
OD-RI31 796 SIMULRTION MODEL OF R CSMA/CD, BUS LOCAL AREA NETWORK 1/3
ITH MULTIPLE VARIABLES(U) AIR FORCE INST OF TECH
RIGHT-PATTERSON RFB OH SCHOOL OF ENGI. J H SCHRIML

UCRS DEC 94 AFIT/GE/ENG/84D-57 F/O 12/1 N

mhEE7h~EEohhmhmhhhhEEE
EEmhhEmhhhEEEE

L I~I

11111 I0 112-8 25
3.21 11112.

1401111121.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BORFAIJ Of STANDARDS 1W A

RkPoIfo)etD Alr GOVE AfNT EXPENSE

Lfl

IF

SIMULATION MODEL OF A CSMA/CD BUS LOCAL

SIAREA NETWORK WITH MULTIPLE VARIABLES

THESIS

John M. Schriml, B.E.E.

FA'
Captain,

USAF

AFIT/GE/ENG/84ID-57

DTIC
C)TJ~lN TTMN ~ ELECTE

LU ApPba~od to, public mledmsI
Distvibution Unlimited

DEPARTMENT OF THE AIR FORCE .*

AIR UNIVERSITY

* AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

8 5 03 13 154

SIMULATION MODEL OF A CSMA/CD BUS LOCAL

AREA NETWORK WITH MULTIPLE VARIABLES

THESIS

John M. Schriml, B.E.E.
Captain, USAF

AFIT/GE/ENG/84D-57

DTIC
MAR 28 685

DMMTBO lSTAEMET
Akppvv kw' pube lc tAs4

D4.buon Unlimiteld "

AFIT/GE/ENG/84D-57

SIMULATION MODEL OF A CSMA/CD BUS LOCAL

AREA NETWORK WITH MULTIPLE VARIABLES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

John M. Schriml, B.E.E.

Captain, USAF

December 1984

Approved for public release; distribution unlimited

~. ~ **.*T

*.: o.

PREFACE

The computer simulation model developed by this report will allow you

to determine the expected performance of a CSMA/CD bus local area network

under various loads. This simulation model is the first model that I

have seen which will allow you to load up to 500 input sources, all with

a different input rate and packet length. I feel this simulation model

is one of the most realistic simulation models developed to date, because

of the multiple variables of input sources.

I wish to express my thanks to Major Walter D. Seward, my advisor, and

Captain David A. King for their assistant and patience during our

technical discussions. In addition, I would like to extend my gratitude

to Anne Slone of HQ AFLC, my sponsor, and her associate, Larry Johnson,

for their support of time and the use of their micro-computer. A special

0 thanks goes to my proof reader of 35 years, my mom, and finally, a

special appreciation to my wife, Rieko, my daughters, Mana and Michele,

and my soon to be son, Joseph, for their support, love and patience

during the time they had to put up with a part-time husband and father.

Acc.~

r

ii

Table of Contents

Page

Pre face .. I i

List of Figures vi -y

List of Tables .. vii

Abstract viii

I. Introduction 1.................. 1

Background I..................................... 1
Crr t ole e 2

Proec .. 2Crren 2
Approachge .. 5

Overview of Remaining Sections 7

II. Theory-Local Area Network............... 8

Introduction 8
Definition....... 8
LAN's Importance 8
LAN Utilization 9
Bus Topoloy .. 9

Bus Interface Unit 11
Baseband vs Broadband 11
LAN Management Method 12

Time Slot .. 12 -

Token. 0 13
Contention ... 13
Persistent 0 13
Binary Exponential Backoff 14

Summary..*.. 15

III. Simulation Models00............................ 16

Introduction 16
Resident vs Transient 16
Continuous vs Discrete Event 17
Pascal and Minicomputers 17

Summaryr 18

IV. Bus Network Design and Modeling 19

Introduction...... 19
Design Concept 4 19
Customers vs Sessions.................. 21
Model Assumptions....... 22
Model Implementation 23

" Simulation Algorithm.. 28

ii

:,.-.-".--..-......•". - . -

uii,*j .. . l i l P i I -.

V. TstDesutso... ... 34

TStmar 0..................... 4

V. ~Test 2.....s...... o....... 46

Test 3 50
Test u 4

Fuhe Discussion nTecmedtion.......... 608

Imtation 1... 60

Ttio 2...... 6

V~o imsitn n omnations .. o...... o.....o....63
Imtation 5... 66
Limitation ooo.....oo..o..ooo..... oo .o.. .. o..o..ooo 6
Summrthe .Dis.ion Tt... o 66
AppendixA..imation se............. 68
Puar A2Program ..Sessions 7

VI. isParton and PRogramInuton............................. 74
Pitra5dtion 60
Limitation r..oi................ ... o 6

Limitation 62.. 66

Puar A7: .Prga6vlae6....... . 8

AppendixBA: SiationpUter'soGruide- 92

mPartAtl: Pa Programt 693
Part A2: Pascal s.....o.......................... 6
Part A3:Ps Program I n n................................. 14
Part A4: Pascal P.o e.................................. 16
Part A5: Pra Parameters117

Part A6: Ps Program Simulate .9....o... 183
Part B7: Ps Program Evaluate 159

Appendix C: Simulation oduerls ngut Lim .ttin.................. 1

SmPart oPs Program Input t 6.............. 17
Part B2: Program Sessi 17
Part 3:a Program Input n 17

Part B4:Ps Program Netwo ;7 176 [i

Part B5: Ps Program Parameters 117
Part B6: Ps Program Simulate 18]"

Part B7: Ps Program Evaluate 0........ 815"9

Appendix C: mulation moe.. Inpu L........n................... 178

Siator'sPasc Progra Inpu Tim 37

Numr B2:SPssionsP..........i..s........................... 177

Time Interval Between Inputs 178
Actual Cable Delay 178

iv

S........ .77

Nubr fSesos7.

Bi l og a h- I . . -..

Vita ~ 18

List of Figures

Figure Page

1. Bus Type Local Area Network 9

2. Example of 1 Character Input to Bus 10

3. Model Implementation........................ 24

4. Block Diagram of Simulation Algorithm 32

5. Constant Packet Length Distribution 51

6. Discrete Uniform Distribution Packet Length 51

7. Discrete Exponential Distributed Packet Length 51

8. Transfer Delay-Throughput Characteristics for a
CSMA/CD at I MB/s 54

9. Transfer Delay-Throughput Characteristics for a
CSMA/CD at 10 MB/s...................................... 56

10. Transfer Delay-Throughput Characteristics for a
CSMA/CD at 5 MB/s................................. . 58

vi

A

I

List of Tables

Table Page

1. Sessions Stored for Siato u..... t i........ 29

2. Calculated Values for the Simulation 30

3. Start of the Simulation 33

14. Simulation Prepares for First Event................ 314

5. Simulation Adjusts for Input................. .. 35

6. Simulation Prepares for Second Event 36

7. Simulation Adjusts for Bus Input.................... 37

8. Simulation Results for Delay for Various Bus Data Rates 41

vii

ABSTRACT

Numerous statistical studies of the expected performance of a CSMA/CD

bus local area network have been completed. With the statistical

approach, the numter of input sources is normally limited. Also, input

sources normally possess the same statistical parameters with respect to

input rate and the amount of data per input. TheCSMA/CD bus 4ocal area

network. simulation model developed by this thesis, can handle up to 500

input sources, all with a different input rate and amount of data per

inpat. The limitation of 500 is due only to the fact that the simulation

model was implemented on a 128K memory micro-computer., The number of

sources can be increased by implementing the simulation model with a

computer with a larger memory.

The simulation.model takes the approach that once an input is made,

the time for the input to travel through the various stages of a network

can be easily calculated. Therefore, the simulation model generates

traffic based on the statistical parameters of each individual source,

then tracks the input as the simulation clock ticks. Using the memory

power of the computer to keep track of the location of all inputs, the

simulation model is able to determine the effect of an input on all other

inputs. In some cases, an input has no direct effect on other inputs,

and at the other extreme, when inputs want to use the bus at the same

time, they have a drastic effect on each others performance. Numerous

tests were performed to demonstrate the ability of the simulation model

to model a GSMA/CD bus LAN. . The simulation model will accept the

following multiple variables prior to each simulation run: data rate of

the bus, length of the bus cable, overhead bits of the bus, actual delay

viii

- -

of the bus cable, data rate of each source terminal, time interval

between each input, amount of data per each input, and whether the

CSMA/CD is 1-persistant or p-persistant.

ix

I. INTRODUCTION

This introductory chapter begins by providing a background as to why a

bus local area network (LAN) simulation model is needed. In addition,

this chapter defines the scope of the simulation model that is dpvplnnp~d

by this thesis. Also, it provides the author's interpretation of the

current knowledge of network models and the approach this thesis will

take. Finally, it concludes with a brief overview of the remaining

chapters and appendixes of this thesis.

Background

Air Force Logistic Command (AFLC) has decided to procure commercially

available data communication equipment to interconnect asynchronous

devices over a broadband local area network (LAN). The LAN is to be

installed in buildings 262 and 266, HQ AFLC, at Wright-Patterson Air

Force Base, Ohio. The bus cable topology being employed will have over

9000 outlets for computer and terminal connections. The bus cable being

used has a frequency operating range of 40 MHz to 400 MHz. The cable's

frequency spectrum can be divided into 60 channels by using broadband

equipment, each channel with a 6 MHz bandwidth. Since each channel

operates at a different frequency, the terminal/computer bus interface

unit (BIU) must operate at a given channel's assigned frequency. How

many BIUs for a given channel should be bought/installed? In order to

answer this question accurately, it must first be determined how many

sessions (established communication links) can be supported on one

channel, given a maximum amount of allowable delay. The number of

sessions vs required channel performance would be determined by trial and

, -- i ad hM miam~~m Bi

implemented to delay how soon a BIU can attempt a re-transmission after a

collision. One method used to determine how long a BIU must wait before

attempting a re-transmission is called binary exponential backoff.

Tanenbaum (7 :2 9 4) describes a binary exponential backoff in this manner.

"After a successful transmission, all BIUs may compete for the first

contention slot. If there is a collision, all colliding BIUs set a local

parameter, L, to 2 and choose one of the next L slots for

re-transmission. Every time a BIU is involved in a collision, it doubles

its value of L. In effect, after k collisions, a fraction 2exp(-k) of

the BIUs will attempt to re-transmit in each of the succeeding slots. As

the LAN becomes more and more heavily loaded, the BIUs automatically

adapt to the load." The binary exponential backoff used by this thesis,

uses a modified version of the one described by Tanenbaum. The thesis

defines a slot as the amount of time that the BIU wants to use the busy.

After the first collision, the BIU randomly picks some waiting time

between 0 and 2 x the time interval the BIU wants to use the bus. If

another collision occurs, the BIU randomly picks some waiting time

between 0 and 4 x the time interval the BIU wants to use the bus. As

with Tanenbaum version, as the LAN becomes more and more heavily loaded,

the BIUs automatically adapt to the load.

Summary

Local area networks are becoming a popular and efficient means to

transfer local information. Within the next few years more and more

military organizations will be utilizing LANs. From the current trends,

it can be expected that the majority of these new military LANs will be

bus topology, using the broadband and CSMA/CD configurations.

15

.

bus is found busy. Persistent can be defined into three classes;

1-persistent, p-persistent, and non-persistent (7:289-291). When a BIU

has data to send, it first listens to the channel to see if the bus is

busy. If the bus is busy, the BIU waits until it becomes idle. When the

BIU detects an idle channel, it transmits its data. This type of

protocol is called 1-persistent because the BIU transmits with a

probability of 1 whenever if finds the bus idle. With the second class,

non-persistent, an attempt is made to be less greedy. If the bus is

detected to be in use, the BIU does not continually sense it for the

purpose of seizing it immediately upon detecting the end of the previous

transmission. Instead, it waits a random period of time and then repeats

the algorithm. The third class, p-persitent, falls in between the

1-persistent and non-persistent protocols. Like the 1-persistent, the

BIU for the p-persisten senses a busy channel for the time when the bus

goes idle. But when the bus does go idle, there is only a probability of

p that the BIU will transmit, with a probability of q 1 1 - p it will

defer until later to transmit. The p-persistent is more greedy than

non-persistent but not as greedy as persistent. The p-persistent and

non-persistent leads to better channel utilization and longer delays than

1-persistent.

Binary Exponential Backoff. Even though a CSMA/CD senses the bus cable

to avoid collisions, collisions do occur when two or more BIUs begin

transmitting at approximately the same time. Once the BIUs detect a

collision they stop transmitting. If these same BIUs tried to transmit

again as soon as the collision clears up, another collision will occur.

To break this cycle of repeated collisions, protocols have been

14

...

Token. The token management method places a token on the bus when

the cable is idle. If a terminal needs to transmit, it removes the

token, transmits its traffic, and when completed, places the token back

onto the bus. A lack of a token on the bus indicates that the bus is

busy. This method is more efficient than the slot time when there is one

terminal with a large amount of traffic and others have none. As with

the slot time, if the terminals have no traffic to send the channel

remains idle. A problem with the token is that it does not allow equal

access to all users. A terminal does not share the bus until it finishes

with transmitting all of its traffic.

Contention. The contention method is called random access. That

is, when a terminal has information to transmit and the bus is idle, it

transmits. All terminals are in contention for the cable media. The

most popular version of the contention method is the Carrier Sense

Multiple Access/Collision Detection (CSMA/CD) (7:291). A widely used

configuration, the Ethernet, employes the CSMA/CD method (11:90). The

CSMA/CD applies various rules to the randomness of the contention process

in order to increase efficiency. The CSMA/CD requires that all terminals

listen to the cable. If the cable is idle the terminal can transmit, and

if the cable is busy, the terminal must wait. HQ AFLC has picked CSMA/CD

as its LAN management system. With proper application, the contention

method can be very efficient.

Persistent. The protocol used with the CSMA/CD is called persistent.

This protocol is used to determine what action traffic will take if the

13

expensive, because of additional equipment, it is becoming the preferred

method. As stated by the Sytek Corporation, "the broadband versus

baseband issue is dead. Users are now sophisticated enough to see the

requirements for a mix of services, and therefore media, usually on a

broadband cable backbone" (9:55.5). The system being installed at HQ

AFLC is a broadband LAN.

LAN Management Method

Even though a user utilizes the bus cable a very short time with

respect to its input-rate, the possibility of collisions occurring

increases as the number of users are increased. A problem with the bus

topology is that all terminals have the same path for transferring

information. There must be some method to manage the terminals' access

to the cable in order to prevent traffic from colliding. When using a

bus topology, there are three basic methods to manage the network

according to Byers (10:68): time slot, token, and contention.

Time Slot. The time slot method of management divides access time to

the bus into slot intervals. Each terminal is then allocated one of

these slot intervals to transmit. There are no collisions, since each

terminal has a specific time interval to transmit. This method is very

good in giving all terminals equal access to the cable. It is also a

very efficient method when all terminals have data to transmit. A

problem with the time slot method occurs when one user has a large amount

of traffic to transmit and the others have li.ttle or no traffic to send.

This results in the channel being idle (wasted) for most of the time,

even though one terminal has data to send.

12

Bus Interface Unit

The bus interface unit (BIU), as indicated earlier in Figure 2, is the

device which connects the user to the bus cable. On the bus side, the

BIU can transmit and receive data in the megabit/sec range. On the user

side, the BIU normally accepts and sends data at a rate between 75 -

19,200 bits/sec. The BIU implements the protocol for the network, such

as, initialization, framing, link management, error control, flow

control, transparency, abnormal condition recovery, and user data

encryption. As stated by Hopkins (8:232), "the BIU accepts data from the

subscriber, buffers the data until the channel is free, and then

transmits the data as an addressed packet. The BIU also scans each packet

on the bus for its own address. If the packet is intended for the

subscriber, the BIU reads the complete packet from the channel into a

buffer, and then clocks the data to the sub.scriber device at the proper

data rate."

Baseband vs Broadband

There are two basic methods to utilize a bus cable topology, baseband

or broadband (6:157). The baseband method allows the terminals access to

the entire frequency spectrum of the cable. In effect, this limits the

cable to one channel. The other method, broadband, allows the terminals

access to only a portion of the cable's frequency sprectrum. The unused

portion of the cable's frequency spectrum can be used for additional

channels or other uses. The broadband system is very similar to the home

cable television system except that in addition to receiving, there is

also a capability to transmit. Even though the broadband system is more

11)i.

. ... •_.._- . .a ~ I •.. •...

- . ..

The bus is simply a cable that is routed throughout the organization's

office areas. Terminals are then tapped into the bus cable. The bus

gives each user the ability to interact directly with all other users and

host computers. A simple example is shown in Figure 2 to help illustrate

wny numerous users are able to utilize the same bus cable. Figure 2

depicts a user inputing 1 character of information every 200 msec

(milliseconds).

128 jsec 833 usec 200 msec

~Terminal ---- User
BusUe

1 M b/s 9600 b/s 1 character

Figure 2. Example of 1 Character Input to Bus.

The terminal then transposes the I character of information into an 8 bit

ASCII code plus parity. The 8 bit code is then output at a rate of 9600

bits/see. It will take approximately 833 psec (microseconds) for the

modem to transfer 8 bits of information to the bus interface unit (BIU).

It will then take the BIU, operating at 1 megabit/sec, approximately 128

psec to transfer the information (plus 120 bits of overhead) along the

bus. Based on the user's input rate and the bus's operating speed, the

bus is idle 99.936% of the time. Even if the input rate was increased to

1200 characters/sec, the maximum rate the terminal could handle (9600

b/s), the bus would still be idle 99.028% of the time. The quick

response of the bus, in comparison to rate at which a user inputs data,

allows the same bus to be shared by numerous users.

10

.................. . , ...-
... "-' -"'.. ..

"
". . ..""". ..".".i

L ' ,
'"" - " " , -

planning and acqusition stages of putting in LANs at its Headquarters and

all five of its Air Logistic Centers. (Long term plans will interconnect

these centers with the HO). Ry the middle of 1985, HQ AFLC'S LAN should

be operational. In the near future, government personnel will be

expected to utilize, engineer, monitor, and./or nirar ~- -

networks as part of their routine duties.

LAN Utilization

The usefulness of a local area network is limited only by the user's

imagination. In the case of HQ AFLC, the prime use will be to assist in

the management of the Air Force's logistic resources. With the Air

Force's resources distributed all over the world, the LAN will provide

virtual real time location and accountability of these resources.

Possible secondary uses of the AFLC network may be for electronic mail,

security monitoring, live video broadcasts, and fire detection.

Bus Topology

One of the most utilized topolgies for a LAN is the bus. The bus

topology has been choosen by HQ AFLC, for its network. A bus topology is

illustrated in Figure 1.

o Terminals/Computers

Figure 1. Bus Type Local Area Network.

9

.. °_ -

""".". .."".",.". ...-."."." . -" .? . ' " " .T . ', '. " ',' ' ', ' %- ' '' , - ,' ' ',

II. THEORY-LOCAL AREA NETWORKS

Introduction

The local area network (LAN), with the advent of the information

explosion, is the natural outgrowth of the need, and finally, the ability

(due to the micro-computer) to exchange information between locations.

This chapter briefly discusses some of the theory behind a bus local area

network.

Definition

"A local area network is a network within a small confined area and it

is the piece of the communication net that interconnects equipment such

as word processors, computers, terminals, and telefacsimile machines and

ties them altogether" (6:137). Tanenbaum (7:286) describes the local

area network as generally having three distinctive characteristics:

- A diameter of not more than a few kilometers

- A total data rate exceeding I Mbps

- Ownership by a single organization

LAN's Importance

The importance of local area networks, with respect to the military,

should be quite evident. The difference between success or failure of a

military operation can depend heavily on the ability to gather and

exchange information. In the past, LANs were normally confined to the

academic environment. But within the next few years a rapid increase in

the military's use of the LAN is expected. Already HQ AFLC is in the

8

....................................

-'--' :-'-- - '.£,'I S , '_'" -. _'. ", .-..- .- ", "- "- .. ".. "",'+, - +- '- .- .- .' .'-.'...,..... .'. .,..-. .-..-.

approaches in designing a simulation model. Chapter 4 provides the

design concepts, model assumptions and implementation, and the simulation

algorithm for the bus simulation model developed by this thesis. Chapter

5 provides the test results of various simulation runs made with the

thesis model and Chapter 6 discusses some recommendations. Appendix A

provides the User's Guide and examples of a simulation run. Appendix B

provides the actual Pascal computer programs, and finally, appendix C

provides the design input limitations of the network model.

to

7..

- Adjust for the various numbers of characters per input

- Adjust for the terminal/modem to BIU bit rate

- Adjust for the bus bit rate

- Adjust for overhead bits

- Adjust for cable length and added delay

- Generate various traffic loads

- Monitor all traffic

- Collect data on:

-- Number of inputs

-- Number of collisions

-- Delay due to collisions

-- Delay due to the bus being busy

-- Delay due to flow control

-- Amount of data being inputed

-- Traffic being passed by the bus

- Set the amount of simulation time

- Clock and keep track of all events

- Store necessary data for analysis

- Analyze simulation results

The computer programs are flexible enough to allow for hundreds of

customers and for each customer to be transmitting at a different data

rate.

Overview of Remaining Sections

Chapter 2 provides the novice with some of the theory behind a bus

local area network. Chapter 3 provides some insight on the various

6!

to amount of traffic a station can input. With these assumptions, many

of the input variables reduce to statistical parameters. In addition,

results of these previous models normally provided a chart depicting

network performance as delay vs inputed traffic. The results of this

thesis model indicate that a simple delay vs inputed traffic chart dos-

not adequately define the performance of a network. The thesis model

demonstrates that sessions which input different amounts of traffic, will

have different amounts of delay. Network models built with statistical

parameters are very good for comparing the performance of the various

types of networks against each other, but they are very poor for

analyzing an individual network where all input parameters could be

different.

Approach

As indicated above, previous network models have been developed

primarily for academic discussions. The anticipated solution to modeling

the AFLC network is to build a scale model. In this case, a scale model

does not imply a model that looks like the AFLC network, but a model that

exhibits all the time characteristics of the AFLC network. Having

researched the various characteristics of typical local area networks, it

was necessary to construct a computer program that modeled the time

characteristics of an actual LAN. The requirements for the model

developed in this thesis include computer programs that are able to:

- Select typical sessions from a file

- Adjust for the various inputs rates of the sessions

- Adjust for the deviation of the various input rates

5
•-"S -.

-. ,.

..

are the work of Tokero and Tamaru for Acknowledging

Ethernet (2), Franta and Bilodeau for Priority

CSMA. Hghs 1--i i (3) for Ethernet, and Almes and

Lazowska (4) for What are Termed Ethernet-Like

Networks. These studies -= l rc. . ..

protocols and few consider more than a dozen or so

stations. Apparently neither the experimental nor

simulation approach has adequately addressed the

performance of CSMA/CD networks loaded with hundreds of

stations and including several protocol layers."

Even though O'Reilly and Hammond (1) developed a model which takes

into account hundreds of station, their model still limits itself to the

fact that all stations have one mean packet length and all stations have

identical Poisson arrival rates. In addition, as do many previous models,

O'Reilly and Hammond's model disregards the effects of flow control.

Their model, as does the model developed by Tobagi and Hunt (5), assumes

that there are no restrictions on the amount of traffic a station can

input. In reality, there are normally two restrictions on the amount of

traffic a user can input. The first restriction is that the user is

limited by the terminal/modem interfacing the user with the BIU, normally

this rate is 9600 bits/sec. The second restriction is that most BIUs will

have some type of connection, such as a RS-232 interconnection, which

will limit the amount of traffic inputed if the BIU is having trouble

moving the traffic it already has. Many previous models assume that all

customers transmit data at the same statistical data rate, all traffic

placed on the bus has the same mean packet length, and there is no limit

Jj?[

.,•°

- The number of active sessions

- The input rate of each session

- The input rate varianne of each -eision

- Each terminal/modem bit rate to the BIU

- The number of characters per input

- Bit rate of the BIUs

- Bus propagation delay

- Delay introduced by the active and passive components of the cable

- The CSMA/CD network media access scheme

- The BIU overhead

Originally, the model was planned to be limited to the performance of

a single channel. Traffic generated by any future gateway connections,

to other AFLC LANs, would not be considered. Actually, if the average

amount of traffic from gateways and other channels can be anticipated and

represented as sessions, this model can be used.

Summary of Current Knowledge

Numerous articles have been published in recent years concerning the

performance of various local area networks. These articles have

discussed mathematical, statistical, and computer simulation models of

various networks. The main problem with these articles has been that

they dealt with the ideal case. As stated by O'Reilly and Hammond

(1:427),

"A number of simulation studies have been reported

in the last several years. Typical of these studies

<[.

...-. --['--.:. : - -i [i--,i-/<" -" -L. ..,.-. L.-["[".'-['L.

I
error unless a formal method is developed to predict LAN performance.

Such a trial and error method would result in wasted effort, in time and

money.

Problem

The problem as stated by the thesis proposal of HQ AFLC/LMSC is, "we

need a model of the proposed network to determine what performance we can

expect under various loads and to help make decisions such as how many

users can be accommodated on a channel. The model is to aid us in

effective network management." In short, the problem is that without

some indication of a channel's performance, the channel will be loaded

with customers until finally it reaches an unacceptable level of

performance. Or a slightly different viewpoint, a channel may be

operating satisfactorily and there may be a new requirement to add more

t e customers. Will the channel support these new customers or should a new

channel be added? If an attempt is made to add more customers to a

channel and its performance drops below an acceptable level, resources in

time and money would have been wasted. In addition, if a new channel is

added when it is not necessary, again resources would have been wasted.

The problem of inefficient network management can be overcome by

designing an accurate model of the network with delay and channel

utilization as output parameters.

Scope

The local area network simulation model developed by this thesis takes

into account the following parameters:

2- . an a .a.

III. SIMULATION MODELS

Introduction

This chapter touches on some of the methods used to build simulation

models. The three areas dicussed in this chapter are; the resident vs

transient viewpoint, continuous vs discrete event, and using

minicomputers and Pascal for model building.

6 RESIDENT vs. TRANSIENT

In Lee Schruben's article, "Modeling Systems Using Discrete Event

Simulation"(12:101-102), he discusses two categories or viewpoints in

modeling systems using simulation, resident and transient. He

illustrates the two categories by comparing the two approaches in

simulating a factory. A simulation model of a factory using the resident

viewpoint would take into account the machines, workers, storage spaces,

material handling equipment, production schedules, etc. The transient

point of view would take into account the parts being produced by the

factory. For example, he states, we might model the factory by

describing what happens to parts as they travel through the production

process or we might model the same factory by describing what happens to

the machines and inventories.

The local area newtork simulation model developed by this thesis takes

the transient point of view. That is, the thesis model simply monitors

all traffic as it enters, travels through a theoretical network, and

finally as it exits the bus.

16

Continuous vs Discrete Event Simulation

A continuous simulation involves a simulation whose clock counts

through each increment of time. A continuous simulation model would be

used if the states within the model change often with respect to the

simulation increment of time. In contrast, discrete simulation involves

the realization of a system model that changes state only at discrete

points in time, called events (13:41). In developing the thesis model,

discrete event simulation was used. In the thesis model, instead of

counting each increment of time, the model determines when the next

important event will occur, and then steps the clock to that event.

Pascal and Micro-computers

As stated by Seila and Chan (13:41), in order to realize a discrete

event simulation, the language used must provide facilities for

representing entities, attributes and sets, for manipulating the entities

in sets (inserting and removing them, and searching through the set), and

for doing scientific computations. The simulation languages SIMSCRIPT,

SIMULA, GPSS, GASP, and SLAM, which are normally available only on large

mainframe computers, provide these features.

The author of this thesis being unfamiliar with these simulation

languages, selected the Pascal language to write the simulation programs.

(Pascal was selected because the author had an opportunity to study

Pascal prior to the start of the thesis project.) To support the

author's selection of Pascal, Seila and Chen article (13:42) further

states, "that their research showed that it is possible to develop

discrete event simulation using Pascal with essentially the same level of

17

effort that is required using a special purpose simulation language.

This means that relatively sophisticated, realistic simulations are not

only possible, but practical on microcomputers costing as little as

$3,000 - $4,000. The limitation on the possible size and complexity of

the simulation is imposed primarily by the size of the computer memory

and the programmer's imagination."

Summary

The simulation model developed by this thesis uses the transient point

of view, discrete events, Pascal programming language, and a

micro-computer.

I"1

0!

18-. .

. . . .o.....

IV. BUS NETWORK DESIGN AND MODELING

Introduction

This chapter reviews the design concepts of the bus simulation model

created by this thesis. It explains the difference between sessions and

customers, and provides the assumptions made with the simulation model.

Finally it concludes with discussions of how the model was implemented

and how the simulation algorithm works.

DESIGN CONCEPT

The design concept of the network simulation model is very simple. It

assumes that, given the type of traffic being input into a network, the

performance of a network can be determined by monitoring the time it - -

takes for the traffic to progress through a theoretical network. The

design concept relies heavily on the memory capabilities of the computer

to keep track of the location of all traffic. As stated earlier, the

simulation takes the transient point of view. That is, the simulation

model is only interested in monitoring the time it takes traffic to

progress through a network. Also the concept relies on the fact that the

time it takes for the traffic to travel through the various stages of the

network can be easily calculated. A simple example of these calculated

times is as follows:

EXAMPLE. Suppose it is known that one customer is inputing one

character of traffic every 200 msec with an input deviation uniformly

distributed between +/- 10 msec. With this information, it is known that

an input, on the average, will occur every 200 msec. It is also known

19

that one character of information will generate 8 bits of traffic (7 bit

ASCII code plus a parity bit). It can also be calculated that a

terminal, capable of transmitting data to the BIU at a rate of 9600

bits/see, will need approximately 833 usec to transfer the data to the

laTU, t the RIU, an overhead of 120 bits are added to the 8 bits of -.

information. It can then be calculated that a bus operating at 1

megabit/sec will need 128 usec to pass the information.

From the example, it can be seen that once an input is made, the times

required for the input to progress through the stages of a network can

easily be determined. If this idea is taken one step further and the

time for the first input is randomly selected, then the time interval for

the second input can be randomly picked to occur somewhere between 190

and 210 msec later. If the simulation model is provided the randomly

picked time for the first input and the expected interval for the next

input, and the model has already calculated the times required for the

input to travel the network, then the simulation model (computer) can

keep track of the location of the traffic as the simulation clock counts.

The simulation model can be expanded to include as many customers as

desired, with the only limitation being the memory capacity of the

computer being used. These additional customers can all have different

input rates and different amounts of traffic being inputed. The computer

simply calculates the individual travel time and input interval for each

customer, and adjusts their location in the theoretical network

accordingly as the simulation clocks counts.

The design concept, as stated in the beginning, is very simple. The

20

.

simulation model simply generates traffic based on the types of customers

loaded, then tracks the traffic as it would normally progress through a

theoretical network. At any instant in time, the memory of the computer

has the exact location of the traffic generated. Data collected on any

difficulties of the traffic to pass through the network will provide the

performance of the bus network being simulated. Before going into more

detail on how the concept is implemented, it is important to clarify two

terms, customers vs sessions.

CUSTOMERS vs SESSIONS

In order to eliminate any confusion, it is important to define the

difference between customers and sessions. In a local area network, a

customer may wish to communicate with another customer or a host

comupter. A communication link (session) must be established in order to

communicate. A session, as used by this thesis, is composed of the data

rate of the terminal, number of characters inputed with each input, the

average amount of time between each input, and the maximum +/- deviation

from the average time between inputs. The +/- deviation of the input is

uniformly distributed between the maximum +/- values of the deviation.

The simulation model developed by this thesis, simulates sessions, not

necessarily individual customers. The model simulates a network based on

the number and types of sessions a group of customers may generate. For

example, a LAN may have a 1000 customers connected to it. The actual

performance of the network depends directly on the type of traffic each

of these customers generate. If each customer seldom used the network,

the perfomance of the network could be expected to be satisfactory. On

the other hand, if all customers tried to transfer a large amount of data

21

..
"-:<"i", ", "-"-, .] .. -""" "'-. .'.,,- , i- •... ."...- ."..". .". .. ,..-.",".."."-....". .-. ".. .2

at the same time, network performance could be expected to be

unsatisfactory. Therefore, it is impossible to determine network

performance based solely on the number of customers attached. The

performance of the network can be determined if the expected type of

traffic (sessions) generated by the 1000 customers is known or estimated.

It is acceptable to think of the sessions being simulated as customers,

but it must be realized that the customers/sessions being simulated, is

the amount of traffic being produced by the entire population of

customers attached to the network and that a simulation customer/session

is a typical customer, not necessarily a particular customer attached to

the network.

MODEL ASSUMPTIONS

The following assumptions were used in designing the bus, CSMA/CD (1-

and p- persistent) simulation model.

- Each BIU can sense the traffic of all other BIUs.

- The amount of traffic input by a particular session is constant.

- The amount of traffic input by various types of sessions may be

different.

- The time interval between each input of a particular session may

vary.

- The sessions/customers being simulated is a composite of the traffic

produced by the entire population attached to the LAN.

- Flow control allows the BIU to handle only one input at a time

- The BIU, when starting to transmit data, will wait for the time

interval equal to two round trip delays of the bus cable before allowing

22

...

..... - I I

new traffic to be inputed.

- Traffic waiting at the bus to be transmitted, will wait an

additional time interval equal to one round trip delay of the bus before

transmitting.

- A modified versionr f thp hi-- " -ptv i? mkrnff is used for

collisions. The local parameter used for binary exponential backoff is

reset to 2 after each successful transmission.

MODEL IMPLEMENTATION

This thesis has implemented the LAN simulation model around seven

Pascal computer programs. The user's guide and examples of the programs

outputs can be found in Appendix A. The actual programs can be found in

Appendix B and the input limitations of the network simulation model can

be found in Appendix C. The names of the seven program are:

~0

1. Input t(ypical sessions)

2. Sessions

3. Input n(etwork sessions)

4. Network

5. Parameters

6. Simulate

7. Evaluate

These programs and how they interact with created files and user

inputs are shown in Figure 3 on the next page. A brief description and

function of each program follows:

23

. -

I I
I I
I I

FILES PROGRAMS INPUTS

I I

Inputt I

S -terminal speed-input interval
Sessions -input deviation

characters/input

Input nI

I -sessions added
Network .Network -sessions deleted

-# of repetitions

0

S -bus data rate
Parameters -bus cable length

overhead

ctual delay of cable
-I or p persistant

Simulate -transition clock time
-simulation clock time

Simulate IOUPT

OUTPUTS

I -session's delay
I -session's input rate

Evaluate -session's throughput
-bus's performance

J -collisions/sec

Figure 3. Model Implementation

24 '

• - ,,. , .. .'.' .". .- .. , , ,... - -.. . ". '. .. '. ,- .'-
..... il J iJil i Il m l

I. - I III I U *I E _ * _ I E J l i II EU I-

Program Input-t(ypical sessions). The function of this program is to

establish a file which will contain the list of typical

customers/sessions which can be selected for simulation. The file is

established after the program prompts the user for the terminal data

rate, number of characters per input, time interval between inputs, and

the time deviation of inputs for the first typical session. The time

deivation entered, is the maximum +/- deviation uniformly distributed

around the average time interval between inputs. The program then

prompts the user to use 'program Sessions' for any further deletions

and/or additions to the typical session file.

Program Sessions. The function of this program is to make changes to the

established file of typical sessions/customers. The logic behind having

two programs, Input t and Sessions, was to prevent the user from

inadvertently destroying the file of typical sessions. Program Input t

creates a one customer file, while program Sessions can only make changes

to that file. Program Input t would only be used to start a file or, if

desired, to destroy the complete file of customers. Program Sessions is

the main program used for maintaining the file of typical sessions. The

main reasons for this program are to allow the user to keep a directory

of all possible sessions needed for simulation and to elimimate the user

from having to continuously key in sessions for simulation.

Input-n(etwork sessions). The function of this program is to establish a

file which will contain the list of sessions to be simulated. The file

is established after the program prompts the user for the terminal data

rate, number of characters per input, time interval between inputs,

25

..
.. .. °

deviation of time interval between inputs, and the number of times this

session will be duplicated in the network simulation. The program then

prompts the user to use 'program Network' for any further changes to the

file of network customers.

Network. The function of this program is to make changes to the file of

sessions that will be simulated. It allows the user to review the list

of typical sessions, upon request, and prompts the user to specify which

sessions are to be simulated. Again, the logic behind having two

programs, Input n and Network, was to prevent the user from inadvertently

destroying the file of network sessions. Program Input n would be used

to start a file or, if desired, to destroy the complete file of network

customers. Program Network is the main program used for maintaining the

file of network customers. The main reasons for this program are to

allow the user to build a file of customers for simulation from the file

of typical customers and to eliminate keying in of customers for each

simulation run.

Program Parameters. The function of this program is to calculate the

travel times required for each session to travel through the various

stages of the theoretical network. Calculations are made using the

information from the file of sessions to be simulated and the program's

prompts for data rate of the bus, round trip length of the bus cable, and

the BIU overhead. The calculated times are based on the increments of

the simulation clock. Increments of the simulation clock are based on

1/2 the bus cable's round trip propagation delay. That is, one tick of

the simulation clock will equate to 1/2 the propagation delay of the bus

26

cable. There are two main reasons for using increments of 1/2 the

propagation delay of the cable. First, because the simulation is

counting in discrete steps of time, the simulation will appear to be more

continuous and have less error, if the increments are small compared to

the time for events to hatopn. The second reason is that collision

avoidance and detection is based on the propagation delay of the cable.

The simulation model is better able to handle these situations by having

the clock based on increments of delay.

Program Simulate. The function of this program is to perform the actual

simulation of the bus LAN. It prompts the user for the amount of time

they wish the model to run before collecting data (transition time) and

for the amount of time the model should run while collecting data

(simualtion time). It also prompts for the type of network management,

1-persistent or p-persistent, and if p-persistent, what percentage. In

adqition, it prompts the user for the actual delay of the bus cable, if

known. Prior to starting the actual simulation, it loads the values

calculated by the program Parameters. While the simulation is running,

tables.collect the amount of time the bus is passing data, the amount of

time the terminals are passing data, the amount of data the customers are

inputing, number of inputs, number of collisions, the amount of time

traffic is delayed due to the bus being busy, the amount of extra waiting

time due to collisions, and the amount of time inputs are held up because

the BIU can't get rid of the traffic it has. Once the simulation has

stopped, the data collected is filed away for use by the last program,

Evaluate.

27

Program Evaluate. The main function of this program is to evaluate the

data collected during the simualtion. The first part of the program

displays to the user the parameters that the results are based on. The

second part displays to the user the performance of each type of session

loaded into the network. The performance results indicate the session's

delays for collisions, flow control, and the bus being busy. It also

shows the amount of traffic the terminals were passing and the amount of

traffic the sessions were inputing. The third part of the program

indicates the total traffic being passed by the terminals and the total

amount of traffic all sessions were inputing. In addition, it shows the

total traffic being passed by the bus, as indicated by the time the bus

was busy, as indicated by the amount of traffic the terminals were

passing, and finally as indicated by the amount of traffic being inputed

by the sessions.

SIMULATION ALGORITHM

In the following discussion, using a block diagram of the simulation

algorithm and a sample simulation run, the simulation algorithm is

explained.

In order to perform a simulation, programs Sessions and Network would

be used to establish the sessions/customers to be simulated. Assuming

these programs have been used, the sessions selected for this sample

simulation are stored in the Network file. They are:

28

". .. -- ,-.... ...-.... .- "..........-....-.-......-... . .. ,..... "

char/ input

ID terminal rate input input interval deviation quantity

5 Q600 b/s 1 100 msec 10 Msec 2

7 19200 b/s 80 200 msec 20 msec 2

Table 1. Sessions Stored for Simulation.

From Table 1, it can be seen that one session has an typical session ID

number of 5, terminal data rate of 9600 b/s, one character per input, the

interval between inputs is 100 msec, the uniform deviation of the

interval bewteen inputs ranges between +/- 10 msec, and finally the

session is to be be duplicated twice for the simulation run.

Having selected the sessions to be simulated, program Parameters is

then called. Program Parameters prompts the user for the bus data rate,

round trip length of the cable, and the BIU overhead bits. For this

sample simulation run, the bus data rate is 1 mega b/s, the bus cable

length is 2000 ft, and the BIU overhead bits is 120 bits. With this

information and the file of network customers, the program calculates the

times for the traffic to progress through the various stages of the

theoretical network. Table 2 depicts these calculated values.

29

respect to how much traffic can be handled and the expected amount of

delay, for a given situation. Once the actual bus data rate for the

system to be installed at HQ AFLC is known, then the model can be run to

determined what kind of performance can be expected for the anticipated

1-'A. fy. in tbp future, if the LAN is performing satisfactory and a new

requirement for additional loading is made, the model can be run with the

present load plus the new additional loading, to determine the impact of

the new loading on the network.

Summary

In this chapter the design concept, assumptions, and the simulation

algorithm concerning the thesis network simulation model were discussed.

Finally the chapter concluded with a demonstration of the model's ability

to provide the user with the expected network performance for a given

situation.

431

".1

, "" .'o

.

Simulation V1. The results of simulation #1 indicate an average delay of

480.9015 msec from the time the source BIU has the traffic to the time

the first character reaches the destination BIU. Also Table 8 shows that

flow control was employed on an average of 301.3 msec for ePah input.

This implies that each user wished to input blocks of data every 1000

msec, but the LAN would only accept inputs on the average of every 1301.3

msec for the given configuration. A 300K b/s bus could not handle the

combined user input rate of 360K b/s and far exceeded the maximum delay

of 100 msec.

Simulation #2. The results of simulation #2 indicate an average delay of

38.1645 msec from the time the source BIU has the traffic to the time the

first character reaches the destination BIU. Also Table 8 shows that

flow control was employed on an average of 1.233 msec for each input.

This implies that each user could only input blocks of data on an average

of every 1001.233 msec. The 500K b/s bus passes the 100 msec delay

requirement but falls slightly short of being able to handle the 360K b/s

combined input rate of the sessions.

Simulations #3 and #4. The results indicated in Table 8 for simulations

#3 and #4, show that either the 750K b/s or the 1000K b/s bus can pass

the 360K b/s of input data with a delay much less than 100 msec.

The demonstration was performed to show that, given the expected type

of traffic being generated by the users and the configuration of the bus,

the simulation model will give the expected performance of the LAN with

42

+L - r- r
-4 0 c. ol

0 00 0

E- 0

0

0 -rl -l 0

0~ 0) 0) Z0l

m 0

44 00 U.' as

0 C:).~_

-4 0 0 04

c c 4

4) 0 0 d h -

4) c

. 4 0o

co N 0) 0

00

04

indicated in Table 8, the following parameters were loaded into the

simulation model for each of the 50 user devices:

- 9600 b/s terminal rate

- 900 characters per ..r-

- 1000 msec between inputs

- 100 msec +/- uniform deviation from mean input rate

The parameters loaded for the bus were:

- 2000 ft maximum bus length

- 120 bits of overhead at the BIU

- Bus rate 300K b/s for simulation #1, 500K b/s for simulation #2,

750K b/s for simulation #3, and IO00K b/s for simulation #4

The simulation model, after each simulation, provided the following

information to the user:

- Bus rate of LAN

- Actual traffic passed by bus

- Desired combined input rate of all sessions

- Actual combined input rate of all sessions

- Average amount of time flow control was employed

- Average delay due to the bus being busy

- Average delay due to collisions

The results of the four simulations are shown in Table 8.

40.

time the bus is busy, and the amount of time between inputs. Once the

simulation is completed, these records are stored in the file Simulate

until needed by the program Evaluate.

Demonstration

As stated previously in Chapter 1, HQ AFLC/LMSC indicated that, "we

need a model of the proposed network to determine what performance we can

expect under various loads and to help make decisions such as how many

users can be accommodated on a channel." The following four simulation

runs were performed to demonstrate how the simulation model developed by

this thesis, fulfills that need. The scenario used for this

demonstration, is based on one of the specifications identified in the

'AFLC Headquarters Local Area Network, Bus Interface Unit Specification

(Draft)', dated 30 Nov 83. Summarizing the specification used for this

demonstration, it states that the LAN shall provide sufficient

transmission speed to support a population of 50 user devices, with each

generating an average of one 900 character stream of data per second

(small number of file transfer oriented user devices). Also, that the

first character in a continuous character stream shall be delivered to

its destination BIU device port within 100 milliseconds after the

presentation of the last character in the stream to the source BIU device

port under the given loading configuration. HQ AFLC was interested in

knowning what kind of performance would be expected for various bus rate

of a CSMA/CD system, and would the performance meet the required

specification. Four separate simulations were run with the bus rates of

300K b/s, 500K b/s, 750K b/s, and 1000K b/s. The results of these four

simulations are indicated in Table 8. For each of the simulations

39

would be found, as the clock passes through the place in time the

collision occurred. In the case of p-persistent, the sessions waiting to

transmit goes through an addition block, adjust further, as depicted in

Figure 4. In this block sessions are randomly picked to remain at their

current value in Table 3 or have an addition delay factor added to column

3, based on the percentage of the p-persistent. If more than one session

remains at their present value in column 3, there will be a collison and

new backup times will be added to column 3. The program recycles back to

find the next event if one or zero sessions remain at their current value

in column 3.

If it has not been apparent, the simulation algorithm never counts

down to an actual event. It counts down to 1 clock tick before the event

is to occur, evaluates the location of all network traffic and inputs,

adjusts all traffic and inputs that would be effected by the next clock

0 tick, adjusts the clock time if needed, then continues to count through

the actual event. This action, of using the value of 1 to depict upcoming

events, allows the simulation to determine that a zero in column 3 means

that no traffic is present between the bus and the BIU. Also a zero in

column 5 indicates that follow control is employed and no more traffic

can be input for a particular session until the traffic already inputed

is passed by the bus. A number 1 showing up in columns 3 and/or 5 allows

the model to identify that an event will occur. In addition to

simulating the network, program Simulate establishes an additional 7

columns of matrix space for each session simulated. These additional

columns keep track of the number of inputs, number of collisions, amount

of time spent waiting at the bus due traffic, amount of time flow control

is employed, amount of extra time waiting due to collisions, amount of

38

in column 8 (row 2), and by one propagation delay of the cable. The

'adjust bus' procedure test the values of columns 3 and 5 of each session

and calls the appropriate adjuster procedure (AA - JJ) to adjust each

session the proper amount. Table 7 indicates the results of adjust bus.

3 4 5 6 7 8

time interval next input input bus busy

to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14164 65640 656 84

0 547 65307 65640 656 84

0 21880 83355 131280 13128 498

0 21880 36606 131280 13128 498

CLOCK:9981624

Table 7. Simulation Adjusts for Bus Input.

Having performed 'adjust bus', Figure 4, indicates a recycle back to

'find next event'. The algorithm simply repeats itself until the clock

time goes negative. The only situation not illustrated as depicted in

Figure 4, is when there are more that one customer wanting to use the bus

or another customer will arrive within one propagation delay of the time

a BIU starts transmitting. In the case of one persistent, this situation

will create a collision. Once it has been determined that a collision

will occur, new backup times are randomly generated and added to column

3. Collisions, similiar to adjust input, does not advance the clock, but

simply puts the sessions colliding at the appropriate place in time they

37

............... '.-.'.

the input just input. Again since the next event is not a 1, procedure

'prepare for event' is performed. Table 6 depicts the prepare for event.

3 4 5 6 7 8

time Ijtpvqo ,t input bus busy

to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14251 65640 656 84

1 547 65394 65640 656 84

0 21880 83442 131280 13128 498

0 21880 36693 131280 13128 498

CLOCK:9981711

Table 6. Simulation Prepares for Second Event.

The procedure 'prepare for next event' while preparing, would have

noted that there is only one input at the bus ready for transmission.

Besides noting the number of sessions ready to use the bus, it checks to

see if any traffic would arrive in a time interval equal to one round

trip propagation delay of the cable. It knows if other traffic arrives

in this interval of time, there will be a collision. Therefore, in

preparing for the event, the procedure has determined that it is a bus

event, only one customer is ready to transmit, and that the customer is

in the second row. As depicted in Figure 4, the next step is to 'adjust

bus'. Procedure 'adjust bus' notes that no collision will occur and the

traffic can be passed on the bus. All other customers/sessions must be

adjusted by for the next clock tick, the time the bus is busy as depicted

36

noted that the next event was an input event. Having prepared for the

event as depicted in Table 4, Figure 4 indicates that for an input event

it is necessary to 'adjust input'. 'Adjust input' simply places the

value from column 4 into column 3, for the session indicating a 1 in

column 5. At the same time, a new time for the next input to occur is

generated by using the values from columns 6 and 7. Table 5 depicts the

adjustments for an input event.

3 4 5 6 7 8

time interval next input input bus busy

to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14798 65640 656 84

548 547 65941 65640 656 84

0 21880 83989 131280 13128 498

0 21880 37240 131280 13128 498

CLOCK:9982258

Table 5. Simulation Adjusts for Input.

It should be noted that an adjust for input does not move the clock.

Tables 4 and 5 both indicate the same time. The simulation knows that an

input will occur in one more tick of the clock and simply adjusts the

time in column 3 by a factor of 1. It also randomly picks a new time for

the next input between 65640 +/- 656 and adds 1. Having made the input

adjustment, Figure 4, indicates the next step is to repeat 'find next

event'. From Table 5, it can be seen that the next event will be in 548,

35

the accuracy of the simulation run. In this particular sample

simulation, the results would be based on 304 inputs for session id #5

and 152 inputs for session id #7.) As indicated in Figure 4, the first

step the program does is scan columns 3 and 5 in order to 'find next

event' to occur. Since the simulation is based on discrete events, the

procedure 'find next event' searches for when the next important event is

to occur. In scanning columns 3 and 5, the program will note that the

next non-zero event to happen is at 17743. Since the next event is not a

1, the program will then 'prepare for the event' by reducing all times in

columns 3 and 5 by next event minus 1. If 'find next event' had

indicated that the next event would occur in 1 tick of the simulation

clock, 'prepare for next event' would have been by-passed. This action

is depicted in Table 4.

3 4 5 6 7 8

time interval next input input bus busy

to bus to bus input interval deviation time

Time in Clock Ticks

0 547 14798 65640 656 84

0 547 1 65640 656 84

0 21880 83989 131280 13128 498

0 21880 37240 131280 13128 498

CLOCK:9982258

Table 4. Simulation Prepares for First Event.

While the program was scanning for the next event in Table 3, it also

3"4

first clock time loaded, is the transition time. The transition time

simply runs the simulation for a period of time to allow transient

situations to die out. The second clock time loaded, is called the

simulation time. It is the actual clock time that data will be collected

on the performance of the simulated network. With the clock times

entered, the simulation begins. Table 2, without the ID numbers, is

repeated in Table 3.

3 4 5 6 7 8

time interval next input input bus busy

to bus to bus input interval deviation time

Time in Clock Ticks

0 547 32540 65640 656 84

0 547 17743 65640 656 84

0 0 21880 101731 131280 13128 498

0 21880 54982 131280 13128 498

CLOCK: 10000000

Table 3. Start of the Simulation.

For this simulation, the clock has been set to 10000000 ticks.

(Comment: The simulation time entered is with respect to the ticks of

the simulation clock. One method for determining how long the simulation

should run is to review the data loaded for simulation. Having reviewed

the data, pick the session with the largest amount of time between

inputs, then multiply that quantity by the number of inputs you wish to

see simulated. The more inputs a session is allowed to input, the better

33

I

I Load
Parameters

Set
Clock

NetEvent

0I

Ye0Nx

FigreLj Boc Digrm f imlatonAlorth

32

S~ **,'.*. .No

I

terminal.

- column 4: 'Interval to bus' indicates how much time, once an input is

made, that must elapse before the input reaches the bus. Once an input

is made, this value is placed in column 1 and column 1 reflects the

ct i l ,nti-nz down Rs the input travels to the bus.

- column 5: 'Next input' indicates the amount of time that must elapse

before the next input is made. This time is randomly picked by the

program Parameters.

- column 6: 'Input interval' indicates the average elapse time between

inputs. Once an input is made, this value, modified by the input

deviation of column 7, is placed in column 3 and column 3 reflects the

actual counting down of time before the next input is made.

- column 7: 'Input deviation' is the maximum +1- uniformly distributed

deviation of column 6.

- column 8: 'Bus busy time' indicates the amount of time the busy is

bus, once an input reaches the bus.

Once the values in Table 2 are calculated, they are stored in the file

net data. The next step is to call program Simulate. Figure 4 is the

block diagram of the simulation algorithm and is used for the remaining

discussion of the sample simulation run.

Program Simulate will load the calculated values produced by the

program Parameters into a matrix table. The ID and extended ID are not

used during the simulation and only columns 3 - 8 of Table 2 are loaded.

This action is depicted in the algorithm block diagram, Figure 4. The

next action of the program is to prompt the user for clock times. The

31

l8

1 2 3 4 5 6 7 8

time interval next input input bus busy

ID ext ID to bus to bus input interval dev time

5 1547 3254 6564056 8

5 1 0 547 325148 65640 656 84

5 2 0 5147 17743 65640 656 84

7 2 0 21880 101731 131280 13128 498
'7 2 0 21880 514982 131280 13128 498

Table 2. Calculated Values for the Simulation.

It should be remembered that the times given in table 2 are with

respect to the ticks of the simulation clock, which are based on 1/2 the

propagation delay of the bus cable. In this particular simulation, the

interval between inputs for session #7 is 200 msec, which equates to

131280 1/2-propagation delays of the cable. An explanation of the

columns in Table 2 are as follows:

column 1: Indicates the ID number of the typical session picked for

simulation.

- column 2: Indicates the extended ID number of the typical session

picked for simulation. The maximum extended ID number for each type of

session should match the number of times the session was to be

duplicated.

- column 3: 'Time to bus' indicates the remaining time that must elapse

before an input reeches the bus. A zero in this case indicates that no

input has been made, and there is no traffic between the bus and the

30

lil t,-" " . " "°i-'. . ."i i °2 i i-"-" , ".
- -

. . .
i ° i ° • - i i

"" S s i

V. TEST RESULTS

Introduction

It is impossible to test the simulation model for all the possible

combinations of the variables associated with a local area network.

These variables are terminal data rate, data input rate, bus data rate,

bus length, bus overhead, amount of data per input, cable delay, and

deviation of the input rate. The following 5 tests were performed to

demonstrate that the simulation model developed in this thesis does, in

fact, adequately simulate a bus CSMA/CD local area network.

0 Test I

The following test was performed to validate the model's algorithm

that a BIU will wait a time interval equal to two round trip delays of

the bus cable before accepting more input. This waiting period of the

BIU insures a successful transmission of the traffic it has, before

accepting more inputs.

TEST SETUP:

-Bus

1-- M bit/sec data rate

-- 1-persistent

-- length of cable 2000 ft

-- overhead 120 bits

-- cable delay 3.046 psec

-Sessions

-- number of sessions 1

44

• ". i.. _ f l . _j .' ' . " """.'"''' . -i-................."".-..-'."..,........."."".".'"....".."....."."....''.............."................."....... ""i " "i ' "

-- terminal data rate 9600 bits/sec

-- input interval mean 50 msee

-- uniformly distributed input interval devat-ion f */- 3 mcc

-- number of characters per input 80

Synopsis: The one session being simulated is attempting to input an

overall data rate of 12,800 bits/sec. It is expected that the network

model will limit the session's input to approximately the data handling

capability of the terminal, 9600 bits/see.

CalcUlate Results: It can be calculated that the amount of time for

the terminal to transfer 640 bits (80 char x 8) is 66,666.667 jsec. Also

the time the BIU must wait before accepting more inputs is 6.092 jsec (2

x round trip delay). Therefore, the allowable interval between inputs

that the terminal can handle is 66,672.759.sec. This equates to the*0
terminal passing data at a rate of 9599.1228 bits/see.

Simulation Results: The results of the network simulation model, for

a 6.134 sec simulation time, indicates a 66,680jusec interval between

inputs and traffic being passed by the terminal at a rate of 9598

bits/sec.

Test Conclusion: For the given set of parameters, the simulation

model was able to provide the expected interval between inputs within

.0199% and the expected amount of traffic being passed by the terminal

within .0116% of the calculated values. The small amount of error is

introduced by the conversion from real to integer values for the

simulation.

Test Setup: Test 1 was repeated again, but this time the delay of the

network was 379.34 1 usec.

45
S

" -'-' " . - :, "-" : " . - . - ., ." . . - , -" . -" , . . - - . .-.- '. -. ,',- '[, .. ' .-.- ,.' .. ' -- ,.., , . - • - ,°. .

Calculated Results: For the given setup and the new network round

trip delay, the calculated interval between inputs is 67425.349jisec with

a terminal handling capability of 9491.979 bits/see.

Simulation Results: The results of the network simulation model

indicated a 67440 jusec interval between inputs with the terminal handling

data at the rate of 9489 bits/see.

Test Conclusion: For the given set of parameters, the model was able

to provide the expected interval between inputs within .02173% and the

jexpected amount of traffic being passed by the terminal within .0313% of

the calculated values. Again the small amount of error is due to real to

integer conversion.

TEST 2

As discussed later in the user's guide, Appendix A, when the program

Parameters is run to calculate the values needed for the simulation, a

warning may be given if the calculated value for the time the bus is .

busy, for a given session, is in error more than 1%. An example of this

is, if the bus was operating at 5 mega bits/sec, an input of one

character plus 120 bits of overhead would require the bus to be busy for

16.8T, where T equals one tick of the simulation clock (T equals the time

associated with 1/2 the propagation delay of the cable). Since the

simulation runs on integer values, it would use the value 16 instead of

*16.8. The value being used is in error more than 1% and a warning would

be given. There are three methods being used to determine the amount of

traffic being passed by the bus; method 1 by monitoring the time the bus ."-

is busy, method 2 by monitoring the amount of traffic being passed by the

terminals, and method 3 by monitoring the amount of traffic being inputed

46

J 2 '2 J 2 _< . ~ f f - .:° " .. ' " ' "" '"
" °

"'
'
".2 -2 - .-'' " " "e. .- .".- : ' . - -. " .-. 3'- " - .. '- "]' - "" -, L '- ' . ° - '-

by the user. The warning only advises the user to disregard the results

of method 1, 'traffic on the bus indicates' when using program Evaluate.

The following test was run to validate the warning and to illustrate

that the other two methods can be regarded as accurate.

TEST SETUP:

-Bus

-- 1 mega bits/see data rate

-- I-persistant

-- length of cable 2000 ft

-- overhead 120 bits

Q
-- cable delay 3.046,usec

-Sessions

-- number of sessions 1

-- terminal data rate 9600 bits/see

-- input interval 200 msec, dev 0 msec

-- number of characters per input 1

Calculated Results: With the session inputing 1 character of

infomation 5 times a sec, the overall input of the session is 40 bits/see

(1 X 8 X 5). Also with an overhead of 120 bits, it can be calculated

that the bus should be passing 640 bits/see ((I x 8) + 120) x 5).

Simulation Results: The results of the network simulation, for a 7.8

sec simulation run, indicates that the traffic being passed by the bus as

indicated by method 1 is 639 bits/sec, as indicated by method 2 is 640

bits/sec, and as indicated by method 3 is 640 bits/sec.

Test Conclusion: The result using method I indicates an error from

47

"-' --- '.. ._
_

_

the expected value of .156% In this particular case, the error produced

by calculating the bus busy time is .02%. The additional error can be

attributed to the integer display to the user. Methods 2 and 3 indicate

no error. Also in this case, a warning would not have been given because

the calculated error in the time the bus is busy is less than 1%.

TEST SETUP: Test 2 is repeated again, but this time the operating

speed of the bus is 50 mega bits/see.

Calculated Results: As indicated above, the expected traffic being

passed by the bus is 640 bits/sec.

Simulation Results: The results of the network simulation, for a run

of 7.8 sec, indicates that the traffic being passed by the bus as

indicated by method 1 is 380 bits/sec, as indicated by method 2 is 640

bits/sec, and as indicated by method 3 is 640 bits/sec.

Test Conclusion: In this case, program Parameters gave a warning and

indicated the error of the time the bus is busy was over 40% and that the

results of method 1 should be disregarded. It can be seen that the error

of method 1 is also in error by 40%, but again it can be noted that

methods 2 and 3 provided the expected result and that a 40% error in the

bus busy time used for the simulation had no real impact.

Further Discussion of Test 2

In reality, the extreme accuracy of methods 2 and 3 in test 2 can not

always be expected. To help demonstrate what is happening, lets look at

the way method I works and compare it to method 3. Method I simply sums

up the amount of time the bus is busy because of each session. Once the

simulation is completed, the total time the bus was busy is divided by

the total time the simulation was run. The resulting fraction represents

48

° .+•° _+ +. - . + .- °• .- . +- . . . q_°-. .-.. °-.- - ° .-. -. ,. ° •

. ... L *., EEEI. 1, 1. III UELEU- UEI E. .. - .. . -.I . .~.

the percentage of the time the bus was busy, and is multiplied by the bus

operating speed. If the bus busy time being summed up during the

simulation is 40% inaccurate, the resulting traffic being passed by the

bus will be 40% inaccurate. On the other hand, method 3 takes a

different approach.

Method 3 sums up the amount of time between each input. Knowing the

amount of time between each input, can be equated to how much traffic the

bus is passing. In this case, the calculated time between inputs, 200

msec, equates to 131280 ticks of the simulation clock. As the simulation

runs, time between inputs is counted down by what ever event is happening

next. In test 2, assuming an input is ready to be transmitted, the clock

will be reduced by the amount equal to the bus busy time. Also the time

before the next input, will also be reduced by the bus busy time.

Because of the inaccuracy of the bus busy time (for the 50 mega b/s

example), the time interval between inputs will appear to be 131279.32

instead of 131280. The 40% error in bus busy time caused an error of

only .00051% for method 3, which doesn't even show up in the results.

To illustrate even further, lets take a network with a 1000 sessions

all inputing 1 character at a time. Again the interval between inputs is

200 msec, but this time the bus is operating at 44 mega bits/sec. The

interval between inputs is still 131280 ticks of the simulation clock.

With the high bus rate and a 1000 sessions, the interval between inputs

will be reduced 1000 times by the inaccuracy of the bus busy time before

an input is actually made. Because of the inaccuracies, the time

interval between inputs will appear to be 130380 instead of 131280. Even

with this extreme case of bus busy time error of 47% and a 1000

customers, the error introduced to method 3 is only .7%.

49

Test 3

The following test was performed to validate the ability of the

simulation model, developed by this thesis, to adequately model the

performance of a CSMA/CD bus network. In Werner Bux's article [14J,

'Local Area Subnetworks: A Performance Comparison', he compares the

performance of various types of networks. One of the networks he

compares is the CSMA/CD bus. Test 3 runs the network simulation model

various times, for various loads, and compares the results with the

performance curve used by Bux.

One major difference between Bux's analytical model and the thesis

simulation model, is that Bux uses a continuous exponential distributed

packet length, while the thesis model uses a constant packet length for

each individual session. In order to validate the comparison of Bux's

analytical model with the simulation model, three test simulations were

run with various distributions of packet length. The results of Bux's

analytical model, with bus rate of 1 M b/s and 50% loading, gave an

average packet delay of 1130 jsec. The thesis simulation model using the

constant packet length of Figure 5 gave an average packet delay of 1121

Alsec. The simulation model using the discrete uniform distribution of

Figure 6 gave an average packet delay of 1107 jsec. And finally, the

simulation model using the discrete exponential distribution of Figure 7

gave an average packet delay of 1106 Msec. The factor held constant for

all four packet distributions, is the mean packet length of 1000 bits.

The results indicated approximately the same amount of delay (1130, 1121,

1107, and 1106 isec) for a given mean of 1000 bits. Someone could draw

the conclusion that the average packet delay is independent of the type

* . of distribution and is dependent only on the mean packet length. This

50

* *, * * * - -- * * ---- ;* ~ *- *~: * * 2.* . * ***.** * .- .*.~. :. -. -7 * .-*

500 1000 1500
packet length (mean 1000 bits)

Figure 5. Constant Packet Length Distribution

.2 "

40 400 1000 1600 1960
packet length (mean 1000 bits)

Figure 6. Discrete Uniform Distribution Packet Length.

.3

.2

200 1000 1800 2600 3400
600 1400 2200 3000 3800 "

packet length (mean 1000 bits)

Figure 7. Discrete Exponential Distributed Packet Length.

51

. . . .°

thesis is not prepared to take this position (at this time) and would

suggest further research in this area. Based on these test simulations,

the thesis does take the position that it appears that it would be valid

to compare the results of Bux's analytical model using exponential

distribution packet length, with the simulation model using constant --

packet lengths. In addition, the results of test 3 indicated in Figure

8, seems to support this position. With this position in mind, the

discussion of test 3 is continued.

The information provided with Bux's performance curve was:

- 1 M bit/see transmission rate

- 2 km cable length

- 50 stations

- Exponentially distributed packet length (mean 1000 bits)

* - 24 bit header

- Packets generated according to poisson process

The test setup used for the simulation model was:

TEST SETUP:

- Bus

-- 1 M bit/sec

-- 1-persistent

-- length of cable 6561 ft

-- overhead 24 bits

-- cable delay 9.993 Aisec

- Sessions

52

...................................m | "........................... ' ' " . "" N

-- number of sessions 50

-- terminal data rate 19200

-- input interval mean varied to give various loads

-- input interval uniformly distributed +/- 10% around mean

-- number of characters per input 125

Calculated Results: Bux's performance curve is indicated by a solid

line in Figure 8.

Simulation Results: The results of the various runs by the simulation

model developed by this thesis are indicated by the plotted points in

Figure 8 on the next page.

Test Conclusion: The results indicated in Figure 8 demonstrates the

ability of the simulation model to exhibit the characteristics of a

CSMA/CD. To demonstate further the ability of the simulation model, an

additional run was made using the packet length distribution of Figure 6.

The delay results of these five groups were:

Group 1 (40 bits - 5 characters) - 505,usec

Group 2 (400 bits - 50 characters) - 777 usec

Group 3 (1000 bits - 125 characters) - 1066 jsec

Group 4 (1600 bits - 200 characters) - 1334 jusec

Group 5 (1960 bits - 245 characters) - 1855 usec

The average delay vs throughput for these five groups is indicated in

Figure 8 by a star. As can be seen, the curve of Bux gives the overall

effect, but the simulation model developed by this thesis, can give the

performance of each type of session on the network. With this particular

53

20--

Bux Curve -SimuiaLion

Simulation *

10--

0

4o --

e6--

9. 5--- -

4 --

C

IVw

C

0.0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Throughput Rate/Transmission Rate

Figure 8. Transfer delay-throughput characteristics for a CSMA/CD '-
at I MB/S.[14:1469]

54

07:.2

C 2 -i- -- i - - •-

setup, a session inputing 245 characters per input can expect a delay 3

times as much as a customer inputing data at a rate of 5 characters per

input. Also in this particular case, the delay for groups 4 and 5 is

great enough that they can no longer input data at the rate they desire,

while the delay for groups 1, 2, and 3 is not great enough to effect

their input rate. Therefore, three groups are satisfied with the network

performance while the other two groups are having trouble getting their

data in as fast as they wish.

Test 4

This test is basically a repeat of test 3, but the bus transmission

rate has been increased to 10 mega bits/sec. The results of two

simulation runs are plotted on Figure 9. The solid line is the curve

used by Bux [14:14701.

Test 5

This test was performed to reinforce the users confidence in the

ability of the thesis model to simulate a CSMA/CD bus network. Again the

characteristic curve used for comparision came from the Bux article. In

this case, he used a constant packet length. The information provided

with the Bux curve was:

- 5 M bit/see transmission rate

- 1 km cable length

- 50 stations

- packet length fixed 1000 bits

- 24 bit overhead

55

20---j- I- -
oux 1,urve-
Simulation a

10-- - -
9-

--

0
-47---

4--

00

0.0. . .3 0 4 0 5 0 6 0. . . .

at. -0 - - - ____ __

056

The test setup used for the simulation model was:

TEST SETUP:

- Bus

-- 5 M bit/sec

-- 1-persistent

-- cable length 3280 ft

-- overhead 24 bits

-- cable delay 4.996 j.sec

- Sessions

-- number of sessions 50

-- terminal rate 100000

-- input interval varied, +/- 0

-- number of characters per input 125

Calculated Results: The curve used by Bux for the 5 M bit/see

network is indicated by the solid line in Figure 10 on the next page.

Simulated Results: The results of various simulation runs are

indicated by the plotted points in Figure 10.

Test Conclusion: Again, the simulation results basically follow the

results used by Bux.

Summary

In this chapter, 5 tests were run to demonstrate the ability of the

thesis simulation to model a CSMA/CD bus local area network. The results

of test 3, 4, and 5 were compared with the analytical model of Bux. The

comparison showed that the thesis simulation model does exhibit the

57

PART A2: Program Sessions

Comment. This program will allow you to update your list of typical

sessions that you may wish to use in some future simulation. Having

established a 'sessions' file, we will then call orogram Sessions to make

some changes to the typical sessions file.

user's command: sessions

program's response:

The following is the current list of typical sessions.

input input

ID speed(b/s) #char/input interval(msec) variance(msec)

1 9600 1 200 10

Do you wish to modify the current listing of typical sessions? (Y/N) <CR>

user' response y <cr>

(comment: If 'n' hpd been answered, the program would have terminated.

Any input other than a 'y' or 'n', would have repeated the question, do

you wish to modify.)

program's response: Do you wish to make an addition or deletion? (A/D)

<CR>

user's response: a <cr>

71

. -.

characters per input, input interval in msec, and input interval variance

in msec. <CR>

user's response: 9600 1 200 10 <cr>

program's response: A new typical session file has been established.

Any further changes should be done by executing program "sessions".

'program terminates'

70

. .-. .

PART Al: Program Input t(ypical sessions)

Comment. This program is normally used only once. It will create the

file necessary to store typical sessions/customers that may be used in

the future for simulation. Once the file has been created, program

Sessions should be used to perform any necessary updating. This program

could also be used if the user desired to completely erase the typical

sessions file clean. If by some mistake the file named 'sessions' is

destroyed, this program must be run to re-establish the 'sessions' file.

The file 'sessions' is established by loading the first typical session

into the file. Assuming that you have not created a 'sessions' file yet,

we will then call program Input t.

user's command: input t

program's response: WARNING: This program should be used only to

establish a new typical sessions file. If a typical sessions file

presently exists, this program will erase that file and establish a new

typical sessions file. Do you want to establish a new typical session

file? (YIN). <CR>

user's input: y <cr>

(comment: If you enter 'n' at this point, the program will simply

terminate.)

program's respond: Please enter the terminal speed (b/s), number of

69

. * . .."

APPENDIX A: SIMULATION USER'S GUIDE

Introduction. Appendix A provides the user the necessary information to

run the seven programs necessary to simulate a bus local area network

utilizing either 1-persistent or -prsin-ft t CSMA/CD. Apendix A is

broken into seven parts, one part for each program. The seven parts and

programs are:

- Part 1: Program Input t(ypical sessons)

- Part 2: Program Sessions

- Part 3: Program Input n(etwork sessions)

- Part 4: Program Network

- Part 5: Program Parameters

- Part 6: Program Simulate

- Part 7: Program Evaluate

These parts will take the user step-by-step through the operation of

each program, with the final result being a simulation run. All user

responses to the program prompts should be in integer values or a one

character letter.

WARNING: The program Evaluate uses files generated by programs Network,

Parameters, and Simulate. Therefore, users inputs to these programs

should not be changed until after the program Evaluate has completed its

run.

Program Input t begins on the next page.

68

--.---'-[. -.'':'..-............'.-.................L.<.- -?-i[< ~i'.'i. L:.- ..-i-

which prevents the simulation model from perfectly mimicking an actual

CSMA/CD bus local area network. The chapter further attempts to show

that these 6 known limitations have a minimal effect on the ability of

the simulation model to model an actual LAN.

67

. -. -.

.

of the cable.

Limitation 5

Discussion: One major limitation of the present simulation working

model is the restriction of the number of sessions to 500. This

limitation is due solely to the size of the memory of the micro-computer

being used.

Recommendation: If it is determined that more than 500 sessions are

needed to be simulated, it is recommended that the Pascal computer

programs be loaded into a computer with a larger memiory capability.

Limitation 6

Discussion: Based on the built-in function 'in' of the Pascal

language used, the maximum actual cable delay the simulation can use is

125 times the propagation delay of the cable. That is, if the actual

delay of the bus cable is not known, the simulation defaults to the delay

equal to the propagation delay of the cable being used. In the case of

the 2000 ft HQ AFLC cable, the propagation delay is approximately 3.0

usec. Based on the way the function 'in' is used, the simulation model

will accept an actual cable delay of 125 x 3 usec, or 375 usec.

Recommendation: If it is determined that the actual cable delay is

greater than 125 times the propagation delay of the cable being used,

then a new function or procedure must be used to replace the function

'in'.•

Summary

The limitations discussed in this chapter, points out known areas

66

of the simulation clock is 3/131280 or .00002285, with a probabilty of no

input of .99997715. Now using the 1000 customers and the Bernoulli

Trials, the probability of no input for the 1000 customers is 97.74% and

the probability of 1 input is 2.233%, with the probability of more than

one input of .027%. Now assuming that each customer is inputing 80

characters per input, the amount of simulation time necessary for a 3

mega bits/sec bus to pass one input is 166. Assuming that one of the

inputs is ready to transmit on the bus, the probability that another

input will arrive at the bus while it is busy, is 166/131280 or .00126.

Again using the remaining 999 customers and the Bernoulli Trials, the

probability of no inputs reaching the bus while it is busy, is 28.38% and

the probability of one session's input reaching the bus while it is busy,

is 35.76%. In this particular case, the probability that more than one

input will reach the bus while it is busy, is 35.86% and more than one

customer waiting to use the bus will cause a collision. As can be seen

from the figures, it is over a 1000 times more likely that a collision

will occur because of traffic waiting for the bus, than because of inputs

following closely behind each other.

Recommendation. The author's contention should hold for any local

area networks which generates traffic from a large number of sources, at

a relatively slow input rate. If the simulation model is to be used for

simulation of a small number of sources with a relatively fast input

rate, the error introduced by treating all collision the same, should be

re-evaluated. Intuitively, it is felt that the error would not become

excessive, since the time lost due to packets colliding is only a

fraction of the total time lost because of collisions. Normally the

amount of time waiting for re-transmission is much greater than the delay

65

cable, the average time, that would be lost due to collisions for

sessions starting to transmit at the same time, is the time equating to

1/2 the delay of the cable.

In some cases, it is possible that one session will start to transmit

and shortly before the input reaches the other end of the nblp, Romeone

else begins to transmit. In this particular case, the time lost due to

collisions, can be as much as twice the round trip delay of the cable.

So why isn't the average time lost due to colliding packets 1 delay of

the cable instead of 1/2 the delay of the cable? As stated earlier in

Chapter 4, the algorithm of the simulation model does take into account

this case by insuring that no new inputs are made to a BIU transmitting

data until the BIU has been transmitting for at least the time equal to

two delay times of the cable. Also collisions are detected by scanning

to see if another session will want to transmit within one delay time of

the cable, from the time a session starts to transmit. Even though the

simulation model allows for the possibility of a collision occurring

because one input arrives at the bus a short time after another, the

author contends that this occurrence is very rare and that most

collisions occur because sessions try to transmit at approximately the

same time. That is the reason, when collisions occur, that the simulation

uses the average of 1/2 the delay of the cable for the amount of time

lost due to colliding packets. To illustrate this contention, lets look

at 1000 customers inputting data every 200 msec. Using the AFLC network

for our example, the 200 msec will convert to 131280 ticks of the

simulation clock. The time for the next input to be made can be anywhere

between I and 131280 ticks of the simulation clock. Taking one customer

first, the probabilty that an input will be made within the next 3 ticks

64

..

that a new pseudorandom number generator be found.

Limitation 3

Discussion: Limitation 3 is due to the fact that the expected type

of traffic to be generated by the users was unknown. The .!- e

of the interval between inputs represents an uniformly distributed

deviation. It may be found in the future, that the input deviation is not

uniform but normal or some other type of distribution.

Recommendation: If in the future, it is determined that the +1-

uniform deviation of the interval between inputs is unacceptable, it is

recommended that a function be written to weight the random numbers

generated by the appropriate amount, to give the desired distribution

needed.

Limitation 4

Discussion: Limitation 4 is that the simulation model treats all

collisions the same. That is, when a collision occurs, a time interval

equal to 1/2 the delay of the cable is added to the table summing up the

delay time due to collisions. By doing this, the simulation model

assumes the time lost due to colliding packets, is a fixed average

amount. This average is determined from the following examples. If two

sessions at opposite ends of a bus cable were to transmit at the same

time, it would take the complete delay time of the cable before each knew

there was a collision and stop transmitting. On the other hand, if two

sessions side-by-side on the bus cable started to transmit at the same

time, they would know almost instantaneously that a collision occurred

and stop transmitting. With sessions uniformly distributed along the bus

63

.'. .

for transmission, instead of 131280 ticks.

Limitation 2

Discussion: Limitation 2 occurs with the pseudorandom number

generator function used by the program Simulate. A test of 10000 random

numbers conducted by the writer of the random number function, indicates

a .72% preference for higher numbers, as opposed to lower valued numbers.

This .72% preference for higher numbers tends to skew sightly to the

left, the +/- devigtion of the interval between inputs. This skewing to

the left occurs because random numbers are used to determine if the input

deviation is + or -. Once the amount of the deviation is randomly

picked, another random number is picked to determine if the deviation is

+ or -. The random numbers generated can appear anywhere between 1 and

65536. If the random number picked is greater than 32768, it becomes a

0 negative deviation. Since the generator favors higher numbers slightly

more, the average interval between inputs will be slightly less than the

expected mean and the traffic passed by the terminals will be slightly

higher than the expected mean. Some examples of the skewing effect are:

an error of .018% is introduced for a 200 msec interval between inputs

with a +/- 5 msec deviation, an error of .072% is introduced for a 200

msec interval with a +/- 20 msec deviation, and an error of .36% is

introduced with a 200 msec interval with a /- 100 msec deviation. The

amount of error introduced depends on the size of the interval between

inputs, in comparison to the size of the deviation. The larger the ratio

of the deviation over the interval, the larger the error will be.

Recommendation: If the user feels that the accuracy of the

pseudorandom number generator is unacceptable, then it is recommended

62

eight bit ASCII code word and the time it takes the BIU to add on the

overhead to the information bits. These times were not available to the

author since the terminals and BIUs to be used on the network were

unknown. On the other hand, the author considers these times to be

insignificant in the normal operation of the network. It can be imagined

that these times would be only equal to a few microseconds or less (the

time it takes a few shift registers to shift), and would only come into

play if the terminal was passing data at its maximum capacity (such as a

continuous stream of data at 9600 bits/see). Normally the terminal will

pass data at a set rate, such as 9600 bits/see, and once the data has

been passed, the terminal is idle. Limitation 1 only comes into play if

the idle time between inputs is less than the time it takes to convert an

input to an ASCII code word and the time it takes the BIU to add on

overhead. An example of limitation 1 is; if the user was inputing data

every 200 msec and 240 characters per input, and the time for conversion

was 6 usec, the error caused by limitation 1 would only be .003%. And

again, this error only occurs if the idle time between inputs is less

than 6 usec.

Recommendation: If the user determines that the limitation needs to

be eliminated, it can be done by a simple modification to the program

Parameters. In program Parameters, the time it takes an input to travel

from the terminal to the BIU is calculated. To eliminate limitation I,

it is only necessary to add an additional correction factor to this

calculated value, in order to account for the delay caused by converting

an input to an ASCII code word and the delay caused by adding overhead to

the information bits. In the example given, it would now take the

information 131284 ticks of the simulation clock for an input to be ready

61

- ..

VI. DISCUSSIONS AND RECOMMENDATIONS

Introduction

In Chapter 1, the need of HQ AFLC for a simulation model of a CSMA/CD

bus LAN was discussed. It was also discussed that previously developed

network models are very limited in the number of network variables they

can handle. The problem was to develop a CSMA/CD bus simulation model

which could handle the numerous variables associated with a real local

area network. The thesis takes the approach that once an input is made,

the time for the input to travel through the various stages of thd

network can be easily calculated. Therefore, the simulation model

generates traffic based on the statistical parameters of each individual

customer, then tracks the input as the simulation clock ticks. Using the

memory power of the computer to keep track of the location of all inputs,

the simulation model is able to determine the effect of an input on all

other inputs. In some cases, an input has no effect on other inputs, and

at the other extreme, when inputs want to use the bus at the same time,

they have a drastic effect on each others performance. In Chapter 5

numerous tests were performed to demonstrate the ability of the

simulation model to model a CSMA/CD bus LAN. The thesis simulation model

attempts to mimic the characteristics of an actual LAN as close as

possible. In the remaining portions of this chapter, various limitations

of the simulation model to perfectly mimic a true LAN are discussed.

Limitation 1

Discussion: The first limitation of the simulation model is the time

associated with the time it takes the terminal to convert an input to an

60

characteristics of a CSMA/CD bus LAN.

59

i- ...? ,- .:. .-. '. -.. i i i. " .. -. i .. -i .i. " ": "- " " - ."' ." . -" ." - -. ' -" - -. -- -" -' - -" - -- .., ', .,''...' '.-.° ... '- ' .' -

, . 20--

bux Curve
Simulation a

10--
,I 9--

0

.1
,) 7

09* 6- - - - - - -- -

c-o

i ' 53-- ,
02--

ES

-- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

. Throughput Rate/Transmission Rate

Figure 10. Transfer delay-throughput characteristic , for a CSMA/CD
at 5 MB/S.-14:1470]

-58

01- - --
-..-. 'V -:...i'. •-'."i-...-V ... '.-'i':'- - "" ".". '.'.'. ,-- -V "-.-' d . .. ' -''-.-"-i ... L " ,, "- ..a - - ,,.,.- m , in mm aI, m ll " .. . " "0 ' ' '

program's response: Enter the data rate of the terminal (b/s), number of

characters per input, the time interval between inputs (in msec), and the

• input variance (in msec) of the new session. <CR>

user's response: 19200 80 1000 10 <cr>

program's response: Please enter the ID number of the session you wish

the new session to follow. <CR>

user's response: 1 <Cr>

program's response:

The following is the current list of typical sessions.

input input

ID speed(b/s) #char/input interval(msec) variance(msec)

1 9600 1 200 10

2 19200 80 1000 10

Do you want to make more changes? (Y/N) <CR>

user's response: y <cr>

program's response: Do you wish to make an addition or deletion? (Y/N)

<CR>

user's response: d <cr>

,rogram's response: Please enter the ID number of the session you wish to

72

..-. <. .. , -,........,. ,..... ,,,,

delete. <CR>

user's response: 1 <Cr>

The following is the current list of typical sessions.

input input

ID speed(b/s) #char/input interval(msec) variance(msec)

1 19200 80 1000 10

Do you want to make more changes? (Y/N) <CR>

user's response: n <Cr>

'program terminates'

(comment: The cycle to make changes car be repeated as many times as you

wish. The size of the file is only limited by the memory space of the

computer being used.)

73

PART A3: Program Input n(etwork sessions)

A Comment. This program, similar to input t, is normal1v 1i,1-e v nly

once. It establishes the file necessary to store sessions for

simulation. Once the file has been created, orogram Network should be

used to perform any necessary changes to the list of customers to be

simulated. This program could also be used if the user desired to

completely erase the network sessions file clean. If by some mistake the

file named 'network' is destroyed, this program must be run to

re-establish the 'network' file. The file 'network' is established by

loading the first session to be simulated into the file. Assuming that

you have not created a 'network' file yet, we will call program Input n.

user's command: input n

program's response: WARNING: This program should be used only to

establish a new network sessions file. If a network sessions file

presently exists, this program will erase that file and establish a new

network sessions file. Do you want to establish a new network sessions

file? (Y/N) <CR>

user's response: y <cr>

(comment: A 'n' response would have simply terminated the program.)

program's response: Please enter terminal speed(b/s), number of

characters per input, input interval in msec, input interval variance in

74

"." -.

I0

msec, and the number of times you wish this session repeated in the

simulation. <CR>

user's response: 9600 80 100 10 3 <cr>

program's response: A new network sessions file has been established.

Any further changes to this file should be done by executing program

Network.

'program terminates'

75

p..

PART A4: Program Network

Comment: This program will allow you to update your list of

customers/sessions you plan to simulate. Having established a 'network'

file, we will then call program Network to make some changes to the

network file.

user's command: network

program's response:

The following is the current list of network sessions.

input input

ID speed #char/input interval variance quantity

(b/s) (msec) (msec)

2 9600 80 100 10 3

J4 9600 80 50 1 2

Do you wish to make changes to the network sessions? (Y/N) <CR>

user's response: y <or>

(comment: A 'n' response would have terminated the program.)

program's response: Do wish to make an addition or deletion? (A/D) <CR>

user's response: a <cr>

program's response: Do you need to see a copy of the current typical 7

76
.............-.. "...

............ ------.. . -........-. ',
.J' ,. 'l. . , ,.mv, ,. --- hw a Im- ka ldlkmdlmmlihl

sessions list before making your choice on your addition? (Y/N) <CR>

user's response: y <Cr>

(comment: A 'n' response would have caused the program to bv oass showing

you the current file of typical customers.)

program's response:

The following is the current list of typical sessions.

input input

ID speed(b/s) #char/input interval(msec) variance(msec)

1 19200 80 500 20

2 9600 80 100 10

3 9600 80 100 25

0 4 9600 80 50 1

Enter the ID number of the typical session you wish to add to the

network. <CR>

user's response: 3 <or>

program's response: Enter how many times do you wish to duplicate this

session in the network. <CR>

user's response: 4 <cr>

program's response:

The following is the current list of network sessions.

77

. % .

input input

ID speed #char/input interval variance quantity

(b/s) (msec) (msec)

2 9600 80 100 103

4 9600 80 50 1 2

3 9600 80 100 50 4

Do you want to make more changes? (Y/N) <CR>

user's response: y <cr>

program's response: Do you wish to make an addition or deletion? (A/D)

<CR>

user's response: d <cr>

program's response: Please enter the ID of the network session you wish

to delete. <CR>

user's response: 2 <cr>

program's response:

The following is the current list of network sessions.

input input

ID speed #char/input interval variance quantity

(b/s) (msec) (msee)

4 9600 80 50 1 2

3 9600 80 100 50 4

78

Do you want to make more changes? (Y/N) <CR>

user's response: n

'program terminates'

79

PART A5: Program Parameters

Comment: Having established the list of sessions/customers to be

simulated, the next step is to call program Parameters. This program

will calculate the various travel times associated with each session to

progress through the theoretical network. Bus characteristics will be

loaded with this program. The user's responses indicated below are

examples only. You should enter the particular information unique to

your network.

user's command: parameters

program's response: Please enter the data rate of the bus (b/s). <CR>

0 user's response: 1000000 <or>

program's response: Please enter, in feet, the round trip length of the

bus cable. <CR>

user's response: 2000 <cr>

program's response: Please enter the overhead, in bits, of the BIU. <CR>

user's response: 120 <cr>

program's response: Enter the time of day in hours and minutes.

(example: for 8:45 enter 845)

80

..- , - -- ---. ..- --..-.--.

user's response: 1546 <or>

(comment: The time of day is used only as a seed for the random number

generator.)

program's response: Do you wish to see a display of the calculated data?

(Y/N) <CR>

user's response: n <cr>

(comment: If 'y' is entered, the program will show a display of the

calculated parameters before terminating.)

'program terminates'

(comment: In some cases the following note may be given by the program:

"**NOTE#* The error in calculating the bus busy time for session #3 is

4%. The error is high because the bus busy time is approaching the basic

unit of time for the simulator, one way propagation. One or more of the

following factors may be contributing to the high error.

- high bus bite rate

- long length of bus cable

- low overhead

- low I of characters per input

Due to the high error, the results of the bus busy time indicated during

81

the data evaluation stage, should be ignored."

This note indicates that only one of the three methods used to

calculate the amount of traffic being passed by the bus should be

ignored. The three methods used to calculate the traffic being passed by

the bus are discussed further in Chapter 5, Test 2.)

82

PART A6: Program Simulate

Comment. Up to this point, we have selected the customers/sessions we

wish to simulate and have calculated the necessary parameters for the

simulation run. Now it is time to perform the actual simultilr. Tbi

program will prompt you for some last minute information prior to

starting the simulation. Again, as before, user's responses are only

examples and you should enter the information unique to your network.

user's command: simulate

program's response: (number of sessions being simulated) sessions were

loaded for this simulation run. Do you wish to review the data loaded?

(Y/N) <CR>

user's response: n <cr>

(comment: A 'y' input would have instructed the program to let you review

the values calculated in the previous program Parameters and loaded for

the simulation run.)

program's response: Is the actual round trip delay of the network known?

(Y/N) <CR>

user's responE~e: y

(comment: If 'n' was inputed, the program defaults and uses the basic

83

propagation delay of the cable length enter before, for the bus delay. A

'y' answer implies that you known the actual delay of bus cable due to

propagation, amplifiers, splitters, etc.)

program's response: Please enter, in nano seconds, the known round trip

delay of the bus. <CR>

user's response: 6000 <cr>

program's response: Please re-enter, in feet, the max round trip length

of the bus cable. <CR>

user's response: 2000 <cr>

program's response:

Is this simulation a 1- or p- persistent?

Enter a 1 for a 1-persistent simulation or a 2 for a p-persistent

simulation. <CR>

user's response: 1 <cr>

(comment: If a '2' is entered, the program will further prompt for the

percentage between 1 and 100%.)

program's response: Please enter the transition clock time. <CR>

user's response: 250000 <cr>

84

.." +" "" " ' - + -+'. "'';".::- ---- '-"i"ii::i. .. .2.- ' '-"i

".~ ~.'o. .. + o . .

program's response: Please enter the simulation clock time. <CR>

user's response: 10000000 <cr>

(comment: The times enter are with respect to the ticks of the simulation

clock. One method for determining how long the simulation should run is

to review the data loaded for simulation. Having reviewed the data, pick

the session with the largest amount of time between inputs, then multiply

that quantity by the number of inputs you wish to see simulated. The

more inputs you allow a session to input, the better the accuracy of the

simulation run.)

program's response: Please enter the time of day. (example: for 13:15

enter 1315) <CR>

user's response: 1548 <cr>

(comment: The time of day is used only as a seed for the random number

generator.)

program's response: Do you need a display of the simulation run? (Y/N)

<CR>

user's response: n <or>

(comment: A 'y' answer will give you a display of every step the

85

.,- .-.:' m , g 'j ~ iu' h' i'" ": " "'' ::' '" " """ "

1A7-A51 706 SIMULATION MODEL OF A CSNR/CD BUS LOCAL AREA NETWORK 2/3,
WITH MULTIPLE YRRIRBLES(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J N SCHRINL

UNCLASSIFIED DEC 84 RFIT/GE/ENG/84D-57 F/G 12/1 NL///////I/II/I
EIIIIIEEIIIII
EIIIIIIIEEIIIE
mIIIIIIIIIIIIu
EIIIIEEEIIIIEE
EllEllllElllEI

77-
r1

1.00 111112.

'IIL

I: i'

IIIII ,II.°

11111 .2 5 1 fil _
.

MICROCOPY RESOLUTION TEST CHART

N A I JO N A L H IJ R F A I I O ST A N A R D I Iq A A

simulation performs. This option was originally used to help trouble

shoot the program during the design stage. The option was left in to

allow the user to actually watch the performance of a network in action.

It is highly recommended, that if time allows, a few simulations using

this option be performed. Real insight to the effects of different types

traffic on network performance can easily be seen. Since there are no

headings with this option, the list of functions for each column of the

display is indicated below at the end of part 6.)

program's response: <Running clock time of the simulation counting down

and the word 'collision' when collisions occur.>

program's response: Actual simulation clock is < time >.

'program terminates'

The following is a list of the functions of each column being displayed,

if the option to watch the simulation run is used.

column 1 - This column keeps track of the time that must elapse

before the traffic inputed by the terminal reaches the BIU. A zero value

indicates no traffic and a one value indicates that the BIU is ready to

transmit on the next tick of the clock.

column 2 - This column remains constant with the time that a

particular session needs for its' traffic to travel from the terminal to

the BIU.

column 3 - This column keeps track of the time that must elapse

86

] ,.-. -... . ;... .. - . .-. - .-- . ..- -" .'..- I -?-.' - -.- -" ',--- -. ' - .

before the next input is made. A zero value indicates that flow control

is being employed. A one value indicates that an input is about to be

made to the terminal.

column 4 - This column remains constant with the time interval

between inputs for each particular session.

column 5 - This column remains constant with the time that the bus

will be busy once a BIU is able to transmit for a particular session.

column 6 - This column sums up the waiting time a session's traffic

must wait because the bus is busy.

column 7 - This column sums up the waiting time a session's inputs

must wait because of flow control.

column 8 - This column sums up the number of collisions for each

session. Only the row for the first session is used to record

collisions, all other rows will remain at 0.

0 column 9 - This column sums up the number of inputs each session

makes.

column 10 - This column sums the time the bus is busy for each

session.

column 11 - This column sums up the extra waiting time a session's

traffic must wait because of collisions.

column 12 - This column keeps track of the local variable needed for

the exponential binary backoff.

column 13 - This column is used for storage of the amount of set back

time due to a collision. As events occur, the length of time the event

takes, is removed from storage and added to column 11.

column 14 - This column remains constant with the variance of the

interval between inputs.

87

PART A7: Program Evaluate

Comment: Once the program Simulate is completed, the results of the

simulation are filed away in the file ,nt,10 , f'- -op wv p nrrqrm

Evaluate. Having completed a simulation run, let's call the program

Evaluate and review the performance of our network.

user's command: evaluate

program's response:

The results of the simulation run are based on the following network

parameters.

Data rate of the bus was 1000000 bits/sec.

Round trip length of the bus cable 2000 feet.

Round trip delay of the cable 3046 nano seconds.

The BIU overhead was 120 bits.

1-persistent was used.

The actual transition clock time was 256293.

The actual data collecting time was 25000756.

The transition clock time approx equals 390 msec of real network run

time.

The data collecting time approx equals 38087 msec of real network run

time.

The performance of various types of sessions are as follows.

Please enter <CR> to continue.

88

............................

user's response: <cr>

program's response:

10 typical sessions were set up as follows:

ID: 11

TERMINAL RATE: 9600 bits/see

of CHARACTERS PER INPUT: 80

TIME INTERVAL BETWEEN INPUTS: 50 msec var 0 msec

*AVE MAX INPUT RATE: 12800 bits/see'

The perfomance was as follows.

DELAY PER INPUT:

-due to traffic on the bus: 0 usec

-due to collisions: 0 usec

-due to flow control: 16668 usec

0O THROUGHPUT RATE PER SESSION:

-time interval between inputs:

--terminals indicate 66668 usec

--inputs indicate 66668 usec

-transmission rate:

--terminals indicate 9599 bits/see

--inputs indicate 9599 bits/see

Please enter <CR> to continue

user's response: <cr>

(comment: If additional types of sessions had been simulated, then a

performance summation would have been displayed for each session type.)

89

program's response:

ris, BUS PERFORMANCE s*0

The bus is set up to operate at 1000000 bits/see.

Traffic on the bus indicates a rate of 113799 bits/sec.

Traffic being passed by the terminals indicate a rate of 113997 bits/sec.

Traffic being inputed by the user indicates a bus rate of 113997

bits/see.

Collisions were at the rate of 0 collisions per sec.

00 NETWORK INPUT TRAFFIC 000

The MAX traffic rate which the terminals can pass is 96000 bits/sec.

The simulation indicates that the terminals were passing traffic at 95998

bits/see.

The users are attempting to input 128000 bits/sec.

The simulation indicates that the network is allowing an input of 95998

bits/see.

Please enter <CR> to continue.

user's response: <cr>

program's response: Do you wish to review the raw data? (Y/N) <CR>

user's response: n <cr>

(comment: A 'y' would have displayed a copy of the raw data collected by

the simulation run before terminating the program.)

90

..'°.

'program terminates'

91

APPENDIX B: SIMULATION COMPUTER PROGRAMS

Introduction. Appendix B provides the actual seven Pascal computer

programs written to simulate a bus local area network utilizing either

1-persistent or p-persistent CSMA/CD. The programs are centered around a

Zenith Z-100 micro-computer using the 16 bit MS/DOS Pascal Language. The

micro-computer's 128K memory limits the number of simulation

customers/sessions to 500. By making the minor modification necessary to

make the Pascal programs compatible with a computer with larger memory,

the number of sessions can be greatly extended. The computer programs

were written using only standard Pascal language. The only anticipated

modifications, necessary to use these Pascal programs on other types of

computers, are how the version of the Pascal language being used, handles

external files and integers. The integer value allowed in these programs

range between /- 32768. The version of the Pascal language being used

in this thesis also allows for an extended integer called integer4. The

integer4 values range between +/- 2147483648.

Appendix B is broken into seven parts, one part for each program. The

identifiers used as variables were picked with the hope that they would

make it easier for future readers to follow and understand the programs.

To assist the reader even further, a list of variables used and their

purpose are given prior to each Pascal program. A variable followed by a

'(G)' indicates a global variable while a '(L)' indicates a local

variable. The second character indicates the type of variable, if

applicable; '(I)' indicates integer, '(14)' indicates integer4, '(C)'

indicates character, and '(R)' indicates real. The first Pascal program

begins on the next page.

92

1

. .

PART Bi: Pascal Program Input-t(ypical sessions)

The variables and their purpose, as used with the program Input t, are

as follows:

VARIABLES:

answer (G)(C) - Represents the user's response to a question.

datafile (G) - Represents a file of records containing typical

sessions.

session (G) - Represents a record of a typical session.

session.id (G)(I) - Represents the ID number of the typical

session.

session.interval (G)(I14) - Represents in msec the time interval

0O between inputs.

session.number (G)(14) - Represents the number of characters

inputed by each input.

session.speed (G)(I14) - Represents in bits/see the data rate of the

session's terminal.

session.variance (G)(I14) - Represents in msec the maximum /-

deviation of the interval between inputs.

The actual Pascal program, Input t, begins on the next page.

93

...'.

{* PROGRAM:INPUTT(YPICALSESSIONS) 0}

(01110011110110100101010100150t1110010001111101110011111111100101100400 }

(DATE: 29 Aug 84 }
{ VERSION: 1.0
(NAME: input t(ypical_sessions) }

FUNCTION: This program will establish a new typical session file, "
{ A typical session file is a file which contains various }
{ types of sessions which may be used in the simulation.
{ of the local area network. If a typical session file }
{ already exists, this program will erase that file and }
{ create a new typical session file. }
(INPUTS: none

OUTPUTS: none }
{ GLOBAL VARIABLES: answer, session, datafile }
(GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: sessions }
(PROCEDURES CALLED: none I
(CALLING PROCEDURES: none
(AUTHOR: Capt John M. Schriml }
(HISTORY: none }

program inputt (input,output);

type typical session record
id:integer;
speed,number,interval,variance:integer4

end;

var session:typicalsession;
datafile:file of typicalsession;
answer:char;

begin
writeln;
write ('WARNING: This program should be used only to establish a
writeln ('new typical session ');
write ('file. If a typical session file ');
writeln ('presently exists, this program will erase that ');
writeln ('file and establish a new typical session file.');
writeln;
writeln ('Do you want to establish a new typical session file?',

S(YN)');
writeln ('<CR>');
read (answer);
writeln;
writeln;

94

if (answer 'y') or (answer ='Y') then
begin

assign (datafile,'sessions');
rewrite (datafile);
write ('Please enter the terminal speed(b/s), number of ');
writeln ('chararters per input, input ');
write ('interval in msec, and input ');
writeln ('interval variance in msec.<CR>');
read (session.soeed.session.number.session.interval);
readln (session.variance);
session.id 1;
datafile^ session;
put (datafile);
close (datafile);
writeln;
write ('A new typical session file has been established. Any ');
writeln ('further changes to this');
write ('new file should be done by executing program ');
writeln ('"sessions".')

end
end.

95

PART B2: Program Sessions

The variables and their purpose, as used with the program Sessions,

are as follows:

VARIABLES:

ans (G)(C) - Represents the user's reponse to a question.

answer (G)(C) - Represents the user's reponse to a question.

counter (L)(I) - Is used as a counter to renumber the typical

sessions.

datafile (G) - Represents a file of records containing typical

sessions.

datatemporary (G) - Represents a temporary file of records

containing typical sessions.

remove (L)(I) - Represents the ID number of the session to be

removed from the file of typical sessions.

session (G) - Represents the record of a typical session.

session.id (G)(I) - Represents the ID number of a typical session.

session.interval (G)(14) - Represents in msec the time interval

between inputs.

session.number (G)(I4) - Represents the number of characters

inputed by each input.

session.speed (G)(I4) - Represents in bits/sec the data rate of the

session's terminal.

session.variance (G)(1~4) -Represents in msec the maximum -

deviation of the interval between inputs.

temporary session (G) - Represents a temporary record of a typical

96

session.

temporary session.id (G)(I) - Represents the temporary ID number of

a typical session.

temporary session.interval (G)(14) - Represents in msec the

temporary time interval between inputs.

temporary session.number (G)(14) - Represents the temporary number

of characters inputed by each input.

temporary session.speed (G)(14) - Represents in bits/sec the

temporary data rate of the sessons's terminal.

temporary session.variance (G)(14) - Represents in msec the

temporary maximum deviation of the interval between inputs.

The actual Pascal program, Sessions, begins on the next page.

97

{ OUTPUTS: none }
GLOBAL VARIABLES: T session, datafile
GLOBAL TABLES USED: none }

{ GLOBAL TABLES CHANGED: none }
P FTT 7q sesi SeSS s }

FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: addition I

[HISTORY: none
{..*....***...***..*******.*.***.****J.i*#....*.#J****.**J.Ji*.*****#*. }

procedure displaytypicalsessions;

begin
writeln;
writeln('The following is the current list of typical sessions.');
writeln;
writeln;
write (' id speed #char/input ');
writeln ('input interval(msec) input variance(msec)');
reset (datafile);
while not eof (datafile) do

begin
T session := datafile^;
get (datafile);
write (T session.id:3,Tsession.speed:9,T session.number:12);
writeln CT session.interval:17,Tsession.variance:24)

end;
close (datafile)

end;

DATE: 30 Aug 84 }
VERSION: 1.0 }

(NAME: display_networksessions }
FUNCTION: Displays the current sessions that will be used in the }

{ simulation of the local area network.
(INPUTS: none
(OUTPUTS: none

GLOBAL VARIABLES: Nsession, netfile
GLOBAL TABLES USED: none }

(GLOBAL TABLES CHANGED: none
(FILE READ: network
(FILES WRITTEN: none
(PROCEDURES CALLED: none

CALLING PROCEDURES: addition, delete }
AUTHOR: Capt John M. Schriml }

I HISTORY: none

111 .-

.1

{* PROGRAM:NETWORK *1

{ DATE: 30 Aug 84 }
VERSION: 1.0 }

{ NAME: network }
FULCTCI, This progam gives the user access Lo the file which I

contains the list of sessions that will be used in the }
simulation of the local area network. The user has the }

{ option to add or delete sessions from the network session }
(file.

INPUTS: none }
(OUTPUTS: none }

GLOBAL VARIABLES: ans(wer) }
(GLOBAL TABLES USED: none }

GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none
(PROCEDURES CALLED: display_network-sessions }
(CALLING PROCEDURES: none

AUTHOR: Capt John M. Schriml
{HISTORY: none

program network (input,output);

type typicalsession record
id:integer;
speed,number,interval,variance:integer4

end;

network-session record
id:integer;
speed,number,interval,variance,
quantity:integer4

end;

var Tsession,T_temporary_session:typical_session;
N session,N-temporarysession:network-session;
datafile:file of typical session;
netfile,nettemporary:file of network-session;
3nswer,ans :char;

DATE: 30 Aug 84
(VERSION: 1.0 }
(NAME: display_typical_sessions I

FUNCTION: Displays a copy of the typical session file.
INPUTS: none

110

T-session.number (G)(14) - Represents the number of characters

inputed by each input.

T-session.speed (G)(14) - Represents in bits/sec the data rate cf

the session's terminal.

T-session.variance (G)(14) - Renresents in msen the mYviml /-

deviation of the interval between inputs.

T-temporary session (G) - Represents a temporary record of a

session.

T-temporary session.id (G)(I) - Represents the ID number of a

session.

T-temporary session.interval (G)(14) - Represents in msec the time

interval between inputs.

T-temporary session.number (G)(14) - Represents the number of

characters inputed by each input.

T-temporary session.speed (G)(I4) - Represents in bits/sec the data

rate of the session's terminal.

T-temporary session.variance (G)(14) - Represents in msec the

maximum +/- deviation of the interval between inputs.

The actual Pascal program, Network, begins on the next page.

109

N-session.speed (G)(14) - Represents in bits/sec the data rate of

the session's terminal.

N-session.variance (G)(14) - Represents in msec the maximum +/-

deviation of the interval between inputs.

N-temporary session (G) Represents a temporary record of a

network session.

N-temporary session.id (G)(I) - Represents the ID number of the

network session.

N-temporary session.interval (G)(14) - Represents in msec the

interval between inputs.

N-temporary session.number (G)(I4) - Represents the number of

characters inputed by each input.

N-temporary session.quantity (G)(I4) - Represents the number of

times a session is to be repeated in a simulation.

I. N-temporary session.speed (G)(14) - Represents in bits/sec the data

rate of the session's terminal.

N-temporary session.variance (G)(14) - Represents in msec the

maximum +/- deviation of the interval between inputs.

remove (L)(I) - Represents the ID number of the session being

removed from the network file.

repetitions (L)(14) - Represents the number of times a session is

to be repeated in a simulation.

T-session (G) - Represents a record of a typical session.

T-session.id (G)(I) - Represents the ID number of the typical

session.

T-session.interval (G)(14) - Represents in msec the time interval

between inputs.

108

-. ----..- ..--.-- ,, -..--- . ----... -. .,".'--.- . ..- -{ "i - .b':. '- < " ."., .L -.<

PART B4: Pascal Program Network

The variables and their purpose, as used with the program Network, are

as follows:

VARIABLES:

add (L)(I) - Represents the ID number of the typical session to be

added to the network for simulation.

ans (G)(C) - Represents the user's response to a question.

answer (G)(C) - Represents the user's response to a question.

check (L)(I) - Is used to insure a valid ID number was entered by

the user.

datafile (G) - Represents a file of records containing typical

sessions.

* netfile (G) - Represents a file of records containing typical

sessions that were selected for zimulation.

nettemporary (G) - Represents a temporary file of records

containing the typical sessions selected for simulation.

N-session (G) - Represents a record of a network session.

N-session.id (G)(I) - Represents the ID number of the network

session.

N-session.interval (G)(14) - Represents in msec the interval

between inputs of a network session.

N-session.number (G)(I4) - Represents the number of characters

inputed by each input.

N-session.quantity (G)(I4) - Represents the number of times a

session is to be repeated in the simulation network.

107

* **. .* -. ** **

writein;
if (answer 'y') or (answer 'Y') then

begin
assign (datafile,'network');
rewrite (datafile);
write ('Please enter terminal speed(b/s), number of')
writein ('characters per input, input ');
write ('interval in msec, input ');
writeini.'interval variance in msec, and quantity of session.');
writeln ('<CR>');
read (session.speed,session.number,sessiorI.interval);
readin (session.variance,session.quantity);
session.id 1;
datafile^ : session;
put (datafile);
close (datafile);
writeln;
write('A new network session file has been established. Any ');
writeln ('further changes to this');
write ('new file should be done by ');
writeln ('executing program "network".')

end
end.

106

(* PROGRAM:INPUT N(ETWORK SESSIONS) }

DATE: 29 AUG 84

{ VERSION: 1.0 }
(NAME: inputn(etwork sessions) }
(FUNCTION; This program will establisn a new network session file. }
[(A network session file is a file of the sessions that }
{ will be used in the simulation of the local area network. 1
(If a network session file already exists, this program 1
{ will erase that file and create a new typical network }
{ file. }
(INPUTS: none 1
{ OUTPUTS: none 1
[GLOBAL VARIABLES: answer, session, datafile 1
(GLOBAL TABLES USED: none 1
{GLOBAL TABLES CHANGED: none }
(FILES READ: none }
{ FILES WRITTEN: network 1
(PROCEDURES CALLED: none }
(CALLING PROCEDURE: none }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none 1

program inputn (input,output);

type network-session record
id:integer;
speed,number,interval,variance,
quantity:integer4
end;

var session:network session;
datafile:file of networksession;
answer:char;

begin
writeln;
write ('WARNING: This program should be used only to establish ');
writeln ('a new network session ');
write 'f-Ile. If a network session file ');
writeln ('presently exists, this program will erase that ');
writeln ('file and establish a new network session file.');
writeln;
write ('Do you want to establish a new network session file? ');
writeln ('(Y/N)');
writeln ('<CR>');
read (answer);
writeln;

105

• "..". ". ".-" " "" ",-." " ." "" ". .. "..............'..............'......".."...."."..-...'.".................".."." ".-.".." ".,- *- - --

0

PART B3: Pascal Program Input-n(etwork sessions)

The variables and their purpose, as used in the program Input n, are

as follows:

VARIABLES:

answer (G)(C) - Represents the user's response to a question.

datafile (G) - Represents a file of records containing network

sessions.

session (G) - Represents a record of a network session.

session.id (G)(I) - Represents the ID number of the typical session

being used in the simulation run.

session.interval (G)(14) - Represents in msec the time interval

between inputs.

session.number (G)(I4) - Represents the number of characters

inputed by each input.

session.quantity (G)(I4) - Represents the number of times to repeat

a typical session in the simulation network.

session.speed (G)(I4) - Represents in mgec the data rate of the

session's terminal.

session.variance (G)(14) - Represents in msec the maximum +/-

deviation of the interval between inputs.

The actual Pascal program, Input n, begins on the next page.

10~4

.2

wr itein
until (answer =In') or (answer =IN')

end;

begin
assign (datafile, 'sessions');
assign Cdatatemporary,'datatemp');
djtsplay;

repeat
write in;
write ('o you wish to modify the current listing of typical');
writein C' sessions. (Y/N));
writein ('(CR>');
readin (ans);
writein;
writeln

until Cans = IYI) or Cans ='y') or (ans I n') or Cans =IN');
if Cans ='Y') or Cans 'y')

then modify
end.

0.

103

temporarysession.id := counter;
datafile ^ := temporarysession;
put (datafile)

end;
close (datafile);
close (datatemporary);
display

end;

(DATE: 29 Aug 84 }
VERSION: 1.0 1

(NAME: modify 1
(FUNCTION: This procedure prompts the user for what type of changes }
{ they wish to make to the typical session file and then 1
{ calls the appropriate procedure. }
(INPUTS: none }
{OUTPUTS: none }
(GLOBAL VARIABLES: answer }
(GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none
(FILES READ: none
(FILES WRITTEN: none }
{ PROCEDURES CALLED: addition, delete 1
(CALLING PROCEDURES: sessions }
{ AUTHOR: Capt John M. Schriml }

0. (HISTORY: none 1

procedure modify;

begin
repeat
writeln ('Do you wish to make an addition or deletion? (A/D)');
writeln ('<CR>');
readln (answer);
writeln;
if (answer = 'a') or (answer = 'A')

then addition
else if (answer 'd') or (answer 'D')
then delete
else

begin
writeln;
writeln ('An invalid character was entered.')

end;
writeln;
writeln ('Do you want to make more changes? (YIN)');
writeln ('<CR>');
readln (answer);
writeln;

102

..

(DATE: 29 Aug 84 }
{ VERSION: 1.0 }
{NAME: delete }
[FUNCTION: Allows the user to delete a typical session from the }
{ typical session file. }
{ INPUTS: none }
(OUTPUTS: none }
(GLOBAL VARIABLES: none }
(GLOBAL TABLES USED: none)
(GLOBAL TABLES CHANGED: none }
[FILES READ: sessions, datatemp }
{ FILES WRITTEN: sessions,datatemp }
(PROCEDURES CALLED: display }
{ CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure delete;

var remove,counter:integer;

begin
Swriteln;

writeln ('Please enter the id of the session you wish to delete.',
• '<CR>');

readln (remove);
rewrite (datatemporary);
reset (datafile);
while not eof (datafile) do

begin
session := datafile;
get (datafile);
if session.id <> remove then

begin
datatemporary^ :=session;
put (datatemporary)

end
end;

close (datafile);
* close (datatemporary);

rewrite (datafile);
reset (datatemporary);
counter := 0; (The counter is used to renumber the sessions.}
while not eof (datatemporary) do

begin
temporarysession :: datatemporary^;
get (datatemporary);
counter := counter + 1;

101

• ~~~............................... -•. .. •. . .o...... ' .4" °...°..'." .%

~~~~~~~~~~~~~.. .. . . . . . . .... ., '. - .. .. .. ,..: : : ... -. .: ,. ., .,.-,-. , -,-,.,



begin
writeln;
write ('Enter the data rate of the terminal(b/s), ');
writeln ('number of characters per input,');
writeln ('the time interval between inputs (in msec),',

I and the input interval');
writeln ('variance (in msec) of the new session.');
writein (epoR>t);
read (temporarysession.speed,temporarysession.number);
readln (temporary_session.interval,temporary _session.variance);

write ('Please enter id number of the session you wish the');
writeln (' new session to follow.');
writeln ('<CR>');
readln (temporary_session.id);
writeln;
rewrite (datatemporary);
reset (datafile);
while not eof (datafile) do

begin
session := datafile^;
get (datafile);
if temporarysession.id session.id then
begin

datatemporary^ := session;
put (datatemporary);
datatemporary ^ := temporary-session;
put (datatemporary)

end
else

begin
datatemporary^ ::session;
put (datatemporary)

end
end;

close (datafile);
close (datatemporary);
rewrite(datafile);
reset (datatemporary);
counter := 0; [The counter is used to renumber the sessions)
while not eof (datatemporary) do

begin
temporary_session := datatemporary^;
get (datatemporary);
counter := counter + 1;
temporary session.id := counter;
datafile ^ := temporarysession;
put (datafile)

end;
close (datafile);
close (datatemporary);
display

end;

100



[ CALLING PROCEDURE: program sessions, addition, delete }
{ AUTHOR: Capt John M. Schriml }
{ HISTORY: none }

procedure display;

Degin
writeln;
write ('The following is the current list of typical ');
writeln ('sessions.');
writeln;
writeln;
write (' id speed(b/s) #char/input ');
writeln ('input interval(msec) input variance(msec)');
writeln;
reset (datafile);
while not eof (datafile) do

begin
session :: datafile^;

.1 get (datafile);
write (session.td:3,session.speed:11,session.number:1l);
writeln (session.interval:16,session.variance:25)';

end;
close(datafile)

end;

- DATE: 29 Aug 84 }
( VERSION: 1.0

NAME: addition }
{ FUNCTION: Allows the user to make additions to the file of typical }
{ sessions.
(INPUTS: none }
{OUTPUTS: none

GLOBAL VARIABLES: session, temporarysession, datafile, }
{ datatemporary }
(GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none }
{ FILES READ: sessions, datatemp
[ FILES WRITTEN: sessions, datatemp
(PROCEDURES CALLED: display }
{ CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M. Schriml
(HISTORY: none }

procedure addition;

var counter:integer;

99

. . . .

. . . . . . . . . . - - . . . . . . . . . . . . . .



[( PROGRAM:SESSIONS 0)

ri
{...*..u~...**.u*i..*.iouiimeamoi.*ueuim***.ommmmmm.muaememe}

( DATE: 29 Aug 84 1
{ VERSION: 1.0 }
( NAME: sessions 1

{ FUNCTION: This program gives the user access to the file which }
[ contains a list of typical sessions that may be selected }
[ for use in the simulation of the local area network. The }
{ user has the option to add or delete sessions from the }
{ typical session file. }
{ INPUTS: none }
(OUTPUTS: none }
[ GLOBAL VARIABLES: ans(wer) }
{GLOBAL TABLES USED: none
I GLOBAL TABLES CHANGED: none )
(FILES READ: none }
(FILES WRITTEN: none }
I PROCEDURE CALLED: modify }
(CALLING PROCEDURE: none }
( AUTHOR: Capt John M. Schriml }
(HISTORY: none }

program sessions (input,output);

type typical session = record
id:integer;
speed,number,interval,variance:integer4

end;

var session,temporarysession:typical_session;
datafile,datatemporary:file of typical-session;
answer,ans:char;

( DATE: 29 Aug 84 1
( VERSION: 1.0
(NAME: display }
{ FUNCTION: Displays the current file of typical sessions. }
(INPUTS: none }
(OUTPUTS: none
I GLOBAL VARIABLES: session, datafile
{ GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none
(FILES READ: sessions }
(FILES WRITTEN: none
( PROCEDURES CALLED: none

98

" "-","-+'" '+ ":"-"-+-"" " """..............."""......................- ."...<...?<<.. [-:- b,:i.



procedure display_networksessions;

begin
writeln;
writeln('The following is the current list of network sessions.');
writeln;
writeln;
write (' id speed #char/input input interval(msec)');
writeln (' input variance(msec) quantity');
writeln;
reset (netfile);
while not eof (netfile) do

begin
N session := netfile^;
get (netfile);
write (N session.id:3,N session.speed:8);
write (N session.number:10,N session.interval:20);
writeln CN session.variance:21,N session.quantity:16);

end;
close (netfile)

end;

{ DATE: 30 Aug 84
VERSION: 1.0 1

{NAME: addition }
{ FUNCTION: Allows the user to copy a typical session from the I
{ typical session file and place it into the file of }
I network sessions. }
I INPUTS: none }
(OUTPUTS: none }
{ GLOBAL VARIABLES: Tsession, Ntemporarysession, datafile, }
{ netfile, nettemporary }
(GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none }
I FILES READ: sessions, network, nettemp }
( FILES WRITTEN: network, nettemp }
{ PROCEDURES CALLED: display_networksessions }
(CALLING PROCEDURES: modify }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none

6procedure addition;

var add,check:integer;
repetitions:integer4;

begin
writeln;

112



write ('Do you need to see a copy of the current typical ');
writeln ('sessions list before making');
writeln ('your choice on your addition.(Y/N)');
writeln ('<CR>');
readln (answer);
writeln;
if (answer = 'y') or (answer = 'Y')

then display_typical_sessions;
writein;
write ('Enter the id number of the typical sessions you wish ');
writeln ('to add to the network.');
writeln ('<CR>');
readln (add);
write ('Enter how many times you wish to duplicate this ');
writeln ('session in the network.');
writeln ('<CR>');
readln (repetitions);

reset (datafile);
check := 0;
while not eof (datafile) do

begin
T session := datafile^;

get (datafile);
if add = T_session.id then

begin
N_temporarysession.id := Tsession.id;
N_temporary_session.speed := T session.speed;

4 6 Ktemporary_session.number := Tsession.number;

N_temporary_session.interval := T_session.interval;
N_temporary_session.variance := T_session.variance;

N_temporary_session.quantity :: repetitions;
check := 1

end
end;

close (datafile);
rewrite (nettemporary);

reset (netfile);
while not eof (netfile) do

begin
N session := netfile^;

get (netfile);
nettemporary^ :: N session;

put (nettemporary)

end;
f check = 1 then
begin

nettemporary^ :: Ntemporarysession;
put (nettemporary)

end;

close (nettemporary);
close (netfile);

rewrite (netfile);
* . reset (nettemporary);

113



while not eof (nettemporary) do
begin

N_temporarysession := nettemporary;
j get (nettemporary);

netfileA := Ntemporary_session;
put (netfile)

end;
close (netfile);
cl1ose V'nettemporary'4;
displaynetwork-sessions

end;

{ DATE: 30 Aug 84 1
{ VERSION: 1.0 }
(NAME: delete
{ FUNCTION: Allows the user to remove a session from the network }
{ session file. }
{INPUTS: none }
(OUTPUTS: none }
{ GLOBAL VARIABLES: netfile, nettemporary, N session }
{GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none }
{ FILES READ: network, nettemp }
{ FILES WRIITEN: network, nettemp }
(PROCEDURES CALLED: display_networksessions }
I CALLING PROCEDURES: modify I
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure delete;

var remove:integer;

begin
writeln;
write ('Please enter the id of the network session you wish ');
writeln ('to delete.');
writeln ('<CR>');
readln (remove);
rewrite (nettemporary);
reset (netfile);
while not eof (netfile) do

begin
N session :: netfile^;
get (netfile);
if N session.id <> remove then

begin
nettemporary^ :: N session;
put (nettemporary)

114

.. .

-'-... ... ...... .................... = m:='J' .. i - """ ""''' " "" :" -- "



end
end;

close (netfile);
close (nettemporary);
rewrite (netfile);
reset (nettemporary);
while not eof (nettemporary) do

begin
N_temporary_session := nettemporary^;
get (nettemporary);
netfile- := Ntemporarysession;
put (netfile)

end;
close (netfile);
close (nettemporary);
display_networksessions

end;

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: modify }
{ FUNCTION: This procedure prompts the user for what type of changes }
{ they wish to make to the network session file and then }
{ calls the appropriate procedure. }
{ INPUTS: none }
{ OUTPUTS: none }
{GLOBAL VARIABLES: answer }
(GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none }
( PROCEDURES CALLED: addition, delete }
{ CALLING PROCEDURES: network }
{ AUTHOR: Capt John M. Schriml }
{ HISTORY: none }

procedure modify;

begin
repeat
writeln('Do wish to make an addition or deletion? (A/D)');
readln (answer);
writeln;
if (answer = 'A') or (answer 'a')

then addition
else if (answer 'd') or (answer 'D')

then delete
else

begin

115



writeln;
writeln ('An invalid character was entered.')

end;
writeln;
writeln ('Do you want to make more changes? (Y/N)');
readin (answer);
writeln;
writeln
.... 'answer -'n'N r 'an..... o- " 1'

end;

begin
assign (datafile,'sessions');
assign (netfile,'network');
assign (nettemporary,'nettemp');
display_networksessions;
repeat
writeln;
write ('Do you wish to make changes to the network ');
writeln ('sessions. (Y/N)');
readln (ans);
writeln;
writeln

until (ans :'y') or (ans :'Y') or (ans ='n') or (ans 'N');
if (ans = 'Y') or (ans 'y')

then modify
4 ,iend.

116



PART B5: Pascal Program Parameters

The variables and their DurDose, as used with the program Parampters,

are as follows:

VARIABLES:

answer (G)(C) - Represents the user's response to a question.

bus (G) - Represents a record of the bus information inputed by the

user.

bus.bus-one-way-length (G)(14) - Represents in feet the one way

length of the bus cable.

bus.bus-overhead (G)(I4) - Represents the number of management bits

(overhead) added by the BIU to the user's information bits prior to

transmitting on the bus.

bus.bus-speed (G)(14) - Represents in bits/sec the data rate of the

bus cable.

busfile (G) - Represents the file that contains the bus information

inputed by the user. File is used later by program Evaluate.

bus-length (G)(I) - Represents.in feet the one way length of the

bus cable.

bus-rate (G)(I4) - Represents in bits/sec the data rate of the bus

cable.

datafile (G) - Represents the file of network sessions that will be

simulated.

overhead (G)(I) - Represents the number of management bits

(overhead) added by the BIU to the user's information bits prior to

transmitting.

117

.. -..... ......................................... .... ,••,. .•... -,. ................... ...



parameters (G) - Represents the file of records containing the

times for a session's input to travel though a theoretical network.

range (G)(I) - Represents the number of sessions to be simulated.

Since the number of sessions to be simulated is unknown prior to a

simulation, range counts the number of sessions inputed and is used when

loops are involved.

recipical-delay (G)(R) - Represents the recipical of the

propagation delay of the bus cable. Its value is in 1/sec.

seed (G)(I4) - Represents the seed for the pseudorandom number

generator. Seed is obtained by the user inputing the time of day.

session (G) - Represents the record of a network session.

session.id (G)(I) - Represents the ID number of the network

session.

session.interval (G)(14) - Represents in msec the time interval

between inputs.

session.number (G)(I4) - Represents the number of characters

inputed by each input.

session.quantity (G)(I4) - Represents the number of times a session

is repeated in a simulation run.

session.speed (G)(I4) - Represents in bits/sec the data rate of a

session's terminal.

session.variance (G)(I4) - Represents in msec the maximum +/-

deviation of the interval between inputs.

T - Is not an actual variable used in the program. T represents

the time interval of the simulation clock. One T equals the time interval

equating to 1/2 the round trip propagation delay of the cable.

tablelx,1) (G)(14) - Represents the ID number of a session

118

•7
• i~i<'. i:;_.. - . • v...-,--- '" "' • '-" " .... "'-'"-...... . ........,...........-'....-.-.... ....-.."...........'....-...,.'...'..'.-...._-,.-.'..'....--.'-..



corresponding to the value of x.

table[x,2] (G)(I4) - Represents the number of characters per input

for a sessions corresponding to the value of x.

tem - same as temp

temp (G) - Represents a record of a session's parameters for use in

the simulation run.

temp.bus-busy-time (G)(I4) - Represents the total time the bus is

busy because of a particular session. Time is in T intervals and is set

to 0 in this program.

temp.busy-time-on-bus (G)(I4) - Represents the calculated time that

the bus is busy once an input reaches the BIU. Time is in T intervals.

temp.extended-id (G)(I) - Represents the extended ID number of a

session.

temp.extra-time-to-tx (G)(I4) - Represents the additional amount of

waiting time for each session because the bus is busy. Time is in T

intervals and is set to 0 in this program.

temp.flow-control (G)(14) - Represents the amount of time that

inputs must wait because of the BIU having trouble passing the traffic it

has. Time is in T intervals and is set to 0 in this program.

temp.input-interval (G)(14) - Represents the calculated time that

elapses between each input. Time is in T intervals.

temp.input-variance (G)(14) - Represents the calculated time

deviation of the input interval. Time is in T intervals.

temp.interval-to-bus (G)(I4) - Represents the calculated time that

an input takes to travel from the terminal to the BIU. Time is in T

intervals.

temp.number-of-collisions (G)(I4) - Represents the number of

119

I . '°°' % °"% " " " " .' ""'".° ""', " ''" .]. °''" °i.". '" ," .' " '°°'% '" .°. '''° .°o°r'o" ." " . b'°° ° " ".,°' ."- " . ' . "- '''



collisions for a particular session and is set to 0 in this program.

temp.session-id (G)(14) - Represents the ID number of the session.

temp.time-before-next-input (G)(I4) - Represents the randomly

picked time for the first input to occur. Time is in T intervals.

temp.time-to-bus (G)(14) - Represents the needed elapse time before

an input reaches the BIU. Time is in T intervals and is set to 0 in this

program.

temp.total-input-time (G)(I4) - Represents the total elapse time of

time between inputs. Time is in T intervals and is set to zero in this

program.

temp.traffic-inputed (G)(14) - Represents the number of inputs by a

particular session. Is set to 0 by this program.

valuel (L)(R) - Represents the time the bus will be busy once a

BIU is ready to transmit. Time is in real values of T intervals.

value3 (L)(R) - Represents the fraction difference between a real

value of busy-time-on-bus and an integer value of busy-time-on-bus.

value4 (L)(R) - Represents the percentage of error introduced by

using an integer value of busy-time-on-bus instead of a real value.

w (L)(R) - Is used for calculations involving large numbers, where ..-

intermediate calculations may exceed the allowable range of the integer4.

wild (L)(C) - Represents user's response to a question to continue.

x (G)(I) - Is used as a counter in loops.

S(L)(I) - Is used as a counter in loops.

z (L)(I) - Is used as a counter in loops.

The actual Pascal program, Parameters, begins on the next page.

120

7I



[' PROGRAM:PARAMETERS '}

( DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{NAME: parameters

FUNCTION: This program, using the network session file and the }
( parameters of the bus, calculates the parameters that }
{ will be used during the simulation run. }
( INPUTS: none }
{OUTPUTS: none }
(GLOBAL VARIABLES: none
{GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none
(FILES READ: none }
(FILES WRITTEN: none
{ PROCEDURES CALLED: input data, adjustdata, display_results, }
[ check bus busy__time }
{CALLING PROCEDURES: none
( AUTHOR: Capt John M. Schriml }
( HISTORY: none I

program parameters (input,output);

const propagation = 656400000; (ft/sec}

type adjust record
session id:integer;
extended id:integer;
time to bus:integer4;
interval to bus:integer4;
time beforenextinput:integer4;
input-_interval:integer4;
inputvariance:integer4;
busy_time on bus:integer4;
traffic_delay:integer4;
flow control delay:integer4;
number of collisions:integer;
trafficinputed:integer4;
busbusy_time:integer4;
extra_time to tx:integer4;
total_inputtime:integer4

end;

network session record
id:integer;
speed,number,interval,variance,
quantity:integer4

end;

121



bussetup record
busspeed:integer4;
busoneway_length:integer4;
bus overhead:integer4

end;

var session:networksession;
hus:bus -Setup;
temp,tem:adjust;
datafile:file of network session;
busfile:file of bussetup;
parameters:file of adjust;
table:array[1..500,1..2] of integer4;
busrate,seed:integer4;
recipicaldelay:real;
buslength,overhead,x,range:integer;
answer:char;

( DATE: 30 Aug 84 1
{ VERSION: 1.0 }
{ NAME: randominteger }
{ FUNCTION: To generate a pseudorandom number between 1 and 65536. }
{ INPUTS: seed }
{ OUTPUTS: randominteger }
I GLOBAL VARIABLES: seed }

GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: adjustdata }
* AUTHOR: Doug Cooper and Michael Clancy }
( HISTORY: This randominteger function is taken from the text book, }

'Oh! Pascal', by Doug Cooper and Michael Clancy. }
{6IOIIIUUImlO*6IIOOO*f*56SIOIII*I~~****UI*O**O*IEI******O***OO,}

function randominteger (var seed:integer4):integer4;

const modulus = 65536;
multiplier 25173;
increment 13849;

begin
seed :: ((multiplier * seed) + increment) mod modulus;
randominteger :1 1 + trunc4(modulus £ (seed/modulus))

end;

122

. . . . . . .. . . . . . . . . . ..-

.. - . . .*.. .- .. . . .. ..... .. .: ........ : ..........-. ... i -...... ..... :... .... ... ....-



{ DATE: 30 Aug 84
VERSION 1.0

( NAME: inputdata
{ FUNCTION: This procedure prompts the user for bus parameters, such

as, bus speed, bus length and bus overhead. It also
{ request a seed for the random number generator.
(INPUTS: none
(OUTPUTS: none

{ recipicaldelay, busfile
(GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none
(FILES READ: none
{ FILES WRITTEN: busfile
{ PROCEDURES CALLED: none
(CALLING PROCEDURES: parameters
{ AUTHOR: Capt John M. Schriml
(HISTORY: none

procedure inputdata;

begin
writeln;
writeln ('Please enter data rate of the bus.<CR>');
readln (bus-rate);

* writeln;
write ('Please enter, in feet, the maximum round trip length ');
writeln ('of the bus.<CR>');
readln (buslength);
bus length := buslength div 2;
writeln;
writeln ('Please enter the overhead of the BIU.<CR>');
readln (overhead);
writeln;
writeln ('Enter the time of day in hours and minutes.');
writeln C'(example: for 8:45 enter 845)');
writeln ('<CR>');
readln (seed);
writeln;
recipical delay := propagation / buslength;
rewrite (busfile);
bus.busspeed := bus-rate;
bus.bus_onewaylength := buslength;
bus.bus overhead := overhead;
busfile" := bus;
put (busfile);
close (busfile)

end;

123

"~~~~~~-"-" .'------------------------------- , , _. -"• "--,• ," " ," :, ' "{ " ' ' "- ' . ''_ .



( DATE: 30 Aug 84

{ VERSION: 1.0
{ NAME: adjustdata

{ FUNCTION: Using the inputed networks sessions and the bus
i parameters, tnlis procedure calculates the actual values
{ that will be used during the simulation.

INPUTS: none
(OUTPUTS: none

GLOBAL VARiABLES: datafiie, parameuers, range, session, temp,
recipicaldelay, busrate, overhead, x

(GLOBAL TABLES USED: none
{GLOBAL TABLES CHANGED: table
(FILES READ: network
(FILES WRITTEN: parameters

PROCEDURES CALLED: function randominteger
(CALLING PROCEDURES: parameters

AUTHOR: Capt John M. Schriml

(HISTORY: none

procedure adjustdata;

const modulus = 65536;

var z,y:integer;
w:real;

begin
y := 0;
reset (datafile);
rewrite (parameters);
while not eof (datafile) do

begin
y :: y + 1;
range := y;

session := datafile^;
get (datafile);
table[y,1] :: session.id;

table[y,2] :: session.number;

z := ord(session.quantity);
for x := 1 to z do

begin
temp.session id := session.id;
temp xteeed id :x;
w := (recipical_delay * 8 * session.number)/session.speed;

temp.interval to bus ;= trunc4(w);
temrp.time to bus := 0;

w := (session.interval 0 recipical_d2lay)/1000;
temp.input interval := trunc4(w);
w := C w * randominteger(seed)) / modulus;
temp.time before next input := trunc4(w);
w := (session.variance * recipical_delay) / 1000;

124



temp.inputvariance trunc4(w);
w := (session.number * 8) + overhead) * recipicaldelay)

/ bus-rate;
temp.busy_time on bus := trunc4(w);
temp.trafficdelay := 0;
temp.flowcontroldelay := 0;
temp.number of collisions := 0;
temp.traffic_inputed := 0;
temp.busbusy-time := 0;
temp.extra time to tx 0;
temp.totalinput time := 0;
parameters ^ := temp;
put (parameters)

end
end;

close (datafile);
close (parameters)

end;

{ DATE: 30 Aug 84
VERSION: 1.0

(NAME: display_results
FUNCTION: Upon user's request, the procedure displays a copy of

the data that will be used in the simulation.
(INPUTS: none
( OUTPUTS: none
{ GLOBAL VARIABLES: parameters, tem
(GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none
(FILES READ: parameters
(FILES WRITTEN: none
(PROCEDURES CALLED: none
(CALLING PROCEDURES: parameters
( AUTHOR: Capt John M. Schriml
(HISTORY: none

procedure displayresults;

var wild:char;

begin
writeln;
write (' TIME BUS NEXT');
writeln (' INPUT INPUT BUS');
write (' ID EXT ID TO BUS INTERVAL INPUT');
writeln (' INTERVAL VARIANCE BUSY TIME');
writeln;
writeln;
reset (parameters);

125



end;
if (bus event <= inputevent) and (bus-event <> 0)
then begin

next event := bus-event;
eventflag =bI

end
else if (busevent < inputevent) and (busevent = 0)

then begin
next event input event;
eventflag :=i

end
else if (inputevent < busevent) and (inputevent <> 0)

then begin
next event := inputevent;
event-flag 'i'

end
else begin

next event := bus event;
event-flag.'= 'b'

end
end;

(eJeJ*e**.uJ#.**JJJJJ*.*JJJJi.*...iiJJJJJJJJiiJJJJJJJJJJJJJ*JJ**J.iJ

{ DATE: 30 Aug 84 }
{ VERSION: 1.0
(NAME: prepare_ for event }

FUNCTION: Having found the next event, this procedure reduces all }
appropriate table values by next event - 1. The next
event can then be identified by the value 1. Also how }
many and what sessions have a number 1 is determined. }

{INPUTS: none }
{OUTPUTS: none }
{ GLOBAL VARIABLES: waiting, whosewaiting, range, busevent, }
{ next event, table
(GLOBAL TABLES USED: table }

GLOBAL TABLES CHANGED: table }
(FILES READ: none
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: simulate }

AUTHOR: Capt John M. Schriml }
( HISTORY: none }

procedure prepare_for_event;

var templ,temp2,temp3:integer4;
z:integer;

begin
waiting := 0;

139



{ INPUTS: none
OUTPUTS: none

{ GLOBAL VARIABLES: waiting, whose waiting, busevent, inputevent,
{ nextevent, table, eventflag

GLOBAL TABLES USED: table
{GLOBAL TABLES CHANGED: none

FILES READ: none
FILES WRITTEN: none
PROCEDURES CALLED: none
CALLING PROCEDURES: simulate
AUTHOR: Capt John M. Schriml

{HISTORY: none

procedure findnextevent;

var temp,tem:integer4;
y,z:integer;

begin
waiting := 0;
'whosewaiting := 0;
bus event := 0;
for z := 1 to range do

begin
if table[z,1J = 1

then whose waiting := z;
if table[z,1] < 1000

then limiter :: trunc(table[z,1])
else limiter := 1000;

if limiter in limitset
then waiting := waiting + 1;

if table~z,1] 0 0
then begin

tem :: table~z,1];
if busevent = 0

then bus event := tem
else if tem < bus event

then bus-event := tem
end

end;
input-event := 0;
for y := 1 to range do

begin
if table[y,3] <> 0

then begin
temp :: table[y,3];
if inputevent = 0

then inputevent := temp
else if temp < inputevent

then input-event := temp
end

138



I OUTPUTS: none
I GLOBAL VARIABLES: table, datafile, range }
{ GLOBAL TABLES USED: table
(GLOBAL TABLES CHANGED: table
{ FILES READ: parameters
(FILES WRITTEN: none
(PROCEDURES CALLED: none

CALLING PROCEDURES: simulate
AUTHOH: Capt John M. Schriml
HISTORY: none

procedure getdata;

begin
reset (datafile);
x :: 0;
while not eof (datafile) do

begin
comp := datafile^;
get (datafile);
x := x + 1;
table[x,1] := comp.time to bus;
table[x,23 := comp.intervalto bus;
table[x,3] := comp.time before next input;
table[x,4] :: comp.inputinterval;
table[x,5] :: comp.busy_time on bus;
table[x,6] :: comp.trafficdelay;
table[x,7] :: comp.flowcontroldelay;
table[x,8) := comp.numberofcollisions;
table[x,9J := comp.inputedtraffic;
table[x,10] := comp.busbusytime;
table[x,11] := comp.extratime totx;
table[x,12] :: 0;
table[x,13] := 0;
table[x,14) := comp.inputvariance;
table[x,15] : 0;

end;
range := x;
close (datafile)

end;

DATE: 30 AUG 84
{ VERSION: 1.0
(NAME: find next event

FUNCTION: To scan the matrix table and to determine what event will }
{ occur next. Also to determine if the event is a bus event }
( or an input event. If the next event is a one, the
{ procedure determines where the event is located in the
{ matrix table.

137

. . .. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-..i . '. -'- .. --.i.- .- -- R - --i ", -..' .' " ". .'.- .. -.- - . .i - .' ' i



var table:array[l..500,1..15] of integer4;
event flag,screen,answer:char;
waiting,whosewaiting,x,range,limiter,N:integer;
percentage,persistant:integer;
seed:integer4;
sclock,tclock,clock,nextevent,bus event,inputevent:integer4;
comp,sim:data;
c c:clck;
clockfile:file of clck;
datafile,simfile:file of data;
limitset:limit;

DATE: 30 Aug 84 }
VERSION: 1.0 }

{ NAME: randominteger }
{ FUNCTION: To generate a pseudorandom number between 1 and 65536. }
{INPUTS: seed }
{ OUTPUTS: randominteger }
{GLOBAL VARIABLES: seed }
(GLOBAL TABLES USED: none
{ GLOBAL TABLES CHANGES: none }
(FILES READ: none }
{FILES WRITTEN: none }
( PROCEDURES CALLED: none }

6 { CALLING PROCEDURES: collision, adj_input, BB, CC }
( AUTHOR: Doug Cooper and Michael Clancy }
{ HISTORY: This randominteger function is taken from the text book, }

'Ohl Pascal', by Doug Cooper and Michael Clancy. }

function randominteger (var seed:integer4):integer4;

const modulus = 65536;
multiplier = 25173;
increment = 13849;

begin
seed := ((multiplier * seed) + increment) mod modulus;
randominteger :1 1 + trunc4(modulus * (seed/modulus))

end;

{ DATE: 30 AUG 84 }
VERSION: 1.0 1 -.

(NAME: getdata
{ FUNCTION: This procedure loads the parameters file into the matrix

table in preparation for the simulation. }
( INPUTS: none

136



( PROGRAM:SIMULATE '}

{*,,...Iuui.*..********.*,***u.****u...**im.m...*m,*mm..mmmmm,}

{ DATE: 10 Sep 84 }
( VERSION: 1.1 }
(NAME: simulate }
I FUNCTION: Based on the data received from the eters file, t
{ program will simulate a local area network.
{ INPUTS: none
(OUTPUTS: none }
( GLOBAL VARIABLES: range, answer, seed, tclock, sclock, clock, cc, }
{ screen, nextevent, eventflag, table, clockfile }
(GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: table
(FILES READ: none }
{ FILES WRITTEN: clock }
{ PROCEDURES CALLED: getdata, display, find next event, adj bus, }
I adj input, preparefor_ event, fileresults, test }
{ CALLING PROCEDURES: none }
[ AUTHOR: Capt John M. Schriml }
(HISTORY: none }{*********.**.*...*....w....**.....**.*w*...v*m**..*...mm...mow.m..m,}

program simulate (input,output);

type data record
session id:integer;
extended id:integer;
timeto_bus:integer4;
intervaltobus:integer4;
time before nextinput:integer4;
input-_interval:integer4;
inputvariance:integer4;
busytime on bus:integer4;
traffic delay:integer4;
flow_ controldelay:integer4;
number.ofcollisions:integer4;
inputed_traffic:integer4;
busbusytime:integer4;
extratimetotx:integer4;
totalinputtime:integer4

end;

clck record
T click,S click:integer4;
delay,persistant,percentage:integer

end;

delay 1..250;
limit set of delay;

135



more than one session waiting to use the bus, this variable is not used,

but if there is only one session waiting, this variable will indicate

which row the session is in.

x (G)(I) - Is used for loops.

y (L)(I) - Is used for loops.

z (L)(I) - Is used for loops.

z (L)(R) - Represents the number of times the T interval can be

divide into the actual delay of the cable.

The actual Pascal program, Simulate, begins on the next page.

134

........ ........ ......... ........ ...... .. .. ... . . . .



actually busy. Time is in T intervals.

table[x,11] (G)(I4) - This column sums up the extra waiting time

due to collisions. Time is in T intervals.

table[x,12) (G)(14) - This column stores the local parameter used

with the exponential binary backoff.

table[x,131 (G)(14) - This column temporarily stores the extra time

a session's traffic must wait because of collisions. As the simulation

clock counts, portions of table[x,13] are removed and added to

table[x,11). Time is in T intervals.

table[x,14] (G)(I4) - Represents the calculated time for the +/-

deviation of the interval between inputs. Time is in T intervals.

table[x,15] (G)(I4) - This column sums up the actual time between

inputs. Time is in T intervals.

tclock (G)(14) - Represents the amount time the simulation is ran

t while collecting data. Time is in T intervals.

tem (L)(I14) - Represents a temporary storage location for the next

bus-event.

temp (L)(14) - Represents a temporary storage location for the next

input-event.

tempi (L)(14) - Represents an intermediate calculation.

temp2 (L)(I4) - Represents an intermediate calculation.

temp3 (L)(I4) - Represents an intermediate calculation.

valuel (L)(14) - Represents an intermediate calculation.

waiting (G)(I) - Represents the number of sessions waiting to use

the bus.

whose-waiting (G)(14) - Represents the last session in the matrix

column, table~x,1], that wants to use the busy. Normally if there are

133

. . . . . . . . . .. . . . .
1



session's traffic must wait due to a collision.

sim (G) - same as comp.

simfile (G) - Represents a file of records containing the session's

parameters and performance data.

T - Is not an actual variable used in the program. T is the time

interval of the simulation clock. T is equal to the time equating to 1/2

the round trip propagation delay of the bus cable.

table[x,1] (G)(I4) - Represents the amount of elapse time before an

input reaches the BIU. Time is in T intervals.

table[x,2] (G)(14) - Represents the calculated amount of time for

an input to travel from the terminal to BIU. Time is in T intervals.

table[x,3) (G)(14) - Represents the amount of elapse time before an

input is made. Time is in T intervals.

table[x,41 (G)(14) - Represents the calculated amount time between

t oe inputs. Time is in T intervals.

table[x,5] (G)(14) - Represents the calculated time that the bus is

busy once a BIU begins to transmit. Time is in T intervals.

table[x,6] (G)(I4) - This column sums up all delay time due to the

bus being busy. Time is in T intervals.

table[x,7] (G)(I4) - This column sums up all input delay time due

to flow control being employed. Time is in T intervals.

table[x,8] (G)(I4) - This column sums up all collisions. Only

table(1,81 is used for counting collisions. All other values of

tabler',8] are 0 and used as dummy variables to maintain the same record

type.

table[x,9] (G)(14) - This column sums up the number of inputs.

table[x,101 (G)(I4) - This column sums up the time the bus is

132

I-



cable.

limiter (G)(I) - Represents the value of table[x,1] in integer

form, if table[x,1] is less than 1000.

limitset (G)(I) - Represents the interval between the next tick of

the clock and the next tick of the clock plus the round trip delay of the

bus cable.

N (G)(I) - Represents the time interval equal to one tick of the

clock plus the round trip delay of the bus cable. Time is in T intervals.

next-event (G)(14) - Represents the smallest elapse time between

bus-event and input-event. Which ever event time is smaller, will become

the next-event.

percentage (G)(I) - Represents the amount of persistant when

simulating p-persistant.

persistant (G)(I) - Represents the value indiu.ting either 1- or p-
• persistant is being simulated.

range (G)(I) - Represents the number of sessions loaded for

simulation. Since the number of sessions are unknown prior to simulation,

the range value is determined when loading data. Range is then used for

loops and to limit the size of the table matrix.

sclock (G)(14) - Represents the amount of simulation time used for

collecting data. Time is in T intervals.

screen (G)(C) - Represents the user's response to a question asking

if the user wishes to see a display of the actual simulation run.

seed (G)(I4) - Represents the seed necessary for the random number

generator. The seed is obtained by asking the user to enter the time of

day.

set-back (L)(R) - Represents the amount of additional time a

131

...............................................................



collisions for a particular session.

comp.session-id (G)(I) - Represents the ID number of the session.

comp.time-before-next-input (G)(I4) - Represents the amount time

that must elapse before the next input is made for a particular session.

Time is in T intervals.

comp.time-to-bus (G)(14) - Represents the amount of time that must

elapse before inputed traffic reaches the BIU. Time is in T intervals

comp.total-input-time (G)(14) - Represents the total amount of

elaspe time between inputs.

comp.traffic-delay (G)(14) - Represents the total amount of time a

particular session had to wait because the bus was busy.

count (L)(14) - Represents a random number between 1 and 65536.

countl (L)(I4) - Represents a random number between 1 and 65536.

count2 (L)(I4) - Represents a random number between 1 and 65536.

0@ datafile (G) - Represents a file of records containing the

perforamce parameters of each session.

delay (L)(R) - Represents in nano seconds the actual known delay of

the bus cable.

event-flag (G)(C) - Represents the fact that the next event is

either a bus event or input event.

fact (L)(R) - Represents the randomly picked amount of time between

the +1- deviation of the input interval. The value is in real T

intervals.

factor (L)I4) - Represents the integer4 value of fact.

input-event (G)(14) - Represents the smallest amount of elaspe time

before an input is made. Time is in T intervasl.

length (L)(R) - Represents in feet the one-way-length of the bus

130

..... a .. a . .. I



persistant of the bus being simulated. This file is used later by the

program Evaluate.

comp (G) - Represents a record of a session's parameters.

comp.bus-busy-time (G)(14) - Represents the total time the bus is

busy because of a particular session. Time is in T intervals.

comp.busy-time-on-bus (G)(14) - Represents the calculated time the

bus is busy once an input reaches the BIU for a particular session. Time

is in T intervals.

comp.extended-id (G)(I) - Represents the extended ID of a session.

comp.extra-time-to-tx (G)(I4) - Represents the total amount of

extra time to transmit because of collisions for a particular session.

Time is in T intervals.

comp.flow-control-delay (G)(I4) - Represents the total amount of

time inputs for a particular session were heldup because of the BIU

having trouble passing the traffic it already has. Time is in T

intervals.

comp.input-interval (G)(I4) - Represents the calculated time that

elapses between each input for a particular session. Time is in T

intervals.

comp.inputed-traffic (G)(14) - Represents the total number of

inputs for a particular session.

comp.input-variance (G)(I14) - Represents the maximum +/- time

deviation of the input interval. Time is in T intervals.

comp.interval-to-bus (G)(I4) - Represents the calculated time that

it takes an input to travel from the terminal to BIU. Time is in T

intervals.

comp.number-of-collisions (G)(14) - Represents the number of

129.......................................



PART B6: Pascal Program Simulate

The variables and their purpose, as used with the program Simulate,

are as follows:

VARIABLES:

b (L)(I) - Represents the row (in matrix table) of the session that

is ready to transmit on the bus.

Ianswer (G)(C) - Represents user's response to a question.

bus-event (G)(I4) - Represents the smallest amount of elapse time

before an input reaches the bus.

0O clc.delay (G)(I) - Represents the actual known delay of the bus

cable. Value is in nano seconds.

clc.percentage (G)(I) - Represents the percenatge of persistant, if

p-persistant is being simulated.

clc.persistant (G)(I) - Represents the type of persistant being

simulated.

clc.S-click (G)(14) - Represents the amount time that the

simulation ran while collecting performance data. Time is in T

intervals.

clc.T-click (G)(i4) - Represents the amount of transition time that

the simulation ran prior to collecting performance data. Time is in T

intervals.

clock (G)(I4) - Represents the clock time of the simulation. Time

is in T intervals.

clockfile (G) - Represents a file which contnins the transition and

simulation clock times. Also it contains the delay, percentage, and

128



begin
writeln;
write ('**NOTE** The error in calculating the bus busy');

ji writeln (' time for session ID #',table~y,1]:2,' is');
write (trunc4(value4):2,' %. The error is high because');
writeln (' the bus busy time is approaching ');
write ('the basic unit of time for the simulator, ');
writeln ('one way propagation delay. One or ');
write ('more of the following factors may be ');
writeln ('contributing to the high error.');
writeln;
writeln (' -high bus bite rate');
writeln (' -long length of the bus cable');
writeln (' -low overhead');
writeln (' -low # of characters per input');
writeln;
write ('Due to the high error, the results of the bus');
writeln (' busy time, indicated');
write ('during the data evaluation stage, should be ');
writeln ('ignored.');
writeln ('Enter <CR> to continue');

* read (wild);
writeln

end
end

end;

* •begin
assign (datafile,'network');
assign (busfile,'bus');
assign (parameters,'net data');
inputdata;
adjustdata;
writeln ('Do you wish to see a display of the data? (YIN)');
readln (answer);
if (answer ='y') or (answer ='Y')

then displayresults;
checkbusbusy_time

end.

127



while not eof (parameters) do
begin

tem := parameters^;
jd get (parameters);

write (tem.session id:3,tem.extended id:7);
write (tem.time to bus:12,tem.interval to bus:12);
write (tem.time before next-input:t0);
write (tem.inputinterval:ll,tem.input variance:11);
writeln ( tela. bus Y-tiieo~u~

end;
close (parameters);
writeln;
writeln ('Enter <CR> to continue.');
read (wild);
writeln

end;

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }

I NAME: check bus busytime 1
{ FUNCTION: This procedure checks the error in calculating the bus 1
{ busy time for each session. If the error is greater 1
{ than 1 %, it d4vises the user. 1
(INPUTS: none 1
{OUTPUTS: none }

t o { GLOBAL VARIABLES: busrate, overhead, recipical delay }
(GLOBAL TABLES USED: table 1
(GLOBAL TABLES CHANGED: none }
( FILES READ: none }
(FILES WRITTEN: none 1
(PROCEDURES CALLED: none 1
(CALLING PROCEDURES: parameters 1
( AUTHOR: Capt John M. Schriml }
( HISTORY: none 1
{IO*U**I*OIIIIIIIImII*ImhI*****OI*********fI6I*IImfU**mI6***OIO*IIIOOII }

* procedure check-busbusytime;

var y:integer;
wild:char;
valuel,value3,value4:real;

begin
for y := 1 to range do

begin
valuel := (((table[y,2] * float4(8)) + overhead) *

recipical delay) / busrate;
value3 := valuel - trunc4(valuel);
value4 := (value3/valuel) * 100;
if value4 > 1 then

126

..........................................



whose_waiting := 0;

for z := 1 to range do
begin

if bus event <> 0 then
begin

templ := table[z,1] - (next-event - 1);
if templ > 0

then table[z,1] := templ
end;

if table[z,1] = 1
then whose waiting :: z;

if table[z,1] < 1000
then limiter := trunc(table[z,1])
else limiter := 1000;
if limiter in limitset

then waiting := waiting + 1;
temp2 := table[z,3] - (next-event -1);
if (temp2 > 0) then

begin

table[z,3J := temp2;
table[z,15] := table(z,15] + next-event - 1

*@ end
else table[z,7] := table~z,7] - temp2;

if table[z,13] <> 0 then
begin

temp3 := table[z,13] - (nextevent - 1);
if temp3 >= 0 then

0' begin
table[z,11) := table[z,11] + (nextevent - 1);
table[z,13] :: temp3

end
else begin
table[z,11] := table[z,11) + table[z,13);
table[z,13] := 0

end
end

end
end;

{ DATE: 30 Aug 84
" VERSION: 1.0
( NAME: adj_input
{ FUNCTION: The procedure find next event has determined that the

* { next event is an input event. This procedure adjust
{ all appropriate table values based on an input event.
{ INPUTS: none
.OUTPUTS: none

GLOBAL VARIABLES: table, range, seed
(GLOBAL TABLES USED: table
{ GLOBAL TABLES CHANGED: table

* . {(FILES READ: none

140

.. . . . . . . . . ... . . . .-



( FILES WRITTEN: none I
{ PROCEDURES CALLED: randominteger }
{ CALLING PROCEDURES: simulate }
{ AUTHOR: Capt John M. Schriml }
t HISTORY: none

procedure adj_inpuL;

var z:integer;
countl,count2,factor:integer4;
fact:real;

begin
for z := 1 to range do

begin
if (table~z,3] = 1) and (table[z,1] 0) then

begin
countl :: randominteger(seed);
count2 :: randominteger(seed);

* fact := (float4(countl) * table[z,14]) / 65536;
factor :: trunc4(fact);
if count2 > 32768

then factor := 0 - factor;
table~z,3] := table[z,4] + 1 + factor;
table~z,9] := table[z,9] + 1;
table[z,12 := table[z,21 + I

end
else if (table[z,3] 1) and (table(z,1] > 0 )

then tabletz,3] := 0
end

end;

*******************************eeiIoesoui*e*E**ei********Iiihae******

( DATE: 30 Aug 84 }
{ VERSION: 1.0 }
[ NAME: AA }
£ FUNCTION: Having determined that there is no collision and that the }
[ next event is a busevent, this procedure makes the }

necessary table adjustments for a session with a 1 sitting)
{ on the bus and the next input value greater than the bus }
{ busy time. }

INPUTS: b,z }
{ OUTPUTS: none }
{ GLOBAL VARIABLES: table, clock
{ GLOBAL TABLES USED: table }
{ GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
{ FILES WRITTEN: none }
{PROCEDURES CALLED: none
- CALLING PROCEDURES: adj_bus

141



{ AUTHOR: Capt John M. Schriml }
( HISTORY: none }
{JJJJJJJJJJJJJJJJJiJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ}i*

procedure AA (z,b:integer);

begin
tabie[z,i] : 0;
table[z,3] := table[z,3] - (tablerb,5] + N);
table~z,15] :: table~z,15] + table~b,5] + N;
table[z,10] :: table[z,10] + table[b,5];
clock := clock - (table[b,5] + N)

end;

( DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: BB }
( FUNCTION: With no collision and a bus input, this procedure makes }
[ ( the appropriate changes for a session with a 1 sitting }
( on the bus and the next input value less than the bus }
[ busy time. I
{ INPUTS: z,b }
{OUTPUTS: none }
{ GLOBAL VARIABLES: table, seed, clock }
( GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: table }
( FILES READ: none }
(FILES WRITTEN: none '
( PROCEDURES CALLED: randominteger }
[ CALLING PROCEDURES: adj_bus }
( AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure BB (z,b:integer);

var templ,temp2,temp3,factor,countl,count2:integer4;
fact:real;

begin
templ := (table[b,5] + N) - tabletz,3];
table[z,15] :: table[z,15] + table[z,3];
if table[z,3] < 1 + 2 * (N - 1) then

begin
table~z,7] := table~z,7] +1+ (2 * (N - 1)) - table(z,3];
temp2 :: table~z,2] -(table[b,5] - (N -1))

end
else temp2 :: table[z,2] - templ;

countl :: randominteger(seed);

142

'-i,. - .? '- -"- .-... ."-".>'i . ... % .<.Y .-.-. >?.-T .. . .? ? ? .'. . .> . - -.---.. ,-... .- ?-...-. i -.-- -.- '



count2 := randominteger(seed);
fact := (table[z,14] * float4(countl)) / 65536;
factor := trunc4(fact);
if count2 > 37768

then factcr := 0-factor;
if table[z,3) < 1 + 2 * (N -1)

then temp3 := (table[z,4] + factor) - (table[b,5] - (N-1))
else temp3 := (table[z,4] + factor) - tempi;

if temp3 > 0 then
begin
if table[z,3] < 1 + 2 * (N - 1)
then table[z,15] := table[z,15] + (table[b,5] - (N - 1))
else table[z,15] := table[z,15] + tempi;

table[z,3] := temp3
end
else begin

table[z,3] :: 0;
table[z,15] := table[z,15J + (table[z,4] + factor);
table[z,7] := table[z,7] - temp3

end;
table[z,9] :: tabletz,9] + 1;
table[z,10] := table[z,10] + tabletb,5];
clock := clock - (table[b,5] + N);
if (temp2 > 0)

then table[z,1] := temp2
else begin

tabletz,1] := 1;
table[z,6] := table[z,6] - temp2

end
end;

( DATE: 30 Aug 84 }
{ VERSION: 1.0 }
( NAME: CC }
{ FUNCTION: With no collision and a bus input, this procedure makes }
( the appropriate changes for a session with 0 on the bus }
{ and the next input event less than the bus busy time. }
[ INPUTS: z,b }
(OUTPUTS: none

GLOBAL VARIABLES: table, seed }
(GLOBAL TABLES USED: table }
{GLOBAL TABLES CHANGED: table }

FILES READ: none
(FILES WRITTEN: none
{ PROCEDURES CALLED: randominteger }

CALLING PROCEDURES: adj_bus }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

-

S . 1



procedure CC (z,b:integer);

var templtemp2,factorcountlcount2:integer4;
fact:real;

begin
templ := (table[b,5J + N) - table[z,3J;
temp2 := table~z,2J - templ;
table[z,15J := table[z,15] + table[b,5J + N;
countl := randominteger(seed);
count2 := randominteger(seed);
fact := (table[z,14] * float4(countl)) / 65536;
factor := trunc4(fact);
if count2 > 32768

then factor := 0 - factor;
table[z,3] := (table[z,4J + factor) - templ;
table~z,9] := table[z,9] + 1;
if (temp2 > 0)

then table[z,1] := temp2
else begin
table[z,1] := 1;
table~z,6) := table~z,6] - temp2

end
end;

( DATE: 30 Aug 84
(VERSION: 1.0 }
I NAME: DD }
I FUNCTION: With no collision and a bus event, this procedure makes }
{ the appropriate changes for a session with 0 on the bus }
[ and the next input event is greater than the bus busy }
{ time. }
{ INPUTS: z,b }
(OUTPUTS: none }
(GLOBAL VARIABLES: table }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: table }
(FILES READ: none }
{ FILES WRITTEN: none I
(PROCEDURES CALLED: none
( CALLING PROCEDURES: adjbus }
{ AUTHOR: Capt John M. Schriml I
(HISTORY: none

procedure DD (z,b:integer);

begin
table~z,15] :: tabletz,15) + table[b,5] + N;
table[z,3J : table[z,3] - (table[b,5] + N)

144

S-



end;

(iiO@.imui*.***iuiuu*OmiimumiOmimmuiO*6***O***IOO*@i@10001Bi006*ii*O**i}

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{NAME: EE }
{ FUNCTION: With no collision and a bus event, this procedure makes }

the appropriate changes for a sessiun with bus Lime less I -

{ than the bus busy time and the input time equal to 0. }
{ INPUTS: z,b 1
(OUTPUTS: none }
{ GLOABAL VARIABLES: table }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: table I
{FILES READ: none }
(FILES WRITTEN: none I
{ PROCEDURES CALLED: none }
(CALLING PROCEDURES }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none I

procedure EE (z,b:integer);

var temp1:integer4;

IL
begin

templ := (table~b,5] + N) - table[z,1];

table[z,1] := 1;
table[z,6] := table[z,6J + templ;
table[z,7] := table[z,7) + (table[b,5J + N) - 1

end;

{(3OO5OmmSO***OIOI*OII*OIIII**ISIIOmII6*OBmm*I6I*hIOOO**I*IOI6***Om}.'.

[ DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: FF
{ FUNCTION: With no collision and a bus input, this procedure makes }
{ the appropriate changes for a session with bus time }

greater than the bus busy time and the next input time }
{ equals 0. }
{ INPUTS: z,b
(OUTPUTS: none }
(GLOBAL VARIABLES: table }
(GLOBAL TABLES USED: table
(GLOBAL TABLES CHANGED: table }
(FILES READ: none } --

(FILES WRITTEN: none
(PROCEDURES CALLED: none
{ CALLING PROCEDURES: adj_bus }

145

* ,',""



{ AUTHOR: Capt John M. Schriml }
{HISTORY: none I

procedure FF (z,b:integer);

begin
1 al1 -h r' + N);

table[z,7] :: table[z,7] + (table[b,5] + N)
end;

{ DATE: 30 Aug 84
{ VERSION: 1.0 }
{ NAME: GG }
{ FUNCTION: With no collision and a bus input, this procedure makes }
{ the appropriate changes for a session bus time and input }
{ time greater than the bus busy time. }
[ INPUTS: z,b }

OUTPUTS: none }
(GLOBAL VARIABLES: table }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: table }
(FILES READ: none }
(FILES WRITTEN: none }
{ PROCEDURES CALLED: none }
{ CALLING PROCEDURES: adj_bus }
{ AUTHOR: Capt John M. Schriml }
{ HISTORY: none }

procedure GG (z,b:integer);

begin
table~z,15] :: table~z,15J + tabletb,5] + N;
table[z,1] := table[z,1] - (table[b,5J + N);
table[z,3] := table[z,3] - (table[b,5] + N)

end;

{ DATE: 30 Aug 84 }
VERSION: 1.0

{ NAME: HH }
FUNCTION: With no collision and a bus input, this procedure makes }

the appropriate changes for a session with bus time and }
input time less than the bus busy time. }

{ INPUTS: z,b }
(OUTPUTS: none }
(GLOBAL VARIABLES: table }

146



{ GLOBAL TABLES USED: table I
(GLOBAL TABLES CHANGED: table }
(FILES READ: none }
(FILES WRITTEN: none }
{PROCEDURES CALLED: none }
(CALLING PROCEDURES: adJ_bus }
( AUTHOR: Capt John M. Schriml .
{HISTORY: none }

procedure HH (z,b:integer);

var templ,temp2:integer4;

begin
tempi := (table[b,5] + N) - table[z,1];
temp2 :: (table~b,5] + N) - table~z,3);
table[z,15] := table[z,15] + table[z,3];
table[z,13 := 1;
table[z,3) := 0;
table(z,7] := tablefz,7] + temp2 - 1;
table~z,6] := table[z,6] + tempi

end;

DATE: 30 Aug 84 }
m VERSION: 1.0
{ NAME: II }
{ FUNCTION: With no collision and a bus input, this procedure makes I
{ the appropriate changes for a session with bus time }

greater than bus busy time and input time less than bus }
{ busy time. }
{ INPUTS: z,b }
(OUTPUTS: none }
(GLOBAL VARIABLES: table }
(GLOBAL TABLES USED: table -
{GLOBAL TABLES CHANGED: table 1
{FILES READ: none }
(FILES WRITTEN: none I
(PROCEDURES CALLED: none }
{ CALLED PROCEDURES: adjbus }
[ AUTHOR: Capt John M. Schriml }
{HISTORY: none }

procedure II (z,b:integer);

var temp1:integer4;

begin

147



templ : (table[b,5] + N) - table[z,3];
table[z,1] :: table[z,1] - (table~b,5] + N);
table[z,15] :: table~z,15] + table[z,3];
table[z,3] := 0;
table[z,7J :: table~z,7] + templ

end;

{ DATE: 30 Aug 84 1
t VERSION: 1.0 }
( NAME: JJ 1
( FUNCTION: With no collision and a bus input, this procedure makes }
( the appropriate changes for a session with bus time less }
{ than bus busy time and input time greater than bus busy }
{ time. }
( INPUTS: z,b }
(OUTPUTS: none }
(GLOBAL VARIABLES: table }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: table }
{ FILES READ: none }
(FILES WRITTEN: none "
(PROCEDURES CALLED: none .

CALLING PROCEDURES: adjbus }
( AUTHOR: Capt John M. Schriml }
( HISTORY: none }

procedure JJ (z,b:integer);

var templ:integer4;

begin
templ := (table[b,5] + N) - table[z,1*;
table[z,*] 1= ;

table~z,15] := table(z,15] + table~b,5] + N;
table[z,3] :1 table~z,3] - (table[b,5] + N);
table[z,6] := table[z,6] + templ

end;

DATE: 30 Aug 84
VERSION: 1.0 }

(NAME: collision }
{ FUNCTION: Having determined a collision will occur, this procedure }

generates the time which each session is set back. } ""'
(INPUTS: none
( OU;PUTS: none }

GLOBAL VARIABLES: range, table, seed }
(GLOBAL TABLES USED: table }

148

........................:::::::::::::::::: ::-::......:..:.....................:..:....., .........-.-....-.-.....:.:::::::::::::::: -:i:::-



(GLOBAL TABLES CHANGED: table }
( FILES READ: none }
(FILES WRITTEN: none }
{ PROCEDURES CALLED: randominteger -
t CALLING PROCEDURES: adj_bus }
( AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure collision;

var z:integer;
count:integer4;
set back:real;

begin
writeln ('COLLISION');
table[l,8] := table[l,8] + 1;
for z := 1 to range do

begin
if table[z,1] < 1000

then limiter :: trunc(table[z,1])
else limiter := 1000;

if limiter in limitset
then begin
count := randominteger(seed);
if table[z,12] = 0
then table[z,12] := 2
else table[z,12] := table~z,12] * 2;

set-back :: tabletz,12J 0 ((table[z,51 * float4(count)) /
65536);

table[z,1] :: table[z,1] + (N-I) div 2 + trunc4(set back);
if tabletz,3] < 1 + 2 • (N - 1)

then table~z,7] := table[z,7] + 1 + 2 (N-i)
- table~z,3];

table[z,11] := table[z,11] + (N - 1) div 2;
tabletz,13J :: trunc4(setback)

end
end

end;

{ DATE: 17 Sep 84
{ VERSION: 1.0 }
[ NAME: adj_further
[ Function: This procedure simulates the traffic's decision to }

transmit or not transmit when using p-persistant. }
INPUT: none
OUTPUTS: none

[ GLOBAL VARIABLES: seed, table, percentage }
GLOBAL TABLES USED: table }

149..



(GLOBAL TABLES CHANGED: table
( FILES READ: none
(FILES WRITTEN: none
I PROCEDURES CALLED: none
{CALLING PROCEDURES: simulate
{ AUTHOR: Capt John M. Schriml
(HISTORY: none

procedure adj_further;

var z:integer;
valuel,count:integer4;

begin
waiting := 0;
for z := 1 to range do

begin
if table[z,1] <1000

then limiter := trunc(table[z,1J)
else limiter := 1000;

if limiter in limitset then
begin

count := randominteger(seed);
valuel := (percentage * 65536) div 100;
if count > valuel then

begin
table[z,1] :: table[z,1] + N;
table[z,6] :: table[z,6] + N

end;
limiter := trunc(table[z,1]);
if limiter in limitset

then waiting :: waiting + 1
end

end
end;

{ DATE: 30 Aug 84
I VERSION: 1.0
(NAME: storage

FUNCTION: To add portions of sessions set back time to the data
{ collecting part of the matrix table.

INPUTS: z,b
(OUTPUTS: none
{ GLOBAL VARIABLES: table
(GLOBAL TABLES USED: table
(GLOBAL TABLES CHANGED: table
(FILES READ: none
(FILES WRITTEN: none
(PROCEDURES CALLED: none

150



{ CALLING PROCEDURES: adj_bus }
AUTHOR: Capt John M. Schriml }

{HISTORY: none }

procedure storage (z,b:integer);

var temp:integer4;

begin
if table[z,13] <> 0
then begin
temp := table~z,13] - (table~b,5] + N);
if temp > 0 then

begin
table[z,11] := table[z,11] + (table[b,5] + N);
table[z,13] :: temp

end
else begin

table[z,11] := table[z,11] + table[z,13];
table[z,13] := 0

end
end

end;

( DATE: 30 Aug 84 }
{ VERSION: 1.0 1
{ NAME: adj_bus }
{ FUNCTION: Having determined that an event will occur, the procedure } -

{ checks the status of each session's bus input time and }
( input time, and calls the appropriate procedure to adjust }
( each session based on its status. }
( INPUTS: none }
(OUTPUTS: none }
{ GLOBAL VARIABLES: table, waiting, whosewaiting, range }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: none }
{ FILES READ: none
(FILES WRITTEN: none
{ PROCEDURES CALLED: AA - JJ, collision, storage }
(CALLING PROCEDURE: simulate }
{ AUTHOR: Capt John M. Schriml }
{ HISTORY: none

procedure adj_bus;

var z,b:integer;

151

................. '......." .. '.



begin
if waiting 1 then

begin
b : whose_waiting;
for z := 1 to range do
begin
if (z = b) and (table~z,3] > table[b,5] + 1 + 2 * (N - 1))
then AA (z,b)
Alse if (z~b) and (tablerz.R3 <= tablelb.51 + I + 2*(N-1 )
then BB (z,b)
else if (table~z,1] 0) and (table[z,3] <: table[b,5] +N)
then CC (z,b)
else if (table[z,1] 0) and (table[z,3] > table[b,5] +N)
then DD (z,b)
else if (table[z,1] <= table[b,5] + N) and

(table[z,3] = 0) and (table[z,1] <> 0)
then EE (z,b)
else if (table~z,1] > table[b,5] + N) and

(table[z,31 = 0)
then FF (z,b)
else if (table[z,1] > table[b,5] + N) and

(table[z,3] > table[b,5] + N)
then GG (z,b)
else if (table[z,1] <= tabletb,5] + N) and

(table[z,3] <= table[b,51 + N)
then HH (z,b)
else if (table[z,1] > table[b,5] + N) and

(table[z,3] <= table[b,5] + N)
then II (z,b)
else if (table(z,1] <= table[b,5] + N) and

(table[z,3] > table[b,5] + N)
then JJ (z,b);

table[z,12] := 0;

storage (z,b)
end

end
end;

{ DATE: 7 Sep 84
VERSION: 1.0

{ NAME: adj_delay
FUNCTION: This procedure adjust the simulation for the actual

{ network cable delay, if known
INPUTS: none

{OUTPUTS: none
{GLOBAL VARIABLES: N
(GLOBAL TABLES USED: none
(GLOBAL TABLES CHANGED: none
(FILES READ: none
(FILES WRITTEN: none
(PROCEDURES CALLED: none

152

... .. . . . . . . .



{ CALLING PROCEDURES: simulate }
( AUTHOR: Capt John M. Schriml }
{HISTORY: none }

procedure adjdelay;

-~r , ,-. -

begin
write ('Please enter, in nano seconds, the known around trip ');
writeln ('delay of the bus.');
readln (delay);
writeln;
write ('Please re-enter, in feet, the max round trip length ');
writeln ('of the bus cable.');
writeln ('<CR>');
readln (length);
z := (delay * 6564) /(10000.0 * length / 2);
if z > 2

then N :1 I + round(z)
else N := 3;

if N > 250
then N := 250

end;

{ DATE: 30 Aug 84 }
VERSION: 1.0 }
NAME: display "
FUNCTION: Displays a copy of the data loaded when requested by the }

{ user. .
(INPUTS: none }
[ OUTPUTS: none }
{ GLOBAL VARIABLES: table, x -
(GLOBAL TABLES USED: table "
(GLOBAL TABLES CHANGED: none I
(FILES READ: none I
(FILES WRITTEN: none I
(PROCEDURES CALLED: none ,
CALLING PROCEDURES: simulateI
AUTHOR: Capt John M. Schriml I
HISTORY: none }

procedure display;

begin
writeln;
write (' TIME BUS NEXT INPUT');

153



{* PROGRAM:EVALUATE *}

DATE: 31 Aug 84 }
{ VERSION: 1.0

NAME: evaluate
{ FUNCTION: Using the data generated by the simulation, this program }

evaluates t-ie results anhd dispidys Liim Lu Lhe user. }
* INPUTS: none }

OUTPUTS: none }
{ GLOBAL VARIABLES: wild }
{ GLOBAL TABLE USED: none }
{ GLOBAL TABLES CHANGED: none
(FILES READ: none }
{ FILES WRITTEN: none }

PROCEDURES CALLED: getdata, show_parameters, sess - zrformance, }
{ bus_operatingspeqd, display_datd }
(CALLING PROCEDURES: none }

AUTHOR: Capt John M. Schriml }
(HISTORY: none }
(***II**O*****I*****4IO******I******IIO******I**************** I*

program evaluate (input,output);

const propagation = 656400; {ft/msec}

type data record
sessions id:integer;
extended id:integer;
time to bus:integer4;
interval to bus:integer4;
time beforenextinput:integer4;
input-_interval:integer4;
inputvariance:integer4;
busy_timeonbus:integer4;
trafficdelay:integer4;
flow controldelay:integer4;
number of collisions:integer4;
inputed_traffic:integer4;
busbusytime:integer4;
extratime to tx:integer4;
totalinput_time:integer4

end;

bussetup = record
busspeed:integer4;
bus_length:integer4;
bus overhead: integer

end;

clock-time record

167

.....................

.. . -. .' - .- V - i- '. - -. . . '. .- - '. '. . . . . . . - -. "i . " -" " - . - - - - 'i . " - - - -' - - " - . - . " - .- - - .- . . ' . '- - - -
-. . . . . . . ....' " " " -_ _ • . . . . " . - •-. ." . " - " " . - : .' ,: " L" " ,



total-bus-busy-time (G)(14) - Represents the total amount of time

the bus was bus for the entire network. Time is in T intervals.

total-collisions (G)(I4) - Represents the total amount of

collisions for the entire network.

wild (G)(C) - Represents user's response to a question.

wild-card (L)(C) - Represents user's response to a question.

x (G)(I) - Is used as a counter in loops.

z (L)(I) - Is used as a counter in loops.

The actual Pascal program, Evaluate, begins on the next page.

14

166 "



tempi (G)(14) - Represents in usec the amount of delay due to

traffic on the bus, for a given session.

temp2 (G)(I4) - Represents in usec the amount of delay due to

collisions, for a given session.

temp3 (G)(I4) - Represents in usec the amount of delay in due to

flow control, for a given session.

temp6 (G)(R) - Represents the total amount of delay, for a given

type of session, due to the bus being busy. Delay is in T intervals.

temp7 (G)(R) - Represents the total amount of delay, for a given

type of session, due to flow control. Delay is in T intervals.

temp9 (G)(14) - Represents the total amount of inputs for a given

type of session.

templ (G)(R) - Represents the total amount of delay, for a given

type of session, due to collisions. Delay is in T intervals.

temp12 (G)(I) - Represents the ID number of a session type.

tempi4 (G)(14) - Represents in bits/sec the data rate of a

session's terminal.

temp15 (G)(I4) - Represents the number characters inputed by each

input.

tempi6 (G)(I14) - Represents in msec the time interval between

inputs.

tempi7 (G)(I4) - Represents the number of times that a given

session was repeated in the simulation.

tempi8 (G)(14) - Represents in msec the maximum +/- deviation of

the interval between inputs.

time (G)(14) - Represents the transition time or simulation time in

T intervals.

165

.j...............................................................



table[x,7) (G)(14) - Represents the summation of the amount of

waiting time for inputs because the BIU was having trouble passing the

traffic it had. Time is in T intervals.

table[x,8) (G)(14) - Represents the summation of the number of

collisions a session had.

table[x,9] (G)(14) - Represents the summation of the number of

inputs made by a session.

table[x,10) (G)(14) - Represents the summation of the time that the

bus was busy because of a particular session. Time is in T intervals.

table[x,11] (G)(14) - Represents the summation of the amount of

extra waiting time because of collisions. Time is in T intervals.

table[x, 12) (G)(I4) - Represents the actual time between inputs.

Time is in T intervals.

tem (L)(I4) - Represents the number of inputs made by each session.

tem2 (G)(I4) - Represents in usec the actual time interval between

inputs for each type of session. This time interval was determined from

the results of monitoring the amount of traffic being allowed in by flow

control.

tem3 (G)(14) - Represents in usec the actual time interval between

inputs for each type of session. This time interval was determined from

the results of monitoring the amount of traffic being passed by the

terminals.

tem6 (L)(R) - Represents to total amount of waiting time for one

type of session, due to the bus being busy. Time is in T intervals.

tem7 (L)(R) - Represents the total amount of waiting time due to

flow control and waiting time between inputs, for a particular type of

session.

164



sim.number-of-collisions (G)(14) - Represents the number of

collisions of each session.

sim.sessions-id (G)(I) - Represents the ID number of a session.

sim.time-before-next-input (G)(I4) - Represents the amount of time

that must elapse before the next input is made. Time is in T intervals.

sim.time-to-bus (G)(1 4) - Represents the amount of time that must

elapse before an input reaches the BIU. Time is in T intervals.

sim.total-input-time (G)(I4) - Represents the actual amount of time

between inputs. Time is in T intervals.

sim.traffic-delay (G)(14) - Represents the amount of time traffic

is delayed because the bus is busy. Time is in T Intervals.

T - This is not an actual variable used in this program. T

represents the time interval of the simulation clock. T is equal to the

amount time that equates to 1/2 round trip propagation delay of the bus

cable.

table[x,1] (G)(I4) - Represents the amount of time that must elapse

before the input reaches the BIU. Time is in T intervals.

table[x,21 (G)(14) - Represents the calculated time it takes an

input to travel from the terminal to BIU. Time is in T intervals.

table[x,31 (G)(14) - Represents the amount of time that must elapse

before the next input is made. Time is in T intervals.

table[x,41 (G)(I4) - Represents the calculated time between inputs.

Time is in T intervals.

table[x,5] (G)(I4) - Represents the calculated time that the bus

needs to pass a session's input. Time is in T intervals.

table[x,6] (G)(14) - Represents the summation of the amount of

waiting time due to the bus being busy. Time is in T intervals.

163

..................................



rate (G)(14) - Represents in bits/sec the data rate of the bus.

real-time (G)(14) - Represents the real time of the transition and

simulation times. Real-time is in msec.

sim (G) - Represents a record of a sessions parameters and

performance data.

sim.bus-busy-time (G)(I4) - Represents the amount of time for each

session that the bus was busy. Time is in T intervals.

sim.busy-time-on-bus (G)(I4) - Represents the calculated amount

time the bus is busy for each input. Time is in T intervals.

sim.extended-id (G)(I) - Represents the extended ID of a session.

sim.extra-time-to-tx (G)(14) - Represents the additional amount of

waiting time traffic must wait because of collisions. Time is in T

intervals.

simfile (G) - Represents the file containing the records of each

session's parameters and performance data.

sim.flow-control-delay (G)(14) - Represents the amount of time

inputs were delayed because flow control was employed. Time is in T

intervals.

sim.input-interval (G)(I4) - Represents the calculated time

interval between inputs. Time is in T intervals.

sim.inputed-traffic (G)(I4) - Represents the number of inputs made

by a session.

sim.input-variance (G)(14) Represents the maximum +/- deviation

of the time interval between inputs. Time is in T intervals.

sim.interval-to-bus (G)(14) - Represents the calculated amount of

time it takes an input to travel from the terminal to BIU. Time is in T

intervals.

162

< < .;. ..i { i : : < : ? ? .;. : .: : ; .i : i 2 : ... . ................................................................ -- h- i~i-1 ? -



each input.

net.quantity (G)(I4) - Represents the number of times a session is

duplicated in the simulation run.

net.speed (G)(I4) - Represents in bits/see the data rate of a

session's terminal.

net.variance (G)(14) - Represents in msec the maximum +1- deviation

of the interval between inputs.

net-collisions (G)(I4) - Represents the average number of

collisions per second.

net-input-speed (G)(14) - Represents in bits/see the amount of

traffic the users are attempting to input.

net-flow-control- rate (G)(14) - Represents in bits/sec the amount

of traffic that the user is actually inputing. This traffic is determined

from the results of monitoring the amount of time that flow control is

employed.

net-traffic rate (G)(I4) - Represents in bits/see the amount of

traffic that the user is actually inputing. This traffic is determined

from the results of monitoring the amount traffic being passed by the

terminals.

net-terminal-speed (G)(14) - Represents in bits/sec the maximum

amount of traffic that the terminals are physically able to pass.

overhead (G)(I) - Represents the amount of management bits added by

the BIU to the information bits of the user.

range (G)(I) - Represents the number of sessions simulated. Range

is determined from counting the number of sessions loaded into the

program. Range is used in loops and to limit the size of the matrix

table.

161



clock.delay (G)(14) - Represents the actual bus cable delay used by

the simulation run. Delay is in T intervals.

clockfile (G) - Represents tle file containing the clock record.

clock.percentage (G)(I) - Represents the persistant percentage, if

p-persistant was simulited,.

clock.persistant (G)(I) - Represents the type of persistant used

for the simulation.

clock.sclck (G)(I4) - Represents the amount of simulation time used

for collecting data. Time is in T intervals.

clock.tclck (G)(I4) - Represents the amount of simulation time used

for transistion before data was collected. Time is in T intervals.

ext-id[x] (G)(I) - Represents a session's extended ID for a given

X.

idle (L)(R) - Represents the amount of time a terminal is idle

during a session. Time is in T intervals.

id[x] (G)(I) - Represents the session's ID number for a given x.

k (L)(R) - Is used for intermediate calculations.

1 (L)(R) - Is used for intermediate calculations.

length (G)(I4) - Represents in feet the one way length of the bus

cable.

net (G) - Represents a record of a network session.

netfile (G) - Represents a file of records containing network

sessions.

net.id (G)(I) - Represents the ID number of a session.

net.interval (G)(I4) - Represents in msec the time interval between

inputs.

net.number (G)(14) - Represents the number of characters inputed by

160

.................. ............. ........•.... ... ........................... ....-. '. -.... .'.---: --...-. '.....-.' ""L. "



PART B7: Pascal Program Evaluate

The variables and their purpose, as used with the program Evaluate,

are as follows:

VARIABLES:

bus (G) - Represents a record containing the bus information

inputed by the user.

bus.bus-length (G)(14) - Represents in feet the one way length of

the bus cable.

bus.bus-overhead (G)(I4) - Represents the amount of management bits

(overhead) added by the BIU to the user's information bits.

bus.bus-speed (G)(14) - Represents in bits/see the data rate speed

of the bus.

busfile (G) - Represents the file containing the record of the bus

infomation inputed by the user.

bus-flow-control-rate (G)(I4) - Represents in bits/sec the amount

of traffic being passed on the bus by using the results of monitoring the

amount of time flow control is employed.

bus-rate (G)(I4) - Represents in bits/sec the amount of traffic

being passed on the bus by using the results of monitoring the bus' busy

time.

bus-traffic-rate (G)(I4) - Represents in bits/see the amount of

traffic being passed on the bus by using the results of monitoring the

amount cf traffic the terminals were passing.

clock (G) - Represents a record of the clock, delay, percentage,

and persistant information, provided by the user.

159

:L1...................................................................



rewrite (clockfile);
clc.T click :~tclock;
cle.S~click := clock;
cle.delay := N;
cle.persistant ::persistant;
cle.pereentage :~percentage;
clockfileC :z dc;
put (clockfile);
Close Cclck-~flle/

end.

158



then collision

else if (eventflag ='b') and (waiting >1) and
(persistant = 2)

then
begin

adj_further;
if waiting > 1

then collision
end;

if event_flag = IV
then adj_input

until clock < 0;
tclock := tclock - clock;
clock := sclock;
for x :1 1 to range do
begin

table[x,6] := 0;

table[x,7J := 0;
table[x,8] := 0;
table[x,9] :: 0;
table[x,10] 0= ;

table[x,11] := 0;
table[x,15] :: 0

end;
repeat
writeln (clock);
findnext event;

j clock := clock - (next event - 1);
if (screen = 'y') or (screen :'Y')

then test;
if next event > 1

then prepare for event;
if (screen = 'y') or (screen 'Y')
then test;

if (eventflag = 'b') and (waiting 1)
then adj_bus
else if (eventflag = 'b') and (waiting > 1) and

(persistant = 1)
then collision

else if (eventflag = 'b') and (waiting > 1) and
(persistant 2)

then
begin

adj_further;
if waiting > 1

then collision
end;

if event flag = iI
then adj_input

until clock <0;
sclock :: sclock - clock;
writeln ('Actual simulation clock time is ' sclock);
file results;

157



writeln (range, ' sessions were loaded for this simulation run.');
writeln;
writeln ('Do you wish to review the data loaded? (Y/N)');
readln (answer);

writeln;
if (answer ='y') or (answer 'Y')

then display;
writeln;
write ('Is the actual round trip delay of the network known? ');
writeln ('(Y/N)');
writeln ('<CR>');
readin (answer);
if (answer = 'y') or (answer 'Y')

then adjdelay;
limitset := [I..N];
writeln;
repeat
writeln ('Is this simulation a 1- or p- persistant?');
writeln ('If 1-persistant enter 1, if p-persistant enter 2.');
writeln('<CR>');

readln (persistant);
until (persistant = 2) or (persistant 1);
if persistant 2 then

begin
writeln ('Enter percentage bewteen 1 and 100.');
readln (percentage)

end;
writeln;
writeln ('Please enter the transition clock time.');
readln (tclock);
writeln ('Please enter the simulation clock time.');
readln (sclock);
writeln ('Please enter the time of day.');
writeln ('(example: If time is 13:15, enter 1315)');
readln (seed);
clock := tclock;
writeln ('Do you need a display of the simulation run? (Y/N)');
writeln ('<CR>');
readln (screen);
repeat

writeln (clock);
findnextevent;
clock := clock - (next event - 1);
if (screen ='y') or (screen ='Y')

then test;
if (next-event <> 1)

then preparefor event;
if (screen = 'y') or (screen = 'Y')

then test;
if (event-flag = 'b') and (waiting 1)

then adj_bus
else if (eventflag = 'b') and (waiting > 1) and

(persistant 1)

156

~~...... .. ,.-........,,.-.-...-.- .- ,-,,.-,.....t'3.k,_& r



sim.inputed traffic := table[x,9];
sim.busbusy time := tabletx,1O];
sim.extra time to tx :: table[x,111;
sim.total -inpu-time ::table[x,15];

simfile ^ := sim;
put (simfile)

end;

close (datafile);
close (simfile)

end;

{ DATE: 30 Aug 84 }
{ VERSION: 1.0 1
(NAME: test }
( FUNCTION: To display to the user each step of the simulation upon }
( request. Normal used for trouble shooting. }
(INPUTS: none }
(OUTPUTS: none }
{ GLOBAL VARIABLES: x, table, range }
{ GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
( CALLING PROCEDURES: simulate }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure test;

begin
writeln;
for x :: 1 to range do

begin
write (table[x,1]:6,table[x,2]:6,table[x,3]:7,table[x,4]:7);
write (table[x,5]:5,table[x,6]:7,table[x,7]:7,table[x,8]:3);
write (table(x,9]:3,table~x,1O]:7,table[x,11]:5);
writeln (table[x,12):3,table[x,13):5,table[x,141:5)

end
end;

begin
assign (clockfile,'clock');
assign (datafile,'net data');
assign (simfile,'simulate');
N := 3;
percentage :: 100;
getdata;
writeln;

155

.". " •. .-



writeln (' INPUT BUS');
write (' TO BUS INTERVAL INPUT INTERVAL');
writeln ' VARIANCE BUSY TIME');
writeln;

A for x :: 1 to range do
begin
write (table[x,1]:9,table[x,2]:13,table~x,3]:12);
writeln (table[x,4]:11,table[x,14]:12,table[x,5]:10);

end
end;

( DATE: 30 Aug 84 }
{ VERSION: 1.0 }
{ NAME: file results }
( FUNCTION: Stores results of the simulation run. 1
{ INPUTS: none }
(OUTPUTS: none }
{ GLOBAL VARIABLES: simfile, datafile, x, comp, sim, table }
(GLOBAL TABLES USED: table }
(GLOBAL TABLES CHANGED: none 1

0@ {(FILES READ: net data }
(FILES WRITTEN: simulate }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: simulate }
( AUTHOR: Capt John M. Schriml

HISTORY: none }

procedure fileresults;

begin
rewrite (simfile);
reset (datafile);
x := 0;
while not eof (datafile) do

begin
comp := datafileA;
get (datafile);
x := x + 1;
sin.session id :: comp.sessionid;
sim.extended id := comp.extended id;
sim.time to bus :: table~x,1];
sim.intervaltobus :: table[x,2J;
sim.time before nextinput := table[x,3];
sim.input.interval :: table[x,4];
sim.inputvariance := table[x,14];
sim.busy_time on bus :: tablelx,5);
sim.trafficdelay := table[x,6];
sim.flowcontroldelay :: table[x,7];
sim.nunber of-collisions :: table[x,8];

154

o . t .. t . ~



tclck,clck:integer4;
delay,persistant,percentage:integer

end;

net-sessions record
id:integer;
speed,number,interval,variance,quantity:integer4

end;

var id:array[l..500] of integer;
ext id:arraytl..500] of integer;
table:array[1..500,1..12] of integer4;
x,range,overhead,templ2:integer;
templ4,templ5,templ6,templ7,templ8,rate,time,length,realtime,
netterminalspeed,netinput.speed,tem2,templ,temp2,temp3,
nettraffic_rate,netflow control rate,bustraffic_rate,
netdelay_due to collisions,bus_flowcontrolrate,
total collisions,net collisions,totalbusbusytime,
busrate,temp9,tem3:integer4;
temp6,temp7,temp11:real;
wild:char;
sim:data;
bus:bussetup;
net:netsessions;
clock:clock_time;
simfile:file of data;
busfile:file of bus setup;
clockfile:file of clocktime;
netfile:file of netsessions;

( DATE: 31 Aug 84
{ VERSION: 1.0 }
{ NAME: getdata }
{ FUNCTION: To load the results of simulation into a matrix for }
{ evaluation. I
{ INPUTS: none }
( OUTPUTS: none }
( GLOBAL VARIABLES: x, simfile, id, ext id, table, sim, range 1
( GLOBAL TABLES USED: id, extid, table }
( GLOBAL TABLES CHANGED: id, ext id, table I
(FILES READ: simulate I
(FILES WRITTEN: none }

PROCEDURES CALLED: none }
{ CALLING PROCEDURES: evaluate }
( AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure getdata;

168

L i



begin
reset (simfile);
x := 0;
while not eof (simfile) do

begin
sirem simfile^-;

get (simfile);
x :: x + 1;
id[x] := sim.sessions id;
ext id[x] := sim.extended id;
table[x,1I := sim.time tobus;
table[x,21 :: sim.interval to bus;
table[x,3] := sim.timebeforenext input;
table[x,4] :z sim.input interval;
table~x,5] :: sim.busy_timeonbus;
table[x,6J := sim.traffic-delay;
table[x,7] := sim.flowcontroldelay;
table[x,8J := sim.numberof collisions;
table[x,9) := sim.inputed traffic;
table[x,10] := sim.busbusy-time;
table[x,11] :: sim.extra time to tx;
table[x,12) := sim.totalinputtime

end;
range :: x;
close (simfile)

end;

( DATE: 31 Aug 84 }
{ VERSION: 1.0 }
( NAME: show-parameters }
( FUNCTION: To show the parameters for which the results of the }
{ simulation are based on. }
{ INPUTS: none
(OUTPUTS: none }
{ GLOBAL VARIABLES: busfile, bus, rate, length, overhead, clock, }
{ clockfile, time, real time -
(GLOBAL TABLES USED: none }
{ GLOBAL TABLES CHANGED: none }
( FILES READ: clock, bus }
(FILES WRITTEN: none }
{ PROCEDURES CALLED: none }

CALLING PROCEDURES: evaluate }
AUTHOR: Capt John M. Schriml }

(HISTORY: none }

procedure show_parameters;

var k,delay:real;

169

- . * . . . . . .. . . . . . . . .. . .- **. . * * -. * . *. ~. . %



begin
write ('The results of the simulation run are based on the')
writein ('following network parameters.');

j writeln;
reset (busfile);
bus := busfile^;
get (busfile);
write ('Data rate of the bus was ',bus.bus-speed:4);
writein (' bits!iec.');
writeln;
length := bus.bus length;
write ('Max round trip length of the bus was ',(length 2)4)
writein C feet.');
reset (clockfile);
clock := clockfile^;
get (clockfile);
writeln;
if clock.persistant 1

then writeln ('1-persistant was used.').
else writeln ('P-persistant was used with a percentage

'of ',clock.percentage:2,' %.');
delay := (Cclock.delay - 1) * float14Clength)) * 1000000)/

propagation;
writeln;
write C The round trip delay of the bus cable was )
writeln (trunc4(delay) :3,' nano seconds.');
writeln;

*0writeln ('The BIU overhead was ',bus.bus-overhead:3,' bits.');
writeln;
rate := bus.bus -speed;
overhead := bus.bus overhead;
close (busfile);
writeln ('The actual transition clock time was '

clock.tclck:6,'.');
writeln;
writeln ('The actual data collecting clock time was ',

clock.clck:6,'.');
writeln;
time := clock.tclck;
k := (float4(time) * length)/propagation;
real-time := trunc4(k);
write ('The transition clock time approx equals ',real time:3);
writeln C Milliseconds(msec) of real')
writein ('network run time.');
time := clock.clck;
close (clockfile);
k := (float4Ctime) * length)/propagation;
real time := trunc4Ck);
writeln;

*write ('The data collecting clock time approx equals ');
writeln (real time:3,' milliseconds(msec) of')
writeln ('real network run time.');

* writeln

170



end;

{ DATE: 31 Aug 84 }
( VERSION: 1.0 1
( NAME: busoperatingspeed }
( FUNCTION: To display to the user the amount of traffic the bus is }
( passing and huw much traffic is being inputed to the }
{ network. }
{INPUTS: none }
{ OUTPUTS: none }
( GLOBAL VARIABLES: rate, busrate, bus traafic rate, net collisions }
( busflowcontrol ra-te, net terminal_speed, "
{ nettrafficrate, netinputspeed, }
( net flow control rate }
(GLOBAL TABLES USED: none }
( GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: none }
{ AUTHOR: Capt John M. Schriml I
(HISTORY: none }

procedure bus_operating_speed;

begin
writeln;
writeln (' I BUS PERFORMANCE **');
writeln;
writeln ('The bus is set up to operate at ',rate:6,

I bits/sec.');
writeln ('Traffic on the bus indicates a rate of ',busrate:6,

bits/sec.');
writeln ('Traffic being passed by the terminals indicate a ',

'rate of ',bustrafficrate:6,' bits/sec.');
writeln;
writeln ('Traffic being inputed by the user indicate a bus rate',

of ',bus flow control rate:6,' bits/sec.');
writeln ('Collisions were at the rate of ',netcollisions:1,

collisions per see.');
writeln;
writeln (' ** NETWORK INPUT TRAFFIC 000,);
writeln;
writeln ('The MAK traffic rate which the terminals can pass is '

net terminal speed:3,' bits/sec.');
writeln ('The simulation-indicates that the terminals were ',

'passing traffic at ',nettrafficrate:3,' b/s.');
writeln ('The users are attempting to input ',netinput_speed:3,

bits/sea.');

171

..............................................................................................



writeln ('The simulation indicates that the network is allowing',
an input of ',netflowcontrolrate:4,' b/s.');

end;

DATE: 31 Aug 84 }
{ VERSION: 1.0 }
[NAME: show_performance }
{ FUNCTION: To display the peroformance of each individual type of }
{ sessions to the user. }
(INPUTS: none
{OUTPUTS: none }
{ GLOBAL VARIABLES: tempi7, tempi2, tempi4, tempi5, tempi6, tempi8, I
{ templ, temp3, temp2, tem3, tem2, teml }
{GLOBAL TABLES USED: none }
(GLOBAL TABLES CHANGED: none I
{ FILES READ: none }
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: sessions performance } .
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure showperformance;

var l,k:real;

begin
write (templ7:1,' typical sessions were set up as ');
writeln ('follows:');
writeln ('ID: ',tempi2:1);
writeln ('TERMINAL RATE: ',tempi4:3,' bits/sec');
writeln ('0 of CHARACTERS PER INPUT: ',tempi5:1);
writeln ('TIME INTERVAL BETWEEN INPUTS: ',tempi6:2,' msec',

var ', templ8:1,' msec');
writeln ('*AVE MAX INPUT RATE: ',(8 * tempi5 0 1000) div tempi6,

I bits/sec*');
writeln;
writeln ('The performance was as follc;ws.');
writeln;
writeln ('DELAY PER INPUT:');
writein (' -due to traffic on the bus: ',templ:3,' usec');
4riteln (' -due to collisions: ',temp3:3,' usez');
4riteln (' -due to flow control: ',temp2:3,' usec');
,riteln;
writeln ('THOUGHPUT RATE PER SESSION:');
writeln ' -time interval between inputs:');
writeln (' -terminals indicate ',tem3:2,' usec');
writeln (' --inputs indicate ',tem2:2,' usec');
k:: (1000000.0 * 8 * temp15)/tem3;

172

-~ -.-. . . . . . ..p.. . . . . . . . . . . ...Cm,



1 := (1000000.0 * 8 * templ5)/tem2;
writeln (' -transmission rate:');
writeln (' -terminals indicate ',trunc4(k):2,' bits/see');
writein (' -inputs indicate ',trunc4(l):2,' bits/sec')

end;

iJDATE: 31 AJg 84Li i
{ VERSION: 1.0 }
{ NAME: sessionsperformance }
{ FUNCTION: To do the actual performance calculations. }
(INPUTS: none }
(OUTPUTS: none ]
[ GLOBAL VARIABLES: nettrafficrate, netflowcontrolrate, }
{ bus traffic-rate, bus flow control-rate, }
{ net-collisions, -
{ netinputspeed, netterminal speed, netfile, }
{ totalcollisions, totalbus_busytime, net, }
{ temp6,temp, temp9, templi, id, table, templ, }
{ teml, tem3, temp3, tem2, temp2, tempi2, temp14, }
{ tempi5, tempi6, tempi7, tempi8, busrate }
{ GLOBAL TABLES USED: id, table }
(GLOBAL TABLES CHANGED: none }
(FILES READ: network }
(FILES WRITTEN: none }
( PROCEDURES CALLED: show_performance }

* ( [ CALLING PROCEDURES: evaluate }
{ AUTHOR: Capt John M. Schriml I
(HISTORY: none }

procedure sessions_performance;

var wildcard:char;
k:real;
z:integer;
tem:integer4;
idle,tem6,tem7:real;

begin
net traffic rate := 0;
net-flow control rate := 0;
bus traffic rate :=O;
bus-flow control rate :: 0;
netcollisions :: 0;
netinputspeed :: 0;
net_terminalspeed := 0;
total collisions :: 0;
total7busbusy_time := 0;
write ('The performance of various types of sessions are');
writeln (' as follows:');

173

..... .... . ........ .. .... ... ...... ...



writein ('Please enter <CR> to continue.');
read (wild-card);
wr itein;
reset (netfile);
while not eof (netfile) do

begin
net := netfile^;
get (netfile);
temp6 ::0;
tem6 ::0;
temp? : 0;
tem7 ::0;
tempg : 0;
tempill: 0;
for z ::1 to range do
if id~z] net.id then

begin
ternm table~z,91;
temp6 ::temp6 + table~z,6J;I
tern6 :~tem6 + (table~z,2J * tern) + table~z,61

table~z,11 1;
temp? : temp7 + table~z,7J;
tern7: tern? + table~z,12J + table~z,7);
total-collisions := total-collisions + table~z,8J;
total bus busy_time := total bus busy_time +

table~z, 10);
temp9 :~temp9 + tabletz,9);
templi : templi + table~z,113

end;
k :: terp6 *float4(length) * 1000)/(float4(temp9)

propagation);
tempi : trunc4(k);
idle :=(time * float(net.quantity)) -tem6)/temp9;

k := ((dle + (tem6 / temp9)) 0 length *1000)/propagation;
tem3 := trunc4(k);
k := (temp7 0 float4(length) * 1000)/(floatl4(temp9)

propagation);
temp2 := trunc4Ck);
k := Ctem7 * float4(length) * 1000)/Cfloat4(temp9)

propagation);
tern2 := trunc4(k);
k := (templi 0 floatl4(length) * 1000)/(float4(tenp9)

propagation);
temp3 := trunc4(k);
k := (1000000 0 float'i(net.number) * net.quantity *8)/tern3;
net traffic rate := net traffic rate + trunc4(Ic);
k : (1000000 * float4(net.nunber) * net.quantity 0 8)/tern2;
net flow control rate := net flow control rate + trunc4(k);
k :M((net.number * 8) + overhead) * float4(net.quantity)

1000000.0)/tem3;
bus-traffic-rate := bus-traffic rate + truncl4(k);
k :M((net.nurnber *8) + overhead) 0float4(net.quantity)

174I



1000000.0)/tem2;
bus flow control rate := bus-flow control-rate + trunc4(k);
temp12 := net.id;
tempi4 := net.speed;
tempi5 : net.number;
tempi6 :: net.interval;
temp18 := net.variance;
tempi7 := net.quantity;

:--t tr: .' - vp := net termnal SpC + t4-ep-e
netinputspeed := netinputspeed + (((tempi5 * 1000) * 8 *

tempi7) div tempi6);
show__performance;
writeln;
writeln ('Please enter<CR> to continue');
read (wild card);
writeln;

end;
k := ((totalbusbusy__time * 1.0) * rate)/time;
bus rate := trunc4(k);
net collisions := (total-collisions * 1000) div real-time

end;

{ DATE: 31 Aug 84 }
( VERSION: 1.0 }
( NAME: displaydata }
( FUNCTION: Displays raw data upon user request.
{INPUTS: none }

OUTPUTS: none }
{ GLOBAL VARIABLES: id, ext id, table }
{ GLOBAL TABLES USED: id, extid, table }
(GLOBAL TABLES CHANGED: none }
(FILES READ: none }
(FILES WRITTEN: none }
(PROCEDURES CALLED: none }
(CALLING PROCEDURES: evaluate }
{ AUTHOR: Capt John M. Schriml }
(HISTORY: none }

procedure display_data;

var z:integer;

begin
writeln;
writeln (' * RAW DATA lilt);

writeln
write (' WAITING FLOW
writeln (' BUS EXTRA TIME DUE');
write (' ID EXT ID FOR BUS CONTROL 1);

175

"."". "". Y . '""-' . ,' ." "'"' " "- -.. . '..'',".".' ." " -" '".".""" -","."i """". .".'." '""'"''i" .

".' ." -=. . '..:........................................-...,,. ' ' ,- - " '''".. ._' ":, L" , , " , •"_



writein (' INPUTS BUSY TO COLLISIONS');
for z := 1 to range do

begin
write (id~z):3,ext id[z):7,tablez,6J:14,table~z,7J:1O);
write Ctable~z,9J:9,tabletz,10h:9);
writein (table~z,11):13)

end;
wr itel n;
writein ('There were ', total-collisions:2,' collisions.')

end;

begin
assign (simfile,'simulate');
assign (busfile,'bus');
assign (clockfile,'clock');
assign (netfile,'network');
bet -data;
show~parameters;
sessions _performance;
bus-operating-speed;
writeln;
writein ('Please enter <CR> to continue');
read (wild);
writelr;
writeln ('o you wish to see a copy of the raw data? (Y/N));
writeln ('(CR>');
read(wild);
if (wild ='y') or (wild 'Y')

then display_data
end.

176



APPENDIX C: SIMULATION MODEL'S INPUT LIMITATIONS

The following input limitation- _re fo- the si !ation -^A-,

developed by this thesis, using a 16 bit minicomputer. Some limitations

may change if the computer programs are loadpd irtn a ...uter wfth .

than 128K of memory.

Simulator's Basic Unit of Time. Since the simulation model takes into

account numerous variables, many of the limitations can not be determined

until some of the variables are selected. One of the major factors

contributing to the model's limitations is the fact that the basic unit

of time for the simulation is 1/2 the propagation delay of the cable.

For this particular simulation model, this implies that all inputs

transmitted on the bus, must take at least the time equivalent to 1/2 the

propagation delay of the cable for the simulation to be successful. The

basic unit of time, for the simulator, leads to the following equation:

((# char/input in bits) + (overhead in bits)) ' 656400000 ft/sec
>1

(bus rate in bits/see) ' (1/2 cable length in ft)

The number 1 in the equation represents one tick of the simulation

clock. As long as the equation is equal to or greater than 1, for a

given bus rate, cable length, # characters/input, and overhead bits, the

simulation model should perform correctly.

Number of Sessions. As mentioned previously, the memory capability of

the micro-computer limits the number of sessions to 500.

177

-4

. .+

. . . . . .. . . . . . . • . . . • . . . , . • - . . . .. . .



* - . . . . . . . .. . . . . . . . .r - -- °

Terminal Speed. The only physical limitation on the value of the

terminal speed is the value of an integer4. The model was designed with

the assumption that the bus is able to pass traffic much faster than the

terminal. The model will not perform correctly if the terminal speed is

faster than the bus speed.

Simulation Time. Th? maximum simulation time, with respect to the ticks

of the simulation clock, is 2,147,483,648. In the case of the AFLC

network, this equates to approximately 55 minutes of real simulation

time. The maximum simulation time was used one time, with one session,

and it required 25 minutes of computer time to simulate the full 55

minutes of real simulation time. The actual required computer time will

vary with the number of sessions being simulated.

Time Interval Between Inputs. The minimum allowable interval between

inputs is 1 msec. The maximum interval between inputs is 3,271,000 msec,

with respect to the AFLC network. The maximum value is a little

unrealistic and would allow for only one input.

Actual Cable Delay. The simulation model will accept values for known

network delay between 1 and 125 times the propagation delay of the cable.

The user entering known network delays outside this range, will cause the

simulation model to default to the appropriate extreme end of the range.

178

. . .. . .-.



Bibliography

1. O'Reilly, P. J. P. and J. L. Hammond. "An Efficient Alogorithm for
Generating the Busy/Idle Periods of A Channel Using CSMA and Loaded by an
Arbitrary Number of Saions," eroc COMPFUN , 427-436, Washington DC
Sep 82.

2. Tokoro, M. and K. Tamaru. "Acknowledge Ethernet," COMPCON , 320-325,
Fall 77. .

3. Hughes, H. D. and L. Li. "A Simulation Model of the Ethernet,"
Technical Report TR #82-008 , Dept of Computer Science, Michigan State
University, 82.

4. Almes, G. T. and E. D. Lazowski. "The Behavior of Ethernet-Like
Computers Communications Networks", Proc &th Symposium on OS Principles
66-81, Dec 82.

5. Tobagi, F. A. and V. B. Hunt, "Perfomance Analysis of Carrier Sense
Multiple Access with Collision Detection", Computer Networks , 4
:245-259, (80).

6. FitzGerald, Jerry. Business Data Communications. New York: John
Wiley & Sons, 1984.

7. Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs:
Prentice-Hall, 1981.

8. Hopkins, G. T. "Multimode Communications on the Mitrenet," Computer
Networks , 4 : 229-233 (1980).

9. "Special Report: Local Network Review and Projection," The
LocalNetter Newsletter , 1 (1): 55.3-55.7 (Jan 83). -

10. Byers, T. J. "Electronic Ties That Bind," Computers and Electronics
22 (3): 68-73 (Mar 84).

11. Metcalfe, Robert M. "E hernet: Distribution Packet Switching for
Local Computer Networks", Communications of the ACM , 19 (7): 395-404
(Jul 76).

12. Schruben, Lee "Modeling Systems Using Discrete Event Simulation",
Proc Simulation Conference , 101-107, Winter 83.

13. Seila, Andrew F. and Der-Fa Robert Chen, "Discrete Event Simulation
on Mini- and Microcomputers: Some Experiments with the Pascal Language",
Proc Simulation Conference , 41-43, Winter 81.

14. Bux, Werner. "Local Area Subnetworks: A Performance Comparison",
IEEE Transcations on Communications , 29 (10):1465-1473 (Oct 81).

179



VITA

Captain John M. Schriml was born 2 June 1949 in Dayton, Ohio. He

served as a Nike Hercules Missile Repairman with the Army for three

vears, after graduating from Chaminade High School in Dayton. UPon his

separation from the Army, Captain Schriml returned to Dayton and attended

the University of Dayton from which he received the degree of Bachelor of

Electrical Engineering in December 1974. He received his commission in

the USAF through the Air Force's OTS program. Captain Schriml's first

assignment was as a HF (High Frequency) Radio Test and Evaluation Team

Chief in the Pacific. His next assignment was with HQ AFCC as the

AUTOVON Test and Evaluation Team Chief, which required numerous worldwide

TDYs. Captain Schriml's last assignment prior to attending the School of

Engineering, AFIT, was with the 1815 Test and Evaluation Squadron where

he was the Section Chief for AFCC's Operational Test and Evaluation

Section.

Permanent Address: 1845 Pershing Blvd

Dayton, Ohio 45420

180

. . .. . . ... . . . .



JNCLASSIFIED

SIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

CURITY CLASSIFICA1ION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

ICATIONDOWNGRADINGSCHEDULE distribution unlimited

IG ORGANIZATION REPORT NUMBER(S) 5, MONITORING ORGANIZATION REPORT NUMBER(S)

IT/GE/ENG/84D-57

'ERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
If applicable

hool of Engineering AFIT/ENG

C ty State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

r Force Institute of Technology
ight-Patterson AFB, Ohio 45433

UNDING/SPONSORING 8ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
k.TION (If applicable)

AFLC I SYC

City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

ight-Patterson AFB, Ohio 45433 ELEMENT NO. NO. NO. NO.

iude Security Classification)

e Box 19
. AUTHOR(S)

hn M. Schriml, B.E.E, Capt, USAF
REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT

Thesis FROM TO 1984 December 180
NTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

GROUP SUB. GR Communications Network, Simulation, CSMA/CD,
02 Bus, Local Networks CATV

r rContinue on reverse ifnecessary and identify by block number

tle: SIMULATION MODEL OF A CSMA/CD BUS LOCAL tr-lr'asc Te: APR 1AIV.*
AREA NETWORK WITH MULTIPLE VARIABLES : ., [4 l

I rc U , , ." <~i ~I- Devr!,~zid

esis Adviscr: Walter D. Seward, Manor, USAF

TION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

D/UNLIMITED IXSAME AS RPT. ,-. OTIC USERS E1 UNCLASSIFIED

RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
fincludf Amea Code)

[alter D. Seward, Major, USAF 513-255-5533 AFIT/ENG

1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

. . . . . . . . . . .



R D-AL51 716 SIMULATION MODEL OF A CSMA/CD BUS LOCAL AREA NETWORK 3/3
WITH MULTIPLE VARIABLES(U) AIR FORCE INST OF TECH

I NRIGHT-PATTERSON RFB OH SCHOOL OF ENGI.. J N SCHRIML

UNCLASSI FED DEC 84 AFIT/GE/ENG/84D-57 F/fl 12/1 L

MEN



"i

I m 1 112.2I

IIIIL5 A

ff111.25  111 1f(.4_-- fftf11.6

MICROCOPY RESOLUTION TEST CHART
NAIONA HIRFAIP OF fTANOARDO 06 A



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Numerous statistical studies of the expected performance of a CSMA/CD
bus local area network have been completed. With the statistical
approach, the number of input sources is normally limited. Also, input
sources normally possess the same statistical parameters with respect to
input rate and the amount of data per input. The CSMA/CD bus local area
network simulation model developed by this thesis can handle up to 500
input sources, all with a different input rate and amount of data per
input. The limitation of 500 is due only to the fact that the simulation
model was implemented on a 128K memory micro-computer. The number of
sources can be increased by implementing the simulation model with a
computer with a larger memory.

The simulation model takes the approach that once an input is made, the
time for the input to travel through the various stages of a network can
be easily calculated. Therefore, the simulation model generates traffic
based on the statistical parameters of each individual source, then tracks
the input as the simulation clock ticks. Using the memory power of the
computer to keep track of the location of all inputs, the simulation model
is able to determine the effect of an input on all other inputs. In some
cases, an input has no direct effect on other inputs, and at the other
extreme, when inputs want to use the bus at the same time, they have a
drastic effect on each others performance. Numerous tests were performed
to demonstrate the ability of the simulation model to model a CSMA/CD bus
LAN. The simulation model will accept the following multiple variables
prior to each simulation run: data rate of the bus, length of the bus
cable, overhead bits of the bus, actual delay of the bus cable, data rate
of each source terminal, time interval between each input, amount of data
per each input, and whether the CSMA/CD is 1-persistant or p-persistant.

SECURITY CLASSIFICATION OF THIS PAGE

................................... ............... ....-,', . . ...''. ,., .... ,.,.,



FILMED

5-85

DTIC


