preparation for the simulation.

INPUTS: none

- ey o pon g
——rt Syt gt St gt St

136

D T A R A S TR L R R R AR B R
LIPS AP B TP L T I S P M IRt hdv T TV T YAt ke USRI IR0 JPCHLT U SR LAt DY M SR WP SRR SR i W T YOOr S R |

ey e —— B e e aa aan s a o e S e—s — e e o s .1~‘vr

{®* PROGRAM:SIMULATE #}]

(RSN RN NR NN RN RN R R R RN R RN RR NN NN AN RN RN R R RR SN RRRNNREARE S

DATE: 10 Sep 84
VERSION: 1.1
NAME: simulate

FUNCTION: Rased on the data received from the parameters file, +thie }
program will simulate a local area network.
INPUTS: none
OUTPUTS: none
GLOBAL VARIABLES: range, answer, seed, tclock, sclock, clock, clec,
screen, next_event, event flag, table, clockfile

}
{ }
{ }
{ }
{ 1
{ }
{ }
{ }
{ }
{ }
{ GLOBAL TABLES USED: table }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

MY W S L PR,

GLOBAL TABLES CHANGED: table

FILES READ: none

FILES WRITTEN: clock

PROCEDURES CALLED: get_data, display, find_next _event, adj_bus,
adJ input, prepare_for event file results, test

CALLING PROCEDURES: none

AUTHOR: Capt John M. Schriml

HISTORY: none
BRRE R RN RN RN RN RN RN RN RN RN RN NN R RN R RN RN RN RN R RN RN RR RN RRNE

program simulate (input,output);

type data = record 1
session_id:integer;
extended id:integer; o
time_to_bus:integer¥; L
interval to_bus:integerl; oo
time_before next_input:integeri; "
input interval: integeru-
1npu§_variance integeri;
busy time_on_bus:integeri;
traffic_delay:integerd;
flow_control_delay:integeri;
number _of collisions:integeri;
inputed_traffic integery;
bus_busy_time:integerl;
extra_time to_tx:integery;
total_ input_time:integeri

end;

. I
PPY PUTW O N VL)

aeliodh

clck = record
T click,S click:integery; TR
delay.persistant,percentage integer -

end;)

delay
limit

1..250;
set of delay; e

n n
i

135

more than one session waiting to use the bus, this variable is not used,

but if there is only one session waiting, this variable will indicate

which row the session is in. -
x (G)(1I) - Is used for loops. T
y (L)(I) - Is used for loops. L
z (L)(I) - Is used for loops. |

z (L)(R) - Represents the number of times the T interval can be
divide into the actual delay of the cable. +
3

The actual Pascal program, Simulate, begins on the next page.

- 4
X
cind
B
-a:..‘

134

actually busy. Time is in T intervals.

table[x,11] (G)(I4) - This column sums up the extra waiting time
due to collisions. Time is in T intervals.

tablelx,12] (G)(I4) - This column stores the local parameter used
with the exponential binary backoff.

table[x,13] (G)(I4) - This column temporarily stores the extra time
a session's traffic must wait because of collisions. As the simulation
clock counts, portions of tablelx,13] are removed and added to
tablelx,11]. Time is in T intervals.

table[x,14] (G)(I4) - Represents the calculated time for the +/-
deviation of the interval between inputs. Time is in T intervals.

table(x,15] (G)(I4) - This column sums up the actual time between
inputs. Time is in T intervals.

tclock (G)(I4) - Represents the amount time the simulation is ran

while collecting data. Time is in T intervals.

tem (L)(I4) - Represents a temporary storage location for the next
bus-event.

temp (L)(I¥) - Represents a temporary storage location for the next
input-event.

temp1 (L)(IY4) - Represents an intermediate calculation.

temp2 (L)(I4) - Represents an intermediate calculation. 1

temp3 (L)(I4) - Represents an intermediate calculation. |

valuel (L)(I4) - Represents an intermediate calculation.

waiting (G)(I) - Represents the number of sessions waiting to use
the bus.

whose-waiting (G)(I4) - Represents the last session in the matrix

column, table[x,1], that wants to use the busy. Normally if there are

i
WP

133

- - - = -t) NN -
e e e e e e T N e e N T e T e s e T e LT LT LT T e T e e s T T L N . te Tt e
5 LA - 3 - - - - . - .l L. Ve 1 Saletlel s - e B e A A L Y PRSP TEFS T e vy ol YOy e = o S L2 L W b}

i simfile (G) - Represents a file of records containing the session's
parameters and performance data. :j
. 3 - Is not an actual variable used in the program. T is the time %i
l interval of the simulation clock. T is equal to the time equating to 1/2) ;
the round trip propagation delay of the bus cable.]
table(x,1] (G)(I4) - Represents the amount of elapse time before an
J input reaches the BIU. Time is in T intervals. :
table[x,2] (G)(I4) - Represents the galculated amount of time for
an input to travel from the terminal to BIU. Time is in T intervals. ;
) table[x,3] (G)(I4) - Represents the amount of elapse time before an) 1
input is made. Time is in T intervals. 1
table[x,4) (G)(I4) - Represents the calculated amount time between fﬁ
-y - L haatans
| .. inputs. Time is in T intervals. R
table[x,5] (G){(I4) - Represents the calculated time that the bus is ‘iiﬁi
busy once a BIU begins to transmit. Time is in T intervals. S;ﬁ;
‘ table[x,6] (G)(I4) - This column sums up all delay time due to the ‘MJj
bus being busy. Time is in T intervals. ;f:?
, table[x,7] (G)(I4) - This column sums up all input delay time due e
' to flow control being employed. Time is in T intervals.
table(x,8] (G)(I4) - This column sums up all collisions. Only
table{1,8] is used for counting collisions. All other values of
' table[:,8] are 0 and used as dummy variables to maintain the same record -]
type.) fﬁ
table[x,9] (G)(I4) -~ This column sums up the number of inputs. : '?
' table(x, 10] (G)(I4) - This column sums up the time the bus is R
¥
132]
)
- i
e L e e T e e S e L L e

s Paliian T T . T W TR T W T Y R T R e W T R e e W e —w =~

session's traffic must wait due to a collision.

sim (G) - same as comp.

A A e e e B e S s e T e e o e T T T e T T T e R SRS R SR TR

o
i cable.
E limiter (G)(I) - Represents the value of table[x,1] in integer
'“ form, if tablelx,1] is less than 1000. - j
limitset (G)(I) - Represents the interval between the next tick of R
the clock and the next tick of the clock plus the round trip delay of the
. bus cable. o
N (G)(I) - Represents the time interval equal to one tick of the :
clock plus the round trip delay of the bus cable. Time is in T intervals. i
r; next-event (G)(I4) - Represents the smallest elapse time between .
bus-event and input-event. Which ever event time is smaller, will -become :
the next-event. &
:. percentage (G)(I) - Represents the amount of persistant when h— j
simulating p-persistant. "ffﬁ
persistant (G)(I) - Represents the value indic.ting either 1- or p=- b'
persistant is being simulated. -mm“1
range (G)(I) - Represents the number of sessions loaded for]
simulation. Since the number of sessions are unknown prior to simulation, :;:ff
the range value is determined when loading data. Range is then used for L-ffj
loops and to limit the size of the table matrix. f
sclock (G)(I4) - Represents the amount of simulation time used for fﬁ
— 3
collecting data. Time is in T intervals. 1
screen (G)(C) - Represents the user's response to a question asking
if the user wishes to see a display of the actual simulation run.
seed (G)(I4) - Represents the seed necessary for the random number 1

generator. The seed is obtained by asking the user to enter the time of
day.

set-back (L)(R) -~ Represents the amount of additional time a

131

. . - P
.o s e e o :
e a alatala’n’aa’ad ie'a.a.4 .

(]
'

SELANALEAEL Bt I Rt St B Sate Mint i v Sae Samn T — Mast e aus o oan can ee o o M-S B o e e e oy Sy

collisions for a particular session.

comp.session-id (G)(I) - Represents the ID number of the session.

comp.time-before-next-input (G)(I4) - Represents the amount time

that must elapse before the next input is made for a particular session.

v _'. Pl “‘ e Lt B
.
i

WP U Y

Time is in T intervals.

. 4
h comp.time-to-bus (G)(I#) - Represents the amount of time that must |
E elapse before inputed traffic reaches the BIU. Time is in T intervals

comp.total-input-time (G)(I4) ~ Represents the total amount of

—_ y
r;l elaspe time between inputs.

—_—

comp.traffic-delay (G)(Il4) - Represents the total amount of time a

particular session had to wait because the bus was busy.

P

count (L){I4) - Represents a random number between 1 and 65536.
count1 (L)(I4) - Represents a random number between 1 and 65536.

count2 (L)(I4) - Represents a random number between 1 and 65536.

datafile (G) - Represents a file of records containing the 1
perforamce parameters of each session. ?jd
delay (L)(R) - Represents in nano seconds the actual known delay of 5

-l

the bus cable. k
event-flag (G)(C) - Represents the fact that the next event is Ti
either a bus event or input event. ;SAi
fact (L)(R) - Represents the randomly picked amount of time between 1

the +/- deviation of the input interval. The value is in real T Z: .1
1
intervals. 1

factor (L)IU4) - Represents the integerd value of fact. R

input-event (G)(I4) - Represents the smallest amount of elaspe time

before an input is made. Time is in T intervasl. T
length (L)(R) - Represents in feet the one-way-length of the bus -

130 .~

T AL AP YL U P PR U
RV BP0 N B P A0 S P SR S0P ROV SOV N0 S S

> > e P Uy e e e e L e S e den e e See S g e Aes e sne s e

persistant of the bus being simulated. This file is used later by the
program Evaluate.
comp (G) - Represents a record of a session's parameters.

comp.bus-busy-time (G)(I4) - Represents the total time the bus is

busy because of a particular session. Time is in T intervals.

comp.busy-time-on-bus (G)(I4) - Represents the calculated time the

bus is busy once an input reaches the BIU for a particular session. Time

is in T intervals.

e ',--—'v'*"-r v 7 v A o

comp.extended-id (G)(I) - Represents the extended ID of a session.

F

comp.extra-time-to-tx (G)(I4) - Represents the total amount of

extra time to transmit because of collisions for a particular session.
Time is in T intervals.

comp.flow-control-delay (G)(I4) - Represents the total amount of

time inputs for a particular session were heldup because of the BIU
having trouble passing the traffic it already has. Time is in T
intervals.

comp.input-interval (G)(I4) - Represents the calculated time that

elapses between each input for a particular session. Time is in T
intervals.

comp.inputed-traffic (G)(I4) - Represents the total number of

inputs for a particular session.

comp.input-variance (G)(IY4) - Represents the maximum +/- time

deviation of the input interval. Time is in T intervals.

comp.interval-to-bus (G)(IY4) - Represents the calculated time that

f it takes an input to travel from the terminal to BIU. Time is in T

intervals.

*. comp.number-of-collisions (G)(I4) - Represents the number of

Lo A S04
IR ARER

129

R L AL WL T
MR e

. . - . Tt e
. S T N . . P RAN
e S SR L LI T I e - .
B A T A . R, PSR, P S PRI, P I R)

I R L RS
M T R SR Ny P A Y

B L e

> B Anih Bt s Seg s Jhag A AIMA A 20 JemS yme mee g o e 4 S A e N

PART B6: Pascal Program Simulate

The variables and their purpose, as used with the program Simulate,

are as follows:

VARIABLES:

b (L)(I) - Represents the row (in matrix table) of the session that
is ready to transmit on the bus.

answer (G)(C) - Represents user's response to a question.

bus-event (G)(I4) - Represents the smallest amount of eldpse time
before an input reaches the bus.

cle.delay (G)(I) - Represents the actual known delay of the bus
cable. Value is in nano seconds.

clc.percentage (G)(I) - Represents the percenatge of persistant, if

p-persistant is being simulated.

clc.persistant (G)(I) - Represents the type of persistant being

simulated.

cle.S-click (G)(I4) - Represents the amount time that the
similation ran while collecting performance data. Time is in T
intervals.

cle.T-click (G)(i4) - Represents the amount of transition time that
the simulation ran prior to collecting performance data. Time is in T
intervals.

clock (G)(I4) - Represents the clock time of the simulation. Time
is in T intervals.

clockfile (G) - Represents a file which cont~ins the transitioﬁ and

simulation clock times. Also it contains the delay, percentage, and

128

PR RN DU R P e

D T N O

- et Tt T T e L et L e e S ST PR A SR A
P R R R AL, P P Nl TR T T e Vo W I SO Wi W O . S M M P S S SR S P L, L

begin
writeln;
write ('®%#NOTE** The error in calculating the bus busy');
writeln (' time for session ID #',tablely,1]1:2,' is');
write (truncl(valuel):2,' %, The error is high because');
writeln (' the bus busy time is approaching ');
write ('the basic unit of time for the simulator, ');
writeln ('one way propagation delay, One or ');
write ('more of the following factors may be ');
writeln ('contributing to the high error.');

writeln;

writeln (' -high bus bite rate');

writeln (! -long length of the bus cable');
writeln (! -low overhead');

writeln (' -low # of characters per input');
writeln;

write ('Due to the high error, the results of the bus');
writeln (' busy time, indicated');
write ('during the data evaluation stage, should be ');
writeln ('ignored.');
writeln ('Enter <CR> to continue');
read (wild);
writeln
end
end
end;

begin
assign (datafile,'network');
assign (busfile,'bus');
assign (parameters,'net_data');
input_data;
adjust_data;
writeln ('Do you wish to see a display of the data? (Y/N)');
readln (answer);
if (answer ='y') or (answer ='Y')

then display_results;

check_bus busy time

end.

127

.................
..
.......

v-*‘vrif< Oﬁr.-v‘l" T
v . s e | N

while not eof (parameters) do
begin
tem := parameters”;
get (parameters);
write (tem.session_id:3,tem.extended_id:7);
write (tem,time_ to bus:12,tem, interval to_bus:12);
write (tem, time before next_input: 10);
write (tem. input interval:11,tem. input_variance:11);
writeln (tem, buay_t.lmc_un_uua. 1)
end;
close (parameters);
writeln;
writeln ('Enter <CR> to continue,');
read (wild);
writeln
end;

{(RERRERRRERRRAERNRE RN RN RN AR RBA RN R AR RN RN R R AR RN R RN RN R AR RRERERER]

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: check_bus_busy_time }
{ FUNCTION: This procedure checks the error in calculating the bus }
{ busy time for each session, If the error is greater }
{ than 1 %, it advises the user, }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: bus rate, overhead, recipical delay }
{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: parameters }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
AR NN RN R RN RN RN RN R RN RN RN RN RN AR RN RN R E RN RN U NRENR RN RNNR

procedure check_bus_busy time;
var y:integer;

wild:char;
valuel,value3,valuel:real;

begin
for y := to range do
begin
valuel := (((tablel[y,2] * floatd(8)) + overhead) *
recipical_delay) / bus_rate;
value3 valuel - truncld(valuel);

valueld := (value3/valuel) * 100;
if valueld > 1 then

126

whose waiting := O;
for z := 1 to range do

begin
if bus_event <> 0 then
begin
temp1 := table[z,1] - (next_event - 1);
if templ > O
then table[z,1] := templ
end;

if tablelz,1] = 1
then whose_waiting := 2z;
L if table{z,1] < 1000
\ then limiter := trunc(table{z,1])
else limiter := 1000;
if limiter in limitset
Y; then waiting := waiting + 1;
temp2 := table{z,3] - (next_event -1);
if (temp2 > 0) then

hegin
table[z,3] := temp2;
{ table(z,15] :z table[z,15] + next_event - 1
@ end
E else table[z,7] := tablelz,7] - temp2;
- if table(z,13] <> 0 then
' begin

s temp3 := table([z,13] = (next_event - 1);
if temp3 >= 0 then

E . begin

_ table{z,11]) := table(z,11] + (next event - 1);
g table[z,13] := temp3
= end
[else begin
- table{z,11] := table(z,11] + table[z,13];
I table[z,13] := 0

end
[end
‘ end

end;

{i.lllllllllll!llli!lllll*Il!ll'lll.lll!llll'!llill!!lllllllll!!lll!!li}

DATE: 30 Aug 84

VERSION: 1.0

NAME: adj_input

FUNCTION: The procedure find next event has determined that the
next event is an input event, This procedure adjust
all appropriate table values based on an input event,

INPUTS: none

OUTPUTS: none

GLOBAL VARIABLES: table, range, seed

GLOBAL TABLES USED: table

GLOBAL TABL.S CHANGED: table

FILES READ: none

— N i - P g -t - i
[) S W T O L P I S Dy)

140

e e e e e e e ‘-_-_..._._ LT T - T e e s e e e SN
.......................

o e N
RPN RSP S S S AP Sl S-S U Sl e S T S Sl S S TR WA SO AL L.L_AA_.*_.x‘_._L Tt e et T S e

FILES WRITTEN: none }
PROCEDURES CALLED: randominteger }
CALLING PROCEDURES: simulate }
AUTHOR: Capt John M, Schriml }
}
}

e e T

nlolUKI: none
{.|§'l'lllill'lllll‘llll!l!lll!!'.’II!llll.!lllllllllll'l'llll!!lllllil

CR gy gty gy gty

procedure adj_input;

var z:integer;
count1,count?,factor:integeri;

fact:real;
[begin
- for z := 1 to range do
begin
{ if (tablel[z,3] = 1) and (tablel{z,1] = 0) then
- begin
! count1 randominteger(seed);

4 count2 := randominteger(seed);

{. fact := (floatl(count1) * table[z,14]) / 655363
= factor := truncH#(fact);

[if count2 > 32768

- then factor := 0 - factor;

5 table[z,3] := tablelz,4] + 1 + factor; g
~ } table(z,9] := tablelz,9] + 1; -
@ Qe table[z,1] := table[z,2] + 1

end

. else if (table[z,3] = 1) and (table[z,1] > 0)
- then table([z,3] := 0
- end

h end;

{‘l.l!llllllll!!ll!.l!lll"ll'.ll"Illllll’l!l.llllllllll'lllllllllllll}

" { DATE: 30 Aug 84 }
o { VERSION: 1.0 }
i‘ { NAME: AA }
y { FUNCTION: Having determined that there is no collision and that the }
{ next event is a bus_event, this procedure makes the }
{ necessary table adjustments for a session with a 1 sittingl
{ on the bus and the next input value greater than the bus }
s { busy time, }
{ INPUTS: b,z } i
%!a { OUTPUTS: none }
'T { GLOBAL VARIABLES: table, clock }
> { GLOBAL TABLES USED: table }
- { GLOBAL TABLES CHANGED: table }
s { FILES READ: none }
y { FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: adj_bus }

.....................
...
..........................
...............................
...
................

{ AUTHOR: Capt John M. Schriml }

-
a { HISTORY: none }
1 {""'l..!".""I'.l""ll..'..'.."..l..l'll".".'".""""...'.'l'}

procedure AA (z,b:integer);

A begin
1 table{z,1] := 03
. table(z,3] := tablelz,3] - (table[b,5] + N);

table{z,15] := table([z,15] + table{b,5] + N;

table[z,10] := table[z,10] + table(b,5];

clock :z clock - (table[b,5] + N)

end;

k; (FR AR RN R NN RN AR RN RN AR RN IR NN RN RN R R RN N RN RN RN NN RN BN R NN NN)

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: BB }
{ FUNCTION: With no collision and a bus input, this procedure makes }
{ the appropriate changes for a session with a 1 sitting }
{ on the bus and the next input value less than the bus }
{ busy time, }
{ INPUTS: z,b }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table, seed, clock }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

GLOBAL TABLES USED: table

GLOBAL TABLES CHANGED: table
FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: randominteger
CALLING PROCEDURES: adj_bus
AUTHOR: Capt John M, Schriml

HISTORY: none
SRR RN AR BB RR RN RN RSN R RN RN AR RS AR DN RSO RN NARRNRNANBRR RN RRANRERD

procedure BB (z,b:integer);

var tempil,temp2,temp3,factor,counti,count2:integeri;
fact:real;

begin
templ := (table[b,5] + N) - tablelz,3];
table[z,15] := table[z,15] + tablel[z,3];
if table[z,3] < 1 + 2 # (N - 1) then
begin
table[z,7] := table(z,7] +1+ (2 ® (N - 1)) = tablelz,3];
temp2 := table{z,2] ~-(table(b,5] - (N =1))
end
else temp2 :z table[z,2] - templ;
countl :=z randominteger(seed);

142

rT————— P TP e——— p——— ————— p———— r—p—yr—rT———

| AR EA s Saar e SEEMEE S S Y T T g B Y — T T T T T Paty T YT T e T NRLata miat ot el adtls od &= ANC bl R SN

count? := randominteger(seed);

fact := (tablelz,14]) ® floatd(count1)) / 65536;

factor := truncd(fact);

if count2 > 37768 -

[‘ tham fantam o= 0 e

..... facter = 0 - factor;
if table(z,31 < 1 + 2 % (N =1)
then temp3 table(z,4] + factor) - (table(b,5] - (N=1))

(
(table(z,4] + factor)

24Tl

else temp3 := temp1; RN
'. begin
if table[z,31 < 1 + 2 ®% (N - 1)
then table[z,15] := table{z,15] + (table[b,5] - (N = 1))
else tablelz,15] := table(z,15] + temp1;
table[z,3] := temp3
) end
r— else begin
* table[z,3] := 0;
r table{z,15) := tablel[z,15] + (table(z,4] + factor);
- table[z,7] := table([z,7] - temp3

end;
table(z,9] := table(z,9] + 13
table{z,10] := tablel[z,10] + table[b,5]; T

clock := clock - (table{b,5] + N);
if (temp2 > 0) .
then table(z,1] := temp2 o
else begin -
table(z,1]
table[z,6]

end

end;

= 1
= tablel[z,6] - temp2 ———

{.!lll.'!llll.lﬂlllll'lllllll'll"lllll!llllllllllllllllllllllllllll!l!ll}

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: CC }
{ FUNCTION: With no collision and a bus input, this procedure makes }
{ the appropriate changes for a session with 0 on the bus }
{ and the next input event less than the bus busy time. }
{ INPUTS: z,b }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table, seed }
{ GLOBAL TABLES USED: table b
{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: randominteger }
{ CALLING PROCEDURES: adj_bus }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
ERARRRERER R AR AR RN R RN R RN RN RN R R NN RN R RN R RN R R R RN RN RN NRRRRRNRER

]
.
o
-]
B
-
4

“

143

......................

procedure CC (z,b:integer);

l var templ,temp2,factor,counti,count2:integery;
fact:real;

begin
templ := (table(b,5] + N) - table(z,3];
: temp2 := table[z,2] - templ;
X table[z,15] := table([z,15] + table[b,5] + N;
N countl := randominteger{seed);
l count? := randominteger(seed);
fact := (table[z,14] #* floatd(countl)) / 65536;
factor := truncl(fact); T
if count2 > 32768 1
then factor := 0 - factor;]
table[z,3] := (table{z,4] + factor) - tempil;
.. table{z,9] := table(z,9] + 1;
if (temp2 > 0)
then table{z,1] := temp2
else begin 1
tablel[z,1] := 1;
table[z,6] := table[z,6] - temp2]]
> end ‘
end;

] .
Ad e A2 A 2 o e .

{IllI’lll!llllli‘l"."llllllIIIIllllI!lill'i!lIlllll!llllil!llllllii'l'} G

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: DD }
{ FUNCTION: With no collision and a bus event, this procedure makes }
{ the appropriate changes for a session with O on the bus }
{ and the next input event is greater than the bus busy }
{ time. }
{ INPUTS: z,b }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table) }
{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: adj_bus }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
AR RN RN RN R R R RN NN NN SRR RN R RN N RN RN N AN R AR RN RN ERRE RN NS

procedure DD (z,b:integer);
- begin

table(z,15] := table(z,15] + table[b,5] + N; ."1
» table(z,3] := table[z,3] - (table[b,5] + N) <

144

T T o T T o e T P PP S L Y SRR S L

end;

{llllll!lll!Illllill."lll'll!llllllll'!ll.lllllllllll.lllli!..illl.lll}

DATE: 30 Aug 84

VERSION: 1.0

NAME: EE

FUNCTION: With no collision and a bus event, this procedure makes

{ }
{ }
{ }
{ }
{ }
{ than the bus busy time and the input time equal to 0. }
{ INPUTS: 2z,b }
{ OUTPUTS: none }
{ GLOABAL VARIABLES: table }
{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
SRR RN EA RN ER AR RN R RN RN RN RN RN RN BN R RN NE NGB A RN R RN E RO NN

procedure EE (z,b:integer);
var tempil:integeri;

begin
templ := (table[b,5] + N) - tablelz,1];
tablel[z,1] := 13
table{z,6] := table[z,6] + templ;
table{z,7] := tablel[z,7) + (table[b,5] + N) - 1
end;

{II!’.!l'lllll'l'lllllll!ll'!!ll!l|IIIlll!.!'ll.llllllll!lilllllllll!ll}

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: FF

{ FUNCTION: With no collision and a bus input, this procedure makes
{ the appropriate changes for a session with bus time

{ greater than the bus busy time and the next input time
{ equals 0,

{ INPUTS: z,b

{ OUTPUTS: none

{ GLOBAL VARIABLES: table

{ GLOBAL TABLES USED: table

{ GLOBAL TABLES CHANGED: table

{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: adj_bus

L = G py WPy VPR Wiv Sy VU PSP Sy Wy Sy W W)

145

2]

.

1

r

]

.-
[}

T

i

4

’

..;]

T

e
I SR R T

PP WL

\eo

T TN TN e T W TR T WTTRT A ET AT ECGTA YL T Towh wy w T ww—, w =T T W Y s w T ST ws Y S w W W = % % F —s w o v —

e e T e

{ AUTHOR: Capt John M, Schriml }

{ HISTORY: none }
R L T Ry Yy Yy Ty Y Y P P YT YT IT YT YT T

procedure FF (z,b:integer);

begin
©251202,17 1= tablelz, 11 - (tablelb,5] + N); .
table{z,7] := tablelz, 7] + (tabl [b,5] + N) -

end;

{Ii!illll!lll’!!il!"'ﬁl!!'lll!‘llIiIll!llllllill!llllllll'il’l.llll’ll}

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: GG

{ FUNCTION: With no collision and a bus input, this procedure makes
{ the appropriate changes for a session bus time and input
{ time greater than the bus busy time.
{ INPUTS: z,b

{ OUTPUTS: none

{ GLOBAL VARIABLES: table
{ GLOBAL TABLES USED: table
{

{

{

{

{

{

{

{

FEPNPSTare

GLOBAL TABLES CHANGED: table
FILES READ: none

FILES WRITTEN: none
PROCEDURES CALLED: none
CALLING PROCEDURES: adj_bus
AUTHOR: Capt John M. Schriml

HISTORY: none
ERRBARR AR RR R R R AR R RN E R RN RN RN R ER AR RN RN RN RN RN NN RN B RR RN NN NRN

t
:
VLD VO WO

vt At gt gt Crgd gt Nmpd g Smged gt Nped Nngd Nmgud gl Nmged gt g Nmgud

P LN

procedure GG (z,b:integer);

begin e
tablelz,15] := table[z,15] + table[b,5] + N; :
table(z,1] := table[z,1] - (table[b,5] + N); R
table(z,3] := table(z,3] - (table(b,5] + N)

end; B

{llllli!ll!llilllllilll'!l!llllllll!!ll!llllllllll!lllllllllli!ll!l!l!l}

{ DATE: 30 Aug 84 }

{ VERSION: 1.0 }

{ NAME: HH } R

{ FUNCTION: With no collision and a bus input, this procedure makes }

{ the appropriate changes for a session with bus time and } o

{ input time less than the bus busy time. } !

{ INPUTS: z,b } "]

{ OUTPUTS: none } 3

{ GLOBAL VARIABLES: table }]
146]

...............
.............

T —ww;

FYNIS W W)

{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ }
{ }
{ }
! }

R

CALLING PROCEDURES: adj_bus
AUTHOR: Capt John M, Schriml

HISTORY: none
FRRERNBARARARBERRRARRRABRBBRARARARARBERRRRBRBRRRRRNRERRRRARRRNERNRRRERR

procedure HH (z,b:iinteger); 1
var templ,temp2:integeri;

begin
temp1 := (table[b,5] + N) - table[z,1];
temp2 := (tablel[b,5] + N) - table{z,3]; :
table{z,15] := table[z,15] + table[z,3];]
table[z,1] := 1;)]
table(z,3] := ,
¢= table(z,7] + temp2 - 1; e
=z table[z,6] + temp1

table(z,7]
table(z,6] :
end;

)) we @

1
0
t
t

{HRR R R AR R R RN AR R RN AR RN AR RN RN RN R RRRNR R RN RN R RN RN R R RRARNRRNEN]

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
f NAME: II }
{ FUNCTION: With no collision and a bus input, this procedure makes }
{ the appropriate changes for a session with bus time }
{ greater than bus busy time and input time less than bus }
{ busy time. }
{ INPUTS: z,b }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

GLOBAL TABLES USED: table
GLOBAL TABLES CHANGED: table
FILES READ: none

FILES WRITTEN: none
PROCEDURES CALLED: none
CALLED PROCEDURES: adj_bus
AUTHOR: Capt John M, Schriml

HISTORY: none
AR AR RN R R RN RN RN N AR NN RN RN AR RN RN NN NN R R R RN R RN NN N RN RN

procedure II (z,b:integer); f}jﬁ

var templ:integeri;

S
I PPy

begin

147

o
ety e T
th et e el ol s

.............................
...

templ := (table[b,5] + N) - table(z,3];
table{z,1] := table[z,1] - (table(b,5] + N);
table([z,15] := table[z,15] + table[z,3];

table(z,3] := 0;
table[z,7] := table([z,7] + temp1
end;

{l.lllllllll'i.!ii.llilIlllllill.Ill!l!!il!lll!lllIllllli‘lllllllllllll}

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: JJ

{ FUNCTION: With no collision and a bus input, this procedure makes
{ the appropriate changes for a session with bus time less
{ than bus busy time and input time greater than bus busy
{ time.

{ INPUTS: z,b

{ OUTPUTS: none

{ GLOBAL VARIABLES: table
{ GLOBAL TABLES USED: table

{ GLOBAL TABLES CHANGED: table
{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: adj_bus
{ AUTHOR: Capt John M, Schriml
{

{

HISTORY: none
ERE RN RN RN RN R RN RN E NN N RN RN RN RN RN R RN R NRR NN RBNRS

it gt St et Vgt ot Spd Vet Vgt gt Vgt Nyt St et Smpad St St bt et

procedure JJ (z,b:integer);
var tempil:integerd;

begin
temp! := (table[b,5] + N) - tablelz,1];
table{z,1] := 1;
table[z,15] := table([z,15] + table(b,5] + N;
table[z,3) := table[z,3] - (table(b,5] + N);
table[z,6] := table[z,6] + tempi

end;

{.II'..'I.!II.'..IIIIIII!Illllllllllll!ll.llllllllilllllllll.illllilil!}

DATE: 30 Aug 84

VERSION: 1.0

NAME: collision

FUNCTION: Having determined a collision will occur, this procedure
generates the time which each session is set back.

INPUTS: none

OUTPUTS: none

GLOBAL VARIABLES: range, table, seed

GLOBAL TABLES USED: table

iy g g gty - oy -
[N S W VD S g Vi WY

148

WO W P

e

; .}_'-g

A

{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: randominteger }
{ CALLING PROCEDURES: adj_bus }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
RN RN AR RN R R RN R NN RN R RN R AR R RN BR RN BN RN RN NN RN RRRNNN

procedure collision;

var z:integer;
count :integeri;
set_back:real;

begin
writeln ('COLLISION'); .
table[1,8] :=z table[1,8] + 1;
for z := 1 to range do
begin
if tablelz,1] < 1000
then limiter := trunc(tablelz,1])
else limiter := 1000;
if limiter in limitset
then begin
count := randominteger(seed);
if tablel[z,12] = 0
then table{z,12] := 2
else table[z,12] := tablel[z,12] & 2;
set_back := table(z,12] * ((table[z,5] * floatl(count)) /
65536) ;
table{z,1] := tablel[z,1] + (N-1) div 2 + truncld(set_back);
if tableflz,31 < 1 + 2 % (N = 1)
then table[z,7] := table[z,7] + 1 + 2 ® (N=1)
- table[z,3];
table[z,11] := table{z,11] + (N = 1) div 2;
table[z,13] := trunc#(set_back)
end
end
end;

[HR AR RN NI RN R NN SRR RN N RN R R RN RN RN RN RN RN RN RN RN R NNER)

DATE: 17 Sep 84

VERSION: 1.0

NAME: adj_further

Function: This procedure simulates the traffic's decision to
transmit or not transmit when using p-persistant.

INPUT: none

OUTPUTS: none

GLOBAL VARIABLES: seed, table, percentage

GLOBAL TABLES USED: table

L R e e e e e N s Naas)
L

149

LA A

Y

{ GLOBAL TABLES CHANGED: table
{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: simulate
{ AUTHOR: Capt John M. Schriml
{
{

HISTORY: none
SRR BN E NN RN R R E R RN RS R RN R RN NN RN RN BN R RN RN RN RN RN

vt gt st Nt gt Nagpd Nt gt
1

procedure adj_further;

var z:integer;
valuel,count:integery;

begin
waiting := O;
for z := 1 to range do
begin)
if tablelz,1] <1000
then limiter := trunc(tablelz,1])
else limiter := 1000; -
if limiter in limitset then
begin
count := randominteger(seed);
valuel := (percentage * 65536) div 100;
if count > valuel then S
begin -

tablelz,1] := tablel[z,1] + N;
table{z,6] := table(z,6] + N
end;

limiter :z trunc(table(z,1]);
if limiter in limitset :
then waiting := waiting + 1 s
end
end
end;

{!Il!l!lll!li".lll!ll!l!l!llli*l!!llll!IIl!lllllllll!lﬂll'!'l.!l!lll.ll}

DATE: 30 Aug 84

VERSICN: 1,0

NAME: storage

FUNCTION: To add portions of sessions set_back time to the data
collecting part of the matrix table.

INPUTS: z,b

OUTPUTS: none

GLOBAL VARIABLES: table

GLOBAL TABLES USED: table

GLOBAL TABLES CHANGED: table

FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: none

PN e N e R R e e e N e Rane N ena R R o T e
vt gt At At Syt gt gt Mgt St gt gt gt gt

150 S

........................... Ce e e Tt et et R IR A
O SRR D N R PRI R P P AR LR L LR PN SR e AR L W WA WA R AU AP SO I

CALLING PROCEDURES: adj bus }
AUTHOR: Capt John M, Schriml }
}
}

{

{

{f HISTORY: none

(R AR N R R R RN RN RN E R NN AR RN AR R R R RN NN AN SRR RN RN R N RN RN O RS

procedure storage (z,b:integer);
var temp:integery;

begin
if table[z,13] &> 0
then begin
temp :z table[z,13] - (table{b,5] + N);
if temp > O then
begin
table(z,11]

:= table[z,11] + (table[b,5] + N);
tablelz,13] :

temp
end
else begin
table[z,11] := table(z,11] + table([z,13]);
table(z,13] := 0
end
end

end;

{'lll"l'l'lllll!l'lIllllli’!ll'Illlllllllliiﬁlﬁllll'l!illll‘l!llll‘l!ll’}

{ DATE: 30 Aug B84 }
{ VERSION: 1.0 }
{ NAME: adj_bus }
{ FUNCTION: Having determined that an event will occur, the procedure }
{ checks the status of each session's bus input time and }
{ input time, and calls the appropriate procedure to adjust }
{ each session based on its status. 1
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table, waiting, whose waiting, range }
{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: AA - JJ, collision, storage }
f CALLING PROCEDURE: simulate }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
ARRF RN RN R RN RN RN RN RN AR R RN R RN RN R RN RN RN RN R R RN RN RN RN ERRRNR

procedure adj_ bus;

var z,b:integer;

151

..........
PO TP PR i P ¥

4t Lt et et e e
Catal ata’ ata®al

N R UL LI)
........ ST T P S P R S

i

feoa
dae s o .

begin
if waiting = 1 then
begin
b := whose_waiting;
for z := 1 to range do
begin
if (z = b) and (table[z,3] > table[b,5] + 1 + 2 % (N = 1))
then AA (z,b)
else if (z=b) and (tableflz,3]1 <= tablel(b,5] + 1 + 2#(N=1))
then BB (z,b)
else if (table[z,1] = 0) and (table([z,3] <= table(b,5] +N)
then CC (z,b)
else if (table[z,1] = 0) and (table[z,3] > table[(b,5] +N)
then DD (z,b)
else if (table(z,1] <= table[b,5] + N) and
(tablel[z,3] = 0) and (table[z,1] <> 0)
then EE (z,b)
else if (tablelz,1] > table[b,5] + N) and
(tablel[z,3] = 0)
then FF (z,b)
else if (table[z,1] > table[b,5] + N) and
(tablelz,3] > table[b,5] + N)

then GG (z,b)]
else if (table[z,1] <= table[b,5] + N) and]
(table[z,3] <= table{b,51 + N) S
then HH (z,b)
else if (table[z,1] > table[b,5] + N) and :
(table[z,3] <= table[b,5] + N) T
then II (z,b)
else if (table[z,1] <= table[b,5] + N) and
(tablel[z,3] > table[b,5] + N)
then JJ (z,b)}
table[z,12] := 0
storage (z,b)
end

PN S O

end
end;

(HE AR RN R RN R RN RN RN R N RN RN SRR E RN R AN R R RA AR RN RN RN RN B RN RN RNRNN RN

DATE: 7 Sep 84

VERSION: 1,0

NAME: adj_delay

FUNCTION: This procedure adjust the simulation for the actual
network cable delay, if known

INPUTS: none

OUTPUTS: none

GLOBAL VARIABLES: N

GLOBAL TABLES USED: none

GLOBAL TABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

PROCEDURES CALLED: none

gt A oy o o oty e, g iy i gty gt
vt Nt St At gt Syt gt gt St gt Nt gt gt

152

PR B I - Tt PO T AT e e St - TR L S R
R I S R L I e gt N =N O IR R S e e g e N A P PR |
[

C-v—w— 8- o —w —m e -

et S et SR S SR Ah Ak ek Sl ah Al Sl St i TR S B T e e iRk |

{ CALLING PROCEDURES: simulate } 1
{ AUTHOR: Capt John M, Schriml }
{ HISTORY: none }

R L T Ry Yy e e e ieeyss ey yssssssvyssssssssssy J

3

procedure adj_delay; :

var delay,ienglbi,ziceal; j

begin 4

write ('Please enter, in nano seconds, the known around trip ');
writeln ('delay of the bus.');

readln (delay);

writeln;

write ('Please re-enter, in feet, the max round trip length ');
writeln ('of the bus cable.');

writeln ('<CR>');]
readln (length);

z := (delay ®* 6564) /(10000.0 * length / 2);

PSP P VY S G G

ifz>2
then N := 1 + round(z) -
else N := 33
if N> 250
then N := 250 .
end; -
.
{lllllllllllllllllillll!IIIIllllllll!ill'lllI!l!lil*iiilllill!lllillili} R
{ DATE: 30 Aug 84 } .
{ VERSION: 1.0 } "3
{ NAME: display }]
{ FUNCTION: Displays a copy of the data loaded when requested by the }
{ user, } 1
{ INPUTS: none } n
{ OUTPUTS: none } S
{ - GLOBAL VARIABLES: table, x } SO
{ GLOBAL TABLES USED: table } R
{ GLOBAL TABLES CHANGED: none } T
{ FILES READ: none }
{ FILES WRITTEN: none }]
{ PROCEDURES CALLED: none } N
{ CALLING PROCEDURES: simulate } v
{ AUTHOR: Capt John M, Schriml } SR
{ HISTORY: none } '
(R R AR R R R RN R R RN RN AR RN R R RN R RN RN RN RN RN RN R NN RN AR NN RNS)

procedure display;

b o

begin
writeln;
write (' TIME BUS NEXT INPUT'");

153

-

. . i L R T -~ o
. LT . LT T I T R L L - N P

. RAPRE . LT AR . . . T P P e R R LN - . S
Ll e b T e AR Al Cbiim s n ek b2l A e 8’ " aTate 2l s # " el s aa"ate st el L tale’a s d

{* PROGRAM:EVALUATE #}

ICAARE TR AR R R A et st i e tid it ettt il dialddsiiialialiiisl)

DATE: 31 Aug 84

VERSION: 1.0

NAME: evaluate

FUNCTION: Using the data genera
V]

22

5 and displays inem Lo Lhe user,

PR N

}

}

}
ted by the simulation, this program }
eévalusies the resu 7 I3
INPUTS: none }
OUTPUTS: none }
GLOBAL VARIABLES: wild }
GLOBAL TABLE USED: none }
GLOBAL TABLES CHANGED: none }
FILES READ: none }
FILES WRITTEN: none }
PROCEDURES CALLED: get_data, show_parameters, sess’ =~ <rformance, }
bus_operating_speed, display data }

CALLING PROCEDURES: none }
AUTHOR: Capt John M, Schriml }
}

}

HISTORY: none
AREERRBN AR RN AR RN RN RN R A RN RN RN RN R RN R R R R RN BN AR R RN RN RN RN R RR RN

e pt A (A A phm g, A g (AN e R e poey e

program evaluate (input,output);
const propagation = 656400; {ft/msecl

type data = record
sessions_id:integer;
extended_id:integer;
time_to_bus:integery;
interval to_bus:integeri;
time_before next input:integeri;
input_interval:integery;
input_variance:integeri;
busy_time on_bus:integeri;
traffic delay integerl;
flow _control_delay:integery;
number of collisions:integerd;
inputed_traffic:integers;
bus_busy time:integerdy;
extra_time_to_tx:integerli;
total_input_time:integery

end;

bus_setup = record
bus_speed:integeri;
bus_length:integeri;
bus_overhead:integer
end;

clock_time = record

167

ey

PP)

PO)

P U O M TR RPN WP,

.t
-4 g

o
s v s o

...........

total-bus-busy-time (G)(I4) - Represents the total amount of time

the bus was bus for the entire network. Time is in T intervals.

total-collisions (G)(I4) -~ Represents the total amount of

collisions for the entire network.

wild (G)(C) - Represents user's response to a question. -‘fﬁ

AL

wild-card (L)(C) - Represents user's response to a question.

(3

(G)(I) - Is used as a counter in loops.]

z (L)(I) - Is used as a counter in loops.

The actual Pascal program, Evaluate, begins on the next page.

1
N WP SR

atalaL

166

R

C e
v

. - . s .. LN A‘._'.' .‘u"-_.‘.. . e e R'.~ ~"-. . .V-..>“ ., ., EY " u'.'-‘. .‘q
AR R S O I L TP SR UL YA Yttty St G U TRt W L St S T G IR AT Shit S S Sy I W . W D TR TRIE St DoV W P A |

’ .)
4 ¢+ e L ca_ aa

R R R i N i i e e I O 2 A I R It T R U I

temp1 (G)(IY4) - Represents in usec the amount of delay due to

traffic on the bus, for a given session.

temp2 (G)(I4) - Represents in usec the amount of delay due to i j
collisions, for a given session. y

temp3 (G)(I4) - Represents in usec the amount of delay in due to 4
flow control, for a given session.

EEEEQ (G)(R) - Represents the total amount of delay, for a given 3
type of session, due to the bus being busy. Delay is in T intervals. -i

temp7 (G)(R) - Represents the total amount of delay, for a given ;
type of session, due to flow control. Delay is in T intervals.

temp9 (G)(I4) - Represents the total amount of inputs for a given l
type of session.

temp11 (G)(R) - Represents the total amount of delay, for a given
type of session, due to collisions. Delay is in T intervals. . :i;

temp12 (G)(I) - Represents the ID number of a session type.

tempil (G)(I4) Represents in bits/sec the data rate of a

session's terminal.

temp15 (G)(I4)

Represents the number characters inputed by each
input.

Represents in msec the time interval between o]

tempt16 (G)(I4)

inputs. 1

temp17 (G)(IY4) - Represents the number of times that a given
session was repeated in the simulation.

temp18 (G)(IY4) - Represents in msec the maximum +/- deviation of
the interval between inputs. ii;}“

time (G)(I4) - Represents the transition time or simulation time in

T intervals.

165

.........

table[x,7] (G)(I4) - Represents the summation of the amount of
waiting time for inputs because the BIU was having trouble passing the
traffic it had. Time is in T intervals.

table[x,8] (G)(I4) - Represents the summation of the number of
rnllisinns 2 session had.

table[x,9] (G)(I4) - Represents the summation of the number of
inputs made by a session.

table[x,10] (G)(I4) - Represents the summation of the time that the
bus was busy because of a particular session. Time is in T intervals.

tablel[x,11] (G)(I4) - Represents the summation of the amount of
extra waiting time because of collisions. Time is in T intervals.

tablel[x,12] (G)(IY4) - Represents the actual time between inputs.
Time is in T intervals.

tem (LY(I4) - Represents the number of inputs made by each session.

tem2 (G)(I4) - Represents in usec the actual time interval between
inputs for each type of session. This time interval was determined from
the results of monitoring the amount of traffic being allowed in by flow
control.

tem3 (G)(I4) - Represents in usec the actual time interval between
inputs for each type of session. This time interval was determined from
the results of monitoring the amount of traffic being passed by the
terminals.

Eggﬁ (L){R) - Represents to total amount of waiting time for one
type of session, due to the bus being busy. Time is in T intervals.,

tem7 (L)(R) - Represents the total amount of waiting time due to
flow control and waiting time between inputs, for a particular type of

session.

164

- S e T e

.- .. SR T = e e et e e e e . Te S e et Yoo te . e T
P T o S S S AN L N ,Jﬁ_-.’_ W ettt e e T et e e T e e e T N
Pl S N N VP PR P, YRR T R UG R IAY WY PRI, P I 5

Ly Br Bt e dhae Jhan e Mnae snss Buse aaan

1
PR O R

oo
. A
P R P

YO RN TN D - o SadaN it SN

......... T 1 ~ ffva
]
1
sim.number-of-collisions (G)(I#) - Represents the number of
collisions of each session. ;
sim.sessions-id (G)(I) - Represents the ID number of a session. T
sim.time-before-next-input (G)(I4) ~ Represents the amount of time ;:
that must elapse before the next input is made. Time is in T intervals. ’ :E
sim.time-to-bus (G)(I4) - Represents the amount of time that must o
elapse before an input reaches the BIU. Time is in T intervals. .- i
sim.total-input-time (G)(IY#) - Represents the actual amount of time '5
E
between inputs. Time is in T intervals.]
sim.traffic-delay (G)(I4) - Represents the amount of time traffic é
is delayed because the bus is busy. Time is in T Intervals. :
!
T - This is not an actual var@able used in this program. T %
represents the time interval of the simulation clock. T is equal to the .
amount time that equates to 1/2 round trip propagation delay of the bus ;ﬁ
e
cable. ‘ 1
table(x,1] (G)(I4) - Represents the amount of time that must elapse A:E
before the input reaches the BIU. Time is in T intervals. }i
ool
table[x,2] (G)(I4) - Represents the calculated time it takes an -1
input to travel from the terminal to BIU. Time is in T intervals. 3?
table{x,3] (G)(I4) - Represents the amount of time that must elapse - %
before the next input is made. Time is in T intervals. 1
table[x,4] (G)(IY4) - Represents the calculated time between inputs.
Time is in T intervals.
table[x,5] (G)(IY4) - Represents the calculated time that the bus _:3
needs to pass a session's input. Time is in T intervals. ;Eff
table(x,6] (G)(I4) - Represents the summation of the amount of ifxl
waiting time due to the bus being busy. Time is in T intervals. _f
3
163]
1
B

L
..... R Tt e PSS B .1
PR A . St S St TR R L L S B S A S S S ~ e Tttt et TR PO NP Tl
. o« B S e e e e e et e A R et P A T P L A AL Y AR R U
PO P - L. % LWL A T SRR Rl T S AT A Wl W) PG G GG AT T Gl G S PG P P I R L WA W aA_\..J

- . L T N R e - RN SRR
- B " tetut . Attt et Nt WAt ANt
PO AL W S o S PP N R W AR W U L W AP PN L WA AR PN W WAL, YT SR SN AP S) .’ P)

- e ~—— - —~ - o —- -

rate (G)(I4) - Represents in bits/sec the data rate of the bus.

real-time (G)(I4) - Represents the real time of the transition and
simulation times. Real-time is in msec.

sim (G) - Represents a record of a sessions parameters and
performance data.

sim.bus-busy-time (G)(I¥%) - Represents the amount of time for each

session that the bus was busy. Time is in T intervals.

sim.busy-time-on-bus (G){(I4) - Represents the calculated amount

time the bus is busy for each input. Time is in T intervals.

sim.extended-id (G)(I) - Represents the extended ID of a session.

sim.extra-time-to-tx (G)(I4) - Represents the additional amount of

waiting time traffic must wait because of collisions. Time is in T
intervals.

simfile (G) - Represents the file containing the records of each
session's parameters and performance data.

sim.flow-control-delay (G)(I4) - Represents the amount of time

inputs were delayed because flow control was employed. Time is in T
intervals,

sim.input-interval (G)(I4) - Represents the calculated time

interval between inputs. Time is in T intervals.

sim.inputed-traffic (G)(I4) - Represents the number of inputs made

by a session.

sim.input-variance (G)(I4) - Represents the maximum +/- deviation

of the time interval between inputs. Time is in T intervals.

sim.interval-to-bus (G)(I4) - Represents the calculated amount of

time it takes an input to travel from the terminal to BIU. Time is in T

intervals.

162

LS S AP A S e T R SPRR S, L I TR R AN D

. . . - . . - - N ..
At eVt aa®a® e it aatlatea"a®c s atlaata®a*an"

..,,‘
- ,
Ad 2 g o s L g

ot
Sndcadh

-

Lo al a4 aa & A

S
tate s e 4

"

L

—————————y - v g e
T A i Bl e) T R P Ty

each input.

net.quantity (G)(Id4) - Represents the number of times a session is
duplicated in the simulation run.

net.speed (G)(I4) - Represents in bits/sec the data rate of a

session's terminal.

net.variance (G){(I4) - Represents in msec the maximum +/~- deviation
of the interval between inputs.

net-collisions (G)(I4) - Represents the average number of

collisions per second.

net-input-speed (G)(I4) - Represents in bits/sec the amount of
traffic the users are attempting to input.

net-flow-control- rate (G)(IY4) - Represents in bits/sec the amount

of traffic that the user is actually inputing. This traffic is determined
from the results of monitoring the amount of time that flow control is

® employed.

net-traffic rate (G)(I4) - Represents in bits/sec the amount of flf¥
traffic that the user is actually inputing. This traffic is determined
from the results of monitoring the amount traffic being passed by the —¢h1
terminals.

net-terminal-speed (G)(I4) - Represents in bits/sec the maximum

amount of traffic that the terminals are physically able to pass.

overhead (G)(I) ~ Represents the amount of management bits added by

LAl g g g 4

the BIU to the information bits of the user.

range (G)(I) - Represents the number of sessions simulated. Range 1
is determined from counting the number of sessions loaded into the
program. Range is used in loops and to limit the size of the matrix ;ﬁi}

table. h

161 E'.;._.j'.l

A A
[P YR S N PP AP S

O IR S N Y SR SR e T T e e T e e e T e e 3 C et - AT
P AT LI Ll GV P P P, V.,) PP PR PR, WL L PR IR RSP . PO W APR WA W ST WA WY Wiy iy S vy DL IRC IR MNP e C

............

— Ty T — ———— T T T s

clock.delay (G)(Il4) - Represents the actual bus cable delay used by
the simulation run. Delay is in T intervals.
clockfile (G) - Represents tha file containing the clock record.

clock.percentage (G)(I) - Represents the persistant percentage, if

p-persistant was simulated,

clock.persistant (G)(I) - Represents the type of persistant used

for the simulation.

clock.scleck (G)(I4) - Represents the amount of simulation time used
for collecting data. Time is in T intervals.

clock.telek (G)(I4) - Represents the amount of simulation time used
for transistion before data was collected. Time is in T intervals.

ext-id[x] (G)(I) - Represents a session's extended ID for a given

idle (LY(R) - Represents the amount of time a terminal is idle
during a session. Time is in T intervals.

lﬂLﬁl (G)(I) - Represents the session's ID number for a given x.

k (L)(R) - Is used for intermediate calculations.

1 (L)(R) - Is used for intermediate calculations.

length (G)(I4) - Represents in feet the one way length of the bus
cable.

net (G) - Represents a record of a network session.

netfile (G) - Represents a file of records containing network
sessions.

net.id (G)(I) - Represents the ID number of a session.

net.interval (G)(I4) - Represents in msec the time interval between
inputs.

net.number (G)(I4) - Represents the number of characters inputed by

160

PR S S R S S L S S
-

L e

e, Lt .
A . . .

K AP et
Ve e e, C .

A g.,i

-
"
1

- 4
4
e
3

N .-4
5
I

. .« -
PR
itnd 2 b 2

a a2 »

A ARt ATIL AT ARG Sl g f T TN T W W T N T Y RACER St St s Sndh Suit Beot Sede J — — T v YT~ vy

PART B7: Pascal Prgg;am Evaluate

The variables and their purpose, as used with the program Evaluate,

are as follows:

VARIABLES:
bus (G) ~ Represents a record containing the bus information
inputed by the user.

bus.bus-length (G)(I4) - Represents in feet the one way length of y

the bus cable.

bus.bus-overhead (G)(I4) - Represents the amount of management bits

(overhead) added by the BIU to the user's information bits.

bus.bus-speed (G)(Il4) - Represents in bits/sec the data rate speed

of the bus.

‘ ey
e busfile (G) - Represents the file containing the record of the bus 4
infomation inputed by the user.

bus-flow-control-rate (G)(I4) - Represents in bits/sec the amount

of traffic being passed on the bus by using the results of monitoring the 1
amount of time flow control is employed.

bus-rate (G)(I4) - Represents in bits/sec the amount of traffic
being passed on the bus by using the results of monitoring the bus' busy p
time.

bus-traffic-rate (G)(I4) - Represents in bits/sec the amount of

traffic being passed on the bus by using the results of monitoring the
amount cf traffic the terminals were passing. ji)

clock (G) - Represents a record of the clock, delay, percentage,

and persistant information, provided by the user.

N

.

. Lt
o o -
‘a‘a’nla 4 a7

T e e et e T e m T T T T LT e T T e e T T e e e e e e T e e e A

-
"

™ e’

LR «t et - t. .ty . . .
S TR R ¥ YT TSRS S WP TP T 2 A Y al s

R aTTRTTTTT————y Dl S TRanciaie ey Y

rewrite (clockfile);
cle.T_click := tclock;

cle.S click := sclock;
clc.delay := N;
clec.persistant := persistant;
clec.percentage := percentage;
clockfile™ := clcg

put (clockfile);

P | - [4FEN JP POV TC R
CLO8€ (CLUCKIiLiE/

end.

-

. LA A SR TR S
IR WP W 1PS JPSll ST W AP YT A S

ey t
ENNGENS SN VOGP 3)

PSR WO Y

-y

2adl v

|
"'

158

; RN
e e &t At aat e

St - =
S L e S S e et
........

----- T -

L R A P et
RS YUl S .. YR BmBon B B o e BBt B o B oo B

K-

Mm B aenan gy ane Jeaa ey ™ - A e oeaes e e _snmn et e s

then collision
else if (event_flag ='b') and (waiting >1) and
(persistant = 2)
then
begin
adj_further;
if waiting > 1
then collision
end;
if event_flag = 'i'
then adj_input
until clock < 03
tclock := tclock - clock;
clock := sclock;
for x := 1 to range do
begin
tablel(x,6]
tablelx,7]
table(x,8]
table(x,9]
tablelx,10]
table[x,11]
table[x,15]
end;
repeat
writeln (clock);
find_next_event;
clock := clock - (next_event - 1)3
if (screen = 'y') or (screen ='Y')
then test;
if next_event <> 1
then prepare_for_event;
if (screen = 'y') or (screen =z 'Y'")
then test;
if (event_flag = 'b') and (waiting = 1)
then adj_bus
else if (event_flag = 'b') and (waiting > 1) and
(persistant = 1)
then collision
else if (event flag = 'b') and (waiting > 1) and
(persistant = 2)

OO0

O O O we we we we

then
begin
adj_further;
if waiting > 1
then collision
end;
if event_flag = 'i'
then adj_input
until clock <0;
sclock := sclock - clock;
writeln ('Actual simulation clock time is ', sclock);
file_results;

157

..............

LASul i A e e

p

‘—vvvvf
v .

St Seariagt Sd Sia T Dhad g ed Sl it At At Al T g T T T Ty T Ty e o

writeln (range, ' sessions were loaded for this simulation run.');
writeln;
writeln ('Do you wish to review the data loaded? (Y/N)');
readln (answer);
writeln;
if (answer = 'y') or (answer = 'Y')
then display;
writeln;
write ('Is the actual round trip delay of the network known? ');
writeln ('(Y/N)');
writeln ('<CR>");
readln (answer);
if (answer = 'y') or (answer = 'Y')
then adj_delay;
limitset := [1..N];
writeln;
repeat
writeln ('I= this simulation a 1- or p- persistant?');
writeln ('If l-persistant enter 1, if p-persistant enter 2.');
writeln('<CR>'");
readln (persistant);
until (persistant = 2) or (persistant = 1);
if persistant = 2 then
begin
writeln ('Enter percentage bewteen 1 and 100.');
readln (percentage)
end;
writeln;
writeln ('Please enter the transition clock time,');
readln (tclock);
writeln ('Please enter the simulation clock time,');
readln (sclock);
writeln ('Please enter the time of day.');
writeln ('(example: If time is 13:15, enter 1315)');
readln (seed);
clock := telock;
writeln ('Do you need a display of the simulation run? (Y/N)');
writeln ('<CR>');
readln (screen);
repeat
writeln (clock);
find_next_event;

clock := clock - (next_event - 1);
if (screen = 'y') or (screen = 'Y')
then test;
if {next_event < 1)
then prepare_for_event;
if (screen = 'y') or (screen = 'Y')

then test;
if (event_flag = 'b') and (waiting = 1)
then adj_bus
else if (event_flag = 'b') and (waiting > 1) and
(persistant = 1)

156

sim.inputed traffic := table(x,9];
sim.bus_busy time := tablelx,10];
sim.extra_time to_tx := table(x,11];
sim.total_input_time := table(x,15];
simfile”™ := sim;
put (simfile)

end;

close (datafile);

close (simfile)

end;

{ll!il!.Ill&lﬁﬁ’illlll.!lli!llli!i!llﬂlll‘llllll!llii‘l’*lllllllillllllll}

{ DATE: 30 Aug 84

{ VERSION: 1.0

{ NAME: test

{f FUNCTION: To display to the user each step of the simulation upon
{ request. Normal used for trouble shooting.
{ INPUTS: none

{ OUTPUTS: none

{ GLOBAL VARIABLES: x, table, range
{ GLOBAL TABLES USED: table

{ GLOBAL TABLES CHANGED: none

{ FILES READ: none

{ FILES WRITTEN: none

{ PROCEDURES CALLED: none

{ CALLING PROCEDURES: simulate

{ AUTHOR: Capt John M, Schriml

{

{

HISTORY: none
AR RN R R R RN R RN AR RN R RN B RN RN RN R RN RN RN R RN RN RN RN RN ERARS

St St At At gt gt St) gt gt Ayt Npd St Smgd Nmpd St Nt

procedure test;

begin
writeln;
for x := 1 to range do
begin
write (table(x,1]:6,table(x,2]:6,table[x,3]1:7,table[x,4]:7)
write (table[x,5]:5,table[x,6]:7,tablelx,7]:7,table[x,8]:3)
write (table(x,9]:3,table(x,10]:7,table(x,11]:5);
writeln (tablelx,12]:3,tablelx,13]:5,tablelx,14]:5)
end
end;

.
14
.
’

begin
assign (clockfile,'clock');
assign (datafile,'net_data');
assign (simfile,'simulate');
N := 33
percentage := 100;
get_data;
writeln;

155

= g i St

writeln (' INPUT BUS');

write (' TO BUS INTERVAL INPUT INTERVAL');
writeln (' VARIANCE BUSY TIME');
writeln;
for x := 1 to range do
begin

write (table[x,1]:9,tablelx,2]:13,table(x,3]:12);
writeln (table[x,4]:11,tablel(x,14]1:12,table{x,5]:10);
end
end;

| {RRA AR RN R RN RN R R AR RN AR R RN RN R RN AR RRR RN AR RRNRERRERNERRRNNN)

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: file results }
{ FUNCTION: Stores results of the simulation run, }
{ INPUTS: none }
{ OUTPUTS: none }
. { GLOBAL VARIABLES: simfile, datafile, x, comp, sim, table }
i { GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: net_data }
{ FILES WRITTEN: simulate }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: simulate }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
AR ERERER RN AR R RN RRR SRR R R AR IR AR R RN AR R RE RN RN RN RN R RER RN RN R RN RRRNRRR

procedure file results;

begin

E‘ rewrite (simfile);
g reset (datafile);
. x := 0;
[while not eof (datafile) do
- begin
i. comp := datafile”;

get (datafile);

X 1= x + 13

: sim.session_id := comp,.session_id;

- - sim.extended_id := comp.extended_id;
sim.time_to_bus := table(x,1];
sim.interval_to_bus := tablelx,2];
sim.time_before_next_input := tablelx,3];
sim.input_interval := tablelx,4];
sim.input_variance := tablelx,14];
sim.busy_time_on_bus := tablelx,5];
sim.traffic_delay := tablelx,6];
sim.flow_control_delay := table(x,7];
sim.number_of collisions := table[x,8];

154

telek,clek:integerid;
delay,persistant,percentage:integer
end;

net_sessions = record
id:integer;
speed,number,interval,variance,quantity:integeri
end;

var id:array[1..500] of integer;

ext_id:array(1..500] of integer;

table:array[1..500,1..12] of integerl;

x,range,overhead,tempi12:integer;

tempi4,temp15,temp16,temp17,temp18,rate,time,length,real time,

net_terminal_ speed,net_input_speed,tem2,tempi,temp2,temp3,

net_ traffic rate net_ flow control rate,bus traffic_rate,

net _delay_ due to colllsions bus_ flow control _rate,

total collisions net collisions, L total _bus busy time,

buq_rate temp9,tem3: 1nteger4

temp6,temp7,templii:real;

wild:char; -

sim:data;

bus:bus_setup;

net:net_sessions;

clock:clock time;

simfile:file of data; RS
_ busfile:file of bus_setup; —

Qe clockfile:file of clock_time; -
netfile:file of net_sessions;

{.ll’ll!lll‘lllillllllll'llﬂlillll»!l'il'l'lll!lll!ll.lllli!’lll!l‘l!lllll!ﬂl’}

{ DATE: 31 Aug 84 }
{ VERSION: 1.0 }
{ NAME: get_data }
{ FUNCTION: To load the results of simulation into a matrix for }
{ evaluation. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: x, simfile, id, ext_id, table, sim, range }
{f GLOBAL TABLES USED: id, ext_id, table }
{ GLOBAL TABLES CHANGED: id, ext_id, table }
{ FILES READ: simulate }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: evaluate }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
BEBRRERRRR NN BN RN NR RN AR R R RN R RN R RN ARG RN R RN R AR R R RN RN NN AR R RN RN RN

procedure get data;

168

T R N e T Y T T Y T Y N TV TS Y T v v vy
. < g 0 BRARACR A A fSa fon e S-n dan aem She S

K M

begin

reset (simfile);

x := 03

while not eof (simfile) do

begin

sim := simfile™;
get (simfile);
X 2= X + 13
id{x] 3= sim.sessions_id;
ext_id[x] := sim.extended_id;

b.
t.
b
3
14

table(x,1] := sim.time_to_bus;
table(x,2] := sim.interval_to_bus;
table[x,3] := sim.time_before_next_input;
- table[x,4] := sim.input_interval;
k- table{x,5] := sim.busy time_on_bus;
o table[x,6] := sim.traffic_delay;
table[x,7] := sim.flow_ control _delay;
tablelx,8] := sim. number of collisions;
table[x,9] := sim, 1nputed traffic;
table[x,10] := sim.bus busy time;
f table(x,11] := sim.extra time_ to_tx;
@ table[x,12] := sim.total_input_time
end;
- range iz X;
o close (simfile)
: end;
~
- (RERE RN R RN RN R RN R RN RN RN RN RN RN RRR RN NN)
3 { DATE: 31 Aug 84 }
: { VERSION: 1.0 }
8 { NAME: show_parameters }
{ FUNCTION: To show the parameters for which the results of the }
{ simulation are based on, }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: busfile, bus, rate, length, overhead, clock, }
{ clockfile, time, real_time }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: clock, bus }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: evaluate }
{ AUTHOR: Capt John M. Schriml }
{ HISTORY: none }
[FR AR R R RN RN RN RN RN NN RN RN RN RN RN NN)

procedure show_parameters;

var k,delay:real;

169

T e et e T, S IR N PRV TR PN I P N PR T A * * o
PP P R A R VA iy T R TP SR I .‘.'J.J‘;"m-‘J‘~"\'l‘-‘n‘-'c4 RPN

TR TETS vy

wo.o.q

r—.—-: Ty ——— v PuBi-ie e s S5 SRR oaraie ————" — T Lt Bl Bt s AR EA I At S JPa Jir St S AR IR Tt S
4

begin

write ('The results of the simulation run are based on the ');

writeln ('following network parameters.');
.] writeln; -

reset (busfile);

bus := busfile”™;

get (busfile); R
. write ('Data rate of the bus was ',bus.bus_speed:i); T
o writeln (' bits/e2c. ") -

writeln;

length := bus.bus length;

write ('Max round trip length of the bus was ',(length # 2):4);

writeln (' feet.');

reset (clockfile);

clock := clockfile”;
o get (clockfile);

writeln;

if clock.persistant = 1

then writeln ('l-persistant was used.') .
else writeln ('P-persistant was used with a percentage ',
'of ',clock.percentage:2,' %.');

delay := (((clock.delay - 1) * float#(length)) ®* 1000000) /

propagation; . 4

writeln;
write (' The round trip delay of the bus cable was '); S
writeln (truncl4(delay):3,' nano seconds.');]

. writeln; e
\e writeln ('The BIU overhead was ',bus.bus_overhead:3,' bits.'); _
writeln; _ 1

rate := bus.bus_ speed;
overhead := bus.bus_overhead;
close (busfile);

writeln ('The actual transition clock time was ', ”;;4

clock.telek:6,'.'); A *
writeln; SR
writeln ('The actual data collecting clock time was ', RN

clock.clck:6,'.'); RN
writeln; Co
time := clock.telck; -
k := (float4(time) * length)/propagation;
real_time := trunci(k); -
write ('The transition clock time approx equals ',real_ time:3); S
writeln (' milliseconds(msec) of real '); g
writeln ('network run time.');

time := clock.clck;

close (clockfile);

S TR

. k := (float4(time) * length)/propagation; .
- real_time := trunci(k); -
- writeln; .ﬁ
- write ('The data collecting clock time approx equals '); -
writeln (real time:3,' milliseconds(msec) of '); }
writeln ('real network run time.'); - A
writeln }

llf

o
P

.] B ‘
PR .
PR N VL M NV)

o

170

R T e, D B S e 4 ——— - — . - W—— ——

end;

[Il'llll!lllilllll'l'llllill!llllllll‘li!lllI!ll!llll.‘lll'.ll!..llllll.}

{ DATE: 31 Aug 84 }
{ VERSION: 1.0 }
{ NAME: bus_operating_speed }
{ FUNCTION: To display to the user the amount of traffic the bus is }
{ passing and now much traffic is being inputed to thne }
{ network. }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: rate, bus_rate, bus_traafic_rate, net_collisions }
{ bus_flow_control_rate, net_terminal_speed, }
{ net_ “traffic rate, net input speed, }
{ net flow control rate }
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: none }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: none }
{ AUTHOR: Capt John M. Schriml }
{ }
{ }

HISTORY: none
RN RN NN RN E RN R RN AR RN RN R R RN RS RN RN NN RRNER AN NR RN NN R

.) procedure bus_operating speed;
begin
writeln;
writeln (° ##% BUS PERFORMANCE ###1).
writeln;

writeln ('The bus is set up to operate at ',rate:6,
! bits/sec.');
writeln ('Traffic on the bus indicates a rate of ',bus rate:6,
' bits/sec.');
writeln ('Traffic being passed by the terminals indicate a ',
'rate of ',bus_traffic_rate:6,' bits/sec.');
writeln;
writeln ('Traffic being inputed by the user indicate a bus rate',
' of ',bus_flow_control_rate:6,' bits/sec.');
writeln ('Collisions were at the rate of ',net_collisions:1,
' collisions per sec.');
writeln;
writeln (' ##8% NETWORK INPUT TRAFFIC ###1).
writeln;
writeln ('The MAX traffic rate which the terminals can pass is ',
net_terminal speed:3,' bits/sec.');

writeln ('The simulation indicates that the terminals were ',

'passing traffic at ',net_traffic_rate:3,' b/s.');
writeln ('The users are attempting to input ',net_input speed:3,

' bits/sec,.');

[
o
.

.
S e

171

B
Ll
U

J— - L i T T T —w e

writeln ('The simulation indicates that the network is allowing', .
' an input of ',net_flow_control rate:l,' b/s.'); N
end;)

(RN RN NN R RN R RN RN R RS R R RN RN RN BRI RRRRNOES) PR
{ DATE: 31 Aug 84 } A
{ VERSION: 1.0 } S
{ NAME: show_performance } AR
{ FUNCTION: To display the peroformance of each individual type of } i
{ sessions to the user. } %
{ INPUTS: none } -
{ OUTPUTS: none }
{ GLOBAL VARIABLES: temp17, templ12, tempid, tempi5, templ16, tempil8, } .
{ temp1, temp3, temp2, tem3, tem2, temil } 3
{ GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none } i
{ FILES READ: none } ;
{ FILES WRITTEN: none }]
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: sessions_performance } I
{ AUTHOR: Capt John M. Schriml } 1
{ HISTORY: none } -1
[HRR AR ER AR AR RN RN RN RS RN R R RRRRRRR R RN AR AR SRR NN NN NNNNEN)]
. @ procedure show_performance; S
.4
var 1l,k:real; L
begin S
write (temp17:1,' typical sessions were set up as '); SRR
writeln ('follows:'); 2
writeln ('ID: ',temp12:1); oy
writeln ('TERMINAL RATE: ',tempi14:3,' bits/sec'); LA
writeln ('# of CHARACTERS PER INPUT: ',tempi15:1); Ry
writeln ('TIME INTERVAL BETWEEN INPUTS: !',temp16:2,' msec',
' var ', temp18:1,' msec');
writeln ('®AVE MAX INPUT RATE: ',(8 ®* tempi15 ®* 1000) div temp16,
' bits/sech*'); 1
writeln;
writeln ('The performance was as follcuws.'); 3
writeln;
writeln ('DELAY PER INPUT:'); RN
writein (! -due to traffic on the bus: ',tempi1:3,' usec'); B
ariteln (! -due to collisions: ',temp3:3,' usez'); -]
writeln (' -due to flow control: ',temp2:3,' usec'); e
writeln;

writeln ('THOUGHPUT RATE PER SESSION:');

vwriteln (! -time interval between inputs:');

writeln (! --terminals indicate ',tem3:2,' usec');
writeln (' -~inputs indicate ',tem2:2,' usec');

k := (1000000.0 * 8 * tempi15)/tem3;

172

3
.'q

...... v v va e e s .
[A I R L AP SO SR ST T e T . Nt e e e . R et Mt e .
L S A A | . PO T T . e e
. < RS AP R M . B T e e S ~ .
- A\ . LI LR T T R A e e PR SRR ST R S T >

Ca e e e T e Y Te Y B L Ta e T e e T e e B L e . ;- ‘
Ve et e ".a.,_a..,.e At .'"'_- T e tan -A_L'.:,.Al‘ n, (A;L*A_ alatat -__‘",:_f!.'J.'_&'\' AT A ‘.'J

R R e T e S] —r LIRS Shad Janl Bem sl e ena ey

1 := (1000000.0 ® 8 ® temp15)/tem2;
writeln (' -transmission rate:');

writeln (! —terminals indicate ',truncld(k):2,' bits/sec');
writeln (! —-inputs indicate ',trunc#(l):2,' bits/sec')
end;

(RN R NN RN R RN R R RN R AR R RN RN NN NR RN RN RRRE)
{ DATE: 31 Aug 84 }
{ VERSION: 1.0 }
{ NAME: sessions_performance }
{ FUNCTION: To do the actual performance calculations, }
{ INPUTS: none }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: net_traffic_rate, net_flow _control_rate, }
{ bus traffic _rate, bus flow control _rate, }
{ net_pollisions, }
{ net_input speed, net_terminal_speed, netfile, }
{ total _collisions, total bus_busy_time, net, }
{ temp6,tempT7, temp9, templ1, id, table, templ, }
{ tem1, tem3, temp3, tem2, temp2, templ2, templ4, '}
{ temp15, temp16, temp17, temp18, bus_rate }
{ GLOBAL TABLES USED: id, table }
{ GLOBAL TABLES CHANGED: none }
{ FILES READ: network }
{ FILES WRITTEN: none }
{ PROCEDURES CALLED: show_performance }
{ CALLING PROCEDURES: evaluate }
{ AUTHOR: Capt John M, Schriml }
{ }
{ }

HISTORY: none
RERRBARRRRERNERBRRARNERARERRRLERRR RS RRRRR AN RBRSRBERRARBRAERRRERRRRRNRES

procedure sessions_performance;

var wild_card:char;
k:real;
z:integer;
tem:integerd;
idle,temb,tem7:real;

begin
net_traffic_rate :z 0;

net flow_ control _rate := 0;
bus traffic rate :=0;
bus flow_ control _rate := 0;

net collisions t= 03

net ._input_speed := 0;

net terminal_speed := 0;

total collisions := 0;

total bus busy time := 0;

write ('The performance of various types of sessions are');
writeln (' as follows:');

173

.............................

............................

writeln;

writeln ('Please enter <CR> to continue.');

read (wild_card); 3

writeln;

reset (netfile);

while not eof (netfile) do -

begin T

net := netfile”; -
get (netfile);
temp6 := 0;
temb6 := O;

temp9 := 0;
temp11l := 0O;
for z := 1 to range do
if 1d[z] = net.id then C]
begin ~ T
tem := table[z,9]; -]
tempb6 := temp6 + table([z,6]; 1

tem6 := temb6 + (table[z,2] * tem) + tablelz,6] + R
tublelz,11];
temp7 := temp7 + table[z 71; -

tem7 := tem7 + tablelz,12] + table[z 71;
total collisions := total collisions + table(z,8];

total_bus_busy time := total_bus_busy time + S
- table(z,10]; —acid
1 temp9 := temp9 + table(z,9]; -
temp11 := temp11 + table[z,11] o
end; 1
= (tempb6 * float4(length) * 1000)/(floatd(temp9) *#
propagation); R
templ := truncl(k); Rlii
idle := ((time * float(net.quantity)) - tem6)/temp9; -
= ((idle + (tem6 / temp9)) * length * 1000)/propagation; o
tem3 := truncl(k); o
k := (tempT * floatd4(length) #* 1000)/(floatl(temp9) *
propagation);
temp2 := trunci(k);
k := (tem7 ®* floatld(length) * 1000)/(floati(temp9) * 1
propagation); .
tem2 := truncl(k);
k := (temp11l #* floatl#(length) * 1000)/(floatlU(temp9) * e
propagation); N
temp3 := truncl{k); =
k := (1000000 * floatld(net.number) ¥ net.quantity * 8)/tem3; E
net traffic_rate := net_traffic rate + truncl(k); .
= (1000000 * float4(net.number) * net.quantity * 8)/tem2; S
net flow_control rate := net_flow_control_rate + truncl(k); :fq
:z (((net.number * 8) + overhead) * floatl(net,quantity) * -y
1000000.0)/tem3; R
bus_traffic_rate := bus_traffic_rate + truncl(k); L
k := (((net.number * 8) + overhead) * floatl(net.quantity) #* o
174 L
T e T T P T T PO A A P UL A AP S TR L S SR

...
..
-

Aal ol

1000000.0) /tem2;
bus_flow_control_rate := bus_flow_control_rate + trunc4(k);

temp12 = net, id' :
tempild := net.speed; T
templ15 := net.number;)
temp16 := net.interval; S]
temp18 := net.variance; L
temp17 := net.quantity; o
net_terminzl speed := net_terminal_speed + (templl * tempiT); -5
net _input_ speed := net input speed + (((temp15 ®* 1000) * 8 &
temp17) div temp16);
show_performance; :
writeln; _ %
writeln ('Please enter<CR> to continue'); ']
read (wild card);)
writeln;
end;
k := ((total_bus_busy time * 1.0) * rate)/time;
bus rate := truncld(k);
net_collisions := (total_collisions * 1000) div real_time
end; 4

{'ilill!l!lllll!!lllllill‘illllll‘lililllllillililﬂﬁ!lli!ﬁl!"il'llllil}

{ DATE: 31 Aug 84 }
{ VERSION: 1.0 }
{ NAME: display data }
{ FUNCTION: Displays raw data upon user request,. }
{ INPUTS: none }

{ OUTPUTS: none }

{ GLOBAL VARIABLES: id, ext_id, table }

{ GLOBAL TABLES USED: id, ext_id, table }

{ GLOBAL TABLES CHANGED: none } .

{ FILES READ: none } . 4
{ FILES WRITTEN: none } .
{ PROCEDURES CALLED: none }

{ CALLING PROCEDURES: evaluate }

{ AUTHOR: Capt John M. Schriml }

{ }

{ }

HISTORY: none
Y XX R R X YRR XX EXEEXXX:IXE:RXZXZIRXZRIZRRXE:XZIZRXYIRSR:IYSREZSZSZRRIRZIZIZAX: S]

S e
D
DS B

procedure display data;

RSP

var z:integer; -

begin T
writeln; S
writeln (! #%% RAW DATA ###1), RO
writeln ;)
write (' WAITING FLOW ") o
writeln (' BUS EXTRA TIME DUE'); 1
write (' ID EXT ID FOR BUS CONTROL "); -

175

.........

Rt A e At R L CEE et AR Gin o A S R LEE S e e e 2 T UM A v v cw gw a—w v s - Ty W et v Tot e -

N

Y
i
)
writeln (' INPUTS BUSY TO COLLISIONS');
for z := 1 to range do
begin o
write (id(z]:3,ext_id[z]:7,table(z,6]:14,tablel(z,7]:10);]
write (table(z,9]:9,table(z,10]1:9); S
writeln (tablelz,11]:13) e
end; AR
writeln; T
writeln ('There were ', total collisions:2,' collisions.')
end; 4
begin
assign (simfile,'simulate');
assign (busfile,'bus'); :
assign (clockfile,'clock'); :
assign (netfile,'network'); 4

set_data;

show_parameters; :
sessions_performance;)
bus_operating speed;

writeln; g
writeln ('Please enter <CR> to continue');)
read (wild); R

writelr; RN
writeln ('Do you wish to see a copy of the raw data? (Y/N)'); .
writeln ('<CR>');)
read(wild); -y
if (wild = 'y') or (wild = 'Y') :
then display data >
end. .

PSPy

Loaaa

176

W———— M e . SN SN s e e - =

APPENDIX C: SIMULATION MODEL'S INPUT LIMITATIONS

developed by this thesis, using a 16 bit minicomputer. Some limitations

Anmrit ko
CCRPULRT

may change if the computer programs are loaded intn 2a

than 128K of memory.

Simulator's Basic Unit of Time. Since the simulation model takes into

account numerous variables, many of the limitations can not be determined
until some of the variables are selected. One of the major factors
contributing to the model's limitations is the fact that the basic unit
of time for the simulation is 1/2 the propagation delay of the cable.

For this particular simulation model, this implies that all inputs
transmitted on the bus, must take at least the time equivalent to 1/2 the
propagation delay of the cable for the simulation to be successful.

The

basic unit of time, for the simulator, leads to the following equation:

((# char/input in bits) + (overhead in bits)) # 656400000 ft/sec

> 1
(bus rate in bits/sec) * (1/2 cable length in ft) -

r
YD)

4

-
=
kS

]
-~

-~ L
3

o

- «
X

e
oo s v]
;

1

..‘1

The number 1 in the equation
clock. As long as the equation
given bus rate, cable length, #

simulation model should perform

Number of Sessions.

represents one tick of the simulation
is equal to or greater than 1, for a
characters/input, and overhead bits, the

correctly.

As mentioned previously, the memory capability of

the micro-computer limits the number of sessions to 500.

177

.....
v e e

Terminal Speed. The only physical limitation on the value of the

terminal speed is the value of an integerd. The model was designed with
the assumption that the bus is able to pass traffic much faster than the
terminal. The model will not perform correctly if the terminal speed is

faster than the bus speed.

Simulation Time. The maximum simulation time, with respect to the ticks

of the simulation clock, is 2,147,483,648. 1In the case of the AFLC
network, this equates to approximately 55 minutes of real simulation
time. The maximum simulation time was used one time, with one session,
and it required 25 minutes of computer time to simulate the full 55
minutes of real simulation time. The actual required computer time will

vary with the number of sessions being simulated.

Time Interval Between Inputs. The minimum allowable interval between

inputs is 1 msec. The maximum interval between inputs is 3,271,000 msec, t?f:
with respect to the AFLC network. The maximum value is a little

unrealistic and would allow for only one input.

Actual Cable Delay. The simulation model will accept values for known

network delay between 1 and 125 times the propagation delay of the cable. o
The user entering known network delays outside this range, will cause the

simulation model to default to the appropriate extreme end of the range.

178

S
b bl 24

N P T A Tl T I S A A L T T T S e TP TR A
£ -0 .. APISRI st L™ a Caea - ot e eI T e

o te st e T ., . R e) - > e PRI e LT\ -
o S PSP PO ST ST A S Ol Tt R SRR R, SR Sy Ol WL TS T Vet Tl PP, Y A R A

Bibliography

1. O'Reilly, P. J. P. and J. L. Hammond. "An Efficient Alogorithm for
Generating the Busy/Idle Periods of A Channel Using CSMA and Loaded by an
Arbitrary Number of 3tations," Proc CUMPCUN , 427-436, Washington DC ,
Sep 82.

2. Tokoro, M. and K. Tamaru. "Acknowledge Ethernet,™ COMPCON , 320-325,
rail 77.

3. Hughes, H. D. and L. Li. "A Simulation Model of the Ethernet,"
Technical Report TR #82-008 , Dept of Computer Science, Michigan State
University, 82.

4, Almes, G. T. and E. D. Lazowski. "The Behavior of Ethernet-Like
Computers Communications Networks", Proc &th Symposium on OS Principles ,
66-81, Dec 82.

5. Tobagi, F. A. and V. B. Hunt, "Perfomance Analysis of Carrier Sense
Multiple Access with Collision Detection®, Computer Networks , i
:245-259, (80).

6. FitzGerald, Jerry. Business Data Communications. New York: John
Wiley & Sons, 1984,

7. Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs:
Prentice-Hall, 1981.

8. Hopkins, G. T. "Multimode Communications on the Mitrenet," Computer
Networks , i : 229-233 (1980).

9, "Special Report: Local Network Review and Projection,™ The
LocalNetter Newsletter , 1 (1): 55.3-55.7 (Jan 83).

10. Byers, T. J. "Electronic Ties That Bind," Computers and Electronics
» 22 (3): 68-73 (Mar 84).

11. Metcalfe, Robert M., "Echernet: Distribution Packet Switching for
Local Computer Networks®™, Communications of the ACM , 19 (7): 395-404
(Jul 76). -

12. Schruben, Lee "Modeling Systems Using Discrete Event Simulation",
Proc Simulation Conference , 101-107, Winter 83.

13. Seila, Andrew F. and Der-Fa Robert Chen, "Discrete Event Simulation

on Mini- and Microcomputers: 3ome Experiments with the Pascal Language",
Proc Simulation Conference , U41-43, Winter 81.

14, Bux, Werner. "Local Area Subnetworks: A Performance Comparison",
IEEE Transcations on Communications , 29 (10):1465-1473 (Oct 81).

P

»
Fre

POPET T SN

RGP SN i S e ¢

VITA

Captain John M. Schriml was born 2 June 1949 in Dayton, Ohio. He
served as a Nike Hercules Missile Repairman with the Army for three
vears, after graduating from Chaminade High School in Dayton. Upon his
separation from the Army, Captain Schriml returned to Dayton and attended
the University of Dayton from which he received the degree of Bachelor of
Electrical Engineering in December 1974. He received his commission in
the USAF through the Air Force's OTS program. Captain Schriml's first
assignment was as a HF (High Frequency) Radio Test and Evaluation Team
Chief in the Pacific. His next assignment was with HQ AFCC as the
AUTOVON Test and Evaluation Team Chief, which required numerous worldwide
TDYs. Captain Schriml's last assignment prior to attending the School of
Engineering, AFIT, was with the 1815 Test and Evaluation Squadron where

he was the Section Chief for AFCC's Operational Test and Evaluation

Section.

Permanent Address: 1845 Pershing Blvd

Dayton, Ohio 45420

180

B T P SR St S I R R

N TN m e e e e E O U

N - - P Lt - . a " e - " e - - ™ St e 4. et .t et - «® .
FAPSCINER S RS P S Yoy SN XTI N S SRR SO W PN D L PP S VD W LNE T ST MY R DT AE DR

JNCLASSIFIED >

3SIFICATION OfF THIS PAGE
m— — ;
REPORT DOCUMENTATION PAGE 9

ib. RESTRICTIVE MARKINGS

CURITY CLASSIFICATION

UNCLASSIFIED

-4
CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
{ICATION/DOWNGRADING SCHEDULE distribution unlimited -
1IG ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) N
IT/GE/ENG/84D-57]
'ERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION)
t1f applicable))
hool of Engineering AFIT/ENG . 1
City. State and ZI1P Code) 7b. ADDRESS (City, State and ZIP Code)
r Force Institute of Technology]

ight-Patterson AFB, Ohio 45433

SUNDING/SPONSORING
ATION

8b. OFFICE SYMBOL
(If applicable)

AFLC SYC

‘City. State and ZIP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F)
10. SOURCE OF FUNDING NOS.

PROGRAM PROJECY TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

ight-Patterson AFB, Ohio 45433

iude Security Classification)
e Box 19

. AUTHORIS)]
hn M. Schriml, B.E.E, Capt, USAF

-

REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT 4
Thesis FROM To 1984 December 180 R
NTARY NOTATION N

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
GROUP SUB. GR Communications Network, Simulation, CSMA/CD,
02 Bus, Local Networks CATV

PP U W O

I 1Continue on reverse if necessary and identify by block number:

tle: SIMULATION MODEL OF A CSMA/CD BUS LOCAL Trptened wuile roleaser 1AW AFR log1y, 1
AREA NETWORK WITH MULTIPLE VARIABLES ff?rp/ SRR S SRS
;i“l"; e o " I}Hl-'mirnc-l Develspridng
Wrngat-} -;:(,,;;1 Sl L ‘()'H’”gk;:‘}! (ATE,

esis Advisor: Walter D. Seward, Major, USAF

TION/AVAILABILITY OF ABSTRACT

orunLiMiTED X saMe as ReT. J pTic users J

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

RESPONSIBLE INDIVIDUAL

alter D. Seward, Major, USAF

22b TELEPHONE NUMBER
iInclude Area Code)

513-255-5533

22¢ OFFICE SYMBOL

AFIT/ENG

1473, 83 APR

EODITION OF 1 JAN 73 1S OBSOLETE.

-

—HUNGLASSIRIED
SECURITY CLASSIFICATION OF THIS PAGE

AD-A151 7@6 SIMULATION MODEL OF A CSMA/CD BUS LOCAL AREA NETHORK
WITH MULTIPLE VARIABLESC(U) AIR FORCE INST OF TECH

. HRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J M SCHRIML

UNCLASSIFIED DEC 84 AFIT/GE/ENG/84D-57 F/G 12/1

NL
END

FLuEn

one

—v Tt ety e e
T .. .'._‘,'7_-'.‘.-_--;&.“

“l“ 10 WM hz
=ik
[l © e
= =
22 it nae

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU OF STANDARDS 1962 &

T Ty v - Ty VIR e S e anes 2 CAm s s T I

UNCLASSIFIED -

SECURITY CLASSIFICATION OF THIS PAGE

Numerous statistical studies of the expected performance of a CSMA/CD
bus local area network have been completed. With the statistiecal
approach, the number of input sources is normally limited. Also, input h
sources normally possess the same statistical parameters with respect to
input rate and the amount of data per input. The CSMA/CD bus local area

b- network simulation model developed by this thesis can handle up to 500 .

;i input sources, all with a different input rate and amount of data per e

o input. The limitation of 500 is due only to the fact that the simulation e

_l model was implemented on a 128K memory micro-computer. The number of -
sources can be increased by implementing the simulation model with a

computer with a larger memory.

The simulation model takes the approach that once an input is made, the
time for the input to travel through the various stages of a network can
be easily calculated. Therefore, the simulation model generates traffic L
based on the statistical parameters of each individual source, then tracks =
the input as the simulation clock ticks. Using the memory power of the
computer to keep track of the location of all inputs, the simulation model
is able to determine the effect of an input on all other inputs. In some
cases, an input has no direct effect on other inputs, and at the other
extreme, when inputs want to use the bus at the same time, they have a
drastic effect on each others performance. Numerous tests were performed ’
to demonstrate the ability of the simulation model to model a CSMA/CD bus
LAN. The simulation model will accept the following multiple variables
prior to each simulation run: data rate of the bus, length of the bus
cable, overhead bits of the bus, actual delay of the bus cable, data rate
of each source terminal, time interval between each input, amount of data o
per each input, and whether the CSMA/CD is l1-persistant or p-persistant. .l -

SECURITY CLASSIFICATION OF THIS PAGE

.....

