

SU MARY

The SPARC project is a research effort in computer architecture.

-Initiated by ARPA in 1977, 'work is being performedjby both Carnegie-Mellon

University and Control Data Corporation'in a joint effort to develop a

processor to meet image and signal processing requirements of the 1980's.

Utilizing advanced ECL LSI technology, the SPARC processor will initially

serve as an add-on device to off-load computational load from a host general-

purpose computer.

The goal of this phase of the program is the installation of SPARC

processors in laboratories at both CMLU and CDC in the late 1979 -- early 1980

timeframe. The hardware is being developed by CDC, along with system software.

CMU is developing user software aids, along with a library of applications

programs.
Il

At midsummer 1979, the processor design is complete. All parts have

been ordered. Cabinet fabrication is in progress, with delivery of the

initial cabinet expected in :ugust. The design of an interface between SPARC

and the PDP 11 series is complete. Current delivery schedules should allow

checkout to begin in the fall of 1979. Initial versions of a cross-assembler

and a register-level simulator are complete, along with early diagnostic and

system software.

BACKGROUND

Image processing hardware currently available will prove inadequate to

meet military needs in the 1980's. The rapidly increasing volume of raw data,

combined with increasingly sophisticated processing requirements will exceed

present capability by an order of magnitude or more in a few years. In order

to satisfy requirements, improvement in both signal-level and symbolic level

processing must occur.

Signal-level processing, being generally concerned with arithmetic

manipulation of large volumes of data, has been traditionally handled by

4' numeric processors. Increasing volume can be acco:x od,td, to a certain extent,

by increasing computational power. To fully meet roqu: :?into, however, morc

processing must be shifted to the symbolic level, whic*> .,olves non-numeric

tasks such as searching and path finding.

"-4-• . . ,. ,.

,'W

PROCESSOR ORGANIZATION

The SPARC processor contains ten functional units connected via a crossbar

*" switch. The operation of these units and the routing of data between them are

controlled by microinstructions. Figure I shows the SPARC crossbar configuration.

*CROSSBAR SWITCH OPERATION

The crossbar switch routes up to 12 16-bit input quantities to a possible

18 destinations on any clock cycle. Figure 2 shows the basic crossbar

switch system.

The crossbar switch has three types of conflicts that occur on input to

the functional units.

The first type of conflict occurs in a data memory unit when attempting toI

input the data and the address for the unit simultaneously. The two input

lines for the data memory unit are tied together allowing either the data or

the address to be input on any cycle. Both the data and address may be input

simultaneously if they are the same. The second type of conflict occurs between

* the control unit and the multiplier unit. The B input to the multiplier unit

and the input to the control unit are tied together allowing input to either

* on any cycle. If both inputs are the same, they may be input simultaneously.

-The third type of conflict occurs between the shift/boolean unit, the ring

port, and the XIAU. The shift count input (C) of BO, the input of XMAUO, and the

input to ring port 0 are all tied together. Therefore, any one of the tied

inputs may be used on any machine cycle.

MICROMEMORY INSTRUCTION FORMT

The functional unit operation and data transfer in SPAlC are controlled

by instructions read from the micromeory. Figure 3 shows the micromemory

instruction word format. Bits are numbcred from left to right with the most

significant (leftzost) bit numbered zero, and the least significant (rightmost)

bit numbered 199. All data words in SPARC are nuwbcred in a similar manner.

2
4t

* *. . ..

DAADDEIR 0 3

0

9

12 101

14 SHIFT/BOOLEAN 11

01

0..

Figure 1. SPARC Crossbar Configuration J9-1616

0 3

*UT FUSWITC
UNINTTS

UNT

CROSSBAR 4I
72 CONTROL

IMICR OIN ST RU CTtO N
XBAR FIEL0J

Aco~;csi in Fcor

NTIS' :F'A&lF Figure 2. Crossbar Switch System n:.

44

4~I

1

0

0

C2)

C"j

0,0

C" 0

00

f4

P.. - -- --

- Dynamic Control Field (DC)

Each instruction word contains four DC fields. These DC fields carry

* information transmitted to the specified functional unit where it is latched

in an instruction control register and interpreted for the operation to be

performed in the unit beginning with the next machine cycle. The information

latched is valid until new information is entered. Therefore, it is not

necessary to use a DC field each time a result is desired. A DC field is used

only to change the unit's operation.

Each DC field is 16 bits wide; the lower four bits specify one of 16

possible functional units and 12 bits are transmitted to the unit specified

for interpretation. Any unit may be referenced by any of the DC fields in an

* instruction. Therefore, the user must be careful not to reference the same

functional unit with more than one field in the same instruction (with the

exception of the control unit). If this happens, undefined unit operation

* results.

Constant Field (K

Each micromemory instruction word contains a 16-bit K field. This field

contains a quantity that may be supplied to the crossbar for possible routing

to any of the functional units. This field may also be used as a base address

for branch instructions.

* Clock Control Field (CLK)

Each micromemory instruction word contains a 48-bit CLK field. This field

* supplies control to each AFP functional unit during each machine cycle. Two or

more bits in this field are permanently assigned to each functional unit. In

* most units, the bits condition the latching of data from the crossbar into

the unites input registers. In certain units (branch unit, file unit, data

memories, ring ports, and the XMAUs), some clock bits perform functions not

specifically related to clocking of input data. Refer to the functional unit

* descriptions in this section for an explanation of the clock functions in the

individual functional units.

6

4

Crossbar Control Field (XBAR)

Each micromemory instruction word contains a 72-bit XBAR field. This

* Field contains information used to control data routing through the crossbar.

The field is divided into IS 4-bit subfields. Each subfield is associated

with a crossbar output. The 4-bit code in the subfield specifies which one

* of 16 crossbar inputs is routed to the crossbar output during the machine

cycle.

. FUNCTIONAL UNIT DESCRIPTIONS

SPARC contains eight different functional unit types as follows:

o Data Memory
o Integer Add
o Multiplier
o Shift/Boolean
o File
o Ring Port
o External Memory Access
o Control

Each unit contains input registers and a control register controlled from

the micromemory instruction word and compare hardware enabling a comparison of

the result of an operation with a previously defined quantity in the auxiliary

register in the unit. The results of these comparisons are available at any

time for branching or decision making purposes. For the adder, multiplier,

*shift/boolean, data memory and file units, an output register is included

* allowing overlap of transmission of data over the crossbar switch with the next

operation within the functional unit specified.

4
Table I specifies the number of cycles needed to complete an operation

in each functional unit. These cycle times include the transi.lission of data

over the crossbar switch.

4

7

. .. .*

- '7- ,.

TABLE 1. FUNCTIONAL UNIT CYCLE TIM4ES

Number of Cycles
Unit For Operation Completion

Data Memory 2 Cycles

Adder 2 Cycles

Multiplier
All multiplication operation 3 Cycles

All other operations 2 Cycles

Shift/Boolean 2 Cycles

File Unit 2 Cycles

Ring Port (Direct response from

functional unit only) I Cycle

External Memory Access (Direct I Cycle

response from functional unit
only)

Control I Cycle

4

Data Meuiory Unit (DO,DI)

4 The data memory unit provides storage for variables, intermediate operands,

and results during computations. The data memory can also be used as an

input buffer for data entering a processor via the ring ports.

4

8

4

There are two data memory units in SPARC, each containing a random

access data file with 1024 16-bit words. Each unit also contains a 16-word

by 16-bit index file. The index file contains pointers to addresses in the

data file, but may be used for additional data storage. The index file entry

may be automatically incremented or decremented each memory unit cycle via an

adder network after use an indirect address. Comparison networks provide

independent testing of the data file address and output.

Each data memory unit receives two inputs from the crossbar switch; one

provides direct addressing to either the data file or the index file, and one

provides the data to be written. A separate data path, from the I/O section of

the processor, enables ring port input data to be written into the data file

independently. Direct and indirect addressing is available.

Figure 4 shows the data memory unit. XA provides the address and XB the

data. The terms I/O INFO and I/O DATA are the control and data, respectively,

of the ring port input data.

The data memory unit has three microinstruction clock bits. Clock A

and Clock B control latching of input registers A and B, respectively. Clock C

controls all data memory unit operations.

TABLE 2. DATA MEMORY OPERATIONS

Operation Description

Z - M(A) Read data file direct

Z - F(A) Read index file direct

Z - F(N) Read index immediate

Z - F(N), AF(N) Read index, post-increment

Z , F(N), V F(N) Read index, post-dccremnt

Z F(N), I AF(N) Read index, post-add

Z F(N), IV F(N) Read index, post-subtract

9

4.

TABLE 2. DATA MEMORY OPERATIONS (Cont'd)

Operation Description

Z - M {F(N)) Read data file indirect

Z 14 {F(N)},A F(N) Read data file indirect, post-increment
index

Z M {F(N)}, V F(N) Read data file indirect, post-decrement
index

* Z M M {F(N)}, I AF(N) Read data file indirect, post-add index

Z M 1 {F(N)}, I V F(N) Read data file indirect, post-subtract
index

M(A) + B Write data file direct

F(A) - B Write index file direct

F(N) *- B, Z = F(N) Write index, immediate

M {F(N)} B Write data file indirect

M {F(N)} + B, A F(N) Write data file indirect, post-increment

index

M {F(N)} B,V F(N) Write data file indirect, post-decrement

index

M {F(N)} B, i A F(N) Write data file indirect, post-add index

M {F(N)} B, IV F(N) Write data file indirect, post-subtract

index

CA + XB Load address comparand register

CD XB Load data comparand register

I + XB Load increment register

4

Eight status bits are generated by each data memory unit. These bits

are available as part of the machine condition vector. Two comparisons are

made each machine cycle. One operation compares the currently -elected data

4 file address, obtai:;icd from either input register A or the contents of index

file location F(N), and the current contents of the address compare register

(CA). The other operation compares the current output of the unit (Z), and the

data compare register contents (CD).

10

CAOSSYS RE2

CROSSBAR A03R 1

OUYUTZROSBA

II

CRSBRRGCOMPARE STATUS
RB BEG A

C IEXI

S12O

z T

Figur 4. DataU CROrySpertio

DAT

AOR

II

Table 3 summarizes the status bit operations of the data memory unit.

TABLE 3. STATUS BIT OPERATIONS

Operation Description

SA =CA Address equality

A > CA Address magnitude

Z =CD Data equality (16 bits)

ZU = CDU Upper data equality (8 bits)

ZL = CDL Lower data equality (S bits)

ZU > CDU Upper data magnitude (8 bits)

ZU > CDL Lower data magnitude (3 bits)

Z 1SB Most Significant Bit (sign bit)

Integer Add Unit (AO,A)

The integer add unit forms an integer sum or difference of two 16-bit

input operands. The units are capable of performing the following functions.

o I's or 2's complement arithmetic operations

o 8-bit or 16-bit arithmetic operation

o 32-bit parallel operation

o Comparison of results

o Selective latching of inputs A and B

There are two integer add units in SPARC. Figure 5 shows the integer

add unit. XA and XB provide the A and B operands from the crossbar.

The add unit has two clock bits. Clocks A and B control the latching

of data into the A and B registers, respectively.

12

CROSSARR

II

Fi ur 5. Int e r A Fu c ioaYU i

OU I

16 A

ILI

Table 4 describes the functions performed by the integer add unit.

TABLE 4. INTEGER ADD UNIT OPERATIONS

Operation Description

Arithmetic:

Z + A + O Arithmetic pass A

Z B + 0 Arithmetic pass B

Z - A + B Arithmetic add

Z - A - B Arithmetic subtract

Z 4-B + B Add B to B

Z 0 - B Minus B

Increment: (2's complement only)

Z A + I Add I to A

Z B + I Add I to B

Z A.- I Subtract I from A

Z B - I Subtract 1 from B

Z +A + B + I Add I to A + B

Z B + B + I Add I to B + B

SZ A - B -I Subtract I from A- B

Logical:

Z 0 Word of all zeros

Z I Word with value of I

Z ONES Word of all ones

Z -B Complement of B

* Z A Pass A

Z 4-B Pass B

Z B + B Logical left shift I (2's complement)

Z - B + B Circular left shift I (l's complement)

0 C - XB Load comparand register

* 14

0 °

The intcger add unit contains three operation types; arithmetic,

increment, and logical. The arithmetic operations operate in l's or 2's

complement mode. The increment operations perform 2's complement arithmetic

only. Thus, all l's complement instructions are mapped to a 2's complement

counterpart. The logical operations operate in l's or 2's complement mode.

The default mode for add operation is 2's complement, word (16-bit) operands.

The integer add unit produces 11 status bits defined in Table 5. Two

status bits are also generated from combined adder unit operations.

TABLE 5. INTEGER ADD UNIT STATUS BITS

S

Operation Description

ZU = CU Upper data equality (8 bits)

ZL = CL Lower data equality (8 bits)

ZU > CU Upper data magnitude (8 bits)

* ZL > CL Lower data magnitude (8 bits)

Z = C Data equality (16 bits)

SZ> C Data magnitude (16 bits)

ZMSB Most significant bit of output
(sign bit)

ZU = 0 Upper 8 bits zero

ZL = 0 Lower 8 bits zero

* ACY Carry

A Overflow
Ov

SZOI > C 32-bit data magnitude
(both adders combined)

0 Z1= C 32-bit data eqLualiLy

(both adders combined)

15

Multiply Unit (MO)

The multiply unit performs integer multiplications, population counts,

significance counts, and bit reversals. The resulting product of a multi-

plication operand can be 32 bits (16 bit operands) or two 16-bit products

(8-bit operands).

The unit is segmented allowing new operands and new results to be

obtained every cycle.

Figure 6 shows the multiply unit. There is one multiply unit in each AFP.

The unit has two 16-bit inputs from the crossbar, XA and XB, and two

associated clocks A and B, which control latching of data into the respective

input registers.

Table 6 describes the operations performed by the multiply unit.

TABLE 6. MULTIPLY UNIT OPERATIONS

Operation Description

HL A*B 16-bit 2's complement multiply

HL -A*B 16-bit magnitude multiply

H4-A, H-B Pass A and B

H (AU*BU), L - (AL*BL)

H (AU*BL), L - (AL*BU)

H (AL*BU), L - (AU*BL) 8-bit multiply

H (AL*BL), L - (AU*BU)

II PC(A), L - PC(B) Population counts of A and B

H - RV(A), L - SC(B) Bit reversal of A and significance

-' count of B

H - PC(A), L + B Population count of A and pass B

I PC(A), L SC(B) Population count of A and significance

count of B

H - A, L - PC(B) Pass A and population counL of B

H - A, L - SC(B) Pass A and significance count f B

H - RV(A), 1 - B Bit reversal of A and pass B

11 - RV(A), L PC(B) Bit reversal of A and population count

of B

16

TABLE 6. MULTIPLY UNIT OPERATIONS (Cont'd)

Operation Description

CL XB Load lower comparand register CL

CH - XA Load high comparand register CH

CL XB, CH XA Load comparand registers CL and C1

8-Bit Magnitude Multiply

This operation forms two independent 16-bit products simultaneously from

various combinations of 8-bit halfwords from the input registers. Each input

register contains two independent halfwords, the upper halfword (most

significant 8 bits) designated AU and BU, and the lower halfword (least

significant 8 bits) designated AL and BL. The halfwords are considered

positive 8-bit integers.

Population Count

The population count is a binary count of the number of I bits in an

input word. The population count results are stored in the least significant

five bits of the multiply outputs in the form of binary integers. The A

register count goes to the H output and the B register count goes to the L

output. On any cycle, the count of A, B, or both A and B may be made.

Bit Reversal

1he bit reversal operation is defined as follows:

r i =x. for i = ... ,n
n-i I

where r = reversal bit

x = input bit

n = word length - I

This function is implemented for the A register only with the result

going to the 11 output.

17

4 - - - * . - . ,

C PE STAT S

REGCOSBA

0N
REG COSSBA

CROSSBARSBIT

SYBO

I

Significance Count

The significance count operation identifies the position of the most

significant I bit in the input word. The result is a positive binary integer,

identifying the displacement from the right (least significant) position in

the word. The result is contained in the lower four bits of the output,

except for an input word of all zeros. For this word, the result contains

a I in bit position 11 and all other bit positions zero (value of 16).

The significance count operation is implemented for the B register only with

the result going to the L output.

Status Bits

The multiply unit produces five status bits defined in Table 7.

TABLE 7. MULTIPLY UNIT STATUS BIT OPERATIONS

Operation Description

H = CH H output equality (16 bits)

L = CL L output equality (16 bits)

H > CH H output greater than CH based on

16-bit magnitude comparison

L > CL L output greater than CL based on

16-bit magnitude comparison

11 MSB The most significant bit (bit 0) of

the H output

L 4SB The most significant bit (bit 0) of

the L output.

Shift/!Boocoan U'i't (BO)

The shift/booiemC1 unit pr1forms shift and bit lo,4icjl operations.

Barrel shifts of 0 to 15 plics are, pcrfor:n;Ld on 16-bit sioyie pucrands or

32-bit double .Yord opurads. This Lent is is usful jor f icid vxtracti ,

over word bLi:rdarics.
19

I

-, - . -

The unit performs right shifts only. Sign extend, zero fill, and circular

(end around) shifts are available. The shift count may be obtained from

either the microinstruction control field or other SPARC units via the crossbar

*" switch.

The boolean section performs all 16 logical functions of two variables.

"- The operands used are the output of the shift network (A) and the contents

of an input register (B) loaded from the crossbar.

There are four clock bits associated with the shift/boolean unit.

Clocks A and D control the latching of data into the shift input registers S

and D, respectively, where D is the more significant word in a double word

shift operation. Clock B controls the latching of data into boolean input

register B. Clock C controls the latching of data into the shift count

register C.

Figure 7 shows shift/boolean unit.

Table 8 lists the operations performed by this unit.

TABLE 8. SHIFT/BOOLEAN UNIT OPERATIONS

Operation Description

* Shift K, zero fill Shift contents of S register right K

places, enter zeros from left

Shift K, sign extend Shift contents of S register right K

places, copy bit 0 from left

Shift K, circular Rotate the contents of S rcgister K

places right, end around shift

Double shift K Shift contents of S register and D

register right K places

Z + A A B A AND B

Z , AA -B A AND NOT B (Inhibit)

Z *-A Pass A

20

I

TABLE 8. SHIFT/BOOLEAN UNIT OPERATIO:',S (Cont'd)

* , Operation Description

" -Z A B NOT A AND B (Inhibit)

Z+ B Pass B

Z - A @ B Exclusive OR

Z - AV B A OR B

Z A+ B NOT (A OR B) (NOR)

Z 4-A - B Equivalence

Z4- B NOT B

Z AV--I B A OR NOT B (IMPLICATION)

Z - A NOT A

Z 4-0 All Zeros

Z -I AV B NOT A OR B (Implication)

Z+ I All ones

Z A+ B NOT (A AND B) (NAND)

C - XB Load comparand register

" The shift/boolean unit generates seven status bits from the compare

network.

The quantities compared are assumed to be positive binary integers.

Table 9 lists the status bits and descriptions.

0 TABLE 9. SHIFT/LOOLEAN UNIT STATUS BITS

Status bit(s) Description

ZU = CU Upper halfwords of C and output are
0 identical

ZL = CL Lower halfwords of C and output are

identical

ZU > CU Upper halfword of output is greater
than upper half..'Ovd of C

Z1, > CL Lower half,.:ord o ouLput is griatcr

than lower halfword oi C

21

. *

NOMCOMPARE STATUS

SHIF 16 1OLA66OTPTCOSA

C ROS SBARA

FRO 12EG E
CR ISB LR D

I0

Figur 7.AitBoJ nUi

IA

22C

IN

...

TABLE 9. SHIFT/BOOLEAN UNIT STATUS BITS (Cont'd)

Status Bit(s) Description

Z =C The two 16-bit quantities are identical

Z > C The 16-bit output (Z) is greater than the

contents of register C

Z The most significant bit of the output

MSB

File Unit (FG)

The file unit consists of two general-purpose register files. These

files provide temporary storage for operands and may be used as delays to

coordinate timing between data paths.

The two halves of a file unit operate independently. Each is assigned a

separate crossbar input and output, and is supplied with independent read

and write addresses obtained from the same dynamic control field. Each half

performs a write followed by a read each machine cycle.

Each half of a file unit contains storage for 16 16-bit data words of

which only eight words are accessible during only one cycle.

SPARC contains one file unit. Figure 8 shows the file unit. The file

unit halves are referred to as file F and file G. They both work in the same

manner.

The write data operation occurs unconditionally every time the input

*. register contents are changed. Therefore, previously stored data at the

write address is lost unless the write address is also changed in the DC field.

There are three clocks in the file unit. Clocks A and B latch the

crossbar inputs XA and XB into registers A and B, respectively. Clock C provides

the fourth address bit for the read and write portion of both halves; therefore,

selecting the upper or lower eight words in each half of the unit.

23

I m "' i. .' . . m , . , .'.. . . , . . , , . i 7 i . . ' ., . .i7i .i

FIL

XAA 16DATA DATA B OTPT To

F ROSSBARRE IN OUT R RT CROSSBAR?-
CROSSBARSYMBOL

C AO

FROM -- & REGREG CROSSBAR

4Figure 8. File UniL

24

There are two status bits available from the file unit as follows:

F The most significant bit of the F output
MSB

GM The most significant bit of the G output

Ring Port (1O)

The ring port provides an interface between SPARC and an interprocessor

communication ring. All information arriving at the processor's ring port

input register is decoded. Information intended for the processor is sent to

its destination. Otber ring packets are transmitted to the next processor in

the ring. A ring packet consists of one 16-bit data word, eight bits of

addressing information, and four control bits. Data on the ring has priority

over data entering the ring from the output first in first out (FIFO) buffer.

In addition to data transfer and synchronization functions, the ring ports

provide the primary external access to and control over the processor. Only

one ring port (I/O) in a processor accepts control information. Figure 9

shows the ring port unit.

The ring port unit has two clocks. Clock A executes the current output

control operation. Clock B clears the status register bits corresponding

to the mask register bits.

Output S .tion

The output section of the ring port contains a 16-entry, FIFO buffer

between the ring port crossbar input register (A) and the ring output register.

Therefore, the processor can write up to 16 words to the ring port, even

when the ring is stopped or full, before a processor stop condition is

generated. This stop condition occurs only if the processor fte:ncpts to write

to the ring when tho output FIFO is full and is releascd when the output FIFO

is c.pable of accepting another word of output.

25

0

MAS

FRO REGSTATUS
CROSSBAR OTU

cc 12 CONTROL CINST
FIELD REG CNTROL

RRIN

*IN E29OUTPUT 29 N

CODE 4PASS ON

DEST COMPARE
TABLEACET1

REG CROSSBAR

DATA 8 PATH. DATA 4TO DATA MEMORIES

PATH OPERATION ADXA

CMAECODE CONTRO

A i

SYMBOL

Figure 9. Ring Fort Block Diagr am

26

Ring Sectio~n

The ring section contains the input and output transfer rogisters of the

ring. Ring packets may be clocked from a previous port on the ring into the

input register, from the input to the output register, and from the output

register to the next port every machine cycle. Along with each packet is a

bit indicating whether the packet has been around the ring more than once.

This bit is set when the packet passes a specific point on the ring, normally

the interface or controlling processor, and signals an error condition if it

reaches the same point a second time.

Input Section

The input section of the ring port contains the processor addressing

logic, buffering of incoming data and control packets, and automatic distri-

* bution of data into various memories of the processor.

There are two modes of processor addressing depending on a control bit

in the ring packet; direct and indirect.

For forced transfer packets, direct addressing is used. The lower eight

bits of data in the ring packet are compared with the eight equipment code

switches and if a match occurs, the packet is accepted. The remaining parts of

the input section are bypassed and the packet is acted upon directly.

For indirect addressing, a 4-bit path code in the ring packet is used to

address one of the 16 destination table entries. The 4-bit destination field

6 in the ring packet is compared with four bits of the table entry and if a

match occurs the packet is accepted. The fifth bit of the destination table

entry determines whether the packet is removed from the ring or allowed to

continue around to another processor. This allows data and/or synchronization

signals to be broadcast to a number of processors simultaneously.

27

h ,

The input section contains a FIFO buffer of 16-word by 24-bits where

data, the path code, and control bits of an incoming indirectly addressed

packet are stored. The packet is processed only when leaving the input FIFO.

The operation table contains 16 entries addressed by the path code. An

entry points to the data memory where the data word is to be written,

identifies an index register in that memory to be used for the address, its

post increment mode, and an associated status flag. Therefore, up to sixteen

buffers each with an associated status flag may be defined in any of the data

memories for each ring port.

The status flag register has an associated 16-bit mask register which may

be set by the receiving processor. Two status conditions are generated using

* this mask reister; the logical AND may be used to coordinate the arrival

of data from different sources with a single test. The logical OR could signal

any one of a number of inputs available for processing. There is a processor

instruction (clock bit) that clears all status flags with a corresponding

-mask bit set. This instruction generates a processor stop condition if any

selected bit is not currently set. This ensures that the processor waits

for all incoming data before processing it.

The set status signals can be sent with the last word of data to signal

arrival of a buffer, with the first word of data to prevent the data from

overwriting the buffer before it is available, or by themselves for

synchronizing processes or signaling special events.

Status Bits

. The ring port produces four status bits which indicate whether the output

* FIFO buffer is full, any status-mask pair is set, all status-mask pairs are

l. et, or the ring is stopped.

28

0.

External Memory, Access Unit (XO)

The external memory access unit (XI..:U) provides the facility for transfer of

information between SPARC and system bulk memory. Bulk memory banks process

data in blocks of four 16-bit words called super words (swords). Figure 10

shows the XMAU.

The XIIAU contains a four-word assembly/disassemdbly data register to hold

the sword. One 16-bit word may be read and/or loaded via the crossbar each

cycle. The word is defined by an assembly/disassembly (AD) counter (two bits),

loaded from the instruction control. Communication with the bulk memory system

is performed via a 64-bit wide data path with some buffering to allow for a read

lookahead capability. The XMAU contains two address registers (16-bit), I

and 2, each loaded directly from the crossbar. A segment register also loaded

directly from the crossbar allows addressing of up to 232 swords of memory.

The two input buffers each hold up to eight swords of data. The 64 bits

of input from the bulk memory to the input buffer are loaded into the normal

or interrupt sections depending on the mode of the processor when the read

request was executed.

The XMAU is capable of transferring to or from the crossbar one 16-bit

word every machine cycle when accessing words sequentially without a break

at a sword boundary provided no memory bank conflicts with other XMAU's occur.

Swords may also be requested in a random manner with the address

* provided explicitly. Requests may be made for lookahead purposes before any

data is processed.

The SPARC system, as initially configured, will contain no bulk memory.

A single IMAU will be includud, however, because it: is required for loading

and examination of micromcmory. The presence of this unit will facilitate

later system expansion via the addition of bulk mucmtry.

2

29

h," . ,.,. ',. " ,,, . ,. = o,, ,,r -.- .
"

" " "" " ". -' -

CLK

AA

OOTROL.
2 0i -O fI

FIEL - EGCNTRONTR T I SER
-C -1 MSYMBOL

1A 1

FROM &CROSSBARCROSSBAR

TO
CLK C ASSEMBLY iOISASSEMBLY DATA REGISTER 64

CLA DATA MICRONME .MORY

UFULL

ISETI AI 4
LELAG

FROM NOMA MEOR

INTERP EUPUT DT

BUFFER SWORD ADDRESS

(SORD So TO BuLK MEMORY

I

r Figure 10. External Memory Access Unit

t

30

I

o

Write requests may be interleaved with read requests.

A direct path is provided to micromemory. This path is 64 bits wide

and facilitates rapid loading of overlays into micromemory. The micromemory

contents may also be modified and/or examined by the processor via this path.

Table 10 lists the operations performed by the X4AU.

TABLE 10. EXTERNAL F4MORY ACCESS UNIT

Operation Description

Group 1 (Bulk Memory Access)

DR - BM(SG.AI) Read bulk memory random - register I

BM(SG.AI) - DR Write bulk memory random - register I

DR BM(SG.AI) Read bulk memory sequentially - register I

SG.AI - SG.AI+1

BM(SG.AI) - DR Write bulk memory sequentially - register I

SG.AI - SG.A +1

DR *- BM(SG.A2) Read bulk memory random - register 2

* BM(SG.A2) - DR Write bulk memory random - register 2

DR BM(SG.A2) Read bulk memory sequentially - register 2

A2 =A2+1

BM(SG.A2) - DR Write bulk memory sequentially - register 2

A2 *- A2+1

Group 2 (XMAU Register Operations)

DR(AD) - XA Load data register from crossbar (write
16 bits)

Al - XA Load address register I

A2 4- XA Load address register 2

SG - XA Load segnent register

CA 4- XA Load address comparand re ister

SG.A| - SG.AI+1 Increment address register 1

A2 4-A2+1 Increment address register 2

31

TABLE 10. EXTERNAL MEMORY ACCESS UNIT (Cont'd)

Operation Description

Group 3 (DR Access Mode)

AD 0 Clear assembly/disassembly counter

AD I Load assembly/disassembly cc, nter with

value I

AD - 2 Load assembly/disassembly counter with

value 2

AD - 3 Load assembly/disassembly counter with

value 3

AD - AD-I Post-decrement assembly/disassembly counter

* AD - AD+1 Post-increment assembly/disassembly counter

DR - 1M Read micromemory shadow register

1140 4- DR Write micromemory upper - parcel 0,

14141 DR Write micromemory lower - parcel It

1M412 DR Write micromemory upper - parcel 2 t

4 43 DR Write micromemory lower - parcel 3,

Z = DR(AD) Data register output (available at all

times)

t These instructions are available only on the master XI4AU (XO)

The bulk memory may be accessed for read or write in two modes; random

or sequential.

* •In random mode (sword mode), every time the unit is executed (clock A

set), a request (read or write) is sent to the bulk memory with the contents

of the spccificd address register. In the case of a write, the contents of

the data register (DR) is also sent. In both cases, the new contents are used

{ •if the same instruction loads the address or data register. This mode is

32

S S . S. • ,". ,-. . .

normally used only when every execution of the unit requires a new sword

(64 bits), such as prefetching the first few swords of an array or only one

word is to be accessed in each sword.

In sequential mode (word mode), bulk memory references are made

automatically on sword boundaries. Every time the AD counter wraps around

(that is, increments from 3 to 0 or decrements from 0 to 3) a bulk memory

reference is initiated at the current (or new address if loaded in the same

instruction), the address is post-incremented and the data register full

(DR full) flag is cleared. The result of clearing DR full is the next

(prefetched) sword waiting in the XHAU's input buffer is transferred into the

DR and the DR full flag is reset. This operation occurs such that with

adequate prefetch and no serious bank conflicts data can be read at the rate of

one word per machine cycle without a break at sword boundaries. If the

selected address is greater than the address comparand, bulk memory references

are not made. This can be used to prevent unnecessary prefetches at the end

of an array. Normally, a maximum of eight sword prefetches may be issued

before any of the data is used.

The XMAU registers may be manipulated at the same time bulk memory

references are being made. The address registers may be loaded while in

sequential mode. This pseudo random access is the normal method of performing

random addressing of bulk memory when all words within the swords are being

used. Explicitly incrementing the address registers in sequential mode is not

required and can produce unpredictable results.

The AD counter can be manipulated, the micromemory written, or the shadow

register network read simultaneously with the above operations. In sequential

mode, the AD counter must be specified as increment or dccremeLtt for

wraparound to occur.

33

I

. .- ..

NOTE

*The bulk memory access mode (including the wraparound

condition) must not be changed in the same cycle in

which the unit is executed and such execution would

*result in a bulk memory reference. This constraint does

not apply to reads which have six or less prefetches

which have not yet been used.

The M4AU has four clock bits as follows:

Clock Description

A Execute current MI4AU operation.

B Wait for data ready bit- an instruction is

reading the data register and stops the

processor until the data register is full

C Clear data register full flag- processor

has used data register data

D Set data register full flag- ptevents

loading prefetched data over current DR

contents

'0

There are seven status bits produced by the XaMAU. Table 11 lists

these status bits.

34

0-:7.

TABLE 11. XMAkU STATUS BITS

operation Description

A CA Address register equivalence

A > CA Address register greater than comparand

U UMSB Most significant bit upper byte

L MSB Most significant bit lower byte

Data Register Full Status check

Output Buffer Full Status check

Request Stack Full Status check

Control Unit (CU)

Control of functional unit operation and data transfers in SPARC is

provided by machine instructions stored in micrornemory. This memory operates

independently of the previously described data memories. The instructions read

from this memory contain information which designates functional unit operations,

controls data passing into the functional units, routes data between the

units, detects conditions arising from within the processor and external to it

along with the ability to appropriately modify machine control as a result of

these conditions, and directs data into and out of the processor via the

* various input/output methods previously described. Figure 11 shows the control

* unit.

The control section consists of the following components:

o Micromemory

o Crossbar switch

o Branch logic

o Interrupt network

35

COMTO CROSSBAR

Fiur IN. CoTrAlUnK

P-

P
ADRS 70 *.

STACK.

. PUH-O REG

Micromemory

The micromcmory in SPARC holds all the instructions used to control

machine operations. The micromemory contains 1024 words each 200 bits in

length. It is capable of being loaded either via forced transfers from the

master ring port or under program control directly from an external memory

access unit. Refer to Micromemory Instruction format in this section for further

information.

Crossbar Switch

The crossbar switch provides data paths between the outputs and inputs

of the functional units (refer to Figure 1).

The switch consists of an 18 input, 16 output crosspoint mechanism.

Each path through the switch is 16 bits wide. All 16-bit input quantities

may be simultaneously routed to any of the output ports in a machine cycle.

Each output port drives up to four functional units. Refer to Crossbar Switch

Operation in this section for further information.

Branch Logic

At the end of each machine cycle the conditions of various functional

units become valid and are latched into condition registers in the units. These

conditions may be sensed by selecting the control unit using a DC field of the

* microinstruction. A conditional branch may be selected in each of the four DC

fields allowing up to four conditions to be sensed during the same instruction.

The branch address should be the same for all conditions selected for proper

operation. The branch address is taken if any of the selected conditions is

true.

SP Register

SPARC control contains the 12-bit P register. This rcgistcr contains

- the address of the next instruction word being fetched from the nicromemory.

An increment network advances the contents of the P register by one during

S•normal seqtential program execution. Other inputs may be latched in the P

[register during the cx2cution of branch instructions.

37[

P Stack

A 16-word pushdown stack is associated with the P register. This stack

is used to store program addresses for later recall. The stack may be pushed,

*popped, written, or read under program contro.

Control Unit Operations

Table 10 lists the operations performed by the control unit. The control

unit has five clock bits. Clock A latches data into input register A, clock B

* increments the P stack, clock C decrements the P stack, clock D inhibits

execution of the next instruction on jumps, and clock E inhibits execution of.

the next instruction fall-through.

TABLE 10. BRANCH UNIT OPERATIONS

Operation Description

P--S Jump to location contained in stack

P +P + K Jump to current location + constant

P K +A Jump to constant + crossbar input

P -K Jump to constant

P P S +A Jump to stack + crossbar input

P -P +A Jump to location of next instruction +

crossbar input

P--A +A Jump to crossbar input doubled

P -A Jump to crossbar input

4S <-O0 Stack address clear

S - P +K Stack location of next instruction +

constant

S - K +A Stack constant + crossbar input

S - K Stack constant

S -S +A Stack current value + crossbar input

S *-P + A Stack current locatio~n + crossbar input

S<-A +A stack crossbar input doubled

S S4A Stack crossbar input

38

Interrupt Nt'. ,r1 :

A single level interrupt system is imp] emented in SPA.RC. Interrupts may

be initiated from any of the ring ports included in a processor, and may be

selectively enabled or disabled from each individual port. The interrupt

system may also be activated or deactivated. The machine state, as represented

by data and control register contents, is preserved and restored over the

interrupt. This data may be examined by the processor ane is accessible to

external devices via the master ring port providing a debug and monitor method.

Conditional Clocks

There are eight registers in SPARC for which the associated clock bits

may be conditionally complemented from the control unit. These registers are

the two inputs to each integer add unit, the input to file F, the input to

* file G, and the boolean input to each shift/boolean unit. A true condition

reverses the effect of the selected clock in the same instruction. For

example, if the B clock is set for the integer add unit by an instruction and

*the same B clock is selected for conditional execution, a true condition clears

the B clock and thus prevents the loading of the B input. A false condition

leaves the clock unchanged. Therefore, data may be conditionally loaded into

one of these registers.

O Status Bits

The control unit produces a status bit which indicates whether an interrupt

is pending. A second status bit indicates a stack overflow. This second

status bit must be explicitly cleared using a ring port instruction.

39

0

SPARC -PDP H INTERFACE

Several types of SPARC to PDP 11 interfaces were considered. These

interfaces have been dedicated to communication between one host SPARC

processor and the PDP 11. The design implemented for SPARC will allow

interprocessor communication between the PDP 11 and multiple SPARC processors

by means of a modified ring interface and the DWR-70 or DRIIB general-

purpose DMA PDP II interface.

The modified ring interface can be inserted on any standard SPARC ring

communications network and transmit or receive packets to any SPARC processor

0 on that network under program control of the PDP 11 processor. The majority

of the design will be done using F|OOK ECL logic, allowing the design to be

computer simulated using the CDC AIDS System. The interface will be located

in the SPARC chassis. Data will be transmitted to the PDP II chassis using

ECL differential line drivers. Signal level shifting will be accomplished

by an interface board which will be mounted in a standard PDP II chassis

near the DMA interface.

-- The ring interface will be modified to accommodate the PDP II data and

control structure, but transfers through the interface on the ring will not

be affected. Code and destination selection of the ring port will be done

with eight switches; these will define one unique code out of 256 possible

selections. An incoming ring packet will have its code and destination

., bits compared with the selected switch settings. If no compare exists, the

packet will be allowed to pass through the Ring Port. If a compare is made,

then the data is written into one of four 16 x 16 data FIFO's, under control

of the control field, completing the packet operation. If the upper bit or

interrupt bit of the control word is set when the compare operation is valid,

then the control word is stored in a 64 x 4 word FIFO, which would then

generate an interrupt to the PDP 11 interface.

40

* * . ° • . " . • -*." ° ° , o,. , ° . " . . "

II

I -A
co~

W0

___ O:'io

iL
p~~-

C4 0

~Y404

~ ~- 0 41

co

00 E-4

C4 :3

04 EU

E-44

0

I-i

42-

. * ~ *. * . . . *. .:3
CL E- 4

The receiving and transmitting of data is under control of the PD? 11,

which must select the proper subroutine under software control to supply the

word count and function control for the interface to perform the proper

* operations. The word count can also be selected from the first 16-bit word

* in the selected FIFO. The Ring packet will be structured according to the

* format shown in the Modified Ring Port packet structure diagram.

The three lower control field bits shall be sent to the interface status

register which can be interpreted as HEX codes 1, 2, 3, or 4. These bits are

used to select the appropriate FIFO and can also be used in a software routine

to select separate subroutines. The FIFO's can also be selected under

software control from the PDP]I.

STATUS

In July of 1979, the SPARC hardware design has been completed. All

units have been simulated, and all parts are on order. Qualification samples

of the new LSI arrays required have been received, and are undergoing

evaluation. Approximately 25% of the other electronic components have been

received. Circuit board layout is in progress, with initial types ready for

* fabrication. Cabinet assembly is in progress, with delivery of the initial

* device anticipated in August.

In the area of software, coding and debug of Version 1 of the assembler

and simulator is 80% complete. Release anticipated for October. Diagnostic

and early system software is on schedule for availability as required for

processor debug.

Current parts delivery schedules point to the initiation of processor

checkout in November.

44

770

CONCLUS ION

The SPARC research project has resulted in the development of a new

processing tool for image understanding work. The fabrication and operation

of the two initial processors will serve as a basis, not only for software

and algorithm research, but for larger processing systems consisting of

arrays of SPARC processors, along with large storage facilities, and

associated peripheral devices.

I4

'.. 44

SO

