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Summary

3 of this project, initially conceived to be a five year pro-

ject to develop a programming support environment and a collec-

- tion of tools that support rapid prototyping. For a broader

overview of the project, in particular, of the support environ-

ment, see the final report for Task 1 £l. The initial project

was scaled back, and we report here on narrow aspects of the

problems that played a role in the larger system.

The principal work in Task 2 was the design of a new

method for code-generation, particularly oriented to the

needs and capabilities of the programming support environment.

This resulted in a rather large, self-contained document,

Code Generation by Coagulation, which is included in its

original form as part of this report.

Task 3 was to have been an effort to prototype some of

the code-generation ideas developed in Task 2, in particular,

an analyzer that builds an intermediate form for bi-directional

scanning of a program, a necessary constituent of the optimizing

code-generator. Task 3 also called for developing overall

specifications for the Rulog language and interpreter and develop-

Ing a prototype of the interpreter. Due to the limitation of

funds, only a design, not a prototype of the bi-directional

l
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scanner was eventually supported; this work Is reported on in

the second document included in this report. The work on Rulog (-

is reported on in a paper that has been submitted to the 8th

International Conference on Software Engineering; a copy of

that paper Is attached.
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1. Introduction

LiTmitUn uupii
The Problem of designing a code generator for an interpreter-based languae Jas

provided a chance to reoexamine fth traditional usumptiona, underlying, the present

Uhooyof -- rbby th x euv of these assumptions i
tha roram are compiled before they are run. In an interpretive enironment, a

~plrsees a proprm only after It is nmsl debugged; chans to a program are ~

nufy tested' with fth interpreter before the program is recompiled. 7Ui

cpmth infeuec of compiltion h111 two oeuencs one of which is

obvloum a compiler for such an environment can run sdower than other compilers

danc it is used less often. The lss, obvious implication of having run program

before they are compied is that one can design a compiler whose opftiiztion

techniqu are fudmnal deedent upon execution statistics gathered when
running the program on "typical" data.

Another assmption underlying present comipilers is that subroutines are generally

large and are Calle infrequently. While this was less, absurd twenty years ago.
language continue to have rigid cafling sequences, register

mventonsMtc As; prgrmm are being tunght more and moeto break down

thei r paw into smsar more easily understood pieces, there is it growinag

importance Of not punishing them with Increased computing cas. A variety of
parameter and resuft -g umbanisms convenient regIitr conventions beten

caller and cailee cheap subroutine calls to nOn-recursive proceures (not to mention

direct substitution when possfible) are all required to support good itrpoeua

optiiztion at the machine code level

Code space optimization is an ae neglecte In most conms a I apae were

free. A corollary to this is thart time-pace tracoffi ar also nelected, particularly
bnecaus ctla data is lakig. Though some compilers do indeed try to pay

speialat~bito -Inner loops, the notion of h1n loop becomes enuous when

considering inter-rcedua optimiztion. with the variety of computing
environments pofea ing cncrn with space cos Increase. On small personal

comutrsand in some embedded systems t space cos may be of paramount
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concern; in time-atzring enviroanents, cost is usually a function of space and timne, so
trade-aots anre rcial in the overall optimization process in paged systeum. space can

convert Indirectly into time because of pape faultB; in real-time systems, time costs
may dominate.

in the initial whome of this coegnrtrdesign ther were two issues which

stood out a unnccsfly treated in compiler design with which I was famiia.

First, there was the fact that while ce-eraonis an optimization problem, the

objective function (to use a term from mathematical proa-mming does not enter in
a direct way into the pmress rather it forum an implicit background for all that

hapem.The ream for this is partly that execution Information has been assumed

to be unavailablie to compiles (see above); one of the consequences is that time-pace

trade-off questions hase been neglected (agai. see above). The second bothersome

hee is best summed up in the standard clch about cdgueartInstruction
selection is trivial we register allocation is done, ad register allocation is trivial.

-nc instruction selection is done.

Cosdrpeephol omiztn This is one of the last phases of a compler. Its

job is to ruag about in the code which has already been geerated, to remove

obvious inefficiencies and to detect patterns which can be more efficiently compiled
using Instructions which were not Wooud by earlier phases in t compiler. It as
nsey to realize the important role played by the technque in today's best

optimizing complers If -It is without doubt the most ad hoe, least fao~mlled. and

perhaps leow aesthetically Pleasng of the phass of the compile. Yet it is one of the

most effective. Even if peephole oPtiianrd is effiective It is disturbing that -It
Works so Hwe --Ihl ptnuom ae often allowed by the fact that certain

quanttes are In registe- (Instruction selection is trivial Uf 4. but rgister allocation
was done muchs earlier, and might have been done differently, had there been any
knowledge of the effect It would have on peephole optimization (regist allocation is

trivial if 4.And all of this is happening without any cloor view of the ultimate -

efeta efMOO
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1. A Now Approach
With a new set of asuzptioz in mind, and with reservations about some apets

of present co Pgnrto technique aroused. we begin to descibe our proposed
dad=gn The place to begin is with the circlarty cliche, and the driving idea is never

tob kthe dm't- meto and Psi - __llcaio___ m dn

topqe. Tis my seem impouible. but the trik is to lock at a small enough. Piece

at the Propam so that doing both is not only possible. but eay. Intd of
beglorlng by code generation, (both registe aloatin and instuctio selection)

which Is sa/frglehuIJ, and patching it up with a peephole optimizer, we popos to

generate code, which is opid lecally, and graduly paste the pieces together into, a
coherent whole, modifying both register allocations and instrutions In the procin.

T~he order in which piece are paste together is crucia to this approach. It is

done in order of decreassug ezecuuon frequency, the kdea being to p". thinp

properly arranged on the elpeadve paths through the Ipos For exmple, inne

loo hich ae tuly busy wil be comiled fiut registr asand, etc. Et those

-b in"d oop tha awe sedm used, will have no influence a= the initial registe

l14ments. When compilin them pece if there is some new registe problem

there ate several wa" to resolve it Either the pesnt code can be changed tlo make

it compatile or the new piece can be comiled to work around est conventlons.

Thse relative costs of the two mothod can be compared, and a rational chiede.

By mow, the nmmufin of 'coagulation in the title of this work uhould be cleare.

* Imagsine the pri m s ncluding the sebrutin es ed out over a table, with the

coplrdropping Jefo =m the partn they are comiled. At firs little drop appea

in seemingly randomn places Thes get bigger and combine with other drop to form

growing glb.. When two globs meet, ripples will go out through each as they adjus

to eWa others presence, alhough fth parts of the globs tha formd firs am less

affecte by the rippLs When comspilation is complet ther Is am congealed mass

Thi work is about cta oa-eneration, not about the entire 1process of compilaton
We will assume that before a coplrbegins genrtn Code, It wil Alread have
atemivy analyzed. the proprm and produced an Ineredate form While this is
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not the place to discuss intermediate form (see chapter 5), we will claim here that

Vonvust-Mal1 languags can all be reduced to quite shima intermediate forni. There

mey be great variations in surface syntax and applications amon COBOL, LISP.

FORTRAN and ADA. but fsom the point of vie of co eeato there is little

differeace On the other hand. this work makes no attempt to treat highly
un dnmsimal languaens For xampl, the issuesin aPROLO compileraremply

not considered here Neither do we consider query language for relational databases.

Any discussion of raoegnrt mutcnie arget architecture The

techniques prmesntd here apply to conventional mchinies. such as the PDP- 10,

IM-370, MCMMO0 and VAX These are characterized by geneally serial operation.

an fth order of. 10 registems and insrucion that usually operate on or via the
110-trs Special prps ;M Machines, for example, the SCHEME chip, probably would

now bot hrm this new appmacht nor would highly pipelined or vector maschines

- ~~(we certanly do naot adrm the poblem of perallelizing seria program). Although

ther is no intent to adidress the isue specifically, this design my be useflul in the
gemeadan of mkwoode, wbere the problem is to have the dat in the right plac at

the right tiL~

LS A Guid, for the Reader
* This work develops the techniques that ane necenary to nmk the coagulation idea

into an arlb-beta lap one--for cd-sea.There is much further

work tha could be done; indications of topics to explor furthr are described as they
aise in the sof thediclm Themost Puing isue is that ofan

* which has not yet started. It is too often. necmzya to apea to oneft

- ci whatvi is likel to be found in real prorams rather than referring to evidence,
pherdby a cm i n everydiay use.

0 S Fr th mUe wihing to sim this work there is unontl a rahe sequential.

-eedec of 11hapes The best appriawk is to read from the beginning, until
*ared Chapte 2 outlines the mahmtclojcathat we will study. A natural

WI steppla point for the cenua reader is at the end at this chapter. Chapter 3 considers

-in mm detail two relations kntoduced In Chapter 2, ohabitation and conflict.

These relatioms capture the competing Infueces in cdgeraontedesire to

d~~~ "I*. .



have values remain in the same place, for speed, and the necessity to have values be

in different place to preserve the meanin of the program. The reader will have a
much better idea of coagulation at the end of Chapter 3.

Ompter 4presnt a technical device that is useful in representing the cohabitation

and conflict relatiomk and in detecting -Imconi ey between the two. Skipping this

chapter on But reading will came only momentary confusion in Chapter 5., but Will

leave the redrunpirepared for Chapter 6. Chaipter 5 provides an eve better

pespective an coagulation, because of the thoroughoing way in which it follows the
imperative to be optimal locally, rather than safe globally.

SRe coagulation-techiques for joinin previously "compiled" but unrelted

pieces-b the subject of the ret of this work. Chapter 6 provides algithmc details

for enlarging cohabitation and conflict relatons, and for determining whether the

o relations are still coostent. Chapter 7 lays the groundwork for dealing wth

~miten~es and shows tha s have one of two distinct foamis splits
and twis Chapters8 and 9 gIve techniques to deal with the two kinds of

Il.

4en

J..

. . . .. - . . . .-
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2. A Glimpse of the Basic Concepts.
In this chapte we give a brief preview of various idma used in building the code

generator. With these in view, the more detailed descriptions of both processes and

data structures wil be better motivated.

2u ROOOM
We view the Srga 1; being repreented by a traditional flowgraph. A miqm is

- a sbgrap of tis flwgrap (posibly consisting of a single node) which ha alredy

been compiled.

am~ not yet compile

* ~We spek of the compilation of nodes and arm separately. Compilation of a node

- - produces a new region, consisting solely of the node. This compilation yields a
seumeof machine istructions for the par of the progami which lies in the node.

9 -~ well us other dat associated with the region. Thus, a node is not necessarily a
umzma flowbiock. but rather the largest piece of progeam which can conveniently

be turned into a region This might be so kagu than a single operation, e~g.

The complaxtion of an arc is the interesting part Tis happens only when the

nods at each end of the arc have been compiled, Le, each node is in some region-

perhaps much larger than a single node. After an arc has been compiled It mas

* roughy that the code prior to this arc is compatible with the code following the arm
for xmsle registers are compatibly assigned. Nf an arc Is compiled both of whose
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nods already lie in the same region, it merely has the effect of adding an arc to a

region. Tis is called 1nxra-iqvox compilaton. If the arc connects heretofore distinct
* - regions, then after it is compiled, there is only one region, consisting of the two

maile ama, plus fth added arc. This is referred to as ixte-mim0 compilation.

We note heow that calls on a routine which is being compiled are represented (at
leas conce Fp tually) by grapha structure

tlowprapb of calls on f graph representation

fr f

When an arc entering a subroutine graph is compiled, it meau that the argument

conventions (as wenll registe conventions etc.) are mutully understood by calle
and callee similarly with an are leavig a subroutine graph and result conventions.

The execution data require for the compilation processPo is frequency counts on the

arc (not merely an the nodes). Throughout this document, the fnqupac, of an arc
will mean the number of times flow poem through the arc during one exeution of
the program. The top-level description of the compiler may be summarized as

fellows:

Mgerlthm 2.1 Compilation,

for A.4 each arc in order of decreasing frequency
Nf the entry node to A Is uncompiled then ompile ft
Nf the a*t node to A is uncompilhd then compie it

omlethe arc A



2.2 Cohabltatlom and Conflict
Recall that the nods in a region have compiled code associated with them. A line

of code consst of an-opcode followed by zero or more operands. Whenever a

variable is one of theme operands, it is referred to as an wwvffamo (iLe., of the

variable). Thus, a line of code m*gh be AMl V, W. To refer to an occurrence of a
priculr variable, we use the notation V. where or is often 1. Beware that V1I and V2

are not different variables but different occurrences of the same variablet, Thus the

above line of code would usually be written AMl V1 U W so that we could refer to the

occurrences V, and W I. if we wish to talk about an occurrence without inaming its

variable, we use 0, powbly mubscripted. The variable of an occurrence is denoted by

Y, so *61 and o2 have the sam variable is written 1(ej) P2)

There are two imiportant relations on occurrences. If two occurrences ce/aiit it

meens th at the present code relies upon the fact that the two occurrences are in the

sanme mory location ("memory" here inclue registe snd stock loctions). Thus
coaitto is an equivalence relation, partitioning occurrences into cohdatuk

dm Cohbtto is the only way in which the same mmy location is referred

to by different intutions. The code corsonding to different (in the source

code) ocurrences of the same variable may find "the variable in quite different

place Moreover, occurrences of different variables may cohabit if that is a useful

-tion

The second relation of Interest is that of confic. If two occurrences conflict, it7

means that present code relies, upon the fact that the two ocPcfrrences do net occupy

the same memory location. There is a simple rule relating cohabitation and conflit

Two occurrences which are in conflct may not be a member of the samT9
cohabitation class

This is called the consistency rule; much more will be sald, about it or rather, about

23 Supply a" Denmd Set
Defne an mry no*ofarteemoto beany node in thatregon whch has an

uncompi ncoming arm, duially, an ent ited is one which hus an uncompiled__

outgoing arc. A bewuaay nod* of a region is any entry node or exit node of the

reio-
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Following standard terminolog, we call a variable In, at some point in the

flowgraph if there a. some execution path leaving that point along which the variable

is used before it is set. Each entry node for a region specifies the set of variables

which anelive at entry to the node. and which can be seto be live solely by
Iookin~ at the region. This set of variables is represented by a set of occurrences,

called the dnemd mt Similarly, each exit node for a region specifies the set of

variables which ae live at exit from the node and which are mentioned in the region.

As before, this set of variables is represented by a set of occurrences, the supip so.

Either of these sets my be refered to as a boundary Me. Ile calculation of

bounday sets presupposes a pans over the program to do live-dad analysis. Further,

the implications of the phrase "mentioned in the region" are more subtle than one

mht expect The details of both these issue are discussed in chapter 4.

£The pose ofthe boundary setsis toaid inthe compilation of an am A

variable may have occurrences In both the supply and demand sets, in which case the

occurreuce must be made to cohiabit ft is also possible for a variable to have an

occurrence in the boundary set of only one of the regions. Only variables that are

both live and mntoned in a region are necessary in the coagulation process, and

only those are Included in boundary sets.

2.4 TW Cost Metric
The objective function for the optimization process is the cost of runningt the

proga n the sam data which generated the arc frequencies that govern order of

cmlation. Iwe asme this metric to be a billnws function of average space S and

total time T:

cost(S, 7)& 1 ST+ &2 T +a 3 S +a 4

This formula, covens most charging policies, and the coefficients have reasonable

Mnepetto

&I is, he cast per- unit space per unit time
82b 0cs uuitieothCP
&3 Is ajob suchargefor space
4 is a job submission charge

In making decisions we are intereste in incremental cost

cort(S+ s, T+ :)cosKXS ) a aI(St+ Ts+ s-) + e2t @3-s

The term j- will genaly be nmc smaller than the other term, and may be
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ignored. Rearranging the rest, we have:

(a1 T '+a43 ) .- +(9 1'S + a2) -
Whenever we are ch-aging or adding an instrution, it is simple to determine the
exIr space Involved (s). and since, we know the frequency of the instruction we
know the extra time involved Q,).

The uladugt important Parameters are the overall space S and overall time T.

Samc the progrm has been run, there should be a known value for I If it was run

in an interpretive environment. there wil be some chang in spae due to

c Wplton; since at least one p~m has been made over the program before
coePeeIon. begins the size of the source will be known. A little experienc with

the comile should give a reliable conversion factor from sourc size to object code

size. so S can be estmatedL Of course, if the program was run in its compiled form
we have actual eperience (Probably space doesnot chane too much with small

change in the pogram). It must be remembered that most of S may be space for

data, not for p ro ram so tha erross in the estimated size of the program do not

-rd affect the ovMau estimate.

T7he estimation of T is tricker, but the same idea appy. Since we can meme
that the a suce has frequey statements attached, a little experience should give a

=abl esimt for -h oveal tieo-h omie Direct exeiec with

previou compilations of the program being compiled wil of cours be moerable.

hk here we do not have a cushion analogous to the one that eist for spae

Once there are estimates for S and T. we can obtain the baic time-pace trade-off

Thus when chaging the program in a way which amn eta nits of space and is
mcuIN f times, the extr cotis proportioal to:

s + c-f where e - time to execute the Instruction

The exprewm s + c-f wil appear often In this paper, as the generic cos of adding

or modifyin an Lastructo.. Rrnlfra that r and c are determined by the particular

Usin thisaal* we can gain some quantitatiInsight into the time-spac



problem For simplicty, mem a2 = 0 (or are negligible). Then b S1 ST. so a
is irrelevant to studying trade-off. Suppose that we have a 101 program. with 40K of

data, so S- 50K and that the program runs in T = 100 seconds; thus b =500 (with

units of wordu/sec). Suppose we arn trying to decide between using 2 instructons

which take 2 s each verso one imstruction that Wmke 5 so (for all instructions, s
1). Then the two isotruction sequence is prferabie unde the condition:

(2 Lost) -(I word/inot + (500 words/sc) -(2 -10~ sec/nst)f
< (1 lmt) -(I word/Inst + (500 words/sec) -(5 -0 le ec/imst)f)

*f> 2000
The question is, how often do wtypicl instructions get ezacuted in 100 secs?

Progiams, are quite uneven in the distribution of their runtm Assume that 90% of

the runtime accrues uniformly in 10% of the code, and 10% of the rutime accrues

uniformly in the other M0 of the code. Estimate the average istruction, time as

2 ow, and compute the frequencies of the busy and non-busy parts of the program in

a 100 second ezecution.

buy frequenc a 45W0 non-busy frequency =555

Thus, we should use the two instructons in the busy part of the program. but only

the one In the mon-busy part One cannot help, but one wonder bow many

Vrog I would wcI "e the CorreCt judgment intuitively, and whehr It would

)a worth their tim to do the calculation every time a question came up.

While this eapeshows that time-space trade-ois can arise in the selection of

instruoctiom, the importance of such analysis will probably lie in deciding upon other

optimizaI statgies For mzmple, back-substittion of subroutines can be quite

expnd In -Pof space. It oan also, produce dramatic time savings particlarly

when applied to small datia-structure acess routines which the prgame may have

defined for the inke of modularity. Using the analysis we have outlined above, It is

possible to decide whic dak msttti really do pay off. Another optimization

ahnique involving ft"mesce tad-offs is that of loop unroliling. Only when the

cos of space bs accounted for dons one know when to stop the unrolling Spaocess1

2.5 ROhMW AMlmtlon IRe Pretai
* Associatd with each region is a structure representing required and possible

register allocaton. The "required" attribute muan that this struocture records which of

the cobabitation cines are assumed to be kept In which reghtese whie the "posbe

4*- -- - -- - - - - - 9.,. L.- **.*i*J*
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attribte mean that a definite allocation is not given. only that from the structure it

is emy to amip register in such a way that the preently generated code will work

(thereby Providing an emitence, Prood that allocation ia feasible). For example. if a

machW km or identical regitems this data structure can simply be a 9et of size not

exceeding x, of set of cohabitation cdame. Each of the sets of cohabitation climes"

woul be iniped to the saws register. In this schmew there is clearly a requirement

that amy two members of the same set of cohabitation came not be in conflict-, any-

set (of sets) o i i~m s than or equal, to a and obeying this requrement would specify

a correct reoste allocation.
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3. More on Cohabitation and Conflict
In this chapter we lay out the general approach to the building and maeintaining of

the cohabitatio and conflict relations. Precise details will be given later. the idea
here is to show wha kind of thinkring Motivates the details. We conclude With -an

exmpeshnmg an optimistic. which aria. naturally in this code generator.

We now give a rough description of when cohabitation and conflict are
established CoaIato Arises in two different ways. T7he miost obvious is the flow

of constrol, front one occurrence of a variable to the nexrt occurrence of the sam
varile. In the compile code for at region, if flow of control can Pus from one

ocrmce of a variable to another occrrence of the variable without pun"n over
an intervening use of the variable then the two occurrences must refeence the sam
location. As we stated earlier, the only way for this to happen is for the occurrences

J.,-

A len obvious way for cohabitation to arise is from the assignment of scalar
variables. Tis is in pwr a cinequence of the dictumn that code is generated in the
mit efflcient way for the smnallest possible cotx.When confronted with a Z

sta~ t ofthe formV <- W, the coplrtakes the optimistic approach that

nothing at All. hu to be done here because it can be arranged for V and U to occupy
the am location. Thu my sees Insanely optimistic, but it it done not so much
because th prga may have inserte needless asinients, but becamu of

hrameter poodng is modeled a asignment; the cohabitation of actual and
formal pmrmeater mean that the argument to the subroutine bs left in
exactly the right place. To encourage this, the initial amumption is that It
is DON"ie

Since trivial adgments w optimized away, earlier vhue in ft opie
0 mend not warry about crating ex"ra amigniente If that is a convenient

way to exprein a tWaomain

The po a assignments may be necessary. but they may be in the
wrong place from an optimintic. point of view. By mming control
ovar them, It is easier for the compile to produce betto code.

Zn sniary, thdo nmuto of moving things around is one of the central
j UU IWW g uin Th copiler tak oioneI conro of this, not2'



allowing itielf to be influenced by the proga mes assignments, Thus the only way

that mnove instructions ore generated is when allof the optimistic assumptions Inad to

troble, L~e.. to inconsistency. Not srpriingly, icnstcescan always be resolved

with move instuctions the problem is to do so as efficiently as possible, and

especially, to avoid move when possibe

To dicus conaflict we must first discuss geeain. A g ede is an

occuw which is nxMdfe by an instruction. (We will call the left hand side, of

an amigament staement a fist an.) We will denote generations with an asteris

so; 0s 1pt as in V I$ This convention will also help in reading the generic maschine

langug used in the exmples-t asterisked occurrencet is the destination of the

imstruction.

Conflict nro are established when one occurrence is "propagated past an
occurre I 0nce which is a generation Foir exampl, cosdrthe code sequence

MOVE N.1J
ACUO X.Y1

The occurrences X 1*and Y1 must both conflict with V. becaus V is being changed,

and by the semantics of the lsauag this is not supposed to affect X and Y (assume

no sharing hee). It is sufficient to estblish conflict only when propagating put

guaeratloms, as we shall wee in section 6. 1.

We hmavsen that cohabitation is an equivalence srton. We have Aame that

cohbiatonarises locally, be a to flow or ssignment. For '--coney
resolution, it Is useful to keep track of the individual "remsons" for the existence of a

cohbiatonclass. We do this with a ceab:aamt& Si~rk whose nodes are occurrees

and whose arcs arise from the flow of data from one occurrence to the neA to from

mdpnt It is convenient: to et this be a dihrced graph with arro in the

direction of the flow of data. A e&hwMAa.w corrsponpwa to a connected

component at the cohabitation graph.

Since conflict is a relation on occurrences, it too may be viewed as a graph whose

nodes are occurree. This graph and the cohabttion graph share node sets so It is

often convenient to draw them on the -mn set of nodes, and distinguish arc types.

q'
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The pictures are.

cohabitation: >0 conficte-~--.-

These relations are not static during the course of a compilation. but are continuay

adjusted a regua grow and coalesce. The cohabitation relation will be represented
in part by agraph. Because the conflict relation is very dense. its re;peentation and -

uunlpalats a graph would be very expensve; instead, it is represented indirectly.
by means explained in chapter 6.

3.3 Combi on CoaiainArco
When an ncnitnyaxises, it wust be resolved. This is done on the basis of

Pti i aulpssl to each cohabitation ar, which we think of as the cost of "breaking"
the coaiaion. The problem of deciding what number to assign as the Cost of a
cohabitation arc is more diffcult than simply deciding whether to establish the arc
This difficulty arise becomse to assign, a number. it is neceary to anticipate how an

Ac&z be broken.. We cmdrthe details of this tproie later, and focus here
on the general principles used.

The breaking of a cohabitation arc usay involves adding some nsrconsOr
vaing moe expensive variants of already generated intuctions. V we knew what
thene Introctiam were we could use the cost metric described earler to obtain the
apptoprlat cost for the arc The problem is that at the tme an arc is being
established, it is not worthwhile to determine these intructlons. This is partly

b Amn is noreason.to spend alot attime tryng to fgreout how to break
aro whose breaking will never be helpful in resolution, and partly because breaking
an arc takes place in the contex of ncssecyresolution, so that the best way to
do ft depenids upon a larger conext Rather than try to obtain the cost exacty what
is doweis to get a good low bound on the, cos of breaking the arc. e we
-- a tat the cost of resolution, but by as little a possible. When the time

coms o rsove n ncositenythe approach is-followL

1. A setof no to beoken is chosen on,*e bob of the combsan the arcs.

2. Olve the set of aro in step 1, the pyece modifcation ate determined
and * ePrcf, Pecost ofbreking thist iscalculated. Nf this turs out to
be much more than expected, the meilaimare rPrbered, but
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step, I and this step are repeated, looking for a better set to break.

3. Evenstualy, the step 1-2 loop stops anid we Pick the set withmimu
actual cost

If, in step, 2, we discover that an arc is more expensive to break than was originally
anticipated, the cost of the arc may be revised, so that futue calculations in ste 1
wl have a motre accurate view of thing. This rise in costs is one of the ways in
'which the steps 1-2 loop terminates - eventually, the actual cost is close to the
estimted, and the estimated cost is known to be about - good as possble. So we use
the modfications which have been cacule&.

3.4 An Eumph
At this point. we offer an czample which shows how cabtioconflict, and
icnItec resolution interact when compling a program. The reader will have to

accept some statements on faith, such -a costs on arcsm hoc of am to break, and -

how the coplrchooses to implement the breaks,

The example we choeis a conditional exchanse, Le., a sutment such or
IF ... THEN Z <- X; X <- Y; Y <- Z ENDIF..

Dthe time the code menrator es this, we my aseme we are dealing with the
flowgrap fragment and conflict relato (numbers near the am denot their
Erequency):.

conflict relation
from R

Wftiy n rgio The a~ eOf Z from
(LS6 2 X<-Yl the dean t -un that

Y Z " 2 Z is e ad d a rth e e c h a e

The most frequent amo are compiled Mst so my that the two arm touching the
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exchange box are compiled next. The first of these will cause the box itself to be

compiled, resulting in cohabitation arcs and boundary sets below. CHB (cohabit) is a -

pseudo-op that provides a place for the occurrences. It requires no spac in the

eenta miachine code, and no tim to execute. The actual cohabitation informiationt
is in the graph on the right (The number an a cohabitation arc denotes the cost of

breaking it.)

demand X1.Yj
CHB ZI*Xj 4
CHB X2.YI 140 40j
CM~ Y2,z Z2*

aLpIUX9Y 40 'X2

Compiling the frequent arc will result in nothing moethan establishing cohabitation
noc amn matching elemens of supply and demnd sets. -This result in the

following overall reiations

X 40 4t O~

i40 40~

i40 40T

Y2 4O
i4O

y3

Note that no Inossec a rsnyt hshpeswhen the remaining arc

(with frequency 2) is comipiled. T7he graph after compilation, but before resolution,

is afollows.

XoJ~4o dJYO

50O 40
Xi40 2x 3 Y

y 2 .2
~40 0

Y22

It is clear that the cheapest way to resolve this is to break the X .X 3 and Y0-Y 3 arcs
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This is done by move instctons placed on the infrequent arc. To avoid ordering

problem, and to exploit machine instructions which move several quantities at once.
it is convenient to postulate a simultaneous move" instruction which we place on the

am,. This results in the new flowgraph fragment and new relations (X4, X. Y4, and

, are new occurrences for the new instruction):

2 t2X4 . "Y4  :-"-

Xo - --i Yo

Ci X, OYMOV cXYX4 9 4 'CHB Z19X1

CMB Y2, Z2 Z2 X 3 .?:Y2x

40 Y3 -
Y5'

Iamunbe that what actually pts "moved" is cohaitation classes which we

preetly have two, c, and c2 n labeled above. Writing the siutnosmove in

these terms we hav MOVE <cC, cj>.-cej, c2. is bep to be compiled as an

emhme Imtrwucton, one is avsilable. And note that the progmammer wrote the

exchange on the other arc

. . * * . .. *
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4. Extra Occurrences

There is a tradeoff regarding the construction of the cohabitation, and conflict

relation. On the one hand, it would be ideal if the meeselection Of a set Of amc

wou~ld indicate exactly whome to place the moves to break the set. But there is so,

mnuch chiein where to place mome that any data structure which would achieve

this gal would be huge. On the other hand. if the relations dont give a reasonably

good idea as to where the move go. it means that as the relations are being

constructed, one doant really have a very good idea of what the costs of breaking an

arc arm This leads to either muined optimization opportunities (if over-estimiation

occur), or extra expense in resoLving inconsistences (if under-estimsation. occurs).

Further, if the cobabitation and conflict informuation doesn't give a good idea about

where to place xmovs the calculati of precisely where to place them may be
-xrnl exPena g

7he coProie we we is an indirect one. Rather thmanssociating with a

~ab~ttionarc some kind of data indicating how to place the moves, we add a few

extra occurrences of variables to the fleugraph. These occurrences will appear in the
cohaitaionand conflict relations jut like "legitimate occurrences. The placemt

of these occurrences in the flowgraph is related to the likely places for

inc~usteac-zuivngmoms so that they aid in determining where to place these

moves, We noted earlie that cohabitation aro are directed. The reason for this is

to futher aid in the determination of where to place moves,

42 mumg am Split Occurrmcu
som etr oourre of a variable may be added at points where, relative to the

variabke flow splt or nwes

Defhlufne. Ohvms a variable V, a V-mvp we is one which can be reached from
diffamet occuzmce of V along paths whose intesection commists solely of the node

N. A V-splt xoe N is defined dully, Le.., is one from which distinc occurrences of

V may be reached along paths which intersect only at N. 3
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The calculation of V-u~g and V-split nodes can be solved by using Tarjants
techniques for path-probm on directed graphs [6].

Not every V-merge and V-split node has an extra occurrence of V. The precise

rule am~

M N fNis a V-megenode and Vis live at entry to Nthemeis an occurrence of
V before the fist chang to a variable.

S NfNisa V-pitnode and V islive at eitfrom Athere isan occurrenceof V
after the last ch-ap to a variable.

If nesurwy. exfta occurrences are placed unde the Pmeudo-op USE. The rationale
for taoccurences will become cleare as the techniques of cohabitation/conflict
esiculatim, Ost estimation and movw placemtent are discussed. We now give some
W"a as to why thes seem to be the proper coacepta. Consie the following

Suppos that the upperf two use of V are Inon enient to keep in the same place
Theplace to fihthisisaone ofthe a=comlnginto Nwhich form V tobe in
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one place as the middle region is entered. The same remarks apply dually to the
lower two uses of V and N2.

As another example, consider the fragment

..... .

Note that V is live at the bottom of N, so N is a V-split node. and an extra occurrence
V isplaced hebottomof M calltis OccurrenceV 4. In th compilation ofthe

arc entering N. there would be a cohabitation arc from VI to V4. which we denote
VroV4. Similady, compilation of the arc exiting N on the right would produce the
COhabitaio VV 3. Suppose it becam necessary to break the cohabitation chain
VV 4-V3. If each of the no exiting N has a o-zeo frequency and flow is
crvds the arc leaving N has a Iower frequency than the atc entering N Thu
the cost Of V4 0V3 is less than the Cost Of V rOV4- and the Place to break the chain is

V4-#V3. This ives a ood idea where to place the move-along the arc from N to the
Occrence V3. Without the extra occurrence one would have only be cohabitation

V1-V3. If it must be broken, it is harder to fgure out where to put the moves. It is
ao mr difficult to come up with a general way of estimating the cost of breaking
•~~ cohabItatlon.:/..

4.3 Iutuedlate Subpapbu "

This section describes i more detail how the insertion of extra me d split

ocIurrwe limits the pert of the proram involved when breaking a cohabitaton, In
orde to discum this, we amume that The program graph has a single entry and single
exit node. We then use the standard graph terminolg.

Defluleme. A node (or ar) N, dwlwam a node (or ar) N2 when N is on every
path from the entry to N2. Dually, N, bak-dmbouw N2 when N is oan every path

from the N2 to the exit. ."

g7

- - . ,
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We wish to extend dominator terminology to occurrences. We do so by definig a

relation on paths and occurrences, so that any graph-theoretic notion defied in
termis of paths will extend to occurrences. We rust need the notion of one
oncr rc lying abeve or Jelew another occurrence in the same node (they may also

be unordered). This is usually clear in any given context, and is not formalized

further here. But using it. we have:

DIhdtIes. When we say that an occurrence v is on a path from an occurrence p to
an occurrence I we mean both the following:

If ois inthe am node as pitis below, otherwise ois in some node on
the path from. the node of p to the node of .
If ois inthe ame node as 1.itis above q;otherwise o s in some node on
the path from the node of p to the node of 1.

Note that if p ad qare in the same node, this says that o is below and above q.
With this we introduce an idea that is used throughout this paper.

Deflauti.. Let p, # be any two occurrences (or noe or arm) of a program. The
aIuirmeioatW sup of p and q, written (, q), consists of occurrences and arc

domiated by p and back-dominated by q. and of all nodes touched by the arcs.

We usually deal with intermediate subgraphs of P and i where P and t are different.

but nearby, occurrenes of the same variabLe. The live regio of a variable partiton

naturally into certain of thes subgrapbs, because of the insertion of extra

occurrences. Before stating the main remilt, we have some prelmahyOries.

Ddellntiem. Let V be a variable of the program A V-fme pash is one which has no

occurrences of V in any of its nodes, except perhaps for the beginning ad/or end

occurrence, if the path begins and/or ends on an occurrence.

Defiuitln. An occurrence V1 V-dWemls an occurrence (or node or arc) q If Y1

dominates q and if every V-ree path from an occurrence of V to q begins at V.

In the next result and throughout this paper, we assume that any variables which are

livm at the entty to the flowgraph have an occurrence there (at last conceptully).

A-
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and that V-merge nodes are calcuasted accordingy.

Lgsa 4.1 Suppose there is a V-free path from an occurrence V1 to an arc A (resP.
a first use q), and that V-ia live on A (resp. at 0). Then V1 V-dominates A (resp. o).

proof. we coudrthe are case fims showing that V1 dominates A Suppose there
Is some path fromo the entry to A4 which. avoids V1I. This path Must intersect the

V-frepath frmmV Ito Aat omnode above A Pick the nerut such node to V.

This wil be a V-mrge node, because there are disjoint paths from distnct

occurrenes of V to this node. But a V-merge node moust contain an ocurene of V.
and by the V-freees of the path, the node mnust be that containing V I. But this

contradict the choice of the path to avoid V. The Only posibilty is that V,

domainates A

To show that V, V-dominates A we must show tha every V-free path from an

occrrece of Vto Astarts at V1. Suppose instead there is aY-free path to.4from

V2. This path InterPect wit fte path from V1 to A in fth hypothesis of this Lemmae

at a node above A Causing a cotrdtina in the above paapph This proe

the lemuma In the arc caw-

We nuat cousider the: luma for a first me .The -proof here is entlaly the

.me as for an arc, the difference being that when the paths intersect it will be at a
V-merg node, so an occurrence of V wil appear above any fiws use in the nodle, in

particular, above,. Thus, we do not have a V-fre path from V1 A1 the way to 9.&

Ddbfimm An occurrence V IV-k-ihwi an occurrence (or node or arc) q if
V, beckdoninatas I and Cf every V-free, path from I to an occurrence, of V endb at
V1.o

Lemm 4.2 Suppoutheis aV-fmc path froman atr.4(nip. afirstin ) to a
rn-ir* occence tV 1. Then V1 V-buck dominte A (rasp. ).
Freef. Eacily dual to the prod of Lemm 1.

Thenwin reat at thi suctioll is thic

Tlesis 4.1 Suppose the yauible V Is live on the arc A (rap, at fgrst me q). Then

A (rap. q) lHas In a uniqu minimal intermulilte smbpph of the form O(Y1,V2).

PrWe. Look at any pathfrm the entry totheeoft tmroqkAor. Let Vbe
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the last occurrence of V on thilspath before A or o, and let V2 be the first occurrence

of V on this path after A or (there must be one else V is not live o A or at o). By

Lemma 1, V1 domiinatesA or o, and by Lemma 2. V2 back-domint A or , thus A

or o i in O(V ,V). This provs the existence of V ,V2.

To prove uniqum.w nm A or o also lNe in O(bI). By Lemmi 1. any path

fr£m Vi to . or o must go though VI. Thus O(V#V) contains O(V.V). and is

stritM l fri1, Iat. Byminimality.dam ,1 1. Dully, weconc J-2. 0

We note that this Theorem does not hold if the phrae "arc X is replaced by

"node r at if we allow arbitrary ocurnces a, mther than just Brat ues. For

uauapleI a V-merge node containing V1 I the Mst use a( V wM be in O(,V 1 ) for

several dfferent I. On the other h"ad, V Iel*f does not belong to O(YV)1) for any I
sice it is not domnated by V the sme may be said for use occurrences above V1

(but in VI's node). While. the partitioning of ars and first uses is important in what

folkos the lack of this for modes and for eneral occnce is not a problem.

A futhero consequence of the way that: intermediate aubgraphse divide up the

flawraga is the foflowlng

Celary 4.1 Let S be any connected ubpaph of the flowgraph which has no

occurrne of V, but In which V i live at ome place. Thin V is lve lnaU of S and

all of the arm a S belg to the amine minimal intermediategraph O( V2).

Prost. We we induction on the number of arc. if th number is mro. the result is

isagaoIf ithr is at ]est wne. r, k one. and by Theorem 4.1. choeV 1 and
V2. Suppose there is some ar for which the result does not hold. Either V is dead
along the are or the minimal tm'ate ubaph is different, Le., Is of the form

O(VO.V). whore a. 1 or j 2. By the conecedemf. e may choethis "bed"
ae o that it shares a node with some "good" arc whose subpaph is I,V2). There

are for possb.ties.

'Zd Z"
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pcd bad f

In the first came above, V is live on the bad arc because it has no occurrence at q.
Since V, V-dominates the good arc, it must also V-doinate C but if it V-dominates q
it must V-doinate all the outpu amc of t. in partcular, the bad arc. Thus, I = I in
this case. Now. suppose that the bad arc is not V-back-dominated by V2.- Since the
paodaweis. qis aV-split node. and must have an occurrence of V. But qis anode of
X and cannot have an occurrence of V. The only posabilty is that the first cuse
cannot arise. Dual -oleat~ eliminate the second case as well.

Is thethrdcasi~ance qhas no occurrence of V.Vnmatbe livean the bad amc
Assume that I * 1. Then V-free paths tram distinct occurrnce converge on q,

making q a V-merge node, the sam otaito a above. Dully, if j o 2, 1 is a
V-split nodle, again a cotaito.This eliminates case three, and the dual argument

eliminates case four. Thu there can be no bad acs

03

The importance of this corollary is that it controls the mintenance of supply and
deumd am. We id earler tha an occurenc of at variable was in owe of these set
Ef the variable was live at the appropriat point, anid Ef It -;Peals in the region.
Suppose we are compiling an arc betwee regIom and 42- We Rl Msentions V
but A2 does not; assum that V is live along the arc being compiled Then we expect
tofBad VIn the bmnday st ofRAbut notIn the boundary set of 2. The
imporiance of the Corollary is that merely be seeing an occurrence of V in the
bomadaysat ofRA and xw soft an occurrence ofV in tbeboundary set ofR2 we
know that Vis live througo t2 We my thm put the occurrencean all of the
entry and exit nodes of A2. since these nods will be entry and exit nods of the
newly combined realon except perhaps for the node touched by the art being
compied. We give a picture at this Nsdeways propapio.

.............



26

suppy VV, now added to demand sets

VI nowadded to spply sts

The crucia role of etaoccurrences in allowing this type of propagation is
deosrd by the following cone-xml.The point is that without extra

occurranomV, the situton would look exactly lie the above one, if attention is

restricted to what is alreay in a region However. in the example below, V is not live
thsronghout the region, in particullar, it is not live at the bottom of the lower right
node. Thus we could not correctly add V1 to the suppy set of that node.

OOVPIY V1

V ~

Ina the scheme we hav proosd, R2 would have split and mreoccurrences of V
added. so that there would be some demand occurrence of V at the node pointed to
by the are being ompiled, before complation of the arc begins.

Itmyhapsn *av iablein a ppamis lie atthe 1 -1,m of aspit node.
bat dim out of one or nmeof the noinof the node. In this stuation.it isnecessry
to know in which directi[n the variable live and which it dies. One pomibe way to
solv this problem is to provide some data sftucture on arc which yields this kind of

Infomaton.However, rathe than complicatg things with a new type of data
stumture we use etaoccurrences. The idea is to let the vabile live an all the arcs

7.1



out of fte splt node. and to kill the variable where necessary by placing an extra

occurrence unde the pseudo-op ILL. The picture is.

V2C split occurrence

ThU KML V4 indicates to a forward scan that V is not nmeeded-qonethig that would

not oerwise be known until the cut set of sg~ninets is detected. ThIS is one

moeway in which ztaoccurrences are used to aid later scanning. As we will see,

no ham cmmsin amng tatV is live on the Stewhere t 6really des&.
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5. Compiling a Node
We conside the compilfan of the smallest: regions i. nodes. Such a

comilation produces a' kern!f fqen The kernel regions are the repository of all
machine code for the program. First we conside the input to this part of the
co adeSe nexr-ator. We have already assumed that the coegnrtrworks from a
g rpesePntation of the program; in this chapter we will need to make some

addital assumption about the contents of the nodes, which together with the

graph itself. onsttute the Intemediaue form for the program Each node Will have a
mac-independent, but nevethelms "primitive operation. The earlier phases of

thcmple may inUoiduce temporary names, so that a statemient from the source
like W <- X*Y + Z will appear in the intermediate form as:

T<- X *Y or T1<- X *Y
WU- T +Z T2<- T1 +Z

W <- T2
The intermediate form will contain occurrences, so that if we had been following our
usual notation, all the variables above would be flaned with subscripts. The

cods-geatwill commonly appropriate t occurrences of the intermedfiate form
for wes in the machine code that It produces.

7hU chapter my be viewed as a furthe specification of what it means to
"compil the node" as stated in the compilation algorithm (page 7). Although.

comutaionaos my ultimately forc a special means for turning mvimnal

flowbiocks into riam~ we cooadder here riosarising from single statements of
the intermediate form. For each kernel, region, we want

oudary sets (rember that the node, is bith an entry and an exit nodie
for fth region).

The cohabitation and conflict relations amon all occurrences of the

The "imci code for the region (quotd, becaus ft may not be emacty
msible code and because ft my amain pseudo op).

Ech of t sections of this chapter will cmercertain type of kernel regions,
an will provide invariant assertions about razons The basis for t Inductive poo

of these assertion. is ftht they hold for kernel. regions.

S N.-



29

in this section wo will treat the extra occurrences whose placement was described
in the previous chapter. Alloa( the extra useocurence - at the top of a mrenode
(or be ttom of a split node) are collected and Placed unde a slingle peudo-op. In this
cas, the inftemediate form "iply ecmsthe "umcine code when the node us
compled. In the picture below, the rounded box represents the newly constructed
region. It has one node, the rectangula box. Since thi node muat have entering and
eziting eros necemriy not yet compled, ft will be an entry and exit node to the
realmn with the sup*l and demaend met as shown.

(demand Y19W1I....

We now stale ezplicity the invarianta describing precisely when an occurrence is in a
boug~iay set

OW N a vaboe is Ike at the ba mmofaneit nod, and ifan occurrence of
the vwaribe appears anywhere In the region, then somne occurence of the
variable will be in the supply set of the ezit node; and conversely.

If a 'vaiable is live at the top of an entry node. and if an occurrence of
the variable appears anywhere in the region then so= occurrence of the
'variable will. be in the demand set of the entry node; and conversely.

The caectresm of these nlanwt for w Aov kernel, region (allow becase

USE V, sppearonlyWhereV siam

Kiln occurrences are smilar to we occwueces, but according to END, they
conribteonly to demiand selt

JKILL VI., d wtY 1 1

This bs the aowt trivial pamible region.
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L.2Aupmt
Rtecalling that we take an optimistic view of auignments (no code need be

generated), we set up a pseudo-op to hold the occurrences and constuct a

cohabitation arc to indicate our aumption. Recalling the pseudo-op CHB. we have

jermdiae form dWan U
vi c- wdema[nd3W,

iVe isa supi htti peashr nyi

adinhsaete i oe an tim ttheeeui

It~~~~~~~~~~~~ sIu apntdta ndcaecoe ptim sly her ezap only

regitemahne the would be chon~sten ntebdfargitrt eitrmv

bTe cot. ftbemenessr to break thesaei nictda c habeitatn it mag the be

discoefrd(nteceto a by nowsargeureion) n fi tha rqec fth opnen bThe meVandsI

ofareaotgregis cohusitheio actualt cosnth oul tot oe much larer thaneb

exd pece to pte out an stecton .. ti atclrbek the cohabitatio

ti~ chin ntheudberacholse onthecostbofreistrtorgiter o "

uedIn. igh f ithne knwede.yt ra h tn hnb

Thdbovd(ne erneto ynwlre region) thas an sigl boeowth aooiae sVppI and aW seI
Ju t e te ene egom the ctevi os seon. ta alo ho ae c hationh

Tech cll, IP d spind t ein seon.3 thvis secticun, bre thos he cohabitation ah

had in ae, sot we didfte 4-scusued them.Ti o-rva cotafbraing ap pode

anupporunigty o Ihenoe knowedigratte b bydb techbttingaho

ah bvkre region. Aswt h sinai n, t nv iat sup orlated wihdespect to

wht likn e een reinso the gioi.uW reain als os hase we h bgin ah

eseution at some entry point to the region. and follw It to an exit node. The only
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thing which can influence the execution is the values of the variables in the demand
set of the entry node, plus any inputs obtained along the execution path. The only
lasting effect of this execution path is outpus and the values of the variables in the
muppy set of the exit node. The semantics of the source language will specify what
0,cutmoI path will be takmn gime the values for variables in the demand set and
inpuaw along the path. and will specify the outpults and the value. of the variables at
any point In particula, at the exit node. the semantics will specify the valuses of the
variables; in the supply set. With this -regiorsticted view of correctness, we arrive
at fth following invariant for OItSD.

CMI The machine code for a regio is correct for execution within therein
prvie ta all the occurrences in one cohabitation class ae assigned to

tesame: location

We emnethis invarat for the above region. The only demandled variable is W,
and the semantics of the language prescribe that V and W have the sam value after

V W is executed. NfV and W occupyr the same location, they must have the same
nilne upon exiL The invariant holds.

W3 Canputtoi
It is here that the most interesting cane arise We shall consider as our

fundamental example the source, construct V + W. To make things interestin& msum
that a machine add instruction. has only two operads and always destroys one of
them In t case, where V and W are last uses, we have the following compilation of -

T -V + W (reall that *densotes a generation, so the instruction below adds the -

secood opeand to the first):

demand V1,W1

lADDTIsuppl To.

Since V1 Is a Ias use, we can make the optimiti asumption that V1 and T can
occupy the sam locatio-thu leadlpg to the cohabitation V1 . T. 1it Is evident
that the CR3 invariant holds. Since V, and W, are lhut uses and T; a first Ws, we
as see that the END invariant hoLds
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The rationale for the 0 cost of the cohiabitation is that conceivably, an
incnsstecycould be resolved by interchanging the two operands of the +, so that

W., cohabits with T.

Nuxt lt us suppose that neither V1 nor W1 is alast use. Then any simple ADM will

destro a needed variable. It might seem that a sequence such as the following ia

demand V19W1  T I OV1  D*I

MOVE TV I
AMO T20,W I 1 W 9T 2

-suppl IW, 2

Bt, on sams mchines- such as the PDI'-10, there are instructions which leave a
remlt in two places or which can do a move while doing some other operation. Thus
it might be possible to hame two copies of a variable at this point, and to clobber only
one. Since, the strategy here is always to be optlmistic, in this case we could generate
n cods only a simple AM., demand two copes of a variable, and set up a conflict
relation to WIndcate what the problem iL

demand V1YV2.U1  V1. @V2, .W
ADD T i, W
USE V2

Tepseudo-op USE is emkWt mieapaefranew occurrence of Th 1e
costs on fth cohabitation ac should be 0. because of the possibility that eve if two
copies of V cannot easily be made available. two copies of W can be. On a machine
which does not freey generate copius such a technique is of course not worthwhilie.
On a three operand machine such as the VAX we could use all three operands:
AI)D..3 VI. WI, T. On many machines~ the MOVE-ADOsM ec will be the best
-oif code.

Finally. in the case that exactly one of the variables is a last use, we generate the.4
following region (without loss of generality, assume V is a last use. W1 is not):

e%
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demand Y19141

T7he cost of breking this cobabitation arc depends upon what might be possible if
this optimim doesnt work out-availability. of multiple copies. three-opmn

instructions, or only a MOVE-ADD sequence.

In the last three kernel regions pictured Abome we have inserted a non-trivial
conflict relation into the region. without saying precisely what correctness is. The
invariant here is quite similer to CHB; it simply formalizes the notion that cofLict

prohibits excessivecoaiao.

CON The machine code for a region is correct for execution. within the region.
provided that conflicting occurrences are not assigned to the same
location.

Imlctin the invariant is that different cohabitation classes cm be assigned to the
sme mmoy location (especially the same register), so long a they do not conflict
The correctess of CON for all the kernel rgosof -this section follow from a

simple rule that has been observed in establishing kernel conflict
Whenever an occurrence is both in the supply set and the demand set of a
kernel region, it is in conflict with all the generations of that region.

We have chosen a commnutative operation such as A1D to show how the basc

scheme allows examination of the various ways of compiling the operation. We

~d rbriefly the construct T <- V - W. where the machine has no reverse
subtract instruction. The first attempt at comup'ling this is SUB V 10, WU1. regardless of

whether V1 is a last ue. The differece betwee this and the ADD cawe is in the
accmpanin data structure, particularly the cost on the arcs ft always hurts to

break V, . because it cannot be done with a simple chang to an instruction.
(IPMr the possibility that It might be reasonable to calculate the negative of the
desired quant, and correct things lawe, as in U -V GT 03.) Hem are the fou

cum, under the assumption that the machin ca freel generate copies:

A. r A-
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V, oth s wue lott us.Wsoe s

SU T, 1demanwd VI.,Y2 U demand V 1 .2W 1
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6. Compiling an arc
we finally come to the interesting part of compiation-Compiling an arc. The

following Picture repressthe generic Situation.

N, is an exit node oftheregionR1l

suppy PI.Pz-*.

arc .4 with frequency f

Idemnd 11-ft,.

*N

2 N2 is an entry node of theregionRA2

In general R, my have other exit nodes, and N, may have other arcs leavin it,

samne compiled, same not; dully for R2 and N2. The occurrences supplied by NI
(reap. demanded by N2z) are denoted h.' jp - (reap. #2,z -. ). This doe- not mean

that p is the variable of pl. Rather, the notation V(P) is used. Note that R, may be

equal to A2.

Our goa in this chapter is to devise the proper adjustments to the data. structures

(boundary sets cobabitation and conflict relations, and machin code) so that after

inclson of the arc A at the in'varlanta of the previou chapter remain true.

Naturally, we inductively assum the invariant for A, and A2.

This chapter is an elaboration of what it moam to -compile the arc (compilation

algritm pp ). he rocssof compiling a arc isdive by Kt znme o h

boundary set, denoted above by Pl. p2. ..-. and Cl. q2,.. T~he members of each of

0 twO boundary seO dVivInto those that shar a variable with an occurrence of

the other boundary sets-these are called malid ocomenc-and. those that do

not In broad toin we have
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Algorfthm 6.1 Arc-compilation,

for pq ~-matched occurrences along arC A
Match pq

1w p unmatched occurrences of N,
ProagteP throughout R

foa q unmatched occurrenceS Of N2
Proagteq throughout RI

The next two sections conside what it mean to "propagate an occurrence

* throughout aregion, and what it means to match occurrences. Subsequent sections
co sodrsme derivative problem.

6.1 Popgtn of an Occurrence
We conside the case in which the variable of some occurrenc in the supply set is

not the variable of any occurrence in the demand set. or dually, ie., interchange the
* wors "supply" and "demand". For simplicity, we talk about only the missing demand

variable care, and do rio continully make dual remarks for the missing supply

variable cue.

Usn BND inductively. we conclude that A2 has no occurrence of V, and

coneqentythat R, a A2. Thus the new region wil be RA RI RU AUR2 - Then

we invok Corollary 4.1 and deduce. that V is live throughout A2. The combined

region R is now in dange of violating BND, since it now has an occuirrence Of V
(namely V 1), but no occurrence of V in the boundary sets of what used to be R2.
These observations prove that the following step maintains the corretum of END
for the variable V.
Aftoriths 6.2 Propagation of an occurrence, step I

Add V I to ach boudary Set Of R2.
* This rule is the buis for the term "Wprpgtion." Aside from Initial elements of

boundary sesfrom the conuction Of kernl regOnS, this is the only vw that these

sets row.

We neZt conder What We must do to maintain the CHD invariant, relative to the

variable V. T7he answer Is. nothing at AIL. To see why, conside an eumtion Path in
A.S=jt nc R 2, in A Spath WMle entirly within Ror 2 indvidually, or will

c n. the arc A ezactly once. Since one of the original regions has no occurrence of
V, there are no new requirents relating cohabitation of occurrences of V. Thus, no

0.
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chang to the cohabitation graph. at least on V's behalf, is necessary.

The stuation is quite different when we consider the CON invariant To see why.

le sspposethat Vappears inRbut not in R2 . Le assumnethat there is

another variable W. which might or might not appear in RI. but in any case does not

have a generation therm An execution starting in RI, entering R2 (via A ), and

pamng through the generation of W can chang the value of V. But since V is live at

ezit nodes of R2. the execution path might not have the correct effect on the value

of V. In order to fmintain CON, we most add some conflict relations. Let V1 be the

occurnce of V.
Aigirlh 6.3 Propagation of an occurrence, step 2

Esabish conflict between V1 and every generation of region R2.
To show that CON holds for the regio R in light of the above action. we follo the

above reasoning which we used to motivate the action except we can now observe

that no changeto alocation inR 2 can affect V.so that the value ofV asan

execution path cross. are A (inductively correct from RI) is the same value that it

hasat an eztnode of R2. The correctnesof CON is the last step in showing the

correctness of all the invauiants, relative to V. when V, is an unmatched occurrence.

Note the similarity of this algorithm and the rule for kernel conflict, page 33.

Decouy of the way that conflict is created for unmatched occurrences, the set of

such occurrences is called a brush af, the hmage being that these occurrences "brush"

over the region, creating conflict. It is a simple matter to go through R2 establishin

conflict betwee its generations and V. It is also, simple to see that doing this

naively is going to be very expensive as regions get large. It would have to be done

for every unmatched occurrence of the supply set, so the number of steps would be

proportionial to the product of the size of the brush set and the number of

generations of the region Fortunately, komething much more efficient than a literal

ineprtton can be achieved-, the algorithim and data structures are discussed in

sections 6.6 and 6.7.

e.
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In this section, we consie a pair of matched occurrences. iLe., p and q with ~p

,(q). It Is possble that p if., because of a loop or because of sideways propagation.

as pictured below (p -V. A is the arc being compiled).

V, V,

N,
NT

A .4

Ther is no action to be performed in this cue, but we must of cours prove that the
invriatshold after incluio of A in the region. Observ that we must have R1 r

Rt2, since the -am occrrence canno be in separate regtios. The BND invariant

fWlOW directly from that. Conside an ezecution path in R A RjulA). We use

fiuction to prot con ctes up to the first appearance of A then observe that the

value of V is delivered at NI. in the location of the cohabitation cdas of p. and is

required at the same place at entry to N2. Thus relative to V, corretness extends

aaess A and we may IePeat this argument till we get to the end of the execution

pah

N p and qanedhnwe we p V and q-V 2 . In this case,RA, and R2 may or
m a o be the same. but in either ame there is no need to change the boundary set

inherited from R, and R2. The END Invariant holds by direct induction Howeve.

CMI does not necesarily hold because we must make sure that V1I and V2 are

igned the same memory locatio or we cannot make a corretness argument for

as M c -io path crossing ar A The purpose of thet following algorithm is to

formaly st what =t be donse to the cohabitation graph to maintain CIII

AiIYM= 6A Match occurrences (for one variable)

Establish a cohabitation arc betwemen V1I and V2.
If there is an Inmsecw heaalth nomsec resolver.

If we can perform this part of the algorithm without getting an inossecthen

CH follows for the usal reason-we can prove corretnes across the arc A To
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prove CON. note that occurrences which conflict before the union will necessarily
conflict after the union. Thus the statemkent of CON for the new region is logically
weaker than the conjunction of CON for the original regions, and it holds.

If the, above step reuts jin~it then to maintain MI and CON we must

modify codk. as well as the cohabitation and conflict relations. This is the subject of
chapter 7.

It may have gone unnoticed that the remarks of this section apply to the case in
whih te vrialeV3 s a esraoccurrence under a K ILL peudo-op. It may well be

the cme tha V2 is the only occurrence of V in A2. The fact that V I matched V2

-mm tha V1I did not brush over A2. so no conflict was establihed between V I and
any generation of A2 Further, the fact that V2 is not a generation means that no
conflict was established betwee it and any brush occurrence from the sapply set of

N1. Thus the occurrence V2 is an Innocuous bookkeeping device, as we claimed

eartier.

6.3Euahiidg aCoabiate.Are
The algarithm for matching occurrences in the previous section begs the question

at how to establish *a cohabitation arc betwee V1I and V2. There are two problem&.
which direction does the arc go. and what is the cost of breaking it?

We fihst consider the question of direction. From the way regions are constructed,
it is lea that thereisa V-freeundirected path from AtoY and= from Ato V2. If

boundary sets contitin merely occurrnces there is no way to know -whether A Is in

(WV*) Of OW2 ,Vl). However, boundary sets are disjoint unions of subsets of
boundary sets of kernel regions and it makes sense to say that an occurrence in a
peuicul. Liemdy se was originally in a supply set or originally in a demand set
(Because an occrmence can appear in both boundary seft of a 'kernel region, it may

hav different origins with respect to different boundary sets) This Information Is
simple to keep track of, and tell which direction the cohabitation arc must go. The
following picture makes this clear. and also shows that cohabitation arc can point in
the direction opposite to arc A
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R2 V2.

e.-'."

eN,

Ni I

Ding the cmplation of R , the ocence V, starts in the d=mnd set of the

bottom node, and eventually appears in the suplgy e of NI; dually, V2 will apear in
the dmunand set of N2. I we make the rule that the cohabitation arc goes from

In l sppy et io rnel demand st", the arc dhiction will be from V2 to V 1.
consent with th directio of flow. Put difterently, we observe that A is in

O(V2.V i). not O(V .V2). oma,,zing this, we havem
Algortsln 6.5 EstablIsh a cohabitation arc

I V ws orlinally in a supply t
f v1 V2 does not already euist

make an arC V1.gV2
du (V is omrigily in a demW set)

if V*V I does not already exist
make an arc V"V -

This ummmee the followin of eMbUdW cohabitation arcs

Tihion 6.1 Suppos there is a dfict V-free path from V 'to V2. There is an
undrcted V-free path from V, to V2 lying In som region and in O(V1* 2) if and
only if the is a cohabitation ac frm V to V2.
Pm.f (Reft to ft A picture may help, pecpt that the label VI nd V2 are

reversed. The backwar hmplication is vacous befor compilation begine b ece
he arwe no regi o, and no cobabitation arc Since creation of a kernel region does

not add any new undrected V-fme paths we mut ne In that It does not

create any cohabitatlom betw. different oourence of the sam variable. This
would happen only for an migment of the form V*.V; we noun thes have been
eiminaft We next coni the f omilto an arc A from N to N2 whch"

-7771 -
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result in the establishment of a cohabitation arc from V, to V2. In this case the

algorithm for establishing cohabitation arcs says V 1 was originally in a supply set, and
- V2 was originally in a demand wet Now, step 1 of the algorithm for the propagation

of an occurrence is the only way that occurrences are propagated, so the only way
thatV, oolbe inthe sqppy wt oNor the demand set ofN 2 isif there isan

undireced V-free path in the respective region; dually for V2 and the node at the -

other end of A The paths together with the arc .4 constitute a connected mbpaiph

- - with no occurrence of V. and V is clearly live along A By Corollary 4. 1, A and each

path must lHe in O(V I9V2), poviding the required undirected VUree path. It will lie in

the region created by compiling arc A and so meets all the requirements. Hence, if a
cohabitati mr ezus the path ezist

Conversely, suppose we compil an arc which completes the first undirected V-free
path of compiled arc from V, to a distinct occurrence V2, where the path lie in

O(V I.V2). Then there m=wt be an occurrence of V1 in one of the set sattached to the

*entryor exit node. and an occurrence of V,2 inthe other. V will necessarily be inits
kernel region's appy aet and V2 In its kernel regloas demand set. Further, by
inductive use of the theorem itself, there is no cohabitation ac from V, to V2. But

this is precisely the condition unde which such an arm is established, by the above

algorthm. Thus, if the path eziss the arc ezists. r

The other problem that this section considers is obtainig a good lower bound on

the cast of breaking the cohabitato. Brieaking is done by some kind of move

instruction. The Mers thing to determine is how often a move must be done, which is
* - related to the part of the progam In which t moe can be placed, namely, the
0PP4 itreIFe graph C(V1-V2)- Conde the nodes of (WV1 V2) which do not have an

-, occurrence of V. All arc incident upon these nodes are in (W(V1,V2). as is clear from

Corollary 4.1. The genera pitur ot O(YV2) is thus:



42

To determine how often a mve mit occur we sun the frequencies of all the arc
leaving the V1I node which are in (V18V2), or equivalently, the sum of the
frequencies of nrc in (3(13 2) which point to the V2 node. This gives the

traimlmin frqueny frm V to V2. denoled R(V ,,Y).

Ifthenode of V Ihasa igleoutgongmar. atthe nodeOf V2 hasaingle

Ining'1 arCI f(V1 V2) iS May to calculat, melOy, it is the frequency of that singl
amc Evien in the genetal, cue it is not exceedingly expensive to calculte f(VV)
neverthbeless, it may be the cue that it is Idat-eou to use~ the frequency of the
wec being ompiled, to serve as a lower bound for f(Vl 3V2). This Is Justified by the
foilwing result.

Lma 6.1 When esoablsblaag a cohabitation arc betwee V1 and V2, the frequency f
of the arc being compile is less than or equal. to f(V 1.V).
Prodf. By the compilatio order of armb we know that f is a 11nimal value along
sowmudirectd V-fre paet betwea V, and V2. Clearly, this miniml value cannot
good f(Y1,V2). since so= aweouhn the V1I (or V2) node will, be on the path.
and my arc touchin this node cannot haoe a frequency greater than f(V 1,V2). c3

Using f to approximate f&V1.V2) is in accod with out uneetimtion philosophy.
Only experience will tell if this tunIS. in it deA e in compie te, but we ammume it
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Once we have a frequency, we try to estimate the cost Suppose we break the

cohabitation with a single move instuction. We would choose s and c for this

instruction op timistically. but realisicaly-lf V1I and V 2 are already known to be not

in registers, for example s and c reflect this knowledge. Given s and c, the cost is

S + Cf

WAt thi analysis dons not take into account it that it may not be necesary to

inmert a brand new move instruction. Instead, it might be possible to achieve the

* move by smern ick. for example, on the MC6801J0 there us a single instuction. which

will push any subset of registe, onto the stack. In this case. the s parameterbeos

0 (becamu no eatta code Is required). and the e parameter bcmsthe Incrmetal

time cost of pushing one more word. Thus the cost of breaking the arc becomes c-f

If copies can be freely generated, it may be possible to break the cohabitation with s

* and cboth 0.

This trickiness in moving quantities presents a dilema n a h eln that

very often. the tricky instuction which breaks the arc with the estimasted (minimal)

cost is not going to be an option. If the ce-nraoov-staesthe cost, it

may miss a chanc at an optiation If it under-estimate the cost. it may spend a

lot of time in the Incn ency resolver looking futilely for trickiness that does not

exist Once a coegnrtris in operation, it will be possible to pain some

expriecein how to make this cmris.Thiere is eve the possibility of being

abeto dynamically adjust its "optimism" in assigning a cost. The maximum possible

pin isthe cost of anaive fix iinus the cost of asubtle ft e, ~.s + cffor amove

Instruction minus, say, 0 for fieely generated covies or a different s + c f for some

e expensive Instruction variant. The cost of looking for a subtle fix will be

roughly ;roportional to the size of 04Y 1,V2). With eperience, we can learn how

otten optimism pay off. and how to estimate the actual cost of searching. The

r ad I Se noator can adjust its under..estiniation so tha the expected payoff exceeds the
-PM Cost



6A 4 Jcu icy Detection
We maintain the consistency of cohabitation and conflict relations when compiling

arcs There are two aspects to this is, detecting whether an inconsistency would

ariae if the arc were compiled without any modification of existing code. and second.

UIf uh an iosstcywould arise, modifying the code so that consistency is

maintained. This section discuses the detection problem; the resolution problem is

described in the next chapter.

Thus far the only rersnainthat has been discussed for the cohiabitation

relation.i its (labeled and directed) graph. Nf this is the only representation of

cohbiatindetection is very expensive, because to -determine chbtion, we most

enumerate members of a cohabitation class (via the graph itself). We provide an

oracle for rapidly determining whether two occurrences are in the same cohabitation

class, given tha cohabitation classes are continually comibied by new cohabitation

eam We use the standard FID/UNION tchniqu for this purpose (see (7D. Note

that it is occasionally necessary to tear up a cohabitation class into two pieces, during
iuitencI resolution. The updating of this structure when doing so is

straiht1oward, but proportional to the size of the class. Since we assume that-

breaking up large cohabitation classes is rare, and since the cost of doing so is at least

pprtional to the size of the class, we asme the expense is worth it

To understand the data structures used in inconsistency detection, we examine

more closely the cic f under which the relations chane The simplest came

occurs in inta-egion compilation. Since there are no brush occurrences in this caem
no new conflict ni generated. Asuming inuctivey that the region has no

inonstencies before the arc is compled, the only way that one could arise is

becaus of the addition of the new coaiainrelations required when matching

o ccL umcs If Algorithm 6.2 says to establish an arc betwee occurrees which
already cohabit (a question for which we now know bow to compute an answer).

there is no poesible probm ut if the two occurrences do not cohabit, they may

conflict and what we want to know is whether any two occurrences of the respective

cohabitation classes of the ands at the arc are in conflict This suggests the concept
of the conflict of cohabitation clames or elm, cenfic. where the rule is that

A -habitation clsses conflict if any of the occurrences in the respective classes are in

conffict We salnot immediately discuss the impvlementation at this relation, but

I -
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assming an oracle for It. we will look more closely at the interplay between the

various cohabitation relations we want to establish. What we do not want to do is to

establish a cohabitation which will have to be broken a few step later. To see how

this can happen onie the following example:

supply set { -- -7soWi lines are pre-existng cohabitations

deadstdahed lines are desiredchattin

Amsme that the only conflict aogthe six points is that indicated. and that no

other occurrences cohabit with these. Nf we try to establish the middl arc first. there

in no conflict preventing it Nf we next attempt either of the odthrcabtins an

icnstency Will arise. IN this second arc is more expensive to break than the mniddl
one, then we woul break the middle one-the one we jut established. But if it is

cheaper to break, ar even the same, we would "break this coaiainbefore it

really was eve established. Vie same would happen with the third ate, Now, =sume
all arcs wre equally expemsv' If Uthere is no way for the resolution nachinery to

re-establish a cobabitationt are (and temove the code used to break it), then In the

case where all cabitatloe are equally expensive to break, we wind up with two

broken arMs and one established. But if we had waited and coidered all three arcs

at once, it would be cdear that the best approach is to break (iLe., not establish) the

middle amc and to establish the others. Even if the resolution macinery is capable

of reconsidiering its placement of *moves, it is more work than doing things right the

first time

In order to gather up all the cohabitaio which are to be considered together, we

look at the cohabitation classes of the occurrences in the boundary sets. Jut a we

defined the idea of cm conlic by raising the conflict relation to cohabitation
elmS, we defn d=a marckftby raising the matchd relion. to cohabitation
clm tha is, two cohabitation class are maichud Ef each contains an occurrence

suoh tha the pair of occurrences is matched along the arc beig compiled. Then we

form the graph of this relation, calling It the clarw pqhk danm its noe are
cohbiatonclams. The picture below is the elassgraph for the relations of fth

* previous picture, with cohabitation classs encircling their individual occurrence, and

the lines indicating class matching:



46

The couneced components of the clas graph, called clan c&"p.ws wfll be in

distint cohabitation classs after complation of the arc. (A cohabitation class with
o occurrnc in a boundary act will be a class component unto itself.) The purpose

Of this Construction is:

Delinsm In a class component, a moichk Iacen.*tmy arises Uf two (cohabitation)

clmes arn Wclas conflict in the original region.

Ud.5 this definition, we revie the algorithm for matching:
Afterithu L.6 Match occurrences (intra-region case, all variables)

for emch dma compoet
Itf tee is nat" nconsitec in the component

CAl fth anosecy resolve cci the component

sAtblish the cohabitation, arc for the component

Tftr. 6.2 Coabitation aro added by the above step dlo not cause an

inonisenyand convesey the Ionitcyresolver is given a problem only

when the addition of the colbbtation, aft would cause an icnitny
Preef. To start the induction, we use the fact that the relations of the region are

con~lent before compilation. of this arc. Intdtvely assuming consitency, conside
adjoning all of the arc of a ci.. component Then all of the old cohabftation r

climes win up in the sam new cohabitation class, because of the connectenew of
the clms graph by amc just aded, and because of pre-eisting cohabitation. of the
elment of ol cohabitation cia... Suppose that two of the od cohabitation classes
Involved in this Weg had xbflt class confllt then an nonisnc i-would

arise Th= the algorlthm givm problems to this Inonitency resolver only when en
Iacn~sncywould actually aris. Conveney, Nf an Icnsecycycle arose, It has

to involve conflict of old cohabitation classes in the clam coamponen- since theseare

4 ~~the oa* ones tat are merged, and since no conflict arm are aded

Thus we have reduce the problem of Icnitency detection to the problem of
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knowing which clases are in conflict before compilation of the arc (which we have

yet to discuss) and to an oracle for cohabitation. namely FIND. In the case that we

establish an arc in the cohabitation graph between previously disjoint cohabitation

classes, we also do a UNION of the cohabitation classes, so that FIND knows about

- - the new cohabitation relatioa we must ensure that the class conflict oracle knows

about the cohabitation class merge-this is discussed in section 6.

We next cosdrinter-region compilation As usual, we ssumn that the

constituent regin have consistent relations since the sets of occurrences of the two

regions are disjoint, any inossec must involve at least two of the new relations

created when coplng the arc in question, and at least one of them must be a

* cohabit~atinac This is because an icsstnyis a cycle of relations, of which

precisely one is conflict, the rest being coaiain.This cycle must involve at least

* one occurrence in each of the constituent regions, so must cosfrom one region to

the other at least twice. Moreover, realize that when compiling an inter-region are,

* the boundary sets in question are partitioned into brush woo and matche sets. The

followin~g picture is usneful in visualizing the relations

boundary set

brush set mthed set generato frmR
6 0 0 0 0 0 S ine0~o~

~~from R2generation set machd set brush set

boundary set

As in inU'argon compilation, we do not try to add one relation at a tiL~t Rather.

we look at cohabitation clmassst the occurrences in the botundary sets-eemer

4~d thegin are previouly disjoint As befome we form the class graph on the

cohbittio casss where the arcs are induced by the desired (but not yet

esablished) cabatosdue to the wec being compild this time the graph a
bi-prtte In each of the connected components (again called class components) of

6 ~thedcls rphwe can determine whetherany nhosenac wila"sivlI only
new coaiain ytesame definition of match inossec.The question of
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class conflict has to be asked only of cohabitation cl ase in the same constituent
region, and therein lies the elegance of match icnstcyin inter-region
compilation--usually a clams component has at most one class in each region, so that
thmen is no necessity to ask any questions of the class conflict oracle.

There is only on renaining way in which an icnstnycan &rise. its cycle

mos Invoise new conflict

Deflen.& In a class component, brvsk-gmwadew ftcondstaqc arises if the
component has in one region a class that contains a brush occurrence, and in the
other regio a class that contains a generation.

03
This leads to the rest of the revised algorithm for matching.

Altorithm 6.7 Match occurrences (inter-region case. all variables)
for each class component

Uf there ii match ar brush-generation Inconmistuacy
Cal the ionstcyresolver on theco ont

Establs the cohabitation amo for the component

Tharnm 6JDuring iater-region compilation, the algorithm gives clas components
to the ncsitency resolver precisely when -incionsistency would arise by establising
the desired relations
Proo. We have already seen that if an Inositny arises, it involves either two
new catiatoso a new cohabitation and a new conflict In the first case.
Theorm 6&2 sumes the desired result, with the proof differing only in how the
indion i started. Here, the =ntia rekatona for the (combined) region are the
unions of the reltion an the constituent regions. Since the relations are consistent
an their respective regions, and since the domains are diJoint, this intial relation is
consitent. and the induction started.

In t second cam ft is clear that an Icntcycycle having new conflict from
a brush occurnce o to some geneation of the other region must go through at leuet
one coabtai ade while cogmpling this, arc, and mut contain an occurrence in
meh o( the constituent regions The cohabitation classes to which * and the
generation belog are thu matched, and so are in the saue class component. This is
precisely the ondition that there be a brush-generation inossec.Conversey. if
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there is brush-generation inconistency, it is clear that an inconsistency cycle eists.

so no non-inconsistencies are sent to the resolver.

Note that the detectio of brush-generation incosistenc avoids any use of the class

conflict oracle, using only questions about cohabitation and whether cohabitation

clumes have generatiom, Since cohabitation cas are always formed by the union

of cohabitation claues, it is easy to keep track at whether they have generations,

In summary, this section has reduced the problem of consistency detection to

that of two as yet undescribed oracles:

Given two cohabitation classes ae they in conflict?

Given a node, enumerate the elements of its supply or demand set

The emphai has been on minimiing use of the class conflict oracle, which we were

able to do particularly well for inter-region compilation

SHEtory Tre an Cohabitation Cl-
This secti describes data structures that are central to the implementation of

both te dam conflict and the enumeration of boundary sets. The kistery

tr is a record of region merg The leaves of this tree am kernel regions. Each

internal node corresponds to the compilation of an inter-regio am such nod have

two descendants coresponding to the constituent regions. We use the direction of

the arc being compiled (A) to distinguish the left descendant (which A leaves) from

the right descendant (which A enters). Each node has a pointer to its immediate

ancast, the top node of a history tree wll of course have a nil pointer to its

immedlate ancestor. Because of the scattered nature of compilation, there will be a

forest of history trees.

Suppose we have two kernel neglu. They are In the sam region precisely when

C they are in the same histy tree. Moroe. f they are In the same history tree,

their Ist common ancestor corresponds to the are-comtltion which first put them

in the same region. As we shal see, the least common ancestor algorithm plays a
role in the ladm conflict orace. It becomPs natural to think of a node of a history

U m g~ltM as in the compation yocs-node highe in the tree
happen after noe lowea in the tree. It will turn out to be Important for eachi

.. . . . . . . . . ..0. . . . . . . . - . .. . . . . . , , , . . . ,. . , , .---
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cohabitation claus to have a pointer to a node in the history tree, corresponding to

the time at which it was formed (section 6.6).

The represeation that we use for cohabitation classes is similar to that of the

history tree. Cohabitation classes either come directly from kernel regions or are the

anios of other cohabitation classes. In the implementation of the class conflict

orale, ft is necessary to know whether the union arose from an inter-region or

intra-repion compilation a bit can record this information. It is necessary to know

who the union occurred, that is, each cohabitatn class has a pointer to a node in

the history tree; this is called its formaion dme. It is also necessary to be able to

retrieve the cohabitation classes whose union formed a cohabitation class; thus a

cohabitation , like a node in the history tree, has pointers to two descendants. In

intra-region union, the order of the descendants is irrelevant But in the inter-region

cue, as in the history tree, we use the direction of the arc being compiled to

determine a left and right son. Thus, for these unions, we know that the left

sub-coliabitation clams lies in the left sub-region of the corresponding formation time

in the history tree. In inter-region compilation, if a clam component has several

chabitionclasses in the same constituent region, these are gathered up first by

intra-region unions; the final step in forming the cohabitation is one inter-region

union. The rationale for this becomes clear when the class conflict oracle is

discused

The previous paaph presents all the fields of the cohabitation clam data

structure that are necmsary for the class conflict oracle. We also want to be able to

uk whether two occurrences cohabit For this, we we upward pointing arcs, and the

standard FIND/UNION machinery.

As we saw in the previous sections, brush sets play an important role in cmpilWg

an ac. It is convenient to record the two brush sets involved in an inter-region arc

compilation-one from the supply set, one from the demand set-in two fds in

each node of the hisory tree. Although brush sets can be of arbitrary size, all that is

recorded. is a pointer (in section 6.7 we wil diu efficient representation of the
brush sets themselves). Thus, the size of the history tree grows linearly with the size

of the program.

In the next two sections we wil oose othe fields for history tree nades and

,. , ,- .. .',,



cohabitation classes The extra space for these fields buys time. The fields described
in this section are a mninimal set

6.6 The Claw Couct Oracle
There are only two operans= of interest on the class conflict relation; we want to

know whether two (chbt ome are in conflict and we want to coalec

classe in it, where the clamss are not in conflict. There are several repesentatioins

which one might use to achieve this. We discuss several which have been tentatively

discarded. The most obvious is a bit matrix representation, which has the advantage-

that one can determine quickly whether conflict exists. The disadvantage here is that

space gtows irreocably as the square of the number of cohabitation classes and that
coalscin two classes requires a number of operations proportional to the total

number of classes in the clams conflict relation. Another ie is to tue a direct

impenutatonof the graph of the relation. This has the disadvantage that

detrmiingconflict (adjacency of two nodes) has a cost Ivagorlomal to the

nimhum of the degreies of the nodes, and that the space cost wil be proportional to

the number of amcu which in practice will probably grow as the squae of the uber

of cohabitation clase and with a no-elgbeconstant of V prrtoality. This

method does have the advantage that coalecin of nodes can be done in constant

tim, gime fth proper rep-sntaio and the willingness to live with a few redundant

amcs bnceasing the time slightly can save the space of the redundant acs if this is

demed neesr.

The solution we propose for the clams conflict oracle is based on intimate

knowledge of the way that conflict of occuences. and thus of cohabitation clamn

arises. As we said in the previous section, the history tree is the key data struicture

What does the history tree have to do with conflict and cohabitation? Because of the

comapilation promsw conflict aise either in krernel regions or in the merging of
disjoint reos-vr in the compilation of an bota-region arc The way that the

histoy tiee i used to determine clms conflict has the folowing outline:

Find the lnat vommon ancestr (lea) in the history tree of the formation
times of the cohabitation clames in question. If these classe conflkit It is

* e~ther becamse at loas one of thema was formd at the Ica, and the
fin W-111 parts were previously In conflict, or because a conflict arc was

*frmd at the Ica, and one of the clsses had abrush occurrencein one of

'A
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the regions while the other class had a generation occurrence in the other

region.

We now give some q fics on the impentation of the class conflict oracle.

Let the cam be c1,c2 and their respective formation times be fII? 2, and their least

common ancestor be t. After t s calculated, the frst cue breakdown is on whether

either of fi1 or ft2 is equal to L Conder first when neither is. where we argue as

follows. No conflict could exist between c1 and e7 before t, since those classes then

lie in disjoint regions. On the other hand, no conflict will be added between cl and

c2 after t. since conflict is not added once occurrences are in the same region, and

mince neither cohabitation class expands after t (use definition of formation point and

history tree). Thus, el and c2 will be in conflict if one contains a generation, and if

the other has an occurrence in a brush set at t. We have already seen that we need

to keep track of whether a cohabitation class has a generation. The problem is in

determining if a cohabitation clas had a brush occurrence at a given compilation.

To aid in this determination, we propose that each cohabitation class be given a field

which points to the node in the history tree g to the last compiation in

which some occurrence of the clm was in a brush set, called the aw brus m The

extra space required for thi is only linear. For cohabitation cls formed in

intra-region compilation this field is some reserved value, say NL, meaning that no

element of the class has yet been in a brush set. The same value is used in

inter-region compilation if a cohabitation class is formed none of whose elements is

in a brush st Otherwise such classes receive a value equal to the formation time.

Note that the determination of the last brush time, as well as the updating of this

field of the proper set of clases, can be done at no increase in asymptotic cost since

each of these classes has to be examined in the process of t detection

described earlier. If either cl or c2 has a last brush time of exactly t, we know that it

I=a a brush occurrence at t, so that if the other of cl or c2 has a generation, cl and c2

are definey in conflict.

Note that a brush time of a cohabitation das if non- , must be at or after the

formation time-on the history tree, it is at or above the formation time. As a

by-product of the least common ancestor algorithm, it is easy to tell if this last brush

time b before t, Le., below. If so, no occurrence of it was brushed at t using this, we

can often quickly determine that cl ad c2 are definitely not in conflict Thus, the

S. . .,. . .
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only situation in which we cannot decide is when c1 has a brush time after t and c2

has a generation, or vice versa. or both. This is one of the reasons that brush sets are

recorded in the history tree.

We use these recorded brush sets as follows. As a by-product of the leas common
ancestor algorithm,6 we can determine which of c1 and c2 are in the left and right
subregions and so can tell which of the two brush set we want to search for some
occurrence being in cl. If we find one. cl and c, are in conflict; if not, the only

* - possibiliy is that el had a generation, and c2 had an occurrence which was brushed.
This possibility might have already been, eliminated.~ if not, we use the same
technique to see If c2 had a brush occurrence in this compilation. TIS finay

decide the question of conflict when ft1 o t o ft2.

We consider next the question of conflict when exactly one of the formation times

is the compilation tim say ft1 = ta fk2. If c1 was formed by an intka-region union,
then we ane its decompoon into smalle classes ell and em, and the fact that c1
conflicts with ec iff elI conficts with c2 or c12 conflicts with c2. (Note that in these
s ubfi o6leuzu the leas common. ancestors can be no higher than t, a fact useful in

comutngthem) Thus. we turn our attention to the case when cl was formed
during Inter-region compilation, and our first task is to determine if conflict between
the classe was created at this time. To do this, we again use the known

decomositon of c1 into c1 1 and cchoosing the numbering so that c12 lies in the
aum subregion as c2 and ell In the other subregion. To determine if a conflict arises
at the compilation t. we apply the ".ft, a ta ft27 technique to el I and c2. This applies

becausein the least common ancesto of cl I and c2 is surely r. and the formation time
of neither is equal to . If there is aconflict heme then clande 2 are in conflict. if
not, the question is decided by whether there is conflict between c12 and c2. (Note
that in this sub-problem, the least common ancestor is no higher than the immediate

descendant of tin which c2 (and c,2) lies.) This disposes atthe can ft, - t aft2.

Last we examlnthe case ft, - I -ft 2 . (Te equality of Pt, and ft2 should
pflbably be checked before actually doing the Ica algorithm, since this case may arise
fairlyften.) If tis a knlregion we dtermine the lmsconflict ofceland c2 by
entmeraing1 their element and looking at kernel conflict The small numbers
In=olvd make this quite reasonable. Henceforward we an that t Is not a kternel
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reinUI either of cl or c2 arose from an intra-region union, we treat it as clwas

treated in the soe cinstance, of the previou case. Thus we consider only the

case In which cl and cwere both formed in an inter-region union at time I. This

* - ~time we use the dcm sionc, into cl, and ca, where ell and c2l both Hie in the

same subregion, and ec2 and c2 lie in the other. To determine if a conflict was

created at t, we treat the pan c11I. c22 and cu,. c2 l by the analysis described in the

"f1 i0 At27 CUse N neither result in known conflict~ we examin the pairs c119c2l

andc1 2 ~ rcusively (knowing in each case that the least common ancestor is lower

than t), to see if onflict misted previousy. This decide the question of conWlc

when ft1 - A2, the las cae to be comidered.

The algrithmn for elam conflict just described could, in theory, be quite expensive.

The gpm and hope is that in actual progm it will be pragmatic, because it seem

that m would arrive fairly quickly at the case wheeft, 010 ft3. which involves, no

recursion and for which the hewriti uwing the last brush time will usually yield a

speedy aser one way or the other. If one is willing to py with space to by time,

a POsINle Ift -n ment is to tun the last bruh time field of a coliabitation class into

* ~a "brush time lit, so tha the detrmnation of whether any occurrence of a class is

bruse at a give time can be answered more quicky.

An bieresting featre of this design is that we do not require an oracle for

conflict IzWde~ we are relying on solution to the following as yet undiscussed.

Remd a bruh set

Enumrae the elements of a recorded brush set

These are discuesed in the next section.

* 6.7 apr onah of Bouzdary SW Bruak Seto
* ~~Secton 6.4 and 6.6 have reduced the problem, of iosstcydetction to the

problem of enumerating elmnsof boundary and brush seek~ and of being able to

reodbrush sets. The solution to these problems involve a commnon data structure

due to fth fact that boundary set grow by the adjunction of brus sets and bruh

seIN m formed by boundary sets, minus matched occurrences. A nave

* repr esentation of these objects would result in a crippling spae requirement



There ame two ways in which a naive imlementation results in non-linear expewse

One is in the construction of a brush set, and the other is in the propagaton of this

brushmet to iUof the boundary node of the region. Let us work on the latter
problem first, assuming that we have a brush set in hand. The goal is to form the

(known to be disjoint) u=ion of this brush set with A of the boundary aet, for every

boundary node of the reamon ht couni tim What we must have then is a commont

place to put the brush sat~ reachable froma A of the boundary seft of a region. To

achieve this we note that
A boundary set may be represented as a list (meaning the union) of brush
wts In the order in which the brush sets are added to the boundary set.

Different boundary sets may have. a very long common tal thereby saving
much space-

Behold, we have already described just such a data structure: the history tree, with

Its brush seM To see how this data structur is used for this purpose. suppose we are

given a node for which we desir an enumeration of the elements of its supply wt.

We fist enumerate all of the elements which were in the supply met of the kernel

region which the node was compiled Into-these can be done economically simply by

ezamining the code for the lkernel region. Next. move uop to the immediate ancestor

in the histoy tree. Since fth history tre also points downward, we can determine

whether the node is the left or right son, and thus. we know which of the two brush

sets was adjoined to the boundary swt of the node durfig its first involvement in

inter-region, compiation. The elements of the appropriate brush set can be

axueraed.We then advance from the present history node to Its ancestor, sgain

ememema the appropriate brush set, and so on up the tree. This technique enue

linear Overall aeure "t for te space used by boundary sets and for the time
required for their enmrtoup to linear space and enumeration time rqieet

for brush ses(and modulo null brush sets, which aeprobably vey rare). it is

delightful thatt history tree plays a crucia role in two seemingl unrelated oracles:

class conflict determintion, and boundary set enmraiy

We next turn to the problem of brush sets. Unlikie boundary sets, these are not

constructed as unions of other se*, rather they consist at a boundary set with some

specified set of occurrences remove becauseP of matching. I have so been al to

dei e a tnique to have both linea space and linear enumeration tim bounds

Nowever. there are techniques to achieve either at the ezpens of the other, and ways

% -7. *.* ** L*" . . . . . . . .
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to combine the techniques and dynamicaly decide upon the best technique. We fims

eaiea linea space technique. The idea here is to utilize the fact that a brush set

can be formed by two other objectL the "base boundary set from which

occurrences wre stripped. and the boundary set that provides the matched

rec f. we can recover these objects, then the elts of the brash set can

be enumerated.

The history tree, n with boundary sets, is the key to an efficient representation.

Recfi thiat brush set are "recorded" in each node of this tree; A that is needed to

achieve this is a pointer to the arc whose compilation is being remiembered. From

the arc, we can Set to the nodes in question. fromn which we may enumerate the

bondary sets by tracing up the hisory tre, recursively enumeratin other brush sets,

until we reach the history node whose brush set is desired.

it b cdear that this sceerequires linear space, The rub i that the enumeration

of a brash set may require time not necenarily proportional to the number of its
elemens ith theI prsn rpettow have to enumeratte the elements at the

bue boundary set and then supp;s in the eiumeration, of the brush set any
occrrecesmatched in the opposing occurrence set. The first problem is that

determining whether an orreceo is matched requires in this sceean

azueralonof the opposing occurrenc set which my be expenive. The, second is

that Mf too many elements are excluded, we spend a lot of time, enumerating not vey
any element of the brash' set To solve thet frst problem we note that the

matched occrPe P were detectd in the process of generating cohabitation arcs

Shie this set must be computed anyway, and Aot the time brush sets are formed.

we have several dplm The first is that at any history node, we may keep a list of............
the cohabitation arcs that were formed because of the compilation of its arc T-hen,

to =diode matched occurrences. we merely seach fth lis of these arcs, which is

prmmably muchi smaler than the opposing boundary set Note that although ti

schemne -0 extra spcIt is not an asymptotic increase, beciause It require only one

we pone per history node. and one more pointer per cohabitation. arc

A related method to detect matche occurrencs is to utiice the fact that a match

betwee occurrences Involves single vaible This setof variables may be stored in

mm dat structure which allow rapid determination at the questow. "Is this
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vasiable in the set of matched occurrences". Such a data stucture would be a hash

table. or a sorted list which could be searched by binary division. The size of these

sets is proportional to the number of cohabitation, arc esablished so again there is no

asyptoiWC ieae in space eqrmnt.This or the previous technique is useful, if

fte set of eliminated occurrences is small but the bas boundary set bs large.

The thniques described above eliinate the necessity of having to enumerate

two boundary sets in order to form one brush set The problem remains that of the

perhap many elemenits enumerated from the bas propagation wet. A but a few are

matched. Thi situation can be note while doing the compilation of fth arc, and if

too many elemento the base boundary set are matched, a direct representaion of

the brush set say as a list of occurrences, may be recorded in the history node.

In each of the above cm we are ezpmndiang space reurmnsin the hopes of

conPierabl I improve Ment in enumeration time of brush sets, Precise definitions, of

"lage and *sfl" will. have to wait unti we see the performance cactrtisOf

t compiler on real Vrp

Thi and the previous three sections have anl been concerned with the problem of

lnconm* -ecy detectiom with the main diffilculties, arising frm the conict relation.

We have taken the approach of being vey careul to conserve space. and the history

tree ha been fth key to this snce it is used in three separate but related ways.

Although prediction of fth behavior of a lag program a difficult. it would appear

that the r; Otaim of conflict and algorithmns over it are te most worrisome

areas of the efficiency of this compiler. But having the flexibility that detailed

conflict information allows, is one of the keys to this optiumaion stug.

.~~~~~~C %%%7.. . . .. . . ....
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7. Inconsistency Resolution

7.1 Owervkw
We saw in the prievious chapter how to detect: an ncasency. Here we shall

study the problem of modifying the code so that it is oneagain Consistent The

mmof doing this is usually fth insertion of one at mmr instructions in the code.

Subh a move may replace what was previously a CHB (cohabit) pueudo-op we may
Chang C16 V19W1 to MOVE Y,W1 . This corresponds to breaking a cohabitation arc

due to an assignment We may also break a cohabitation arc that corresponds to
mathin tw ocurrnce V -42. In this cue, the move has the farm MOVE V.V*

In this work we shall discus only those resolution technique that rely on moving
data, whether by actual insertion of moe instructions at by modifying other

instructions so that they do move implicitly. Other techniques of inossec

resolution are avsailbe Far ezeuple, one might rearrange arguments of an

intutwdow. changing AMV YW 1 to AM W JV 1 may be a useful way to resolve an

woc~tncy. Other modifctions in this clms include reardering code to reduce

confit, and duplication of code (especially small subroutines) to reduce

wcobitatloo.

Whenever the code is modified, in particular by insertion of a move instruction

the Ideais to make all the data structures appear n ffthe code had beenin that form

all &I=m& Thus, a move instruction bcmsa kernel region (or part of one), and

typially Its sour= is a lmasue, while is destination is a generation and a fiSt use
We then look. at A of the invarlants concerning t compile's data strucure and

maket suz they remain tue, modifying the data structure if necesmary. This would
Icdeperhaps adding new splt and Serg occurrences, farming newcoataos

wit any new occurrences, aded listing thes from the proper point in the history if
S this is being dame, updating cohabtan clase to have the roper set at members

and to have the proper "ha generaion flag-emember, a mo.e my add a
Seneration Note that conflict is represeted through the history tree, so that the

updatig of conflict Information is almost: automatic (bewar -Ias brush time-). In

fact, this mie of updating Is ame of the many advantages in the history tree

---- menttio of conflict Any other repreentio gems quit awkward to revise



during resolution.

A further in=u in the placenmt of move instructions as that it may occasonally
be dedrable to place amove outside the region in which the ncsitcyhas

or my . What we do inthis cue isto create anew kernel region or place thenone
intucton in an ezistiqg regio different from the one which has cause the

P R I tencyI TIs Cam no diffIculty-eventuly. everything is Pieced Utogter.

in mammary, breaking a cohabitation arc means modifying the Program, 4atyal
by adding move instructions and then insuring that allof the invariants regarding

tmoccurrenes, cohabitatIon, and Conflict a correct Thus compilation 'Of any

arc is obliious to whether there was previoumnossec resolution.

7.2Dffcll
The ab a,.skth give us faith that if we can only decide where to pAMe move

Instuctows we wil be abW to do so without greatly dieruptng the compilation
stratey prs 1in earlie chapten. The real problem is going to be in choosing
where to place the move Intrctons and bow well we do this govers the qualty Of
the code we generate.

one ot the most difficult facet of the resolution Problem is that Mere knowledg
of the Inconsitent cohabitation and conflict relations does not necessarily tell us how

to tuolv. C 'nde the, following (wrong) appoch. View all the desired
~ab~ttionarc a in place, so that we have a cobabitation clas with internal

coflict. Then remov gome subset of acs breaking the large clam into two Or MOre
piecus each of which is Internaly free of conflict Modify the code by placing move
initrucions between the occrecs of eihrend of a removed cohabitation arc

The reom that this approach does not work is tha km lantrctio intucem
-w. geeraiw ift fth Srgrm thos new geseratioss introduce new confICt, and
put of this new confict can in* fact be Intrnal to the MUle pies Of the Original

cohabitaion am pices which were hoped to be free of internal conflict As an

mneof what happem we cosdrwhat happens in a conditional assignment of W

lboV.

4Z



flowgraPia cobabitation graph

USE V11U1. (exraccuenes)v w1

V2

USE V39U3 (extra ocrecs 3  U

SUPPmW that Vt and W, are in claws conflict, iLe.. there are occurrece ol and o2

which we in Coufict, aNd pat from these occrrnces to VI and W1.

~~W1

v3  v

if we look only at the above relatdosw it woud seem that we can resolve the

aoi sy lby breaking the cohabitation, V 14e3. Hoever, loking at the program,.

this ridiculous on the face of it Further, if we actuafy lnstal the move, we have

the feadoom

VI. 1 r*

VA

TI.coflit etwenv; and W3 'I becM V; the desdatloo of th e , and MW

* thus a guierailon. The coufict might also have bem betwee V; and W1. In either

am the tinqtec remains, Via the path.

* Y-.Y 3.. "V2 +.U2 *W3  (or -U1W)

Om the other hand, choosng other a= to brek reslt in at perfectly acceptable fl:
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to the inossec.For exaMPle, breakinig WV-V2 obviously will work, Since it

corresponds to a literal imlmnainof the aassgnment.

It Is clear that in order to reolve iomtecies, we must develop a'technique

which is able to anticipate the effect of the extra generations that are added a a

consequence of inserting moves.

7.3 IR f]am P, of PartftwO
The firs ste in resolving an ncnstcyis to obtain an object which relates the

varios occurrnes in a class component to their relative appearance in the

flowgraph (assume desired cohabitation arc are in place, throughout this chapter).
For example, in the exampl in the previou section, it is important that V1I and W1

are In the same node. areM V3 and W3. etc. Another way to see why this is
importat is to cosdrwhat it momn to have, an occurrence of one variable, say X t.
tn a mininml intermedate mubgraph of another varibWe say O(Y1,Y2). If we dcd

to weak Y14. 2, it may make considerable difference whether the nm is Placed
"above oir "below X 1. It is this observation which leads to the idea of the comnion
refineent of he, intermediate subgraphis of a class component To introduce the

cntuction of this section, we flast cosdrsome relations of equivalenc relations.

Ddbftasg. Let -~and -~be equivalence relations over a set S. We say that is a

ieflumm of -2 when

a 1 b* a 2 b. for All OCTE

An equivalenace relation, - is a cmmon ,eftnain. of 1~I 1,2, when it is a
ruflonent of ach, and it cew common reflxna- has the additional Property

that any comon refinement of each -,is also a refinement of -

Ift is a simpl matter to show that at coarint conon refnement ezifts and is unique

In fat It Is iven b.

9-b 4* a-lb for all I

We now relte refinement of arbay equivalence relations to the problem at
hand. We first need a notation for the part of a cohabitation graph concerned with

a particular variable.
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DefIaltim. Let H be any cohabitation graph constructed during compilation (we
specifcally allow N to have internal conflict due to presence of desired

cohabitations). Let V be the variable of some occurence of H. The rotfcden of H

to V. * is the set of A occurrences (nodes) of H whose variable is V, togethe with

all aro of H connecting two such occurrences. (Note that Hy may be disconnected.)

Became of the way that etaoccurrences are added. any . 1 subtends a certain

subgrph of the flow graph, and induces a certain partitioning of this subgraph.

namely that given by Theorem 4.1. We now characterize the relevant properties of

the relaionship between MV and the flowgraph by abstracting the V-free terminology.

Let H be a graph (think 14), and let r be a map from the node of H to the

flowprapli (think of the function that takes an occurrence to the node in which It

appears). Then much of the terminology that has to do with a variable V can be

restted in term of the "Image of N under 0". which we abbreviate Y(B). The

following definitions are the major one of interest When H is in fact the

cohaitaiongraph By. these definitions cotrespond closely with earlier ones, where

Y"is chand to "Jr. The maJoir difeec b that it is H which controls the

liveam, and not the ordiny flow rules--we are interested only in the part of the
progtam "Iseen7 by a particular cohabitation graph.

Deflutke. An Hi-fra pok (in the flowgraph) is one which has no element of v(h),

excePt possibly for the first and lost nodes. Nf p*# in H. the H-fiw *bgrqh (of the

wec or pair at nodes). denoted O(~.q). is the set of all, H-fre paths from vP) to v(q).
(The notation "(pq) suppresses any mention of H and P, but this Is cdear from
context, since p and qmast be nodes of H and P is fized.)

We say tht His liveatan arcoaanodef that amcornode is insome Bfree

.abpaph. Rfinly, H is a mwg-spIIt pwddea (or ms-parthim) when:
AH of its H-free subraphs have aums

H-fre subpraplu of distinct ares of N Intersect only when the arc touch a
common node &, and then interect only at NA

Nf H is live at a non H-node N, itis liv at all arc touching A.

(The "partiion is of the arcs of the live region of AM not of the entire flowgraph.)

MWe following somdt is the analogue to Lemmas 4.1 and 4.2.
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Lamma 7.1 Let NI be an ms-partition, and let p -,q in . Then P dominates andQ
bc-oInatg all arcs and internal nodes of O(pq).

Proof. Also analogous to Lemmas 4.1 and 4.2. a

The purpose of all this machinery is not merely to duplicate what we have done

fat variables. Given a cohabitation graph H involvinS several variables, we want a
sigegraph Ho which somehow works for all the variables in H -at once. To do

this. we need the foliwoing notion.-

DathIU. Let JJI.fI be ms-partitions of the flowpraph. We say that Hf1 is a

,uflANSWi of 2 When'
The live region of H, inclde the live region of H2i.

If poq in HI, and H2 is live at some arc of G1(pq). then all of 01(1&q) lies
4 in the same H2-free subpraph.

The relation "is a refinement or" is a qus-reg(lacking only antiiymmetry).
analogous to the identically named relation of partitions. We can define "common
ret" and coaruest common refinement: (hereafter abbreviated eq) in the sam
way. Standard lattice theory results yield the uniquenew of corsest common
refinements (up to equivalence in the quai-ordering), and reduce the x-ary existence

question, to one of binary exitence Before giving the details, we provide a rough

plcture of a cerof H, andiH2. The live regon ofHlis the union ofthe livego
otBIaid J 2. The nodes of HBare the union of the nodes of H, andi 2. together

with HSmerge and "Atslir nodes which have to be added. The sa of are
obtained in a natural way from those of H1 and R7. We begin the formal

corction. of a cer with the followingaortm

AlAJE7th 7.1 Completed node set of HI, H2.

Initially, the completed node set contains PI(R1) u v(H2).

Nf N, ad N2 an in the node set and Uf there are two forward or two
backward paths intersecting only at the node N. where the paths are
li1 -free and Bri-ree and lie in the union of the live region of H, and R2,
then adjoin N to the completed node set.

This corresponds exacty to the constrcton for extra occurrences at V-merg and
V-*flt occurrences (see section 4.2). We now characterize the ms-partitions we are
lnrested in.



Denndtion. Let H1 and H2 be ms-partitions. A graph H and a map, is a commo"

ms-panddox of H1 and H2 when:

P(A) is the completed node set of H, and H2.

ffxand anodes of l, there is an arc m,7t preciely when there is
an H-fte path from v(x) to v(x) where H or H2 is live at every arc on
the path.

~ .

Theorm 7.1 Let H1 and H be un-partitions. A common m-partition of H and H2

is an s-partition and is accr oflH, and 2. Conversely, any ccr of H, and H2 is a

common ms-partitiom
Proof. That H is an me-partition is enentialy shown in Theorem 4.3, because the

construction of a common node set for H is exactly what was done when adding

extra occurrences of the variable V. Noft that Lemma 7.1 plays the role of Lemmas

4.1 and 4.2..

ItiashonotdifficulttoshowthatH isarefinementofiH1 . Let H be live on the

arcA.bo that Ais in G(,)where pl n Hp Let Njbe the mt nodeIn the inopHl

appearnginthis athbeforeA and let N be the frst such node after A Since this

path is entirely in ftq), H is live at every arc of it, so that by defifiion of

cmmo m-partition, jk in H so that H is live at A Thus. the live region of H

includes the live region of HO the fit requirement of refinement. The second

requirement is the content of Corolary 4.3. so that H i indeed a common refinement

of H.

Whatremai is to show tat H i u coarse as poible. Let HO be a cmmon

refinemmt of the H1 Since its live region must contain the union of the live region

of H which is exactly th tie region of H, proving the first property required of

shain that Ho is a refinement of . Let pol in HO. We claim that O(p,) has no

internal nodes in the common node set. Thus, if H is live anywhere in it. all of

0(p.#) lies in the sam B-free subgraph, mentially by Corollar 4.3. We use an

inductive proof, following the Inductive constrution of the common node set. To

start the inbction observe that 0(,q) is -fre, since HO is a reinement of H, and

H2. Aisuming the tuth of the claim inductively, comilder path from node N1 and

N2 inthe nodesat to anodeN nternal to (pk). Since N, andN2 are outside
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L O(p~q). the paths must go through p (if they are forward) or through q (if they are

backward); this by Lemma 1 and the fact that H4 is an na-partition. The paths

thu intersect at a point -other than M, so that NV cannot be added to the common

node set at this point This completes the proof of the claim and thus of the

A few remarks are in order concerning the relationship of this result and the e~

occurrnes discuesed in Chapter 4. T7he initial motivation given forexa

occurecs was to aid in finding the proper place to put moves, and the V-merge and

V-split nodes might have seemed to be an ad hoc cstuio.We can now See that
they arise in a completely natua way. The notion of a V-ree subgraph is an almost

inevitable way to formalize the "data flow" of a variable from one use to a next use.

T7he defintion of na-partition formalze the ides of partitionng the live regio of a
variable using V-free subgrapbs. and the definition of refinement of na-partitions

* generalizes the usual notion of reffineent to the situation in which the domains of

the relation my overlap. but are not necmsarily equal. If we take each V-ree

siibgraph Individlually, and cosider all other occurrences of V to be isolated, we have

an na-parition woelive region is just that one V-free subgraph. If we want to

divide up the entire live region of Y. the coarsest common refinement of all such

na-partitions is the only mahmtclyreasonable thing to do. This forces on us

the V-merge node and V-split node const~ction of Chapter 4.

In this chapter. our motivatioms are of course different Here we want to relate,

the partitions of the live region of several variables to common parts of the

flowgraph. We can now define He to achieve the effect we wanted.

Daflatioma Given a cohabitation graph A. the ,eflumau He of H is defined to be the

coarsest C non refinement of 14, where V ranges over all the variables with

occurrences in H.

Note that the Hefree subgrapbs are regions in which we have free choic regarding

the Placement of move involving variable of occurrences of cohabitation graph H.

The problem of deciding where to Place moves factors into two problena-a certain

olIfmlution problem on H4, which wil yield a choc of which variables to nme on
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which am and then a code modification problem-given "Aat a variable is to be

moved onan arcof H.how do webestplace ode todo itin the Hfree subgaph

subtended by the arc

7A ?Akxhin Coai~ nchaow

Confict often arises a global pheomenon-a variable must retain its value

from an occurrence V, to another occurrence V2. but there is an intervening

geneation. W, of another variable. Thus far our representation Of Conflict ha

retained this non-local feel. The refinement He of a cohabitation cias makes it

po ib o represent confict so that a conflict looks lie kernel conflict This is a
flast ste in seeing how to resolve an ncnstcyOf IL

Suppose that to each node of H& we attach an occurrence of all the variables of H

which are live at that point, where we use the occurrences already on the line of

codle, if there are any. ad make new oam for other variables. Etending the rule for

Ikernel conflict (page 33) to these new occuirrences, any conflict within H will agpea

a kernel cooflct by the construction of H. Thi kernel conflict is the seed of what

we call leca cenflk, where the term is, chosen because It can be man by looking only

at the node in question.

in discussing the techniques of this chapter, It Is convenient to Imgn that

whenever nex2 in H. each non-lest occurnce of x, ha a cohabitation arc to - -n

rnfrtoccurrence of *I. where this cohabitation arc always connects occurrnces

of the sam variable. The usual situation is that a variable will have only one

occurrence among non-flat or non-hit uses, so ftht the arc is redundant The flrat

aplction of these (perhaps imaginary) cohabitation ea is In the following result,

which te*l how loa conflict arism

Lemm 7.2 Let x14%um in H. and euppos we have occuirrences V.. W, at x.. I -I and

Z ,.wer V, and W, connect (rspectvey tO V2 and U2. Nf It is somehow known that
V1 and 1, cannot be in the same cohabitation class, we can also cocuethat V2 and

W2 cannot be in fth sam cohabitation clams if the only chang to the programn is the

imsertion of mov instiructions.

Preef. Suppose V2 and W2 are in the same cohabitation class, but that V, and W, mre

not Then O(xja,). which had no occurrences of V or U at the time of the
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consrucionof the cohabitation clamk must have been modified with one or mare
instrutions which moved one or both of V and W into a common Olace This

changes the values of one of the variableso, violating progam semantics. In term of

1oh11 tlo and conflict, the destination of the instruction(s) must have been. a

semation of one of the vaidbims and so is in conflict with the other vaiable But

MY J 2 cohabit, this is apis an.icnitny

Unlike may of the results and techtniques of this paper, this TLemma as decidedly

nom4oal. Faniy. this might be viewed as being a consequence of the fact that in

a mve insruction, the source ir.. las use. is not a generation, but the destination

L. flrat um is a generation. At a morpiosophical leeL the non-duality aie

because entrop always fixressm in programs, this happens when. a memory location

is clobbered.

Using the seeds of local conflict and Lemma, 7.Z we can 'grow" local conflict At

eah node of Hs, the algorithm below partitions its occurrences into what we call

mkcdid cehdftaiu dam or m.ce These are maximal in the sense ftht no

matrhow mone instructions awe inserted, to remove inossecethe final.

cohaitatonlasses, restrictedl to any node, wil be contained in a maximal,

cohaiatoclass at that node Initially, each generation is in a mxcc whose only

other occurrences are in kernel cohabitation with it All other occurrences are
placed in a single mz. Then for any arc fl.8f of H. we can. obtain a new

nmc-et at fro= the oae at X, sa follow&

AlserlthIn 7.2 Grow a macc-set

01N Initializ the fdrvd macc-set to be the nm-et of xj.

ORI If an occurrence dies out along Mjr2z remove it from its macc.

012 Replace, each occurrence, In the derived mac-set by the one of x2t
which ft is connected by the cohabitation arc along xl-'iS.

013 The only occumares of xs2 not pesently in fth derived maccset are first
ues at fz. ff one of these occurrences "kernel. cohbits with some

nan-first use, put ft in the same derived macc a the one with which ft
cohabits (this always applies If the first me is not a generation, in which
caeit is ol In CHB o,,.2). The remaknin occurrnes all generatioas,
are put in mancseacording to their kerne cohabitation relation.

014 Relae the macc-set at n2 by the comarss common refinement (at simple
pati*on) at the current nmc-set at a.and the derived mzc set
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This algorthm applies only to mne arc, and by itsel is not an algorithmn for gettin
mzcc-e everythere However, it fits into the general clas of "weak interpreter"
technlums the theory-of which guarantees a "strong a possile global, set of
macc-gtu that is consistent with the seeds and the stowt rule. To calculate this
global set. we jut continue appying the above role till things settle down.
Algoiic masecIi will not be discuied, further here. We do, however, prove that
inch a global set of wma-s tells us what we want to know about conflict.

Thorem 7.2 Suppose we label the nodes of He with mzoc ses beginning with the
need mac-sts and then by repeatedly growing new macc-sets. Suppose we eliminat

incmisencesby the insertion of move instructions. Then:-

Jf el and q7 are both non-last occurrences at a node of H. and are in
different niaccb before the modification, then they will not cohabit after
the moodification

Pr... This is true of seed macc-set because at leas one of the generation will be
or will kernel cohabit with a geneation, and by aeimna, the other will. not be a
IMt um. Thus, they will. be in. kernel conflict. Leam 7.2 says that the same

poperty will. hold of the deri i d mc-set constructed in 031-013.

Afl that remains is to show tha If the result holds for two zmccsets at a node of
Rl. it holds at their comars common refinenmt Let ol and *2 be in different mac
sets. By the remark in the previous section about coo partitions of sets, we
know that @I and *I are in different nces in at least one of the two mne-aet.
That mmoc-set tells as that a, and @I cannot cohabit in a propa= changed only by

* the addition of move lantructiom. This prove the desired property of the comarss
coao. remmst

Incidentally, we can also observe that no infomation Is lost in this step, ILe., the
conflict of both uzoc-sets is reflected in comarss comon renment. Suppose ol
and ft are In the saemrl of the coarsest como= refinesnent. Then they are in
the same nmcc in both of the original mac-sets so no stronge statemnt was
known previou to the replacement of the current ==c-set by the new one. 13

We now give an eample of how this worfs Return to the conditional e=cang

example of section 3.4, page 16. We flat give He with the InitWa uzo-sew.__
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..... 0 o(O YO"

(Z ,,X 19y4)
X4 Y and Z 3 are occurrences

e*(x-ylZ3)added because the variables are live

d at their les ve nd-o YZy X 4)

Note that at point 4 we are asmuming that we somehow know that X0 cannot cohabit

with YO. Sappose we derive a m .o-w alog a+b. y O13, the derived mzc-set will

be tZ PX I(}Y 4) Which s the coarsest coammn rermiment of itmelf with the current

mxw,, st and so replces it, by OR14. Then conider bc At the end of GIl.

* the derived macc-set is IZ)-IY4.- while at the end of 013, it has becmet2,Yl)iZ 3).
which be--ni-s the ,nawest at c. Nextc c i We see that the new "mcc-set

f-: d is (X4)-fy.22- When we proom ce& the macc-oet f r e become s X3 I.Y3j.
l'nay, comidiw ope The derived mcc-set is X3.fY3) whkh is the current mcc-set

ThLs, no clage C cu, ad we have obtined a glol] a4pent of t m Lcs.

m-l X (YO)

d (X4), y2Z2)

(X3) -(Y3) U

As another ezmmple., we look at conditional augnment frm sectimo 7.4 pe 59.
We asum that the seed ot local cooflict b node a

.6

0 :
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(V2,IJ2) beoms 21W2)

XV3,W3) (V 3) (t43)

HEre the only chang was to the macc-set on node c. For node A. V2 is a frst mue,

andVYI die out along @+b.

7M Splt ad Twig.
Suppose we have R. labeled with macc's We wish to modify this labeling in a

way which reflects the invertion of move istrucons, so that we are finally able to
udgn the maccs to cohabitatio dlam consistent with fth generad code, We
begin by fdngsome condition an the min ' which makes this triviaL This

condition, is modsrt c Mne -enly discussd. in tmsof the following object which we

do not props a c tually implementing.

Defla.. The nxcctgp k has nodes which we maccs and arca induced from the

cohbftation relations on the elements of the macc's.

In terI of this graph, fth onsistency condition is that thee not be an undirected
path in it betwe distnct mw c' at the same node atfNo. We will xmine

incnsitnce by looking at the image in He of the umcc-path from the
incosisenc. Te iconistncycondition is easier to work with when it is broken

down Ito two conditions. The first is oewhich is can be see along a single ane of

Defluftm . xLe x2 in Ho Supos some= of x, hab= o to distinct macn of
A . We may tha fti mcc spilI: along X1ft

;.4An ezampe of split is the conditloal assixament ezample. Raes to fth previous
figur The derived Mato (Y2MW2) almng b-oc is fVIJ3) Which 'I not a macc of node
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A mstead,We fnd IV3j, IW3 )

It is clear from the defnition of mucc-graph that each macc-arc "belongs" to a
certain arc of B, Note that when there is a split~ the path between distict mxcc's at
a node belongs to a cycle of arcm in He consisting of oam arc repeated twice-first

backwrd, then forward, We know that splitting does not cover all icnitnis
for Ef we look at the m= sets computed for the conditional exchain exmple (pape
69), we see that there is no spltting Dut we know that something must be wrong.
because there is inosistency. The problem is captured as follows.

DeftiL. An undirected path in the mzcc-graph between distinct mazces at the
same node of Be is called a t**tu Ef the cycle of Hirarca to which it belongs is simple

(hm no repeated arc).

03
We draw the mac-graph for the conditional eachan example~ which motivates the

term twist (mentally fMl in :m=c labels in the same order a they were liste in the

b

C.

0This cold be drawn most smmetrically on a Moebius band.

- .Theom 7.3 Suppose a macc-graph is free of splits and twists Then there are o
lncnsstmlu(and the components of the muacgaph are the desired cohabitation

Proof. Suppose we have an inossecLe., an udirected path of mac-arcs
betwee two mac%' an the same Honode. We may uesume that this path is of

*minimal length. Wewat tofind either asplit or atwit. Look at the cycle in H. to

which the undirected path belongs. Nf the Re-cycle has no repeated arms we have a
twist and are done Suppose some arc in t Recycle is repeated, and exmine the
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=zc-arcs belonging to it if these arm share a mzc, they must both leave that

nmcc, because distinct am can't enter a mzcc after the growing of local conflict

which was, done in the previous section. Thuis, this imcc is split, and we are done.

The only other powlibility is that there are four distinict macstouche by thms two

uzoc-az Star at any one of these four mazcc's and follow the nm Path until one

of fth four as acountered. Thin nmcc-path cannot come beck to the sam mxcc or

to fth ma on the other end of the macc-amc or we would have a ma0cc-e

meaning that the original undirected path did not actually contain anl four mm's.

There are esentially two posiblties, most easily described by their pictures (ellpse

encos mac' at a single node of Bj.

~Mcc

in the first cae, we my extend the mc-path by mne more arc and wind up ait a

distinct mmc at the sam node of R. In the second. camewewind up at such a r
macc just by the path In both coew we have ontradictd ninlunalty of the length

of the nmcc-path.

The decomposition of t problem of lcustnyresolution into split and twists

sets the stage for the rest afthis work. In the ama chapter, we wil consider the

- of split removaL Given He and the Information of th. copayn

nmacc-rap the techsniques of tha chaspte will tel how best to luet moves so Ihat

IN Be is redeuived, there wil be no 9PIpLs It seezo liWeY that split-removal. wMl

resolve most incooedses aflough we know that it cannot resolve all of them

Chape 9 discses the problem of untwisting. The techniques there mm an Be

and a macc-grph that is free of split, and tel how best to insert moves resultinn

commistent cobabitalion a=d confic relatioms. Synergutc interactoms betwee

splt-emoaland untwisting are not considered. Tise question will have to be

reopened it empirical evidence refutes the Intuition that little would be gined by

4such techniques

A.4
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8. Split Removal

LI The TWO Variable CaM
We begn our discumlion of split removal with the special cue in which H has only

two varibles. neither of which is replicated. In this case. each node of No has at

most two Occurres, and If there are two, there is either one macc or two. A spli
always has the following fornz

* [YW)
(neither V not W dies along this arc)

0 (VI ,(WA

There may be seveal such spofts Form the medijlcarfo aub.h M of H&

* Algorithm 8.1 Construct a two variable modification subpaph
Includ In M all aro of He along which a split Occurs.
for a 4 the top node of each split

Adjoin to Mall undirected. paths starting at x such ftht
(1) both variables awe alive along an amc and
(2) both vaiables ame in the am mmcc at a node.

This, subpaph has the folloing Important poperty.

Theorem Li Let x, be a node of M at which there is CHB whose arguments are V

and W. Let ftbe anode of Matwhich V and W are In differentm=zccs. and cnie
any undirected path betwe x, anid x2. Suppose that the code Is modified by the

insertion of moves, (explicit or otherwise) in such a way that there are no reumning

spHlu and no replicatins Then there is a mov inserted in the H-free subgrph

asubended. by some atc oriented aisq from a, on the path. In picturer

an arc not oriented away from x,

S L an arecriied away from x,

Proof. Let No' be the tm-partition computed after the move are inserted poaw

mWCc-06- in Hot. The prod is based on comporing N' to HN. the oriina

ms-partition All of the nodes along ouw undirected path emsenti~y lie In H., but

the arm betwee two nodes may be replaced by a finer subpapkh, became ofetr

occurrnom added If a move is inserted internally in O(a,.a). where x, and xi an

adjacent on the undirected pat. Diemerthue, if gr.a, there wil be a path in No'
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from x, to a~ and dually if ri

[n the undirected path, the frst arc must lemv mi. not enter. because if mi has a

CM,. the lett operand is not live along any arc entering xj. Thuaw if x, hes been

modified (the CMB changed to a move). the Theorem holds. Otherwise, the mixccset:

of -i a node of Hf.' will have only one macc, because the CIB is intact, and

because there are no replications. Let x3 be the las node along the undirected path

which has only one mc in ff' (we may have afina1). and let a4 be the next node-

Note that x4-#x3 is impossible since there would be a directed path from P14 to N3 in

N., and by the Orowth Rule, if there are two mc' at m4. there must be two at x3
--Ie etbrlP both V and W are live through O(x4,a3), and finerton of moves does not

chang this. Thus, we must have m3344 and the move instruction must appear in

O(a 3-Q- .u-&ired 0

The reasn that we are interested in thib Theorem is that it shapes how we look

for code modificatlom onde the conditional asulgnret exampl started in

section 7.2 and for which we computed mzcc-sel in section 7.4. The only split is

along th e rc . It we coMut the modification subpapk for thi cawe, we oft

that it hIndes only this one amc Thus there is essentally no choc in how to

resolve the lncoaISMcy we chang the CHS to a move Intruction.

A further restriction on where the modificatione occur is given in the following
result

Lemm LI Let Mbe contructed as above. If moves that are added to the code do

not cree replications, those moves do not appear in Aitree subgrpps subtended by
amc In strogl connected compoxnnt of A.

Proof. A node containing a CHB ha. no incoming arcs and is thus not in a strongy

connected component (scc). Thus a move In an soc will be the form MOVE V. V or

MOVE W, W. The pictureler
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NJ . 3

IMOVE V;. ,V2  }
4

Sine Vis lien the entry d eit a ofthis c, Nwilbe aV-megenode and x

wilibe a Veplit node. Let V3 be theinmrpeoccurrence ofV At NIand V4 be the
split occurrence at a2. We claim that V I and V2 are both not last uses, ie., that the

moereplicates V. If V1 is a last use, the move instruction is superfluous, and would
not have resolved an icst y.SpoeV2 is a las use. Then V1 must cohabit

wit V4, since this is the only choice. Sinc we also have V3 cohabiting with V2 and
V4 wMt V3 (by ftea1). we wee that V, cohabits with V2. Tis is asoe absurd, since it
too would not rinolve an icnstcy(in fact it formally aises owe, since V, and

V2 are in intra-line conflict). Thus, V2 is A lat use, ctadiction E3

It mutbe noted that it is occasionally useful to create replication in just the above

way. However, it is a second-order opthiitionI and is not treated here

The previous two results, Allow, us to approzimate an optimal solution to the two

variable relcto-resplit removal problm, by converting it to an efficiently
solvable graph problem Assume that along any arc at M not in an moc the cost of
moving V is, equal to the cost of moving W. Then we can call this the common cost

of the arc of. B. For no whichano inscc's weuasignacost ofinfnity menng
that no move is allowed on the arc Call all, of the nodes of MI havingchatain
of V and W swvcw and caflnodsof Mhavng two mc-seft AkAL What we are

interested in it

DMflitee A splh0-wnew medifiatle (or m) is a set S of arc having the
prop"rt that evey undirected path fran a source to a sin contains; an element of S
oriented away from the source.
13
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We want the stm of winimal cost This is very close to the Mazimal-flow-minirnun
cut problem the difficulty being that here we are quantifying over undirected paths
and oriented arcs whereas the standard max-flow-mmn-cut works on directed paths
and oriented arm or undirected patio and unorlented ares. We can convert our
problem to the fully directed case by a simple technical device.

Lin 8.2 Let Mf be a graph whose arc have cost and whose nodes are lablle as
smacs sinks, or neither, where aln worce and sinks are not in scca. Obtain MO~

from Mf in the following war. for every arc ;tl-x2 of Af adjoin an am rc n. with
infinite cost Then the set of arm's of M is equal to the set of finit-cost cut-sets (in
the =Ruai flow-theoretic sMMs) of 4&
Proof. There is an obvious bijection between the set of undirected paths of M and
directe Pd paths of No, so that when we considr finite-cost arm's and cut-sets, the
incluson. remains tue. Te only thing remaining to show Is that a finte cost cut-set

napsto afnite costurm Thusholds becaueAlarcs inJMOand not in M have
infinite cost Thus a fte cost cut set of M% contains only arm of M, these ,

obviously constitute an srm of JA, by the bijection of undirected paths of Mf and
fibrPCtIPd paths ofiA 0

Now that we know how to efficiently compute an optimal om, we show that it does
in fact yield the desired effect on the program. The folowing is a partial converse

of Theorem &i.

Thwem. 8.2 Given an optimal on, suppose we 1set a MIOVE VlVz at the point in
the flowpraph correp onding to each arc of the am Then He,. constructed a in the
proof 0f Theorem 3. is free, of splite and replications.
Proof. The crucial part of this proof is to show that every dAftwd path from a
source to a sink encounters exactly one element of the srM. Suppose we can show
this. Then the am partitions Mf. and thus the flowgraph. into places where V and W
cobabit, LL., are on a directe pat from a CHB without an intervening element of
the sm, and those places where V and W are in different mxcc-ets ix, where there is
a directed path to a snk which is someplac in the unmodified flowgraph were we
knew that V and W cannot cohabit. The boundary betwee these two pieces is
mctly where instructions of the form MOVE V,V 2 are in place, and so this whole
arrangement is what is obtained by the growth ruIl
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To prove the result. we obtain a cnrdtonfrom ssuming that some forward

path in M from a source to a sink encounters two arcs of the sri. We make heavy

use of the optimality assmption. Fiast we introduce the concept- a node x is

mwmwcu~aW if any undirected path between a source and N has soearc of the

sri. oriented away from the source. Call the dual concept sixk-sqfp~ved. Let x, be

pointed to byan an Ain therm on adirected path from.a source toa snk having

twoam arm and let .1 not betheastsucham. We claim that *Iis not

soucespaated. If so we claim that A, can be dropped from the sam. and the

remader will still be an srm. The only undirected paths that this would affect are

thane containing A, oriented away from the source But in such paths. since NI is

mourcesetd, we know that there is another arc of the m properly oriented.

Thus A, is unnecessary in the u=6. contrdicting its optimlity. We conclude that M1

is notsiksprtd

Let A2 be the next arc in the srm on the forward path after Ap and leta be the
* arc~w which A2 Iese We may dually conclud that x2 is not snserad.But then

* ~~we have an rn3-free undirected path from a sink to x2 (2 not siksprtdand

from x2 to x, (because A2 is the next arc in the arm after A1, and from m, to a source

(x, is not source separated). But tbh contradict the assumption that we were given a

arnm Thus we can concude that on any dfi rctePd path from a source: to a sink. the

isounly onearc of an opmal sm c

The reader should be aware of the fact that an optimal arm may have several arc on

an widirected path froaxasource to a ink

* *)sorces

circled arm constitute the srm

* /1 numbers are costs

siunks
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U. The Difficulty of Split Removal
In this section we shall formulate the general split removal problem and show that

is is NP-hard. The result is of course not tremendously useful in desigtning the code

generator, other than halting the search for an efficient algorithm. However, the

proof is Instructive both in showing the source of the cmiaoaldifficulty, and in

suggeting aprzintion heuristics. -

The split removal problem involves both the nm-partition Ho and the associated
mac-grph.TWO noe and a connecting arc of H. have associated macc's and

mzc- F..

mzcc-ars depicted thus:

IV. W, X1 (Y..1 . (Z,..)

*IVl). IWX), (Y,...) .. , z..

(Occurrence subscripits have been omitted.) When we are worrying about split

remv. the algoithm for growing mxcc-sets% has already been applied. Thus we may

wee splits, as in the m=acc (YW.X) above. but we will never we arc from different
macc' goning into the same macc.

*We think of splitremval nseffected by the murtiou of asetof moves having the

prprythat after they are itnerted and maccc-sets regrow, there are no splits. The

moehave the effect of breaking the cohabitation arc into the destination

macc-cims. In the above case, the destination of the move might be the acc-set

111, X) on the Iower node. This removes the split, as we can see locally. it is also

podlto break up a mcc w2 ilnadvaioce of asplit.In which cameit can be wen

to remove the split only by growing mzcc-set.

In purely graph-theoretic twos., a split removal can be thought of a a set of sets

of cohabitation arcs. each indlyviual set at cohabitation arcs belonging to a common
0 Bear and originating in a common macc. In the above example, a set of4

cohabitation arc would be the singleton Y-#V arc, or the set comist of the W4
and, X-#X acs Each set of cohabitation arc corresponds to a single, move instucetion,
so that a split removal set is defined to have the property that removing the acs

partitioning the mxcc-sets at the destinations, and growing, leaids to a split-free

* macc-graph. The cost of a splt removal might depend In a complicated way on the



79

costs of the cohabitation amc involved, but we will prove NP-hardness in the

restrcted case where the cost depends only uponl the Brarc.

Defwntwem To color a graph is to assign integers (colors) 1. . xto its nds such

that adjacet nodes do not receive the same colors. A minmal coloring is one which

uses a minimum value of X. We say that x is the chromatic number of the graph.

The prolblem of minimally coloring a graph is known to be NP-complete [31 We--

shall show how to transorm a graph to be colored into a split removal problem, such

that the solution of the vplt removal problem will give a minimal coloring of the

graph. thereby proving that the splt removal problem is NP-hard. Given a graph, we

view each node I- orepodngt variable yQ), I = 1,... P4 where x is the number

of nodes. We construct B. thus:

9VO VD

* We have depcted the umcc-set at the top node; this same macc-se is also the

mmcc-set at all the node in the loop. We have also depicted the macc-set on the

Iowa~ right node. This corresponds to an arc betw-ee node i and j of the graph to

*be cored. Infact% for every arc inthe graph to becolored. we have neeoft arcs

* from the loop, each ending in an Belnode with mcc-set like the above, and each

node of the pair connected to a common node. Thmw Uf the graph to be coloed has

aees. fth No constructed above has 2 - a xt aro from the loop 2 -a moearcs after

thm e2a + Iam n the loop. and onemorarc Aon top. The cost on the arcain

it loop we put at infinity- all other arcs have a cost of 1-this simpy means that

the frequency is so low that the cost of Inserting a move bs simply the spae for it It

is clea that the desired H. can be constructed in polynomial time. Note that

*. . .- . .. .. . - * .. . .



80

growing macc-sets would chang nothing.

Now. suppose we are given an (optimal) solution to the split removal problem, and

that -h macc-sets haebeen reinitiaizxed in accordanc with the Wasrted move. and

regrown. Let us conside variables yQ),y(J) where (Qb Is an arc in the graph to be

colored. Suppose that yQ) and V(/) are still in the am macc at the entry node of

the loop. Since no moves have been insrted in the loop. there most be move on

* each of the two exit arm for (1,0). But is this is the cme, we can improve the solution

by removing the two move and placing a single move on arc A contradicting the

optimality of the solution. We conclude that if (Q1) is an arc of the graph to be

colored, V () and VCU are in different macc's at the entry node to the loop.

The correspodence with the coloring problem now follows. A solution of the

split removal problem minilmze the number of macc's at the mzcc set at entry to the

loop. We color each node of the graph tobe colored by its wzcc, by what we have

d. this is a coloring of the graph Conversely, any coloring of the graph in x
colors can be turned into a split removal with cost x-1. Mwi prove

Thesse 8.3 The split-removal problem is NP-hard.

U. TI Eventuafly-Seperate Relation
We have see that the two-variable case of split-removal is easy, and that the

gweal case is hard. In later sections of this chapter we shall outline an approximate ~

solution to the difficult cam. It will reduce split removal to several max-flow-min-cut

problemG and several graph coloring problems. Known heuristics may be applied to

the Vra-colorin problem (iee 141). These rpresea ntI some of the intrinsic difficulty

of the split removal problem. When there are only two variables, the graph coloring

problem are easy, and the apoimation alorithm reduces to the algorithm
posed rier, so t is eact

in this section, we wil Introduce a relation that is important In cmuclgboth

the max-flow-mmn-cut and the coloring probleum We begin by looking at a split As

-A
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The split induces a relation on the occurrences of a acc at N, which we may draw

V e

We call this relation erwueuly-sqarate because there is a forward path from N that

eventually leads to a node where occurrences so related are in separate mc's.

Suppose that there is an ssignment YQ- at N. which we see a a CHB Y, Z and an

intra-line cohabitation from Z to V. It is clear that Z is eventually-separate from
anything from which V is eventually-separate, and we explicitly Include the pairs
(Y.,Z). (W. Z) and (X. Z) in the event ally-separate relation at NA This is called
eamp~Auft the relation. To sai what we have said so far.
Mgterfttu L2 Initials eventually-separate relation.

fes'Ameachsic isiHe
for n 4- each mcat the beglnnin of A

for o1D2 +- each pair of occurrences inm
Nf ol and *2 map into different macc's along A
mke olft evetally-separate

Compet the eventually-separate, relation of m
Observe, that non-splits result in null relations. A two-way split produces bipartite
comiplete graphs within a mxcc: it is am of the place in which the assumption of
sma11 mxcc's plays a role in practicality. Even with four occurrences in a mz=c the
larpst number of eventually-eparate pairs is six

Cmntnuing our above exmple, let us look at what might occur at a node
pgoooding N, and its orrep.onding evetually-separ~ate ro

NI . ,Z, U) V

{(Y.LW. X.Y Z) . (U)

(Evidently X and V are dead along this arc) We will modify the eventually-searate
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relation at N, by pulling back the relation at N and completing it

Before *mizg the algorithm for propagating the eventually-separate relation we

discus an interesting consequence of completing it it is possible for an occurrence

to be eventually-separate from itself. This happens whenever there as an ntra-line

cohaitaionbetween two occurrences that are eventually-separate. As an example of
this. look at the cohabitation graph of the fIt flgur of section 7.2. and its
PCreponding ]I* in the last figure in section 7.4. O~nce there is an intra-line

cohaitaionarc from W2 to V2. and since V2 and W2 are eventually-separate, (by
in't-alization). W2 will be eventually-separate from itself. Thinking of how this would

appear in the graph of the relation we say that W2 has self-lOop on it. During split
removal any self-loop will at some point be in a source node of a modification

subgraph. We saw this in the conditional assigment eampl of section 8.1. pap 74.

The algorithm for propagating the eventually-separate relation is phrased so that

self-loops ane not propagated.

MrttinA3 Propagate eventually-separate relation along A

for i*.each mmu at the beginning of .A
for 01.ez . each pair of distinct ocurrces in m

If ol and ft map to eventually-separate occurrences along A
mak 01..? eventually separate.

Continuing our above ezample. we would get a now eventually-separate relation at
NJ:

V ..

Justas we propagated the growth of maccset forward, we propagate growth of the

eventully-separate relation backward, until the relation stab~zLfrs Along an arc A of

It. from N to N'. the eventually-separate relations of several inc' of N' may

co-nUlb to the same macc at N. Hlowever, since the macc-set have been "grown"
(Algorithm 7.4). a give mxcc of ND can affect at most one macc at N. After

growin~g the eventually-separate reltion, we will have an eventually-separate relation

on each macc of each node of Ho, with the following property: if all fam use

(corespoding to dead variables on the Incoming arc) are removed, the relation maps

backward along incoming nro to a subrtelation, (think, sub-gaph) un a macc on a
previous node of No

-L.
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We said in the introduction to this section that graph colorings would enter into

the split removal process. The graphs that are colored are-almost-the eventually-

separate relations an cc'Is. The colors correspond to the cohabitation classs that
wil exist once splits mre removed, In some situations, colon on occurrences at a node

of He merely signify the cohabitation clam into which the cohabitation clSs of an

acwutte is eventually copied; in others, differently colored occurrences at a node 4
of Ho wil be in different cohabitation classes.

Technically smpusg it is impossble to color a graph with seif-loops. so it is not
always pomuble to exactly color the eventually-separate relation. Further, the

"coloring that we canat quite do must be propagated from node to node of No,
reflecting the cohabitation classes that we are trying to form. This propagation runs
into other difiulties. Both set of difficulties are taken care of as we construct a

0 modification subpraph. (the subject of the next section) analogous to the one we used
in the two variable cuse. In the general case, we will make several such coastructions.

IAContuath.Of a _0iiaiinSbrp
The construsction of a modification subpaph is an attempt to get a good

a; poximation to a problem that is known to be diffliut The philosophy of the

costution is to derive a munth power as we can from the network-flow technique,

which we know provides an optimal solution In the two variable case. The strtW is
to Soap together occurrences in each m=into two subsets-black and white The

black occurences as a whole act as a variable and the white occurrences as a whole

act is another varible. Thee are ohabitation arc between black and white

occurrences only at source nodes in the derived network-flow problem. jut as in the

two variable cae, there are cohzabitation arcs b etw een the two variables only at a
swenodeI. 1 orspndn to the sitation tt two variables are in differen m=c's

at a sinkwe win conucta the modiflcatiuz subpaph so tha at a sink, a black and a
white occurtrence are never in the sawemmc

In the Absence of an Imlmna iont is possible to make only plausability

ugSmnts for this approach. The main argument we make is that there are not too
* my occurrences at a node of R. and the modiffication mbgraph never departs too

far fro the two variable case. Reai= tha if there are seea occrrences at a node
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of H.. they will have difflerent variables, and there must be some ass~nment that

caused the cabtto.It is hard to imagine a real program where more than three

of four variables have all been maigned together. Even with assigments generated
by the compiler, say to model parameter passing, a half dozen occurrences at a single

node of He seine an extreme number. There are several places in this and the next
section where we invoke the smallness of inzccets usually to justify. not wryn

too hard aboat coesto be made. As we know from the two variable case and the
proof of NP-hardness, as the numbe of occurrences at a node of So grows, so does

the unlikelihood of finding a reasonable apoiation

We begin the construction of a modifcation subgraph M at a Split. As in the two

variable cawe, a split corresponds to an arc of M entering a sink H~ere there are

arbitrarily many variables. and cmlications arise that wvere not seen previously.

* The first of these is that becaus a node of H. may have several mzcc's that might be

broken up by the insertion of move instructions, we must think of M as a subgraph of

the mac-gaph not of Hi. (In two-varable split removal, the only part of the

macc-graph where it madie sense to put move was where there were two active

variabes and thas only one mzcc Thus made the mxcc-graph correspond ezacty to
H.) Strctly speaking. M is not really a subgraph of the macc-graph, because ther is

only one ame of Mf entering a sink where the mzcc-graph has a fan-out:

mxcc-graph
In if

Wihthis abs ftriooyudrto.we continue to call Mf a modification

tenumber o e-rslaigmndbelonging to A4 (so the size is zeo If there is

no split). We describe a construction for Mf that reduces the siz of the starting split,

* perhaps to zer. This same M myaser ptuuy reduce the size of other

spoft inserting the move cntutorrespoding to a cut of if may divid the

7 7



mascc-graph into two conected components, whether or not this happens the total

size of splits in the new mzcc-graph(s) will be leas than the original. After several
Iterations of constructing a modification subgraph and Inserting the nm instructions

comrepi gt t h total size of splits will be reduced to zero

in thegeneral coo asplt may take asingle mcc mat anodeN of Heto everal

mm' mi at a subsequent node N. We sdall choeat lasw one of the MI to be

black, snd one to be white By the mallam of macceets, there are probably only

tw omcs~ In the unlikely event that there are more than two. black and white may

be assimed to the others arbitrarily. The occurrences in each of the mi receive the

-color of the mi. and the occurrences in m are colored according to the occurrence

they correspond to in one of the in. Jnitializing M thus produces a situation lie

MI N2 03 I

The AN that we construe will correspond to the freedozi we have in inserting move

instruction that 1pa at black from while along this split.

There may be occurrnes in m that are last umes and so will not be given colors

by the above rale. we will eventually amspg these occurrences either black or white,

but on the bai of what can be seen betwieen Nan N". there is no reomn to cos
either one. It is convenient to assign last use arbitrary distnct colon. As the

c o Iruction of M p moceeds& these colon may be med together, or my be umred
with black or white. But a we shall see, we neve merp black with white.

Snc colors correspond to cohabitation cinsm the next step of the algorithm is to

* merge~S color of occurrece that are coneted by an istra-lne cohabitation ar (for

simplichty. msum tha ther is at most one DS per node otfie.). This my result in

soMe oft*hesusbecomingthessaecowratrblack,ortwhte. If this rule says to
merge black with white, we don't. lathier, by analogy with the two variable case, -
is labeled asource. In this cameMfconsists only ofnm. uVand an areconnecting

the-threis no chieabout where to put the move to reduce at remove this spl1t.

'll
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Suppose that black and white do not intra-line cohabit at N Then thererean
the possibility of inserting a move instruction to separate black and white on a path

leading to AN.f this is done, then the black and white occurrences at N will end up
in separate mzccs after growing mcc-sea% and of course this growth will propagate
forward an all path leaving NA Thu. before including in M anything before N. we
investigate what would happen during the growth of nm-es fron NM if black and

white occurrences were in separate mac's. This investigaton is aCOMPlished by a

forward propagation of the colons of occurenes at A. (Colors other than black and
white are not propagated. because occurrnces with these colors are last uses.) As

colors wre propagated forward along a uma-r, all of the non-first occurrences in

the destination macc receive colons. The assignmmnt of colors can be extendled to anl
the occurrences in the nmc by propagation along intra-line cohabitation Aas

We Bust coder the case in which the occurrences of the ma~cc are all black or all

white. The entering mc-arc is not a place where inserting a nme instruction will
s Part black frm white-, so this macc-arc is not included in Nand the scan does

not contnu from thi point; Howevet, for rean that b c l ear. later the
cola us left on the occrrences.

Let A be an Il. are from N to NI. Suppose tha every macc-arc leaving mn and
beloozln to Aendsin an all black orll white node. This is called acoplete plt.

N(

The forward step to N1 taken here causes a situation that looks, exactly like the
original split Naturally, we creae a new sink i for M. and connect in to it

We next consider the cas whor the destination. nmc of the wc-ar receives

both a black and a white occurrence.

IN
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We ask whether some pair of black and the white occurrences of m1 are eventually-

separate. If not, we will argue that, as an approximation, m should not be included

in . The part of the program reachable from N, does not reach a split for the

mc m, (else the occurnces would be eventually-separat), meaning that black and

white can cohabit as far as m Is concerned. It seem unkely that an optimal split

removal wouldi separate occurrence. that can cohabit Thus, we terminate the

forwatd scan, and do w Inclue m, in . Further, we argue that black should not

be separated from white bfore N, for the reason that they would also be separated

on paths starting from N, specifically, those leadin to N, and beyond. Thu7s we

label n a somuce and terminate the construction of A. In this situation, as in the case

whene black and white intra-line cohabit at M there is no choc about where to

reduce the split

* The remaining cue is that each black-white pair of occurrences at N, are in

diferet mccsor are eventully-separate. In this came, we continue the forward

scan from ml. If a mzc-arc leaving m, arrives at a mc that is not already colored.
then we have the same cues that we had as we left o and this Is true in g ral as

we scan forward. The new case is that we may encounter a mcc that has already

ban colored.

T simplest and most pleasant cae that arises in an already colored mzc is that

the cohabitation arcs alsg the mzwearc bein scanned connect black with blck and

white with white. In this case, the arc is included in A, and the forward scan-

continues along other paths. A related possibilty is that the scan. arrives bwck atmN

and some of the black or white nodes propagate to lMat uses t r The colons of
them last um are meSged with black or white, as required by the cohabitation arc-

As long as this can happen without an attempt to m black and white, we have

the simple Pleasant case.

Suspmp though, that a black occurrence Is carried by a nmrc-path to a white

occunce at the same node. If thi occurs, we have met a problem alluded to

eaer-the propagation of colon (specifically, blac and white) cannot be done
onsitently. This is called a law, Msi, for a reman we now eplin. Suppose we

seNrate black from white (with a move instruction) an some path leading to the arc
which caused the black-white me Then after split rem ad n gowth of m c%,



we would have a twist, and there would have to be extra moves (exchanges) to resolve

the icnstency. Now, it is conceivable that ail this might be part of an optimal

inonsistency resolultion, but so unliktely that the construction of M excludes the

pamibility. The point is that we can dictate that the occurrences involved in a latent

* twist always cohabit. and still resolve the inconsistency-thus the term "latent".

4 Following previons reasoning to ensure that occurrences in a latent twist cohabit. we

label mn a source, and delet from N all the structure that was added on the scan

forward from mn.

To summitrize the forward scan from n, the effect is either to consistently assign

colors to occunces in every macc reachable on a forward path from m, stopping at

all bwla and all white nizs~ and to include all of this parn of the macc-graph as

* artof A or tolabeln asoure. includenone ofths part ofthe mac-graph in M,

* and to terminate the constuction of M (leaving it with only m, me', and the

connecting arc).

Nf the construction of At is not compdle, the next is to scan backward from any

=w x that ha alredy been Included in . We take a backward step from a mzcc

.ie.,.osie a umac-r entering m. only when the coloting at m can be

consently. M rppe almsg all forard pats After the forward scan from the top
of thusplit (also called mn), all of the nodesIncluded in Mduring the scas well as
the top of the split, enjoy this property.

Letin be a mc:having an ellnarc: hattenters LN. d mhas been colored, the

OnlypoMtys thatt s a mcc that isprt ofasink or isanalwhite orallblack

node at which the forward scan stopped. This bizarre case looks like the following

* * cohbitaiongraph on the right, correspnImn mcc-graph on the left):

Tecase twshave been grwbackpopted occurrencesarrive at asingle
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0MO, so that if back propagation to a sink occurs. it will conec black and white.

This is another version of a latent twist; we cannot propagate color cnsistently. As

we did before we stop the propagation by labeling soenode a source, in this case

in'. This seem peculiar. because in' is also, part of a sink. However, it must be

correAt because it allows us the flexibility of inserting a move instruction between inW

A ~and m, mn and mls, and m, and the sink. each of which is a reasonable place to

remove the split The modification graph looks like tbis

Mie other latent twists, this probably as unlikely to happen in real prorams

The ordinary case is that the occunces of #n' have not already been colored. In

this case, we include in M the mxc Wn and the mzc-arc between it and m. The

q colors at mn propagate -backward, so we get colons at all occurrences of d excpt the
last uson (M at the top of a split) and occurrences that split off~ to some MMOC Other
than in (a new peoeo in the general case). These occurrences are given new

distinct colon As beflore we mgecolor socording to intra-lmmclibtain at

W,. unles this would mreblack and white, in -which ew we make ad a souroe, and
do not contiu a backward scan from It Again a before we do not scan backward

from xe until we scan forward. ThIs forward scan Is much the sme as from the top
of a split. If the scan encounters a latent twist or black and white occurrences that

aoe not eventuallyseparate, then everything adjoined to M since the start of the scan

from meis ecudefrom A and Wn'isla-belda source. A forward can in the

general case can encoune a source node (on th first forward sewn there were no
sources). The rnaon that a node is labeled a source Is that the split should be
removed after that point, because otherwise a merg of black and white is implied.

Thus, If a forward scan from a? encounters a source we also conclude that a? should

be a soure, and a usual, we exclude from M everything that was adjoined since the

rsmot of the forward scs.

In addition to the possibiliy of enoneigsourcs there is another

comlication that we previously did not have to consider. some of the colors may be

Zetrz black nor whIt.. We now review forward propagation, noprtn this

eeba geerality. Suppose a unm does not receive a black-white pair of eventually-

sopoate ocurnces If there are only black or only white occurrences, we have the

%

.............



sam situation a before and take the same, action. Otherwise, ther is a dilemma.

on the one hand, we cannot include the m=xc in if and continue the forward scan

because this part of thie macc-graph would no longer represent places where an
inetdmov instruction would separate black from white. On the other hand if we

merely quit scanning. there is the possibitity that a mgeof colors, made becausie of
a cosuction. elsewhere in if, might cause an eventually-separate black-white pair to
appear in the mwc, in which case we should have propagated forward.

The solution is to continue the forward scan mergingt colors according to
cohaitaionarcs, but no include any of the structure in if. We call this a utaadve

forward scan, and say that we tentatively include part of the mzcc-graph in M. Like
the entire forward scan, it may be necessary to abort a tentative forward scan for
examole, if a latent twist is dissoveed. If the beginnin mrc of a tentative scan has

both a black and a white occurrence, then aborting the tentative scan causes an abort
oa teetr forward scan. Otherwise, a mote benignz approach to the abort may be
taken. When. we were comidering the mue with only black and white the scan

stoaae when a m wa all black or all white. Thus, when aborting a tentative
scan, we Serg together Ai the colons at the beginning macc and elimwinat the
tentative part of if included in the scanm This my cause the macc to become all

white or allblack or all some other color. Themzccwill stillibecomeasoumceif it
is reached an a beckward step since its MMonoebroMMicity would cause a merge of

black and white.

We briefly review what can happen during a tentative forward scan. If a sourc or

a latent twist is encountered, the tentative scan is aborted. If a step Is taken to a
no that receive only one color, then even the tentative scan stops; the mace and

the are to it are not tentatiely In if-no matter what mergeSp of colors occur in the
nstructkin of A, a forward scan would not includ thene in Af and would not

continue from heme Thus, we will maintain the rule that a mnuc tentativeily in M

always has distict colos, just a macc's in if always have black and whte. However,
serses of color later In a tentative scan or eve later in t construction of Af can,

cams this to be violated. Merge at colors must therefore be accomied by a

check on whethe they violate this rule. If so, the macc' tentatively in Mf and arc to

them ar no longer tentatively in if It is a if the tentative scan had never gone
beyond this point An efficient imlmntto of the check on megsand possible
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undoting of the tentative scan is a programmning problem not considered here If a
mxc becomes all black or all white, it is possible that a mzcc leading to it now has a
complete split This possibility most be checked, and a sink added to Mf if it occurs.

It is possible for a forward step in a tentative scan to arrive at a m=c that is
already in ML We mrecolorn along the macec-arc a usual; this may detect a latent
twist aborting the tentative scan. If not, the megsguarantee an eventully-separate

pwato black-wite occurrnes at the mucc from which the forward step was taken,
and in fact at any node on a path from the beginning of the tentative scan. Thus, if
the tentative scan terminates without aborting, we check to see if there is now an
eventually-separate black-white pair. NI so, everything in the tentative scan that has
such pain~ is included in A. The test of M will consist of pieces, each having a root
mzcc with the property that all the colon of a piece appear in the root macc. (if

* none of the tentative scan is included in A. the root macc is the beginning mzcc of
the forward scan.) ecase of the tentative scan. any merg of colors of a root macc
willinot Inadto alatent twirt in the tentative part of Mforward of the root if all

*the colonsaneznersed tobMick or alto wite, that tentative pantof Mwillhreturto
ils unscanned state. Nf some beoewite and some black, then soeof the
tentative part wil be included in M. up to a complet split or to macc's that become

*a o tofunallertentaive puts ofMA

Let ussuppos that we finish a tentative scan from a nmc but that the mac
-: renmins tentatively in A. Then we leave everything tentatvely in A. This means

that another forward scan may find a mzc ettvl in A. If the megs along the
-: arc detect a latent twist the forward scan is aborted (Hf it is a tentative scan, the

tentative part is aborted). Otherwise. the merge are completed. If the forward scan
was in a non-tentative part it may continue. If the forward sca was tentative, it

need not go beyond this point Becaus the tentative'part of M is closed in the

fowr direction a backward ste will nw reach a mmc tentatively in A.

After M bs closed under backward sad (peraps tentative) forward stems we have7
inenlfl completed its OfotfUucto.. It remans to decde what to do withth

- . tmtv parts of A. but this is more naturally considered in the nat section.
Omitting thie complicated detas of forward scan. we now summarira this section by

Lhhn
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Algrithm 8.4 Construct a modification subgraph M

Initialim J1 at a SPlit
Soan forward from the top node of the split
for A 4- some maxc-arc not in M entering a non-source inc in M

nm#.the ed o(A not yet in M

Scan forward fromi m
The occurrences in each macc in M or tentatilvey so are colored. CWl a nonik

-' non-souceP m=c an ftuia m=c. Each interior m=c has occurrences with distinct

colors. An interior non-tentative mxcc has at leas owe black and one white

occurrence. Two occurrences belongig to interv ic mcc's and connected by a

cohaitaionarc (inter-line, or no) have the sam colo.

AfMisuetobe dscused isthe uinumentof combsto the amsofMA Each arc

A of M corresponds to some set of cohabitation acs For arm in a strongy

connected component of A. we use a cost -of infinity, for the reasons outlined in

section 8.1. For other arcs, we mse the minimsum of the costs on the associated

cab Itation arcs, following our usual philosophy of optimism in choosing costs.

Since all the cohabitation ==c correpond to the smer In the flougraph, it is

likely that the cost wil all be the same. This breaks down only when the variables

in a cohabitation clam are asymmetric in some, respect For example in inter-region

copltion, om of the variables may be assumed to be In registers and others not.

The only reamo that two such variables are considered to be cohabiting as the

technque we have been using to resolve an Icnitny

Our construction of Mf systenmaticafly e"ldes one type of coai atio s An

intra-lHe cohabitation arc at any asouce node. During the construction of a kernel

region, suchi arc may be given, very low cost because we have soetrick in mind for

break'ng the arc; thus we rally must inlude this information In AL To do so, we

can add a new souc to M and a new arc leading frm it the the old source wher

the cost on the new atc is that of the lntra4ine coaitton kh old source is then

relabeled as a non-source. In this way, M can be made to reflect the Information

about inexpensive intra-ine cohabitadtoas. (To simplify exposition, this matter was

not mentioned in section 8.1).

As as exampl of the techaniqes of this section, we consie the Construction of a



AD-Ai5i 549 THE DEVELOPMENT OF A PROGRAMMING SUPPORT SYSTEM FOR 212
RPID PROTOTYPING TASKS 2 AND 3(U) SOFTWARE OPTIONS INC

CAMNBRIDGE MR JAN 85 SO-ei-85 Ne8814-82-C-@i73
UNCLASSIFIED F/G 9/2 N

p momomm



W -lW-l7A --"

JL8
130

1111L .6

III.!. 1 11 j1m.4 II 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

I-

4
./ - * . . . . . ° ° - . . 2 : . : . ; i - : : .. - . . . . . . . . . - . . . -; . i . i . . . . - - . - -' . 1 - - - ' ' ' ' ' ; ; 7 : ' ' ' . ' . . 2 i i -" : . . . l . ' .



93

modifiationnsbgraph for the split-removal problem generated by the NP-hardnews4

proof of 8.2. Choosing a split in the mac-graph corresponds to choosing an arc in
the graph that was to be colored. Recall that the nods of this graph correspond to
variables in the split-removal. poblem The conutrution for M will =up the same
color to every occurrne of the am variable, and different colors to occurrences of
different variables. There wil be one other sink besides the initial one, There is no
tentatift part of Mbcas each of th ones leaving the loop corresponds to a
(nom-exact) split where each mzc-arc hu only one occurrnce. After shrinking arcs
with infinite cost (those in the loop), M will have the form

In the previn section, we saw how to cointruct a modification .ibgraph, and
obanan aftmant of colon to It occurrences that is pieserve along cohabitation

mm If the resulting coostroction ho only the calom black and whit, then we have 1

a siuation liw tha of 8.1. even though we did not begin with two variables. We usn
toe txnhnlque of that section to insert move hutriuctimu that remove the splits
betwean black and white. Inserting thes involves modifying the cohabitation
reladom and thus the macc-sets After regrowing =m n%-es there may -stil be
rusnanig split unlike the two variable cmL if so, a new modification subgraph is
constructed, and the pr cess Is repeated. By the remarks made at the beginning of
the previou section, the number of time this pirom can be repeated is limited by
the total sin of al spliM In the original maccgraph, and is expected to be smail

The real pupose of this section is to disus the case in which there are colon
other thon black and white We firs discin the cae where M has no tentative part
we win St il ner ove inewrtioms on a miniomm cut of the modification .abpaph;
all maccr's below this point will be divideid into two macc's-one mac having no
black mcuces, and one having no white occurrences Occurrences with other
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colons will be in one nmec or another. Thus must of course be done so that the

cobahitatioc arm are consistent with the mzcc-ac but there is still some chie for
how to do this Suppose that after insertion of move fmtuctlom, a red occurrenc is

in the am node a a black occurrence. at some in~c. By following cohabitation
a"~ forward and backward, we wil wee that red occuurences nms always be In the
same mmc - a black occurence. Thus, we my view red n being merged into
black. Conversely, we may choos to mapg any non-white occurrence into black or
vice vae.a and obtain a vaid icc-prap after insertion of move istructons

The chieof merging a color with black or with white will clearly lead to
different macc-raph after Insertion of move intruction. One choe is likely to
lead to a eeoptimal oveall solution to split-rmoval than another. How can we
fgur out what to do? We can offer only a heuristic and a plabilt argument
3mft doing o we: obwev that fth costrcton of the mdifcation subpraph

Produce s 0 my distnct colon a pomibl, within the constraint that colors follow
cohabiatinam Once a nimm cut is chosen we an worried only about
cohbiatinsbelow fth cum, and are not contrIned. by any at o colors tha

ocurdbecame of Iohabiaom abov the cut To thve the heuristic marhlmm
fimbiity te ffect of thmmrs is undne perhaps yieldin eve =ere distinct

colons.

We m guided. by fth idea of coloring the eventaliy-espart relation. Assume
* that~* at socoe mmc ach of fth occurrences has a d&Isc color.Moetry

forgetting about them colors, vv different colom to (minimally) color fth eventully-
sqaaerelation on the mmc (Iporin self-loop). Nf the chromatic number is lees

than fth number of nodes then two nodes hav the same color. Rembrn again
fth origin ast of colors we observe that the black and the white ocurene are
aentl-separate (by constructon of ME. and so wil recive different (new) colors
ThIe bai heurist is thS:

f two cimee r, eceive the sam MW Olor, the meget
en wmftMS colon.

Thi wil nevew eg black with white. The plausibility arument for the heuristic
favol. the co -iea1o of what happen after growing macsels in the new
mxwcgrph. Itf t eventually-searate relation is divided into two piece In this way,
then fth sum of the chronmatc number of the pieces wil be eal to the chromati



number of the originaL In other words, the heuristic insures that the number of

cohabitaionclses does not increase. as it might for some other division of the

eventually-separate relation.

it my of course happen that seveal of the occurrences, in a mc already have

the some colo. either becauses of a cohabitation in M or because they were merged

tog&the by the heuristic. We do not renege on making theme colors identical, rather,

we ask whether any further merging is allowed by the eventually-seprate relation

Put differently, foami an induced relation on the original colors at a mzcc, defining

two colors to be eventually-separate if any two occurrences with those respective

colors are eventually-seprate We may color the induced relation with new colors

and SOil appl the same heuristic.

it is necessary to ap*l the heursc at most once on each node. After having

doam so. the induced relation will be a complet graph and will remain so after

subsequenat merges of calcm A complet graph has a chromoatic nube equal to the

nube of nodes; applying d heuristic ste will not Megeay colors. Conversely,
an Induce relation that is mot a compet graph has a chromatic number less tha

the number of modes, so appbying the heuristic will caus a megeo colors.

After the huIsti is applied at each node. we know that the induced relation is a

complete graph everywhere but there is still the possibffity that there are non-white,

mom-blak colmuh How should these be megdwith black and white? ft is difficult
to formulate a further rule on the baob of what is seen in M. partly because: a
complet graph is symomet on the node set. Experience may suggest further

* ~heuristics but smallness of nm-me Indicates that the praooe heurist resuit in
only two colos in almost every practica case. A frst mlmnaincan choethe
remaining ere arbiftrarily.

EWe now torntotepblem of decldlngwhat todo wth tetentaiveportsof M.

We we eactly the same idea of finding a minimal. colorin and using It to induce

meres.Given a root mc It would seem reasonable to choea Mc leang
edkatsl to a root mm as a place to start As before this is only a heuristic, and

* ~~is no guarnte to eliminate all the tentative prt of A. Romaining hie can be
made arbtar.



It *8 Itesin g tply thsheuristic to the split-removal problem generated by

NP-hardnes proof of aection 8.2. The eventually-sepante relation for nodes in the

loop will be the graph that was to be colored. The modification ub-graph Wil amgn

the ditinct colors to each node. amoag them black and white; the heurisic will

rethe colons of occoren that are colored t1he smem Rearess of how we

group the merged colons with black and white. we get two graphs, the sum of whose

chromtict numbers equak the oriinal The split-rmvaa that remin after the first

splt-emoalwill cai to obey an optimal coloring of the split-removal problem.

Thw6 the heuristic optimaly solves the original split-removal problem. assuming that

we ca minimally color a Sraph.
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9. Untwisting

9. Two Vadlab Uatwiihag
We saw in the previons chapte how to remove Vspua Nf there is any remining

lnaonsimcy. we know by Theorem 7.5 that twist account for it The smls

mupl is the conditional eachang that we discussed earlier. In this section. we wil

cosier the problem of optimally untwisting a mzcc-paph with a*l two variables

involved. Let as use 5P to denote the subgraph of H. induced by the subset of nodes

that have exactlym oc(a -Inor 2in this section). Them willbeacs from li.2to

H. (these are in neither subgraph), but because there are no splits, there wil be no

ano from B~ to BHf. By definition. a twist has an associated simple undirected cycle.

We first concern ourseves with the cue in which the cycle is in B.2. As we shal se

these are the lncltmlsthat are resolved by exchanges. Our approach is to fGms

Band myetaezhang sthawlwork -these wMlbe zlaced on amsofHaso we

need merel Idntfy the subset of arcs This is done by fizing the ordering of the

pair of umcc-ets an som node of No, propapdinS this ordering, and making arcs

wie trouble c c -s A bit m formlly, one can use the folowing

dep 4kkWtch &*optb

Mugortthin 9.1 Order nm-et M1.M2 on node N
Mark node Nas "we
Ora At, beofor m Al2 on N
fw A 4- each B.arc evingNI

N' -. the other end at N
M11 4-node free traveringmnwccfrom MIalong Am 1I and 2
Nf N' issen

Nf All* is after J12' an N' them mark A

Order nwc-ets J11. Mjf on node N'
Is subroutine Is used I&-

Ausrftbu 9.2 Ifar exhange arcs
Initialize nodes- of 2 a not see nor as not nurke
for N * each node of Bol

ItN Nis not seen
l., Mf2 I- the two Uwe-aft for N

Order nm-eu Al1, M2 on N
As we hinted earlier, the point of this is:
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Therm 9.1 If exchaing instructions are Placed on the arc marked by the above

algorithm the cycles for any remauing twists go through nodes in i4.
Prod We observe first that if the above algorithm marks no arcs, there is no twist in

Hez. in this situation, a macc-path never goes from the first macc on one node to a

second macc on the nut thus it can never return to a different m=c on the sm

node.

NeA, we emne the effect of plad"n an ezchang on a marked arc of the

mmxc-graph. An exchang instruction requires four occurrences in order to be

properly represented by the cohabitation relation: two last uses (one for each

variable) and two genetations (one for each variable). Each last use is required to

cohabit wit the generation of the other name-this is the semaintc of exchmane. In

the before and after pictures below, the exchange instruction involves occurrences

4 with subscripts 3 and 4:

(VI) ( WI) IV 1) a (U41)

(V3)i (W3)

I w ith (W2)l 4 (Y2)

and by the earlie remark, no twist wil lie entirely inB0.ftetemdfe mc-rpn rsof0 ilb akd

We consider twists that do not lie entirely in 1,2 tismosible for a twist to lie

entirely In Hobecause there awe not distinct maccls at any node, by definition of Be'.

Any twist ths Crosses the boundary from B.2 to 11.1 with the HIarc in that direction.

Sinc to algorithm for growing a mmoc-et ha been applied, the only way that the

number of macc'scan decrease is If one of them dies (ILa. all the occurrences in the

mn die). Reame there is only one macc-arc along this arc of No and either it

leaves from the first ma cc the 0*node, in which case we call it a type-i arc, or

-4from the second mwc, wher It is a tyWe2 arc. This partition the boundary arc

betw ad11* an



The idea, for identifying the remaining twists is to propagate the type from a
boundary arc along forward patmu. (theme necessarily reman in H.)1 mkna
where this cannot be done conistenitly. Fist we jweset th dep)h imarin arc

then the initiator.

AloISWIM 9.3 Propagae type I along A
N*- node Pointed toby A
Vf Nba a type

Nf thetyIe of NIa not I the. Mark A

Mdake N by type I
for A' 4- each arc leaving N

?ropgattype /along A
Algorlthm 9.4 Mark nmv arcs

Initfalize nodes of H.'tohave notype
4for N *.ech node ofHB0

for A +.-each boundary arc leaving N
14- thetVPeofA
Pr mg ame type i long A

The nam of the lsar algortthm anticipates the following result

Thoorar 9.2 If nm lestatim are inered an the arcs fmarked by the above
algorithm thee are no twist through nodes of H1

Proof As with the previous reant we first not tha if the algritm mak no acs.
there is no twist; any nm-path from BR2 into He and back stys on the sune type of
nn= (first or seod.Thn, we look at the efect of a move instruction on the

41

IV2 1 (Y ) 
1Inade te arc inis e actvely remvd so there is not the possibility ofi

The algorithm and theorms ofa this mction have shown. how to remove twists by
th Insrt at exchanesm and movs So far, we have paid no attention to how, to

dth pftWIly. In order to pumu thi quesion we will invstigate fth family of
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all possible insertions of exchange and move that wil resolve thconitny we

* ~begin by looking at a loca chang in the insertion of exchanges and moes Their

are two baki observatons. The first is that a node of H. can be completely

m roned by ezchang without changming the correctfeussof fth propran

The code of node N will find V and LI stored in opposit places, in the two cues but

aslogathis is adtis e that theleftide is co leciif and onlyf theidt

Mdeis. Althouathtis pctres draw wth node and arcs of A.2in aind it is

acUaiy c - ffbommeofThe arcsame boundar m r(7irf Nis in 1.1anldthe azvs

are boundary arcs an He~ am We make the onention that the exchang mwap the

contents of the two memocy locations coresonin to the two mcos and optimize

the excbang to a move when It appears on a non-4aib.

The second basic observation is even simpWe to understand: two consecutive

exchang reuc to nothlna Two mome along a non-He-ac also canceL No

-itue are necessory to ilustrale tis.

We c cambn fth two observations into a sIngle opertatin Recall that the

algorithm marked certain arcs upon which either exchanges or moves are inserted,

depending on znmbelp in Rll. Pick a node N. Suppose we increase the number

of mrk on each node by one (following the first observation). and take all marks

off of a doubly markd arc (following the second observtion). Thi amountis to

complmdngthe mark on the arcs incident to, A and leame us with a miarking

that wil resolve the lnotny(once ehange and move are Inserted). Further,

this operation, compltely dirgarI direction'in B. leading us to the following

nomeclaure(analogous to that for Petrina).

Dafimitlm An uadlrwid mmWk~ pqhr is an undireted graph, together with a

. . .. . . . . . . . . . . .
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function fro te rc to (0.1) (th IuarWgin T0 ntre a -oei oCmlm h

value of the function an arc touciing it 03

ThOsre 9.3 Given a split-fre u-parttion H, an underlying mzcc-grap, and a

marking of the nom by the above algorithms of this section. Any Other maring of

the no wllrinove the spltif and only if itcan be obtained from theflMOtby

Biring some seqimos of nodes.

Pref We have seen above that any sequence of firings leads to a marking which will

remove the twists Conversely, for any marking and undirected Cycle in H. let the

ywfty of the cycle be the parity of the number of marks along arcs in the cycle. We

claim that for any fized. cycle. the parity of markings that remove a twist is the

sam-4t is oneif the cycle gives rise to a twist~ and zer otherwise. Thus. the parity

of the su of two such marking is zero. Since this holds for every cycle, we can

two-color the nodes of Ho so that nodes connected by an arc with no mark from

efthe marking. or marks from each are the same color. while node connected by

ares with pecisely one kind of arc are different colors.

Now. start with one of the markinim, and fire All the nodes of a Sime color. The

order is irrelevnt arcs with no marks or both marks stay the same, while amc with

precisely one kind of mark reeiv the other kind of mak. Hence any marking that

removes twists can be reched by firing nodes, starting with any other such marking.

Given a frequency on an arc, we can calculate how much it woul cost to place an

=one there (see section 2.4). This define; the cmr of an arc of B. Starting with

th cost we have the furthe

DefImItle Given an undirected marked graph with cosw on its edges, the cost of a

mwdwg is the sum of the coot of markd edguL Given a marking. a minmal

qaphda m~wg is one that can be reached from the original marking by firing

sodaesoad hu cost no growter than any other such marking.

The net section willg nle the problema of finding a mnalequtivalent marking.

We ibmrlstis section by
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Algorith .5 Optialy rmove twist
Mark exchane arcs of Hs
Mark mov arm Of He Maki

VieingH. s amarked undirected graph find a iniml equivalentmakn
hjert exchanm and mvesacording totemnmlmarking

~. IailgcdMxrka GrqPu
In the previos section we reduced the problem of optimal untwisting in the two

variable cue to an optimztion problem on undirected marked graphs. In this

section, we show that this Problem is NP-hard in generl but that the problem

wdng in practice r lkly to be easily solved. We begin with a simuple observation

used in both the negative and positive resul

Lam 9.1Let 'abe a undirected marked grah with a set of nodes 3.Let F be

any set of nodle. Then firing Frend firing IN F Flead to the smie marking.

pW IUemarking OUnanarcchneOnly when weof i% eOdsis inthe fiing set

andameisnot. Thispropertis invariant when Iris replaced byflAF

The peao of the NP-hardnes resut is by reduction frCom 3-colorability ([3D. The

lemm below coAMiu the gadget that will be use for each of the nodes of the

graph to be 3-colored.

L m9.2 Coesde the -tetrahedral" udirecte marked graPIX

kumuM that the center node does not fir. T'hen a nialW equivalent marking can

be obtane by firing SPY pai 'Of Other nodsMand only by firing a Pair.
Frost S=nc the graph is symetrc an the outer three nodes when we conside the

hunm node dsigied(nrd)wejut iftves g what happeo when fing 0, L,

2, or 3 nods The picture for 0 fired nodes I unchane rmteaoe h
q ~othe three pic-ture are:
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on node fire two nodes fired. three noe fread

Te middle picture has a cost of two, the others either three or six.

Nezt. we cosid the pdget that will be used for each of the arcs in the graph to be

3..olored

L ma 9.3 In the undirected marked graph below, assume that a pair of nodes on

the left fire, and a pair of nodes on the right fire. Subject to this condition, a
minimal equivalent markin is obtained only if the fired pais do not corespond

~~~oInmtaily. -

- 0

Proof By symmetry, there ar essentlaly only two es when the fired pairs

con-oPo d and when they do not.

. - - ° = fired

evm with ,,,or e~b ,, a ft am ..
€ l~red Ohvm a $rsph to be l-ooal, form a nodie dl for each of ifs nodes, as in

• - ~~lemmm 92, an dsharing a common centra no&e- Label the othu th1ree nodes with"..-

., red. bhme and yano. Wher nodes me adjacwt in fth Sapmh to be 3 :.:.:.:;
coanet the reIrd, blueblme a"d yellow-yellow pairs of the c asponding node"

e l~~~pep with the me 8adpt of Lemma 9.3. .-

, ~~B Lemm 9.1, we may smom that the com central node of the node gadges u-:

...

• .' _. _ _. • _ _._"* \.' ". " "' ''. ", . , ,N '.
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does nt fre. We wish to arrange weights so that in a,,y nunf' equivalent

markiinst a par of nodes in eah.node gadget will fire. Thus, we make the cost of
ams of node pd-u high cove to the cost arm of the are gagt (re-red...)

(red-re, ...-

Speciically. if there are a arcs in th graph to be 3-colored, let the cost of a node ,

gadtarc be 3+1. and the cost of the other am be I. Suppose that there are v

noe ntheograph to be 3-coloed ByLemma 9.2, the costof the marks in node

gadget am alone will be 2-(3a+1), and this will be abieved only when a pair from

node pdpgLt By changin the ruing on that node gadget alone, we can reduce the

cost by 3w+I, and at wort, increase the cost on arc gadget ar by 3., a net

reduction of at lent one. in short, the cost of a minimal equivalent marking.

restuicted to node gadget arm, is fixed at 2v-(3+l). and we worry about the "excess

cost', which is between a and 3a.

Suppose we find a minimal equivalent marking. This chooses a pair of colors from

each node gadget mix thin color together, and assign this color to the graph to be

3-colored, ie.. red and blue yiek purple, etc Nf the-exce. cost is exactly a, then by

Iem 9.3, the graph to be 3-colored has been successfully 3-colored. On the other

band, if the original graph can be 3-colrd say with oriange, green, and purple, the

color may be put thsough a pria to obtain ried pain on the node gadgets, with a
total ezem cost of exactly a. Thus, the original graph is 3-colorable if and only if

the inwima equivalent marking in the derived graph ha cost 2-(3m+1)+4. This

pov that findin a minimal equMaent marking is NP-haid.

It remins to be shown that we can make the construction using uniform weights.

The point a that we can replc each node gadget arc with 3a+1 (marked) arcs, and

obtain precisely the sme behavior and still have an undirected marked graph whose

size is polynomial in the size of the graph to be 3-colored.

Observe that in the coaxtruction used to prove NP-hadnes every single arc Is

marked. RecalIng the construction of the undirected marked graphs, used in

lntwlst (section 9.1), it se likely that coa rivly few arcs will be marked.

The rest of this section concerns a technique that works well with few marked arcs.

We begin with a result that allows us to decompose the problem to a certain extent
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Theerms 9.5 Let G be an undirectedl marked graph. Th coto a mninimal

equivalent marking is equal to the sum of the costs of iniiffl equivalent markings of

the biconnected compoaents.

Prf We use inductIon on the number of articulation points. N there are no

articulation points. either G is biconnected. in which case the result is a tautology, or

else G comnisls of a single we touching two nodes. Nf this arcis not marked, itis in

own mbinma equivalent morking if it is marked, fire one of the nodes to get an

-pvln marking with cost zero and therefore minmawl This prove the result

when the number of articulation points is asro.

Assme 6 has an articulation point n. Then G is the union of some number of

subgraphs 6 1,6jb whose psirwise, interseion consists only of the node x. Each G1

will have fewer articulation points than G, so we may ap*l -the result inductively to

each of these. Let, be thefringuets for each oftheathat achieve a wfniml

equivalen marking. By the Lemm 9. 1. we may asum that F, does not contain the

node & This prove that the sum of the costs of inimal equivalent markings is

greater than or equa to the cost of a inind equivalent marking of G. On the other

hand. let P be a firing set that achieves minimal cost for G. Restricted toG,. P leads

to an equivalent marking for &, so the cost of a nnild equivalent marking for 6 is

grete than an equal to the owmn of the emut of minimal equivalent marking. -. 1

Equalt Is establised.

Since biconnectedl rcRmponents can be computed in linear time (see [3.this is a

useful reduction. In fact. this can be dome at the sum time that the arc are markd

(se t.) becus both are depthb-first-search. algortm.

As we -shall see, the techniques of flows in networks are usefu in looking for a

minimal equivalent marking. The classic reference is [It we intoduce some

Dsflutm Let Fbe asubset ofthe nodes ofG. The heuadryof P. denotedSF. is
the setof arc*swthwe ed in Fad thother nR-F Acut is aset ofanosthat -

is the boundary at some set at nodes.

In network flow theory, numbers aingaed to arc are called capacit. because of the
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origina application of the theory. In the present context they are Costs, and we wil

continue to call them that We shall also extend the meaning of the tertn-

Deflatle. The cost of a set of arc (typically a cut). is the sum of the oosts of its

elements. Given amarked grap 0. the cs of aset of nod F is the costof the set

of wkal Arm after IFis fired

The fWowing result is the connection to network flows.

Thewe. 9.6 Let 6 be an undirected marked. graph and N the subgraph subtended,

by unmaked acs Let F be a firing set achieving a miwnimal arkinst For every

marked me in 6.label an end as either asource or asnk. accoding to whether the

endpont isor isnot in F. Let Cbe amninium cut f bet. esources and sinks,
and et Sbe the set of arcs inident upon tw wsorm or two sinks, Then

cost(F) -costS) + Cost(C)

ProdfLet C be acut set.ndletANbeaset of nodesuch tat a=C(withoutous
of generality r will coatain all of the s orceu and noe of the sinks). Fire all the

node of F. Thia will remve all marks on arc Incident upon a source and a sink,
and will ptmarks only on the amc inC Thus

oost(F i cmu(F') - cost(S) + cost(C)
The inequality is by the minimalfty of ost().

Caiversely. given A let C'- aSA so that any path in H fromn a source to a sink

mot hdcu& eauweof Co. Fiig Fadds marksonly to amcof C. Thus

cost(S) + 00590C9 ~cowst) + cost(c') = cost(F)
The inequait is by minimality of cost(C), and the result follows.

03

A nmimal equivalent umking con trivilly be found in time exponential in the

number of nodes of 6 Deame of network flow theory, mnimum cuts can be found
in polynomial tim, so the abowe result men that we can find a minimal equivalent

nmag in time etposneal in the number of marked arc of 6. In practice, this is
Probably good enough, since this numbor is most likely one or two. A number of
heurisdc can be devised, bond on consecutive applicatiom of max-flow-min-cut One
of the simplest is the following, which uses a greedy approach to orienting marked

arcs



Algoritim 9A6 AppxoaMato muazinal equivAlemt Marking '4

AUl marked arc are intially unorimnted.
few A . marked arc In order of decamin cost

choos an orientation for A to minimie min-cut
ff cost of min4 < cast of oriented amc

uwe cut to achieve lower cost marking
-tthe slgorithm

93 Psrafdou Iabsh Graph
We have coasdered the problem of untwisting when there are only two variables,

The uechnque actually appy to the more general case in which each node of He has
at mast two mace's Tis& and the nex section consider the cue in which a node of
So has any number of mozeft (We always asnine tha splits have been removed
from H.) We know that the two vuriable case is hard (Theorem 9.4), so the general

cas most rely an heuristics as well However. the added difficulties of this cue do
not pre-ean t any real dMNscOrgmentI not because they wemay to handle, but

becme of what =0 be thei grea rarity. The casaditional exchang is a reasonabl
n*atra ezMp of how a twist can arise from a real proamL I know ot no similarly
nUral:0m81 e inoving three or more varibhn. The bat eamp)L I can devise is a
sort prpmthat worksaon three scalar variables, writm so that a value is not move

untfil Its IprecPIse point in the ordering is known. Such a program would present
thre-vrialetwisting why =ane would write such a programn b not clear.

Neyrthlea for compleews we consier generaloutwbstn& Recall the
nottion J: denoting the uubpaph of He induced by nodes having eactly x maccs. 4 

-

In thissection we will a e thatilu:Ire. . emeynode of Ho has excly n
Wacs hs retriction is remove in the next section. The first task is to order

maw-e on codes of Be and to make this ordering obey Iohabtad--- along arc of
H. as far a pomsible. When this becssme impossbles in the two-varible case, we
marked the amc Mm, the mark not carry am informatoa to speelfy It aetldy is
Io giv the perutaion on n eleena which corresponds to the nap Induced by the

coaMtto arcs along the arc of Ha, Fromn this point of view. the unmarked arc of
the two variable cuse are lbeled with the identity -latoo. the marked aro are

give the only other pernmulaion on two elements, namely a tranmposdIion To make
thi explicit in several variables conside an algritm like 9.1, and let s look, at
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what might happen along an arc to an already see node. L. one at wich the

ordering of mzoc sets is fixed. For x =3, there are ementially two casws

from lft to rightswe haete rmu ntaitiom (2 3) and (1 3 -eeec rdc

hu ony onenon-trivW aleIntepoitocylstmeain hedniy

natue o nowith this entto Wewlexlithfatttifheclsar

dbjojjtnt yP-m~-- iunique uptoodrn in the product and cci

Xf I uimin each cle 21Theorem5.1)

In the two variable am we observed that a node could be comspletely surrounded

by ebmges, and the code of the node adjusted to Prserve the correctnes of the

proom. In the prj en context, this observation mus be made in ter of

Sormatiare Rather than meely "'firea, node, we are able to iv-fire a node. where

r is a permutation (indice denot vaiables not occurrences):

Inw ewe fallow the permutation r with the permutation r. On entering

thenoe. hevarabetatused tobein position Iwill now be fudi ositionr(o;

bfmTo imm correctmam after leaving the node. the effet ofr mst be undone,

La.L. We must apply 10. followed by e. The affect of going through both arc is

(u~il~~vev) - o jost u before In fth cume at multipl input acs we mus

treat each one as above; similarly for outpt ama The notion of -r-firing leads to the

boki deftion of this section.

Defillie A Pem ewmIId-p is

-a direced graph 0. and permoutation group S1.
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-alabeling for the amcof Gdrawn froMS, and

-a function. that givea the cost of labeling a given arc with. a ve

T-hi M ,sdam/ phdui~n 1a411q Feb/ is to chos for each node N of G a

peI Notiton rtp much that fth set of firing (vr mniia the -m of the coso of

the resulting labels on ares of G.

13
JIuorder to make any pyopem at all an this problem we must make some restrictions

on the nature of the cost function. These are based on the following group-theoretic

notion. -

Ddbfim. Given we Sr the alpawvr of w is obtained by expressing u a the productj

of disJoint cycles and foming th multfset: of the lengths of the cycles.

Thus, the signature of (13 32) is (3), while that of (I 4X2 3) is (2.2). We All make a

r~ass~ car wimpl that the cost of a permutation on any Sime arc depends

only on its sIgnature tha =saier signatures (in the sense of cotimn)have lor
mtL and tha len. cycles have lower cost We are then able to explit

gFtheOMMOIS reaft

L a 9.4 The signature of an lentof S. is invariant uerconjugation and

inversUlL In pertcuila. signature(W * ) -sIgnatre(..) for any .. eSi '

Proof For conjugation, wee [21 Theorems 5.4.1; the result for inversion is clear by

imspetion. For canuttuly 1 0(wer).r feie.

Suppoase we are given a graph whose arcs are labeled by permtatioms represen -ted I

products of disjoint cycles, thereby giving the graph a certain cost We ask frst

whem fth cost can be reduced by ickin a tra, oto m; and efte v-firing a

node., or leaving ft unie.We show tha this problem reduces, exactly to the

andecie! marked graph poblem considered previously. regardless of how
complicated perMatloms on the a are

The undirected nk graph that we contouc has exactly the .mie graph structure

* the one with which we started. except that the arc are considered undirected.

Mae problem is choosing the Costs. Cosdran arc with permutation w. Nf we -fire,
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one end of the arc, we get the permutation r e , while if we v-fre the other end of

the arc, we get werv1. Since r is a trasposition vr- = r and by Lema 9.4,

costrv4e) -coste ev). Thus if we fire one end of the amc we get the same

difference In cot no matte which end we fire. Further, if we fire both ends of the

are, we get the permutation t-ev 1, whose cost is unchaond from that of v. again

by L== 9.4. Thus. in the undirected marked graph the weight at this arc is

O=Ks*) - cost~uwv)X If cost (4) > cost (erv), we mark the arc, so firing one end

cmsa reduction in cost; otherwise, we leave themar unmarked, so a single firing

PINse an increase.

It is natural to want to limit the number of v's that can be considered.

Imprvanit can occr only if cost (rev) < coste) for at least one v. This will

hold by the reasonabl cost assumption If r is among the disjoint cycles of w. More

Smneraly.t hos ifte ele..not vmeadcmt In somecyleof v. TI& s

because aborier cycles bane lower cot an&

Nf v dos not involve the elements of v. then clearly oost( -r) > oostKv). becuse the

former signature Is lawe. The equivocal. cases arise beca of the following identity

(asue. b , mre dijoint from &2 l--

By considering the m sqecsnecessary to Imsplement the permutations, we

cost((1aq, b,2 q2 -bV))< cost((1a - )(2 zb2)). usull.

The onl place this might fail is if the macine hu an ezehage Instructio nI which

case we might have, for eamuie,

In any case. once the structure at toe machine is know., it is, possible to eliminate a

larg numaber of potential v's at the outet We also obsesr that seeal v's my Sive

rise Io the same undirected marked graph problem, for exmple, all those appearing
as potential cost reducers at only one arc.

As a first level heuristi to minimizing the cost we would pooe~mzto
4with resipect to all trnpt on'd vran describe above. Although this technique is

poaby powrful enough to handle all the problm tha don't aruse in practice



anyway, there are some further observations that are simply too intriguing to be
emitted fm this discussion These are motivated by the following worry. Suppose
that the algorithm for endering uxoc-sets labels only one am with a non-trivial

perinta~,but jut happens to put it in the wron place. Can't we use some sml
* tchnique, Mie the network flow analysis of the previous section to find the right

place?

Owr approach is based an the following resmlt It shows that while we annot
amsde s to be undirected in the general case, we have great freedom inrveW n

ther direction.

Lem 9.3 Given a pemutatio-labeled graph, revese one of its amcs and replace
the label on the usc by the invre of the original label. The inmlequivalent
labeling proble has the sam solution for each graph.
Proof Lookat the toesed. amInthe orglnalgraph. let v be the label on theuar
fromN, to N2. In the modlfld graph,.t will bea label anthewe fro N2 to N.
Now. r-fire N, in each graph. In the firt the label becomes wor~ while in the
second, the label becamme ,.V. Sincethese labebsarei enves~ ther costsausequal
by Lanma 9.4. Simila remaks apply to N2.

The nePreion of reversing an arn in the flowgraph, or eve the macc-grah
derived from it. is diffIcult to cnepae

7hi hammam st that for r not necessarly a tasstin w may reduce the
problem ato idn a subset of v-firings that minimala the cost not to an undirected
mm*ke graph, but to a hrlstc that strongly rsmbles th we used for undirected
marked graphs (Algorithm 9.6). We replc each directed labeled us of the origina
graph with a twocycle of directed arcs, each weighted with the extra- exeset
-firn the node at entry to the arc. A negative ontr e s I nterpeted as a

all~

Cost~reff) - OWs~) cowt(Urt 1) - c05t(U)

7UeIdabof thebmulrstmay beunnladfollows. Let ifbe the set of anlof
the arme In the tranformed graph that have native weight and let MO be any subset
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,." oIM.

AlprtI. 9.7 Txy for reduced labeling with MO

Label as a soure each node N such that
N isan nan, node for some arc in Mo. and
N " no exlt node for any rc in J16

LA ab k by the dal rule.
Rame all arcs in A from the Iramfarmed grph
Find a min cut

Let F be the set of nodesinh that aF is the mi-cut and such that F coutdin the

sourom Then r-f rn the elements of F will reduce the coast of the labeling by at

low

!castei. - cost (OP)
Any ezft reduction coe because an ac with negative weight wa in the cut, but

not in The etwwk flow algorithm is able to take Into account the different

* cam invled in Ofi different ends of an arc. given an cial of orientation.

In Algoithm 9A, the diffemt odrentsim was t d pasrt of the heuristic. ere
each entea of it siso len on withlt. if M us too many elements to try

-- o"I

for A each element of J

U_:: So ====d we Av , o A
now" dam from GMfo

Tky fr rehduce = wit neio
al this eics the f hostA) 4- WWU(4

Coadder the effect of this alprithi when r is a tra i oa. Then the pairs of

oposine arm will ha the sme weight. f uch arcs awe ne Io each other after M

is mp, the above aliporithmn is mly th some us Aloitm 9.6. As befoe, other

0 heurist miht be proposed; we end owr discusion her.

9 Coso lAb Gspis
There is e final topl yet to be discussed. We have dcAered only the coe

R = . whee permtaio ae atural labels an the am When taversing a

boudary awe from BCto B.? whase x> fik a pernuttlon is no buMg the natural

0 . . . . , . . . . , . . . . . - . .. . . - . . • . . . - - . - , ' , , , . -= ' , , . - . - , .
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label. For ezample from H. to H.. we mogt have (hallow nod are unused

vuaibes):

Even when taversing to a yet unseen node, it is not quite right to view this as an

.dentity permutatMion an three eemena because what happens to 2 and 3is '.

unmorta We could try to model this with some sort of mbet selection. but it is I
technicaly moe convenient to handle it group-tbeoutlcally. using the idea of coets.

We will ranlte "what happens to 2 and 3 is u oa to "the coset consistin

of the kefity followed by (multiplied on the left by) S ". where S denotes the

subroup of S that has all the permutions of 2 and 3. Let be the identity

elemnt of S. The co

S eA 196sIESP, 31
In this ceM n in all ceam when propagatng to an unsen node, the coet is actually

a .ihpoup of S became the peusatli generating it my be taken to be the

Identiy.

To my all thlb In oper em erafl we not reiew the notion of type that we

Inuoduced for the x -2 ce (an Agptm 9.3). There we labeled nodes of H! AS

type I or type 2. Ing el. we m labelnodes i l with a b, o in"tegeus-

For ue In cot acosution it is convenient from the suiet to specf the variables

the g e ta w type of anode In A will be a sbsetof *.-m PIPment
In the two nvesble me, type 1 we ow I ew as type2 Asatechnical

canvenence, we can view the type of a node of No' as #, wit this convenlion. the
saon will con of sngle deamnts, and this section reduces to the previous

section.We will continue to write a permuation on the a, ad constmct the coset

I U

* s,1.r.s o sS,teS1:
(Ilicily) (implicitly)

A graph labeled and interpreted like the above is a cm IdWia jqh. To complete

dt defniion we m review firing a node and how to obtain a cost from a

SIN.
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Supose we r-fire the node labeled ii above First, realize that this changes the -

type of the node fnau t, to vQ1) A I ri I ie t, ). This is clear from the original

iaram far r-firing on Pge 108. Once this is done. we my replace r by rv- 1 and

rby r or, Just as before To see why, compae the producs from going throuigh

both am

To show identity we need show only that S, =,ro,,)r which is inmmdite. In

summaly. to v-fire a node, we usm the same rule for comewersettv as we had

before and permute the type by v.

in Bwe were able to relate the cost of a permoutation to its canonical

repruentabons a product of disjoint cycles. This was a realistic reflection of the

impittbonof a permu tation and was convenient grop-theoreicll. When the

types are nan-nulL we nms pik a canonical form for coamets S,2.eS, and make
m- this caonical. form rdlects the Implementation. What freedomn is there in

pickig another .1 The Mast genera atutbo coom from looking at two (disjoint)
cycles of 4, each having distinct eemns Ili, e s, and hME e t. Write these cycles

beinings with the emntOf 12-

Cmopsig an the left by (I2 JVeSI2 am9 an the right by (11 J1)e S1 gives another

permutation P with Sep 't, equal to the original comt. T"his operation leaves the

ow cycles of w unchanged, and ha the following effect on the, above cyclem

(12 &2 .-. b2 /I el -- d1X(Jz e2 .-. d2 A q, .- b1)

A variant of this occrsm if we have a common element Jin t:2fl. as if J1 =j and

d, el cis nulk

Q2z .(12 &2~., b2 1 1 &1. b1)Q e. &)(/Q1 .b (1 &1 b2 11 e - dja . b1)
Theptrto notce bmeis that what isan the way frm 2to 1 or J2to Jis
unchanged; what is on the way from 1 to 12 or J, to J2 atJtoJ is inechanebe

There are several ways to turn this observation into a canonical form We chos to

reodthe tz-to-t1 information in the syntaxz (12 - b2 iiI' ad the tl-to-t2

infomation afmi le, .-. b1). Cal these left aind right Alf -qelcL The foving

rmtis the assence of why half-cycles give rdo to a unique repreentation of comets.
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Let ~ f .'()~t:,then pQ') = (I; otherw pQJ)EG: 2 also. Similary. let j12.

iu-(oo g1. then p( q(Ootherwise p,'(oe 11 als.m17

Fleet Supp oseilf and w(l) t. Any eemt of S2,eS, takes I to d(I). Hence,

so nt every eleom of S1o-i.Since elements df S,, do not fafct , emey

ea iof Seopmust take te). Assm pQ#ei 2. Then any eleent of S,, wil

take o(O to anowdw elra n t2. La. not t (O Q. rantradicion Thu we must hafe

POO hand PQ) b muffendbyay ekmtof S.. Hence #) (). V w(Oe ,.
revawe the roles of a and P. and arsue by contradiction The second resut has the

am prof

we shaidfn a ( 1.1)-eprementtfve for S,*o, by looking at the cycles of .

Itb conveientto iew coycles a anon the cyces ofw. tbt is. ff( A.ithen

QI) is a cycle of w. Ile (i1.i2)-representatlve wil cons~s of cycles and baff-cydus At

ach sbpo in the coatum in we shai show tha the 1representation is independent

oftheCh of w. Aaalep Itis convenent tadJst.'sothatlts cycles do

ant ha', upetltim of elem=Ut In tj at12

Laa 9.7 Given fi. t2 irnsabove We aen fnd p such tha ,..,

SslopoS, and such that emey cycle ofp has n mre than one elemnt of f, and no

m re0than One elenunt of Aj.
Pfref Laductiely it is suffcent to canddr one cycle at a te. If a cycle his. say,

elments I and 2, both in t2, cmoeon the left by (I 2)eSs2. TIs leave the

co- ndunc a nd~ cots te cyce

Cconpodng an fth d&gh ha sh ilafflect

Henceforth, we wil mum that reoeetatives for a comet metthe condition for 0

in thi bm. A futher dmpllfn effect b, provde by the follwing rmalt

Lam 9. Let 120 '2-fl and PpoU w(Vz Ir Then

Thee is a symmetric resut for /16 t2-iz*

Free The rleslt follow frm

ow.r (Wes, *we
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This as becauset leaves i. fiind (by assumption) and Stj leaves '2 fid 012 '1)' Thle

symmetric result has a symmetric proof.

Suppose there is some /2e 12-11 with W(I2) 1 2- We claim that this condition will hold

for any choic of v meeting the condition of Lmma 9.7. Let P be another such

Cho B Ty =ma 9-6- 002z) 0 f2. but since elemente of f2cno ereetdi
cyce of powe mothave pI) =I 2 . Ths we areab"eto deflnethe

(i:1 2)repreentative for S.wS to be the (, 1:-Pz))-reprsentative for S,,ogesI

Where o' is the restrictioin Of 9 to 1. .... ... x4 Inductively. this yields a canonical

repesettve (the bes for the induction will appear later). We may apply a similar

reduction for Ile t1-12 when Ar('1) =l

Letas consider acyde of vthat has no elemezltof I,. Nfthe cycle has an element

of 12, le I be that elemient; otherwise pick I arbitrarily from the elements of the

cycle. The cycle may be written in the form (I wuG) w2(0.) Let p have the sam

cowe a . By Lmnsn 9.6 we will have P1Q) w 1(j) for I < the length of the cycle.

By the sam remlt, 0 applied to the last emntwill be in t2 if ie t2, and will equal I

otherwise. Since we can adjust # by Lemm 9.7 so that it does not have distinct --

element of 12, we wee that p will take the last element to I in all case.L In other

wons the cycle contain I Is independent of the c Oic f VNIpresentative. Now, let

o' be the permutation of (I. -, xj-f, wQ). .. )obtained by removing the cycle from

a. We claim that S,t-0 S, is indepnent of the chieof w. To see this. letp

be anothe rpstaie and form p'in the sam way. Denote the cycle by r-'

- Sfz..SI (by asumpion)

*~ ~ Sp2 O'7., = S, ' S,~ (by def. of o', #I

* 0U'5, 1 -(compose on right by 7-1)

* S,2,.e*'S11 -W 0 Sti' (Lemma 9.8)

wede fth (f:1 2)represetative of S12ue, so beS1

(y) u the, (:1. 2-44)rerentativC of t-4s*Sj

Since both pieces of this definition do no depend upon the choc of v (the latter
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inductively). the definition iaelf does not depend upon the choic of .

More briefly. we conside a cycle e that has no element of t2. The construction is

like the abome except that we irne v-1 to determine the res of the cycle 'Y. and in

the prood we bring -y out to the left, not the right, and worry about 1,-(4 rather than

We ame reduced to the cue in which every cycle of a has ezacty one element of

tj and one element of r2. One possibility is that the element are distinct 11611,l

12e6t2 and 11. Write the cycle with 12 first. and form the left and right half-cycles:

IT we . br stnd fo no. d) nits we. form ah empt do ha l an Ic "a. d

stands for no elements, we naturaily have % 11 il The only other possibility is that

the cycle has an element le tjr. We again get two half-cycles:'

(1c e - m nd a )
Amain, the right half-cycle my be empty.

Why is this construction canonical? First, by the reduction. stemming from

Lem 9.8, evey element of t--I and t1-12 wil awwP in some cycle. By

Lem 9.6 we may start at ile t2r'i and iterate e until, we encounter an element

11611-12 (other possfibilities have been eliminated). Both 11 and everything on the
way from 12 to I1 are determined. indpeently of the chieof a; thus, the set of

non-empty left half-cycles is independent of v. But tov element of t2A:1 wil also

appear in a cycle of v. so the aumbhtof empty left half-cycles is also fized. This

prove that the determination of left half-cycles is Canonical

Suppose that there is some element not in tj u t2' and not on the way from 12to 11

in some cycle. Nf we iterate. o n such an element, we eventually get to an element ,.

of 12; if we iteae , we get to an element of tj (maybe the sam element). Such a

sgment of elements not including endpoinus is Wpnd dent of c of vi; these

must I S in the non-empty right half-cycles jc-). Blut the number of right

half-cyle equas the nubrof left half-cycles, so the remaining right half-cycles

most be empty, and their number is independent of v. This completes the proof that

the set of half-cycle is unique, and provides the buki of the prood by inuction of

the following:



Tleerm 9.7 There exists a unique (:1, 2)-representative for every comet of the form

S120 0S1. ndit may beeaiy) computed. givene

We now relate (:1-j)-repeeitation to the code required to implement it.

beximing with left half-cycls The arrows in the picture below indicte the move

imuucwtioms that are required:

b

The code sequence required is (subscripts name variables, not occurrences):

MOVE V119. V,

M'OVEYV: V

Became V1 is not used initially (this wa the definition of 11) mpentin$ a left

half-cycle is simpler than ipenting a cycle-no emehanges are necessary, and

there is no need to use a temporary.

The imlmna~nof a right half-cycle is simlarly easy
7 d2 d1

tecall that the last eletan of a ri& afccege o"meeem of 12. Bet 7;
by definition t2 are the set of elements that we don't cae about. so no mov is

actufly necessary. Simsilarly, the first elemnent of a right hal-cycle comes from

"som elemnt of l, again. a variable tha we do not care about The only moves

that are neessry arm
MOVE .dlV

MVE Vft Ve

in particular, if a right half-cycle has only one element, no moves are necessary.



Pram the discussion of the implemnttion, it iS clea that the Ost Of a comet

deped upon the structur of its (:11 :12)-repreentative. We extend the notion of

tuleffe Given il. a a uusal the ugnature ofV wS is obtained fro it

( 1. 2 3pr~ttive by fanning a triple of muilti-ets one each for the lengths of
cycles let haffmydem an right halcycqe

In order to be able to use the tecniue that we developed for permutation-labeled

gaphs, we want tor have an invariance of cost uande "conjugstion-firing both enlds

of an arc byv-ad Inverse

Theerm 9.8 The signatue of a comet is invariant unde Conjugation and inverse

Preel Let the initia comet oan arc be S,2 eS. If we v-fie both ends of the are,

wepgt the comet

Ezprem w m a pyrduct of cycemL The effect of irev .r- is to replace each eemt i

in tSe. eprePMenation by rI (this is the essence of the proof of Lemma 9.4). The

calculation Of the (i1.t2)-ireprmtation foreu proceeded by looking only at tj. t2 and

the cycem atf4. If theme elements are permuted by r. the final resut wil have

eemnt permuated by r.

To proe the resut for inverse, frst note:

Off~ rI S ,1
tev 1 .S~j -1mS =

The cyces and hal-cycles in at (ij,)reprementatie are simpl revese to obtin

tbeme for & (12-1).reiemntative of the inverse

(a... b) '(b. a)

a12 b1 Ill (11 b.., 1j

A detied proof that this works Is omitted.

The techniques that we developed for permuation-labeled graps depeded on

very lide:



:%2

-invariance udrconjugation and arc-reversal

- oprison of cost(w) versus comt(w * t)

We hafedt af'ae how to do both of theme. Thus, the tecnkques of the

prvo nsction apply to comet labeled graphs. rather than just permutation labeled
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An Intermediate Form for Bi-directional Scanning of Programs

1. Introduction

The purpose of this document is to discuss a data structure that aids in the bi-

* directional scanning of programs. Our primary motivation for bi-directional

scanning is in the live-dead analysis that aids in the register allocation aspects of
L

code-generation; it is also useful in some aspects of program verification, and

proofs of program termination.

The data structure that we use may be based on any representation for a

directed graph that allows arcs to be traversed in either direction. We assume that

the reader is acquainted with the basic operations on directed graphs. The source

language that we use here will be based on tree like representations of functions,

not unlike those found in LISP or EL. The generality required to handle these

languages is more than adequate to handle languages such as FORTRAN or

PASCAL.

2. Getting started

We shall take as our source language a language based on the lambda calculus,

but with declarations added. This gives us a very simple syntax. A term is one of

the following:

constant

variable

form (termi,..., term) (application)

X Xln..., xn term (abstraction)

Sxj: term,..., xn:term. term (declaration)

The terminal classes constant and variable will be left undefined (xi is a variable).

The only other terminals are ) and S; these are neither variables nor constants.

.......... *
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The first step in constructing a flow graph will be a naive translation from the

above syntactic classes to "straight-line code". This is accomplished by a function

denoted by T, and having two arguments. The first is the term to be translated,

and the second is the node at which scanning is to start. This node will have no

contents at entry to T, but will be incorporated in existing graph structure. The

result of T is the node of which scanning is to resume.

For variables and constants, T installs its first argument as the contents of its

second argument, and connects the second argument to a new node, which then

becomes the result of T. A

T (c, T(x,

the 2nd argument of T the result of T similarly

Implicit in these constructions is that the first node pushes the value of c or the

present value of x onto a stack, and that control flows on to the next node in the

scan.

To produce the graph for an application, the graphs for the constitutents are

chained. The following a graph expresses the semantics that applications are

evaluated by evaluating the operator and operands from left to right, followed by

the function call:

T (term0(terml,..., term n)): the result of T

In words, the function and each of its arguments is pushed onto the stack, followed

by a "call". The pseudo-op CALL has two operands. The first is n, the number of

arguments to the function. The second is a pointer to a new node that becomes the

result of T. There is not an ordinary one from the CALL node to the result of T

because ordinary arcs indicate direct flow. However, the new node is the

appropriate point to resume the scan.

p.. *.-* . .-*.. ..
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We shall later need a picture of the stack at entry to an abstraction. For

purposes of specificity, we shall assume that CALL replaces the function that is n

entries below the top of the stack with the return node, i.e., the second operand,

just before entering the abstractions.

As an example of the graph structure set up by T, consider the term f(g(x,y),z).

Its translation is:

Not unlike reverse polish notation.

The graph of an abstraction involves a slight twist. On the one hand, the graph

of an abstraction must involve the graph of its body (the "term" in x1 , .. xn

term); on the other, in this language, an abstraction is a value. To denote the value

aspect of abstractions, we will use an index number i, and treat the abstraction

essentially as a constant.

T ( xl...xn. term) =

The abstraction also has a program aspect, for which we want a graph. We let G i

be the flowgraph for abstraction i. This graph consists mainly of a graph for term,

with a header and trailer corresponding to function entry and exit.

G [i] = ENTRY xoxlr.., Xn T(term) EXIT

The pseudo-op ENTRY gives the names xo, xl, .... xn to the top n+1 entries on the

stack (x0 names the return address preceding the first argument; how that name is

chosen is not discussed here). The pseudo-op EXIT indicates that the 2nd through

n+2nd entries (return address and n arguments) are to be removed from the stack,

leaving the top entry as the result of the call EXIT's operand is a back pointer to

the entry node of the abstraction, a useful piece of information, as we shall see.

The graph of a declaration involves the graphs of term1 , ... termn (which

*J
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provide the initial values for the x1), as well as the graph for term0

T xl: terml ..... xn: termn • termo) =

T(termn) DECL xl .....xn Ttermo) NDECL

The pseudo-op SCOPE indicates entry to a scope in which mutually recursive

functions can be declared, DECL indicated the point at which the names take

effect. The pseudo-op UNDECL has single operand indicating the DECL that is to

be undone. The 2nd through n+1st entries are removed, leaving the result of termo

as the result of the declaration.

3. Weak Interpretation

The purpose of this section is to describe how to splice together the various .

graph fragments that have been constructed so that flow of control on function

calls is represented by arcs in the graph. Because functions are values, the process

of constructing this full graph must involve essentially a "symbolic execution" or

"weak interpretation" of the program. The technique described here has more the

flavor of weak interpretation than of symbolic execution, insofar as there is a real

difference.

We shall provide a property set (1 or monotone framework [2) for modeling

the state of an actual execution. Since the state for the language just described is

entirely contained in the stack, we will call the particular property set that is

developed below a stack model, or simply sin.

Every node of the graph will have an associated sm. Each sm may be

relatively large object, and it may appear that the amount of data is massive.

However, even though at one level we view each sm as distinct, at another level we

provide for a great amount of sharing between sm's at adjacent nodes of the

flowgraph. The sm field at each node is of constant size - a pointer - and we

expect the total amount of space consumed by sm's to grow roughly linearly with

the size of the program.

* * . . ** - ... **- 5* -' 5'- -'* -',
4' ...-. * .* .. * ' .- . . .* .* . .* . . . . . .:-.

.. . '..'...- .- .-" . ".. .. " .. -.. ' -. " ." .: .- - ". '- . . - " :-:..: - , : ".'' :: :'-: :'': .. :',.... .. . , ., " "'. .. ".. . .... . . . . . . .. ,-.. ... " " '' . . ,
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At any time in the execution of a program, the stack is a linear sequence of

values (for uniformity, we think of return addresses as values), which we may view

as a sequence of values with the top of the stack at the beginning of the sequence.

In a recursive program, the stack may grow arbitrarily large, and so a stack model

cannot directly reflect all the entries in all possible stacks. Instead, a stack model

is a graph with a distinguished node, called the top node, because it corresponds to

the top of the stack (this graph is not to be confused with the flowgraph). The sm

field of a flowgraph node points to the top node. The sense in which an sm models

an actual stack is that any actual stack will be a path through the graph that

constitutes the sin. But the sm is of bounded size (as we shall see), and will thus

have cycles in a recursive program. It may be the case that there are paths through

an sm that do not correspond to possible stacks during execution. These represent

loss of information by the modeling process, a necessary property of any analysis

program that always terminates.

Running through the stack is the static chain, which allows finding the stack

locations of names that are visible at that point in the execution. To model the

static chain, certain nodes of an sm will be marked as static-chain nodes. These

nodes will have a list of associated names, a pointer to the sm node corresponding

to the last of these names, and a pointer to the next node in the static chain.

Because the static chain is bounded in an execution, the model of the static chain

reflects the actual static chain precisely.

In order to splice together graph fragments, sm must keep track of two types

of value, functions and return addresses. To keep track of functions, we attach to

each sm node a set of functions, representing the set of all functions that are

possible for the value corresponding to the sm node. There are two types of

functions. One is a constant function, which we may think of as a built-in. The

* *-- .**..... .. *. *
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other kind of function is a pair i,s where i is the index of an abstraction and s is the

static chain in which that abstraction is to be evaluated (an abstraction alone is not

a function; it must be supplied with an environment).

To keep track of return addresses, we do not label the sm node corresponding

to the return address; rather, we label the sm arcs arriving at such a node, each

one having a distinct label. As we shall see, this provides enough information to

model execution reasonably accurately.

4. Node operations on stack models

*, In this section we will describe the weak interpretation of flowgraph nodes.

Each flowgraph node has an associated sm describing the state prior to execution

of that node; we show how to combine the prior sm and the contents of the node to

yield a set of sm/flowgraph node pairs that describe the possible states after

execution. The action to be taken with this set will be described in the next

section.

Weak interpretation begins at an abstraction designated as the "main

program". Assume that this abstraction he. n arguments. As we shall see in the

next section, its ENTRY node will point to an sm that is a simple chain of n +1

nodes. The last node in the chain corresponds to the return address. The fact that

this sm node has no arcs leaving it will indicate to the weak interpreter that exit

from this abstraction corresponds to program exit. In order to begin weak

interpretation at any abstraction, not just the first, it is necessary to have not only

the sm corresponding to the state upon entry, but also a model of the static chain,

which we denote by s. In situations where there are no symbols defined outside the

program, s may be nil; if there are symbols that must be known during weak

interpretation, these can be represented by s. To process an ENTRY node, the

weak interpreter "adjoins" a node to the prior sm. This means that a new node is
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obtained, and an arc is established from the new node to the prior sm, i.e., to the

top node of that sin. (As we shall see, this basic operation is used in the weak

interpretation of several node types; it corresponds to a "push" on to the

interpreter's stack). In the case of an ENTRY node the adjoined node becomes a

static chain node. The list of names is the operand to ENTRY. The sm node

corresponding to the last of these names is the top node of the prior sm

(corresponding to the last argument). The static chain link for this static chain

node is of course s. In this case, as in later ones, the adjoined node becomes the

top node of the new sm. The result of the weak interpretation of the entry node is

a singleton set whose pair is the new sm just described, and the flowgraph node

pointed to by the (necessarily) unique are out of the ENTRY node.

The weak interpretation of a node containing a constant also involves adjoining

a new node to the prior sin. It is necessary to attach the set of functions that this

" constant will evaluate to. If the constant is not a function, this set is null. If the

. constant is a function, then the set is a singleton consisting of the constant.

A node containing a variable is processed in the same way as a constant node,

once the function set is obtained. To obtain the function set, we "look up" the

variable in much the same way that a value interpreter would. Specifically,

beginning at the node pointed to be the sm field, follow sm arcs until a static-chain

node is seen. If the desired variable is not among those at this static level, then

follow the link to the next sm node in the static chain, and repeat the above step at

that node. If the static-chain pointer is nil, the variable is undefined and the

program has an error. If the desired variable is in the set of names at a node, then

we can find its offset from the last of the names, and we also know the sm node n

corresponding to the last of the names. Call the offset p; if we traverse p sm arcs

from n, we arrive at a node corresponding to the variable being looked up. The

U4J 
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only sm nodes with multiple out arcs correspond to return addresses, and these

always occur as the first element in a list of names. Thus there is never any choice

in traversing the p arcs, and the name specifies a unique sm node.

A node corresponding to an abstraction (pseudo op #) is also treated like a

constant or variable node, once the function set is found. In this case, the function

set is a singleton, consisting of the pair i,s, where s is the first static-node seen

when folowing sm arcs from the node pointed to be the sm field.

For constant, variable and abstraction nodes, the result of weak interpretation

is a singleton set, whose pair is the described sin, and the node obtained by

following the unique flowgraph are out of the node.

The processing of the CALL and EXIT pseudo-ops provide the interprocedural

linking that we desire. We consider CALL first. The first operand (the n) and the

sm field attached to the node yield the function set that is possible from the call.

The result of weak interpretation will have one sm/node pair for every element of

the function set. -'Y-

We first examine built-in functions. Each such function has built-in semantics

that must be properly represented by the graph. Many built-in functions have little

interaction with flow of control. For instance, none of the arguments of + are

functions; its result is not a function and its effect is merely to go on to the next

step. This effect can be represented by connecting the CALL node to the second

operand of the CALL indicating the flow of control that actually occurs. The sm'

for such a function is obtained by traversing n in arcs from the node 2 ointed to by

the sm field of the call node (corresponding to popping the arguments and the

function value), and then adjoining at this sm node a node that represents the result

of the built-in (corresponding to the push). The pair for such a function is the sm-

just described, and the second operand of the CALL. . >

7l
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There are some built-in functions that are more interesting: those that affect - -

flow of control, and assignment. These are discussed in later sections.

To process a pair is corresponding to an abstraction, we imitate in the sm the

action that would be taken in execution, where the function call is replaced with

the return address. This cannot be done directly in the sm because of data sharing.

Instead, it is necessary adjoin a new node to the node n+l steps from the top of the

prior sin. This node corresponds to the return address and the new sm arc is

labeled with the return node. Then a copy is made of the top n nodes of the prior

sin, and the last of these nodes is linked to the return address node that was just

adjoined. Recall that beginning the weak interpretation of an abstraction requires

not only sm, but also the static chain. In this case, that is simply the second

component of the pair is. The flow of control from the CALL node node to the

ENTRY node is indicted by establishing a flowgraph arc from one to the other. The

contribution that an abstraction makes to the result of weak interpretation is the

pair consisting of the described sm and the ENTRY node of the abstraction.

The sm associated with node containing an EXIT pseudo-op has a special form.

The top node represents the result of the application. Traversing one sm arc ar-

rives at a static-chain node, which tells how many more steps rest be traversed to

arrive at the node corresponding to the return address. The result of the weak

interpretation of the EXIT node will have one pair for each arc leaving the return

address node, where the node component for the pair is the label on the are (the

return node). Copy the top of the prior sm and make it point to the node at the

other end of the labeled sm arc, representing the removal of the return address and

arguments. The new node is the top node of the sm associated with the return

(flowgraph) node. To indicate flow of control, establish an arc from the EXIT node

7 7.-*
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to the return node. 10

The pseudo-ops remaining to be discussed arc all associated with declaration:

SCOPE, DECL and UNDECL. The actions of these pseudo-ops must be coordinated,

but there are several ways of achieving the desired effect: allowing the definition

of a mutually recursive set of routines. We shall present one method here,

corresponding rather transparently to a reasonable implementation. To preview:

SCOPE establishes a new static chain link, but with no name; DECL fills in the

names and the stack pointer; and UNDECL removes everything except the top of

the stack. We now discuss each case in more detail.

To weakly interpret SCOPE, adjoin a new node to the prior sm. This node will

be a static chain node, whose static chain link is obtained by traversing the prior

sm until a static chain link is found (there will be no branching along this sm path).

The list of names for this static chain node, as we stated above, is empty. Since no

names will be found at this static chain link under these conditions, the pointer to

the sm node for the last name is irrelevant, and may as well be nil. Note that this

allows the weak interpretation (and evaluation) of term1 , termn in an

environment where the names have not yet been installed.

To weakly interpret DECL, traverse n sm arcs from the distinguished node of

the prior sm (there will be no branching along this path), arriving at the static

chain node that was established by SCOPE. The effect of DECL is merely to

install into the name field here the list of names of the DECL, and to set the .,

previously nil pointer to the present distinguished sm node, i.e. the top of stack.

This cannot be done to the extant sm graph structure, because that would

invalidate the stack models of flowgraph nodes pointing to the shared structure. It

is necessary, at least conceptually, to copy the n+1 nodes that represent the top of .

the stack, and only then make the changes to the static chain node. The first node

of the copied chain is the top node for the new sm.

-Z- *, ,°
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The weak interpretation of UNDECL is what one would expect: the top sm

node is copied, but attached to the node obtained by traversing n+1 arcs past it, .

thereby popping not only the n variables, but also restoring the static chain to what

it was before the declaration.

In the processing of every node type, observe that the amount of new

(unshared) graph structure is proportional to the size of the program. In fact, for

all but DECLs, only one new sm node is required at each point. For a DECL, the

number of nodes is the number of variables plus one, but variables contribute to

program length.

5. Disjunction

Weak interpretation uses a set Q of "unprocessed nodes". These are nodes that

must be processed before a consistent weak interpretation has been attained. We

have already noted that at the beginning of weak interpretation the ENTRY node

of the main program is given an initial sm. The rest of initialization consists of

ensuring that the sm fields of all other nodes are set to nil (meaning that flow

cannot arrive at this node), and initializing Q to the singleton whose element is the

entry node.

The general outline of weak interpretation consists of removing a node from

Q, and processing it according to the description of the previous section. The

result is a set of pairs (sm, fn) consisting of an sm that is valid prior to the

flowgraph node fn. The key to termination of weak interpretation is whether fn is

placed back in Q, and if so, what is the value of the new sm field of fn. The theory

of weak interpretation says that the key to obtaining a correct and terminating

weak interpretation is the definition of a suitable disjunction operation on stack

models. Given such a dsjunction operation, we apply it to sm and the sm already

S.....-. - .-. ".
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attached to fn. If the result is the same as the old sm attached to fn, fn is not

* placed back in Q. Otherwise, fn is put back in Q, and its new sm is the result of

disjunction.

We now consider the disjunction of smI and sm2 . If sm I is nil, then the result

is sm2; if sm 2 is nil, the result is smi. This corresponds to the observation that if

the sm field of n node is nil, then flow does not arrive there. The logical or of this

condition and any logically weaker condition (flow arrives here with the stack

having thus and such a shape) is the logically weaker condition. Since a nil sin is

never propagated forward, if this case applies, the node is always put back in Q. If

weak interpretation terminates and the sm field of some node is nil, then it is

indeed true that flow never arrives at that node.

If smI and sm2 one both non-nil, we have a more interesting question. To see

how to define disjunction, recall that the basic definition of a stack model is that

its paths limit what might be seen as the values of a stack. Suppose we want to

construct smI whose set of paths is as small as possible, but still contains the union

of the paths for smI and sm 2. Ignoring efficiency considerations for the moment,

let sm0 be the graph consinting of disjoint copies of smI and sm2. We will describe

a process called 'pinching", This begins at the top nodes of sml and sm2. To pinch

two nodes, coalesce them in the graph, and attach as a function set the union of

the function sets. Then examine the out arcs of the two nodes. If any of the out

arcs are labeled, then all must be labeled, because we have just pinched a return

address node. In this case, we pinch nodes at the ends of identically labeled arcs

(which come in pairs). Otherwise, there will be at most a pair of out arcs

(corresponding to the single out arcs in sm1 and sm2). If there is a pair, pinch the

two nodes.

While this is not the place for a detailed proof, completion of pinching results

in a stack model having the desired validity property, in other words, the union of

-. *. • ° . -. * -. - * - : o ; - .* " . . •"- .. - °* , ... . ,.' . -o . .. ,;, . ,*"." ," j * " ," "
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the set of paths of sm 1 and sm 2 is contained in the set of smo, and this is the

smallest set of paths describable by a stack model. More interesting is the fact

that even though the semilattice described by this disjunction operation is not well-

founded, weak interpretation still terminates. To prove this, we observe that an __

"-.. sm-node for the return address of a particular abstraction can appear at most once

in any sm attached to a node. This is certainly true initially. The only place that a

return address sm node is adjoined is at a CALL node. This may temporarily

produce an sm with two return nodes for a particular abstraction, but in the

disjunction that necessarily precedes attachment to a flowgraph, the two nodes

are merged (this is how cycles arise in the sm graph). To the observation that the

number of return address nodes is finite, we add the observation that the out

degree of these nodes is bounded, since each such sm arc is labeled by a distinct

flowgraph node, and there are a fixed number of these. The paths between return

nodes cannot grow indefinitely, and thus the sm graph is finite.

6. Assignment

In confronting the issue of assignment, the issues of parameter passing,

aliasing, and a host of related concerns arise. We shall provide a quite simple way

of viewing assignment, in which all of the other issues can be expressed. Simply

put, locations will be treated as bona fide values, and locations will be kept track

of in much the same way as function values. In what we have described thus far,

parameter passing has been by value, and that will continue to be our model. To do

parameter passing by name, simly pass locations along; aliasing is represented by a

location set. -.

We have already seen that an abstraction is sometimes treated as a value and

sometimes as a procedure. Similarly a name x is sometimes treated as a variable

(as we have done already), and sometimes needs to be treated as a location (for

*..' ..-..
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purposes of assignment). In the syntax for a term, we have discussed the terminal

class "variables"; symbols in this class are treated as variables, i.e., evaluating

them yields their value. Without raising the issue of surface syntax, it is possible

for constant to be a symbol. In this case, the evaluation of the constant is the

location on the stack designated by the symbol at the time of evaluation.

In order to model assignment, we must extend the notion of a stack model, in

that now, we associate not only a function set with each node, but also a location

set. (We can arrange the representation so that the representation of two null sets

is no more expensive than was the representation of the single null set. If the

language is strongly typed, we might also take advantage of the fact that the two

.* sets cannot be simultaneously non-null.) The representation of a location is a

"- pointer to an sm node.

It is necessary to describe how to weakly interpret a constant node that is a

symbol. Given a prior sin, the symbol is "looked up" in the same way as a variable,

but the pointer to the sm node corresponding to the symbol is returned, not the

attached function set. The node adjoined to the prior sm is given a singleton

location set, consisting of the sm node that was found on look up. The attached

function set is of course null.

In the weak interpretation of a variable node, looking up the variable now

produces both a function set and a location set. These constitute the pair that are

attached to the adjoined node.

We now describe the weak interpretation of the constant function ASSIGN. Its

first argument produces a location, and the second, a value that will be stored in

the location.

First, since ASSIGN does not affect flow of control, establish a flowgraph are from '

. *J4i
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the CALL node to its successor. To obtain an sm for the location, we obtain a new

sm for each element of the location set of the second entry in the prior sm. These

sm's are disjoined by the technique of the previous section, and the result is the

new sm. In most cases, there will be only one element of the location set, so there

is no necessity to do a disjunction.

The problem thus reduces to describing the effect on sm of assigning to a • -"

single location. Since assignment of location values and function values is rare in

typical programs, the location and function sets of both the location being assigned

to, and the top of the prior sm, are most probably null. In this case, the assignment

has no effect on data of interest to a stack model, and the new sm is obtained by

popping three nodes off the prior sin, and adjoining a node that represents the

result of assignment (depending on ones taste, this might be the first argument, the

second, or a canonical nothing result).

Suppose that the assignment is of a function or location value. What we want

to do is simply to change the function set location set pair to be the pair on the top

of the prior sin. This cannot be done literally, because the prior sm is pointed to

from the sm fields of other nodes. A correct algorithm would be to apply the prior '

sm before changing a field in it. A more sophisticated approach is to copy only as

much as necessary, and to combine the necessary copying with the disjunction that

may be necessary. These are details beneath the level of the current discussion.

Another natural operation on locations is DEREF, which we take to be a

constant function. This function has a single operand which must be a location; its

result is the current value of that location. The weak interpretation of DEREF is

essentially like that of +; the only difference Is in how the function and location

sets are computed. From each location in the location set, obtain the function and

location sets attached to that node; the union of all of those is attached to the top

-* **. * *•. * ** - • * . - * .
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of the new sm (a node adjoined two sm arcs from the top of the prior sin).

We thus see that accounting for assignment during weak interpretation raises

no fundamental difficulties. The simple technical device of keeping track of

locations, which after all is ultimately what happens during an actual execution, is

sufficient to determine what control paths are possible. The method handles

naturally even the assignment of function and location values, capabilities not

allowed in many languages. The price is extra expense, but it is paid only when the

capability is actually used.

7. Flow of Control

The purpose of this section is to show how flow of control other than function

call and return fits into the process of graph construction by weak interpretation.

In all cases, the flow of control will reflect the semantics of some built in function.

The main point is to show that flow of control can be handled with very little I.

mechanism over that already presented, not to give the most direct translation of

the standard constructs.

We first consider how a simple if-then-else fits into this scheme. As is L

customary, we will assume that only one of the alternatives is evaluated depending

upon the condition. In order to model this in our language, we posit a constant

(built-in) function IF of three arguments, all evaluated. Either the second or third

argument is the result, depending upon the first. Thus, the construct "if term1

then term2 else term3" would be represented as (IF (term1 , term2, term3)X), and

the graph structure would be:.- .

IF G(term1 ) #2 #3 CALL 3, CALL 0,

To give a weak interpretation for the IF function is to describe its effect on a

stack model and on the graph structure. Since the result can be either that of the

top of the stack or next to the top of the stack, we obtain the function set for the
.' , %
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top entry of the new sm by taking the union of the function sets for the two entries

on the top of the stack. Traverse four sm arcs from the top node (three arguments

plus the function), adjoin a new sm node to this point, and attach the new function

set. Then construct an arc from the CALL 3 node to a new flowgraph node, and on

to the new CALL 0 node. The pair consisting of the new sm and new flowgraph

node is the result of interpreting the constant function IF.

We take a similar approach to looping. We map the construct "repeat term

end" to REPEAT (Xterm), where REPEAT is a constant, i.e., built-in, function. The

graph becomes:

REPEAT # i CALL 1,

the semantics of the REPEAT operator is to repeatedly call its argument and throw

away the result. Thus, we connect the CALL node to the following graph

construct.

COPY CALL O, POP

Here, COPY means to push the top of the stack onto the stack, and POP means to " -'

simply remove the top of the stack. The effect of these pseudo-ops on a stack

model may be supplied by the reader.

In the REPEAT example, note that the flowgraph node that is the second

argument to CALL 1, is never reached. This naturally raises the question, what

about loops that do terminate? We answer this question by asking a different one:

how can we model escape-like constructs? Our answer is to give the semantics and

weak interpretation for a very general version of escape. We shall make an escape

point a "first class object", just like a function or location. In fact a return point

is exactly the location of a return address. While return points may be passed as

arguments (or assigned), their ultimate destination is the first argument of the

constant function ESCAPE. The second argument of this function is the value to

,... .. ,. . ..* . .<1 i
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be returned as the value of the function being escaped. The effect is that

everything in the stack between the top and the static chain link just above the

return point (exclusive), is removed, and the next step is the same as that of the

pseudo-op EXIT.

The mechanism for location sets discussed in the last section is used without

change when weakly interpreting ESCAPE, which is handled as one would expect.

The top node of the prior sm corresponds to the value being returned on behalf of

the abstraction. The second sm node will have a non-null location set and each

location will be that of a return address (if either condition is not true, there is an -. .

error).- Although it is not necessary, it is convenient to have all escapes from an

abstraction collect at the exit node for the abstraction. To aid in this, it is helpful

to have an index of the abstraction in the top node of the sm attached to its entry

node (the return address), and a way to get from abstraction index to exit node.

For each location in the location set attached to the second node of the prior

sm, locate the EXIT node for the corresponding abstraction, and establish a

flowgraph arc from the CALL node invoking the ESCAPE to the EXIT node. Copy

the top node of the prior sm, but make it point to the static-chain just above the

escape location (via the abstraction index). The set of pairs, consisting of sm's

obtained in this way and the corresponding EXIT node of the abstraction, is the

result of the weak interpretation of the constant function ESCAPE.

We now return to the issue of looping constructs with exits. For example,

consider the standard "while termI do term2. This can be viewed in our language

as

WHILE( termi, term2)

But WHILE does not need to be built in because it can be defined as follows:

condition, body. repeat if condition 0 then exit function else body 0 endif

endrepeat
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The repeat and if-then-else constructs have been discussed; the end function maps

directly to an ESCAPE with suitable argument. -.

In summary, the flow of control constructs found in most languages can be

included in this general scheme with little difficulty. The "If-then-else" constructs

require only a new constant function and new pseudo-ops. The "repeat" construct

requires a constant function and two simple pseudo-ops for manipulating the top of

the stack. The escape mechanism requires an extra abstraction in the stack model

and a table of exit nodes, as well as a constant function (and no new pseudo-ops),

but it provides a powerful capability. Together with ordinary function cell and

procedure parameters, other control constructs are easily described.
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1 Introduction

The development of sophisticated expert systems depends upon obtaining
the knowledge of experts and developing efficient means for representing
that knowledge and drawing inferences from it. Some of the more suc-
cessful expert systems approach the efficiency issue by computationally
tractable models specific to very narrow domains with specializations of
general purpose problem-solving methods applicable to a wide variety of .
problem domains. The general purpose component used in many expert
systems is rule-based, with production rules representing knowledge and
the associated mechanisms for drawing inferences.

In other systems it has seemed very natural to use the predicate calcu-
lus to represent knowledge. However, until recently, the inferencing algo-
rithms for pure predicate calculus were too inefficient for this approach to
be a practical alternative to the les formal rule-based approach. Addition-
ally, if predicate calculus knowledge inferencing is done using the resolution
method of theorem proving, it is difficult to explain conclusions or even in- "
ferences in terms that make sense to a user. Recently, the emergence of
logic programming in general and PROLOG in particular suggests that

-........

* -. -'



r.°.

there may practical realizations of inferencing engines for predicate calcu-
lus. The theory of logic programming imposes a syntactic restriction on
formulas in the predicate calculus, limiting the formulas to what are called
definite clauses. The resulting language has proved adequate for a wide
range of applications, and there are well understood techniques for con-
structing an interpreter (that is, an inferencing engine) for definite clauses
that is reasonably efficient. Also, with logic programming the usual repre-
sentation of the proof of some predicate is a "proof tree" that provides a
very natural framework for explaining why a particular proof was successful
as well as exploring why some attempted step in a proof was not successful.

Because logic programs can be given a precise semantics, they are
amenable to theoretical analysis. It is even possible to attach uncertainties
to the rules in logic programs while retaining precise semantics [Shapiro

.831.
PROLOG is presently the best known and most widely available lan-

guage for logic programming and PROLOG implementations exist on sys-
tems ranging from mainframes to personal computers. The Japanese fifth
generation project has, of course, made a strong commitment to PROLOG
as the basis for expert systems of the future [Feigenbaum 831, and a number
of groups are investigating specialized architectures for -PROLOG machines.

Yet no matter how capacious or fast the underlying hardware, we cannot
ignore the importance of the efficiency of the software. Our interest is in
extensions to the inferencing technology - to the software technology - to
improve the performance of inferencing engines.

There are several factors that will improve the inferencing capabilities of
interpreters for logic programs. One improvement is to incorporate special-
purpose inferencing components for specific domains. For example, existing

interpreters can infer, from the facts x < y and y < x, that x and y are -
mutually inconsistent only when x and y have constant values that can
be compared. To handle the general case would require axiomatizing the -"

less-than predicate; such an approach is impractical. There are, however,
efficient satisfiability procedures for systems of linear inequalities [Nelson
81]. Another example is sets of equalities and disequalities. Again, to
handle general equalities and disequalities with present-day interpreters,
we must axiomatize these concepts, inducing computationally infeasible

2
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iterpretations; and, again, there do exist efficient decision procedures for
handling equalities and disequalities [Nelson 791.

Another major limitation of the current generation of logic program
* interpreters is in their ability to deal with large numbers of ground facts.

The difficulty is not just in being able to store large numbers of facts but,
rather, in managing them, ensuring that they are up to date and consistent.

A third limitation of current logic program interpreters is that they lack
a type system. The same argument can be made for logic programs that
is made for other kinds of programs - that incorporating a type system
becomes essential when the knowledgebase becomes sufficiently large.

We have recently developed an interpreter for a language based on defi-
nite clauses that has the power and generality of current logic programin

* interpreters but does not suffer the limitations cited above. Aspects of this
language and its interpreter will be described in the sections following. In
order to distinguish our rule language we call it RULOG (for RULes in
LOGic). The term RULOG is also intended to suggest that our intended
application is knowledge representation and inferencing, and not program-
ming as is the case with PROLOG.

2 The RULOG Type System

It is, of course, possible to simulate a type system within PROLOG; [Mishra
describes one way of imposing types. However we have chosen to include

a type system imbedded directly within the RULOG language. The type
system we have chosen for RULOG is modeled on in the Ada type system for
scalars extended to permit the definition of functional types. For example
the following are type definitions in RULOG.

" type COLOR is (RED, BLUE, YELLOW, GREEN, MAUVE)

" type STOP-LIGHT is (RED, YELLOW, GREEN)

" type state is (odd, even)

A type small is new INTEGER range 1.g100

a subtype little is small range 2 e10

3
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* type arith is function (INTEGER, INTEGER) return INTEGER

* type rel is function (INTEGER, INTEGER) return BOOLEAN

The type COLOR is an enumeration type with five distinct values
named by the literals RED, ... , MAUVE. As with Ada, enumeration
literals may be "overloaded" (as are RED, YELLOW, and GREEN above)
and the type ambiguity is resolved by conversion, as in

...COLOR(RED)...

or by context, as in

subtype NOGO is STOP-LIGHT range RED...YELLOW

RULOG goes beyond Ada in permitting the definition of functional
types; the type arith above is that of a function taking two INTEGER
arguments and returning an INTEGER result. A predicate is a function
returning the (built-in) type BOOLEAN.

Subtypes are, as in Ada, constraints on an underlying type. Thus,
referring to the above examples, an object with subtype little has t-pe
small and is constrained to have a value between 2 and 10.

3 The RULOG Language

We can think of RULOG as having three kinds of statements: definitions,
assertions, and dialogue.

Several sorts of thins can be defined in RULOG:

'V ..
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type and subtypes

Commencing with the built-in types INTEGER, STRING, and BOOLEAN,
one can define (name) new types as enumerations and as derived from an
existing type, possibly including a constraint on the parent type. Subtypes
are defined as constraints on some existing type. The identifiers used to
name types and subtypes may not be used for any other purpose.

literals

A literal in RULOG is like a variable in a programming language (the term
variable, however, being reserved in RULOG to mean a quantified variable
in some rule). An example of a literal definition is

let S: state initially odd

that defines S to be a literal with type state and initial value odd.

tokens

A token names a scalar, function, or predicate whose value is entirely de-
termined by subsequent assertions. Some example are

* token x is a INTEGER

* token s is a function(INTEGER) returns INTEGER

e token p isa function(INTEGER, INTEGER,) returns BOOLEAN

defining x as an INTEGER, a as a function on INTEGERs to INTEGERs
and p a predicate on pairs of INTEGERs.

,"-5.•
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database predicates

A database predicate defines a mapping between predicate symbols in RU-
LOG assertions and tuples in a relational database. As an example

define has.age(name:STRING, age: small) .-

on employees of DB

introduces the predicate symbols "has-age". This predicate is to be taken as
true for each of the two element subtuples of each tuple of the "employees'
relation of the database named "DB" consisting of the value of the attribute
named "name" and that of the attrribute named *age". The types of the
name and age components are, within RULOG, understood to be STRING
and small, respectively. The transactions betwen RULOG and the database

* access mechanism will be discussed below.

Once we have defined a sufficient collection of types, tokens, function sym-
bols, and predicate symbols we can make assertions to. RULOG. Assertions
take two basic forms: assertions about uninterpreted predicates and as-
sertions about tokens. The assertions about uninterpreted predicates are,
semantically, similar to the rules in PROLOG; an example is

assert forall(e:STRING, &:small) young(e) if
has.age(e,a) and a-< 25

stating that a "young employee is one whose age does not exceet 25. In
general a rule has a forall(...) prefix that names the quantified variables
and gives their types, followed by a conclusion and a conjunction of pre-
misses. As with PROLOG, the rule asserts that the conclusion can be
established by proving that each of the premisses is true. Each premiss is .-
a predicate applied to zero or more terms; terms includes literals, tokens .-
naming scalars, quantified variables, and tokens naming functions that are
applied to terms, recursively. The major differences from ordinary logic
programming rules are that the quanitified variables are typed, that the
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interpretation of various of the built-in predicates like =,9, and < is han-
dled somewhat differently, and that certain of the predicates - the database
predicates - require communication with a database system in order to be
established. We will discuss the interpretation of the built-in predicates
and database predicates below.

The assertions about tokens involve the equality, disequality, and in-
equality predicates. An example, assuming that x, y, and z had been de-
fined as INTEGER valued tokens, is:

assert x < y
assert y < z
assert z < x

Subsequent to receiving these assertions RULOG would know that whatever
value x, y, and z have they all have the same values and, for example, it
would recognize that the assertion

assert x 6 y

was not valid (technically, it is unsatisfiable).

Dialogue

One kind of client for RULOG will be some process that wishes to determine
whether or not some predicate can be proved; an example of a request for
a proof would be

prove exists(E:STRING) young (E)

that would, presumably, scan the employee database to find an employee -
who is 25 or younger.

Another kind of client is a knowledge engineer who is interested in
exploring or debugging some set of rules. RULOG provides a dialogue
interface for this client, offering a set of commands that permit the user
to stop the interpreter at various points in attempting a proof; to examine
the values of variables, literals, and so on; to request explanations of why a
particular predicate was determined to be true or why it gailed to be true;
and so on. We refer the interested reader to the RULOG user manual (see
[Cheatham ] ) for further discussion of the dialogue facilities.

7
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4 The RULOG Interpreter

The RULOG interpreter has two major components - the red and the -"-

prover. The reader accepts definitions, assertions, and dialogue comands,
performs appropriate syntactic and semantic checks and creates an internal
representation for items defined. Thus, the reader is analogous to the syn- ...-
tactic and semantic analysis components of an Ada compiler. The source ..

of input is usually one or more files but input can be typed in directly as -"

well. Syntactically invalid statements are rejected and an appropriate com-
ment on the problem encountered is given; a statement can be re-submitted .
after editing if the user is typing directly. The semantic analysis resolves
the types of overloaded literals and ensures that the type of each construct
is consistent with that required; semantic errors also result in the rejec-
tion of the statement input accompanied by appropriate comments on the
problems encountered.

The prover is invoked by being given some theorem to be established.
In a fashion analogous to most logic program interpreters, it attempts to
build a proof tree in order to establish that the theorem is true. The proof
tree has as its root the predicate to be established. In general, at any point
in the proof, the prover is working on some node of the proof tree in an
attempt to establish that the predicate at that node is true. The operation
of the prover at a given node is dependent upon the sort of predicate at
the node; for discussion purposes we classify the predicates at a node into
three groups, as follows:

Uninterpreted Predicates

An uninterpreted predicate is a predicate whose truth is established by
appealing to the assertions that have been made about that predicate (that
is, the rules whose conclusion involves the same predicate symbol as that
of the predicate we are trying to establish). The processing of a node
with an uninterpreted predicate is analogous to the processing done by a
PROLOG interpreter. That is, to satisfy such a predicate we must find
some rule whose conclusion has the same predicate symbol and such that
we can unify each term of the predicate at the node with the corresponding
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term of the rule conclusion. If successful, the premisses of the rule are
established as the descendants of the current node and we turn to the next

*node of the proof tree; if not successful, the prover must backtrack and
attempt to prove the predicates at some previous node in a different way (
that is, a different rule or a different fact from the database).

Database Predicates

The truth of a database predicate is established by appeal to the appropri-
ate relation in the relational database. At the present time we are using
the TROLL database system but think that the modifications required to
use some other database system would be minor. The transactions required
between RULOG and the database system depend both on the predicate
to be established and on the arguments to that predicate. We consider a
couple of examples using the has.age predicate cited earlier. Suppose that
we wanted to establish the truth of -.

has-.age(e,a) :-

and that, at the time we wished to establish this, e was bound to *Henry' .

and a to 35. The transaction required is a query to the database that
will determine and report whether there is a tuple of the employee relation
whose name and age fields are 'Henry' and 35, respectively. If, after a
subsequent failure to prove some predicate, we backtrack to this node there
is no other way to prove it and backtracking will have to continue on to
retry nodes previous to this one. , - -

If, for the same example,

has.age(e,a)

both e and a were unbound quantified variables at the time we wished to
establish that the predicate was true, a rather different transaction with the
database would be required. This time we would request the values of the ,

name and age attributes of the first tuple of the employee relation and bind '. "
the variables e and a to these values to establish the truth of the predicate. .
Upon backtracking to the node with this predicate, the transaction required
is to retrieve the values of the name and age attributes for the nuxt tuple of

9
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the employee relation, continuing, during subsequent backtracking to the
node, until the tuples were for the employee relation were exhausted before
backtracking further.

Interpreted Predicates

Analogous to PROLOG, RULOG has a number of interpreted predicates
including cut, fail and the like to control a proof. Like PROLOG, RULOG
also provides the equality (=), disequality($) and inequality( ) predicates
but has a different interpretation of them that we will discuss below. RU-
LOG also provides for assignment of new values to literals. An example is
the "predicate"

S even

that assigns the value even to the literal S and returns "true; this ability
to modify certain variables during a proof makes reasoning about situations
that involve some notion of "state" rather more perspicuous than is often
the case with PROLOG.

RULOG's treatment of =, , and < are different from PROLOG's. In
PROLOG x = y is true if x and y are manifestly equal or one of them is a
variable that can be bound to the other; x 6 y is the failure to show x =
y ; and, x _< y is valid only if both s and y are integers (including variables
bound to integers and arithmetic operations on integers) with the obvious
interpretation.

By contrast, the RULOG meaning of these predicates is provably equal,
disequal, or inequal. We can think of the prover, when it encounters one
of thse predicates, as appealing to a specialist who determines whether the
given instance of the predicate is true or not and reports back accordingly.
The specialists provided in RU14OG are, as we noted earlier, based on the
satisfiability procedures developed by Nelson (see [Nelson 811) and incor-
porated in the Stanford Program Verifier. We term these specialists E and
R. E maintains a conjunction of equality and disequality facats that have
been asserted; the equalities are, in general, over terms constructed from
tokens, literals, and uninterpreted functions applied to terms, recursively.
E partitions the terms into equivalence classes and propagates each new
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equality asserted so that, for example, the assertion x = y will cause x and
y to be placed in the same equivalence class; E also propagates the equality
so that, for example, f(x) and f(y) will be placed in the same equivalence
class. Disequalities are managed by associating with each equivalence class
the list of terms that are disequal to it; an attempt to add such a term to
the equivalence class that it is forbidden to inhabit will result in unsatifia-
biity. To prove that some equality or disequality is true, we demonstrate .
that conjoining its converse to E is unsatisfiable. E employes some fairly
elaborate data structures and carefully chosen algorithms that achieve a
time cost that is of the order of n log n to add an n-th conjuction to n-1
already known to E.

The R specialist maintains a conjunction of inequalities that have been
asserted. It converts each inequality to an equality by introducing a so-
called restricted variable; restricted variables are constrained to be non-
negative and R insures that these constraints are met. The addition of a
new inequality may result in the discovery of one or more equalities that are
implied by the new inquality (as, for example, z_<x added to x5y and y_5z
would result in x=y and y=z being discovered); all equalities discovered
are reported to E. The addition of a new inequality might also result in L
a restricted variable being negative, in which case the set of inequalities
submitted to R is unsatisfiable. To prove that, for example, x>y, R shows
that the addition of the converse, x_5y, to the set of inequalities it currently
has results in unsatisfiability.

The R specialist is also used to insure that the range contraints associ-
ated with types and subtypes are not violated. Suppose we have

type small is new INTEGER range 1..100

assert forall(..., Vxmall) p(...V...) if ...

Whenever the cited rule for p is involved in a proof, we must insure that
1<V and V<100. This is handled by submitting the two inequalities to R,
and, if any subsequent assertions about V contradicts the constraint, R will
report out the unsatisfiability; this is interpreted as a failure in the proof
and initiates backtracking.
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Future Directions

We think of the present RULOG as a prototype in which have demonstrated
the feasibility of combining the basic mechansism of PROLOG with a type
system, a set of specialists that are very efficient at determining the satisfia-
bility of predicates over restricted domains, and a connection to a database
system to provide a source of ground facts. In addition, RULOG provides a
reasonable user interface and facilities for explaining why a proof succeeded
or failed.

There are a number of additions to RULOG that we intend to investigate
before we do the final round of engineering to insure that it is a reliable
and robust system appropriate for distribution.

At present, RULOG has no mechanism for dealing with arbitrary col-
lections of objects. We have rejected the idea of incorporating lists in the
way that PROLOG does to provide for dealing with collections. Instead,
we are exploring the possibility of adding sets to the language, complete
with the usual set operations, set construct, set iterators, and the like. The
experience with SETL (see [Schwartz 74 ]) and work by Sandhu see [Sandhu
81] suggest that the use of sets and set notations might be a very natural
and user-friendly way to deal with arbitrary collections.

Another addition that is required for many applications is some notion
of certainty (or, equivalently, fuzzy predicates); [Shapiro 83] disuceses how
this might be added to PROLOG and we believe a similar addition to be
possible to RULOG.

At present, the connection between RULOG and the database system
(TROLL) is rather loose - RULOG runs on an Apollo and the database sys-
tem on a VAX. We intend to investigate both connections to other databases
and a tighter coupling of the RULOG and TROLL processes (possibly even
combining them into a single process on one computer).

The versions of E and R currently operational in RULOG are satisfiabil-
ity procedures, not decision procedures (that is, they do not bind quantified
variables). We believe it straightforward to make E into a decision proce-
dure and are exploring various ways to extend R to be able to do variable
binding as suggested in [Townley 80].
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