
RD-Ai50 607 PRESENTATION RND FORM IN USER INTERFACE ARCHITECTURE 1/1
(U) ION THOMS J MATSON RESEARCH CENTER YORKTOWN
HEIGHTS NY J M CARROLL 31 AUG 83 RC-i844

UNCLASSIFIED F/G 9/'2 NI



111 1.0 :6 1

'II& 1122L~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



-~. . . . .. . . . . . .'~- . - 77~ ---. : -

RC 10144 014509i), 8/31/83

Computer Science/Cognition 7 pages U
Research Report

PRESENTATION AND FORM IN USER INTERFACE ARCH ITECTURE*

John M. Carroll
Computer Science Department

* IBM Watson Research Center
* Yorktown Heights. NY 10598

In

DTICS3 ELEC.D
*FEB 1908

C:3

ed~~Apuw fo ItbI hWellame

Dubum Um~

84 11 05 026



RC 10144 (045092) 8/31/83
Computer Science/Cognition 7 pages -,-,

PRESENTATION AND FORM IN USER INTERFACE ARCHITECTURE*

John M. Carroll
Computer Science Department
IBM Watson Research Center ".
Yorktown Heights, NY 10598

Abstract: It is suggested that the formal organization of function in a user interface architec-
tno can be treated as a general-level issue, possibly amenable to codification as design -.-

guidelines, but that the presentation of function via interface elements like icons and menus
mutbe treatedon acase by case basis. :j &t,-L f .'"

This brief thought paper was invited by BYTE magazine for a special issue on user interface
architecture.

p.. i

Accession For
NTIS CRA&I

DTIC TAB
Urunnounced E.

I f'eiibllity Codes/ jATRIl and!or_q :.t s pecial

ecn/vI
..................................' t..:..:::2.:...:..*'@**.t.s- n.~ -



WY.._ -1 -7~~ t7 I 7

Among the many trends in end-user application software are two that seem to chafe one
another. On the one hand, software is getting more complex: the word processors of only a
few years ago, at that time seen as a thrilling glimpse of the future, are now being superseded
by office work stations with more powerful and more diverse function. The now-mundane
possibilities for real-time text reformatting and interactive spreadsheets have been outdated by
alternate fonts for text, voice annotation, high-quality graphics - integrated with text, multiple
concurrent tasks, and rumors of "unrestricted" voice and handwriting recognition.

Yet on the other hand, there is a gathering momentum toward increased software
usability, an enormous and rapidly growing emphasis on ease of learning and ease of use
directed at that "newly discovered" software component, the user interface. Unhappily, the
two trends can often be at odds. If function were to be fixed, progress in the quality of user
interfaces would be certain. For even without a deeply principled udetanding of human-
computer interaction, the problem could be attacked on a purely empirical (case by case)
basis. But as functional complexity increases, the feasibility of this kind of approach recedes.

The upshot of the conflict between these two trends is not a matter of possibilities. It is
a tangible part of the current reality of end user systems. People using these systems are
frequently overwhelmed. They can lose track of where they are and of what they are trying to
do. They can produce tangles of errors and ad hoc recovery behaviors that no manual (on-line
or off) can anticipate or analyze in useful depth (see reference 5). Nor is this just an issue for
novices. More experienced users, also perhaps overwhelmed by available function, tend to
asymptote at a level of mediocre performance - inured to nonoptimal use of more powerful
function (see reference 10).

How are we to pursue quality in the user interface, given this situation? The answer,
obviously, is "any way we can". One direction we can pursue concerns itself with the specific
nature of interface elements - the objects and actions of which the interface consists and the
interface concepts, often called "metaphors", into which these primitive elements are organ-
ized. I will refer to work of this sort as being at the level of architectural prewnue ion.

A second direction we can pursue specifically eschews the particulars of interface
elements. It is concerned with architectural form, rather than presentation. The focus here is
on how portions of a system's function are interrelated in typical user scenarios, but not on
specifically how each piece of function is represented to the user in the interface. An example
issue of architectural form is the contextual dependence of function pieces. In an interface
with high contextual dependence, the range of available function is strictly fixed by the current
state the user is in. The hierarchical access of function, typical of menu interfaces, is a
common example of contextual dependence (for example, property sheets in the STAR-type
interface; see reference 11). In an interface with low contextual dependence, any function can
be accessed from any state, in the same manner and with the same effects.

A current example of an architectural presentation issue is the contrast between graphi-
cally conveyed interface metaphors, as in the use of display icons for interface actions and
objects, and nongraphically conveyed interface metaphors, as in the use of metaphoric

vocabulary for these actions and objects (e.g., mail, print, document, file). Other examples
include the availability and nature of command-driven dialog, of prompted specifications
and/or selections via menus (etc.), and of status and error feedback.

* .. -NP%

. . .- .......... .............. N



Presentation and Form. -2-

The distinction between architectural form and architectural presentation, I suggest, has
important implication for the orpnization of research effort on user interface issues, and in
particular. for the development of user interface "guidelines". My claim is that there are
principles of architectural form amenable to codification as guidelines, but that there are no
such principles of architectural presentation. I recognize that this claim will be controversial.
and that my arguments for it will be incomplete. My purpose here is to initiate and to focus
controversy, not to settle it.

Consider our examples: It seems that the issue of contextual dependence can be simply
and generally resolved in a guideline: maximi=e contextual dependence in a user interface in
order to facilitate interaction in typical user scenarios. As far as I know, following this
principle optimizes for both ease of learning and ase of use. The only trade-off is that
atypical user scenarios would require circumventing context dependence. The best we can
ever do is the greatest god for the greatest number. But now consider the question of
whether an interface metaphor should be couched s a display icon or a a labelled soft key? [
don't think there is or will be a general principle to cover this case. In the balance of the
paper, I examine two illustrative cases of architectural form and presentation.

Arehilsct"u Feru
AM &ZENS of Sted Fude-,

Some of our recent research work has examined techniques for "staging" the presentation
of function to new users. A staged uer interface architecture makes it possible to turn off
layers of function, such that the basic application scenarios can be run by the user with no
frills, but so that the advanced function can easily be engaged when requested. A user
interface designed this way can always be conveniently modified to be simpler or more
complex by merely turning layers of function off or on.

There are two reasons why this might be a good ide First, it deals simply and generally
with the troubling impact that increasing functional complexity can have on interface quality.
The remedy is to block off enough of the function to make the system sem simple. Indeed,
the pitfall of prematurely and inappropriately accessing advanced function is a common new
user error, and may well lay the pround work for later timidity on the part of more experi-
enced users when it comes to exploring advanced function. Second, by having the advanced
function available, this scheme provides a brilge for the usr between from mastery of the
core application function and mastery of the complete function. Insofar as things in fact can
work this way, we have provided a simple and general solution to the conflict between
increasing function and user interface quality.

In order to experiment with this idea, we designed a series of modifications in the user
interface of a commerical word processing system David Boor and I manased to define a
coherent simpler level of function which included only document creation, revision, and .:
printing function, and which specifically blocked the seven or eight most devastating new user
errors which Robert Mack, Scott Robertson and I had observed in a prior study of people

to am t ful sym rcing p s to these ern involved urer restctons
on the creation, revision, and printing function. Essentially, we imposed an alternate architec-turl form on the system by brute force. The moiicto we obtained I wi call the Trining ....

System.

Physically the Training System looked exactly like the Full System. All of the menus and

other displays were exactly the same. However, wben a ussr selected one of the error-
provocative choices, options, or functions we had isolated, the Training System displayed the
message "X is not available on the Training System", where X was the name of the selection.
Control stayed with the current state, and the me was immediately free to make another

:: .. .. . . . .. . .•.:.,.-



Presentation and Form. -3 - -

selection. The error consequences had been "blocked". The user could see the advanced
: function, and even try it - only to be told it was not yet available, but the user would not

suffer the penalty such self-initiative often carries. In the Full System, in the same situation,
the user's selection would have triggered actual function, and in most cases led quickly to
trouble. K..

" ~Subsequently, and in collaboration with Carolina Carrithers, Jim Ford, Georgia Gibson, ,..
L.', ~~and Penny Snuth-Kerker, I have experimented with the Training System in a series of studies ,'''.

- % b~~wreported and to-be-reported elsewhere (see for example, reference 3). Part of what we found " .
is good news, but not altogether surprising news: novices can loarm basic word processing skills
several times faster if they don't have to spend time recovering from the errors of prematurely..""
and inappropriately accessing advanced system function. In particular, the Training System

users were able to reliably get to the Typing Display and begin concrete work in less than half
the time as the best-performing group of learners using the Full System.

There was evidence that this advantage is more than merely a matter of reducing error
time. The Training System users, at the end of our experiment, were able to type and print
out a simple letter more than twice as fast as the Full System users. The Training System
users reduced the proportion of their time spent on errors almost 50% more than the Full
System users over the course of the experiment. And more than 90% of this improvement
was due to their spending less time on the errors that were not blocked in the Training System
itself. Hence, the advantage of the Training System is not merely a matter of blocking off
errors and then observing that people spend less time on them. That is, they seemed to be
more successfully developing an understanding of the system which allowed them to avoid all
kinds of errors, and not merely to rely on the Training System to block the consequences of a
subset of possible errors.

Finally, and indeed at the very end of the experiment, we administered a system concepts
test and a work attitude test to our experimental subjects. The Training System people did
better on both tests, indicating that they had learned more about the system, and that they felt
relatively better about work in general after the experience.

What lessons can we draw from the training system work? First, we can draw some fairly
specific lessons with regard to the design of training systems. The novices using our Training
System were given opportunities to see where the advanced function was and to make errors,
but they were protected from the direct consequences and side effects of making the errors.
Nevertheless, they learned to discriminate errors from nonerrors more successfully than their
Full System counterparts. Turning things around, the Pull System learners were given more
punishment for making errors, but their learning was impaired rather than facilitated relative
to the Training group. The simple implication is that negative reinforcement has no useful role
to play in the user interface. No, end user software doesn't have to hurt. If it does, it's bad
software.

A second lesson we can draw from this work pertains more generally to the issue of
architectural form. The system we studied was derived from a commercial system by ad hoc . .
surgery - long after the original design had been set in silicon. We can imagine however that
when the original architecture of a machine is developed, provisions can be made for the sort
of function subsetting we had to graft on by brute force. This amounts to a user interface
guideline that the core of an application be itself a coherent application - and in turn perhaps
that the secondary function, along with the core, constitute a coherent application, etc. This
conclusion has two nice properties: first, there is empirical evidence supporting it, and second, "..
the recommendation it makes is simple and general.

%o" ,%~~~~~~~~~~~..'J . -......... -.-. 'o...........-,... . . . .. ... ........ .. .............



Prntation and Form. o4.-

A quetion that remains is how users will so from the core function all the way to the full
function. We know that in the real world experienced users sometimes subset themselves and
never become experts on systems they use routinely (see reference 10). In our simple case
study, there were only two levels of system complexity, and in the one case in which we have
examined users switching from one level to the next, users were told explicitly to switch.
However, the intent in the Training System is to motivate the user to interpret increasing (but
managable) functional complexity as challenge. Precisely this idea lies at the heart of many
computer games (see references 2 and 9). Our hope was that seeing, and even harmlessly
trying, the advanced but disabled options would help motivate the user to want to try these
options again when they have become active. This remains an untested aspect of the Training

L Systemn

ArcdMtn al pesteo
Proem 1de of poem.

Having seen that simple and general principles can be developed at the level of architec-
tural form, we now turn to consider architectural presentation. It seems to me that the
situation is ratber different. Indeed, I want to suggest that improving the quality of a user
interface at the level of achitectural presentation is =wr just a matter of applying simple and
general principles, and unlikely to ever be accomplished by brute force. Architectural
presentation is a daign domain per excellence; as such, it is not amenable to deductive
analysis (see reference 6). Rather it is fundamentaly a matter of iteratively refining and
developing a set of idlosyncracies.

Unfortunately, there can be no demonstrable arguments either way for such a sweeping
clain. But this does not diminish the importance of the question, as even a tentative determi-
nation could help organize and allocate effort in user interface development work. I will try to
illustrate the argument by discussing some recent interface metaphors for office systems.

Most simply, the motivation for developing user interface metaphors is to build upon what
the user already knows, and thereby to reduce what will be conceptually novel. A large
proportion of the intended users of word proaeors are professional typists. They know quite
a lot about typewriting but not necessarily anything about computers. Analogous points can
be made for potential users of electronic spreadsheets, and various other applicatons. Such
observations suggest a simple design idea that has been very successfully exploited: help
people learn and use novel systems by inviting them - via the interface - to engage their prior
non-computer knowledge (see reference 7). The current popularity of interfaces that deliber-
ately suggest typewriters, spreadsheets, and desk tops, is good evidence that them is something
roughly right about the metaphor approach. However, I want to question whether metaphor is
a simple issue with a general principle (such as "maximize contextual dependence" or "layer
advanced application function"). Them are two reasons for my worry.

First, metaphors are inevitable in human thought and, while they can be a source of
"insight" and "savings", they can as often be a source of interference and confusion. When
we focus discussion on limelighted success stories like "a word processor is a typewriter", we
overlook the many classic examples of metaphor-induced troubles. Indeed, psychologists have
a special term to refer to the interference of prior knowledge on problem solving activity:
"tuctona flxdn". .":

An example is an experiment in which people were asked to mount candles on a vertical
screen (see rferene 1). They were each given a small cardboard box containing candles,
thumbtacks and matches. A correct solution is to mount the candles on the boxes (by malting
a little wax) and then to mount the boxes on the screen (with tacks). Boxe are typically
containers, not platforms, and this interferes with the required insigh. When the materials for .

- .. "-.' * ..-....



Presentation and Form. -5-

the problem were presented to the subject placed inside the boxes (reinforcing the container
interpretation), only 10 percent of the participants could solve the problem. (When the boxes
were presented empty along with the other materials, almost 90 percent solved the problem.)

Even the typewriter metaphor has its problematic side. Users we have studied were often
quite confused by the fact that keys like Spacebar, Backspace, and Carrier Return insert blank
spaces and line breaks, instead of merely moving the typing point (like on a real typewriter).
People often balk at instructions like "backspace to erase" or "type to insert". And this can
cost them much failure and frustration. They often try to change margins and tabs, when
doing so is needless because of system defaults and dangerous because of the risks of getting
tangled in advanced function (see reference 8). But the point is not to avoid metaphors, for
this is not possible. Engaging prior knowledge in the service of present behavior and thought
is a fundamental cognitive process. The point is that this process amounts to a trade-off of
blocks and insight, of confusions and savings.

The second reason interface metaphors may never become a matter of simple and general
principles is that they are often supremely paradoxical They often act as conceptual aids as
much because they miimatch their targets as because they match. Pressing character keys
elicits glowing dots on a TV screen rather than of lines of ink on a paper; these are really very
different effects. And typing over characters on the screen replaces the prior characters or
inserts the new characters, although both outcomes are unpredictable on the basis of literal
metaphor projection. Indeed, given a simple view of metaphor, it is remarkable that neither of
these metaphor misfits has a very troubling consequence for learners. In fact, encountering.
these misfits can afford a concrete opportunity for developing an enhanced understanding of
the electronic medium (e.g., the concept of dynamic storage). It has been argued that this
paradoxical aspect of metaphor can be more important to new users than literal similarity (see
reference 4).

These two properties of metaphors raise a host of questions. When is the metaphor
trade-off favorable? When will metaphor mismatches be cognitively stimulating? And these
questions - which we cannot resolve in a general way, we can also not dismiss, for aspects of
metaphor pervade virtually all thought, and certainly any user interface. Indeed, the very
notion "user interface" implies that what the user is seeing and conceptualizing is something at
least one step removed from what the system is "really" doing. Adding iconic objects and
actions may make the desk top metaphor more explicit, but iconic interface entities are not
necessary to suggest the metaphor in the first place. Merely describing a system as an "office
application system" will have already brought to mind rich and diverse physical office
metaphors. What is truly staggering, to me anyway, is how little more than this we can say on
a purely analytical basis.

For having recognized that user interface metaphors are complex and unavoidable design
trade-offs, we really can say little more than "try some out, test them, and try some more".
The specifics can never be deduced. For example. suppose that a document removed from a
folder (directory) to be edited is not returned to the folder after editing. The physical office
metaphor suggests that the document should then be "left out" (e.g., on a metaphorical
desktop), to be returned to the folder only when the user explicitly moves it there. But what
about printing? Suppose that a document removed from a folder to be printed is not explicitly
returned to the folder afterwards? Should the document remain on the metaphorical printer's
metaphorical paper table? Or should the printed document be automatically refiled?

I think both choices are wrong; there is no simple solution. If the document is automati-
cally refiled, the consistency between editing and printing is compromised. If the document is
not automatically refiled, it is very likely that it will be forgotten and left in the printer. After
all, when a document is sent to the printer, the users attention ultimately shifts to the printer

* S * *. ~ *. . . .. . -. . .. . S * •- .. . . . . . . . . . . ~• . .. . .
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Presentation and Form. -6-

(not an icon or object label, but the physical thing). What happens when the next document
is left in the printer? We can reason out solutions to such architectural presentation issues if
we wish. However, these well-reasoned solutions will not always be right. The trade-offs and
interrelations are too rich and subtle; too often the key factors are completely idiosyncratic toI!

a particular system or application. When one problem is "solved" another appears whose very
.existence depends on the prior "solution".

The world-view of user interface architecture that I have been pushing here makes rather
different prognoses for form and presentation. And thes entail a view of where things ought
to be going. Architectural form, it seems to me, is very much a matter of general principles.
In this domain, the user interface guidelines every dsner longs for may actually exist. For
this reason, it may make sense to direct research on matters of architectural form at general-
level principles. Why do less than we might? Architectural presentation, however, seems less
amenable to such a treatment. Presentation issues, I think, will remain almost purely empirical
case-by-case problems to be resolved by prototyping and user testing. If this world-view is
correct, then the distinction between architectural form and presentation could be an inpor-
tant guide in planning research on user interface quality.

U- .

L..

O-

°-I °

II

-I -.r .

_., ....* ,,,- . *.. -. *.- .*.- .: , . . ...- . . . . .. . . . . .,.....-... -,,-.,-.,, -.. *. • .. -......-. ,. .. . -.. , .-. . •* ,. . .. "°



Presentation and Form. -7-

Note
01 am grateful to Jeff Kelley, Clayton Lewis, and Mary Beth Rosson for commenting helpfully
on an earlier draft of this paper.

References

(1) Adamson, R.E. Functional fixedness as related to problem solving. Journal of Experimen.
tal Psychology, 1952, 44, 288-291.

(2) Carroll, J.M. The adventure of getting to know a computer. Computer, November 1982,
49-58.

(3) Carroll, J.M. and Carrithers, C. Blocking user error states in a training system. Submitted
to ACM Communications.

(4) Carroll, J.M. and Mack, R.L. Metaphor, computing systems, and active learning. IBM
Research Report, RC 9636, 1982.

(5) Carroll, J.M. and Mack, R.L. Learning to use a word processor: By doing, by thinking,
and by knowing. In J. Thomas and M. Schneider (Eds.) Human factors in computer
systems. Norwood, NJ: ABLEX, 1983.

(6) Carroll, J.M. and Rosson, M.B. Behavioral specifications as a tool in iterative develop-
ment. In H.R. Hartson (Ed.) Advances in Human-Computer Interaction. Norwood, NJ:
ABLEX, forthcoming.

(7) Carroll, J.M. and Thomas, J.C. Metaphor and the cognitive representation of computing
systems. IEEE Transactions on Systems., Man, and Cybernetics, 1982, SMC-12,
107-116.

(8) Mack, R.L., Lewis, C.H., and Carroll, J.M. Learning to use word processors: Problems
and prospects. ACM Transactions on Office Information Systems, 1983, 1, 254-27 1.

(9) Malone, T.W. Toward a theory of intrinsically motivating instruction Cognitive Science, .. '
1981, 4, 333-369.

(10) Rosson, M.B. Patterns of experience in text editing. CHI '83 Conference on Human
Factors in Computer Systems, Proceedings. Boston, MA: December 12-15, 1983. . "

(11) Smith, D., Irby, C., Kimball, R., Verplank, B., and Harsiem, E. Designing the STAR
interface. Byte, April 1982, 242-282.

-F li



., i.

i

77 'K

FILMED

3-85

DTIC
-,-:


