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simple random sampling without replacement, several design-based
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and model-based estimators and a new class of estimators are

compared. Their second order expre551ons and biases are derived
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and compared. Empirical results on the biases and MSE's the
variance estimators and the conditional and unconditional coverage

probabilities of their associated t-intervals lend support to the
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SIGNIFICANCE AND EXPLANATION

In estimating the population mean of a character y, we
often make use of an auxiliary covariate x about which informa-
tion is more readily available and is positively correlated with
y. One commonly used estimator in survey sampling is the regression
estimator. To assess the variability of the estimator, we need an
estimator for its variance. Several variance estimators have been
proposed using model-based or design-based arguments. We propose
a class of variance estimators, which includes or approximates
several existing variance estimators in the literature. The
asymptotic variance and bias of these estimators are found and
campared with results from an empirical study. Empirical results
on coverage probabilities of Student's t-intervals with these

variance estimators are also obtained and proper interpretation

is given.
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ESTIMATION OF VARIANCE OF THE REGRESSION ESTIMATOR
* &
Lih-Yuan Deng and C. F. Jeff Wu

1. Introduction

The main purpose of this paper 1is to provide a theoretical and
empirical comparison of several variance estimators for the regression
estimator in simple random sampling without replacement. The companion
problem for the ratio estimator has been well studied in the litera-
ture. See the references of Wu and Deng(1983) and Rao(1985). In the
past more attention has been given to the ratio estimator because of
its computational ease and general applicability for general sampling
designs. The ratio estimator is appropriate for populations whose
regression line passes close to the origin. If the intercept of the
regression line is significantly nonzero, it is much less efficient
than the regression estimator( Deng, 1584). In general, apart from n'2
terms, the mean squared error of the former 1s bigger than that of the
latter(Cochran, 1977, p.196). For estimating cell totals in tables of
the type typically constructed from survey data, Fuller(1977) showed

the superior performance of the regression estimator. For stratified

samples Wu(1985) showed that the model underlying the use of the com-

bined ratio estimator has an artificial constraint while the model for

the combined regression estimator is more natural. Given the present
availability of fast and inexpensive computing, the computaticnal
advantage of the ratio estimator should be less of a concern and the

regression estimator will gain wider popularity.
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There are two approaches to the variance estimation problem. The
traditional one, based on the probability distribution generated by

the sampling design, is well summarized in Cochran’s bock. By imposing

a superpopulation model on the actual finite population, inference
about the characteristics of the finite population can be made via the
structure of the model( Brewer, 1963; Scott and Smith, 1969; Royall,
1970). Several model-based variance estimators were proposed and stu-
died in Royall and Eberhardt(1575), Royall and Cumberland(1978). For
the regression estimator, an empirical study of these model-based
variance estimators and a traditional estimator Vi (2.7) was given
in Royall and Cumberland(1981). Several traditional estimators were

1 compared in earlier studies by Rao(1968, 1969). The estimators in the
above three papers and some new ones( formula (2.9)) will be studied

! in our paper. Our theoretical comparison of these design-based and
model-based varjiance estimators is design-based, although some results

; are given a model-based interpretation. More precise resuits are made

possible by the second order expansions of these estimators reported

in Section 3. Our simulation study contains two new features, the mean 4

squared errors (MSE) of the variance estimators and the conditional

coverage probabilities of the associated t-intervals.

The organization and major findings of this paper are as follows.
Section 2 lists all the variance estimators under comparison, includ-

ing a class of adjustments, (2.9), of the standard variance estimator

x
EQ. E Vie (2.7). The optimal adjustment within the class (2.9) is studied
5:5 i in Section 3.2 in parallell to Wu(1982a). From their respective
kfﬁ . asymptotic expansions, the jackknife estimator vy (2.20) and two
f. ! bilas-robust estimators vp (2.13) and Yy (2.14) have the same leading
E‘f term of order n'l. For the next order terms, vJ is bigger than VD'
i i which in turn is bigger than VH* The same expansions also enable us ]
r’ -2-
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to compute the biases of these estimators for estimating the MSE of

A~

the regression estimator ;lr (2.1). To achieve this goal, a new
A

expansion ( to order n_z ) for MSE( ;lr) is derived in Theorem 4.1.

Among all the estimators, vp is the only one that captures the n

A

and n"2 terms of MSE( ;lr)' Its absolute bias is of order n—2.5 and is

A

the smallest. The jackknife estirmatcr vy overestimates MSE( ylr)

A

while v, underestimates MSE( -’:1:" A condition (4.7) (which is often

satisfied by natural populations) is found, under which the commonly

A

used estimator Vip and another one VL, underestimate MSE( ;lr)' The
findings on bias are well supported by Royvall-Cumberland’'s(1981) study
(summarized in Table 1) and our study in Section S5(Table 2). The
empirical MSE behavior (Table 2) of different variance estimators sup-.
port the theoretical result Theorem 3.1. Those vg with g chosen to be
qopt (2.10) have smaller MSE’s. An interesting and somewhat surpris-
ing finding is that the jackknife variance estimator \4 consistently

has the largest MSE. Typically the two model-based estimators vp and

A

VH have bigger MSE‘'s. If the MSE of ;lr is the primary parameter of
interest as in determining the sample size for future surveys, the

optimal estimator v should be used in place of Vs Yy Or Vvp. For

A

g
coverage probabilities of t-intervals of the form (5.2), which are

relevant to internal inference about the population mean, we observe a
reverse pattern. In terms of the closeness of the empirical uncondi-

tional coverage probabilities to the nominal level (Table 3), we have
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) ) > vy > Vir in decreasing order of performance.

vy ) vp T vy
In terms of the stability and closeness (to the nominal level) of the
coverage probabilities conditional on the sample mean of the covari-

ate, a similar pattern is observed. This is interesting since the

losers vy Vp and vy for estimating MSE( ;lr) turn out to be the
big winners here. Perhaps the most important recommendation for prac-
titioners is that the commonly used estimator Yir fails on both
grounds and should only be used with caution. An obvious conclusion is
that different variance estimators should be used for different pur-
poses. Further theoretical study is needed to understand this empiri-
cal phenomenon ( the same phenomenon was observed in Wu and Deng’s

empirical study for the ratio estimator.)

The restriction to simple random sampling without replacement
will undoubtedly rule out many large scale complex surveys. We hope
our study will inspire further interest and eventually lead to useful
recommendations for more complex situations. In settings like market-
ing research, simulation analysis (Iglehart, 1978) and telephone sur-
§ veys where simple random sampling is a key element of the sampling

: plan, our results may be directly applicable.

| 2. Variance Estimation For Regression Estimator

Consider a population consisting of N distinct units with values
( Xge yi) , 1=1(1)N , with x4 positive and known. Samples are drawn

from the population at random without replacement. Denote the sample
.
. and population means of y, and x; by y. x and Y, X respectively.
q i -4=
¢
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Two estimators of Y commonly used in practice are the ratio estimator

|
w1 by
<l

and the regression estimator

A

¥, 7+bE-0, (2.1
where
n - - n -2
b= I ( ¥y~ ¥ xy- x)/ I ( x4 - x) (2.2)
i=1 i=1

is the sample regression coefficient of y; on x,. The regression
estimator is the best linear unbiased predictor of Y under the fol-

lowing superpopulation model (Royall, 1970)

Yi = Bo + Bl xi + ei (2.3)
where ey are uncorrelated with mean zero and variance 02. The super-
population model undérlying the use of the ratio estimator is the one

without the intercept term ao.

The leading term of the mean squared error (MSE) or variance of

A

;lt is
N
1-£. 1 2
V= (=)= £ e,°, (2.4}
n 'N-1 i=1 i
where
ey = ( ¥Y)-B( x4- X) (2.5)

is the residual of ¥y to the regression line Y + B( xy- X),

N - . N =.2
B= I ( x, - X ¢ ¥i- YW/ £ ( x,- X) (2.6)
i=1 i=1 %

is the population regression coefficient of y; on x5 ., and £ = n/N

is the sampling fraction.
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The most commonly used estimator of the approximate variance V is
its sample analogue
2
1-f

v ( ) 1 g e
= —) —— e. ,
1r n n-2 1=1 i

(2.7)
where

s = -3y .z (2.8)
e, = ( Yy y)-b( Xy x)

is the i-th residual based on the sample and b is given in (2.2).

For estimating the variance of the ratio estimator, Wu(l1982a)

= 9
considered v_ = ( —§ )

g Vo as a class of adjustments of the usual

estimator (Cochran, 1977, p.155)

. _
£y Lxp?, (2.8.1)
i=1 X

He then proposed to choose g by minimizing the mean squared error of

= (i=f, 1_
Vo = R )R-T
vé. In an empirical study by Wu and Deng (1983), the optimal vg per-

forms well among several other variance estimators. In the regression

case we will consider a similar class of variance estimators

(2.9)

Let Szv denote the population covariance of Xy and 24, Si the

population variance of Xy It will be shown in Theorem 2.1 that the

leading terms of MSE( vg) is minimized by

S. /X2

3 s —2ZX

[ gopt . — (2.10)
‘ sx/ X

F' which is the population regression coefficient of zi/ Z over xi/ X.
.-' 2

i= 1(1)N and z; = e is the residual squared. This suggests the

i
following optimal estimator within the class (2.9),

¢ -6~
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(2.11)

where g is the sample analog of qopt'

For variance estimation of the ratio estimator, Fuller(1981) sug-

gested a regression adjustment to v, (2.8.1). A similar adjustment

0
can be applied to Vig* For the ratio estimator, as pointed out in Wu

and Deng (1983), Fuller’'s estimator is asymptotically equivalent to

A

( X7 9 Vgr where g is the sample analogue of the optimal gopt' The

d corresponding result is also true for the regression estimator.

‘ Another variance estimator closely related to Vi is

s
( x- X) 3

VLt Yttt T _ (2.12)
ALy £ x-
1=1

whose justification comes from standard regression theory (Cochran,

1977 , p.199).

Royall and Cumberland (1978) proposed two bias-robust (against

misspecification in model (2.3)) variance estimators

i
' 2
! 2 n
i _-f) A (2.13)
! Vo = 2= T o, e
! D nin 1)1=1 i i
| n 2 n 2
o 1-£.2 A 1-f, 1 n (2.14)
‘ vy = (—H—) iflsi e; + f(_;—)H:E ifl e; -
! where
f riz + £/(1-£)
: oy = , (2.15)
; 1-0 x- ©2/0(n-11g(s))
y el Fix-:2, % -NEnx (2.16)
gis) = 3 "X X N-n °
, i=1
. .

R R ad
’ o
. s e
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£, = 1 +( X, - x)( X~ x)/g(s) (2.17)
and
2 1 0 2, 0 2
B, = r.“/(1-= T w, k,) ,w, = r.“/ % r ’ (2.18)
i i no S 1 i i 121 i
(2.19)

kg = €1+ ( x;- 0 2/g(s)I/n .

The last estimator under comparison is the jackknife variance

estimator

oo l-f o0 a A (2.20)
= (==%)(n 1)151 64,78, -

M
where 3(1) is the regression estimate (2.1) based on the sa ¢ of

size n-1 with unit i deleted from the sample and 8( ) is the ¢ = je

of e(i).

3. Relationships amcng the Variance Estimators under Comparison

3.1. Asymptotic Expansions

To study the asymptotic relationships among the variance estima-

tors in Section 2, we need the following asymptotic expansions

n - - n =2 -0.5
Sn = b-B= I ( Xy- x)( ey - e)/ T ( t x)" = 0 (n "°7) (3.1)
i=1 i=1 P
_ - - - 3 -1 2, = 2 -1
= [ u- e( x- X3/(n " (n-1) sx) = u/ Sx + Op(n ) (3.2)
u - e( x- ¥) u{v- V) + 0 (n 1.5) , (3.3)
52 st P
X x
where
- - v - _ 2 (3.4)
uy = ei( Xy Xy ., vy = ( X X)
-§-

v
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and u,v are the sample means of ug and vy V the population mean of

v Since the population means of e; and u; are zero,

i

0.5 0.5

e= 0(n Y2, u= 0" . (3.5)
P P

Ignoring the lower order terms of 85 , we have

=2
2 _ -1 u 1.5
Sn = Op(n ) = S4 + Op(n ) (3.6)
x
—2- " — - _— —_— —2 —.- - _
' 2 u4e( x- X) _ ,.u (v6 V) | 0 (n 2) . (3.7)
s s P
X x
- 2 _ 2 -0.5
In writing (3.3) and (3.7), we used Sy = Sx + Op(n ).

3.2. Optimal Variance Estimators among vg

Using the minimum mean squared error of the variance estimator as
the criterion, we will choose an optimal estimator within the class

(2.9). The following lemma finds the leading terms of v_ and

g
Var( vg)
Lemma 3.1.
- - n

(a) v, = (lgi) z + Op(n-z), where z = % ifl 2, 2y = eiz.
() v = (£ Z + g(s x) z) + 0 (n_z), where § x = & ;: X)

n p %

_ _ 2

(c)Var¢ v = (l;—f 3 s:— 2 g (—%) S,p * g2 (2 si) + o33

X X
Except for the obvious ones, the derivations and proofs in this parer

are given in the Appendix.

By minimizing expression (c) of Lemma 3.1, we have

Theorem 3.1. The optimal choice of g, minimizing the variance of vg,

is given by gopt defined in (2.10).

-9-
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For estimating the variance of the ratio estimator, a similar
result to Theorem 3.1 was obtained in Wu(l1l982a) with a major differ-

ence. His zi takes a more complex form

N
I x.d,
2_ 0
di 2 N di ’ (3.8)
I x
1=1 1
where di = yi—( ¥/ X) xi is the residual in the ratio context. Ncte

that the second term of (3.8) does not appear in the regression case.
One explanation for this difference is that the regression estimator

incorporates a non-zero intercept term while the ratio estimator

suppresses it. More precisely, each y value can be decomposed as

¥y = A+ B X; + ey (3.9)
where B and e, are defined in (2.6) and (2.5), A = VY-B X is the

intercept from fitting a regression line to the population

( Yyv xi),i=1(l)N. with this representation, di = =A( x4- X/ X + ei
and '
2
N (N-1) S
T x, di - _A__:____)g , (3.10)
i=1 X

from which it is easy to see that the extra term in (3.8) would be

zero if the intercept were zero.

To obtain further properties of v let us assume the superpopu-

gl
lation nodel

¥y = o+ B x4 + € (3.11)

Ey ( €5) =0 Ey ( g5 €)) = o? x;® for 1=3; 0 for 1 # 3,

where EM denotes expectation with respect to the model. Under (3.11),

-1/2 —1/2)

B =8+ O(N ) and e; = gy ¢ O(N . By using Wu’'s(1982a) argu-

ment, we find that up to order an,

_10-
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N _N N
(I xit*l- %z xit)( T xg)
4=l i=1 1=1
In T N 2 ¥ ’
I (x,- Xr*Z xi
i=1 1 i=1

minimizes EM (Var( vg)) under (3.11), from which the following results

are readily obtained. Compare with Wu(1982a, Propoesitions 1 and 2).

Theorem 3.2. Under model (3.11) with

(a) t=0, vo( = Vlr) is the optimal estimator of V among vg;

v

(b) t=1, vy 1is the optimal estimator of V among g

(c) t 21, then g, > 1 and vy, v, are both better than Vo for

estimating V.

A

Recall that under (3.11) with t=0 , §1r is the best linear
unbiased predictor of V.

\4

Vo, T

3.3. Relationships among D VH and

The two estimators vy and vp are approximately unbiased estima-

tors of the true error variance even when the error variance structure
is not correctly specified by the model. According to Theorem 3 of

Royall and Cumberland(1978), under some mild conditions, vp and

vy -
vJ(l + o(l)) and so

vy are asymptotically equivalent, i.e., vy =
on. By studying the second order terms of the variance estimators, we

find some interesting relationships among them. We will show that vy

is stochastically larger than vp and vp is larger than Vye Lemmas

3.2 and 3.3 find the leading terms of vp and Vi Throughout this

otn~%"5).

subsection, we assume f

-11-
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Lemma 3.2.

2 =2
n (l1-p( x.- x))
- 1-f I~ i -2.5
YD * atn-11,%, ®1 2 %n
1-q¢ xy- x)
n 2
_ 1-f A - .z 2 _=2 -2.5
;T;:TTiEI e, £1-2p¢( Xy X)+(p° + q)( x4 x)%)+ Op(n )
where
o x-F) . 1
P = "5 * 9% (h-lig(s)
and g(s) is defined in (2.16).
Lemma 3.3.
n 2
1-f =2 2 -2.5
v, = L (l-p( x,- x))° e + 0 (n ) .
H n2 i=1 i i P
From (3.13) and (3.15), we have
Lemma 3.4.
n
- s - —2=f 1 a - - 32
Y4~ Vp ain-10tn ifl e; (1-pl x;- x))
n 2
~ =2 -2.5
+qQf e; ( x.-x)"1+ O0_(n ) .
i=1 i i P

Lemma 3.4 implies that vp is asymptotically larger than

Lemma 3.5 finds the leading terms of vy-

Lemma 3.5.

A =, 2
ey (l-p{ x.- x))

1 -
3 + Op(n

2.5

) .

-12-
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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We can compare Vg and v. based on Lemmas 3.2 and 3.5.

J
Lemma 3.6.
n 2
1-f 4 _ =2 ~2.5 (3.18)
vy * Vp*9amon L ey ( x4- x)7 o+ op(n Y .

i=1
Lemma 3.6 implies that vy is asymptotically larger than vp-

4. Asymptotic Bias Behavior of Variance Estimators

4.1. Second-order Expansions of MSE( ;lr) and Vig

Theorem 4.1. Let V be the approximate variance (2.4).

A

(a)MSE( ;lr) =V

g2 48,%4+25 ,0U,
+(dfy2¢p 92 - 1=2L _u,  xe xe. "), o(n”2-5,
n e 1-f 2 4
8 S
x X
a1 N 2.3 a2
where U3 = (N-1) I x,- X7, Su is the population variance of
i=1
u,, (3.4), and S .- are the population covariances of x, and
i 2 2 i
xe x“e
°12 ’ xi2 and ey respectively.
=2
= (&=f, n-1 .2 _ 1-f wul 2.5
(b) Vie = U3 n=2 %e T n-2 7+ Op(n L
s
x
If £ = 0(n %) , then
"2
~ 52 4 S 2 + 28 2 U3
(CIMSE( 7, ) = V+ —% (2 §2 - M, __xe Xe' ")y 0(n"2:5) .
1lr 2 e 2 4
n S S
x x
If £ = 0(n %% is relaxed to f = o(l) in Theorem 4.1, 0(n 2-2)

should be changed to o(n-z). The same applies to the results of Sec-
tion 4.2.
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4.2. Bias Behavior of Vigr VL vg, Vi Vp- and Vs

Throughout this subsection we assume f = O(n*o's). For any

A

variance estimator v, we denote its bias for estimating MSE( ;lr) by

A

B(v) = E(v)-MSE( ylr)' The biases of the six variance estimators are

given below:

28 ,U;+45,°2
_ 1 2 xe X e -2.5 (4.1)
B( Vlr) = - 3 ( Se + 3 ) + 0O(n ) .,
n S
x
2 S 2 U3 +4 S 2 2
B( v.) = ~- _l C Xe X e J + O(n"2.5) , (4.2)
L 2 4
n s
b4
2
2 S 2 U3 +4 S 5
I § 2 xe x"e (4.3)
B( v ) = [- §°-
g 2 e s4
n X
S 2 .2
2 S, S _
-g —Xe~ q(g+l) X'e1 4+ 0O(n 2.5) ,
X 2 =2
X
B( vy = o(n2%) (4.4)
s2
- 1 2, u ~2.5
B( vH) = -3 ( Se + 2) + 0O(n ), (4.5)
n S
X
, S: -2.5
B( vy,) = =5 —= + 0(n “"7) . (4.6)
J 2 2
n Sx

Formula (4.5) follows from (3.16) and (4.4); (4.6) from (3.18)

and (4.4). The others are proved in the Appendix.
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From (4.1) and (4.2), it is easy to see that if

20, (4.7)

then v. is less downward biased than v, . In fact, § U, > 0 for
L 1r xez 3

{ all six populations studied in Royall and Cumberland(198l1). Therefore,
as expected from our results, both Vip and ve, underestimate

[ . 2
n i MSE( er) for these populations. See Table 1.

.- ——

The leading terms of B( vg) 1s a quadratic function in g with

positive coefficient for the quadratic term. One can easily check that

H
1

Cial

the minimum of B( vg) occurs at g = 9, t-O.S . where 9, is defined

P pt

in Theorem 2.1. Furthermore, if S 2 U3 2 0, then this minimum
xe

T,
T

g This observation

*' ' : corresponds to the largest negative bias ui v
i agrees with the empirical study of the next section.

i We next observe that vpr V3 have biases of the order n'2 ’

! whereas Vb has a smaller order bias. Up to the order n—z,

VH
underestimates MSE( ;lr)' vy overestimates MSE( ;lt) and vp is

unbiased in the sense that its leading term is of order n-2.5‘ For

~ A

the ratio estimator ;R' the overestimation of A4 for MSE( ;R) was
proved by Wu(1982b). The above observations are supported by the
simulation study in Section 5 (Table 2) and an empirical study on six

natural populations with sample size 32 in Royall and Cumberland

(1981, p.926), on which the following table is based.
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Table 1. Relative Bias B(v)/MSE( }lr) of Five Estimators

Population Vir vt VH vp vy
Cancer -.14 -.12 -.12 -.06 .09
Cities -.06 -.04 -.04 -.01 .04
Counties 60 -.15 -.14 -.08 -.02 .16
Counties 70 -.14 -.13 -.16 -.07 .14
Hospitals -.04 -.03 -.02 .01 .06
Sales -.24 -.21 -.19 -.12 .11

5. Empirical Study

5.1. Populations Under Study and Simulation Preccedure

In Sections 3 and 4, the asymptotic behavior of the variance
estimators were studied. One may ask whether these results are appli-
cable to moderate sample size. The variance estimators given in Sec-

; tion 2 will be compared empirically on six natural populations. For a
detailed description of these populations, see Royall and Cumberland
(1981). The procedure described below was conducted on the UNIVAC 1100

|
]
| at the University of Wisconsin-Madison. The uniform numbers were gen-
|

: erated according to subroutine RANUN.
- i
prna. .
® !
. i We draw 1000 simple random samples of size 32 from each popula-
- i tion whose size ranges from 125 to 393. For each sample chosen, we
! ~
. ' compute the regression estimate ylr' sample mean x and variance
[ ) b
[j4 . estimators Vor Vir Voo vA, vy Vyr vDand Vy. For each simulated
}_:v i g
& |
g
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@
L -
L -
*
ool SN O RN S S
I::JA'A'A'.'J;.';‘; i e - _r A.z :A." - "( ;g ‘a2 ",‘; -,.. "y :L"Lx.}:;*l":-.ll..':L.\':.'Q-L:A.;'.‘" >.-_'.; Y 'l.'-:;:._'-). A ol e i e ade

. ® e A% W "Gt Yt iite "Il e Viie i e e _d W T T T e T e T LA LI NE D S e L




-~

sample and each variance estimate v, we also compute the t-statistic

!
-

p . T - ¥ (5.1)
L172 ’

and the (1 - o) confidence interval for ¥

A A

= 72 2
(¥ = Eoy2f300 Vv r Y1 ¥ tas2

where ta/2(3°) is the upper a/2 percentile of the t-distribution with

172 (5.2)

+ (30) v |

30 d.f.

The unconditional behavior of the estimators can be studied by

taking the average of the corresponding quantity among all 1000 sam-

A ~

ples. For example, the MSE( ;1r) is calculated as 1000 *Z( ;lr - 0

over the 1000 simulated samples, and the bias of a given variance

A

ltv - MSE( ;ir) over the same 1000

estimator v is calculated as 1000

samples.

To study their conditional behavior on X, we divide the 1000
samples into groups according to the fullowing procedure. Rearrange
the 1000 samples in increasing order of X; divide the 1000 samples
into 10 groups so that the first group has 100 samples whose x values
are the smallest, the next group contains samples with the next 100
smallest x values, and so on. Within each group, we compute the
average of ;, v , and the actual percentage coverage of each associ-

ated confidence interval.

The following three criteria will be used to compare the prefor-

mance of the variance estimators: their mean squared error (MSE) and

-17~-
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bias, and the coverage probability of the associated confidence

interval. The simulation results are summarized in Tables 2 and 3.

5.2.

<
]

f v

|

The pattern is similar to that of Wu and Deng(1983) for the ratio
estimator.

(a) v has smaller and often the smallest MSE among all the estima-

A

g9
tors considered. This is consistent with the asymptotic result of Sec-
tion 3.
(b) Among Ve Vi and Vo the best performer is the one closest to
gopt'

(c) The jackknife variance estimator vy has the largest MSE among all
variance estimators considered.

H vD and VJ. VH has the smallest MSE.

(e) vy has bigger MSE than Vor Vir Voo vA and vp,-
g9

(d) Among v

5.3. Bias of v

(a) All estimators under consideration, except vJ , are consistently

downward biased. The downward bias of vy is predicted in (4.5). Since

S 2 U3 2 0 for all six populations, the downward bias of Vo and v,
Xe )

is predicted in (4.1) and (4.2).
(b) The estimator vy is always upward biased while vp does not show
any pattern. This is again well predicted in (4.4) and (4.6).

(2) has the smallest absolute bias among all the estimators. The

YD
reason is that Vp is the only estimator with a lower order bias.

(d)y vr has a smaller bias than Vor Vs Voo and v
g
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Table 2. Root mean-square error and bias* of v's

Population
1 2 3 4 5 6

Vo 2.91 52.6 13.6 22.0 6.75 24.9

(-1.2) (-5.2) (-10.0) (-5.6) (-1.6) (-13.8)
vy 2,51 51.3 13.1 19.0 6.12 20.9

(-1.3) (-5.8) (-10.0) (-6.9) (-1.8) (-14.7)
A\ 2.39 54.4 13.3 18.3 6.24 19.4

(-1.3) (-4.9) (- 9.4) (-7.3) (-1.7) (-13.7)
v 2.49 51.1 13.2 18.9 6.24 20.7
g

(-1.4) (-6.9) (-~ 9.1) (-7.0) (-1.8) (-14.5)
v 2.92 55.1 13.1 22.6 6.85 24.2

(-1.0) (-1.2) ‘-~ 9.0) (-4.8) (-1.1) (~11.7)
[T 2,74 59.4 17.9 23.3 7.64 22.90

(-1.1) (-1.4) (- 5.7) (-5.5) (-0.9) (- 9.6)
vp 3.42 66.1 22.4 30.9 8.92 26.7

(- .5) (+.5) (- 2.6) (-1.6) (+.08) (- 4.4)
vy 5.56 84.2 37.1 52.6 11.36 48.1

(+0.6) (+16.8) (+ 5.3) (+7.1) (+1.8) (+ 9.9)
Topt 1.55 1.20 0.88 2.40 1l.46 1,53
Unit 1 10000 1000 1000 100 100000

* Bias given inside the parenthesis

-19-
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S.4. Behavior of the Confidence Intervals

Only the results on populations 1 and 6 are reported in Table 3.
They are representative of a bigger study in Deng{1984), which is well
summarized by the following conclusions.
(a) Normality of the t-statistic:
(al) The behavior of the t-statistic is similar to the student t-
distribution: the bias and skewness close to zero and standard devia-
tion close to one.

(a2) The t-statistic associated with Vo has the largest variance

while that associated with vy is the smallest.

(b) Unconditional coverage probability:

(bl) For all six populations, the coverage probability is lower than

the nominal level 1 - «.

(b2) The confidence interval associated with vy has the closest cov-
erage probability to the nominal level while that associated with Vo
has the lowest coverage probability.

(b3) Tre confidence interval associated with vy has the best perfor-

mance among all estimators considered. The superior performance of vJ
can be explained in part by the large values of E( vJ).

» Vv, and v v, is the best and v, the worst.

0 1 2’ 2 0
(bS5) Among Vhr Vp and vy vy is the best and vy the worst., This

(b4) Among Vv

may partly be explained by the results in Section 3 where vy was

shown to be stochastically smaller than vp and vp smaller than Ve

(c) Conditional coverage probability:

(cl) We can clearly see the excellent performance of the conditional
coverage probabilities associated with Vye They do not fluctuate very

much as x varies.

-20-
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(c2) Compared with the cther estimators, the coverage probabilities
assocjated with VH' Vpr V3 are pretty stable over X, whereas those

associated with Vg Vg VvV are increasing in x. For example, in
: g
population 1, the actual coverage probability of the 95% confidence

interval associated with Vo in the first group is as low as 73% and
in the last group as high as 99%.
; (c3) Among Vgr Vir Voo VY, has the most stable conditional coverage

probabilities.

(c4) Among Vyr Vpr V3r V3 has bigger coverage probabilities than

{ : that of vp for each group:; and vp bigger than Viye This again can be
‘ explained by our asymptotic results in Section 3.

a3 ' (c5) For "nearly" balanced samples ( i.e. x close to X), all esti-
9 mators perform similarly. For example, for each population the 5-th

[ and 6-th groups have similar coverage probabilities for all estima-

tors.
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Table 3. Coverage probabilities of the t-intervals in (5.2)

ggg_gg;criptive statistics of t in (5.1) based on 1000 samples

Population 1
99% 95% 90% Bias Var. Skew. Kurt.

t 94.3 88.5 80.5 -.1311 1.9640 .0925 4.7126

t 95.1 89.3 82.5 -.1223 1.7470 .0593 4.3104

4
J! t, 36.4 89.8 84.2 -.1151 1.6067 .0203 3.8002
5

tg 94.9 89.0 82.4 -.1217 1.8276 -.0352 4.4895
{ tL 94.7 89.1 82.0 -.1232 1.8255 -.0760 4.5755
u ty 96.0 90.1 83.5 -.1105 1.6160 -.0225 4.1515
f' tp 96.4 91.4 85.2 -.1077 1.4987 -.0581 4.2578
t ty 97.3 92.7 87.6 -.1050 1.3053 -.1010 4.3977

Conditional 95% C.I. coverage probability

76.0 73 81 8s 87 88 91 80 79
88.4 78 81 84 82 84 89 81 80

: 9.5 76 77 82 81 82 85 717 76
102.6 84 8 88 88 89 90 B4 B84
109.2 94 94 95 95 95 96 94 94
115.4 87 8 85 8 91 91 87 87
121.9 96 95 92 95 96 96 96 96
128.2 97 9% 95 95 97 97 97 97
137.2 99 97 96 95 96 96 97 99
; 157.1 99 98 96 96 96 96 97 99
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Population &

99% 95% 90% Bias Var. Skew. Kurt.
to 9l1.8 84.1 77.4 -.0793 2.4208 ~-.1271 5,2355
t, 94.2 85.7 79.4 -.0784 2,0163 ~-.1136 4.5610
t, 95.8 87.9 80.2 -.0772 1.7840 -.0474 4.0702
tg 93.8 85.1 79.1 -.0753 2,1614 -.1846 5,2800
t 93.9 86.1 79.5 -.0886 2.0438 -.2675 5.3736
ty 96.2 89.4 82.4 -.0744 1.7426 ~-.2565 5.5570
tp 96.6 91.2 85.0 -.0458 1.5194 -.1137 5.1693

ty 98.4 93.9 89.2 -.0195 11,1383 .1069 4.3019

Conditional 95% C.I. coverage probability
o % 2 oty Y ot Yy
14.3 60 70 82 a8 87 90 63 73

16.7 76 79 87 85 87 91 78 78

x t

18.2 72 74 79 79 81 87 73 73
19.7 77 87 89 90 91 95 84 81
21,2 8S 88 92 920 95 98 87 8s
22.8 920 90 90 90 93 96 90 90
24.3 92 91 90 90 92 93 92 92
26.5 94 90 87 92 94 95 92 24

29.5 95 91 90 93 95 96 94 95
36.9 100 97 93 97 97 98 98 100
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3! Proof of Lemma 3.1. Parts (b) and (c) follow from (a) and formulas
N (13) and (14) of Wu(1982a). To prove (a), from formula (7.31) of
-~
:. Cochran(1977) and formulas (3.2),{(3.5) and (3.6), we have
n - _ n _ n —
0y, - ¥ -blx - x13% = I (e - @2 - 821 (x - x)2
i=1 i=1 i=1
n - =2 - n |
= (e - - Dy 0% - £ oe? e o). (A3.1) |
i=1 Sy P 1=1 P |
|
This proves part (a). \
Proof of Lemma 3.2. Note that
5 - _ Z_NX -nx _ z..=lz_ % (A3.2)
€ x, X N - n X 1_f( x X)
E_ From (3.14) and (A3.2), the numerator of o in (2.15) is equal to
. - -
: =1 - 9P - -p_,2 - 2, L
.1 _ _ = 2 Y -1.5 (A3.3)
= 14f[1 2p( xy x) + p“( xy x)“] + Op(n ) .
We used the facts p2 = Op(n-l) and f = O(n-o's) in deriving (A3.3).

From (2.15) and (A3.3) , we obtain

a, = (1-6)° N1 - pt x, - N2 -al x, - DY+ o (n715H, (A3
i i i P
which easily implies (3.12). Formula (3.13) follows from (3.12) and
_ _ Th2,-1 _ _ T2 -1.5

. (1 q( Xy X)) =1 + gq¢ X x)° + Op(n ) .
g Proof of Lemma 3.3.
- ) F = 0 (n"l) and k., = O (n-l) B, in v satisfies
. ! rom w;, = O i P r P H
i 2 -2
ffi Bi = ry + Op(n ).
. :
r. L -24-
b
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- From (2.14), we have

2 2
o, 1-£,2 0 A 2 1-f 0 - -2.5
vy = ( n ) ifl ey ry" + fETE—:—ETifl e; + Op(n )

From (3.14) and (A3.2),

n 2 n 2
1-£.2 I~ o =\ 2 1 -2.5
v, = (=)°T e, (1 - v=—4(x, - x))° + £f(1-f)y = [ e + 0 (n )
H n 1=1 i 1-f i n2 =1 1 p
n n 2 2n 2
= léi b3 e; - 2 Légp T e; (x4 - ;)+E§ b ey (x4 - §)2+ Op(n-z's),
n- i=1 n i=1 ni=1
which gives the desired result since p2 = Op(n'l) and £ = O(n-o's).
Proof of Lemma 3.5. From formula (6.1) of Royall and Cumberland
(1978, p.357), we have
6, -8 )2 N2z a+gn?e 2(1 - x0T (A3.5)
L % (.) 94 1 i Tn «
i=1 i=1
where
n n
1 a -1 A -1,2
r = - —=—[ZI e,(l - k) + Zg,e, k, (1 - k) *3°, (A3.6)
n nNz 1=1 i i 1=1 b N S 1 i
-1
~ r = 1
. N-m) o ]
93 =7 Wexdy o b2
L X X ] { er
. ;N-n)(l . ( xi - x)( xr - x))
n gis)
1-f plxg - ¥x- 0 0.5 (a3.7)
= f T f g(s) B - .
;(2) is the second sample moment of x and ki is defined in (2.19).
-3 0.5 -1
= . = s = 0 ¢ ),
We then show . Op(n ) From 94 Op(n ) and k1 , g n

)., Its

the second term inside the square bracket of (A3.6) is op(n *

first term
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e, (1 - k) = e, + I e; k,(1 - k;)
i=1 2 1 121 ¥ 4y tH 1
n .
~ 0.5 o
= I e, + 0(1l) = 0 (n ) .
1.1 1 P P
Therefore r_ = O (N2) = 0 (£2n"2) = 0. (n”3). The proof is com-
n P P P 4
pleted by applying 1 + g, = £ - Pl x; - %12 and (1 -

2

-1 -
k) = (855 (1 - q x, - 0% to (A3.5).

Proof of Lemma 3.6. It follows easily from Lemma 3.2, (3.11), Lemma
3.5 and

2,-2 _ _ =2 -2
) = 1 + 2q( X xX)° + Op(n ) .

(1 - g¢ X" x)

! Proof of Theorem 4.1. Using (3.3) and (3.7), we can show that

: ( ¥ir
(] . 2. ,eutx- B - SAx- BT, F 3. ®? ]
! g2 st
q X X

1 - = - - - —-

1 - - . -

¢ gy Wx - X o o4 (q725 (A4.1)
S, P

To compute the expectation of (A4.1), we need the following formulas:

2.5

ECeulx- x» =2 =0fls 20) 52 4 o(n"2-5) (A4.2)
) n
-2 = =2, 1.2, o2 o2 2 -2.5 (A4.3)

E ' B ulx - B o= AH2s2s2 v s, 0%+ 0m™P)
;
i\ {
' -2, = 22 _ 1-£.2, «2 &2 2 -2.5 (A4.4)
: | ECele k- B2 = D22 s2 4 s 0B+ 02D
- s
) . AL,2 82 52, o(n2-5, (A4.5)
. n e °x
r.
).
2
r !
r i
_. ‘ -26‘ y
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Lci=£,2 -2.5 (A4.6)
(SRS Sux * SeuSeu * SxeSuy!t 00 )

= (1ﬁ1)2< S , U+ sxu2) + o %3 (A4.7)
xe

Formulas (A4.3) and (A4.4) follow easily from Sukhatme and Sukhatme

(1970, p.192, (9)), Formulas (A4.2) and (A4.6) follow from Theorems 1
and 2 of Nath(1968). Formulas (A4.5) and (A4.7) hold, because

S =0, 8 = U, , S = 8 . S = 8 and S = S . Com-
xe vx 3 eu xe2 xu xze ev xu
bining (A4.1)-(A4.7) we obtain
A A
MSE( ¥,,) = EC 3, - D)2
_ _ 2 _ _f12 a2 &2
1-f 2 1 (1-£)(1-2f) 5u (1-f) Se Sx
= ( n ) Se 2 2 C 3 J
n S
x
82 82 + 2(8_)"°
v o(Afy2 Tux XU__ , o(n2-3
n 54
x
-0.5

and establish (a), If £f = O(n ), then part (c) follows easily from
(a)., Part(d) follows from (A3.1).

Proof of (4.1). By taking expectation of Theorem 4.1 (b), we get

1-f 2 . _1, o2 _ . 2, &2 ~2.5
E( Vlr) = ( n ) Se + nz( Se (l1-f) Su/ sx) + O(n Y .,
which and Theorem 4.1(c) imply the result.
Proof of (4.2). Note that
- — - n -— —— — -
(x- Bledsh s oxy - DL ox- B 2 oyt
i=1

This implies, using (2.12),
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- - X I - %2 -
= v, +(;_:,c_g,,2(__.~r___&+gmu,z_(_x__x)_,+ 0 (n~2-5,
r n e 2 e — P
X %2
. 1-f 2 2 _ g2,z - X
Vie * R Y€ - gt Se + ( L Se)] 2

- - 2
- - »
+ gi%ill Sii—x————xl—l + 0 (n 2 5)

P .
x?
Taking the expectation, we get
8 2 s? g2
E( vg) = EC v, ) + (1;-5,2( - X, 9_(.;1+_J._) —e X3, on°%5, ,
X w2
X

which together with Theorem 4.1l(c) gives the result.

To prove (4.4), we need the following formulas and Lemmas A4.1
and A4.2. Formulas (A4.9)-(A4.11) find the leading terms of p, pz and
q, defined in Lemma 3.2,
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S (x - X)
- 1-f e -2.5
VL, Vie * ( n ) 52 + Op(n ),
x
L2 -2.5
E( VL) E( vlr) + nz Se + O(n ) . (A4.8)
which and (4.1) imply the result.
Proof of (4.3) From
. | - — -2
(2 21 -glxz M aleel) Lx= K, o (715
x X }—(2
- 1-f 2 -2
vg Vie + [( n ) 5. * Op(n |
L-g(x- X/ X+glgel)/2(x - 02/ 2%+ on 53

W e
PN WA WOl PR WP\
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pe ( x -2 X) - { x -~ X);v - . Op(n-l's) ,
s s
x X

-lg + Op(n-l's) ,
n Sx

where vy and V are defined in (3.4).
Lemma A4.1l.

«n 53 + op(n°'5)

r

where

i=1

Proof. From § =b - B = op(n’°'5),
~ ooy - Ty = -0.5
e = ( e, e) Sn( xg x) e, + Op(n )
2
- = 2 -0.5 . T2 _ _
and e; ey + Op(n )}, which and ( xy x)© = ( Xy
0 (n" 95 imply
P
2
A - T2 _ 2 _ g2 -0.5
ei ( x4 X) ey ( x; X)) + op(n )
from which the result follows easily.
Lemma A4.2.
n .2 _ - - o ., S
£ e, (x, - x) =nl w-(x~- X) 8% 2uE13:0 (1),
i i e 2 P
1=1 S
x
where
= 1 n . 2 o3
w n I W oo Wy ey ( xy X) .
i1=]
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(A4.13)

§)2 +

(A4.14)

(A4.15)

N

. -
A R

L L I
C - B
e .~ ".‘ .

- PN .A.‘

. Lt TN

Sadada.data




'-,._'v-_'-—(_ ¥ L N N T & el el Sl S A S A e e 3 S A T e WAL A B A i Ml SR A i i R A S D SN U el - sl s Py Palia Bar. e b Bas Ban aee. Ty
8 P . ’ o e . -

Proof. From (A4.13), we have

. 2
R - = 2 _ =T - -1
i ei ei 28n ei( x1 x) 2 e; e + Op(n )
: .= e2-25 e (x, - %) -2e, €+ 0 (nh.
! 1 n ¢l % 1 P

o Ignoring terms of order n~1, we find

% .

[ 2 2

> A - A — - —

S . ei ( xi - XxX) = e1 C( X, - X) - (x- X)]

2 Ty - _ Tyl - %
= ey ( x, - X) 2 sn ei( x, X 2 ey el xy X)

1

2 —_ - -
; ei ( x X) + op(n

vi which implies Lemma A4.2, by using (3.2) and (3.5).

/ ! Proof of (4.4). Using (A4.9) and Lemma A4.2, the second term of vy
& in (3.13) 1s

!

L

2
n . -
-2pZ e; ( x, - Xx)
1=1 i i

; - g plx—- X) _ f(x- XNv=- V) (n-l.S)J
2 4 p
! 8 S,

(o
3
-
€]
'
-~
L

_ 8
- X s - 2 w2+ 0 (13
e s P

: - - wWEx- % _ RKx- DE- T
§ 2nt 82 54
; X x
?
= z2 2
: (x- %¢s __  _s )
C ————t - 20(%- B o 05 (A1
S s P
l z 4

The third term of v, in (3.13) can be simplified by using

D
(A4.10),(A4.11) and Lemma A4.1l,
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E( v,) = n-l

1

D M S e S e St At i S St i o e R i el " A" P lar af~ o) i A i e of
2 n o ? )2
(p° + q) & e, ( x, - x)
13 174
(% - ®?2 1 -1.5 2 0.5
= 2 + > * Op(n "))(n Su + Op(n "))
sx n Sx
2 2
- — 9 S S -
sn(x- T8, Y, o095 (A4.17)
st g2 P
x x
Combining (A4.16), (A4.17) and Lemma 3.2, we get
- _ A ool e wx- X Wx- X(v- W
vp*l —a 'V, 248 o2 S
x x
(x- %?s2 _ _ 5.,
- - 2ul x - X)—=21
52 54
x X
52 52
+dx- 2w, L v, o (25 (Ad.18)
n 4 2 2 P
3 n S
x x
Collecting the leading terms of E( VD), we have
2 2
S S
= - 1 3 2_u, _u
E( vD) E( vlr) n E( vlr) + > C Sx s * 2]
n S S
x x
2 S U 2 .2 2
) 3 S S
-2 —%— —§ - = - i 2 Xy, 0(n~2-5)
n S S S S
x x x
S U 2
2 3 S
«E(v, )+ —+rs?4—Xe + 4 X3, 0(n25 (A4.19)
1r 2 e 4 4
n S S
x x
In writing (A4.19), we used f = O(n-o's) and

Sg + 0(n"1°5) ., The result follows from (A4.19) and

Theorem 4.1(c).
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