
7 D- A149 407 ESTI ATION OF V RIANCE OF 
THE REGRESSION ESTIMATORMU 

/
WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
L Y DENG ET AL. OCT 84 KRC-TSR-2750 DAAG29-80-C-8041

UNCLASSIFIED F/6G 12/i N

EUhhhhhhhhEMhhhhh



oW
.11.

,'-

L -

ii-i L11112.0

* LLL1.8

11I11_.25 f1. 4 -.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS 1963-A

.:-'-i . -" : : - - -. ."- . . . -.. . ' " --" .:. .'" " " ,- " " - - . "7--"
,, .. . . . . . . - . - .. . .. . , . - - ,. .- , - , - .- ,- .. .



Math MaCThic l R Sear Cetr 75

% I":,STTMATION OF VARIANCE o

OF" TillE RE IRI.SSION IESTIMATr

Lih-Yuan Deng and C. F. Jeff Wu -

Mathematics Research Center-

University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705

October 1984

(Received September 11, 1984)

C
DT I

L..: li ELECTE
Approved for public release

Distribution unlimited JAN 1 6 185

Sponsored by

U. S. Army Research Office National Science Foundation

P. 0. Box 12211 Washington, DC 20550

Research Triangle Park
North Carolina 27709

. . . .

. . . . . . . .... .. .. . -



.. ~. . . .- W. T

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

ESTIMATION OF VARIANCE OF THE REGRESSION ESTIMATOR

Lih-Yuan Deng and C. F. Jeff Wu

Technical Summary Report #2758

October 1984

ABSTRACT

'7 For estimating the variance of the regression estimator in

simple random sampling without replacement, several design-based

and model-based estimators and a new class of estimators are

compared. Their second order expressions and biases are derived

and compared. Empirical results on the biasesand MSE s the

variance estimators and the conditional and unconditional coverage

probabilities of their associated t-intervals lend support to the

theoretical results and suggest further questions. e!' rv .
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SIGNIFICANCE AND EXPLANATION

In estimating the population mean of a character y, we

often make use of an auxiliary covariate x about which informa-

tion is more readily available and is positively correlate. with

y. One commonly used estimator in survey sampling is the regression

estimator. To assess the variability of the estimator, we need an .

estimator for its variance. Several variance estimators have been

proposed using model-based or design-based arguments. We propose

a class of variance estimators, which includes or approximates

several existing variance estimators in the literature. The

asymptotic variance and bias of these estimators are found and

compared with results from an empirical study. Empirical results

on coverage probabilities of Student's t-intervals with these

variance estimators are also obtained and proper interpretation

is given.
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ESTIMATION OF VARIANCE OF THE REGRESSION ESTIMATOR

Lih-Yuan Deng and C. F. Jeff Wu

1. Introduction

1 The main purpose of this paper is to provide a theoretical and

empirical comparison of several variance estimators for the regression S

estimator in simple random sampling without replacement. The companion

problem for the ratio estimator has been well studied in the litera-

ture. See the references of Wu and Deng(1983) and Rao(1985). In the S
past more attention has been given to the ratio estimator because of

its computational ease and general applicability for general sampling

designs. The ratio estimator is appropriate for populations whose

regression line passes close to the origin. If the intercept of the

regression line is significantly nonzero, it is much less efficient

than the regression estimator( Deng, 1984). In general, apart from n 2

terms, the mean squared error of the former is bigger than that of the

latter(Cochran, 1977, p.196). For estimating cell totals in tables of I-
the type typically constructed from survey data, Fuller(1977) showed

the superior performance of the regression estimator. For stratified

samples Wu(1985) showed that the model underlying the use of the com-

bined ratio estimator has an artificial constraint while the model for

the combined regression estimator is more natural. Given the present

availability of fast and inexpensive computing, the computational

advantage of the ratio estimator should be less of a concern and the

regression estimator will gain wider popularity.

Assistant Professor, Department of Mathematical Sciences, Memphis State
University, Memphis, TN 38152.

Professor, Department of Statistics, 1210 W. Dayton St., University of S
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There are two approaches to the variance estimation problem. The

traditional one, based on the probability distribution generated by

the sampling design, is well summarized in Cochran's book. By imposing

a superpopulation model on the actual finite population, inference

*about the characteristics of the finite population can be made via the

structure of the model( Brewer, 1963; Scott and Smith, 1969; Royall,

.•1970). Several model-based variance estimators were proposed and stu-

died in Royall and Eberhardt(1975), Royall and Cumberland(1978). For

the regression estimator, an empirical study of these model-based

variance estimators and a traditional estimator Vlr (2.7) was given

in Royall and Cumberland(1981). Several traditional estimators were

compared in earlier studies by Rao(1968, 1969). The estimators in the

above three papers and some new ones( formula (2.9)) will be studied

in our paper. Our theoretical comparison of these design-based and

model-based variance estimators is design-based, although some results

are given a model-based interpretation. Mo4re precise results are made

possible by the second order expansions of these estimators reported

in Section 3. Our simulation study contains two new features, the mean

squared errors (MSE) of the variance estimators and the conditional

coverage probabilities of the associated t-intervals.

The organization and major findings of this paper are as follows.

Section 2 lists all the variance estimators under comparison, includ-

* ing a class of adjustments, (2.9), of the standard variance estimator

. lv (2.7). The optimal adjustment within the class (2.9) is studied

-. in Section 3.2 in parallell to Wu(1982a). From their respective

* asymptotic expansions, the jackknife estimator vJ (2.20) and two

bias-robust estimators vD (2.13) and v (2.14) have the same leading

term of order n l For the next order terms, vJ is bigger than vD ,

which in turn is bigger than vH . The same expansions also enable us

-2-
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to compute the biases of these estimators for estimating the MSE of

the regression estimator Ylr (2.1). To achieve this goal, a new

expansion ( to order n- 2 ) for MSE( Ylr is derived in Theorem 4.1.
-!

Among all the estimators, vD is the only one that captures the n

-2 -2.5and n terms of MSE(Ylr). Its absolute bias is of order n and is

the smallest. The jackknife estimator v . overestimates MSE( Ylr
r

while vH underestimates MSE( yIr). A condition (4.7) (which is often

satisfied by natural populations) is found, under which the commonly

A

used estimator Vlr and another one vL underestimate MSE( Ylr). The

* .findings on bias are well supported by Royall-Cumberland's(1981) study

(summarized in Table 1) and our study in Section 5(Table 2). The

empirical MSE behavior (Table 2) of different variance estimators sup-

port the theoretical result Theorem 3.1. Those vg with g chosen to be

gopt (2.10) have smaller MSE's. An interesting and somewhat surpris-

*ing finding is that the jackknife variance estimator vj consistently

has the largest MSE. Typically the two model-based estimators vD and

* I A

vH have bigger MSE's. If the MSE of yfr is the primary parameter of

interest as in determining the sample size for future surveys, the

optimal estimator v should be used in place of vj, vH or vD. For

coverage probabilities of t-intervals of the form (5.2), which are

relevant to internal inference about the population mean, we observe a
reverse pattern. In terms of the closeness of the empirical uncondi-

tional coverage probabilities to the nominal level (Table 3), we have

* •-3-
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v) vD  VH ) v2 > v1 V>lr in decreasing order of performance.

In terms of the stability and closeness (to the nominal level) of the

coverage probabilities conditional on the sample mean of the covari-

ate, a similar pattern is observed. This is interesting since the
A

losers vj, VD and vH for estimating MSE( Yl) turn out to be the

big winners here. Perhaps the most important recommendation for prac-

titioners is that the commonly used estimator Vlr fails on both

grounds and should only be used with caution. An obvious conclusion is

that different variance estimators should be used for different pur-

poses. Further theoretical study is needed to understand this empiri-

4 cal phenomenon ( the same phenomenon was observed in Wu and Deng's

empirical study for the ratio estimator.)

The restriction to simple random sampling without replacement

will undoubtedly rule out many large scale complex surveys. We hope

our study will inspire further interest and eventually lead to useful

recommendations for more complex situations. In settings like market-

Ing research, simulation analysis (Iglehart, 1978) and telephone sur-

veys where simple random sampling is a key element of the sampling

plan, our results may be directly applicable.

2. Variance Estimation For Regression Estimator

Consider a population consisting of N distinct units with values

x, il(1)N , with x, positive and known. Samples are drawn

4 Ifrom the population at random without replacement. Denote the sample

and population means of yi and x. by y, x and Y, X respectively.

-4-
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Two estimators of Y commonly used in practice are the ratio estimator

YR

and the regression estimator

Y = - + b( - ) ,(2.1)
Ylr y + (X- x)

where

Sn n2b Z £ Yj- y) xi - X)/ E xi - X2 (2.2)

i=l i=l

is the sample regression coefficient of Yi on xi . The regression

estimator is the best linear unbiased predictor of Y under the fol-

lowing superpopulation model (Royall, 1970)

Yi =0 + Ol Xi + Li (2.3)

where a. are uncorrelated with mean zero and variance a2. The super-

population model underlying the use of the ratio estimator is the one

without the intercept term 80"

The leading term of the mean squared error (MSE) or variance of

A

Ylris

V (1---f) Z (2.4)

n N-1 i-1

where

ei = Yi Y)-B( xi- X) (2.5)

is the residual of y, to the regression line Y + B( xi- X)

N N2
B = E ( xi- x)( Yi- Y)/ E ( X.- To (2.6)

4i=l i1l x

is the population regression coefficient of yi on xi  and f n/N

is the sampling fraction.

4-5-
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The most commonly used estimator of the approximate variance V is

its sample analogue

'1f 1 en (2.7)v Vlr n n- ei

where

A-( - - (2.8)e = Yi- y)-b( x)

is the i-th residual based on the sample and b is given in (2.2).

Fr estimating the variance of the ratio estimator, Wu(1982a)
g

considered vg = A ) v0 as a class of adjustments of the usual
x

estimator (Cochran, 1977, p.155)

'0= L ( Yi- - xi) . (2.8.1)i=l x

He then proposed to choose g by minimizing the mean squared error of

v . In an empirical study by Wu and Deng (1983), the optimal v per-g g

forms well among several other variance estimators. In the regression

case we will consider a similar class of variance estimators

v (2.9)
Vg =( 

-
_ ) lr
x 2

Let S denote the population covariance of x and zi , S2 the

population variance of xi . It will be shown in Theorem 2.1 that the

leading terms of MSE( vg) is minimized by

gopt - (2.10)s2  -2

x

which is the population regression coefficient of z./ Z over x./ X,

2
i= l(l)N and z = e2 is the residual squared. This suggests the

following optimal estimator within the class (2.9),

4 -6-
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771

vA ( 1 v g (2.11)

xg

where g is the sample analog of g

For variance estimation of the ratio estimator, Fuller(1981) sug-

gested a regression adjustment to v0 (2.8.1). A similar adjustment

can be applied to v lr* For the ratio estimator, as pointed out in Wu

and Deng (1983), Fuller's estimator is asymptotically equivalent to

X/ x)' v0, where g is the sample analogue of the optimal gopt' The

corresponding result is also true for the regression estimator.

Another variance estimator closely related to vlr isor
" X - R) 2

VL = Vlrl + 2 (2.12)
E ( xi- )n i=l

whose justification comes from standard regression theory (Cochran,

1977 , p.199).

Royall and Cumberland (1978) proposed two bias-robust (against

misspecification in model (2.3)) variance estimators

2
SD (1-f)2 n e (2.13)D n(n-i) i

2 2
(1-)2 n A 1-f 1 (2.14)

VH n E Pi e.i + f(n- 2 )j-E e1 .
* *i=l 1i=l

whereF _

ri + f/Cl-f)., 0 (2.15)
* 1-C xi- x)21((n-1)g(s))

!n

1 2 - N X-n xg(s) 1 C xi- x) N-n (216)

* -7-
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r 1 + xi- x)( xr ~ x)/g(s) (2.17)

and

2 r 2r n w i k i )  w i  r i ri , (2.18)
ni=l l

2 (2.19)ki = 1l + ( xI - x) /g(s)J/n

The last estimator under comparison is the Jackknife variance

estimator

2
1-f n A (.0

vj= (- )(n-l) E (e -e())(2.20)
i=l

where e (i) is the regression estimate (2.1) based on the sa d of

size n-i with unit i deleted from the sample and e(.) is the *- "

of e(i)"

3. Relationships amo.n the Variance Estimators under Comparison

3.1. Asymptotic Expansions

To study the asymptotic relationships among the variance estima-

tors in Section 2, we need the following asymptotic expansions

n n -2 -05
6 = b-B = E ( x- x)( e- e)/ E x  X) ( (3.1)

-C- 2 2 -l
= E u- e( x- X)31(n (n-l) = U/ Sx + 0 (n (3.2)

Cu e( 2x- X) u(v- V) n-1.5 (33)

where0(n

ui = ei( x_ ) , vi ( xi- X12  (3.4)

-8-
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and u,v are the sample means of ui and vi , V the population mean of

v . Since the population means of ei and ui are zero,

-0.5 0.5e = 0 ( U O(n -  ) (3.5)

Ignoring the lower order terms of 62 we haven'

2 2 1.5
06n 0 (n )=- + 0 (n-I  (3.6)n p S4

' Sx

-2_ -u u 4 e( x- X) - 2 6 + 0 n-2 (3.7)

x x

In writing (3.3) and (3.7), we used s2 = 2+ 0 (n 0 .
x x p

3.2. Optimal Variance Estimators among v
g

Using the minimum mean squared error of the variance estimator as

the criterion, we will choose an optimal estimator within the class

(2.9). The following lemma finds the leading terms of Vg and

Var( Vg)

Lemma 3.1.

1---2 - 2n
(a)v (-) z + 0(n ),where z E z, z e.
Slr n p n i=1 i

(b) vg = (-f H + g(s X1 Z1 + 0 (n- 2) where x (x- X)
9 n p "

_ 2
1-f 3 2 Z2 Z 2 -3.5

4 (c)Var( v 3 = ( ) S - 2 g (Z) x + g () S ) + O(ng z X X

Except for the obvious ones, the derivations and proofs in this pacer

are given in the Appendix.

4 By minimizing expression (c) of Lemma 3.1, we have

Theorem 3.1. The optimal choice of g, minimizing the variance of Vg,

is given by g defined in (2.10).
opt

4 -9-
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4

For estimating the variance of the ratio estimator, a similar

result to Theorem 3.1 was obtained in Wu(1982a) with a major differ-

ence. His z. takes a more complex form

N
Z x id.i

d 2_ 2 d. (3.8)

N

where d. y.-( Y/ X) x. is the residual in the ratio context. Note

that the second term of (3.8) does not appear in the regression case.

One explanation for this difference is that the regression estimator

incorporates a non-zero intercept term while the ratio estimator

suppresses it. More precisely, each y value can be decomposed as

4Y 
= A + B x i + e, (3.9)

where B and ei are defined in (2.6) and (2.5), A = Y-B X is the

intercept from fitting a regression line to the population

(yi, xi),i=l(1)N. ith this representation, di -A( xi- X)/ X + e

and

N (N-I) S
Z d (3.10)

from which it is easy to see that the extra term in (3.8) would be

zero if the intercept were zero.

To obtain further properties of Vg, let us assume the superpopu-

lation model

Y, = C + X + Ci (3.11)

EM( ) 0 ;EM ( ei £j) a 2 x for i=j; 0 for i 0 j,

where EM denotes expectation with respect to the model. Under (3.11),

:' B = 0 + O(N - 1/2) and ei = C + O(N 1 /2). By using Wu's(1982a) argu-

ment, we find that up to order N -1 ,

-10-
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N t+l_ N t N

l i=l i=l

S( x 2- X)2 Z xt
. i

minimizes EM (Var( Vg)) under (3.11), from which the following results

are readily obtained. Compare with Wu(1982a, Propositions 1 and 2).

Theorem 3.2. Under model (3.11) with

(a) t=0, v0( = Vlr) is the optimal estimator of V among Vg;

(b) t=l, vI is the optimal estimator of V among Vg

(C) t ) 1, then g, 2 1 and vI , v2 are both better than v0 for

estimating V.

Recall that under (3.11) with t=0 , ylr is the best linear

unbiased predictor of Y.

3.3. Relationships among vD, vH and v'.

The two estimators vH and vD are approximately unbiased estima-

tors of the true error variance even when the error variance structure

is not correctly specified by the model. According to Theorem 3 of

Royall and Cumberland(1978), under some mild conditions, vH , v. and

vj are asymptotically equivalent, i.e., vH M Vj(l + o(1)) and so

on. By studying the second order terms of the variance estimators, we

find some interesting relationships among them. We will show that vj

is stochastically larger than vD and vD is larger than vH. Lemmas

3.2 and 3.3 find the leading terms of vD and v. Throughout this

o we -0.5~subsection, we assume f = O(n 51.

I"
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Lemma 3.2.

VD n 2 (1-p( x.- X))-2(3VDn~~~Z 1 el + 0 (n-1- . (3.12)

l-q( X i-  )2

2
-f- 2 -2

En(n-l)iE ei [l-2p( xi- X)+(p + q)( xi- X) 1+ 0pn-. (3.13)

where

( x- X) 1 (3.14)
g(s) q (n-l)g(s)

and g(s) is defined in (2.16).

Lemma 3.3.

2
S- 2 0 (n-2.5 (3.15)

V n 2 ij (l-p( x.- x)) e i

From (3.13) and (3.15), we have

Lemma .4.

2

*- vH - vD - -) n i • i (1-p( xi- xl 2

2i n p2 ^On-2.5(.6
+ eq Z ( x- X)23 + 50 (n16

i-1

Lemma 3.4 implies that vD is asymptotically larger than vH.

Lemma 3.5 finds the leading terms of vj.

Lemma 3.5.

2
1f Vn e - (1-p x i- X- 2

vj J n(n-1)i= z2(3.17)
-2

(l-q( xi - x)

-12-
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He can compare vD and v based on Lemmas 3.2 and 3.5.

Lama 1.6.

* 2
1- q If n~ 2 +0n- 2. (3.18)

* D +q n(n-l) 1 -) + 0 (n 5)

Lemma 3.6 implies that vj Is asymptotically larger than vD.

4. Asymptotic Bias Behavior _o Variance Estimators

A

4.1. Second-order Expansions oL MSE( y lr) and Vlr

Theorem 4.1. Let V be the approximate variance (2.4).

A

(a)MSE( Ylr = V

S2  4 S 2  2 S 2 U3
1.(L-2( 2 S2 L2L ..._ . e01n-2.5),
n e L-f S2 S4

x X
Swhere U3  N- 1  3, 2

w 3 = E C xI- R)3  S2 is the population variance of

ui (, 3.4), and S S22 are the population covariances of xI and
xe x e2 2

ei , xi  and ei respectively.

-2
n-) 2  - u + 0 (n"2 5

(b i r n )n-2 se n-2 a2 pax

If f = 05(n0 "5) , then

A S2 4 S 2
2  + 2 S 2 U3(c)SE( 2 . + x2 ex U 0n 2 .5

"r V+ (2 Se  2 S4

x x

If f = 0(n-0 5) is relaxed to f - o(i) in Theorem 4.1, O(n 2 .5)

should be changed to o(n -2). The same applies to the results of Sec-

tion 4.2.

~-13-
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4.2. Bias Behavior of Vlr, vL' Vg, VH' VD, and vj

Throughout this subsection we assume f = 0(n- 0 . For any

variance estimator v, we denote its bias for estimating MSE( ylr) by

A

B(v) = E(v)-MSE( y 1 . The biases of the six variance estimators are

given below:
2S 2U + 4 S2e2

1 2 xe x e --).5  (4.1)B( Vlr) n 2 Se + $ 4 )+ 0(n 25

x

2 S 2 U3 +4 S 2

B_ V = l 1 xe x e 3 + O(n-2 5 ) (4.2)

x

2
B( v= E_2 S2 Se 2 U3 +4 S2 e (43)1 S _  xe x4 .e

g 2 t: S 4In Sx
X

2S2 2
-g xe 2 + Cr(C+) Sx Se3 + O -2 .5)9 -g + 2 3 +O2

" 2

B( vD ) = O(n-2 5) (4.4)

B( v S2 + u)+ ( 14.5)BvH  n n2 ( e S 2 '

", X

B(vj I u -. 5 n(46
j2 2 46

n SxI.I

Formula (4.5) follows from (3.16) and (4.4); (4.6) from (3.18)

* and (4.4). The others are proved in the Appendix.

-14-
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From (4.1) and (4.2), it is easy to see that if

S U( 4.7)

then vL is less downward biased than In fact, U ) 0 for
ibs ta.na, xe2

. Iall six populations studied in Royall and Cumberland(1981). Therefore,

as expected from our results, both Vlr and vL underestimate

A

MSE( Ylr for these populations. See Table 1.

* The leading terms of B( v ) is a quadratic function in g withg

positive coefficient for the quadratic term. One can easily check that

the minimum of B( v ) occurs at g = g -0.5 , where g is defined
gopt- opt

in Theorem 2.1. Furthermore, if S U3 > 0, then this minimumxe2 3-'

corresponds to the largest negative bias uZ vq. This observation

agrees with the empirical study of the next section.

He next observe that vD, vj have biases of the order n-2

whereas vD has a smaller order bias. Up to the order n- 2 , VH
A A

underestimates MSE( ylr)' vj overestimates MSE( Ylr) and vD is-2.5

unbiased in the sense that its leading term is of order n . For
A A

the ratio estimator 7R, the overestimation of v j for MSE( R was

proved by Wu(1982b). The above observations are supported by the

simulation study in Section 5 (Table 2) and an empirical study on six

natural populations with sample size 32 in Royall and Cumberland

4 (1981, p.926), on which the following table is based.

L -15-
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A

Table 1. Relative Bias B(v)/MSE( Ylr of Five Estimators

Population Vlr VL vH  vD  vj

Cancer -.14 -.12 -.12 -.06 .09

Cities -.06 -.04 -.04 -.01 .04

Counties 60 -.15 -.14 -.08 -.02 .16

Counties 70 -.14 -.13 -.16 -.07 .14

Hospitals -.04 -.03 -.02 .01 .06

Sales -.24 -.21 -.19 -.12 .11

5. Empirical Study

5.1. Populations Under Study and Simulation Procedure

In Sections 3 and 4, the asymptotic behavior of the variance

estimators were studied. One may ask whether these results are appli-

cable to moderate sample size. The variance estimators given in Sec-

tion 2 will be compared empirically on six natural populations. For a

detailed description of these populations, see Royall and Cumberland

I (1981). The procedure described below was conducted on the UNIVAC 1100

at the University of Wisconsin-Madison. The uniform numbers were gen-

erated according to subroutine RANUN.

We draw 1000 simple random samples of size 32 from each popula-

tion whose size ranges from 125 to 393. For each sample chosen, we

A

compute the regression estimate ylr' sample mean x and variance

estimators v0, vI, v2, vL, vH, vDand vj. For each simulated

-1g
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sample and each variance estimate v, we also compute the t-statistic

A

t Y Ir Y(5.1)

and the (1 - a) confidence interval forY

A A

Y r-tO/ 3)v1/2 - l oL2(0 1/2 (5.2)

where t (z2 (30) is the upper m/2 percentile of the t-distribution with

30 d.f.

The unconditional behavior of the estimators can be studied by

taking the average of the corresponding quantity among all 1000 Sam-

AA

pies. For example, the MSE( Ylr ) is calculated as 1000 -( Yr- V

over the 1000 simulated samples. and the bias of a given variance

A

estimator v is calculated as 1000 Zv - MSE( Yird over the same 1000

samples.

To study their conditional behavior on x, we divide the 1000

samples into groups according to the foillowing procedure. Rearrange

the 1000 samples in increasing order of x; divide the 1000 samples

into 10 groups so that the first group has 100 samples whose x values

are the smallest, the next group contains samples with the next 100

smallest x values, and so on. Within each group, we compute the

average of x, v , and the actual percentage coverage of each associ-

ated confidence interval.

The following three criteria will be used to compare the prefor-

mance of the variance estimators: their mean squared error (MSE) and

-17-



bias, and the coverage probability of the associated confidence

interval. The simulation results are summarized in Tables 2 and 3.

5.2. MSE of v

The pattern is similar to that of Wu and Deng(1983) for the ratio

estimator.

(a) v has smaller and often the smallest MSE among all the estima-

g

tors considered. This is consistent with the asymptotic result of Sec-

tion 3.

(b) Among v0, v1 and v2 , the best performer is the one closest to

S gopt"

(c) The jackknife variance estimator vj has the largest MSE among all

variance estimators considered.

( Cd) Among vH ' VD and vj, VH has the smallest MSE.

(e) v has bigger MSE than v0 , vI, V2 , v and vL.

5.3. Bias of v

(a) All estimators under consideration, except v , are consistently

downward biased. The downward bias of vH is predicted in (4.5). Since

S 2 U3 L 0 for all six populations, the downward bias of v0 and vL
3-

is predicted in (4.1) and (4.2).

(b) The estiLmator vj is always upward biased while vD does not show

any pattern. This is again well predicted in (4.4) and (4.6).

"- (c) VD has the smallest absolute bias among all the estimators. The

reason is that vD is the only estimator with a lower order bias.

Cd) V- has a smaller bias than Vol V1  V2 . and v

g

-18-
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Table 2. Root mean-square error and bias* of v's

Population

1 2 3 4 5 6

v 0  2.91 52.6 13.6 22.0 6.75 24.9

(-1.2) (-5.2) (-10.0) (-5.6) (-1.6) (-13.8)

v1  2.51 51.3 13.1 19.0 6.12 20.9

(-1.3) (-5.8) (-10.0) (-6.9) (-1.8) (-14.7)

v 2  2.39 54.4 13.3 18.3 6.24 19.4

(-1.3) (-4.9) (- 9.4) (-7.3) (-1.7) (-13.7)

v 2.49 51.1 13.2 18.9 6.24 20.7

9

(-1.4) (-6.9) (- 9.1) (-7.0) (-1.8) (-14.5)

v, 2.92 55.1 13.1 22.6 6.85 24.2

(-1.0) (-1.2) :"9.0) (-4.8) (-1.1) (-11.7)

VH  2.74 59.4 17.9 23.3 7.64 22.0

(-1.1) (-1.4) (- 5.7) (-5.5) (-0.9) (- 9.6)

- vD 3.42 66.1 22.4 30.9 8.92 26.7

.5) (+ .5) (- 2.6) (-1.6) (+.08) (- 4.4)

vi 5.56 84.2 37.1 52.6 11.36 48.1

(+0.6) (+16.8) (+ 5.3) (+7.1) (+1.8) (+ 9.9)

qopt 1.55 1.20 0.88 2.40 1.46 1.53

Unit 1 10000 1000 1000 100 100000

Bias given inside the parenthesis

1
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5.4. Behavior of the Confidence Intervals

Only the results on populations 1 and 6 are reported in Table 3.

They are representative of a bigger study in Deng(1984), which is well

summarized by the following conclusions.

(a) Normality of the t-statistic:

(al) The behavior of the t-statistic is similar to the student t-

distribution: the bias and skewness close to zero and standard devia-

tion close to one.

(a2) The t-statistic associated with v0 has the largest variance

while that associated with vj is the smallest.

(b) Unconditional coverage probability:

(bl) For all six populations, the coverage probability is lower than

the nominal level 1 - m.

(b2) The confidence interval associated with v3 has the closest cov-

erage probability to the nominal level while that associated with v0

has the lowest coverage probability.

(b3) T"e confidence interval associated with vj has the best perfor-

mance among all estimators considered. The superior performance of vj

can be explained in part by the large values of E( vj).

(b4) Among v0, v1 and v2, v2 is the best and v0 the worst.

(b5) Among vH, VD and vj, vj is the best and vH the worst. This

* may partly be explained by the results in Section 3 where v was
*H

* shown to be stochastically smaller than v and vD smaller than vj.

(c) Conditional coverage probability:

(cl) We can clearly see the excellent performance of the conditional

coverage probabilities associated with vj. They do not fluctuate very

* much as x varies.

* -20-



(c2) Compared with the Qther estimators, the coverage probabilities

associated with vHP vD' vj are pretty stable over x, whereas those

associated with v0, vL, v are increasing in x. For example, in

g
population 1, the actual coverage probability of the 95% confidence

interval associated with v0 in the first group is as low as 73% and

* in the last group as high as 99%.

(c3) Among v0 , vI, v2, v2 has the most stable conditional coverage

probabilities.

(c4) Among vH, vD , vj, vj has bigger coverage probabilities than

that of vD for each group; and vD bigger than vH. This again can be

explained by our asymptotic results in Section 3.

(c5) For "nearly" balanced samples ( i.e. x close to X), all esti-

mators perform similarly. For example, for each population the 5-th

and 6-th groups have similar coverage probabilities for all estima-

tors.

-2

°| I
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Table 3. Coverage probabilities of the t-intervals in (5.2)

and descriptive statistics of t in (5.1) based on 1000 samples

Ppopulation 1

99% 95% 90% Bias Var. Skew. Kurt.

to 94.3 88.5 80.5 -.1311 1.9640 -.0925 4.7126

tI  95.1 89.3 82.5 -.1223 1.7470 -.0593 4.3104

t2  96.4 89.8 84.2 -.1151 1.6067 -.0203 3.8002

t 94.9 89.0 82.4 -.1217 1.8276 -.0352 4.4895
g

tL 94.7 89.1 82.0 -.1232 1.8255 -.0760 4.5755

tH  96.0 90.1 83.5 -.1105 1.6160 -.0225 4.1515

tD 96.4 91.4 85.2 -.1077 1.4987 -.0581 4.2578

tj 97.3 92.7 87.6 -.1050 1.3053 -.1010 4.3977

Conditional 95% C.I. coverage probability

x tO tI  t2  tH tD tj tg t

76.0 73 81 85 87 88 91 80 79

88.4 78 81 84 82 84 89 81 80

96.5 76 77 82 81 82 85 77 76

102.6 84 85 88 88 89 90 84 84

109.2 94 94 95 95 95 96 94 94

115.4 87 86 85 87 91 91 87 87
I

121.9 96 95 92 95 96 96 96 96

128.2 97 96 95 95 97 97 97 97

137.2 99 97 96 95 96 96 97 99

157.1 99 98 96 96 96 96 97 99

-22-
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Population f

99% 95% 90% Bias Var. Skew. Kurt.

to  91.8 84.1 77.4 -.0793 2.4208 -.1271 5.2355

tI  94.2 85.7 79.4 -.0784 2.0163 -.1136 4.5610

t2  95.8 87.9 80.2 -.0772 1.7840 -.0474 4.0702

t 93.8 85.1 79.1 -.0753 2.1614 -.1846 5.2800

tL 93.9 86,1 79.5 -.0886 2.0438 -.2675 5.3736

tH 96.2 89.4 82.4 -.0744 1.7426 -.2565 5.5570

tD 96.6 91.2 85.0 -.0458 1.5194 -.1137 5.1693

tj 98.4 93.9 89.2 -.0195 1.1383 .1069 4.3019

Conditional 95% C.I. coverage probability

x to t 1  t2  tH tD tJ tq tL

14.3 60 70 82 88 87 90 63 73

16.7 76 79 87 85 87 91 78 78

18.2 72 74 79 79 81 87 73 73

19.7 77 87 89 90 91 95 84 81

21,2 85 88 92 90 95 98 87 85

22.8 90 90 90 90 93 96 90 90

24.3 92 91 90 90 92 93 92 92

26.5 94 90 87 92 94 95 92 94

29.5 95 91 90 93 95 96 94 95

36.9 100 97 93 97 97 98 98 100

I
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Appendix

Proof of Lemma 3.1. Parts (b) and (c) follow from (a) and formulas

(13) and (14) of Wu(1982a). To prove (a), from formula (7.31) of

Cochran(1977) and formulas (3.2),(3.5) and (3.6), we have

n 2 n n
E( yi - y) - b( xi - ) 2 = £ C e _ )2 _ 82 ( x X)2

i=l i=1 ni=1

n2 -2 0 0 . 5 2. := £ ( e )2 -n i2 n
i l - 2 (n-  = £ + 0p (1) . (A3.1)
0 1 Sx  p 1I

This proves part (a).

Proof of Lemma 3.2. Note that

x - N X -nx _ -_ - (A3.2)

xx x )
r N -n -f

From (3.14) and (A3.2), the numerator of cx in (2.15) is equal to

1- 2 ( X.~, -2 +.Lf
1 ~ = - 2 -f( Xi X) + '1-f'')2 xi c)2 + _l.

1f(x - X) 1- 1-f

1 - 2 -2 -1.5(33
1--f l - 2pC xi - + p( x - x) 3 + 0 Cn- ) . (A3.3)

We used the facts p2 0 (n-1) and f = 0(n- 0 5 ) in deriving (A3.3).
P

From (2.15) and (A3.3) , we obtain

"= (1-f)- 1 (1 - p( Xi - x)) 2/(l - q( x - 2+ 0P (n-1.5 (A3.4)

which easily implies (3.12). Formula (3.13) follows from (3.12) and

(1 -q( x ) 2 1  1 + q( xi X) 2 + 0 (n-1 .5)

Proof of Lemma 3.3.

From wi = 0p(n - ) and ki = 0p(n- ), 1 in VH  satisfies

2 -2
'i = ri + Op (n-).

* -24-
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From (2.14), we have

22 n 2 n 0-fn_2.5
= lf) Z e i r 2 + fn 1f Z e + 0 (n

NH = (l e1- r1  n(n-2) i p

From (3.14) and (A3.2),

-f n 2 2

S=(-)2 Z e(1 x X) _)_ e1  + 0(25n i 1-f 2 n2l-f)

2 2 2
1- 1- fZ An A -2 0n- 2.5
2 E - -2 pZ ei  xi x)+ ei Cx - X) Op0n-.,
n izl n 1=1 ni=

which gives the desired result since p2 = 0 (n- ) and f = O(n- 0).
p

Proof of Lemma 3.5. From formula (6.1) of Royall and Cumberland

(1978, p.357), we have

2 2
(e(1) - eI 1 = N-2  Z (1 + g e rn"

i=l A" i=1 1  3 c)- n, (35

where

n A - n A
rn 1 - e (1 i ) + E g e1 kil - ki )-1 2  (A3.6)

i=l 1=1

r X r 1''iiL
gi n I - -(2)

L x I riL J

(N-n) (1 + )xi X)( x -

n g(s)

Ll -f x, - x)( x - X) O0(n. 5) (A3.7)

f -f g(s)

x(2) is the second sample moment of x and ki is defined in (2.19).

te then show rn = Op(n-3). From gi = 0 p(n0 .5) and k. 0 p(n-l1

the second term inside the square bracket of (A3.6) is 0 (n 0). Its
p

first term
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n 0.

pleted by applying I + gi f ( p( x - x)) and (1
jl iz 2=

kTh eeo ) 1 - ( x _X f2) to 0A3.5).'pop p

Proof of Lemma 2.6. It follows easily from Lemma 3.2, (3.11), Lemma

3.5 and

(l - q( xi - -2-2 = 1 + 2q( xi - )2 + 0pn-2)

* Proof 21 Theorem j.j. Using (3.3) and (3.7), we can show that

.2  2
ir e 6n(x- R))

e- 2 e u( x X) _ ";2 X) 2 u 2 x X)e 2 +4
x x

+ 2 e u(v - V)( x - X) -2.5(+24+ 0 Cn ( A4.1)
S 4 p

To compute the expectation of (A4.1), we need the following formulas:

Se u- - -) - f)(1 - 2f) 2 2.5
E( e u( x Xn 2  + O n ) (A4.2)

Ed =2 R) S2 S2 + 2(Su ) 2 + 0(n-2  (A4.3)

Ed e2( 2x - X2) = 1-f)2( S2 S
2 + (S 2) + 0(n2.5) (A4.4)

n e x x

( L)2 S2 S2 + 0(n-2.5) (A4.5)
n e x

* -26-
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*.'. ° - . .-4, -. , -. .-

2 S + + S S ) On-2.5 (A4.6)
n eu vx SevSxu xe uv

n LL(s 2 U3 + Sxu + 0(n (A4.7)
xe2

Formulas (A4.3) and (A4.4) follow easily from Sukhatme and Sukhatme

I (1970, p.192, (9)). Formulas (A4.2) and (A4.6) follow from Theorems 1

and 2 of Nath(1968). Formulas (A4.5) and (A4.7) hold, because

xeei 3 eu" S Sx ev xu
Sxem 01 SvX U S u aS 2 S x S2 and S ev S .U Com-

bining (A4.1)-(A4.7) we obtain

* MSE( Ylr= E( Ylr - )

("-f)(1-2f) S 2 (1-f) 2 e S2
2u2

".L)2  ux xu ( 2 .5 )n4 + On
SI

I and establish (a). If f 0(n-0.5, then part (c) follows easily from

(a). Part(b) follows from (A3.1).

Proof L (14.1). By taking expectation of Theorem 4.1 (b), we get

E( V1r) = (1L) S! + _( S2 - (1-f) 52/ S2 ) + 0(n-2.5)

n
. i which and Theorem 4.1(c) imply the result.

K... Proof 2f (1.2). Note that

' )2/,(. 1  n 1.5
X n ( x, - 3 - R) Sx + Opln

This implies, using (2.12),

* •-27-
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VL = Vir + (In) S( +0p( )2  2

x
..'L 2 0(n 25

E( vL) E( V +r) 2 + 0(n -2  (A4.8)
n

which and (4.1) imply the result.

Proof of (4.3). From

_ - = 1 - .( ) + .±..! .Lzx..z- .. )X , 4. 0pn.5

• 2

J= jl 11[[ s( x -X) + r( +l) s( -2 + 0 (n --1.5

x X 2 2 •

V = 1 + (~L) 92 +* 0 (n -2)

- - 2e -2-1
r - g( x - )/ R + g(g4-)/2( x - X) + X 2 0 (n

2

Tiv h 2(i X 2 et X) A±.l 2
Ir g e - 2 e +2 2

E v)= l V + ( 2C - e + S2)(! eS3+0n "5 ,

x

which together with Theorem 4.1(c) gives the result.

To prove (4.4). we need the following formulas and Lemmas A4.1

and A4.2. Formulas (A4.9)-(A4.11) find the leading terms Of p, p 2 and

q, defined in Lemma 3.2, -8

+ ug l x- 2  - op(~ 2 5

l2



x X) X) + 0 l(n-15 , (A4.9)

S24 p~ f
x x

2 : To -1.5P + 0 (n (A4. 10 )

-- 0- + ( n -  1 . 5

q 2 0 (A4.11)
n px

where v and V are defined in (3.4).

Lemma A4.1.

2
n A - 2 2 + 0 (n0.5 (A4.12)
Z eU x - x)2 p

where

N 2

u N-i Ui=1

Proof. Fromn b -B= 0(n 0 5 ),

e= ( e - e) - SnC x I - x) = e + 0 (n- 0.5) (A4.13)

2

and i  e1
2 + 0 p(n-0 5), which and C x - x2= -_ )2 +

0 (n 0 5 ) imply

2
A -2 2 2 A4.14)e x 12 e x + 0(n-0.5)

i

from which the result follows easily.

Lemma A4.2.

- 2 -u + 0(1),
J ( e, x ) -nC x F S e 2 2 l (A4.15)

, i=l1S

* where

n
W E w1  W 1 2 X)
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Vr .7 V-v W W.

I

Proof. From (A4.13), we have

2

e- 28n e1 (x I - ) - 2 e e + 0 ln 1 )
i n p

2e2 - 28n e( xj - O- 2 e1 e + 0 (n-1 )

Ignoring terms of order n-1, we find

2 2
A - A-- -

i ( x i- x) ei C xi - X) - C - X)3

= ei2  x - X) - 2 6n e1 l x i - X)2-2 ei e( - X)

- ei2 ( R- ) + pln -1 )

which implies Lemma A4.2, by using (3.2) and (3.5).

Proof 2L (1.1). Using (A4.9) and Lemma A4.2, the second term of vD

in (3.13) is

2
n A

2p Z •i ( X- x)

- -  " "  )(v- ) + 0 (n- 5 )3j

Sz x

2- S
n(w - ( x- X)5 2  - 2u- )+ 0 (1)]

e 52 p

2 4

i x x

2 2
Sx - i,2 $e, - 2 -u( x- -_ !X,-u3+0p (n -0.5) (A4.16)

E The third term of vD in (3.13) can be simplified by using

K ; (A4.10),(A4.11) and Lemma A4.1,
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2 2-2(p + q) e e x - x)
i=l

x + + 0 On-l.5) )nS 2 + 0(no 5

S 4  n S 2 + u p
2 2

2 SuSu S+ 0p n0.5)

n( - 4 2 +  (A4.17)

x x
Combining (A4.16), (A4.17) and Lemma 3.2, we get

V ( ni l - 2 1  .w( x - ) W(x- X)(v- 2)v (1 n-1 Vlr n S2 S 4

x x

x -_ )2 S2  Se 2 u( - x) u- 2  S4

u( x );

+ 1 - + - + (n) (A4.18)

n 4  n2 S 2
S x

Collecting the leading terms of E( vD), we have

S2  S2
C E( v E + 1  S 2 5 u +_u3

nrd n Vld + S 2

x x

S2  S 2 U3 S 22 S 2
1 ___-- xe - e _ 2 xxu 3 + O(n-2. 5)

n2  S2  $4 $2 S4
K X K X

E( Vl) + -I S2 + 2 + xu + O(n-2 5 ) . (A4.19)

Ir n2 S4  S4
x  x

In writing (A4.19), we used f - O(n-  ) and

E(V n - S2 + 0(n- 5 1  The result follows from (A4.19) and

Theorem 4.1(c).
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