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A REVIEW OF ONE DIMENSIONAL SHAPED

CHARGE THEORY

PART 1 - JET FORMATION

1o INTRODUCTION -,. ".

The shaped charge warhead, based on the Munroe effect, has been used
for the defeat of heavy armour since the second World War. A particularly
comprehensive account of the historical development of these weapons has
recently been given by Backofen (1].

Shaped charge warheads are currently in use by the Australian Army
in the 66 mm M72L A2 (IAW) and 84 mm Carl Gustaf anti-tank weapons, and it is
anticipated that an advanced shaped charge device, the 103 mm MILAN!, which
incorporates wave shaping for increased performance, will soon be added to the
list. Also, it seems highly likely that future torpedo designs will . .'.
incorporate shaped charge warheads for defeat of submarine pressure hulls, as
in the Stingray torpedo used by the Royal Navy.

MRL has been engaged on various investigations concerning shaped
charge research, development and evaluation for some years. Examples of this
work are the design and fabrication of a 38 mm copper lined shaped charge [2].
which has since become known as the MRL Standard Shaped Charge, and the recent .

use of this charge for a very illuminating investigation on the jet initiation F
and disruption of bare and covered Comp B and other explosives by M.C. Chick

-.• and D.J. Hatt (3].

"Interest in the modelling of shaped charge performance has also been
stimulated by the use at MRL during the last few years of several large two
dimensional (2D) continuum mechanics finite difference codes [45-47]. Of
these, one of the most useful for shaped charge work is the HELP code. This - .
"has recently been used by D.L. Smith to model the early stages of jet
"formation in the M4RL 38 mm shaped charge, and a preliminary comparison with .S-
flash radiographs of the collapsing liner is extremely good [4]. Fig. 1 shows
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a schematic illustration of the progressive stages of liner collapse and the
formation of jet and slug, and Fig. 2 shows one of the recent MRL flash
radiographs of the collapse of the MRL 38mm Standard Shaped Charge 18.5 UsO
after initiation of detonation.

Research on the basic understanding and refinement of shaped charge ..',.

devices is currently being pursued in many weapons laboratories around the
world, and much interesting work has been published in the open literature and
in unclassified reports during the past decade. The purpose of this review
is not only to acquaint the reader with these recent developments, but also to
provide a reasonably detailed account of the basic hydrodynamic theory of
shaped charges which was published in the late 1940's and early 1950's. It is

hoped that this review will be of interest to people either using, designing
or modelling shaped charges, as well as providing sufficient background
material for the understanding and formulation of a one dimensional (ID) code
for the analysis of shaped charge behaviour.

Modelling of classical shaped charges by the use of so called iD
codes has become quite common in the past few years. Possibly the best known -
example of such an approach is the BASC code used by the Ballistic Research _.ro_

Laboratory in the U.S.A., which has been extensively documented by Harrison
[5]. Other codes include JETFORM, used by RARDE in the U.K. (6], DESC-1,
designed by Carleone et al of Dyna East Corp (7], and the TB/ISL code of
Hennequin in France [8]. As pointed out by Carleone et al [9], these codes
are an invaluable addition to the overall strategy for the design of new
shaped charge devices. Whilst the 2D codes are capable of providing very
detailed information, they suffer from the disadvantage of requiring large
computers and long run times, and as a consequence are not particularly well
suited to extensive parametric studies. By contrast, the iD codes evaluate
simplified analytical expressions rather than a fully fledged finite
difference scheme, which the name might suggest. 1D codes can be stored on
the smallest of computers, require only seconds run time, and are ideal for
parametric studies. An application of the ideas discussed in this report to
the MRL Standard Shaped Charge is currently in progress, and will be reported
shortly (10].

An outline of this report is as follows: section 2 describes the
basic steady state hydrodynamic theory of jet formation published by Birkhoff,
MacDougall, Pugh and Taylor in 1948 [11]. The description here is rather
detailed as this paper provides the basic understanding of shaped charge *'.:"*."

behaviour. The theory was modified in 1952 by Pugh, Eichelberger and Rostoker
to describe the stretching of the jet in free flight, and this resulted in the
"non-steady state" theory of jet formation, commonly referred to as the PER
theory [12]. This work is described in section 3. Before the PER theory can
be utilised, expressions must be found for the liner velocity once it has been
set in motion by the detonation, and a variety of methods for achieving this
are described in section 4. The velccity of the jet tip is an important
parameter in shaped charge work, and its calculation is complicated by an
inverse velocity gradient within th•e leading portion of the jet, which causes
the compression of the jet and the formation of a compact jet tip particle.
The treatment of this effect is described in section 5. Finally, the early
Stheories of Birkoff et al and Pugh et al assumed that the flow was
incompressible, in which case a coherent jet must always be formed. The

"2
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modification to this result obtained by allowing the flow to be. compressible
is described in section 6.

This review is devoted entirely to the problem of jet formation, and
no attempt has been made to include recent work on the important topics of jet
breakup and jet penetration. It is intended that a review of such material
will appear in a future MRL report.

2. STEADY STATE THEORY

"As mentioned in the introduction, the first fairly complete
mathematical theory for a classical shaped charge was published in the open
literature in 1948 by Birkhoff, MacDougall, Pugh and Taylor [11]. Their
analysis was based on the following assumptions:

(i) The pressure on the liner due to the explosive is so great that the
yield strength of the metal is negligible, hence the metal will
behave hydrodynamically. (Note that this does not imply that the
metal is a liquid during the formation process).

(ii) The metal flow is non-viscous and incompressible.

(iii) The pressure on the collapsing liner does not increase the length of
any portion of the liner.

"liv) The impulse from the detonation wave acts instantaneously, so that 1-"
the acceleration of the liner can be neglected.

(v) Each element of the liner collapses with a constant velocity V
which is independent of its original position along the cone axis.

Several of these assumptions have been modified or relaxed in more .-. :.*
recent refinements of the theory, and these will be discussed in detail in • .
later sections of this report. For the moment, we consider the original
theory as presented by Birkhoff et al.

Consider Fig. 3 (adapted from reference [3]), which shows the -'

detonation wave, with velocity U_, traversing the length of the cone. PH-
* represents the velocity V2 of the liner. From assumption (v) we know that

Seach element of the liner between A and P (the current position of the
detonation front) has been compelled to move with the constant velocity Vy -
(ie PN = AA'), and from assumption (iii) we know that the length AP is ecrual
"to the length A'P. We now show that PN bisects the angle between the
"uncollapsed liner PB and the collapsing liner PM. As PN is parallel to AA'
we have angle BPN = angle PAA', and angle NPA' = angle PA'A. Also, as AP =

A'P, then angle PAA' = angle PA'A, ie angle BPN = angle NPA', which was to be
proved.

3 ,.t.---"-



Having found the direction of V we now derive an expression fcr
its magnitude, again using assumptions (iii) and (v). consider Fig. 4, which
shows the detonation wave having advanced from P to P' in the time ta:>•n for
the liner segment launched from P to hit the axis at N. Construct the line
P'N. Again by assumption (iii), we have PIP -- P'N. Also construct the line
PL, which is perpendicular to the original liner surface at P, and the line
PIK, the perpendicular bisector of PN. Define angle NPL = 6 and PP'K = 6
It is easy to show, by summing angles at P' and P, that 6 = = 1/2 ($-a)1 2.where 0 is the angle which the collapsing liner makes with the axis, and a isthe original cone half angle. From triangle P'PK we then have -

sin V = V/(2U), (2.1)

where
S U= U/cos .D

Equation (2.1) is fundamental to shaped charge work and was first derived by
G.I. Taylor [14], and 6 has since become known as the Taylor angle. It has
recently been extended by Randers-Pehrson [E 5], and by Chou et al (1 6), to
apply to non steady state conditions. These corrections will be discussed in
detail in the next section.

Next we derive expressions for the velocities of the jet and slug.

We denote the velocity of the collision point M by _,, and then move to a
frame of reference in which M is at rest by imposing a uniform translational
velocity of - V to V In this frame each segment of the liner PM then has
a velocity v and moves along the line PM. Fig. 5 illustrates the velocity
relationship. Applying the sine rule we have

Vo V2 V 1

sin t.:. (a + 6)] sin [- + (a +2 2

from which we find

V = V cos (a + 6)/sin 0 (2.2)
2 o0

V = V cos ( - - S)/sin 0 (2.3) 0
0

Because of assumption (v), an observer in the frame of reference
moving with the velocity .y will see the steady state situation depicted in
Fig. 6, ie. two fluid jets with velocities V colliding at an angle 28. This
situation has been described by Milne-Thomson [17], and the result of the
collision will be two fluid streams, a "jet" moving to the right with velocity
_V22 and a "slug" moving to the left, also with velocity V2. Hence, in the
stationary system of coordinates, the jet will be moving to the right with a
velocity given by

Vj = + V2 (2.4)

"while the slug will also be moving to the right with the slower velocity

4 4



vs= v1 -v 2  (2.5)

using equations (2.2) and (2.3) in (2.4) and (2.5) we find

V. V cos (a + 6 - 0/2)/sin (0/2), (2.6)
J 0

V =V .;n (a + 0 /2)/cos (0/2). (2.7) • :-
5 0

For the simple case treated here in which Vo is independent of
position along the liner we have already found

6= 1/2(0 - a), (2.8)

in w:,?ch case equations (2.6) and 11.7) take the simple form

V. = V cc.3 (a/2)/sin (8/2), (2.9)

V = V sin (a/2)/cos (8/2). (2.10) ,

5 0 ~

The divi-ion of liner mass between jet and slug is governed by the
conservation of momentum. Let m be tVe liner mass per unit length
approachira the junction. let m. be that part of m going into the jet and m
be that gtL;.j into the slug. By equating the horizontal components of
momentum before and after passing the stagnation point M in the moving frame
we have

m2 cos 8= msV - m .V, (2.11)
mv2 s 2 j2

while from conservation of mass

M= + m. (2.12)

Combining (2.11) and (2.12) we find

2mj/m = sin (8/2), (2.13)
• 2 ( ":. : ":'

m /m cos (2.14)

It is important to point out that this steady state analysis is
4strictly true only for the case of a wedge shaped liner. Consider the cross-

section of the charge shown in either Fig. 3 or Fig. 4. The wedge shaped, or
* • linear charge, is defined by supposing the cross-section to be the same for an

infinite distance perpendicular to the cross-section, while the conical case
is obtained by rotating the cross-section around the line of symmetry. In
order for the whole of the collapse process to appear stationary and the
simple situation depicted in Fig. 6 to be applicable it is necessary for the
total mass per unit distance along the axis to be constant. This is true for
a wedge shaped charge, but is only approximately true for a conical liner of
"constant thickness., Nevertheless, the application of this theory to conical
liners is remarkably accurate, as we will see in later sections.

5"% •~~~."% .
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30 summary, the steady state model predicts that both the velocities
and cross-sectional thickness of the jet and slug will be constant.
Experimentally however this is known not to be the case: the jet in particular 0
has a marked velocity gradient along its length, the tip of the jet travelling
some four to five times faster than the base, which leads to considerable
elongation of the jet in flight before target penetration. This fact was known
by Birkhoff et al and was used by them in their description of jet
penetration, but was not included in their theory of jet formation. The
modification to the simple steady state theory to account for the gradient in
jet velocity was made by Pugh, Eichelberger and Rostoker [12] and is described
in the next section.

3. NON STEADY STATE THEORY ."-.

The velocity gradient within the jet was satisfactorily explained by
Pugh et al [12] by modifying assumption (v) as follows:

The velocities with which the various elements of the cone liner
collapse when they are struck by the detonation wave depends upon the original
position of the element in the cone.

This is certainly a reasonable assumption to make as the ratio of
the explosive mass to liner mass decreases continuously from apex to base and,
bearing the Gurney formulae in mind [1 8], we would expect a corresponding
decrease in liner velocity (remember that we are still assuming that the
period of acceleration is negligible). The decrease in velocity of each
segment hitting the axis results in a corresponding decrease in velocity of
each jet element as it is formed, hence the velocity gradient within the jet
is explained.

Because Vo is a function of position along the cone axis it is now
impossible to find a set of coordinates in which the collapse appears as a
true steady state process. This means, in particular, that it is no longer
possible to use Bernoulli's theorem to simplify the hydrodynamics, as
discussed by Birkhoff et al, and which is fundamental to the simple
description of the collapse as pictured in Fig. 6. Pugh et al overcome this
problem by using the same approach as Birkhoff et al, but applying it to a ...-.. -

succession of individual zonal elements. Each element is then considered
independently in the appropriate constant velocity coordinate system. As a
result, equations (2.6) and (2.7) for the velocities of jet and slug remain
valid in the non steady state theory, where now V0 is a monotonic decreasing I
function of x, where x measures distance along the cone axis. Equations

(2.13) and (2.14) for the distribution of mass between jet and slug also
remain valid in the new theory.

Another consequence of the decrease in liner velocity with distance
along the axis is that the collapse angle 8 is no longer constant, but
increases as the collapse proceeds. This is easily explained by referring
again to Fig. 4. Consider the element at Q, if this collapsed with the same

6



velocity as the element from p, then it would reach S when the element from P .
reached N, and the collapsing segment of liner NSP' would form a straight
line. However, as the collapse velocity at Q is less than that at P the -

collapsing liner adopts the shape NRP', which means that the angle 8 which the
liner makes with the axis at N is greater than the angle +which it would
have made with the axis if the collapse velocity were constant.

To calculate the variation of 8 with distance along the cone
Pugh et al adopt the following procedure. Let the cylindrical coordinates of
R in Fig. 4 be (r, z) and the coordinates of the original position Q of R in
the liner be (x tan a, x). The connection between the two sets of
coordinates is given by

z = x + Vo (t - T) sin A (3.1) -

r = x tan a - VO (t - T) cos A (3.2) k*.- -;*"

; where t is the time (t = o corresponds to the detonation wave passing the apex •..
of the cone), T = x/U and A = a +6 (x). The slope of the collapsing liner
is given by ar/az, ang the collapse angle 8 is defined by

tan 8 =,DrO•. (3.3) - -

From equations (3.1) and (3.2) we have

7;4

tan - V '(t -T) cos A + V cos A/U + V A' (t- T) sin ADr 0 0 D + " •
aZ - 1 + V ' (t - T) sin A - V sin A/UD + V A' (t - T) cos A

where the prime denotes differentiation with respect to x. The condition
r = o is equivalent to .. -

t -T =x tan a/V cos A (3.5)

Substituting (3.5) and (3.4) into (3.3) we find ''-""

sin 8+ - x sin a (1 - tan A tan 6) V '/V
tan 8 = 0 0 '.6)

Cos 8+ x sin a (tan A + tan ) Vo'/V

where 8+ a + 26 and is equal to the value of the collapse angle in the

steady state case. From the discussion already given we know that Vo will be
negative, while the expression in the brackets in equation (3.6) will be
positive for usual shaped charge dimensions, hence equation (3.6) shows
that 8 will increase as x increases.

7



it should be noted here that the analysis presented above applies
only to the case of a plane detonation wave. Generalizations of these
results have been made by Allison and Vitali [19] for point detonation, by the
present author for a spherically converging detonation wave [20], ... d by
Behrmann for an arbitrarily shaped detonation wave and liner [21].

An interesting development of equation (3.6) has also recently beenmade by Hirsch [22]. using simple trigonometric identities he has shown that•'''

the equation for tan 0 can be written in the form -.

tan 0 tan (0+ AO), (3.7)

where AO is defined by 'V

tan (- x sin a/(cos A cos 8))(V 0 / 0  (3.8)

*'. This simple development clearly shows how the velocity gradient of the liner 'A% ¢A,
continuously increases the collapse angle 0 to values greater than the steady
state value 0+ The introduction of the angle A$ also simplifies the
expression for the velocity of a liner segment in the coordinate system moving
with the collapse point (equation 2.3), and when this is considered with the
criterion for coherent jet formation (which will be discussed in section 6) it
allows Hirsch to make some interesting observations on the effect of
confinement on the jet tip origin and its variation with a.

The derivation of the Taylor angle formula, eq (2.1), clearly shows
that this relation is valid only under steady-state conditions. An extension
of this formula to noh steady conditions has been made empirically by Randers-
Pehrson [15], and analytically by Chou et al [16]. Both approaches take into
account not only the gradient in liner velocity along the length of the liner,
but also the finite acceleration of each liner segment.

Randers-Pehrson used a simplified 2D computer code to model the
acceleration of the metal liner by the explosive. The metal was assumed to
behave as a fluid and its thickness was ignored. Each point along the metal
surface was assumed to accelerate according to the equation

(V - exp- (t- T)/T), (3.9)
"0 -

where V is the velocity at any instant, V. is the final velocity, T is the
time at which the detonation front reaches the element, and T is the time
constant for the acceleration. Vo, T and T all vary with initial location.
After many simulations it was found that the projection angle 6 could be
described by the expression

:V 0  V0 IT (V IT)
sin 0 V 0 (3.10)

-2U 2 5
*.-.15..

where Vo' is now defined as being the derivative of V with respect to
distance along the surface. Typical values for Vo' anl T are n0--

8 ;.. 8 • ~'.-'-
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.01 (mm/ils)/mm and 1 to 5 microseconds respectively, so the effect of these
correction terms on 6can be quite significant.

Chou et al approached the problem analytically by writing the
equations of motion of each liner segment in the form

6=±tan (80 ) (3.11)
V

8=-V' Cos (e 6), (3.12)

where 0 is the angle between the original liner contour and the current line.c
contour at 1 (1 is the length coordinate along the liner contour) and the dot

*denotes differentiation with respect to time. Assuming e-6 is small,
equations (3.11) and (3.12) yield

6 f v'dt+-ft (V 2)'dt. (3.13)
T 2V T

when equation (3.9) is used to evaluate this expression the final result
becomes

V
- TV I +-T' V (3.14)

2U 2 0 4 0

Note that the first correction term in equation (3.14) is the same as found by
*Randers-Pehrson. Chou et al have compared equation (3.14), (3.10) and (2.1)
*with the projection angle calculated from the 2D Lagrangian code TEMPS. The

model system used was the BRL 81.3 mm diameter, 420, conical shaped charge
with a copper liner 1.9 mm thick. Fig. 7 shows the results. The

* differences between the two non-steady expressions for 6 are minimal, and
clearly agree much better with the TEMPS calculation than the original Taylor

* expression.

4.* CALCUTATION OF LINER IMPULSE

a' Before the non-steady jet formation theory described in the previous
-* section can be used to model a real shaped charge we need some means of

calculating the velocity imparted to the liner by the explosive loading, i.e. .

we need to know the speed V0 and projection angle 6 as a function of length .

* ~along the liner. As we have just seen, the non-steady Taylor angle formula A

provides a reasonably accurate relationship between these two variables, so
that in principle we need determine only V0 or 6. Both approaches are used Fl
in shaped charge design.

9



The %4to eiuomonly used method of a -•ulating the projection angle
for a given sapp c1arge geometry is by uoe Ot the Richter approximation [23]
as modified bY bO k 0oieat•x [24]. This ha0 tp% form

SKP (4.1)

26 °

where K and 0% etpirical constants which Apend on the explosive and the
angle at whicg t•l ctonation wave intersects the liner. They can be
determined frON pOe•iments with explosive-%4r1 slabs or sandwiches, and can

. also be founci ýy tidng to a small subset rf the shaped charge collapse data.
p and C are trpý %I•:ity and thickness of t1'q Iner material and e is the
"explosive thiCk~n , Harrison [51 has o~fj-d equation (4.1) to take
account of the C~Oa)I ement of the casing atu•l t~he charge. He writes (4.1)
"" in the form

-'--=-, (4 .2)

where B is a C%r ietjon factor given by

B3 1 + A/(P ec), (4.3)

p and e are bO Jansity and thickness of %-I casing, and A is a constant
wgich is deterfAl from experiment. Carlolle and Chou (25] have also
modified eqUal~koA (4.1) to take into account the non planar geometry of
conical shaped 6114es. They replaced the thickness ratio e/e by the area
ratio A /A , A \ and Ae are the surf ac Areas generated by rotating the ..-

e elines represellki1rg qe thickness e and e alNit tIhe cone axis for each point x.
An example of tA Accuracy of this type of tpproach, when coupled with the PER
theory of jet tor0  ion, is given in Fig. T, This shows a comparison of -"

experimental ahj t1Eoretical jet velocity d$%t•ibutions for the heavily-
confined 42" c shaped charges reporteq by Di Persio et al [26]. It is
interesting to Oet that the respectable agteeraent between theory and
experiment iS %Irqtaied using only the steadý state Taylor equation for 6, and
by neglectinq tj)A 1ariation of K and * with the angle of incidence of the

3detonation wa% Ch t•he liner. The vaues he were K = 0.25 cm /g and
=230.

0

An af1ro~tive approach to the prfAlem of calculating the liner
impulse is to Z,:,st uset a form of Gurney eq1htorn to calculate V0 and then use
one of the TY eciuations to calculate 6. The original Gurney model [18]
(see also [2,1] )4r 4 discussion of this work) calculated the asymptotic metal
velocities ae, q t 1V•ticin of the explosive t) rtal mass ratio C/M for
symmetrical qeroo'tertes using an energy equatiSr and the assumption of a linear
velocity gr iIA iki the explosive gases, atJ could also treat the plane
asymmetric cosh Izy &kncluding a momentum ballo-Qe equation. The formulae have
the general -'

v = f(Cl 4 ). (4.4)

100

10 -i



where (2 is an empirical constant known as the Gurney energy, and the form of
the function f depends on the geometry of the explosive-metal system. This
standard Gurney approach is unsuitable for modern shaped charge design in
several respects. We saw in the previous section that the non-steady Taylor
angle calculation requires that the full velocity-time curve for each liner
segment be known, while the standard Gurney model calculates only the
asymptotic velocity Vo. Also, the standard model applies only to explosive
systems, and needs to be modified to handle the implosive case. Several
papers have appeared in the last few years which extend the Gurney model and
attempt to remove these deficiencies.

Chou et al [16] have considered the problem of a steady-state
imploding cylinder using the same general assumptions as the classical Gurney
theory. Because of the curved geometry in the imploding case the momentum
equation contains an extra term which represents an outward impulse applied to
the explosive gases. This extra term is approximated in terms of the
Chapman-Jouget pressure, the characteristic acceleration time, and the inner
and outer radii of the cylinder. The expression for the final liner velocity
as a function of charge-to-mass ratio is then compared with the original
Gurney formula and a 2D code calculation, and is found to be a significant
improvement on the standard result.

The recent paper by Chanteret [28] extends the Gurney method in the
two areas needed for application to accurate shaped charge calculations. An ""
analytical model is developed for energy partitioning during expansion which
allows a calculation of the Gurney energy as a function of the expansion
ratio; when combined with the Taylor angle equation this allows the entire
velocity-time curve for all steady state geometries to be calculated. The
results are found to agree well with 2D code calculations or with available
experimental results. Chanteret also considers the problem of implosive
geometries by introducing the concept of a fictitious rigid boundary in the
explosive and applying this to the case of the imploding cylinder considered
by Chou et al. A comparison of liner velocities as a function of charge to 4_.
mass ratio C/M shows that the two approaches agree remarkably well.

*°. - '4**

Hennequin [29] has also developed an analytical model of liner *.-...,

collapse based on assumptions similar to those of Gurney. The laws of
conservation of mass, momentum and energy are used and applied in detail to
"the explosive gases, liner and casing. Both cylindrical and conical
geometries are considered.

'-'4.-'

For the conical case, a 600 apex angle was used and liner velocity
as a function of time for different elements along the length of the cone was
compared with 2D hydrocode calculations using the HEMP code. The results
"agreed well for the first 1-2 ls, but then showed disagreements of the order
"of up to 40%. Nevertheless, the results are encouraging, and undoubtedly
"work will continue in this direction.

A more detailed approach to the calculation of liner impulse has
been made by Kiwan & Wisniewski [30]. Their idea is to replace the liner by
a system 3f discrete solid liner elements and then to assume that both the
strength properties of the liner material and the interaction forces between -* -.

-;--
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liner elements can be neglected. The impulse transmitted by the detonation
products to a liner element is then obtained by integrating the excess
pressure along the path of the liner element. The pressure wave behind the
detonation front is approximated by the following expression

P(z) = P - P + (p - P )(z - 1)/(1 - X ), -'
f o f o o 0

4 ( z 1 (4.5)
0

"where z = x/U t, Pf is the detonation pressure, P the ambient atmospheric '-'•0*

pressure and R is the value of z for which the particle velocity vanishes in -
0the Taylor. wave°. Equation (4.5) applies only to a one dimensional plane

Taylor wave in a tube with an open end which implies a completely confined L&-
charge. Kiwan & Wisniewski show how this can be modified to apply to an
unconfined charge, and also to take account of the cavity in the explosive
which causes a reduction in the total available energy. The liner motion is
then obtained by numerically integrating Newton's equations for each liner .
element, i.e.

"k kka x P(x (t), y (t), t) sin a (4.6)

*"k xk k'':'k;
a y = P(x (t), k (t), t) cos a (4.7)

where k labels the liner element, P is given by an equation similar to (4.5),
a is the mass per unit area of the liner, and the dot indicates
differentiation with respect to t. The jet formation equations used are
similar to those of the PER theory with 6 = 0, as the above approach
implicitly assumes that each element of the liner collapses in a direction
perpendicular to the surface of its initial position on the liner. The

" theory has been applied to two shaped charges, having diameters of 3.44" and
3.60" and apex angles of 420 and 600 respectively. Both charges are loaded
with Comp. B and have .106" copper liners. The calculated results are in
good agreement with the experimental results of Di Persio, Whiteford and Simon
[31].

Kiwan & Wisniewski [30] have remarked that a possible improvement
for their model would be to compute the pressure wave using one of the many
"available hydrocodes and then to couple this calculation to their equations of, "
"motion for the liner segments. A similar approach has been used by several V ID 0.
groups in the past few years with varying degrees of success. Edwards & , .

Godfrey (32] describe a method based on the CHAMP computer code system in ". *.'.

which the high-explosive detonation and hydrodynamics are computed by an . .. ,-

explicit Eulerian finite difference method while the metal liner is viewed as
a polygonal line of mass segments in which the metal volume and internal .
stresses are neglected. The formation of the jet is treated analytically _
using the PER theory. This approach has also been used by S.L. and H.
Hancock (33]. Van Thiel and Levitan [34] describe a method in which a

*. Lagrange code (HEMP) is used to calculate the motion of the detonation
products and liner segments, which are then coupled to analytic expressions

12



similar to those of PER to describe the jet formation. Kivity et al (351
also describe a scheme in which the explosive and liner are treated by the
DISCO code (a Lagrange code similar to HEMP), while the jet formation is 4O
described by the PER theory. A similar approach is also used at the
Ballistic Research Laboratories [36]. *" "

•-.'+- ...7-

5e INVERSE VELOCITY GRADIENT EFFECT AND JET TIP FORMATION ..

-- ' ,•~~...?..+'+

.K• , The PER theory is based on the assumption of a negligible

acceleration time, i.e. it is assumed that the detonation impulse
instantaneously accelerates the liner segment to its terminal velocity Vo.
In practice this does not occur. We saw in the previous section that each
liner segment follows a velocity-time curve which can be reasonably
approximated by an equation of the form of (3.9), where the time
constant T can have a value of several microseconds. This means that liner
segments near the apex of the cone will not have sufficient time to be
accelerated to their terminal velocity V before colliding on the cone axis.
As the distance between the liner segment and the apex of the cone increases, :.

more space (time) is available for the segments to be accelerated.
Eventually a point is reached at which the segments do have sufficient time to

be accelerated to Vo, but then the influence of the decrease of the explosive
mass to liner mass takes over and the value of Vo decreases as x increases.
The point at which this usually occurs is situated about one third of the way .
along the cone axis from the apex, but the exact position depends on the
geometry used. More information on this can be found in reference (491. The
net result is that the velocities of the liner segments just before collision
with the axis first increase to a maximum value somewhere near the midpoint of
the cone, then decrease. The jet segments produced after collision of the
liner segments on the axis will also follow this pattern. A further
"limitation on the performance of the shaped charge occurs in the base region
"where the combined effect of a significant drop in C/M ratio and the explosive

: thickness droping below the critical thickness to support detonation produce
jet elements with velocities too low to contribute to penetration of target
material. This is described more fully in reference (491.

"The velocity distribution within the jet as just outlined will not
be stable of course. In the leading part of the jet a particular jet element

"" will not travel for long before the jet element behind it, travelling at a
"-" higher velocity, will collide with it and the two will combine to form a

"single particle moving with a velocity intermediate between the velocities of
the two particles before collision. This process of collision and jet.
"compression will lead to the formation of a relatively massive single tip
particle, and will terminate when the velocity of the tip particle is greater
than the velocity of the nearest following jet segment. This phenomenon has ."*% -.
"been known experimentally for some time [31], and the presence of a massive
jet tip is clearly evident in flash radiographs. The paper bV Perex et al
provides a good illustration of this (371, as does the MRL flash radiograph
reproduced in Fig. 2. Note that the high quality of this radiograph also .*

allows the ablation of the jet tip particle to be observed. A similar
compression occurs for the slug, as has been noted by Kiwan and Wisniewski

* (30].
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several authors have successfully modelled the formation of a
"compact jet tip within the ID approximation. Carleone et al (38] have made
both an experimental and theoretical study of this effect. They describe a
series of experiments using the 81.3 mm BRL Standard Charge in which the apex
end of the liner was filled to different heights with Woods metal, an inert
material which inhibits the collapse of the apex portion of the liner.
Several radiographs of each jet were taken and used to observe the jet tip
particle and to measure the jet velocity. No effort was made to directly
examine the collapse process and the fate of the woods metal however, which -
could effect the interpretation of the data. The experimental results were
cormlared with a iD theory based on the PER equations, but containing some
important modifications, the most important of these being the inclusion of
liner acceleration. The liner elements were still assumed to travel along a
straight line from the liner to the axis, but each element was assumed to have
a finite constant acceleration until it either hit the cone axis or attained
the final collapse velocity predicted by the (steady state) Taylor relation.
It was assumed that the jet elements experienced a perfectly plastic collision
during the compression stage, and the velocity of the tip particle was then -""[

calculated using conservation of momentum. Experimental and theoretical
results were then compared and showed quite good agreement for jet tip
velocity versus percentage of ineffective cone height, jet velocity versus jet
element position, and jet radius versus jet segment position.

Harrison [5] has described an iterative scheme for the calculation
of the inverse gradient effect. The bending angle * (which is twice the
Taylor angle 6) is calculated from the modified Defourneaux equation (equation O
(4.2)). A new equation for the bending angle is then defined as follows:

S=e (b/T*) 2  (5.1)

where T* is the time which an element takes to reach the axis, e is the
thickness of the explosive, and b is related to the density and thickness of
both the liner and explosive. The iteration is carried out between equation
"(5.1) and the expression for the collapse time T* until N approaches 0 to
within some desired degree of accuracy. The scheme then proceeds in a

i similar manner to the calculation described by Carleone et al [38]. Harrison
makes an extensive comparison between this simple iD theory, a 2D hydrocode
(the BRL version of the HELP code) and experiment for a variety of different
shaped charges and generally finds quite good agreement.

Kiwan and Wisniewski [301 have also made a detailed calculation of
the "pile up" of the leading jet elements to form a jet tip particle, but
their comparison with other calculations, or with experiment, is nowhere near
as extensive as either Carleone et al or Harrison. One novel feature of
their calculation is that they allow the collisions in the jet compression
region to be either purely elastic or purely plastic. This makes a

-•' difference of approximately 10% co the final jet tip velocity.

14



6. EFFECT OF COMPRESSIBILITY ON JET FORMATION ..-

The original steady state shaped charge theory of Birkhoff et al,
and its extension to the non steady case by Pugh et al, both assumed that the
liner material flowed as an incompressible fluid. The result of this

assumption of incompressibility is that a coherent jet must always be
formed. If the fluid is compressible however the situation is more
complicated, and there is the possibility of either a no jet configuration, or
the formation of a non cohesive jet [39].

The 2D wedge shaped geometry formed by the angular impact of two
"plates at high velocity has been analysed in detail by Walsh, Shreffler and
Willig [39], and by Cowan and Holtzman [40]. They find that if the fluid
velocity of the collision is subsonic (relative to a frame moving with the
velocity of the collision point) then a coherent jet will always be formed, as
in the incompressible case. For supersonic collisions however jetting only
occurs if 8 > 0, where $ is the critical angle at which the shock wave at

C . c
the stagnation point becomes detached (the angle between the plates is 28).
For 8 < 8 no jetting occurs.

c

These conclusions have been verified by Harlow and Pracht [41] by
numerical calculations of the oblique collapse of two metal plates using the
Particle-in-Cell method. These calculations were also able to include the
effect of viscosity on the collapse process and were also able to examine the
transient stages leading to the formation of the steady state.

Chou, Carleone and Karpp [42,43] have reviewed this earlier work and
considered its application to the axially symmetric geometries which occur in
conically lined shaped charges. They note that the criterion given by Walsh
et al and by Cowan and Holtzman is based on the maximum angle for an attached
shock at the collision point as determined by the shock polar for the -
material. As the shock conditions and shock polar are applicable to curved
shocks at individual points on the shock, they therefore believe that the
above jetting criterion should also be applicable to a shaped charge with a .
conical liner. They therefore propose the following:

Jetting Hypothesis ."-

1 . For subsonic collisions, a solid coherent jet always occurs.

2. For supersonic collisions, jetting occurs if 8 > 8 for a given v;• • c
the jet formed is not coherent.

3. For supersonic collisions, if 8 < 8 *for a given v, no jet will be ".. :i

formed. c ,., .J. -.

(Here v is the velocity of the liner in the frame moving with the velocity of
the collapse point). The remainder of the report by Chou et al [42] details S
a large number of experiments and numerical computations which are in
agreement with their hypothesis.

15. a.
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A similar jetting hypothesis has been used by Harrison in the BASC
code (5]. His criterion for a coherent jet is that the velocity v should
satisfy the inequality

v < 1.23 C (6.1)

where C is the sound velocity in the liner material and the numerical factor
has been determined by comparing jet radiographs with BASC results. *":

Finally, we note that an interesting application of this work has
recently been made by Carleone and Chou [44] in calculating a theoretical
maximum velocity for a coherent shaped charge jet. Using the above jettinq
hypothesis, the simple Gurney model, and some geometrical arguments, they
derive the following upper limit for jet velocity

V. 4 2.41 C (6.2)

Carleone and Chou compare this criterion with a large amount of published and
unpublished shaped charge data and conclude that the maximum jet tip speed
given by equation (6.2) has not been exceeded by any cohesive jet.

It is interesting to note that the application of equation (6.2) to
a steel liner results in a theoretical v.max of 9.8 mm/Us (the value for
copper is 10.2mm/us), whereas Mader et al have recently reported the formation
of a jet from a 4.0 mm thick hemishell having a jet trip velocity of
18mmts (48]. It is uncertain however whether the theory of Carleone and Chou
is applicable to this geometry.
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GLOSSARY OF SYMBOLS

•.~. .',.•.

Velocity of detonation wave

V_o Final collapse velocity of liner

i" • a original cone half angle ":.'

8 Generic symbol for collapse angle

Collapse angle in Steady State theory

""U UD/Cos a

* 6 Taylor angle" -

SV Velocity of stagnation point

Velocity of liner in frame moving with velocity of stagnation point ',*.

Vj Speed of jet

Vs Speed of slug

m Mass per unit length of liner

mj Mass per unit length of jet at stagnation point .".

m Mass per unit length of slug at stagnation point
5

x Measures distance along cone axis from apex

rz Cylindrical coordinates of typical liner element

"- T Time for detonation wave to travel distance x
_]0

A a +

' VI Derivative of V with respect to x or £, where appropriate
00

AO Difference between 8 and ,

V Liner velocity when finite acceleration time is considered

T Time constant for acceleration of liner

"" Angle between original liner contour and current liner contour

. Length corrodinate along liner contour

* 0 Derivative of 0 with respect to time '...
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K,ý Empirical constants used in Richter approximation for 8
0

P Density of liner material

e Thickness of liner material

e Thickness of explosive

B Correction factory for Richter approximation to take casing into
account - X.X'

p Density of casing material
c

ec Thickness of casing material

A Experimentalloy determined constant for use in modified Richter
approxim~ation

A ,A Surface areas generated by rotating the lines representingthicknesses e and e about the cone axis

C/M Explosive to metal mass ratio

/2E Gurney energy 7.

P Pressure wave behind detonation front

P Deontation pressure

Po Atmospheric pressure

z Scaled coordinate along cone axis, equal to x/UDt S..

X Value of z for which particle velocity vanishes in Taylor wave
0

a Mass per unit area of liner material

x,y Cartesian coordinates of typical liner element

h height of cone

Bending angle (twice Taylor angle)

Nth iteration of bending angle

b Constant used in bending angle formula

T Time taken for liner element to hit axis L !

8c Critical angle at which the shock wave at the stagnation point
becomes detached

c Velocity of sound in liner material
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(a)

detonation front

(C) ( ,,

4440

(d)

(e)

slug
jet

Figure 1.* Schematic illustration of the progressive stages of liner collapse
to form jet and slug. 4-'
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Figure 2. Flash radiograph of the collapse of the MRL 38 mm standard
shaped charge 18.5 Us after initiation of detonation.
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Figure 6. Formation of jet and slug by collision of two fluid jets. Adapted ý
from referencer 13.
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