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4.. PREFACE

This document describes a mulityear development effort
focused on the technologies pacing the development of unmanned
untethered submersible vehicle systems. Specifically, this
program has focused on the potential for using these systems for
inspection/work' tasks around and within underwater structures.
The efforts addressed several technological issues such as
developing a computer system capable of accomplishing the
Structure Inspection Mission (SIMS), Arctic Inspection Mission
System (AIMS), navigation, communication, imaging/bandwidth
compression, multibeam sonar imaging, guidance and control. The
work described was accomplished under Office of Naval Research
Contract Number N00014-18-C-0756 and U. S. Geological Survey
Contract Number 14-08-0001-18636.
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1. ABSTRACT

The objective of the Arctic Inspection Mission System (AIMS)
program (ONR Contract #N0014-81-C-0756) was to develop 4nd
demonstrate the technology required to perform under-ice mapping
of the ocean floor as well as the ice keel employing an
untethered autonomous submersible. The areas of technology
addresses in this regard were:

1. A sonar sensor array to perform the mapping.
2. An autonomous untethered submersible vehicle system.
3. A method of storing the large amounts of data.
4. Computer requirements to perform this task.
5. Define a navigation system suitable for the AIMS

A-: mission.
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2. INTRODUCTION

Over the past ten years, unmanned untethered submersible
"- vehicles have gone from being considered as unusable to a

recognition of their importance in many diverse ocean problems.
The last year has seen several companies begin development
programs directed at utilizing the capabilities of untethered
unmanned submersible vehicles. Although the limiting problems
associated with this technology are great, the potential rewards
resulting from the successful application of these systems seem
to compensate for the questionable risk. The Oil and Gas
industry, which has acted as the backdrop for the development
efforts described in this report, is only one of several applica-
tion areas which are potentially effected by the advancements in

-v unmanned untethered submersibles.

During the period from November 1, 1980 through February 1,
1984, under Contract Number 14-08-0001-18636 with the U.S.
Geological Survey and Contract Number N00014-81-C-0756 with the
Office of Naval Research, the Marine Systems Engineering Labora-
tory has been engaged in the development of technology relating
to unmanned untethered underwater vehicle systems. The emphasis
of this development effort has been to investigate the

*- technologies which are pacing the development of these vehicles.
It has not been to optimize a specific vehicle system or
technology, but rather to understand the limitating problems and
to provide demonstration of the potential which this technology
offers.

The efforts during this period of time have focused on the
potential for using unmanned untethered submersible systems for
inspection/work tasks around and within an underwater structure.
The structure inspection mission system (SIMS) took advantage of
the existing EAVE-EAST vehicle system and increased the
capabilities of that system in order to autonomously traverse a
pre-defined series of paths through an underwater structure.

This report describes a multiyear effort which has focused
on several sub-system elements. It is meant to summarize the

.- effort and document the results recognizing both successes as
* well as problem areas. The work described'here is a part of a

development effort undertaken by the Marine Systems Engineering
Laboratory since 1976. During that period, every effort has been
made to understand similar work being accomplished within other
research groups in order to eliminate duplication of effort and

" to utilize the learnings which have resulted from other
0 researchers.
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The EAVE program is a cooperative effort between the Marine
Systems Engineering Laboratory (MSEL) and the Naval Ocean Systems
Center (NOSC), San Diego, to investigate the technologies
associated with unmanned untethered sumbersible vehicles. The
direction of the work described in this report resulted fLom a
formalized Technology Development Plan developed cooperatively
between MSEL and NOSC, San Diego. This effort has hopefully
insured maximum utilization of limited funding and resources.
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3.' EAVE VEHICLE SYSTEM ELECTRONICS

3.1 General System Interrelationships and Operation

The EAVE vehicle is shown in Figure 1. A block diagram of
the computer subsystem interaction is shown in Figure 2. The
system architecture is one of distributive processors, each of
which has its own functions to perform (Tables 1, 2, 3, 4). Many
of these functions are performed simultaneously. The critical
computer which makes major decisions and controls the overall
vehicle performance is the 68000 command computer. The command
computer communicates with all of the vehicle sensors and
computer systems.

The general timing for the system is shown in Figure 3. A
cycle time for the system is the time it takes for the 68000
command computer to acquire all the data from sensors and
computers, perform its calculations, make its decisions regarding
where it is, where it wants to go and how to get there, and send
its commands. The present system operates at a cycle time of
approximately 1.5 seconds.

During one cycle period the command computer reads pressure
to determine depth (z), reads the compass to determine bearing,
reads the navigation computer to acquire new range data and the
vehicle x, y position. It then translates this position to the
center of the vehicle, and computes changes in bearing (0) x, y,
z, and time (t).

- The 68000 computer then looks at its command list for the
particular mission. It determines where it is going compared to
where it is and issues appropriate instructions to the thruster
computer to perform the maneuvers necessary to keep it on course.
After the commands are issued the 68000 computer continues to
repeat these functions.

At the end of every third cycle the command computer sends
128 bytes of data to the magnetic bubble memory computer for
storage. The data consists of all essential information gathered
during the three previous cycles as well as the instructions sent
by the command computer. This data makes possible a complete
mission analysis after the fact, and allows the operator to
replot the vehicle path and compare vehicle commands to actual
vehicle performance.

The magnetic bubble memory system (MBM) is a nonvolatileS high density data storage system. The present configuration has
a 1 megabit data storage capacity. A 6100 computer controls the
MBM device, receives and/or transmits data and provides the file
management for the data. The file management structure is
described in Section 11. For the Structural Inspection Mission

0" System (SIMS) mission the data is stored in time sequence such
0that the first data word of each data cycle is the actual mission

time. For each data cycle (command computer cycle time) the data

I */ 4
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TABLE I

68000 COMMAND COMPUTER FUNCTIONS

* - . Maintains time clock.

9 Reads pressure and calculates depth (z).

* Reads compass and computes relative bearing (0)

" Requests x, y position from navigation computer
and translates it to center of vehicle.

* Computes changes in: time, x, y, z, and 0.

-" * Decides how to control thruster motors in order
perform a list of movement commands (such as
SIMS mission).

* Passes data to magnetic bubble memory for stora

.4-
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TABLE 2

NAVIGATION COMPUTER SYSTEM FUNCTIONS

o Keys 95kHz transmitter on vehicle.

o Receives and counts total time to each transponder
and back (9 twelve bit words).

- o Requests and receives vehicle depth (z) from command
computer.

o Calculates x, y position of transmitter on vehicle
in its math processor.

o Upon request passes all data above to command computer.

'7
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TABLE 3

MAGNETIC BUBBLE MEMORY SYSTEM FUNCTIONS

* Stores mission data from command computer upon request.

9 1.024 Mbit data storage capcity and an additional 2t
for file overhead.

Maintains file system which contains 20 files each with
50 block capacity. Each block contains 128 bytes. Files
can be addressed in random access.

" Allows post mission analysis (i.e. reconstruction of
mission parameters).

TA$LE 4

THRUSTER COMPUTER SYSTEM FUNCTIONS

o Turns on vehicle thrusters in proper direction and at
proper speeds upon request from command computer.

8
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stored is that shown in Table 5. Whenever the MBM is not active
the 6100 computer puts the MBM to sleep to conserve power.

The navigation computer has a cycle rate which can be varied
in software. For the SIMS mission it operates at a speed of 0.4
seconds. During the navigation cycle the navigation system
selects a transmitter, sends out an interrogate pulse at 95kHz
and receives nine return signals, three from each transponder
(see typical transponder configuration in Figure 4). It then
determines which data to use, acquires a depth (z) from the
command computer, and uses its math processor to calculate an x,
y position. It then continuously repeats this cycle. Whenever
the command computer interrupts the navigation computer the
navigation computer sends the nine return signal counts, the
calculated x, y position and a reliability word.

The function of the thruster computer is to control the six
thruster motors on the vehicle. The thruster computer can
address any or all thrusters and select any one of 31 speeds in
either the forward or reverse thrust direction for each thruster.
The thrusters are oriented on the vehicle as shown in Figure 5.

The thruster computer makes no decisions, it merely carries
out the commands sent to it by the 68000 command computer.

3.2 Overall Vehicle System Software

The software required (see software block diagram Figure 6)

to make the subsystems perform Interactively consists of a series
of device handlers, individual computer operating systems (i.e.
navigation, MBM, thruster), a vehicle operating system and an
assortment of routines directly related to vehicle control for
particular vehicle missions (i.e. mission scenarios, control
dynamics, etc.).

The individual computer operating systems (navigation, MBM,
thruster) are the software which allows each computer system to
stand alone in terms of performing its own specific task. For
example, the navigation computer software allows the 6100
computer to:

. 1. Control timing for the transmitters and receivers.
2. Read the counts for range measurement.
3. Assign a weighted value of "goodness" to these counts.
4. Decide which counts to use in calculating an x, y

position.
5. Manipulate the math processor to calculate the x, y

position.
6. Store the required information in memory.
7. Transfer the data to the command computer upon request.

Ia. The individual operating systems for these computers (6100)- are written in assembly language, and will in all probability notchange very much if at all. The exception is that a new 6890

'11



TABLE 5

DATA FORMAT FOR ONE COMMAND COMPUTER CYCLE

ofByes Desig Information Description

2 t mission time in hundredth of a second
2 x x position caic. from nay. (counts)
2 y y position calc. from nay. (counts)
2 z depth caic. from presure (binary)
2 xlatx x position translated to center vehicle (binary
2 xlaty y position translated to center vehicle (binary
2 xlatz z position translated to pinger depth (binary)
2 0 bearing in degrees
2 rel word xmiter, rec for calc., calc yes/no, past historl

(18) RDM raw data matrix (counts
Lii) thruster thruster polarity, speed, for each thruster

42
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* based navigation system is being designed for long range
navigation and will be programmable in high level language.

There are several "handler" routines written to communicate
with each vehicle subsystem. The handlers are really the
software interface between each vehicle component and the vehicle
operating system. These handlers are all written in high level
"C" language.

-' The vehicle performance programs include:

1. A routine which performs dynamic feedback control
functions for the vehicle system.

2. The mission scenario strategy.
3. The AIMS sonar acquisition routine.
4. Data logging for storage in the MBM.
5. Housekeeping.
6. Parameter definition and storage.
7. Fail soft routines.

All of these programs are written in high level language "C".
The sections to be changed for different missions would be the
mission scenario strategy and the parameter definition and
storage routines.

The central nervous system of the vehicle is the vehicle
operating system (VOS). It serves to integrate all the vehicle
subsystems into a unified whole vehicle. It is the hub of the
vehicle system and is also written in high level language.
Details of this software are described in Section 7.

3.3 Summary of Electronic Sy.tem Results

Tests were conducted at Lake Winnipesaukee, N.H. from May
through November in 1982 and at Mendum's Pond in Barrington, N.H.
from May to November in 1983. Tests were initially performed on
subsystems (such as navigation system components. thruster system
components, etc.). Both hardware and software components were
tested and debugged, and gradually the subsystems were
interconnected and tested interactively until the complete
vehicle system was assembled and tested as a unit.

Details of subsystem performance are described in each of
the subsystem sections of this report. This section presents a
brief executive summary of results of the vehicle systems as of
this time (November 1983).

A. The thruster computer and thrusters operate reliably. The
vertical thruster pair was fitted with a right hand and a
left hand prop in order to reduce a tendency for the vehicle
to rotate due to precession when both props were of the same
type. The results were very dramatic and generated
significant savings in power previously required to maintain
vehicle heading.

_O 16
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B. The Navigation computer system provides for position accuracy

of 8 inches for the SIMS type geometry and maintains an x, y
position over time to within 4 inches.

A position jitter or shift occurred when switching between
transmitters on the vehicle. This is attributable to the
transponders not being exactly at the positions provided to
the computer. This jitter should be corrected when the self
calibration algorithm, described in section 15.6 of this
report, is perfected.

Another error occurred on occasion. Due to the variable
window strategy use in the navigation algorithm, it is
possible for the system to occasionally read a count due to
multipath as a good count and hence calculate an erroneous
position. In order to discriminate against this occasional
gross error in the navigation computer, a simple predictor
algorithm was written in "C" for the command computer which

" . recognizes gross position jumps as physically impossible. It
does not act on them and requests a new calculation from the
navigation computer.

C. The 68000 command computer has performed very reliably over
the past year. It is currently operating at a speed of 1.5
seconds per cycle (i.e. complete system update and command
execution). This speed should be further reduced to
approximately 1 second per cycle once the navigation system
has been set up as a separate task function. The thruster
computer and magnetic bubble memory computer are already
running as separate tasks. This tasking is presently
underway and should be completed by mid-December.

Use of the 68009 computer has allowed the wr-iting of
sophisticated and complex programs in "C" language in a very
short time. Program debugging and changes are very easily
managed.

D. The magnetic bubble memory system has also been functioning
very well. It has been used consistently to acquire field
data on untethered missions and has allowed us to completely
reproduce and analyze vehicle performance in the laboratory

- after each mission.

A plotting program was written and is used in data analysis
which allows us to plot 1 megabit of data in approximately 1

• 1/2 hours (see Figure 13 for example of plot). A complete
' listing of data is also made for every mission. A minor

program bug was found in the 68000 software which communi-
cates with the MBM computer. This is currently being
corrected.

E. The final phase of system testing prior to actually sending
the vehicle on a complex mission consisted of preprogramming
the vehicle to perform certain maneuvers while recording
vehicle behavior (in the form of data). The purpose of these

,1



tests was to determine the proper-gain constant settings in
the software feedback control loops. The control algorithm
(residing in the 68000 computer in "C" language) is the heart
of the vehicle maneuvering system for any type of mission.

Once the proper gain constants were determined the vehicle
characteristics were as follows:

Overshoot Maneuvering Station
(maximum) Keeping

Depth Accuracy (z) 1.5 ft. +3 in. ±3 in.
Position Accuracy (xy) 1.5 ft. +12 in. +5 in.
Bearing Accuracy (0) 20 degrees ±15 degrees +10 deg.

F. Lastly the structure inspection mission was performed. This
mission involves a complex set of preprogrammed maneuvers.
These maneuvers were all performed with the vehicle within
two feet of a structure. A complete description of the
mission and plots of vehicle maneuvers are presented in
detail in Section 5.

In general, the vehicle performed extremely well. The
system performed in a very controlled and stable manner. The
missions were varied slightly and ran from 16 minutes to 24
minutes. The vehicle was launched from a 6' x 6' hole in a barge

- and return to the hole completely autonomously.

A 16mm movie and video tape were made of the vehicle
maneuvering in and around the structure.

The vehicle was sent out on 18 structure inspection-missions
and.completed 15 perfectly. On two of the missions that it did
not complete, a failsafe mechanism shut the vehicle down due to

* loss of navigation data. Analysis revealed that one path segment
chosen for the vehicle on these two missions was such that the

'. .vehicle was very shallow (5 feet deep) and placed the vehicle in
a position atop a transponder such that the vehicle was shadowing
its own receiver. The cause of the third incomplete mission has
not as yet been determined. The symptoms were that the cycle
time of the command computer had somehow slowed down to 4.5
seconds instead of its normal 1.5 seconds.

In summary, the EAVE vehicle system is performing as a very
well controlled and stable platform. It can repeatedly perform

- maneuvers and travel underwater over a preprogrammed course and
return to a designated location autonomously.
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4.0 EAVE VEHICLE SYSTEM (MECHANICAL) (Figure 7)

4.1 Space Frame

The EAVE structure frame is of welded 6061-T6 aluminum
tubing, 1 in. O.D. x .25 in. wall. Supports for the computer and
battery tubes are made from 3 x 1 x 1/8 in. 6061-T6 aluminum
channel. Fasteners used on the vehicle are stainless steel.
Buoyancy counterweights were made from 1 7/8 in. steel hexagonal
stock. There are two lengths used, approximately 33 5/16 in.
long each and they were welded together with 3/8 x I in. bar
stock at each end. The dry weight of this unit is 58.1 lbs. The

-. wet weight is approximately 50.7 lbs. in fresh water. With this
amount of ballast the vehicle was buoyant by approximately 10
lbs. The addition of 8 lbs. of lead during field tests gave a
satisfactory positive buoyancy estimated at 2 lbs.

An improvement which should be made to the frame is the
fabrication of a set of ballast weights of small values (1 & 2
lbs.) which can be easily added or removed from the vehicle to
allow the fine tuning of the buoyancy in the field.

The only other item that should be improved is the changing
of the starboard forward thruster brace from steel to stainless

steel.

44.2 Floatation

The floatation tubes are 12 3/4 in. O.D. x 40 3/4 in. 1g.
The tubes are of three-piece welded construction, consisting of;
a cylinder and a torispherical head at each end. The cylinder is
12 in. sch. 40 round 6061-T6 aluminum pipe with a 12.75 in. O.D.
and .406 in. wall and approximately 35 3/4 in. long. The tori-
spherical end caps were formed by McCabe fabricators of Lawrence.
Massachusetts from .188 in. thick 6061-T6 aluminum disks. The
units were seam welded by Dover Machine Shop, Dover, NH.

A stress analysis of the torispherical dome under external
pressure yielded a crush pressure of 638 PSI or a depth of 1473
feet of water. Calculations also show that an aluminum cylinder
of the above specified dimensions have a collapse depth of 1400
feet.

Each of the buoyancy tubes are held in place by two 1 in.-8
UNC bolts. Each weighs 57 lbs and displaces 160.2 lbs of fresh
water for a net buoyancy of 103.2 pounds. In August 1981 the
tubes were updated by replacing the flat ends on the buoyancy
tubes with torispherical ends. The update reduced the dry
weight, increased the displacement, and reduced forward and
reverse drag on the vehicle. The torispherical ends were chosen
as a compromise from a spherical or parabolic ends, which would

. provide the optimum in strength and drag reduction. The
torispherical ends were readily available as a standard size
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press-formed tank head, and presented themselves as the most
economical alternative while providing a strength equivalent to
the body of the tube, with a substantial reduction in drag.

The weight reduction of the tubes with the elimination of
the flat heads was 13.2 lbs. and the increase in displacement was

* .31 ft. 3 or 19.4 lbs of fresh water, producing a net gain of
32.6 lbs per tube and 65.2 lbs total for the vehicle. The
increase in buoyancy is counterbalanced with removable weights
located at the bottom of the vehicle frame. The excess is
intended to allow for the addition of components to the vehicle
such as additional batteries or mission related devices.

Calculations show that a 74% reduction in drag was realized
through the addition of torispherical ends over the blunt ended
tubes used in the past. The magnitude of the force is about .7
lbs. force each at a velocity of 2 ft. per second as opposed to
2.8 lbs. force each for a blunt ended tube. The pressure drag
increases with the square of the velocity. (pressure drag = 1/2
Cd p V 2 A). The skin friction drag accounts for a very small
percentage of total drag. The coefficient of drag for a
torispherical head is approximately .2 as compared to .8 for a
blunt ended cylinder.

4.3 Computer and Battery Pressure Cases

The two pressure cases which house the control computers on
EAVE are made from 8 in. O.D. x .5 in. wall round extruded 6061-
T6 aluminum holobar. The tubes are 36 inches in length and
calculations show that the crush depth on this size tube is
10,500 feet. The end caps used on these tubes are 3/4 in. thick
6061-T6 aluminum disks. They have an 0 ring face seal which is
nominally rated at 1500 PSI or a depth of 3465 feet of water.
This rating could be increased with the use of back-up rings on
the seal but the limit of the vehicle is 1400 feet which is
established by the rating of the buoyancy tubes.

The two battery pressure cases are made from 8 in. O.D. x
375 wall round extruded 6061-T6 aluminum holobar. These tubes
are 36 inches long and are rated for a crush depth of 5,300 feet
but the 0 ring face seals on its 3/4 inch thick end caps restrict
this rating to 3465 feet similar to the computer cases.

All end caps at present have flat ends with sharp corners.
Drag in the forward and reverse directions on the vehicle could
be greatly reduced if we could provide well rounded corners on
these end plates. This could present difficulty in mounting the
hold down clips on the cap sides, but if possible, the benefits
in power reduction required to drive the vehicle could outweigh
the effort required to retrofit.

.g.2
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44 Thrusters

The thruster motors were manufactured by Minnesota Electric
Technology Inc. of Winnebago, Minn. The no load RPM is 1750 when
operated at 24VDC. Its peak hp is .22 at 80 RPM drawing about
12.5 amps at that point. The actual load exerted by the
propeller on the motor is not known, but under full load the
amperage maasured during an evaluation of prop Kort Nozzle on the
forward thrusters was 12.2. If we relate this amperage to the
theoretical performance curve supplied by Minn. Electric it would
indicate that we are at the peak hp available and are operating
at about 800 RPM. The forward thrusters are equipped with a 7

• - 1/2 in. dia. three blade propeller with a 10 inch pitch. The
prop and the Kort Nozzle were bought as parts from a Diver
Propulsion Vehicle 01-1002MK-11 manufactured by Farlon Oceanic

-Z Industries, 14275 Catalina Street, San Leandro. CA 94577 (415-
352-5001). The Kort Nozzle was modified by MSEL to adapt to the
thrusters and the outside was filled with a syntactic foam to
conform it to a true Kort Nozzle shape (foil.)

A The vertical and horizontal thrusters do not have Kort
Nozzles and are equipped with a 7 inch, two blade prop with a 5
inch pitch. The prop was purchased from Minn. Kota Inc., 201 N.
17th Street, Moorehead, Minn. 56560 (507-345-4623) under Part No.
03308. The prop was used on an electric trolling motor.

Tests on the thrust of both props were conducted in August
1981. Results of these tests showed that the average peak thrust

- was about 7 lbs. with the two blade Minn. Kota prop in the
forward direction and 4 lbs in reverse. There was a wide
discrepancy between thrusters with a low of 5.8 lbs and a high of
10.25 lbs. in the forward direction and a low of 3 lbs and a high
of 5.6 in reverse.

A study of a test conducted in February, 1979 on the
thrusters using this same prop shows an average thrust of

2- approximately 12 lbs. At that time discrepancies between
individual thrusters existed and it was found that by cleaning
the motor brushes performance could be improved and more
consistent results between thrusters obtained. The proposed
reason for poor performance was the fouling of the brushes by the
pressure compensating oil bath that they were exposed to. At
that time they were using a mineral oil. They changed to a Mobil
transformer oil and felt they had better results. We have now
changed the oil as of 11/82 to a Dow Corning 200 silicone fluid 5
centistroke as we were experiencing erratic behavior (slow

* running) of the motors in cold temperatures (40 degrees F). This
oil seems to have improved the performance with its lower
viscosity at these temperatures. Performance tests have been
conducted to determine actual performance with this oil and are
presented in Section 4.5. It is proposed that we run an
endurance test on a selected motor and determine change in

" performance with respect to time to determine maintenance
-- intervals if fouling is responsible for changes in performance.

*@ 22
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6c. The major problems in maintaining the thrusters is the
refilling of them with oil. To date there has not been a
successful method used in filling without entrapping air either
in a pocket within the motor or failure to deairate the oil
properly prior to filling. Methods used to date have proven
ineffective, and time consuming. The proposed fixture and
procedure which we believe will eliminate these problems and
allow us to establish a convenient and cost effective maintenance
schedule for the thrusters has been designed and fabricated.

Visual inspection of the thrusters during disassembly
(11/82) showed that the 0 ring seals in the thruster housing,
although still effective, had been chemically attacked by the
transformer oil previously used, causing a swelling and
stretching of the seals. The 0 rings used were Buna-N. Because
of time constraints the thrusters were filled with the DC200
silicone oil and the same 0 rings. Buna-N is not completely
inert to silicone oil, but can be used if replaced periodically.
A better choice of materials would be Viton, which remains
unaffected by silicone oil even at elevated temperatures, at
about 4 times the cost of Buna-N. In any case the thrusters,
when disassembled next, should be equipped with new 0 rings,
preferably Viton. The pressure compensating diaphragm used
appeared to be unaffected by the transformer oil, although it
would be harder to determine because it is a Buna-N impregnated
fabric and tends to maintain its size.

-. To summarize, it is recommended we take the following steps
to correct problems and improve the EAVE thrusters.

1. Fabricate necessary apparatus to allow correct and cost

effective maintenance and filling of thrusters.
2. Performance test of thrusters with new silicone oil.

a. Effect of brush cleaning

b. Deterioration of brushes with time-establish
maintenance schedule

c. New propeller performance.

3. Change 0 rings in thruster to Viton, or replace with new
Buna-N and observe deterioration with time-establish

* change schedule.

4.5 Thruster Motor Tests

A group of tests were conducted on the EAVE vehicle
thrusters in order to obtain further information in the following
areas:

4.5.1 Thruster Performance

Each thruster was removed from the vehicle and tested for
thrust vs. command speed using the vehicle's thruster computer
and batteries. Thrust measurements were recorded for each of the
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31 possible computer command speeds-using an L section and
scales. This was done for both forward and reverse thrust
directions.

In order to test the effectiveness of the Kort nozzles used
on the pair of horizontal thrusters, the #1 thruster was tested
with the Kort nozzle and its prop and then with a Minn-Kota prop
similar to those used on the thrusters not employing Kort
nozzles.

Following these tests, the so-called unmarked (spare)
thruster was dismantled and inspected. It was found to have a
slight puncture in its diaphragm and a build-up of carbon on its
brushes and (armature). This build-up was removed with emery
cloth and the diaphragm was replaced. The motor bearings, oil
seal, and coupling all appeared to be in good condition. The
thruster was then re-assembled and the thrust tests conducted
once again.

The data and the curves generated may be found in Appendix
A. The following observations were made during the tests:

1. The maximum values of thrust for the reverse direction
appears to be on the order of 60-70% of that attainable
in the forward direction.

2. There were noticeable fluctuations in thrust for all
thrusters although some showed greater tendencies than
others. The thrust results, at constant command speed.
were seen to vary from 5% to 20%, the exact reasons for
the variations are not known at this time. Further
investigation into this occurrence is planned.

3. As the testing proceeded, an increasingly noticeable
film of oil appeared on the surface of the test tank.
The leakage appeared to be occurring predominantly at
the diaphragm although the shaft seal is also suspect.

4. While the Kort nozzles did show improvement in thrust at
W the intermediate command speeds, at maximum speed the

difference was negligible. This indicates that, when
*: the drag of the nozzles comes into effect during vehicle

operation, during high speed, the nozzles may actually
decrease the net maximum achievable thrust.

4.5.2 Effect of Byrd Pro2

0-e This test involved replacing one of the right-hand Minn-Kota
props on the vehicle's vertical thrusters with a Byrd left-hand
prop. This was done in an effort to eliminate the tendency of
the vehicle to precess when the vertical thrusters are operating.

The vehicle was first lowered into the test tank with
similar Minn-Kota props on both thrusters in question. Using the
vehicle's thruster computer, the thrusters were run at various
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command speeds. As the speeds were increased, the rotation of the
vehicle became quite apparent. The vehicle was then removed from

;. the tank, one of the Minn-Kota props replaced with a Byrd left-
hand prop and the test was conducted again. This time none of
the precessional tendencies previously observed occurred. This
indicates that the Byrd props would serve to correct the unwanted
precession which had been experienced in previous vehicle field

• ' testing.

Following the successful test of the Byrd prop on the
vehicle, the prop was tested for thrust vs. command speed, in the
manner previously described, in order to determine its effect on

* thrust. The test indicated that the maximum attainable thrust
V using the Byrd prop is approximately 90t of that achievable using

the Minn-Kota prop.

4.5.3 Temperature Effects on Thruster Performance

Previous experience had shown that at reduced temperatures,
in the 35 - 40 degree F range, the thrusters suffered an extreme
loss of shaft speed and therefore performance. This unacceptable
phenomenon was attributed to the increasing viscosity of the
transformer oil being used for pressure compensation. The oil
was therefore replaced with dow corning #200 fluid, a clear
silicone fluid which exhibits a relatively flat viscosity slope
over the expected operating temperatures.

The test consisted of the thruster being submerged, in a
vertical position, up to its shaft seal in a water bath. The
vehicle's batteries were used to supply a constant voltage
directly to the thruster. The shaft speed (rpm) of the operating

. thruster was monitored as the temperature was gradually reduced,
using ice, down to approximately 1 degree C and then allowed to
rise again. Temperature and shaft speed were recorded at one
minute intervals. The data shows no loss of shaft speed which
can be attributed to the effects of temperature changes. The
variations which occurred are believed to be only the random
fluctuations observed previously in the performance tests. The
lack of temperature related reductions in shaft speed indicates
that the Dow Corning fluid will correct the problem previously

encountered at reduced temperatures.

4.5.4 Conclusions

- The tests conducted have shown that the two problems
previously encountered, first, the unwanted precession due to
like props on thruster pairs, and second the loss of thruster
performance at reduced temperatures have been corrected. Further
investigation is yet to be conducted to pinpoint the cause and
possibly eliminate the fluctuations in thrust.
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5.0 SIMS MISSION

The SIMS mission was designed to demonstrate the ability of
an untethered submersible robot to maneuver itself in a very
precise manner through a three dimensional structure. In order
to perform this task the robot must be capable of determining its
own position in space (x, y, z,G) at all times. It must also
carry with it a map of its trajectory through the structure; as
well as the location of points within the structure at which it
must stop for inspection. It should also be capable of storing
all the data necessary to analyze and/or duplicate its behavior
for post mission analysis.

The structure used for the SIMS mission is sketched in
Figure 8. It is made of 4 in. diameter PVC pipes. The "window"
openings are approximately 8 feet by 8 feet. The maximum vehicle
dimension is approximately 5 feet, hence it has a clearance of
approximately 1 1/2 ft. when it penetrates the structure window.

The path and maneuvers of the SIMS mission can best be
understood by referring to Figure 9. The structure is located in
the x. y, z plane which is superimposed (in software) on the
transponder network. The transponders are not shown in the
figure.

The mission begins with the vehicle being placed in the
water through a six foot by six foot hole in the barge. After a

selectable delay time has elapsed (to allow for disconnecting the
tether and placing the vehicle in the water) the vehicle begins
its descent. As it does so it reads the first command (see
Figure 10) which tells the vehicle to dive to 10 feet, at
position x =5, y = 40 and turn to a heading of 4.9 radians.
Once the vehicle has acquired its position at point START to
within one foot, its bearing to within six degrees, and the
command duration has expired, it reads the next command which is

. a horizontal move to point A. The system is programmed such that
'-'. the vehicle will not change commands until all three conditions

above are met. Once the vehicle is at point A, it rotates to
face the structure window, then dives to position itself in the
center of the window (point B). The next command instructs the

* vehicle to proceed on a straight line forward to position C at
the center of the horizontal beam. Next it turns to face the
beam. At this point it is two feet from the beam. The next two
commands instruct the vehicle to move forward one foot and stay
there for 30 seconds and then back up one foot to position C.
The next command instructs the vehicle to move horizontally

S sideways (slide left) while maintaining its bearing and depth
- until it arrives at point D. At point D the vehicle moves up

four feet (to point E) and then back down (point D) to inspect
the vertical end beam of the structure. It holds its x, y posi-
tion and bearing during this maneuver.

The mission proceeds in this fashion as the vehicle slides
right to point C and then moves up and over the beam to the other
side of the structure. It performs several more maneuvers on
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I* array of NUMCOMS commands; Oth element is default emergency exit */
COMM-BLOCK comms[NUMCOMS](

/* 0 */ EXIT, FALSE, 100, 1.1, 2.2, 3.3, 4.4, 5.55, 6.666,

/* command type ignore xy duration Y y z xdot bear bdot *.

I 14 1 */ VERT MOVE, FALSE, 6000, 5.0, 40.0, 10.0, 1.0, 4.90, 0.225,
1* 2 */ HORIZ MOVE, FALSE, 4000, 12.5, 20.6, 10,0, 1.0, 0.00. C225,
1* 3 4/ ROTATE ONLY, FALSE, 6000, 12,5, 20*6, 10.0, 1.0, 0.33, 0,225,
/ 4 *1 NOP, TRUE, 000, l.1, 2, 3.3, 4.4, 5.55, 6.666,
1* 5 */ NOP, TRUE, 000, 1,1, 2.2, 3.3, 4,4, 5.55, 6,666,
/* 6 4/ VERT MOVE, FALSE, 6000, 12,5, 20.6, 12.5, 1.0, 0.33, 0.225,
'/ 7 */ HORIZ MOVE, FALSE, 6000, 23.5, 26.0, 12.5, 1.0, 0.00, 0.225,
1* 8 41 ROTATE ONLY, FALSE, 6000, 23.5, 26.0, 12.5, lo, 1.90, 0.225,
-I 9 */ HORIZ MOVE, FALSE, 3000, 23. 0, 27.0, 12.5, 1.0, 0.00. 0.225,
/* 10 */ HORIZ MOVE, FALSE, 3000, 23.5, 26,0, 12.5, 1.0, 3.14, 0,225,

' I* 11 *1 HORIZ MOVE, FALSE, 6000, 2B.0, 29.5, 12.5, 1.0, 1,57, 0.225,
1* 12 */ VERT._MOVE, FALSE, 3000, 28,0, 29.5, 8.5, 1.0, 1,90, 0.225,
/* 13 */ VERTMOVE, FALSE, 3000, 28.0, 29.5, 12.5, 1.0, 0.225,
/* 14 */ HOR7. MOVE, FALSE, 6000, 23.5, 26.0, 12.5, 1.0, 4.71, 0.225,
/* 15 *1 VERT MOVE, FALSE, 4000, 23.5, 26.0, 8.5, 1.0, 1.0, '.225,
/* 16 */ HORIZMOVE, FALSE, 6000, 19,0, 33.5, 8.5, 1.0, 0.00, 0.225,

% /* 17 */ VERTMOVE, FALSE, 4000, 19.0, 33,5, 12.0, 1.0, 1.90r C.225,
/* 18 */ ROTATE ONLY, FALSE, 6000, 19,0, 33.5, 12,0, 1.0, 0.33 0.225,

/* 19 */ HORIZ MOVE, FALSE, 6000, 24.0, 35.5, 12.0, 1.0, 0.00, 0.225,
1* 20 *1 ROTATE ONLY, FALSE, 6000, 24.0, 35,5, 12.0, 1.0, 5.C4. C.225,
/* 21 4/ HORIZ_MOVE, FALSE, 6000, 19.0, 33.5, 12.0, 1.0, 1.57, 0.225,
/* 22 */ ROTATE ONLY, FALSE, 6000, 19.0, 33.5, 12.0, 1.0, n.45, .225,

/* 23 *1 HORIZMOVE, FALSE, 6000, 8,5, 27*7, 12.0, 1.0, 0.00, 0.225,
/* 24 */ HORIZ MOVE, FALSE, 6000, 12.5, 20.6, 12.0, 1.0, 4.71r 0.225,
/* 25 */ VERT MOVE, FALSE, 4000, 12,5, 20.6, 10.0, 1.0, 3.45, 0.225,
1* 26 4/ ROTATE ONLY, FALSE, 6000, 12,5, 20.6, 10.0, 1.0, 2.00, 0.225,
/* 27 */ HORIZ MOVE, FALSE, 6000, 5.0, 40.0, 10.0, 1.0, 0.00, 0.225,
/* 28 *1 VERTMOVE, FALSE, 3000, 5.0, 40.0, 6.0, 1.0, 2.00. 0.225,
/* 29 */ EXI.r  FALSE, 100, 1.1, 2.2, 3.3, 4.4, 5.55, 6.666,

/* 30 */ EXIT, FALSE, 100, 1.1, 2.2, 3.3, 4.4, 5. br E.666,

FIGURE 10: COMMAND LIST FOR INSPECTION MISSION

,29

.4

- 29

,-.:



*. . ' .i. .. ... . . . :. -, . . , - : .:. . -. -- ..-. ,- -. . - ... - . ....- -. '. -. z

that side of the structure and finally exits the right hand
window to point M. Next it slides to point B, its original
starting point, and it climbs to 10 feet and turns to head back
to the barge.

Once it gets to its position below the hole in the barge, it
climbs to six feet, and once there shuts off power and floats up
into the hole in the barge.

Figure 11 is a plot of vehicle behavior for the mission
described above. This plot was made from data stored in the
magnetic bubble memory during the mission. A record is made and
is plotted for every command computer cycle (i.e. 1.5 second
intervals). The vehicle position in x, y, and z and the vehicle
bearing are all plotted against time. The straight lines drawn
on the plot represent the idealized perfect response. The
vertical dotted lines on the plot indicate a command change. A
brief description of each command is printed in the execution
time period for that command.

It is very easy to visualize the system response and
stability if one looks at the plots carefully. These plots
indicate very clearly that the EAVE vehicle is very stable. The

' vehicle can hold on station within +1 foot of desired position
and within +6 degrees. Most of the time it is even better than
this figure (+.5 feet). (See for example sections 3.1 and 6.1 on
page 2 of Figure 11.

The plots also indicate the system responses in terms of
overshoot and damping and are self evident.
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6. 68000 COMMAND COMPUTER SYSTEM

6.1 Overview (Figure 12)

A versatile autonomous robot such as the SIMS vehicle
requires a reasonable amount of computer capability to easily
perform complex motion control and image processing. For optimum
flexibility, the on-board computer system should support high-
level languages so that software can easily be documented and
adapted to changing system needs. In addition, the on-board
computers must use power efficiently so that they can operate for
fairly long periods of time from the vehicle battery packs.

The Motorola 68000 microcomputer was selected for the main
computer system because of its efficient architecture and the
available UNIX and C software support. This microcomputer was
then surrounded with modern high-speed CMOS parts to minimize
power consumption. A bus architecture was devised to permit
complete flexibility in future expansion.

The system was partitioned into functional elements and
wire-wrap boards were initially produced for CPU, memory and
communication elements. These cards are universal elements that
are part of any of the 68000 based systems, so printed circuit
boards were then created for these functions (Figure 13).
Additional wire-wrap cards were generated for the specific
functions of interfacing to the compass and pressure transducer
and the video digitizer and video display.

These cards have been integrated into two complete systems
. for the vehicle and one for video image processing. All three

systems have been used almost continuously during 1982 and have
proven to have excellent reliability.

6.2 Card Descriptions

6.2.1 68000 CPU (Figure 14 drawing 10018-)

The 68000 CPU card contains the MC68000 microcomputer and
interface buffers to the system bus. The full 68000 bus is

*. implemented so that the CPU card can be used in a fully expanded
system with other CPU's and DMA devices. A fastee 6800 can be
used with a higher frequency crystal. All logic, except the CPU
and clock oscillator, has been implemented in high-speed CMOS to
conserve battery power.

An auxiliary CPU support card connector has been provided on
the top edge of the card. A ROM/RAM, UART support card can be
used with the CPU for a two card system configuration. The local
data bus at this connector allows the two card system to operate
while debugging nonfunctional cards on the system bus.
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The central component of this card is U5, the MC6800 CPU in
its zero-insertion force socket. This receives a 4 MHz clock
generated by crystal oscillator X1 and 74LS04 inverter U2. The
CPU communicates to the bus via the address/control buffers U8 -

Ull and bi-directional data buffers U12 - U13. These tri-state
buffers are disabled when the bus grant signal (BG) is asserted
by the CPU. Open collector 74C906 (U4) supplies the signal both
to the bus and the tri-state controls so that either the CPU or
another bus device can disable bus transfers. A pull-up resistor
(part of DIP pack Ul) holds this line normally high.

The unbuffered data bus is provided to Jl for auxiliary CPU
support functions. Bus buffers U12 - U13 can also be disabled by
pulling low the data bus enable (DBEN) line on Jl pin 3. This
allows the support card to take control of the local data bus and
disable the system data bus. The ENABLE for U12 - U13 is gated
by 74C00 (U3) to combine the DBEN and BG signals. Resistor R2
keeps DBEN high when no support card functions are needed.

The CPU card also provides RESET and BUS ERROR logic. The
reset can either be external or via the on-card push button
reset. To reset the 68000 both HALT and RESET must be pulled low

* simultaneously. The open-collector buffer sections U4-D and E
assert this low when either section A or C is pulled low. The A
section is driven by a switch debounce flip-flop, U7-B. External
reset is applied to U4C and the power up circuit formed by C6, R3
and Dl. This circuit holds PBRESET low until power-up is
complete. Dl discharges C6 when power is removed.

* Bus error detection circuitry is provided by U6 and U?. The
68000 performs asynchronous bus cycles which wait for
acknowledgment from memory or I/O devices. In the event that no
device responds to a bus cycle and no DTACK or VPA signal
appears, the CPU will wait forever and all operation will be
suspended. This clearly is not desirable, so a bus time-out
circuit is provided to monitor bus activity. As long as the

4. address strobe signal (AS) is active, the one-shot (U6) keeps
being re-triggered and its output flip-flop (UlA) is reset
periodically. If AS does not return to a logical high for 1 ms
or more, the one-shot completes its cycle. The Q (inv) output of

*the one-shot then goes high, clocking a high into the flip-flop
output. If the CPU has not been halted, this input to U3A causes
the BERR input to go low and generates a bus error trap in the
68000 CPU.

6.2.2 CPU Support Card (Figure 15 drawing #100184D)

The 68000 CPU support card (Figure 16) contains the ROM, RAM -

"-and I/O support needed to make the 68000 CPU card into a two-card
core system. In addition, it contains an interrupt priority

V. encoder which can be used by other cards in the system.

b This card connects to the CPU card both through the system
bus and through a local data bus at the top of the board. This
local data bus allows the core CPU system to work even if a
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6".

faulty card has disabled the data lines on the system bus. This
feature is useful for bringing up new cards which may have
problems.

The address space utilized by the on-card memory and I/O is
determined by a programmable ROM. This allows much flexibility
in address mapping. The EPROM at U24 supplies enable signals for
the on-card RAM,ROM and UART and provides the local bus enable
and acknowledge signals. It can be programmed to provide bus
error detection if a write to ROM is attempted.

A system monitor resides in the EPROM's at U16 and U25. For
simplicity, this monitor normally resides in the first 4K segment
of address space, allowing the 68000 to execute monitor code

*-. immediately on power-up. All system traps are vectored into the
support RAM at U17 and U26. ROM and RAM address decoding are
provided by the address EPROM and are accompanied by an RDTAK
output from the EPROM. This causes one-shot, U18, and flip-flop,
U20 to generate a DTACK acknowledge signal which is supplied to
the CPU by open-collector buffer U19.

Console I/O for the CPU system is provided by programmable
* UART, U15. This device contains a built in baud-rate generator

with software selectable rate. A jumper block, Wl-W5 allows
access to handshake signals if they are needed by the host.
Pseudo RS-232 levels (0-5V) are provided by transistors Q1 and
Q2. These levels are compatible with most RS-232 devices and
eliminate the need for non-5V supplies. Access to the UART is
accompanied by assertion of VPA which causes the 68000 to execute
a synchronous peripheral cycle which is required by the UART. A
reset line is provided in the RS-232 cable which is passed
through the auxiliary bus to the CPU. This allows the system to
be reset over a remote tether.

Interrupts from the UART and from other cards in the system
are processed by priority encoder, U21. This produces a coded
interrupt level on IPLO - IPL2 for the highest level for which
there is an interrupt input. Jumpers W11 - W14 allow selection

- of the priority level for the UART. External interrupts can be
i wired onto the appropriate jumper post. U22 decodes the

interrupt acknowledge state of the 68000 and asserts VPA through
U19. This causes an interrupt auto-vector to occur in the 68000
which transfers program control to the vector for the acknow-
ledged interrupt level. Jumper W6-7 allows selection of auto-
vector for the UART only (W6), or for all interrupts (W7). If W6
is used, the other interrupt devices must assert their own

*@ acknowledge.

6.2.3 ROM/RAM CARD (Figure 17 drawing #100149)

The 68000 ROM/RAM card contains sockets for 32K Bytes of 2K
x 8 memory devices. The memory is organized as 16K words of 16

6 bit data. Two alternative methods of address decoding may be
- selected by wire jumpers. The simplest and fastest method is to

leave the socket for U15 empty and to install jumpers W25, W26,
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and W27. In this mode, the card can be addressed to any 32K Byte
block on any 32K Byte boundary in the system address space.
Address decoding begins with U24 which decodes bus address lines
A21 - A23. The eight possible states of these three lines appear
as outputs on jumpers W17 through W24 when Address Strobe (AS) is

• asserted. The desired jumper allows UI to be enabled. This
decodes A18 - A20 on wires W1 through W8 and enables the third

"- . decoder, Ull. Jumpers W9 - W16 select the desired state of A15 -
A17. The individual devices in this 32K block are selected by
A12 - A14 which are connected through W25 - W27 directly to U1
and U19. These two remaining decoders gate upper data strobe
(UDS) and lower data strobe (LDS) to the appropriate memory
device. UDS and LDS are also gated by U27 with the address
decoder output to provide enables for data bus buffers U19 and
U20. Low order address lines to the memory devices are buffered

* -*'. by U28 and U29.

The decoded address also activates a dual one-shot, U26,
which waits a delay period (determined by R2 and C29) and then
returns a DTACK signal of width determined by R1 and C31. The
first one-shot should be set to be slightly longer than the
access time of the slowest memory device on the card. The second
one-shot should be set to about one clock period of the 68000 CPU
(250 ns for a 4MHz system).

The alternative address decoding method uses an EPROM to
replace address decoders U10 and Ull. Using this scheme, the
highest address lines A21 - A23 are still determined by W17 -
W24, but the 32K bytes of memory can be assigned in 4K blocks to
any part of the 2 MByte address space. Any 4K block can also be
designated as read-only. To use this address decoding method,
remove U10 and UI1 and jumpers W25 - W27 and place the address
decoding EPROM in U15. This EPROM is coded with the block select
in Dl, D3 and D5 and the enable as a low in D7. The EPROM is
addressed by R/W and A12 - A20. Thus the first two locations
represent write and read of the first 4K segment, etc. Multiple
mapping is allowed so that a block of memory may appear in two or
more different segments. Memory can also be mapped to be read-
only in one segment and write-only in a different segment. The
only major drawbacks to this decoding scheme are slow-speed and
the added power consumption of an NMOS or fusible )ink PROM.
Fast CMOS EPROM's may reduce the consumption, but the chip is
active at all times and with NMOS increases the board consumption
from 30ma to 140ma.

6.2.4 UART CARD (Figure 18 drawing #100148)

Communication with other computer systems or peripheral
devices is provided by the UART Card. Since power conservation

4. is vital to many of the system applications, this card is
implemented with CMOS UART's. The address of the four UART's is
determined by U14 - U19 and jumpLrs W29 - W60. To simplify
address decoding the 8-input NOR and U14 limits the address range
to be under 020000 hex. Address lines A5 - A16 are directly
decoded by U15 - U18 and any 32 address block within this. space
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can be selected with 4 jumper wires. The remaining decoder (Ul9)
selects one of the four UART's. Each UART appears at two

* -consecutive odd addresses and data is transferred over the lower
data bus, DO - D7. Four programmable baud-rate generators, U3,
U4, U10 and Ull, provide the 16x clocks required by the UART's.
Jumpers W1 - W8 and W15 - W22 allow a wide range of rates to be
selected for each of the UART's. Transistors Q1 - Q8 provide a
pseudo RS-232 interface that will accept RS-232 inputs and
provide a 0 -5V output that is acceptable to most RS-232 devices.
These interfaces allow the system to be used with a single 5V
supply.

When a UART address is decoded, the VPA line is asserted by
open-collector buffer Ul-B. This causes the CPU to supply a
synchronous bus cycle to the UART's and satisfies their internal
timing requirements.

Interrupts from the four UART's appear at jumpers W9 - W14
and W23 - W28. A simple encoding scheme can be implemented with
these jumpers, but multiple levels of interrupts can generate
ambiguous codes in a system that does not employ priority
encoding. For most implementations, the four interrupt outputs

- available at W9, W12, W23 and W26 should be used to drive a
priority encoder such as the one available on the CPU Support
Card. The open collector outputs allow more than one device to
be wired to the same interrupt level input. An interrupt
acknowledge (IACK) is generated on the card which asserts VPA

-". -when the CPU function code bits are all high and one of the
UART's is generating an interrupt. This circuit may cause
problems in a structured interrupt system since the processor may
not be acknowledging the UART's interrupt if another device has

- higher priority. If all interrupts use the VPA auto-vectors,
this is probably of no consequence, but if vectored interrupts
are implemented or if the interrupt must be synchronized, the
output on Ul pin 2 should be lifted by bending the pin up out of
the socket. (This is pin 13 of a 74C906 if this part is used
instead of the 7417).

6.2.5 Applications Card (Figure 19 drawing #100154)

* The application card is a wire-wrap board which contains all
of the hardware that is unique to the command computer of the
SIMS vehicle. The card provides interfaces to the compass and
pressure transducer and supplies both calendar and process
interrupt clocks to the system.

Address decoding for the card is provided by U19 - U22 and
is hard-wired to respond to OOCOOO hex through 0OC7FF hex. A
DTACK signal is generated by U23 whenever this address block is
decoded.

AdditLonal address decoding by U19 and U20 generates enable
0signals for four 16-bit input and output ports at C080 through

C087 hex. A 16-bit input port (U9-10) and output port (Ull -

U12) is available to the user at C080-1 hex. Address C084-5 hex
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supplies the magnetic compass bearing from compass counter
circuit U7 - 8 and latches U13 - 14 (Figure 20). The analog

* ' depth signal from the pressure interface card is digitized by 12
bit ADC U-25. The digital output is latched by U15 - 16 and made
available at C086-7 hex. The code is inverted by the A/D
converter and must be complemented by the user. Address decoder
U36 selects the calendar clock (MM58167), U26, at address COOO -
C07F. The 32 registers in this clock chip can be read or written
to at odd addresses from C00l to C03F. This clock maintains the
date and time to milliseconds and can provide interrupts on a
preset date-time or at each of the unit intervals (once per
second, minute, hour, day, week or month). The clock is used for
logging data to the bubble memory but can also be used to provide
sleep functions or mission abort at some cut-off time.

An additional timer/counter is provided by an RCA 1878 which
appears at odd addresses C101 - ClOF. This dual timer can be
programmed to count a 32 kHz clock to provide real-time interrupt
to operating system software for multi-task switching. The
second section of the timer is available to be used for external
applications such as an echo return timer for an auxiliary SONAR
interface.

6.2.6 Pressure Interface (Figure 21)

The command computer measures the vehicles depth in the
water by a pressure transducer mounted on the bulkhead and vented
to outside water. A Setra systems #104 strain-gage transducer
provides a differential analog signal to the pressure
preamplifier mounted on the rear of the transducer housing. This
preamplifier converts the differential signal into a 0 - 5V
signal acceptable to the 12-bit A/D converter on the application
card. A precision reference provides adjustable offset.

During initial testing, the pressure interface displayed
severe nonlinearity and poor repeatability in measurement. This
was traced to digital noise in the A/D converter from its being
wire-wrapped and in close proximity to other logic. The
successive approximation converter used in this design is prone
to such errors. A reasonable solution was achieved by moving the
A/D converter to a separate wire wrap board behind the
application card and keeping all analog signals away from the
application card. This improved accuracy to a consistent 10 bits
with two LSB's uncertain. To obtain the full range of the A/D

converter input, a negative supply was needed for the A/D's
* internal comparator. This was supplied by a charge pump circuit
0running off the system clock. The final result was a system with

10 bit linearity as shown in Figure 22. The accuracy was
calibrated at room temperature and normal voltages and found to
be repeatable. An accuracy of 1/2 inch in 60 feet was measured.

6.2.7 Pressure Transducer Test Results

After field tests were terminated in December 1982, a
laboratory test was performed to determine linearity of the

49



00

-F0-

'- -

cco

00

LIL)

* -4D

so.



c-r

~ <
0

I-0i
0 C'

co iIT

05



Q

< -. * . ~ * h ~ W 'CL

'6<
r Uj

V0

LUO

(j)j

Cl--

Li:i

rr C

r. ~,51



. y

DEPTH ME.ASUREMENT LINEARITY

00{

- -. 300-

4001

£00--

COD,

-F
1
0 5 10 i5 20 25 30 35

~m. FIGURE 22

52



F -- -

vehicle depth sensor system (pressure transducer/A/D converter)
as well as its sensitivity to voltage and temperature changes.

It was immediately found that a built in error of as much as
16 counts was being introduced by an incorrect decoupling
resistor (100 ohms instead of 10 ohms) in the ADC +5 volt supply
line.

The test data shows that for a system voltage range of 20-24
volts and a temperature range of 40 degrees F -68 degrees F the
depth sensor system is accurate to +3.3 inches and -1 inch.

6.3 Image Processing Systems (Figure 23)

An important part of the SIMS system is the desirability to
send images to the surface. The limited bandwidth of the
acoustic channel available for this purpose will require
significant bandwidth compression. Exploration of image

"- processing techniques has been investigated using our vehicle CPU
system with a 100 x 100 CCD camera and a video digitizing board
and video display board. These wire-wrap cards are currently
being used in one system to investigate compression techniques.
The digitizer card could be placed on the vehicle in a dedicated
image transmission system and the display board installed in a
second 68000 system on the surface. A more detailed description
of the imaging system is described in Section 16.

6.3.1 Video Digitizer Board (Figure 24 drawing #100181)

This card receives video and timing information from a 100 x
100 CCD camera and digitizes the image into 10,000 six-bit
pixels. These pixels are stored in 16K of on-board CMOS RAM, Ul
- U8.

The video, pixel clock, horizontal and vertical sync signals
are supplied to the card through a connector for camera input.
The pixel clock is gated with HSYNC and supplied to pixel
counters U20 - U21. These counters are reset at each VSYNC. The

video is supplied to a CA3300 six-bit CMOS flash converter (U23)
* and the digital data latched into U17. When a frame 's desired.

the frame grab flip-flops at U25 are activated. By accessing
memory location 030000 hex, the CPU causes U25A to be set. On
the next vertical sync pulse, this causes U25B to be set and
causes the storage of digitized data to begin. Ul? - U19 are
enabled presenting pixel address and data to the RAMs (Ul - U8)

* which are placed in write mode. U25A is reset by U25B and at the
end of the frame VSYNC again clocks U25B terminating storage.
Access to the RAM at odd addresses 020001 - 027FFF hex is
provided by UIl - U13 when this address block is decoded by U14 -
UI6. Access during a frame digitization will reset U25B and
cause immediate termination of the grab. This leaves the memory
only partly filled and should be avoided. Status information is
provided at address 028001 hex by U10 to allow video software to
know when a valid frame has been stored.
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6.3.2 Video Display Card (Figure 25 drawing #100177)

The digitized video from the 100 x 100 CCD camera is
processed and then displayed. To be compatible with standard
video equipment, the display must be a standard NTSC video
output. A Motorola 6845 CRT controller, U3, is programmed by the
CPU to generate the proper timing for a 100 x 100 video display.
The 6845 registers are accessed at address 1FlOOl and 01F003 hex
by decoders U13 - U14 and bus buffer U30. The CRTC supplies
pixel addresses to the 16K on-board RAMs U19 - U26 through
address buffers Ull and U12. The data for each pixel is latched
into U28 and formed into video by an 8-bit resistor DAC. Sync
and blanking are supplied by U5, U6 and Q1 and Q2 with diode Dl

.- .-holding the video at the blanking level. The output is finally
buffered by Q3. A strobe feature is provided by flip-flop U2 and

*-. latch U29. By writing first 00 and then 06 to address 01F2001

hex the CPU can cause U2 to gate only a single video frame to the
display. This is very useful for photographing the CRT without
bars in the picture. Writing 02 to this location enables the
display continuously.

Transparent access to the display memory is provided between
display pixel cycles. Access is synchronized by flip-flop U31.
Whenever addresses 010000 - 017FFF hex are decoded by U15 - U17,
the access sequence is started at U31. At the next inter-pixel
interval U31A is clocked and the address buffers U9 and U10 are
enabled. If the cycle is a write, the R/W line is asserted on
the RAM's and data is supplied to them by U7. If the cycle is
read, the data is presented to US and latched at the end of the
cycle. The cycle ends when the next pixel clock cycle begins.
The low at U31A is clocked into U31B and access to the RAM is
switched back to the CRTC. At this time a DTACK signal is

- <.. [supplied to the CPU. For read cycles the CPU can now examine the
data in latch US. Write cycles are completed already. When the

CPU acknowledges DTACK by removing the address strobe, U31 then
returns to its original state and DTACK is removed.

6.4 68000 ROM Monitor

The program that runs when power is first applied to a
microcomputer plays an important role in the system development.
This program resides in ROM and is usually referred to as a
"monitor". Once a system is fully operational, the monitor will
frequently be used only to load and start more sophisticated
software. During initial design or when debugging difficult
hardware or software problems, the monitor should provide the
tools needed to develop and maintain the system.

The first version of the 68000 monitor (developed in June
1981) provided the basic tools of a hex loader, memory

*O examine/change, dump, trace and breakpoint. The next revisions
included transparent communications with each of the UARTS,
loading from port #3 and a random pattern memory test.
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Revision 1.2 included buffered interrupt I/O on all ports,
but this feature was abandoned in Revision 1.3 and higher since
it consumed a fairly large block of space, and the same
capability was being provided by the vehicle operating system
which had been developed.

Initial versions through 1.3 were based on 65K of user
accessible RAM. By July 1982 it became obvious that this was
going to limit software development. The address input routine
was then expanded in a new version (Revision 2.0), and a binary
loader added to directly dump files from the ERG development
system. The binary loader is three times faster than the
original hex loader, can load the full address range, and can be
called from within the "C" programs that have been loaded
previously. It returns the next available location to the "C"
program.

This monitor is the current revision (Figure 26). A
modified version has been provided for the CCD camera system,
which includes automatic set-up and operation of the CCD video
digitizer and display boards. This is a separate mini-monitor
embedded in some free space within the Revision 2.0 version.

Copies of user's manuals for Revisions 1.2, 2.0 and the
video monitor appear in Appendix B.

6.5 System Design Considerations

6.5.1 Present Design Problems

The 68000 CPU system was designed with the concept of
complete flexibility in mind. The CPU support card with its
higher-powered NMOS circuitry was to be used as a starter system
and removed from final low-power systems. Unfortunately, the

. * interrupt encoder was placed on the support card. The card can
be unstuffed except for U19, U21 and U22 and it will draw minimum
power but unless the equivalent circuitry is provided elsewhere,
the card must still be present on the bus to allow a prioritized
interrupt structure.

The ROM/RAM cards were supposed to allow any 2716/6116
compatible part to be plugged into any location. The PD/PGM pin
(pin 21) of NMOS EPROM's loads the buss down and prevents R/W
operation. Since there is no room for jumpers on the PC layout,
devices cannot be mixed on the card unless pin 21 of the EPROM's
is bent out and wired to pin 24. This probably is not a problem
with CMOS EPROMS. Since the pins on some EPROMS are fragile, an
alternative method is to dedicate an entire card to EPROM's.

The ROM address decoder on the ROM/RAM card is not used
[ because of the power consumption of sufficiently fast ROM. It
-.o. could be used when really fast CMOS ROM's become available, but

is bypassed in present implementations.
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SUMMARY OF MONITOR COMMANDS

B aaaaaa - Set breakpoint at "aaaaaa" (RAM or ROM)

B K - Clears all breakpoints

C - Continue after a breakpoint

D aaaaaa bbbbbb - Display a block of memory

G aaaaaa - Go jump to code at aaaaaa

HB - Binary load tape on port #3
H L - Load a HEX tape on port #3 (see L)
H P aaaaaa bbbbbb - Write HEX dump of aaaaaa-bbbbbb (see P)

I - Enable interrupts

L - Load a Motorola "Si" format HEX tape-
lower 65K only

M aaaaaa - Examine/change memory at aaaaaa
0

0 - Enter transparent mode with UARTS 0-3

P aaaaaa bbbbbb - Write Motorola "S1" tape of aaaaaa-bbbbbb
R - Display DO-D7 and AO-A7 from last break

. S aaaaaa bbbbbb dd - Set "dd" into block of memory aaaaaa-bbbbbb

T aaaaaa bbbbbb tt - Set TRACE if PC is in aaaaaa-bbbbbb block
U - Turn off TRACE

X aaaaaa bbbbbb
cccccc - Block move aaaaaa-bbbbbb to cccccc-

? aaaaaa bbbbbb - Random pattern memory test of aaaaaa-bbbbbb

(ctrl C) Restarts monitor
(ctrl S) Stops output
(ctrl Q) Re-starts output

S FIGURE 26
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The ROM/RAM card DTACK circuit works, but is of a poor
design. The actual DTACK signal is of fixed duration, controlled
by the second one-shot. A proper design would terminate DTACK
when the CPU recognized it and removed address strobe (AS). The
present design must be adjusted if a faster CPU is incorporated.

A system design problem exists in the use of the CPU support
card with a ROM/RAM card addressed in the same space. To provide
RAM at $2000 - $7FFF with the present ROM/RAM configuration, this
card must respond to $0000 - $IFFF as well. Since the CPU
support card has been configured to provide ROM and RAM in this
space, an address decoding conflict exists. The support card
uses a local data bus and disables the system bus so that no bus
conflicts occur, but both CPU support and ROM/RAM card provide
DTACK signals. It is therefore important to set the DTACK
response time slightly slower on the ROM/RAM than on the support
card. This slows overall system performance. This is eliminated
if the support card is de-populated (as previously described),
but the monitor ROM must then share the ROM/RAM card with RAM,
and pin 21 of the EPROM's must be separated from the bus and held
high.

The power consumption for individual cards is shown in
Figure 27. Also included is a cumulative combined total power
usage for the system.

6.5.2 Future Expansion

The bus architecture chosen for the SIMS 68000 computers
contains all 68000 function pins. Any 68000 compatible device
can be attached to this bus. This opens the door to future
expansion with memory management devices, floating point co-
processors and multi-port shared memory. Thus these same
computer components can be used to build very powerful systems as
the need arises for greater on-board intelligence. Future

- possibilities include image directed guidance input.
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POWER CONSUMPTION

WA
CARD INDIVIDUAL COMBINED* INDIVIDUA

CPU 176 mA 0.88 W

SUPPORT 137 mA 348 mA 0.68 W

32K RAM 25.8 mA 358 mA 0.13 W

UART 19.0 MA 374 mA 0.09 W

APP CARD 217 mA 618 mA 1.09 W

Combined systems are running and accessing the added
Power consumption relfects operation.

FIGURE 27
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7. 68000 COMMAND COMPUTER SOFTWARE

7.1 Overview

At the heart of the command CPU software is the Vehicle
Operating System (VOS) shown in Figure 28. The VOS performs two
basic functions. First, it handles all I/O system calls and,
secondly, it controls the scheduling of various tasks running in
parallel in its environment. Always running in the O/S
environment as a task is the system monitor. The monitor
receives and sends information across the tether to the operator
TTY. It also contains a binary loader which will download user
software from the ERG development station. Running in parallel
with the monitor is the mission software package (MSP). The MSP
consists of a number of software modules that control all
hardware system and run a user defined mission scenario.
Surrounding the MSP is a shell of interactive software that acts
as a user interface between the operator and the MSP.

All communication between the command CPU and the three
peripheral CPU's is handled by interrupt driven system calls tothe VOS.

7.2 Vehicle Operating System - An Internal Overview

The operating system (Figure 28) should first be isolated
from the three other computers and the monitor and treated as
simply switching a group of tasks and handling O.S. requests.

*After this is done, conceptually, the task of explanation is
greatly simplified. In the most simple case a group of tasks is
running, each one after the other making no requests of the O.S.
In this situation the O.S. starts a task by loading the countdown
clock with that tasks time slice and then execution transfers to
the task itself, restoring its registers in the process.
Execution continues within that task until the countdown clock
reaches zero and an interrupt occurs. The interrupt service
routine saves all that tasks registers in its processed
descriptor block (PDB). The service routine then calls a
function which returns the PDB of the next task to run, this is
normally the next task in the linked list of PDBs. At present

-' each task runs until it has completed execution, meaning there
- are no time limits associated with each task and they are allowed
" to run "forever". When a task does come to the end of its

execution its PDB is marked as finished and it is run no more.
The situation becomes somewhat more complicated when the tasks
running start making I/O requests and the like. Everything
proceeds as normal until an unsatisfiable request is made. An
unsatisfiable request is, for example, attempting a read of ten
characters when only five are available. When this happens the
requesting task is put into a wait state, input wait in the case
of a read. Within the O.S. there is a separate queue for each
input and output channel, when a task goes into I/O wait it is
placed in the appropriate queue. The mechanism for making
requests of the O.S. is fairly simple. For example, a read
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request is made via a subroutine call, e.g. read (fd, buff,
nchars). At link time a routine, labeled read, is linked to the
subroutine call. Where both C and Pascal push their parameters
on the stack, on entry to the routine (_read), the return pc is
on the top of the stack followed by the parameters for the call.
The _read routine then saves the return pc in AO loads D7 with
the index of the O.S. routine, three in the case of a read, and
executes a trip #1. When the trap is executed the 68000 enters
supervisor mode and the trap handling routine is entered. On
entry to that routine the address of the appropriate handling
routine is looked up in a table using D7 as an index. The trap
handling routine sets up the stack with the two parameters for
the individual handling routines. The first is a flag which
indicates whether this is the first attempt at satisfying the
request and the second is a pointer to the callers parameter
block.

Note: Because parameters are always pushed on the stack as long
words the parameter blocks defined in the O.S. should only
contain structures made up of long words.

7.3 Vehicle Operating System Description

The Vehicle Operating System (VOS) is a single user
operating system designed to be used in the UNH Marine Systems
Engineering Lab's autonomous vehicle EAVE. The primary goal of
the VOS is to allow the users of the vehicle to program in a high
level language such as C, PASCAL or FORTRAN. VOS is structured
in such a way as to minimize or eliminate the hardware knowledge
required to utilize the full capabilities of the vehicle. The
operating system is currently configured to run with the
following hardware:

a 6551 - console uart

3 - 1854 - communication uarts connected to three 6100's
which control the thrusters, provide navigation
information, and record data on the MBM.

a countdown clock - used to do task switching

a datetime clock - used to keep track of the time of day
and day of month.

a compass - provides degrees from north.

a pressure transducer - used to calculate depth

Where the OS itself is written in C, the most immediately
useful language is C, and is, as yet, the only language
interfaced to the OS. The full capabilities of C language are
available as well a as subset of OS calls, such as read and
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write. Below is a list of the calls currently supported,
followed by a brief description of each call's function.

read (fd, buff, nchars)
write " "

iread "

iwrite " "
exit )
sleep (hundredth)
set-status (name, new-status)
lock (fd, <write-0, read-l>, <1-lock, 0-unlock>)
raw (fd, <1-raw, 0-normal>)
load (name, time, stack-size, <run-0, pend-l>)

read (fd, buff, nchars)
int fd;
char buff [];
int nchars;

Where nchars characters are read from the channel
designated by fd into buff. Note: the task making this

'* .. request will wait until the characters requested have been
* read and at that time a count of the chars will be returned.

write (fd, buff, nchars)

int fd;
char buff[];
int nchars;

Where n chars are written to the channel designated by
fd from buff. Note: the task making the write request will
wait until the characters to be written are transferred into
the OS's buffer. As with a read request, the actual number
of characters transferred is returned by the OS.

iread (fd, buff, nchars)

- iwrite (fd, buff, nchars)

* nt fd;
char buff[];
int nchars;

Both of the routines function in a fashion similar to
read and write except that the task making the request never

* waits. The values returned by these routines indicate
- whether or not the operation was performed and if performed,

to what extent.

exit 0;

O Causes the termination of the calling task, by setting
its status to "FINISHED" and switching it allowing the next
task to run.
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sleep (hundredths)

int hundredths;

Puts the current task to sleep, deactivates it, for a
period of time specified in hundredths of seconds.

set-status (name, newstatus)

char name [];
int newstatus;

Sets the status of the task specified by name to what
is specified by newstatus.

lock (fd, readwrite, lock-unlock)

int fd, readwrite, lockunlock;

Locks or prevents other tasks from accessing an I/O
channel. The fd specified the channel to be locked, read-

* write designates the read (1) or write (0) channel and lock-
unlock indicates whether to lock (1) or unlock (0) the
channel.

raw (fd, raw-normal);

int fd, rawnormal;

Sets the mode of the channel specified by fd. The mode
is set to either raw (1) or normal (0). The meaning of raw

" mode varies with the channel requested. Note: there is a
certain amount of protection, such that a task must own a
channel to put it in raw mode.

load (name, time, stacksize, run pend)

S.'- char name[];

int time;

int stacksize;

int run pend;

Sets up a task called name which has a stack of stack-
size words, and when running has a time slice of time units.
After the task block is set up the task is loaded through
the camera port. And either run (0) or pended (1) depending
on the value of the fourth parameter.

In order to make use of the I/O routines the user must know
the correspondence between fds, or channel numbers, and the
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physical devices they access. Below is a list of the current fd
assignments:

0 - console r/w

1 - thruster nw

2 - NAV r/w

3 - MBM r/w

4 - unsupported camera

5 - compass read only

6 - pressure read only

7 - date time r/w

The setstatus routine requires the specification of a new
status for a process. This new status is designated by an
integer value one to eight. The meanings of the different values
are listed below:

1-INPUT-WAIT When a task has an unsatisfied read request

2-OUTPUT-WAIT When a task has an unsatisfied write request

3-RUNNING When a task is actually executing instructions

4-WAITING When a task is waiting to run

5-PENDED When a task has been stopped during execution or

when it has not yet been started up

6-ERROR When an error occurs in the execution of a trap #1.

7-FINISHED When a task has completed its execution. This
status is normally set by exit (.

* 8-SLEEPING When a task is in a sleep state. When the sleep
period is up the status is changed to WAITING.

The VOS Monitor

O The VOS monitor is a high level supplement to the SIMS 68000
Monitor V.2.0. As yet it provides none of the memory test/access
routines but does enable the testing and use of the higher level
vehicle functions. In addition to providing commands for
accessing and testing the various I/O channels it allows for a
certain amount of task control. This control consists of loading
new tasks, starting and stopping ones which have been loaded and
checking their current status. Lastly there is a command which
allows the testing of the sleep function.
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The commands accepted by the monitor are:

HELP
LOAD
DATE
COMPASS
PRESSURE
THRUST
EXIT
NAV
MBM
SLEEP

." SET STATUS

The specifics of these functions are contained in the next

section.

(1) HELP <cr>

prints the above list of commands

(2) LOAD <name> <time slice> <stack size> <run-O,pend-l> <cr>

Allocates a process descriptor block (PDB) for the task
which is added to a linked list of PDBs and a stack, then it
prompts the user with the correct load address of the
process. After this has been done the system then waits,
reading the camera port for the load module. When the task
has finished loading it is either run or pended, depending
on the last parameter.

(3) DATE <cr> or

DATE <mins> <hours> <day of week> <day of month> <month> <cr>

This allows the user to both set the date and query the
OS to find out what it thinks the date is. When setting the
date all parameters are optionadl. The list of numbers is
interpreted and assigned from left to right. Given this if
three numbers are provided they are taken to be <mins>

*<hours> and <day of week>, leaving the <day of month> and
<month> unchanged.

(4) COMPASS <cr>

When invoked, this command causes the compass to be
* read continually and its reading to be printed out on the

console. Where there is approximately a two second delay in
the compass and a delay due to output character buffering,
readings being printed are generally several seconds old. A
ctl-d typed on the console causes control to be returned to
the monitor.

68

#:Z7:%
K. S



(5) PRESSURE <cr>

When invoked, this command causes the pressure to be
read continually and its reading to be printed out on the
console. As with the readings of the compass, values being
printed are generally a few seconds old. A ctl-d typed on
the console causes control to be returned to the monitor.

* (6) THRUST <cr>

(7) NAV <cr>

(8) MBM <cr>

Each of these commands behave in the same fashion.
When invoked each of these causes the console to go into
transparent mode with the corresponding computer. A ctl-d
typed on the console returns control to the monitor.

(9) SLEEP <hundredths> <cr>

Causes the monitor to sleep for the time specified in
hundredths of seconds.

(10) SETSTATUS <name> <new-status>

This explicitly sets the status of the task(s) with a
matching name. The status specified is assumed to be a
number with the same meaning as described in the code for
the operating system "declare.h" and as listed earlier in
this paper.

(11) EXIT

At present it does nothing, it could easily be used
allow the monitor to be completely shut down during a
mission.

7.4 Writing Programs for the Vehicle
4

Programs running on the vehicle have very few, if any
limitations. The primary concern of the author should be the
size or memory requirements of the program. Because of this the
use of general purpose formated I/O routines should probably ve
avoided because of their high overhead. Because programs written
in C are the most straight forward to compile, test and load, the
procedure for their use will be presented first.

As an example, the process of writing, loading and running a
program to run the forward thrusters for 10 seconds and then run

" them in reverse for 2 seconds and halt will be described. The
program should first be written and tested on the ERG system.
The following is a version of the program, described above, set
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up to run on the ERG system. The primary differences are the fds
or channel numbers used in doing I/O.

/* a program to test the thruster communications and demonstrate
debugging on the ERG system */

#define THRUST 1

/* set the fd so that the output intended for the thrusters
now goes to the tty *

#define CONSOLE 1

/* set the fd that the output intended for the console goes
to the tty /

main () /* the main program can't have any arguments when
running on the vehicle */

write(THRUST,"I",l); /* initialize the thruster computer */

sleep(2); /* sleep 2 seconds waiting for the
initialization to be completed */

write(THRUST,"7F',2); /* set the thrusters to go forward full
speed */

sleep(l) /* sleep the specified ten seconds */

write(THRUST,"7B",2); /* set the thrusters to go back full
speed */

, *.sleep(2); /* sleep the specified two seconds */

write(THRUST"H",l); /* halt all the thrusters */

- - write(CONSOLE,"TEST FINISHED\n",14);

/* inform the user that the job is
0) done */

* -.i Once the program has been typed in it may be compiled and
run on the ERG by typing: c test.c; *xeg <cr>. After printing
some messages concerning the compilation the program will
execute, producing the following output:

17F7BHTEST PINISHED

That essentially completes the testing that may be done on the
0 ERG system. Now to run the same program on the vehicle some
I[r . changes must be made to account for differences in fd assignments
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and the resolution of the sleep function. Once the changes have
been made the program appears as follows:

/* a program to test the thruster communications and demonstrate
debugging on the vehicle system */

/* to actually run this program and have it start ano stop the
thrusters the THRUST fd would have to be changed to correspond
to the thruster computer */

#define THRUST 0

/* set the fd so that the output intended for the thrusters
now goes to the tty */

#define CONSOLE 0

/* set the fd that the output intended for the console goes
to the tty

/

* main () /* the main program can't have any arguments when
running on the vehicle */

write(THRUST,"I",l); /* initialize the thruster computer */

sleep(200); /* sleep 2 seconds waiting for the
-*. initialization to be completed */

write(THRUST,"7F",2); /* set the thrusters to go forward full
speed */

sleep(1000); /* sleep the specified 10 seconds */

write(THRUST,"7B",2); /* set the thrusters to go back full
speed */

sleep(200); /* sleep the specified 2 seconds */

write(THRUST,"H",l); /* halt all the thrusters */

write(CONSOLE,"TEST FINISHED\n",14;

O /* inform the user that the job is
done */
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The program may now be loaded and run on the vehicle using
the following series of steps:

1. compile the program producing the equivalent assembler
code by typing cdump test.c <cr>

2. assemble that code by typing *assem test.s <cr>

3. step 2 produces a file called test.o. It must be linked
and relocated with the vehicle routines at the proper
load address. To find the correct load/relocation
address issue the load command on the vehicle computer.
The vehicle will respond with the load address. Now
copy the file, test.o, to "/usr/rec/monitor". To link
and relocate the routine type:

uline <addr> test.o <cr>

where addr is the hex address provided by the vehicle
O.S. This command produces a file called xeg.

4. Using an ADM with an extension port you may now either
- load the program directly, or make a tape for loading

later. If loading directly, the extension port should
be hooked up to the camera port/tether. Since the load
command has already been issued the vehicle O.S. is
waiting for the load module which may be sent by typing:

hex -s xeg <cr>

5. Upon completion of the load, the VOS monitor will issue
its prompt. If the program was loaded in a run state
then it will start execution immediately. Otherwise it
will be in a pended state, which can be seen by typing
ctl-t.

... %
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8. NAVIGATION SYSTEM

8.1 Description

The purpose of the navigation system is to determine the
. vehicle's location in the x, y coordinate system plane. A block

diagram of the navigation system and a photo are shown in Figures
29 and 30.

This system consists of:

a) 6100 computer and associated drivers with two fields of
memory. The memory contains a total of 8000 twelve bit
words in RAM and ROM.

b) A supervisor UART to communicate with a terminal and a
host UART to communicate to the Motorola 68000 command
computer.

c) A math processor for calculating position.

d) An interface card which handles.the switching, timing,
and control for the transducers as well as the

- receiver/detectors.

-' e) Three sets of receiver/detector card pairs.

f) Nine filters, three each at llkHz, 114kHz, 118kHz.

g) ThLee transducers which transmit at 95kHz and receive in
the range of 100 - 130kHz.

h) Three transponders which are interrogated at 95kHz and
which transmit in the present configuration at either
llkHz, 114kHz or llkHz.

The navigation system operates as follows. Initially a
start pulse triggers the selected transducer (either 1, 2, or 3).
The particular transducer is selected in the navigation algorithm
which will be described later. The selected transducer transmits

" a Ims burst of 95kHz signal. Each of the three transponders
responds at a fixed frequency (110kHz, 114kHz, or ll8kHz) and at
different fixed delay settings of approximately 51ms, 28ms, and
lOims respectively. The transponders are prevented from retrig-
gering for a period of 300ms. The transponder output pulsewidth
is also Ims wide.O

Each of the three transducers on the vehicle receives all
* three signals. The transducers provide a preamp gain of 30db.

The signals are then passed to the receiver cards which provide
nominally another 60db of gain (Figure 31). The signals are then
filtered such that each transducer provides three signals (110,

- 114, 118kHz) to each detector card. The filters' responses as a
function of frequency are shown in Figure 32.
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The filters used are SM-WF2 mechanical filters built by
SEIKO. They have an insertion loss of ldb maximum. Each filter
output is connected to a detector counter circuit. There are
nine filters, three for each transducer input, hence there are
nine returns to detect and count. The counters are started at
the same time as the 95kHz transmit pulse is sent. The counters
are stopped when the differential threshold level in the detector

- circuit is reached. The threshold level is settable and must be
*-. adjusted properly to discriminate against the lower level filter

outputs from adjacent channel signals. The signals are spaced in
time and in frequency. The differential threshold level is set
to preclude a detection from the primary signal in adjacent
frequency channels. This setting thus controls system sensi-

. tivity and hence maximum distance from which a signal can be
received.

The counters in the current system are 12 bits long. A plot
of the distance between the transponders and receivers is shown
as a function of counts in Figure 33. The plot takes into
account the various turn-around-time delays of each transponder
as evidenced by the different zero crossing points.

0 It is obvious from this plot that the maximum count of 7777
octal corresponds to a maximum distance of approximately 295 ft,
245 ft and 195 ft for transponders A, B, and C respectively.
This is effectively the distance limit due to using the 12 bit
6100 computer system. A 68000 computer (16 bit) system has

- . already been designed and will be used for missions requiring
longer range. This system is discussed in Appendix C.

Once the nine counts, corresponding to nine separate and
distinct distances are received, the turn-around times are
subtracted and nine range values may be calculated. Figure 34
shows the nine ranges corresponding to the counts received. The
generalized equation for determining range is given below.

.°

R(ft) = (Total count - TAT) (C x t) 2 in feet

R = Ral or Rbl or Rcl (ranges corresponding to Figure 35)

TAT = Transponder turnaround time

C = Speed of sound in N O for conditions (feet/second)• 2
S -6

t = 33.3 x 10 sec. (30kHz clock)

This equation results in a one way range distance in feet.
It assumes the transmitter location is also the receiver
location. When the receiver location and transmitter location
are different, then the distance equation becomes:

<-7
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R = (Total count - TAT - count for Ral or Rbl or Rcl)(C x t)

in feet

where R is now the one way distance from a given transponder to a
receiver that is not transmitting.

Assuming all good returns, we could now know nine range
values, one from each transducer to each transponder. We know
which transducer sent out the interrogate signal, and we also
know the exact position on the vehicle of each transducer.

Referring to Figure 34 again, all that is required to cal-
culate a vehicle position in the superimposed x, y axis are two
returns on any one receiver.

The vehicle position calculations are performed in the math
processor card. The calculations which are performed by the math
processor are listed in Figure 35.

Notice that the range values in this example are denoted as
D values, and the horizontal plane range values are denoted by R.
Equations 4 and 5 are the generalized form of the solution for
the position of a given receiver in the x, y axis. These
equations become simplified when the coordinate system is aligned

'A such that two of the transponders make up the y axis and
transponder B is located at the origin. Equation 4 in Figure 35
now becomes:

Vx +d21

and equation 5 becomes:

Vy = Ay ±dll

The math processor is the NMOS American Micro Devices 9511.
It is not inherently compatible with the 6100 computer, therefore
timing circuits and data transfer buffers were incorporated in
the design. The math processor also uses significant current
(lO0ma). In order to conserve energy, a switching circuit is

* used to turn on power to the math processor only when it is
calculating.

Once the x, y position of a particular transducer on the
vehicle is calculated, it is stored in the 6100 buffer. The
68000 command computer requests this buffer data whenever it

• needs a position update from the navigation computer. The cycle
rate of the navigation computer (2 to 3 times per second) is
faster than the overall cycle rate of the command computer
(approximately .8 seconds per cycle) hence the command computer
is always receiving an up to date vehicle position.

SWe are currently using a compass to determine vehicle
beari-g, however, there is enough information available in the
navigation data to also calculate bearing and this will be
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incorporated in the system. A discussion of bearing
calculations, navigation, and sensitivity is presented in
Appendix D.

8.2 Test Results of Navigation System

Figure 36 consists of an actual data printout from the
vehicle system. The first line of data consists of the x and y
position in octal counts followed by a reliability word, followed
by the nine octal counts, three from each receiver. The
transponder turn around times have already been subtracted from
the counts before they are displayed. If a comparison is made
between the x, y position presented in the navigation system, and
the x, y position calculated from the raw counts displayed in
line 1, we find in line 7 and 8 that the position calculations
are in agreement in x (29.4 ft vs. 29.6 ft) and y (18.4 ft and
18.6 ft) to within 0.2 feet.

Additionally, a calculation was made to determine how close
in position the data indicates the three receivers on the vehicle
are. This was done using the data from transponders B and A for
each of the vehicle receivers 1, 2 and 3. The results of these
calculations are shown in Figure 37. The x, y positions are
shown and plotted on an expanded scale. It is shown that the
navigation system results indicate that the receivers are

*.-- separated by 3.0, 3.1, and 3.1 feet respectively. The actual

distance between receivers is 3.0 feet indicating that the system
is positioning the receivers within .1 feet of their relative
location.

It is also obvious from the plot that the vehicle forward
axis is pointing to approximately 60 degrees relative to the x
axis. The vehicle compass was not working properly at that time
and was indicating (Figure 36 line 5) 503 degrees, or 143 degrees
after subtracting out 360 degrees. The compass had been a great
source of unreliability. Consequently it has been replaced. The
new vehicle compass is a solid state flexgate compass type 869
built by Endeco Corporation. It has an accuracy of ±1 degree and
a 10 bit digital resolution of +.35 degrees. A +5V TTL serial
output is used. A 360 degree reading corresponds to 1023 pulses.
The compass was mounted on the vehicle and testing performed to
measure compass error due to thruster motor effects as well as
complete system effects on compass accuracy. It was found that
in worst case conditions the readings could be off by approxi-
mately 3 degrees. This error is largely due to thruster motors.

It is important to note, however, that at the time the
command computer did not know that the compass was erroneous and
calculated a new x and new y (lines 9 and 10 in Figure 36). The
new x and new y is merely the translation of the x, y coordinate
system to the center of the vehicle. It is calculated using the
vehicle bearing and the x, y position of the transmitting
receiver which in this case was number 1 (line 6, Figure 36). In
comparing the navigation system new x, new y (603, 365) to the
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4N7.

VEHICLE NAVIGATION DATA vs. CALCULATED

Receiver 1 Receiver 2 Receiver 3
Oct Oct Rel 114 118 110 114 118 110 114 118

LLineJ1 X Y Word B A C B A C B A
1 RDM: 563 350 6001 711 1215 510 721 1237 503 700 1233
2 TIME: 9505722 (in hundreds of a second)

3 RELWORD: 6001
4 PRESSURE: 171 (in inches of depth)
5 COMPASS: 503 (in degrees) -compass not functional-

NAV. SYSTEM OUTPUT CALCULATED OUTPUT
6 PINGER: 1 =xmitter PINCER 1
7 X: 562 = 29.4 ft. X: 564 = 29.6 ft.
8 Y: 350 = 18.4 ft. Y: 352 = 18.6 ft.
9 NEWX: 603 = 30.8 ft NEWX: 543 = 28.4 ft.

10 NEWY: 365 = 19.5 ft NEWY: 336 = 17.8 ft.
11 DELTAT: 10.430
12 DELTAX: 1.055
13 DELTAY: 0.479
14 DELTAZ: 0.192
15 DELTAB: 0.000

16 NAy. 30.805 19.502 10.083 0.084 0.038 0.016 5.636 0.000 6001

Calculate 28.4 17.8

FIGURE 36

1? 84

• p. ". ,.% " ,. • . . . . .. " . . .- - .- - .- ' .': _, . - .' -' ' . - - " ". - -' '' "' '' ." ' . '" . i



Al

* . AI.CL LAI IX.S Oi LACH RLCEIVER

LOCATION~ LDATA *11ME 9505722

20 (utiobC-r 1982

PECIEVE I~ V.= 2116 F. 1e.6 FT.

RECIEVER 2 VX VZ =32.3 F7:. 16.7FT.
RECEVER 3 =Vxz ,vy 3 =2E .E FT 15.6FT.

1y 270'

-~~ FI IFT

x= o*

FEET

FIGURE 37

85



V expected new x, new y (543, 336) based on an angle of 143 degrees
it became obvious that an error was being introduced. The error
was traced to the software which performs the translation in the
command computer. The software described in Section 15 of this
report was not accounting for the sign (+, -) in the sine

* function which it uses. This was corrected, and required very
little software modification.

Figure 38 is a printout of actual vehicle data in a
different format than Figure 36. The raw counts are not
displayed in this figure. This data demonstrates several
important results. The first four lines of data are all
calculated using transmitter 3 as evidenced in the reliability

*: word 1033 which translates as follows:

. 1 - a calculation was made

0 - some data dropout (i.e. not all 9 counts were good)

3 - data calculated to transducer 3

3 - transmitter was transducer 3

The vehicle at the time of this printout was positioned at
the entrance to the structure window 1 and was essentially
stationary. A comparison of the variation of x, y position of
the vehicle for the first four lines indicates a maximum

- variation (Ax) in x of .24 feet and in y a variation (A6 y) of
.32 feet. This was taken over a period of 11 seconds total

time. It should also be noted that the correction to the
translation algorithm described above had not been made at this
time and hence the absolute accuracy of the position was not
determined from this data. The data and position stability,
however, for a given transmitter is demonstrated.

The effect of the translation error is also demonstrated
when the transmitter switches such as in line five when
transmitter 2 is used and the initial L x goes to 0.4 feet. This
is demonstrated again more emphatically in Figure 39 (a
continuation of Figure 38) line 7 when the transmitter switches
to number 1 and a Ax of .636 feet and Ay of 1.43 feet is
produced. Notice that thereafter while transmitter 1 is on
(lines 8, 9, 10, 11) that the x, y position remains stable to
within .08 feet in x and .159 feet in y.

The first seven digit word of each line is the real time in
hundreds of a second. At the time of this test the command
computer cycle time was approximately 3 to 4 seconds. A
component error in the timing hardware of the command computer
was found, and since that time the system cycle rate has been
brought down to approximately 1.5 seconds.

0 Another significant finding can be shown from the data in
Figure 40. This data is from the vehicle system but the vehicle
was at a different location in the structure. Notice that the x,
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y, z position is stable except for the fourth line. At this
point the x, y position changes by several feet. This seems to
indicate that a multi-path count was used in the calculation.
Most multi-path occurrences are discriminated against by the
detection circuitry, however, on occasion the multi-path does get
counted as a signal. This can occur at times using the present
strategy of window expansion described in Section 9.2 of this

• report. In order to correct for this condition an added software
filter was written which discriminates against such occurrences
based on the vehicle projected envelope of motion for that time
sample. It will be made clear during the discussion of the
vehicle control algorithm that this is not a difficult task
because the command computer has all the information it needs to
determine where the vehicle should be during the next time cycle.

8.3 Summary

The current navigation system appears to be capable of
distance measurements to within 8 inches and has a stability of 4
inches over time. The translation algorithm was corrected to
properly account for sign errors. A software filter was written
to eliminate the possibility of gross errors due to occasional

* multi-path count being used to calculate a position. Addition-
ally a bearing calculation should be added to the software in
order to have a redundancy of bearing data. A new solid state
fluxgate compass is currently being used in the vehicle system.
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A. 9. 6100 NAVIGATION COMPUTER SOFTWARE

9.1 Introduction

The objective of the navigation computer is to provide to
the main vehicle control system, the positional information
necessary to navigate the vehicle to an underwater structure, and
move through or around the structure and return.

The vehicle will be initially placed approximately 100 feet
from the target area. The vehicle is equipped with a 3-
dimensional numerical map (structure coordinate system) stored in
memory containing the structure coordinates of the target, and
the positional coordinates of three object transponders (whose
purpose is analogous to that of airport beacons). The depth or z
coordinate of the vehicle is provided by the main system
computer, through a depth sensor.

Software control of the navigation system is through two
UARTS, one for the user-TTY and one for the command computer. A
resident monitor decodes commands from the I/O ports and perform
various selected functions. A list of the available functions
may be found in Figure 41.

9.2 Navigation Computer Task Description

During a ping, the counters measure the length of time for
the sonar signal to travel from the transmitter on the vehicle
(pinger), to the object transponders in the water, the turn
around time, and the return time to the vehicle receivers. For
convenience and clarity the term "hydrophone" will be used to
designate the vehicle receivers and transmitters. Knowing the
speed of sound through the water, the distance from each
transponder can easily be computed.

Using the coordinates of the object transponders and the
respective distances from the transponders, a position in an x-y
plane can be computed. When the vehicle is within the 100 ft.
range the navigation computer is responsible for vehicle x-y
coordinates, absolute heading and their derivatives (x velocity,
y velocity, heading dot).

The scenario as so far stated is idealistic. There are
- physical problems that exist when using sonar in water. There

are problems such as multi-path where a signal bounces off the
* surface or the floor, thus increasing the distance of the sonar

travel time. Shadowing where an object blocks the signal
entirely, as well as sound velocity in water errors (this varies
due to change in temperature, density, salinity, etc.), and
errors in placement of the object transponders are all problems
which could produce incorrect data. Therefore, before any
calculations can be done, the corrected raw data (corrected from
two way travel time) must be checked for validity. This is done
by comparing the raw data with a window, which is a predicted
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NAVIGATION COMPUTER AVAILABLE FUNCTIONS

Description:

This is the command scanner for the navigation computer.
It will be vectored to upon input or output. Will decode
the command and jump to the proper routine.

The Commands Are:

/N. -- Set current field to N
/Carriage Return -- Close current location
/Slash -- Open current location and type contents
/Line Feed -- Close location and open the following location
/NNNNG -- Transfer program control to location specified
/ by NNNN.
/C [lear buffer] (400 - 3777) octal
/D [ump to tape]
/L [oad to memory]
/R [ecord #]
IS [peed of O/S) (see rewait) (init to 7777)
/P [ing transponder] <0> = off, <1> = on
/H [oldoff time) (initially 7000)
/N [umber of records]
/K [ill printout) <0> = off, <1> = on
/E [cho keyboard] <0> = off, <1> = on
/I [nitialize O/S]
/A [ctivate nay system] <0> = on, <1> = off
/Z [coordinate input]
/B [lock data output]
./M [ath processor off]
/X [ducer #] <1, 2 or 3> (initially 1)
/0 (dt]

-I IT [ransfer rdm] ( <1> = trfr corbuf to rdm)
/J (ump around fld 0 output) <0> = print

-. FIGURE 41

'.%
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value based on history. By adjusting the width or size
(tolerance) of the window a small range of variance can be
provided allowing for small errors and displacement from real
time.

Initialization of the windows at the beginning of operation
is done by obtaining a number of returns and checking for
uniformity. When enough data is consistent, a window is formed
using the most recent sample. At a large range all transponders
may not be heard. In such a case, only windows for data received
are to be initially set. Windows not set are initialized
directly on the fly as the returns begin to be received.

Since the windows must change as the vehicle moves, they
must be continually updated, and since the windows are based
primarily upon the previously received sample then there must be
a way to determine if a window has been set correctly. In order
to detect a faulty window, a coded matrix was devised. The

% .7 contents of the coded matrix is based upon the element by element
comparison between the raw data in matrix form and its
corresponding elements of the windows in matrix form, and window
sizes in matrix form. If a raw data term is within its window
and window size then it is termed as a "good return". If the
return is outside of the window and window size, it is termed a
"bad return". An element for which no return was obtained is
termed a "no return". If a certain element is consistently a bad
return then the window may be in error.

If this occurs, then the window size is expanded by a
predetermined amount each time a bad return is received until
either a good return is received or the window size exceeds an
acceptable maximum. If a good return is received, the window
size is reset to the minimum value to preserve the maximum
filtering effect. If the window is expanded beyond a maximum
size considered to be acceptable the window is reinitialized (by

*a method to be determined (i.e. some form of past history
projection, or on the fly)].

Beyond the use of the coded matrix towards window adjustment
is the ability to determine what information can be computed.
The mathematics used to compute position uses the horizontal
distance from two object transponders, which yields two solutions
mirrored about a line drawn through the two transponders. To
disambiguate, either history (previous samples) or the distance
to the third transponder must be used. If the distance to the
third unused transponder is available, then by computing that

* distance twice using the two solutions, it can be determined
V which solution is closest. If history is available, then by

comparing the two solutions with history, the closest one can be
determined. If history is available, then upon examination of
the coded matrix if there are at least tow "good returns", a
position can be calculated. If no history is available then

0 three good returns must be received.
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A decision as to which hydrophone to ping is made using the
coded matrix. If enough data is received using the current
pinger to compute a position, it remains unchanged. When this is
not the case, however, a new pinger is chosen by checking the
rows of the coded matrix to determine which row (hydrophone) has
the most good returns.

If all the returns in a column are consistently bad or no
return status even after window correction, then failure of
either the counters or the transponder is indicated. If the same
conditions exist for a row, then a failure of the hydrophone is
indicated. The coded matrix allows window correction, "one-look"
information availability, and pinger decision.

This is the theory upon which the algorithm operates.
Following is a step by step description of the algorithm from
which one may gain a more concise image of the navigation.

9.3 Navigation Algorithm

The navigation algorithm consists of eleven modular
segments. The modules are divided and designated according to
the function they perform. Modules I and II are initialization
procedures are one pass, while modules III and XI are organized
in a linear loop with one subroutine called in module III. An
explanation of each module follows.

Module I is the system initialization. The coordinates of
the object transponders and any predesignated parameters are
loaded into memory. All flags used through the algorithm are
cleared.

Module II is the navigation computer initialization and
window formation. The function of this module is to choose which
hydrophone to ping, and to initialize the windows.

When the vehicle has been placed in the water, before it
starts moving, each of the three hydrophones are consecutively
pinged. The hydrophone with which the most returns are received
is designated as the pinger. In case of a tie, the hydrophones
have an ordered priority.

Control is passed into the loop starting with module III.

The main system is signaled through the reliability word that
initialization is over and the vehicle can begin motion.

Module III, the active navigation and data handler. First
the "get data" subroutine is called. The "get data" subroutine

S,. controls the actual hardware to reset the counters, ping the

chosen pinger, start the counters, test for counter overflow (no
return), and load raw data (counter values) into the raw data
matrix.

_ 94

.'., ... . . - .- . .''.. ...% '.'..' . ..-.-.... .- .- ..-.. ' . " ".-.- '



After the "get data" subroutine returns with the raw data
matrix, the raw data is compared with the window and window size
matrices and the coded matrix is loaded accordingly. A "G'" for a
good return is coded as a five, a "B" for a bad return is coded
as a three, and an "N" for no return is coded as a one, thus
yielding a unique sum for any combination of returns in a row or
column. When the coded matrix is completed control is passed to
module IV.

In module IV, the computation decision module, the existing
conditions are examined, and decisions are made to determine what
information can be calculated. First the range is found to
determine which information should be calculated. The coded

.... matrix is examined and the most desirable pinger is chosen based
on number of returns received in a row and previously set
priorities (pinger one before pinger two before pinger" three).
If the previous pinger sum is good (two "C's" or more), then the
criteria for position computations are checked. Two "G's" in the
pinger row and history (last flags) or three "G's" in the pinger
row (three flags) are the only situations where position can be
computed. If position is computable, then the position flag is

". set and the last position flag (history availability from module
XI) is checked.

Module V, position calculations, checks the position flag to
determine if position is to be calculated, if so, the three flag
is checked to determine which method of disambiguation is to be

- *used. Once these flags are checked, appropriate action is taken
and control is passed to module VI.

Module VI, result processing and window reset, checks and
resets the windows. If there are any "G's" exiting in a column,
then the windows for non-good returns in that column are based on
the good returns with expanded sizes. The windows of any good
return are immediately updated with the actual received return.
Therefore, if a window is received for which no window exists,
then it has been coded a "G" in module III and the window is
automatically initialized in this module. If there are no "C's"
existing in a column, then the windows remain the same but the

* window sizes are increased. If the window sizes are expanded
*beyond a given limit then the windows are cleared and will be

initialized "on the fly" as previously explained.

If the position flag has been set, then there are at least
two "C's" in a row in which to base the windows for the column.
If the three flag is not set, then the third window can be
computed upon which windows in that column can be based.

4 IModule VII, the reliability word formation checks flags set
in module III to determine which information will be sent to the
main system computer. Bits are set in the reliability word which
indicate the availability of this information. If the vehicle is

* within one hundred feet and the position flag is not set, then
the history is checked. If history exists a bit in the
reliability word is set to indicate old information. If history
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also is not available, then the old information bit is set. and
bits are set for any history that does exist.

Module X, information loading and transmission loads the
appropriate information as indicated by the previously set
reliability word into the proper memory addresses and sends this
information to the main computer.

-. Module XI, flag processing and history manager checks flags
- set in module IV and loads the present information into history

while setting the corresponding history availability ("last")
- flags. After history has been updated, all flags are cleared and

control loops back to module III.
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10. MAGNETIC BUBBLE MEMORY SYSTEM

10.1 Description

The purpose of the magnetic bubble memory system is to store
essential vehicle data during a mission. The data stored in the
bubble is such that a reconstruction of the mission and post-
mission analysis is possible. The data stored in the bubble can
be stored in various ways as we will discuss later. For the SIMS
mission, it was decided that the following information would be
stored for each complete system cycle (i.e. approximately every
second):

I - Exact time in hundreds of a second

2 - 9 counts detected in Navigation System

3 - x, y position calculated in Navigation System

4 - Pressure corresponding to depth

5 - Compass reading or bearing

6 - Translated x and y positions (center of vehicle)

7 - Polarity and speed commands issued to thruster motors

8 - Reliability word

This would correspond to 42 bytes per cycle. Using a single

bubble element which has the capability of storing 1.024 Megabits
of data, the system is capable of recording the above information
at one second intervals for a period of 50 minutes. Since the
SIMS mission duration is expected to be approximately 10 minutes,
this is more than adequate. For other applications, the amount
of data stored and its file structure and data rate would
probably be much different. These differences are easily handled
with the present system.

The file structure and software that we have designed is
discussed in detail in Section 11. Basically the file structure
is made up of 20 files, each capable of storing 50 blocks of
data. A block of data is defined in our system as 128 bytes.
Any file can be selected at any time.

The basic reason for using a bubble memory system in the
O EAVE vehicle is that it is non-volatile, transportable, and has

random access capability.

A block diagram of the magnetic bubble memory system is
shown in Figure 42. The system consists of a 6100 CPU, 4,000 12
bit words of memory, a supervisor UART to communicate to a
terminal, a host computer UART to communicate with the 68,000
command computer, an interface card to provide control and timing
signals for the data transfers to and from the bubble, and
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finally the bubble card itself which is an IMB-72 built by Intel
Corporation. The physical system is shown in the photograph in

" Figure 43.

" The 6100 computer basically only has to communicate with the
7220 controller (Figures 44 and 45) on the IMB-72 board, and this

-% is accomplished through the interface card.

The interface card to the bubble is made up of an 8 bit
bidirectional data bus, an address line Ao, a chip select line,
read and write control lines, 2 interrupt lines and a reset line.
The heart of the interface is a 6101 Pie element which provides
most of the timing and control. A 4 MHz crystal clock is also on
the interface card and provides the basic timing to the bubble.

Communication to the BMC (bubble memory controller) is
achieved through the user accessible registers. There are three
groupings of these registers (Figure 46); the command register,
the register address counter (RAC), and the status register.

Most operations or transfers with the bubble involve first
writing the RAC with the parameters necessary for the bubble to
perform given commands. The parameters which the RAC expects
prior to most commands are as follows, and in the following
sequence:

1 - Utility register - spare register not normally used.

2 - Block length register LSB - designates the number of
bubble pages to be transferred. This number plus the
first three bits of the BLR-MSB determine total number
of pages. A page contains 64 bytes.

3 - Block length register MSB - the four higher order bits

determine the number of FSA (Formatter Sense Amplifiers)
used in the system. Each bubble has two FSA's
associated with it. For a single bubble system the BLR-
MSB four most significant bits would be:

t 7 6 5 4

4 - Enable register - provides the user with (a) the
capability of using various error correction and
detection schemes, (b) interrupt mechanism for data
transfer and status, (c) the ability to specify the data
transfer data rate and (d) to write the system bootloop
(map of bubble) if required.

5-Address register - LSB - combined with the first three
bits of the address register MSB specifies the starting
address of the transfer. This starting address in
combination with the block length register specifies
what and how much data is to be transferred on the next

99
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MEM Computer System

Bubble Memory Card

FIGURE 43
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command. Notice that it is possible to transfer as
little as one page (64 bytes) at a time, or as much as a
bubble can handle (128,000 bytes) in one transfer.

6 - Address register - MSB - bits 3, 4, 5 and 6 specify
which bubble is selected in a multi bubble system. This
number in conjunction with the BLR-MSB bits 7, 6, 5, 4
specifies the number of FSA channels and hence bubbles

- in use.

As the above six parameter bytes are passed to the BMC, the
BMC auto increments the register address counter locations.
After the sixth byte is placed in the counter the auto
incrementer is addressing the FIFO.

The FIFO is a 40 byte data buffer through which all data
passes to or from the bubble memory. It allows transfer in an
asynchronous manner and eliminates some of the timing

S.constraints. As we discuss shortly, the user (6100) must still
*[ keep up with data rates specified in the enable register.

Once the RAC has been written, the user then would normally
send a command (Figure 46) and then either poll status or await
an interrupt from the BMC depending on the way he has set up his
parametric registers.

The following is a description of how the MBM system writes
- a block of data to the bubble. The read sequence is nearly

identical.

First the RAC is addressed and the following parameters are

sent.

UR = 0 Not using utility register

BLR LSB = 00000010 Two page transfer
(i.e. 128 bytes)

BLR MSB = 0001X000 2 FSA channels = 1 bubble

Enable register = 00001001 Provides for normal inter-
rupts when command is com-

pleted (INT) or when FIFO
has 22 bytes of space
available (DRQ) for transfer.
Specifies transfer rate of
12.5 Kbytes/second for write
command.

AR LSB Whatever the particular start
address is supposed to be.

AR MSB - XOOOO remainder of start address
1 MBM in system
don't care
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Next the command register is addressed and the initialize command
(1) is sent.

The BMC in response to this command, will determine from the
parametric registers how many FSA's are present. In this case
there are 2. It then reads the bootloop from the bubble. The
bootloop is a map of where all the good loops in the particular
bubble are located. The map of each MBM may be different. The
BMC stores the bootloop in the FSA's bootloop register.

After the initialize command is completed (or any other
command) a +5 volt signal is sent on the INT (interrupt) line
back to the 6101 Pie element on the interface card. This signal
is the indication that the operation is complete.

Next the Reset FIFO command (1101) is sent in order to clear
the data buffer before transfer. It too sends an INT signal
after completion.

Now the Write Command (0011) is sent. The 6100 then reads
the status register until it detects a busy bit. The BMC is now

4' waiting for data and will not transfer anything to the bubble
until at least 2 bytes are sent to the FIFO.

The 6100 now sends 20 bytes to the BMC and monitors the DRQ
line. (An interrupt line that indicates that there is room in
the FIFO for at least 22 bytes). When the line goes high the
6100 sends the next 22 bytes and on the next interrupt it sends
22 more bytes. This is a total of 64 bytes (1 bubble page) but
since we have specified a 2 page (128 byte) transfer the system
loops back and sends 64 more bytes in the same manner. It is
important to note that the 6100 must keep up with the- transfer

V otherwise timing errors will occur. Making use of the interrupt
structure and sending 20 or 22 bytes at a time makes the system
timing much easier to control. The 6100 computer is operating
with a 3.57 MHz crystal and the BMC is transferring data at a
"12.5 Kbyte rate. The 2 page transfer takes approximately 10 ms
not counting the random access time vehicle is approximately 50
Ms.

0Once the transfer is completed the BMC sends a signal on the
INT line indicating a complete operation.

* .. It should be noted that once the 6100 begins its transfer of
data to the BMC it should not be interrupted by the command
computer (and it is prevented from doing so in software) or a
timing error occurs.

10.2 Results/Recommendations

The bubble card requires a regulated +5V and +12V supply,
and draws 1.92W and 4.8W respectively at 100% duty cycle
(constant writing or reading). The stand by total power is
typically 1.5 watts total. In order to conserve power a sleep

1.0
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circuit has been designed and added to the system. This
effectively removes power from the bubble except when a transfer
of data from the 6100 to the bubble is necessary. Power usage
then becomes proportional to the duty cycle of the data transfer.
The duty cycle in turn is proportional to how often we are to
store (in the present scheme) a block of data (1000 bits).
Assuming a duty factor of 5%, the power usage would be less than
0.3 watts. For missions in which data is sampled at low rates

-" .over long periods of time the power usage could be orders of
magnitude less than this

The system as it now stands can reliably store data in any
file selected. We have not detected any errors in the data thus
far.

The current system can be easily expanded either by
additional IMB-72 cards, each of which is capable of an
additional 1 Mbit of storage, or more simply by substituting the
new Intel 4 Mbit bubble chip. This new unit would require little
hardware modification and only minor software changes. The new 4
Mbit bubble is actually a smaller physical size than the 1 Mbit
unit. Using the 4 Mbit bubbles the physical system currenting is
use would be capable of 8 Mbit storage.

%1
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11. MAGNETIC BUBBLE MEMORY COMPUTER SYSTEM

11.1 Description

The bubble memory recording system is comprised of two
subsystems. The first subsystem is the actual bubble memory data
recorder, which is a stand alone computer system. The second
subsystem is a host computer that communicates with the bubble
computer over a serial link. The host computer sends data to the
bubble computer which then handles the filing and access
particulars required to store data in the bubble device. This
basic configuration may be seen in Figure 47.

The magnetic bubble memory data recorder presently consists
of a 6100 microprocessor, two UART cards, one magnetic bubble
memory card, and an interface card. Controlling and servicing
this system is the bubble memory operating system. The operating
system is divided into the following sections:

SCH: Supervisor Channel Handlers
HCH: Host Channel Handlers
BCH: Bubble Channel Handlers

* CDS: Command Decision and Scheduler
FSH: File System Handlers
COM: Command Decoding routines

To increase throughput all I/O is buffered. The supervisor
channel provides an operator limited access to the bubble system.
The host channel is the communication link to the host computer.
The bubble channel is the communication link between the 6100

,*-. microprocessor and the actual bubble device.
4-"

The SCH provides interrupt driven buffered access for an

operator into the bubble recorder system. Commands are entered at
a terminal and buffered until the command is terminated with a
carriage return or the buffer size is exceeded. The buffer is

"" then passed to the CDS for error checking, and command decoding

and processing. The first character is the desired command
followed by (optional) data. The current legal commands are:

- C onfuse simulates reception of host computer command
D irectory prints the directory
E rase erases the directory
O zero all bubble memory locations
R ead reads a specified bubble block to terminal

An SCH command may be aborted at any time by typing control-
..

U. The above commands comprise a vestigial list of a longer list
of possible file system commands. The above five commands are for

': testing and monitoring purposes. A lack of available RAM for the
bubble computer coupled with the autonomous nature of the mission
made the development of a rich and extensive command language for
the supervisor channel unnecessary.
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The HCH software is quite different from the SCH although
the hardware addressed by each is virtually identical. This
difference is due to the protocol structure imposed on all
communications between the host and bubble computers. The
protocol is based loosely on the high level data link standard
x.25-HDLC. There are six separate fields within any one
communications packet.

(1) Flag signals the start of a packet
(2) File Number target file's number
(3) Control command to execute
(4) Count number of bytes in Data field
(5) Data actual data
(6) Checksum a checksum of fields 2, 3, 4, and 5

This protocol allows for variable sized packets. The data
field may range from length of zero to a maximum of one bubble
block (128 bytes). The HCH disassembles the packet as it comes in
from the host and if the checksums agree, passes the disected
packet on to the FSH for processing. A checksum error will cause
the bubble computer to send a not acknowledged/retransmit packet

..- to the host. Successful reception of a packet from the host
invokes an outgoing acknowledged packet to be sent back to the
host. It is the HCH software that calculates checksums for the
packets.

The BCH communicates with the bubble card via the interface
card. This software contains the routines necessary to handle
the hardware on the bubble device card. Any access to the bubble
must be accompanied by various initializing and addressing
operations to the bubble memory controller chip. It is the BCH
that handles these hardware specific considerations.

The CDS is the main station keeping loop and command
decoder/processor processor. The CDS is the "beginning" of the
bubble operating system. At start up, all UARTS are initialized,
the bubble is initialized, and the file system is initialized by
interrogating the bubble for a directory. Control then falls
into a status polling loop that monitors a flag. The flag is
altered by either the SCH (on detection of a carriage return, end
of input buffer, or control-U) or the 8CH (reception of a
complete packet from the host). Since the SCH and HCH perform
interrupt driven input, the CDS is oblivious to the filling of
the buffers until the buffer is completed. The value of the flag
causes the CDS to execute one of two command scanners; one for
the supervisor commands, the other for host commands. The
supervisor command scanner calls the proper command in COM or
issues an error message appropriately. The host command scanner

-. (actually in the FSH) calls on the filing system to process the
host request. If the host request is erroneous, a not

. acknowledged packet is returned. Once the proper action is
completed, the flag is cleared to normal status and control

0 returns to the main station keeping loop.

,
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The COM section contains the code for performing the five
supervisor commands.

• .The FSH is the code for maintaining the file system. This
section of the operating system is presently composed of eight
routines, the primary one being the reader/writer routine. This

- is the lowest level primitive and is employed by the other FSH
routines whenever bubble access is required. As with a disk, all
data transfers to and from the bubble are done in units known as
blocks. The reader/writer primitive makes heavy use of the BCH
hardware routines to gain access to the bubble. The FSH manages
the file system by imposing a specific format on the bubble
device.

11.2 Bubble Chip Format

The bubble chip is divided into 2048 pages, each page having
a length of 64 bytes. The pages are numbered 0 through 2047. The
unit of access to the bubble is in groups of 2 pages called
blocks. This provides for 1024 blocks per bubble device;
numbered 0 through 1023 and each having a length of 128 bytes.
The blocks are accessed using the page address of the first page
in the block. This causes legal block addresses to be even
numbers in the range 0 through 2046 inclusive. Block numbers and
page addresses have the following relationship:

block # = page address / 2

page address = block # *2

The first 21 blocks (blocks 0 to 20) hold bookkeeping infor-
mation. The remaining blocks, numbers 21 through 1023, are data
holding blocks. Block 0 is the Chip Directory. This block holds
information about bubble usage and pointers to other information
about each file. This other information is stored in blocks 1 to
20. An up to date copy of the Chip Directory is kept in the 6100

* at all times. (See Figure 48).

The first 8 bytes of the Chip Directory contain bubble usage
- information (Figure 49).

0
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Block # Page Addr. Block Structure

0 0 page 0 page I ( - Chip Dir.

1 2 page 2 page 3

2 4 page 4 page 5

,•< Bookkeeping

Blocks

19 38 page 38 page 39

20 40 page 40 page 41

21 42 page 42 page 43

22 44 page 44 page 45

1 1003 data
- •blocks

14-"

1022 2044 page 2044 page 2045

""1023 2046 page 2046 page 20471.

FIGURE 48: Page and Block Format of Bubble Device

1 2 3 4 5 6 7 8

F R E Blocksl Used Free Address # Files
LSB 1MSB LSB MSB

-O

. FIGURE 49: First 8 Bytes in Chip Directory (block 0)
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bytes 1,2,3

These bytes contain the characters "FRE". This field is
used by the 6100 bubble software to detect a Chip Directory in
the bubble at start up.

bytes 4,5

N- These bytes contain the LSB and MSB respectively for the
number of data blocks (as opposed to bookkeeping blocks)
currently in use in the bubble device. The range is 0 to 1000
inclusive.

bytes 6,7

These bytes contain the LSB and MSB respectively of the page
address of the next free (unused) data block in the bubble
device. Range is even numbers in the range 42 through 2046.

byte 8

This byte holds the number of current files in bubble
device.

Following the usage information in the Chip Directory is
room for up to 20 File Header Pointers. Each File Header Pointer
is 6 bytes long and contains information pertaining to one file.
This allows up to 20 files per bubble device, each file having a
File Header Pointer. Each File Header Pointer has the following
format (Figure 50).

1 2 3 4 5 6

Iharl char2 char3 Type Header Block Addr Blocks Used

FIGURE 50: Typical File Header Pointer in Chip Director,
one of up to 20 such structures.

bytes 1,2,3

These bytes contain the characters that specify the file's
S name. The characters are compressed into the MACREL assembler

convention (six bits per character). Due to the manner in which
the 6100 software decodes these characters for printing, the
first, third, and fifth characters will always print in the range

V A through C. The other 3 characters will print normally.

0 byte 4

This byte contains a number signifying the file type.

4.
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byte 5

This byte contains the LSB of a page address that points to
this file's File Header Block. File Header Blocks reside in
blocks 1 through 20, therefore the MSBs are always 0 and storage
is unnecessary. The range is 2 through 40 for the LSB.

byte 6

This byte contains the number of data blocks used by this
file. The range is 0 through 50.

'C. Blocks 1 through 20 contain File Header Blocks, one per
file. Each one of these blocks is pointed to by the file's File

*5Header Pointer within the Chip Directory. The 610 keeps a copy

of only one File Header Block in memory at a time. The 6100 copy
of this structure is called an Open File Header Block. It is the
presence of one of these Open File Header Blocks that defines a
file as "open" and therefore readable and writeable. A File
Header Block has the following format (Figure 51).

1 2 3 4 5 6 7 to 128

chari [char2 Fchar3 FType [Blks Max F Map F1
L L LUsed LBlks LLSB LMSB LLSB MSB LSB LMS~

FIGURE 51: Typical File Header Block, one of 20 such
structures (blocks 1 to 20).

bytes 1,2,3

These 3 bytes contain the file's name. This field is a copy
of the name field in the file's File Header Pointer section of
the Chip Directory.

byte 4

This byte holds the file's type signifier. It is a copy of
byte 4 in the file's File Header Pointer.

byte 5

This byte holds the number of data blocks this files owns.
It is a copy of byte 6 in the file's File Header Pointer.

byte 6

This byte holds the maximum allowable number of blocks that

the file may own. It is currently set at 50.

..:-1
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bytes 7 to 128

These bytes contain a map of block addresses (2 bytes per
address, LSB MSB). These addresses point to used data blocks
belonging to this file. This addressing scheme actually can
address more blocks than are in a bubble device, therefore the
map is limited by software to be 50 addresses (100 bytes). The
last 22 bytes of the map are not used.

The remainder of the bubble (blocks 21 to 1023) are used to
store the actual file data. A complete file structure map is
shown in Figure 52.

The remaining routines of the FSH are essentially logic and
error testing wrapped around calls to the reader/writer
primitive.

The present filing strategy is rather simple. To create a
new file, the host issues the create command and supplies a three
character name and one character type for that file. The bubble
computer will then create the file with the specified name,
returning an integer as that file's number. Thereafter, all

* communication pertaining to that file require the use of the
file's number. Once the file has been created, it may be written
to or read from. Whether or not the file is actually open for
such operations is determined by the presence or not of an Open
File Header Block in the bubble computer memory. The host
requests for a read or write need not be concerned with whether
the target file is open or not. If the bubble computer determines
that the target file is not open, then the current file is closed
and the proper file is opened prior to the actual read or write.
The filing system is therefore able to support random access to
any one data block (during a read), although the current host
software does not require this feature. Presently all data is to
be stored sequentially, filling the files up one after another.
There are no host data retrieval requirements during a mission to
date.

11.3 Host Computer Bubble Memory Task
S

Bubble memory software on the host computer side of the
communications link is far less complex than the bubble computer
operating system. In the current implementation, this software is
a separate task running under the vehicle command computer
operating system (VOS). Running concurrently with the bubble task

"* is the vehicle mission task. The mission task generates data to
be stored in small chunks (about 40 bytes) and sends them to the
bubble task using VOS's intertask message mechanism. The bubble

* . task collects these chunks into block sized entities (128 bytes)
before attempting to actually store them in the bubble device. To
store the collected block, a packet is built around it, and then

5 the packet is sent down the serial link to the bubble computer.
The bubble computer will answer the store request according to
the success or failure of the transmission. Built in to the
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bubble task is the intelligence to handle checksum errors and
retransmission requests.

The bubble task was designed to completely handle communica-
tions with the bubble computer. The mission task need only send
its data packets to the bubble task and forget about them. The
present mission task does not require past data to be retrieved
from the bubble, but the software mechanisms necessary to
implement such activity exists.

11.4 MBM Recorder

Figure 53 is a sample of a printout of the MBM data
recorder. Each 4 line segment is a record of vehicle performance
data which is updated and recorded at every command computer
cycle (-1.5 seconds). Figure 54 provides a detailed explanation
of the data printout format.

11.5 MBM Plotting Routine

In the course of a mission the Magnetic Bubble Memory stores
vital information about the vehicle's operation. This
information must be extracted and analyzed after each day of
testing to evaluate vehicle performance and make modifications.
Since each day's testing can fill all 128 Kbytes of the bubble
memory the task of sorting and analyzing the data becomes tedious
and at times overwhelming. In the present situation, it is
desirable to interpret the data, make software corrections, and
continue testing within a day. The most meaningful way to
represent the position and bearing data is through plotting, but
hard plotting of the 12,000 points is very tedious and would
require over 20 hours.

In order to speed the data interpretation an automated
plotting package, plotrec.c, has been developed. This software
runs under the standard Vehicle Operating Software (VOS), used on
the EAVE vehicle. With VOS and the plotting package running on
the 68000, the 6100 bubble computer is interogated and data is
transferred, one record at a time. The program then drives an
Anadex 9501 alphanumeric/graphics printer to produce the plots.
The printer has a density of 600 points/line which gives plot
resolutions of 0.1 feet in x, y, and z, and 1 degree in bearing.

The program allows the operator to select files to be
plotted and relieves the operator of further intervention. For
ease of interpretation x, y, z and bearing data are plotted on
the same set of axes. Also, an entire file (150 records) is
plotted on one 8 1/2 x 11 inch page. In addition to the position
and bearing information the vehicle command changes are noted on
the plots. The time required for plotting the entire contents of
the MBM is 1 1/2 hours; this time is currently limited by the
response of the printer.

Figure 11 in Section 5 is an example of a mission plot made
by this technique.
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SAMPLE PRINTOUT FROM MBM DATA RECORDER

Record Time: 54:45.00 Command #1 2 File #1 2 Block #1 9 Rec #1 3
8968396 113 241 98 289 1011
0 1272 627 521 1265 650 0 1246 633
16 16 11 10 2 -3

Record Time: 54:46.68 Command #/ 2 File #1 2 Block #1 10 Rec #1 1
8968554 115 237 99 296 1011
0 1267 635 511 1255 655 0 1244 637
13 13 11 10 0 0

Record Time: 54:48.19 Command #1 2 File 11 2 Block 11 10 Rec #1 2
8968713 118 227 99 300 1011
0 1257 64.' 502 1246 670 0 1234 651
15 15 0 0 0 0

Record Time: 54:49.76 Command #12 File # 2 Block #110 Rec #13
8968865 123 224 202 299 1011
0 1250 646 473 1240 665 0 1225 647

*10 10 2 2 5 -7

Record Time: 54:51.34 Command #1 2 File #1 2 Block # 11 Rec #1 1
* 8969073 123 217 101 293 1011

0 1242 654 466 1231 676 0 1217 655
11 11 -1 -1 0 1

Record Time: 54:52.93 Command 11 2 File 11 2 Block 11 11 Rec 11 2
8969182 126 211 101 287 1011
0 1232 656 462 1255 700 0 1211 661
15 15 -4 -4 2 -3

FIGURE 53
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12. THRUSTER COMPUTER SYSTEM

The EAVE vehicle is propelled by the judicious selection of
speed and polarity of six thruster motors. Figure 55 is a block
diagram of the thruster computer system.

The thruster computer performs the following functions:

1. Turns thruster motors on and off.

2. Provides for positive or negative thrust.

3. Provides for any of 31 speed settings in either
direction.

Each thruster can be individually addressed, hence any
number of thrusters may be on and at different speeds at any one
time. The decisions regarding thruster control, however, are
made in the 68000 command computer. The command computer is
constantly updating the thruster computer with specified
parameters pertaining to each thruster. (See Section 13)

The thruster computer system is a single field 6100 CPU
system. The computer operating system resides in the 3K PROM and
contains all software necessary to manipulate the six thruster
drivers which in turn control the thruster motor speeds and
polarities. The thruster computer communicates with the command
computer through the host UART and may be accessed by a terminal
via the supervisor UART for manual testing and debugging.

The CPU must be provided with the address of the thruster,
the direction of rotation for the thruster (polarity),- and the
speed desired. This information is provided by the command
computer and has the following format.

Bit # 1 1 2 3 4 5 6 7 8 9 10 11l I x i AAIA IDl I l I I l
-. XX X A A D 5 5 5 5 5

Don't Care Thruster ID I Thruster Speed
Direction

Thruster speed -5 [ 0-37) [ 0-31]
8 10

Thruster address = A = [1-6]
... 8
J- Thruster direction = D = [1 = forward, 0= back]

Don't care = X

0 where forward is defined as a positive thrust along the body of
each motor in the direction shown below.
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The interface card operates basically as follows (Figure 56
drawing N0100051). A 6101 PIE element handles the signal control
and timing to and from the 6100 CPU. A 6440 latched decoder
driver decodes the address received on the Dx lines 3, 4 and 5
and asserts the correct output line to one of six thruster driver
cards when enabled. The thruster direction and speed information

* (Dx lines 6 through 11) is fed to a 6495 tristate buffer driver.
-,The corresponding outputs are also sent to the thruster driver

card.

A 4047 multivibrator is used to generate the system clock at

19.2 kHz. A 40103 down counter outputs a pulse every 32 clock
cycles establishing the pulse width.

* There are six thruster controller cards (Figure 57 drawing
.100050 Rev. A), one to drive each of the six thruster motors.
The sign and speed data is latched into a 40174 D type flip-flop.
The sign is used to control a 28 volt 12A Potter and Brumfield
relay through a 4N30 opto-isolator and a 2N3725 transistor. A
4015 shift register is used to ensure that each thruster motor
responds to commands at least one clock cycle later than the
others. This prevents large voltage spikes in the system. The
"set" pulse sent from the 40103 on the interface card causes the
speed data to be jam loaded into another 40103 down- counter.
Once the counter has counted the inputted number of clock cycles.
it outputs a pulse to reset an RS flip-flop, and turns a 4No35
'on' which turns on two 2N5302 power transistors connected in a
Darlington configuration. This allows current to flow through
the motor at 24 volts. The reset pulse timing is what is
controlled by the speed data. This timing allows the motor to be
'on' for varying proportions of the motor dutycycle and is
effectively a pulse width modulation of the motors.
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13. .-'"ZT' SUBSYSTEM SO! ,'WARE

The thruster motors may be addresseo four dii&. '- wavs
as follows:

1. Each thruster may be individually addressed by sending
-' an eight bit word to the thruster command scannet, using

scheme shown in Section 12, for the software control
word.

2. Four parts of thrusters may be addressed together to
effect different vehicle motions:

1. Up-down thruster pair.
2. Slide left-right thruster pair.
3. Forward and back thruster pair.
4. Rotate clockwise-counter clockwise pair.

The first seven speeds are acquired by a table look up
and are user selectable. Speeds 8 - 32 are used• "-"directly.

In addition, the rotate left and right speeds may be
toggled on and off with a single command to allow rapid

V user control over the very sensitive response of the
vehicle in the horizontal plane.

3. An auto test program is included that will cycle through
all six motors for all 32 speeds forward and back for
hardware testing.

4. An auto altitude program may be selected that will
acquire and hold a depth selected by the user.

5. A list of thruster commands may be found in Table 6.
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TABLE 6

THRUSTER COMMANDS

.This is the command scanner for the control
- / computer. It will be vectored to upon input

/ or output, will decode the command and jump
S/ to the proper routine.

/ The commands are:

IN. _Set current field to N
/Carriage Return -- Close current location
/Slash -- Open current location and type contents
/Line Feed -- Close location and open the following location
/NNNNG -- transfer program control to location specified
/ BY NNNN.

/NNU -- Set up thrusters to speed NN
/NND -- Set down thrusters to speed NN
/NNF -- Set forward thrusters to speed NN

-- ,- /NNB -- Set back thrusters to speed NN
/NNL -- Rotate left at speed NN

-*" /NNR -- Rotate right at speed NN
INNS -- Slide to starboard at speed NN
/NNP -- Slide to port at speed NN
/H ---- Halt all thrusters
/NNNNA- Set altitude to NNNN
/NT --- Auto-test thrusters [1) = on
/NNN+ - 0-6[thruster] 00-37[speed) +[forward]
/NNN- - 0-6[thruster] 00-37(speed] -[back]
INK --- Kill printout [0) = off [1] = on
/I ---- Initialize for interrupts
/0 ---- Jump to ODT
/Z - Input Z coordinate
IC.---- Output thruster speeds
/NNNNX -- Set cycle rate (tdelay)

i1.
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14. BATTERY SYSTEM

14.1 Description (Figure 58)

The battery systems which provide power for the SIMS vehicle
are comprised of two types of sealed lead acid cells. The +8,
and +16 volt systems are configured of series-parallel combina-
tions of 'D' size 2.0VDC 2.5Ah Gates cells, (P/N 0810-004),

-..- arranged to provide the proper terminal voltage/amp hour rating.
The +24V system is configured of (4) four, series connected. 6VDC
33Ah Eagle Pitcher 'Carefree Magnum' batteries (P/N CFM 6V33).

• *The batteries are mounted in two separate, indentical cylinders,
and connect to the appropriate systems via waterproof connectors.

+SVDC System

The +8VDC system consists of 16 Gates cells arranged in four
banks of four cells each. This arrangement provides 8VDC @ lIAh
per cylinder.

,S.

+I6VDC System

-.. The +16 VDC system consists of 16 Gates cells arranged in
two banks of eight cells each. This arrangement provides 16VDC @
5Ah per cylinder.

+24VDC System

The +24VDC system consists of four Eagle Pitcher batteries
in series, providing 24VDC @ 33Ah per cylinder.

Power Availability:

Power Cylinder (Stack) Per System

+BVDC @ 1OAh +8VDC @ 20Ah

- +l6VDC @ 5Ah +I6VDC @ l0Ah

+24VDC * 33Ah +24VDC @ 66Ah

14.2 Charging Method (Figures 59 & 60)

Each bank in the +8 and +16V systems pins out separately and

may be charged separately. This method allows for differences in
charging rates and times to suit each bank. The batteries are
first charged at a constant current until a pre-set voltage level
is reached, which indicates state of charge, and then
automatically switched to a 'tickle' or constant voltage mode and
allowed to rise to their finished or fully charged potential. A
description of this method follows.
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Each bank of the +8 and +16 VDC systems is connected to a
single charger/regulator card in the battery charger (Figure 61).
At turn on, the regulator, ICl is connected through the NC
contact of RYI to R6, this establishes the mode of operation as
the constant current method. As the battery bank begins to
charge the voltage across the divider R8-R9 increases to a point
representing approximately 90% of the full terminal voltage at
which time the portion appearing across R9 trips the voltage
comparator section of IC2 to switch modes. When the output of
IC2 goes high it switches RYI to the NO position changing the
mode to constant voltage by inserting R5. At this time ICI is
operating at some point determined by adjustment of R4.
Simultaneously the output of IC2 latches its reference input to a
near ground potential to prevent returning to the constant
current mode, and causes the LED indicators to indicate the
proper ode of operation. The charger/regulator stays in this
state of operation until turned off at the end of the charging
cycle. These actions are independent of the charging modes of
the other charger regulator cards in the overall system.

The +24V system is charged manually, that is, it is
monitored and the charging rates and voltages varied by the

* attendant. The initial voltage impressed on the stack or stacks
is 29VDC. At this voltage the maximum current per stack is 10
amps. The voltage is periodically checked and adjusted. When
the charging current drops to 1.5 amps per stack the voltage is
adjusted to 29.4 VDC and left there until the charging current
drops to .2 amp or less per stack. At this current the battery
stack(s) are fully charged. This process varies in time
depending on the state of the battery stacks. A Marquette
Charger, Model 32-175 is used in this procedure.

The battery systems as described seem to be adequate for
typical SIMS missions and testing, when fully charged.
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15. SOFTWARE SYSTEMS

15.1 Overview

The software system developed at MSEL for the SIMS mission
is divided into three basic subsystems corresponding to the two
IM6100 CPU and one M68000 CPU hardware configurations. Each of
the three will be covered in detail below.

15.2 Software Development

Software for each of the two IM6100 based computers is
written entirely in assembly language. Two different development
systems are used in this process.

First, the University of N.H. DEC system-lO has a resident
PDP-8 assembler which may be used to produce loadable object code
from IM6100 assembly language files. The resulting object module
may be down loaded to an intermediary medium such as magnetic
tape by means of a Fortran program developed at MSEL. The stored
code may then be loaded into the selected microcomputer by a ROM
resident loader.

Second, an in-house DEC station-78, a PDP-8 based develop-
ment system, has both a Pal-8 and Macrel-8 assembler capable of
producing loadable object code from IM6100 assembly language
files. These files may be down loaded to an intermediary medium
or directly to the desired IM6100 based microcomputer.

Software development for the Motorola 68000 based microcom-
puters follows a different pattern. An in-house °Emperical
Research Group M68000 based development system running "Idris", a
Unix like operating system by Whitesmiths Inc., is used to
produce all loadable object code. Several high level languages
are provided under Idris including "C" and Pascal, in addition to
an assembler and linking loader. The "C" language is used
extensively at MSEL for systems programming needs and for mission
software development. An Idris "pre-processor" translates "C"

* source code into appropriate 68000 assembly language which may be
* examined and modified if needed before being assembled into a re-

locateable object module. A number of these modules may then be
linked into loadable form and saved on an intermediary medium or
down loaded directly into a 68000 based microcomputer.

-.. 15.3 6100 CPU Software Monitors

All 6100 CPU based systems are controlled externally by
commands issued to a resident monitor. The monitor decodes input
on an interrupt driven basis and performs certain functions based

* on that input.

- The navigation CPU, thruster CPU, and MBM CPU monitors have
two entry points, one associated with the tether-user port and
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one associated with the command CPU port. An interrupt generated
from one of the two UARTS will cause a vector to an appropriate
interrupt service routine where command decoding may take place.
A flow chart of the decoding process may be found in Figure 61.
Since the two ports use separate interrupt service routines, I/O
at both ports may be serviced asynchronously without deadlock.
At the end of the decoding process a global flag is set in memory
to indicate a desired function is to be activated. All of the
above activity occurs within the interrupt environment of the
monitor.

-All vehicle functions, however, are performed outside of the
* interrupt structure in a circular task routine. After

initialization, control passes into an infinite loop of short
routines, each of which checks for a flag set by the decoder for
a particular function. If the flag is set, the function is
performed, if not, the function is skipped and the next flag is
checked. Control spins forever in this interruptable loop
allowing both the command CPU and the user to exercise their
options asynchronously. A list of available commands for the
various 6100 CPU's may be found in Figure 62.

15.4 User Interface (U/I)

In order to provide maximum user control over all vehicle
systems, both hardware and software, a user interface was
created. The U/I is itself a task running within the O/S
multitasking environment in parallel with the monitor task and
others that may exist. It acts as a shell surrounding all other
vehicle software and provides the user with a variety of tools to
shape, test, and run different mission scenarios both in-house
and in the field.

The U/I is constructed as a hierarchical tree structure
with, at present, three levels of user interaction (see Figure
63). On start-up the user is prompted to select a function from
a menu of available alternatives. With each selection the user
descends to a deeper level and is prompted once again until he
reaches the level at which a desired function resides. He is

. then prompted to make changes in parameters, exercise hardware,
run mission software, etc. until he is finished with the
particular function. He may then ascend the tree and descend at
will choosing the various procedures necessary to accomplish a
particular mission.

"O There are a number of advantages to a tree structured, menu
driven U/I.

1. User friendliness - The user is fully prompted at all
times and is thus immediately made aware of what powers
are available to him and how to exercise them properly.
The system is protected against user error as incorrect
and potentially damaging input is screened and the user
notified of his mistakes.
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co19%0 / T- IS I!, I-'E CUi.' AtJL4 SCA',tLR F- IIIE LK TijA
C20j0
0. 02 1U / CC','L1ER. IT %ILL LUE VECTOr!L, TO UPONt4 lp4PUl
02200
0230C / CA CLIPUT. WILL CECCOE TiE CO4WANC ANC JUt41
02400
C2500 / TC ThE PRCPER ACUTINE,
026500
02700
02O0
C290C /THE CCMJPANDS ARE:
03000
03100
03200
C 320C /N. -_ SET CLRRENT FIELD TO K
03400
C350C /CARRIAGE RETURN -- CLCSE CUPI-ENT LUCATION
03600
03700 /SLASH -- CPEK CURRENT LCCATION AND TYPE CONTENTS
03o0
03900 /LIKE FEEC -- CLOSE LOCATION AND OPEN THE FOLLCwINI
04030
C41CC /NNNNG -- 7RANSFER PRCGRAW CCKTFCL TO LOCATION SPE.
04200
C420C / 8Y N'NN.
04400
04500 /C [LEAF EUFFERJ (400 - 2777) OCTAL
04600
0470C /- [U;.,P TC TAPE]
C480 0
C490C /L lOAD TO MEMORY)
0500C
05100 /R [ECORD 0]
05200
CO5c /S [PEED GF 0/5) (SEE PEWAIT) (INIT TO 7777)

e** IJAV -MCNITCR 4K-6K *****/ PALIO V142A 13-AUG-82 10:39 PAGE 2-1['

05400
C550C iP [ING TFANSFCNDER] <0> = OFF, <1> = CN
05600
05700 /H [CLDCFF TINE] (INITIALLY 7000)
oseoo
05900 /K LUM13EA OF RECODS]
C6000
06100 /K [ ILL FFINTOUT I <0> = OFF, <1> = ON
06200

-* - 06300 /E [CHO KEYCARD1 <0> = OFF* <1> = ON
06400
06500 /1 [N ITIALIZE 0/5
06600
06700 /A [CTIVATE NAV SYSTEM'] <0> = ON, (1> OFF

-." 06800
06900 /Z ECOCIDINATE INPUT]

|-0 07000
07100 /E [LOCK CATA OUTPUT]
07200
07300 /V LATH PFOCESSOR OFF]
07400
07500 /X ECUCER #I <1 2 OR 3> (INITIALLY 1)
076oC
07700 /0 (CT I

* C7doo
G79CC /1 [RANSFER ROMI ( <1) = TRFR CORt3UF TC ROM J

0cooc
C81OC /J (L4 AAUUND FLD 0 CLTPUT) <0> = PRINT

* FIGURE 62: AVAILABLE 6100 CPU COMMANDS
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2. Custom mission creation - with a small map of the
* command structure, the user may quickly perform

complicated combinations of functions to create a
particular mission scenario which remains in effect
until changed. The user may then exercise the mission
repeatedly making changes dynamically as the results are
observed. This method allows great flexibility in the
system testing and modification phase, particularly in
the field where the facilities for software re-write/re-
compilation are not available.

3. Modularity - Each node of the U/I tree is constructed as
a "C" function with well defined parameters. This
partitioning allows each function to be written, tested
and called independently. Each function may be used by
any other at any time, thus allowing a complicated
interaction of functions while retaining their
individual simplicity. Modularization also simplifies
the task of adding to or modifying the basic structure
of the U/I. As each "module" is built up out of the
same basic components, they may be used as building
blocks to create larger systems more easily.

An examination of the current built-in features of the U/I
follows.

When the U/I is first activated it prompts the user to
* select a desired function from a menu displayed on the screen by

typing a number from 0 to the maximum. Any input other than that
-.': requested will be rejected and the user will be informed of an

error and will be re-prompted. By typing a "0" the user may exit
the current routine and ascent the tree structure to the level

. above where he is prompted again with a new menu of available
selections. If he is at the highest level a "0" input will exit
the U/I and return to the 0/S. An entry of "i" to the maximum
available will either perform a function or descend the menu tree
and prompt for another selection. A description of the available
functions at each level follows:

I. Parameters (select parameter to change)

I. Motor speeds (select motors 1-6 at speeds ± 31)
2. Gains (select gains 1-27 see Figure 64)
3. Commands (select commands 1-30)

1. Type (enter type of command)
2. Ignorexy (ignore x, y computations)
3. Duration (time limit of command)
4. Position (enter desired position)

1. x
2. y
3. z
4. xyz speed (maximum)
5. bearing
6. bearing speed (maximum)

, 5. Display current command (see Figure 65 for example)
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/* defires for CONtr-ol ler task. */

/* default gains values for. the variables used in control */

#define DRTB 0.7 /* 1 positioi /
#define DRTC 50.0 /* 2 velocity */
#define DF''A 0.0 /* :3 integral */

. #defire DPTB 0.28 /* 4 position *1
#define DFITC 20.0 /* 5 velocity */
#defirne DITA 0.0 1* 6 integral *1

--. #define DYTB 0,28 /* 7 poSition */
#dei/e DYTC 20,0 8 velocity *1
#define DZTA 0.05 I* 9 nteg-al *I
#def ine DZTBP 0.25 1* 10 position */
#define DZTC :35,0 /* 11 veiocity */

#define XPROP 2.0 1* 12 limi: for integral action (feet) */
#define PPMMAX :I1,0 /* 13 top motor speed number */
#define NEAR 1.0 1* 14 to target (feet) */
#define CLOSE F 0.05 /4 15 to hezdirg (radians) *1
#define SMLDIS 0.01 1* 16 a smal distance (feet) */

. #define FILC"YCLES 10 /4 17 * filer cycles */
" #define CONCYCLES 10 /* 18 * control cycles before exit *I

#define BOFFSET 338 /4 19 comparss offset from x axis */
#define MODELAY 4.0 1* 20 thruster delay, in hundredths of sec. *
#define MP1 10.0 / 21 (motl polarity * power factor) max = 10
#define MP2 10.0 /* 22 (mot2 polarity * power factor) *1
#define MP3 9.0 /4 23 (mot3 polarity * power f'actor) .!
#define MP4 8.0 /* 24 (mot4 polarity * power factor) *I
#define MP5 -10.0 /* 25 (mot5 polarity * power factor) -2i
#define MP6 10,0 1* 26 (motS polarity * power factor) */
#define ZDELAY 7.0 /* 27 downbLrst time (seconds) */
#defire STDELAY 60.0 1* 28 tether pull delay (seconds) */
#define ZBIAS 6.0 /* 29 bouy.n<:y bias 4/

#defir,e PDELAY 3010 1* 30 thru.st pulse delay, hundredths of sec *

#define I:M 31 /3 131-3 clippers */
#define XMAX 31
#define YMAX 31
#defirne ZMAX 31
#define TETHERON 1.0 /* 35 console output switch; ON = 1,0 *1
#define EP.RWIN 8,0 /4 36 error- ,.,indo%, for fil ter *1

,-0 #defir,e FILTRYS 1.0 /* 37 # tinmes to try for good position 4/

#define INITS-Q 4.0 /* 38 # times to try for, init. posi tu,, K/
#define BADR'NS 3.0 /4 39 # bad filter- returns con tolerates */

% #define N'JMCAINS 40 /* the number of gains + I */
#define MAXGAINS 50 /* maximum number of gains */
# #define NUMCOMS 31 /* the number of commands + I */

FIGURE 64
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/* array of NUMCOMS commands; Oth element is default emergency ex.it *1
COMMBLOCF: c:mms[NUMCOMS]

1* 0 */ EXIT, FALSE, 100, 1.1, 2.2, 3.3, 4.4, 5.55, 6.666

.* typ' ignore xv duration :X y z xdot bear tdot

* 1 *1 VERT MOVE, FALSE, 6000, 5.0, 40.0, 10.0, IO, 4.90, 0.225
.I* 2 *1 HeR!:_MOVE, FALSE, 4000, 12.5, 20.6, 10.0, 1.0, 0.C0: .2

1* 3 */ ROTATEONLY, FALSE, 6000, :2.5, 20.6, 10.0, 1.0, 0,:3, 0.22
• -- * 4 */ NOB, TRUE, 000, ., 2.2, 3.3, 4.4, 5. !5!,. '  E.66

1* 5 *I NOP, TRUE, 000, 1.1, 2.2, 3.3, 4.4, 5.55, 6.66

. /* row fol low the preprogrammed commands */

/* 6 */ VER-_MOVE, FALSE, 6000, 12.5, 20.6, 12.5, 1.0, 0.33, 0.22
/* 7 */ HCRI:-_MOVE, FALSE, 6000, 2:3.5, 26.0, 12,5, 1.0, 0.C,0 C.22
/* 8 */ ROTATE_ONLY, FALSE, 6000, 23.5, 26.0, 12.5, 1,0, 1.90, 0.22
/* 9 *1 HORI-_MOVE, FALSE, :3000, 23.0, 27.0, 12.5, 1.0, 0.C0: C.22
/* 10 */ HOR1Z_MOVE, FALSE, 3000, 28.5, 26,0, 12.5, 1.0, 3.14, 0.22
/* 11 */ HCRIZMOVE, FALSE, 6000, 26.0, 29.5, 12*5, 1.0, 1.54: C.22
/* 12 *1 VERT_MOVE, FALSE, 3000, 28,0, 29.5, 8.5, 1.0, 1,90, 0.22

5" ,  /* 13 */ VERT MOVE. FALSE, 3000, 26.0, 29.5, 12%5, 1.0, 1.50, C.22
/* 14 */ HORIZMOVE, FALSE, 6000, 23.5, 26,0, 12.5, 1.0, 4.71, 0.22
/* 15 */ VERT MOVE, FALSE, 4000, 23.5, 26.0, 8.5, 1.0, 1.£0: .22
1* 16 *1 HOR:ZMOVE, FALSE, 6000, 19.0, 33.5, 8.5, 1.0, 0.00, 0.22
/* 17 *1 VERT_MOVE, FALSE, 4000, 1S.0, 3.5, 12.0, 1.0, 1.50, 0.22
1* 18 *1 ROTATE_ONLY, FALSE, 6000, 19,0, 33.5, 12.0, 1.0, 0.33, 0.22
/* 19 */ HORI:_MOVE, FALSE, 6000, 24.0, 35.5, 12.0, 1.0, 0.C0. C.22
/* 20 */ ROTATE ONLY, FALSE, 6000, 24.0, 35*5, 12.0, 1.0, 5.04, 0.22
/* 21 */ HORI:_MOVE, FALSE, 6000, 19.0, 33.5, 12.0, 1.0, I.;1" :.22

' /* 22 *1 ROTATEONLY, FALSE, 6000, 19.0, 33.5, 12. 0, 1.0, 4.45, 0. 22
/* 2:3 *I HORIZMOVE, FALSE, 6000, &.5, 27.7, 12.0, 1.0, O.CO; C,22
/* 24 */ HORiZ_MOVE, FALSE, 6000, 12.5, 20.6, 12.0, 1.0, 4.71, 0.22
/* 25 *1 VERTMOVE, FALSE, 4000, 12.5, 20.6, 10.0, 1.0, 3.4r ..22

;*' /* 26 */ ROTATEONLY, FALSE, 6000, 2.5, 20.6, 10,0, 1.0, 200, 0.22
/* 27 */ HORI-MOVE, FALSE, 6000, 5.0, 40.0, 10.0, 1.0, (..CO. ,. 22'
/* 28 */ VERT-MOVE, FALSE, 3000, 5.0, 40.0, 6.0, 1.0, 2.00, 0.22
I* 29 *I EXIT, FALSE, 100, ".I, 2.2, 3.3, 4.4, 5.5t, rE6

/* 30 */ EXIT, FALSE, 100, 1,, 2.2, 3.3, 4.4, 5,55, 6.66

.5
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II. Filter (run data acquisition software alone to test hardware)

III. Control (run full mission)

IV. Thrusters (power thrusters as per set-up in motor speed
setting routine)

V. Sleep (put U/I to sleep for 20 secs to access O/S directly)

15.5 Hydrodynamic Control Software

In order to optimize control of the EAVE vehicle in the
marine environment a hydrodynamic stability and control analysis
was produced by Aeronautical Research Associates of Princeton*.
This study produced the six-degree-of-freedom equations of motion
with numerical values for all terms necessary for simulation of
submerged maneuvering. From this information a control algorithm
was implemented in the "C" language and, along with various other
software modules makes up the control software package (CSP).

Individual modules of the CSP a:e examined below.

15.5.1 Control AlQorithm

The control algorithm developed at MSEL for the SIMS program
may be described as a "modified proportional integrator deriva-
tive controller". A block diagram of the algorithm may be found
in Figure 66. The basic equation of motion for the vehicle in

. each degree of freedom is expressed as a second order
- differential equation. This, together with the integral control

action makes the system third order: (dynamics of the thruster
are ignored in this representation). -C

I go + - - Kt[Ks(Kp E + KI £dZ + Go)) = 0

Where: I and t = vehicle inertial and damping components
Ks, Kp, KI = controller gain parameters
Kt = thruster gain (force/unit command input)

GI = desired position
go = current position
£ =9I -G0 or error signal

*This work is documented in MSEL Report #82-1, "User's Guide for

the UNHTRAJ Computer Program," January 1982 and MSEL Report #82-2
(ARAP Tech. Memo No. 82-2), "Hydrodynamic Stability and Control

*Analyses of the UNH-EAVE Autonomous Underwater Vehicle," January
1982. Both prepared by Aeronautical Research Associates of
Princeton, Inc. under subcontact #82-05.
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Derivative feedback has the effect of increasing the damping
of the system, thus reducing overshoot and oscillation. Proper
selection of the position and velocity gain multipliers Kp, Kz
should produce a critically damped system capable of reducing the
error signal, (Ec -go), to some value near zero thus maneuvering
the vehicle in each degree of freedom to within a specified small
distance of the desired position. Within this "small distance",
an integral control method is added to the control system to
reduce the gap between the current and desired positions still
further. This is accomplished by adding to the error signal a
term that is proportional to the integral over time of Gi -Go.
The addition of the integral term produces an effect such that
the longer the error persists, the longer the term will become
and the stronger the response will be in attempting to reduce
that error. Proper selection of the integral gain multiplier

"- . should provide the last small thrust needed to acquire the final
desired position. A portion of the algorithm implementing these

-.. two methods in the "C" language is found in Figure 67. The
algorithm is a "modified" PID because of two additions. The
summed value for the proportional (position) gain and the
integrator gain is clipped by a selected maximum, "UMAX", to
provide speed regulation for long traverses. Also the final
value for thruster motor speed is clipped to a practical range of
thruster capability.

A flow chart of the basic control algorithm may be found in
Figure 68. On start-up, a command is read from a mission command
list. There are six basic commands available to the user:

1. Hover - maintain the current position.
$. Horizontal move - move to position x, y.

3. Vertical move - move to depth z.

4. Rotate - rotate to bearing 0.

- - 5. Exit - exit the controller.

6. NOP - read next command.

Each command is an array that contains within it the basic

information necessary for the control software to function. This
information is as follows:

1. Duration - minimum command execution time.

2. Ignore xy - ignore current x, y in calculations.

3. x -desired x position.

4. y - desired y position.

5. z - desired z position.

.140
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PID CONTROLLER IN "C"

1. UCOM (kp x dist) + (ki x integral);

2. UCOM limit (UCOM, UMIAX);

3. SPEED =ks x (UCOM - velocity)

4. SPEED = limit (speed, rpm max);

kp =position gain

ks = speed gain

ki =integral gain

UMAX = velocity limit

rmp max =thruster limit

PORTION OF CONTROL ALGORITHM/GAIN RELATIONSHIPS

FIGURE 67
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V.

* - 6. Umax - maximum velocity in x, y, z.

7. Bearing - desired bearing.

8. Rmax - maximum rotational velocity.

The command list is generated to reflect a specific mission
scenario. An example of the SIMS mission scenario is found in
Figure 65. After the first command is read the first position is
read and all parameters are initialized. Control then falls into
the main controller loop.

First the coordinate system is translated to give the
present location relative to the next target point. If the
command is "hover" the time is checked against the command
duration. For horizontal, vertical and rotational commands the
current position is checked against the desired position. If the
conditions are met a new command is read, providing the duration
time for that command has expired. If not, the coordinate system
is rotated parallel to the desired vehicle heading so that it is
along the path or perpendicular to it.

* The position errors, the differences between the desired and
current positions is then calculated and if this value is less
than a specified amount, the integrals of these are taken. This

information is then passed through the control algorithm as
described above and the four thruster speeds and durations are
calculated.

Because the vehicle response to rotation is far less damped
than is found in horizontal or vertical motion, it is necessary
to scale down the thruster speeds used for rotational maneuvers.
This is accomplished by pulsing the rotational thrusters for a
specified time during the control cycle. This has the effect of
adding a rotational component to any other thrusts in the x, y
plane. Since the pulse time is user selectable, the gain factor
may be chosen to optimize stability in the x, y plane.

After the calculated thruster command has been sent to the
thruster computer a new position is acquired from the navigation
computer and the cycle begins again.

15.5.2 Data Acquisition

The input information needed to drive the control software
in its attempt to maneuver the vehicle is produced by several
data acquisition routines. The depth of the vehicle in the z
direction is read from a pressure transducer while the vehicle
bearing is read from a magnetic compass. Both pieces of

.. information are adjusted for offset and scale by user selectable
parameters. The position in the x, y plane is acquired on demand

0 from the navigation computer. Time is taken from a real time
clock in hundredths of a second from a pre-set start time.
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15.5.3 Data Filter

In order for the raw data received at each data acquisition
cycle to be useful to the controller, various pieces of it must
be filtered in certain ways. The x, y position is calculated at
the location on the vehicle of one of the three hydrophones used.
This position must be translated to the geometric center of the
vehicle for consistency.

The velocities in the x, y and z directions and the rate of
change of the vehicle bearing are calculated. All parameters
received from the navigation CPU are 12 bit words sent as two
eight bit words, a high and low order 6 bit byte. These must be
converted into one 16 bit word for the command CPU.

15.5.4 Thruster Interface

The outputs of the control software are four floating point
parameters that correspond to thrusters 1 and 2 combined for the
z direction, 5 and 6 combined for the slide motion and 3 and 4
addressed separately for the forward-back and rotate motions

* These floating point values are converted by the thruster
interface into four 12 bit integer parameters that are sent to
the thruster CPU.

15.6 Self Calibration

15.6.1 Description

The vehicle's navigation computations require .that the
coordinates of the three transponders be known. A self
calibration program has been developed that determines these
coordinates from range data and an initial guess. The only
information that the operator need supply the self calibration
program is an initial guess of the x, y, z location of each of
the three transponders. Presumably this will be provided at the
start of a mission. The next step is to obtain a set of range
data. The vehicle will execute a survey path over the
transponders, collecting and storing range data to each
transponder from several points along the travel path. The
current simulation stores 80 sets of ranges. With each range set
a depth reading is read from the pressure sensor.

The program now enters the major calculation loop. For each
range set a calculated depth is subtracted from the actual depth
reading produced by the pressure sensor. The differences errors
from all survey points are added together to produce the total
error value. If this total error is above a preset threshold,
then further calculations to determine the direction of minimum

error are performed, and the transponder coordinate guess is
6 adjusted accordingly. Control returns to the top of the loop and

the error calculations are performed again with the adjusted
transponder coordinate guess. This transponder adjustment
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continues until the total error falls below the preset threshold
and the algorithm terminates with a modified set of transponder
coordinates. These coordinates may then be passed on to the
navigation program.

The current running version of the self calibration program
is written in Pascal on the University VAX. A vehicle version of
the program is being prepared in C for testing.

15.6.2 Self Calibration Program

Algorithm:

(* for testing, generate a set of ranges *)
get transponder coordinates
for i - 1 to maxpoints do

get vehicle .x,y,z
calculate :-anges, add error, store

(* end data simulation *)
(* real data would be read in at this point *)
while not done do

begin
get initial transponder coordinate guess
while not done do

begin
calculate total error
calculate partials
if total error < max allowable error then

done := true
else

determine path of minimum error
adjust transponder coordinates in that

direction
increment iterations
end while loop
end while loop
write number of iterations
end program

For simulation purposes, the first part of the program
*generates a set of ranges to work with. The program requires two

types of input to accomplish this. The first is an x, y, z
coordinate for each transponder. Second, a set of x, y, z
coordinates that describe a vehicle path over the transponder
array is input. As each vehicle point is entered, the ranges to
the three transponders are calculated, a random noise value of

@ 0.5% is added in, and the three results are stored. The finished
product is a set of ranges with some error added in that
describes a path over the transponder array. This range set is
now given to the second portion of the program as if it were true
field data. An actual mission will produce a similar array of
range information.

To start processing the range values into transponder
coordinates, the program requires an initial x, y, z guess for

*O 145



each transponder. The remainder of the program is the calcula-
tion loop. Each pass through the loop modifies the transponder
coordinates in the direction that minimizes the error. The loop
is halted when the total error value is minimized below some
minimum error constant. Upon exiting the loop, the number of
iterations is printed.

15.6.3 Equations for Self Calibration Algorithm

2 2 2 2
Spheres A. X + Y + (Z - C ) = R

1 1

2 2 2 2
B. (X - a ) + Y + (Z - C ) = R

2 2 2

2 2 2 2
C. (X - a ) + (Y - b ) + (Z - C ) = R

3 3 3 3

The intersection of A and B (B-A) yields a plane:

2 2 2 2 2
1. -2a X + a + (2C - 2C ) Z + C - C = r - r

2 2 1 2 2 1 2 1

The intersection of A and C (C-A) yields a plane

2 2 2 2 2
2. -2a X - 2b Y + (2C - 2C ) Z + a + b + C - C = r

2 3 3 1 3 3 3 3 1 3
r

1 and 2 intersect forming a line. The direction of the line
may be found by taking the cross product of their respective
normals.

(0)(2C - 2C ) - (2C - 2C )(-2b ) i > (2b )(2C - 2C )i
1 3 1 2 3 3 1 2

(2C - 2C )(-2a ) - (-2a )(2C - 2C ) j > (-2a )(2C -
* 1 2 3 2 1 3 3 1

2C) +
2

(2a )(2C - 2C );
2 1 3

+

(-2a )(-2b ) - (0)(-2a) K ==> (4a b ) K
2 3 3 2 3
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L = (2b )(2C - 2C )
3 1 2

M = (2a )(2C - 2C ) - (2a )(2C - 2C )
2 1 3 3 1 2

N = 4a b
2 3

Once a point on this line is found, its equations may also
be found.

1st sub Z = 0 in 1.
2 2 2 2 2

(2C - 2C )(0) - 2a X = r - r - C + C - a
1 2 2 2 1 2 1 2

2 2 2 2 2
X =r -r -C + C -a

2 1 2 1 2
-2a

2

Now sub both x and z into 2.

2 2 2 2 2 2
-2b Y = r - r - a b - C + C + 2a (X)

3 3 1 3 3 3 1 3

2 2 2 2 2 2
Y = r - r - a - b - C + C + 2a (X)

3 1 3 3 3 1 3

-2b

-' 3

Now call the X, Y, Z XC, YC, ZC. Given this point the line

equation is

3. X - XC Y -YC Z -ZC
L M N

If A and 3. are intersected the two possible positions will be found

X - XC = Z - ZC > X - XC = L(Z-ZC) => X = L(Z ZC) + XC
O L N (N) (N )
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Y = M(Z - ZC) + YC
N

2 2
X = (*LZ - LZC + XC) where P will equal -LZC + XC

(N N )N

2 2
Y = (Mj - MZC + YC) where Q will equal -MZC + YC

(N N ) N

plugging these into A we get:

2 2 2 2
(*LZ + P) + (_Z + Q) + (Z -Cl) rl
(N ) (N )

2 2 2 2 2 2 2
(L + M + 1)Z + (2LP + 2MO - 2C )Z + (P + Q + C - r ) =0
2 2 1 1 1

* (N N ) (N N )

B
2

Zc = -B+ B -

2

we.want to minimize

2
S = (Z - Z ) using C , a , C , a , b , C

ic io 1 2 2 3 3 3

this is done by finding the six partials and moving the variables
toward their min.
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16. IMAGING SYSTEM

An additional phase of the EAVE program includes the
development of an autonomous vehicle imaging system. By adding a
real-time television link to the system a remote operator can
monitor the functioning of the vehicle. This capability could be
used to remotely control the vehicle or to visually inspect a

- - submerged structure. The requirements of underwater imaging from
an untethered vehicle are greatly influenced by the acoustic
channel data capacity. Since the acoustic channel cannot support
a high data rate, the source must be band-limited to make effec-
tive use of the narrow channel capabilities.

A typical television picture (home television) contains a
large amount of information. If a one second TV signal were
digitized to 8 bits the resulting data would require almost 60
million bits of storage. Since the acoustic channel has data
capacities of 5-20 Kbits per second for ranges of 1000 feet, it
would take over 50 minutes to transmit this block of data.
Clearly modifications must be made to the video source before it
can be applied to the ocean environment. Several immediate
tradeoffs can be implemented to make a practical imaging system.

*In this research the frame rate was reduced from 20 to 2 frames
per second. Also for many tasks a reduced resolution is
feasible; typical television (in the U.S.) has 525 lines with 480
pixels per line. Research into ocean imaging is being conducted
with a 100 x 100 pixel LCCD camera as the input device. A
further data reduction can be made by using a reduced gray scale.
Tests have shown that a 4 bit gray scale provides enough contrast
and dynamic range for feature recognition. This is an additional
possibility to reduce video data and make the system more useful
in the ocean environment - bandwidth reduction by digital
computer.

There are currently several computer algorithms which can be
used to eliminate redundant information in digitized images.
These algorithms vary in speed, complexity and compression ratio
and must match the application. The algorithm chosen for this
research is Micro Adaptive Picture Sequencing (MAPS), which is a
two-dimensional spatial reduction technique. This algorithm has
shown proven fidelity and compression ratios and promises
compression ratios from up to 12:1 on low resolution ocean
images.

The hardware configuration for this project is shown in
Figure 69. This block diagram shows the relationship between
various components of the imaging system. As mentioned earlier
the input device is a CCD camera which contains a Reticon 100 x
100 element photo diode array with CCD transfer mechanism. This
camera is able to sense an entire frame of data at one instance
and read the individual pixels out serially. Another benefit of

*this CCD imaging system is the low light level capability of the
sensor. This allows the camera to be used in the ocean and

,. 'require less artificial light. The sensitivity of the camera is
-' -, determined by the clock frequency which sets the light integra-
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tion time of the photo diode array. Currently a clock rate of
125 kHz produces over two frames per second of video with typical
room lighting.

The data compression and decompression CPU's are the core of
each subsystem. The Motorola 68000 microprocessor was chosen for
this application because of its compatibility with other vehicle
components and its computing power. Each CPU runs the dedicated

" task of image manipulation while special purpose hardware handles
the input and output of the image. After the CCD camera senses
the image the frame grabber digitizes and stores an entire frame
of data without supervision from the compression computer. This
architecture makes efficient use of the available resources by
allowing the 68000 to concentrate on image compression. Once the
image is compressed the output data is placed in an output buffer
where it awaits error correction coding and transmission. The
communications processors supervise the tasks of image
transmission and receiving and error reduction. These devices
are necessary to increase the system throughput and ensure image
fidelity. At present the communications processors and the
acoustic link have not been designed.

* Once the image data is received the task of reconstructing
begins. The communications processor passes data blocks to the
68000 which decodes and decompresses the image; image compression
and decompression are inverse operations. After each data block
is interpreted the information is passed to a special purpose
output device; the Motorola 6845 a Cathode Ray Tube Controller
(CRTC) which does the job of screen refresh. Since all video
systems need a high refresh rate to prevent flicker, the job is
dedicated to the CRTC. This device presents the display monitor
with the appropriate analog video information along with the sync
signals used in standard television.

The above hardware configuration gives the system flexi-
bility and efficient operation in the processing of 100 x 100
images. But, the actual bandwidth compression algorithm is at
the heart of the imaging process. As mentioned earlier MAPS is
the algorithm chosen for use in this research. The algorithm
seeks to reduce the total data content in an image by seeking to
locate regions of redundant information. Redundant information
refers to areas in the scene that have a constant or similar gray
level on the 4 bit gray scale. A flowchart for the MAPS
algorithm is shown in Figure 70. As can be seen the compression
operates on independent 8 x 8 pixel blocks and continues
throughout the image until all pixels have been processed. In
the current application the image is sectioned into 12 rows of 12
blocks representing an image of 96 x 96 pixels. The additional 4

* pixels on each row are discarded.

The MAPS technique starts by sampling a 2 x 2 pixel area, if
these 4 pixels intensities are within a certain threshold they
are averaged together and retained for further processing. If
the gray values are uncorrelated they are output as single pixel
entities. The goal is to produce larger aggregates of pixels
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until the scene structure limits the combination because of a
threshold violation. The input to the MAPS algorithm is a

* digitized image and the output is a data stream which represents
- the compressed image. This data stream contains two kinds of

information; a resolution code and an intensity code (gray
value). The resolution code represents the size of the combined
pixel area; to limit overhead in this transmission scheme the
output contains only 4 standard size blocks to which pixels may
be combined. Only 2 bits of binary information are necessary to
encode the 4 possible block sizes which always occur as square
regions. The sizes are 1 x 1, 2 x 2, 4 x 4, and 8 x 8 pixels
which are referred to as level 0 to 3 blocks (LO - L3). Since
most images exhibit high correlation between nearby pixels, data
compression occurs as a result of the MAPS algorithm. Instead of
sending 64 pixels of similar gray value a single resolution code
which represents the 8 x 8 pixel block may be sent with the gray
value of the whole block.

The input image to the compression process is a 100 x 100
pixel image which is digitized to 4 bits. This image has a data
content of 40,000 bits before compression and the reduction
technique is designed to operate on 96 x 96 pixel representing a
data content of 36,864 bits per frame. A trial run of the MAPS
compression process was run of the 68000 development station at
the Marine Systems Engineering Lab. The input picture of the
submarine Aluminaut was digitized from a standard vidicon camera
and compressed on the development station. The results show data
rates of 7.7K bits and 6.0K bits per image using different
transmission schemes; the compression ratios are 4.8 and 6.1 to 1
for this detailed image. Simpler images will have higher
compression ratios due to the lower information content.

Present simulations of the MAPS algorithm running in real
time have shown the efficiency of the 68000 assembler programmed
version. Timing trials have shown that a 4 MHz 68000
microprocessor can compress over 4 frames of data per second.
This corresponds to an output data rate of 20 to 35K bits for
typical images. The frame rate is dependent to an extent on the
information content of the scene, but the acoustic channel is the
major bottleneck limiting the transfer of data. For this reason
it is necessary to match the frame output rate to the capacity of
the channel.

-- Research into the error reduction potential of MAPS has

revealed useful structures inherent in the algorithm format.
Since a compressed frame must be reconstructed to an image of 96
x 96 pixel it is possible to detect errors in the resolution code
which would be the most severe error. A loss of one resolution
code could cause the entire scene structure to be destroyed. Any
error correction scheme must carefully protect the resolution
codes from corruption. In the same way that entire frame
represents a fixed data content of 96 x 96 pixel it is proposed
to divide the image transmission into sync intervals for the
purpose of error correction and detection. A sync interval of
two 8 x 8 pixel MAPS blocks represents a good choice between data
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rate and error correction simplicity. After each area of 8 x 16
"- "-pixels is transmitted with its constituent resolution codes the
. sync mark is placed in the data stream. Upon decompression the
Y processor checks that the reconstructed area represents an 8 x 16

pixel region. If not, the constraint equation is solved and the
appropriate error is corrected.

L3 + 4 x L2 +16 x L1 +64 x LO = 8 x 16 = 128

Above L0 to 13 refer to the number of the various resolution
codes received during the previous sync interval. It is
important to note that this correction scheme assumes errors in a

- single resolution code.

At this point of the research a few enhancements to the
system as well as more development can be suggested. The most
important point is the development and interface of the imaging
system to a high data rate acoustic telemetry system. This would
allow actual sea trials of the untethered imaging system. A
related thrust in the communication process is the inclusion of
dedicated communication processors to monitor the I/O and perform
the error encoding and correction. It is likely that more

* elaborate er:or reduction schemes will be needed to enhance the
system performance. Also there are many techniques to enhance
image fidelity that should be studied in the context of ocean
imaging. This effort would also lead into pattern recognition
and smarter vehicles. Another enhancement in the area of image
fidelity is the reduction of noise in the input hardware. A
noisy image is unpleasing to view and severely limits the ability
of a compression process to reduce data.

16.1 Results Summary

The MAPS compression algorithm has shown good results on
typical ocean scenes. An imaging test bench has been constructed
to digitize, compress, decompress and display the scene.
Previously the operations were performed on a single CPU which
simulated the compression and decompression steps. In order to
more realistically demonstrate the imaging system two 68000
computer systems were joined by a 9600 baud serial link; this
gave an effective data rate of 7.2 kilobits/second.

The compression ratio and hence the frame rate of the system

are dependent on the matrix of contrast thresholds and the
complexity of the image. The operator may manipulate the

threshold matrix to achieve the desired frame rate but the scene
" detail remains a random variable. Trials have shown compression

ratios of up to 15:1 on very simple scenes; the expected useful
operating range of MAPS on low resolution images is from 4:1 to
8:1.

* Photo A (Figure 71) is a snapshot of a joint on a submerged
structure while Photo B shows the image digitized and displayed
on a monitor. The MAPS compression routine was run on the
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digitized scene and the decompression process was simulated. The
results shown in Photos C and D are in the following table.

Standard Enhanced

(bits) (bits)

Photo C 16,722 10,810

Photo D 9,630 6,854

The standard and enhanced trials refer to different trans-

mission schemes which can be used. The standard format sends 2
" bits of resolution code and a four bit intensity representation

while the enhanced format has Huffman codes for resolution and a
-. 3 bit differential intensity representation.

Transmitting the image shown in photo D over the 9600 baud
. line would take .95 seconds. But, a frame rate of at least 2
- frames/second is expected since the acoustic channel can support
* more than 7.2 kbits/second over the desired ranges.
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17. ARCTIC INSPECTION MISSION SYSTEM (AIMS) SONAR

17.1 Description

The AIMS sonar sensor (Figure 72) is designed to be operated
under ice. It is a six channel transceiver that will map the
contour of the ice keel above the vehicle and monitor the depth
of water beneath (Figure 73).

It consists of an array of five transducers directed upward
at angles of 0, +5 and +10 degrees from vertical; the sixth is
connected via a tether cable and can be oriented in any desired
direction. All channels operate at 200 kHz, transmitting pulses
of 350 microsecond duration at a rate determined by the user.
Each beam pattern has 3db down points at ±3 degrees.

The entire assembly, except for the remote transducer,
mounts in a cylinder eight inches in diameter and approximately
seven inches high. This cylinder bolts to the top of the vehicle
frame, aft of the compass. Electrical interface with the command
computer applications card is via an 8 wire cable. Power and
control signals are sent to the sonar which replies with a pulse

9 indicating receipt of an echo. This delta time between transmit
and receive signals corresponds to the distance between the
vehicle and the surface generating the echo. Combining the
distances from each transducer generates a map of the surface in
a strip above the vehicle track.

The electronics are mounted on two boards within the
cylinder described above. The transmitter board (Figure 74)
generates the 200 kHz carrier frequency by dividing the output of

.. a 2 MHz crystal. Pulse duration is determined by a monostable
multivibrator, whose output is routed via a multiplexor to the
selected output channel. The pulse gates a burst of carrier
frequency to a pair of power FETs in a push-pull configuration,

- through a transformer to the transducer.

Since the transducers are reciprocal, the receiver is muted
during the transmit pulse. The receiver has a 40db preamplifier
for each channel. The control word from the command computer that

* selects the transmit channel also selects the output of the
corresponding preamplifier for further filtering/amplification.
A detector circuit triggers a comparator when the return signal
threshold is crossed. The comparator output generates a pulse

that is returned to the command computer signaling the completion
of a transmit-receive cycle.

The command computer software determines the channel to be
activated, and the pulse repetition rate.

17.2 Test Results

Initially, an operational test of the system as a whole was
conducted by placing the remote transducer in a water tank,
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SPECIFICATIONS

Operating Frequency: 200 kHz +50 Hz

Transmit Power: 300 Watts
* 0

Transducer Beam Angle: +3 for +3 db

Transducers: One 5 element array with
elements at 00, ±100 and
+20 from vertical. One
remote element connected with
6 feet of cable.

Receiver Sensitivity: 10 uv

Preamp Gain/Channel: 40 db

Receiver Bandwidth: Approximately 10 kHz

Interface Connections

Channel Select Input: Selects desired channel to
transmit/receive on three
binary lines, +6 volt true.

Start Input: 0 to +6 volt key pulse
triggers transmitter

Stop Output: 0 to +6 volt pulse at time
of received echo

FIGURE 73
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transmitting in that channel and verifying that returns were
received and a STOP signal generated.

Next, the receiver and transmitter circuit boards were
removed from their cylinder housing and mounted on a test stand
for bench testing.

-- 17.2.1 Transmitter

'~ 1. The following circuits were verified as operating
correctly:

a. 6V and 12V power supplies
b. Channel select logic
c. Start logic.

2. The quiescent current draw was measured to be
approximately 50 miliamps. Response of current draw vs.
pulse repetition rate was measured and is shown in
Figure 75.

-. 3. The transmitted wave form from each channel was
observed. A photograph of the waveform from a typical
channel is shown in Figure 76.

17.2.2 Receiver

1. Pre-amplifier gain was me sured to be a nominal 40db.
Table 7 presents the measurements from each channel.

2. Delays from application of a suitable pulse on the input
to generation of a step pulse was measured. Statistics
are shown in Table 8.

3. There are 5 potentiometers in the receiver circuit,
excluding those in the power supply circuit. The role

" . of each is outlined below.

37.2
R19 (100i-) + in balance on U8 6 68

R28 (100K) voltage divider on 13600 (U9) Pin 1
1 K

3 12v
73.4K 20.1K

"" _llD25@ R29 (100K) "TVG Rate" - D2

.-7.0K 91. 9K

R49 (100K) U9 balance 12v 1
98.8K

C28 8. 3K
R50 (100K) U9 gain 3

36. 6K
2

*57.0K
3 16)1
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TABLE 7

RECEIVER PRE A.MPLIFIER GAINS

Pre I NTUT OUTPUT

K: ~Channel Amp (1) mV/pk to pk volts, pk to pk dB (2)

0 U5 3.16 0.38 41.6
1 UI 0.40 42.0

-2 U2 0.40 42.0
3 U3 0.40 42.0-
4 U4 42.0
5 U5 42.0

* (1) U designator corresponds to identification in wiring diagrams.

(2) Typical calculation in Channel 0

dB = 20 Loglo Vout
Vin

dB = 20 Log1 0  .38 volts
3.16 x 10volts

dB = 20 Log1 0 (.12 x 103)

= 20 Log I (120)

= 20 (2.08)

dB =41.6
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TABLE 8

RECEIVER DELAY TIMES

Channel 0 1 2 3 4 5

Orientation 00 P10 0 S10°  P20 0  S20 0  remote

Mean .132 .132 .117 .121 .116 .116

- STD Dev .012 .010 .008 .007 .007 .008
RMS .133 .132 .117 .121 .116 .116

- Notes:

-. . (1) All data are in milliseconds

(2) Statistics calculated from 20 samples per channel
(3) Orientation, P100 = transducer whose center line tilted

S100 from vertical, on the port side of the array.

S - starboard side

(4) Mean= = 1 N xi

Std Dev = standard deviation 1 N (xi --R)

RMS = root mean square = (Mean2 + std dev

.( --
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4. Adjustment of the U9 gain potentiometer, R50, has a
significant impact on receiver sensitivity. A graph of
that affect is shown in Figure 77.

17.2.3 Tank Testing

A number of tests were run with the array of transducers
submerged in a test tank of concrete construction whose approxi-
mate dimensions are 8 ft. x 6 ft. with 5 ft. of water in it.
Multipath and backscatter and the tank's relatively small
dimensions frustrated any attempt to obtaining meaningful
performance data in terms of accurately measuring distances.
However, one salient feature of the system did emerge and that is
the saturation of the receiver preamplifier stage when a pulse is
transmitted. The preamplifier output was observed to oscillate
from rail to rail (i.e. the positive supply voltage and ground)
for some 9 miliseconds before reaching a steady state. This
precludes reliable performance at distances less than 20 feet.
Various combinations of potentiometer settings in the receiver

" allow one to select the point at which the decision threshold is
crossed. Thus, while possible to generate a STOP pulse at
shorter distances, any such measurement is ambiguous.

17.2.4 Lake Winnipesaukee Testing

Testing from a barge on Lake Winnipesaukee consisted of
three configurations.

1. Measuring depth from array to the bottom. Typical data
are presented in Table 9.

2. Measuring depth from the array to the surface.
Significantly more scatter was noted in these data. The
returns appeared to be clustered about two distances -
one at the surface, and one about 1.5 feet below. This
phenomenon may be attributable to thermal layering near
the surface. Those returns that exceeded three standard
deviations from the mean value were deleted. The
statistics from this modified data set are presented in
Table 10.

3. Measuring horizontal distances. This last category was
least successful. In almost all cases, returns were
received earlier than expected. Analysis of the
geometry involved leads one to conclude that echos are
being received from the surface and bottom from energy

* in the beam side lobes. These side lobes are in the
range of 10 degrees to 20 degrees off the transducer

" centerline. In the case of 0 degree transducer, the
return received may be the interval between the n + ist
transmit signal and the nth return. That is, from two
different pulses. The pulse repetition rate was 1 pulse
per second while a travel time of 1.2 seconds was
possible.
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TABLE 9

DEPTH SOUNDINGS

Channel 0 1 2 3 4

Orientation 0°  Pl0 °  SI o1 P200  S200

Travel Time (milliseconds)

Mean 15.526 15.482 15.371 15.686 16.311

Std. Dev. 0.192 0.128 0.159 0.083 0.260

RMS !15.528 15.483 15.372 15.686 16.313

One Way Distance (ft) 37.14 37.03 36.77 37.52 39.02

IReference (ft) 36.75 37.32 37.32 39.11 39.11

I Error (ft) +0.39 -0.29 -0.55 -1.59 -0.9

'Error I -0.8 -1.5 -4.0 -0.2

NOTES:

(1) Sound velocity 4.784 feet per millisecond, in fresh water,
580 F temperature, 0 depth calculated as average of four
methods presented in Urick's "Underwater Sound for Engineers".

(2) Travel times corrected with channel delays from Table 2.

-0
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.168



TABLE 10

DISTANCE ME--SUREMENT TO SURFACE

Channel 0 1 2 3 4

Orientation 00 P 0 °  SIo0  P200  S200

Travel Time (milliseconds)

Mean 9.868 10.138 10.185 10.041 10.453

Std. Dev. 0.147 0.048 0.150 0.107 0.041

J1R S 9.869 10.138 10.186 10.042 10.453

One Way Distance (ft) 23.61 24.25 24.36 24.02 25.00

Reference (ft) 24.75 24.37 24.37 25.54 25.54

*Error (ft) -1.14 -0.12 +0.01 -1.52 -0.54

Error (%) -5 -0.5 0 -6 -2

NOTES:

(1) Sound velocity 4.784 feet per millisecond.

(2) The returns off vertical are assumed to be reflections
from the barge's flotation tanks.

-

(3) Travel times adjusted for channel delay.
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17.3 Conclusions

The system is certainly operable as it is currently
configured. One should expect distance measurements to be
accurate to 1% to 3% at ranges up to 50 feet. The accuracy may

- very well improve at larger ranges. The system should not be
- employed at ranges less than 25 feet. Pulse repetition rate

should not exceed 1 pulse per second. Note that the desired rate
is a function of distance to be measured since more than one
pulse should not be in the water at any one time.

17.4 Recommendations

17.4.1 Design

1. Electronic - consider muting the preamplifiers when
transmitting a preclude saturation. The time varying
gain stage should be reviewed. If the existing
technique is indeed optimum, has it been implemented
properly?

2. Mechanical - When the electronics boards are made as

.0 printed circuits, they should have a quick disconnect
feature at all interface points. The receiver board
should be accessible when the cylinder is opened, rather
than the transmitter board, as it is now. Finally, the
current method of bolting the boards to the cylinder end
cap may not be satisfactory, particularly in view of
mission length.

3. Software to process return times to generate contour
surfaces.

17.4.2 Testing Recommended

1. Test at greater ranges with accurate reference.

2. Can a salient profile be identified? Determine relative
accuracy as well as absolute accuracy.

-. 3. Measure radiated acoustic pressure.

4. Determine transducer receiving sensitivity (i.e. volts
generated per unit of pressure impacting its surface).

* 5. Run under computer control.

6. Run under the ice.
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-I SIMS 68000 MONITOR

FOREsWORD

The 68000 nYicro-comIIputer is :In e::tremely versatile mTa chine!*i' '  with E' number of powerful features not iorially available in

.Tj. icro-pT'ocessors# F'rticularly useful are its TRACE mode and a
. number of expplicit error traps. The address space directly

v v ilazble to the 68000 is 64 Megabytes (16M in each of four
operational modes). An attempt to take advantage of all features
of the machine would result in a monitor far larger than the 4 K'
bytes we have alloted to the SIMS computer. This monitor is an

S-~attempt to preserve those features which we believe will be most
- useful SIMS development.

Features of this monitor include explicit error messages for
all error traps, built-in random pattern memory testing, ability
to brea'kpoint in ROM and a number of useful commands and user-
available I/0 subroutines. E::cluded by this monitor are he:: load
to addresses above 65Kbytes (16 bit addresses) and use of bus-

. vectoring of interrupts.

The operation of this monitor may be a little different than
the ones previously in use. Specifically the syntax of the
cormmands may not be familiar to those who have not cut their
teeth on the 6800/6809. The commands are not buffered and
scanned, but are entered directly. If a command calls for an
address it should be entered as six he:xadecimal digits. Leading
z zero's must be included (i.e. 00002E instead of 2E or 02E). If
an error is made in entering the com,mand it cannot be corrected

- with the back-space Key. The command may be aborted by typing a
non-he:: character in an address or data field. This type of
command processing was chosen because it was Much simpler and
more space efficient then a buffered command scanners Most of
the commands can be easily re-typed. If this method of command
processing proves too error prone, a larger buffered input scheme
can be substituted in a subsequent revision if space is made
available for it.
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SUMMARY OF MONITOR COMMANDS

B a aa - Set breakpoint at "aaaaa (RAM or ROM)

NB - Clears all breakpoints

C - Continue after a breakpoint

11 aaa.aa bbbbbb - DisplaY a block of ,emory

G aaaaaa - Go JuI, p to code at aaaaaa

.HP - Binary load tape on port #3
H L - Load a HEX tape on port 1:3 (see L)

* H F' aaaaaa bbbbbb - Write HEX duPp of aaaaaa-bbbbbb (see P)

I - Enable interrupts

L - Load a Motorola 'Sl1 format HEX tape -
lower 65K only

M aaaaaa - E::amine/change mremory at aaaaaa

0 - Enter transparent mode with UARTS 0-3

F' aaaaaa bbbbbb - Write Motorola 'S1' tape of aaaaaa-bbbbbb

R - Display DO-D7 and AO-A7 from last break

S aaaaaa bbbbbb dd - Set 'dd" into block of memory aaaaaa-bbbbbb

T aaaaaa bbbbbb tt - Set TRACE if PC is in aaaaa-bbbbbb block
U - Turn off TRACE

X aaaaaa bbbbbb
cccccc - Block move aaaaaa-bbbbbb to cccccc-

.? aaaaaa bbbbbb - Random pattern memory test of aaaaaa-bbbbbb

0 (ctrl C) Restarts monitor
(ctrl S) Stops output
(ctrl 0) Re-starts output

B-..
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DETAILED COMMAND DESCRIPTIONS

B aaa , - BREAKPOINT

The BREAKPOINT command displays a list of alI breakpoints
arid allows YOu to add a new address. Entering z 'K" will clear
all the entries. Any other non-he:: character will return control
to the monitor,

On reaching the breakpoint, the processor will be halted and
the following~ messzage will be displayed+

BREAKPOINT AT Ar.aaaaaa dddd cccc

This is followed by a dump of DC-D7 and AO-A7. The aaaaaaa- is
T,.e address of the breakpoint, the 'dddd' is the op-code at the
break and the 'cccc' is the current status register+ The monitor
then asks if you wish to continue. You may do so at this time or
may exit to the monitor, After changing memory or whatever, you
may continue frost the breakpoint by typing *C', The breakpoint
is not removed when it is encountered.

You Ma enter up to 30 breakpoints at a time. However,
doing so will slow the execution speed down. The breaKpoint is
implemented by turning on the 68000's TRACE flag and checking the
current program counter value against the breaKpoint list. Since
this is done for each breakpoint address at the end of each
instruction cycle, this form of breaKpoint will slow down
execution of the program by at least an order of magnitude. The
Advantage of this method is that breikpoints may be set in ROM as
well as RAM. If speed is critical to the e:ecution of your
program then set a TRAP instruction at the desired RAM location
instead of a breakpoint, You may re-vector this trap to the

.- breakpoint handler if you wish (see SETTING VECTORS).

C - CONTINUE - Restart from breakpoint (see above)

[, aaaaaa bbbbbb DISPLAY MEMORY

This command causes the block of memory from "aaaaaal to
-bbbbbb' to be displayed as an address followed by 16 he: bytes
followed by their ASCII eRuivalent value if any. An integral
number of 16 location lines is always displayed. Note that
-bbbbbb" may optionally be a count of locations if its value is
less than that of 'aaaaaa.• Thus 'DO0 2000 O0001F' would display
32 locations.

G aaaaaa - GO to location aaaaaab

Loads the value "00aaaaaa' into the program counter, loads
the registers 11O-D7 and AO-A7 from a buffer in the monitor RAM,
and starts the processor. The registers are loaded with the
value displayed by the 'R' command which are normally the values
that were in these registers the last time the processor was

Shz lted by a breakpoint or trap. The contents of this buffer may
be changed prior to e:,:ecuting the GO command if YOU wish to set a

".-..register (see SETTING REGISTERS).
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HB - Host Binary Load

A Load binzr y image through port 1:3 using ERG header block
format. A load information block is stored in 001240 - 00125C.

I Turn on Interrupts

Lowers interrupt M sk. to 0 in 68000 status registers,
enabling all interrupts.

L - LOAD Motorola HEX tape on Console port
H L - LOAD tape on Port *3 "

These two commands cause the monitor to enter the tape-load
mode. The character echo is turned off and input is ignored
unless it has the form 'Sldddd" or 'S9'. Bad characters and bad
checksums are noted if they occur. This mode can be terminated
only by receiving an 'S9'. The he:: loader is limited to memory
locations below 010000 he:,:.

M aaaaaa MEMORY examine/change

The contents of location 'aaa' are displayed as two hex
* digits, If You enter two new he:: digits, the contents of that

location will be changed and the next location displayed. If you
enter an up-arrow the previous location is displayed* If You
enter a return control will return to the monitor. If you enter
any other non-hex: character, the ne:t location will be displayed*

0 Set up transparent communication with UARTS 0 - 3
o.

The "0 command prompts th ooperator for a UART 1. The
number entered is interpreted module H and used to select UART #0
- 3. The monitor then enters transparent mode in which all
characters received by the selected UART are sent to the console
and vice-versa. Exit from this mode is by a ctrl-A from the
console (the only character that connot be sent to the external
LART).

P aaaaaa bbbbbb 'PUNCH' Motorola S1 format HEX tape on console
H Paaaa bbbbbb Same as above on Port 3

..Write the data block a-bbbb' out to tape in the Motorola
format of "Sl:,::s::": followed by terminating 'S9". In the console
mode (P) a ten second wait is inserted before the dump begins and
again after it is completed. This allows You time to connect and
disconnect the recorder# In the Port 3 mode (H P) the dump is
rimmediate.Dump is limited to locations below he:: 010000.

'" R - Display REGISTERS

This command displays the 32-bit contents of the data and
address registers DO-D7 end AO-A7 at the time of the last
breakpoint or (ctrl C) e:x:it. These values are re-loaded at the
time a Continue or Go command is executed,

B-6



S aaaaaa bbbbbb dd SET Memory Block

The block of ryieriory from laaaaaa* to "bbbbbb' is filled with

the data. 'dd'. This commnd is useful for initializing tables.

T aa bbbbbb ff Set TRACE Mode

Actually the current value of ae a bbbbbb ff' Appear as
01)oon as You type the 'I' but Yc:u may re-t ype Any or all three of

these values. To accept the current value for any field, type a
svEace instead of a HEX nu'ber.

This command places the 68000 in the TRACE mode. When the
trace e:,:ception occurs, the program counter is checked to see if

'a it is between 'aaaaaa' and 'bbbbbbs. If it is and if the flag
byte "ff" is non-zero then the trace is perfor,,ed and

@ aaaaaaaa cccc ssss

is displayed on the console. The *aaaaaaaa is the current
address being traced. The "cccc' is the op-code at that address
and the 'ssss' is the status register. In addition, if the flag
byte 'ff" is greater than 7F he: (127 dec.) then a full display
of the data and address registers also appears.

U - UNTRACE

Turns off the TRACE mode display by setting the trace flag
byte to zero (see TRACE above). Checks to see if there are any
breakpoints, If not, the trace bit of the 68000 status register
is also cleared.

X aaaaaa bbbbbb cccc BLOCK MOVE

Copy the data block 'aaaaaa - bbbbbb' to the address block
from Icccccc -0 to C+(B-A)t

- aaaa a bbbbbb Test Memory

E::ecutes a random pattern test of the memory block between
I aaaaaa' and Obbbbbbb0 This test writes random numbers in each
memory location. It then re-seeds the random number generator
,and checks each memory location, If all locations check then an

- exclamation mark is printed and a new seed used for the ne::t
pattern cycle, If .an error is encountered the address, intended

- data and real data are displayed#
as

,'
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IDETAILED USER SUBROUTINE -DESCRIFTION

READCH OF80

Input an ASCII character to rDO.L using the input routine
pointed to by INVEC at $1000. On power-up this is nor,,ally set
to GETCHR (at $O1AO) and chansced to CIN (at $OEO0) wher in tne
interrupt mode. This routine msKs the character to 7 bits and
echo's it through OUTCH if the echo flag ($1220) is non zero.

OUTCH 0F84

"Outputs the contents of the 110.B as an ASCII character using
the output routine pointed to by OUTVEC at $1004. On power-up
this normally is set to BRKCHR (at $01B2) where it tests the
Keyboard input for a break (ctrl C) or stop (ctrl S), This
vector is changed to COUT (at $0E36) when the interrupt mode is
enabled. The contents of rio are unaffected by these two
routines,

OUTS OF8C

Outputs a space (ASCII $20) through DUTCH. No registers are
disturbed by this subroutine call.

*OUTCR OF90

Outputs a carriage return - line feed pair (ASCII $O1, $OA)
through DUTCH. No registers Are affected by this subroutine*

FSTRNG 0F94

A Output an ASCII character string through DUTCH. This
subroutine assumes that A6 points to the first character of the
string and that the string ends with a null character ($00). The
subroutine ends with EIO°B containing the null and with A6
pointing to the next location after the null,

OUTHX8S 0F98

Outputs the contents of DO.L as 8 hexzadecimal digits
followed by a space using OUTCH# The present implementation
alters the contents of D10B and adds each digit to the checksum
(in $1099) for the FUNCH routine,

OUTHX4S OF9C

Outputs the contents of DO.W as 4 hexadecimal digits and a
space. See OUTHX8S above.

OUTHX2S OFAO

* Outputs 110.B as 2 hexadecimal digits and a space, See
above,

B- 8
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* INHEX4 OFA4

Input four hex disjits via READCH and assemble ther, irto F, 16
bit word in DO.L. If any character is ron-hexa decimi, this
routine sets tre carry zond returns the non-hex character ir DO.B
instead of the nex word. if the characters are alil good it adds
them to the checKsun, (in 1,1099) for the LOAD routine and then
retUrn s with tine ssembi, he:: number in DO ano with the carry
clezared.

* INIEX2 OFAS

"e ' input twcO he:: digits to DO.B. See INHEX4 for detai].s.

LIMITS OFAC

I nput two 6-digit hex:adecimal numbers to AO and Al. This
subroutine is useful for setting up address limits. It first
calls INHEX4 and places the he:xadecimal word in AO.L. It then
outputs a space via OUTCH and calls INHEX6 again. If this number
is of larger magnitude than the first it is placed in Al and the

* difference is calculated and placed in DO.L. If the second is of
smaller magnitude than the first, then it is placed in DO.L and

0 then summed with the first number and the sum placed in Al.L.
T Thus you may enter either two addresses or a start address and a
count and the routine will return with two addresses in AO, Al
and a count in 11O. Returns with carry clear if all entries were
valid he:: digits. If a non-hex character is encountered the
routine returns with the carry set and the character in DO.B. AO
will be correctly set if the error was in the second entry.

HEXDEC OF'BO

Convert BO.L from binary to a signed decimal string, Enter
with A6 pointing to top of string buffer. This routine places a
)l* null at the end of the string and then moves A6 backward as each
succesive ASCII digit is generated, If the number is negative,
the ASCII minus sign is then placed at the beginning of the
string. The routine ex its with A6 pointing to the first
character of the string and with the original binary number

* intact in DO.L. This routine is limited to values between
-655,359 and +655,359. Numbers larger than this will cause
overflow in the divide routine.

HXDOUT OFB4

* Outputs E1O.L as a signed decimal number to the OUTCH

*.*.routine. This routine creates a buffer in $1200 - $1214, and
calls HEXEIEC followed by FSTRNG. The number is left justified.
Both DO and A6 are altered by this routine,

WAIT OFB8

Wit 1O.W tenths of a second, Enter with D10#W containing
the desired delay in tenths of a second. This routine presently

B-9
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operates by software timing loops. Its accuracy is a function of
the access timing. for both monitor ROM and stack RAM. Any

' interrupt handling time is also added to the delay. Useful for
... non-critical timing applications only. DO.W is destroyed.

RANDOM OFBC

Returns a Pseudo-random number in DO.B each time the routine
is called. The seed is in the word stored at $109A. This can be
re-seeded to repeat an identical sequence. Il is set to zero by
this routine s presently implemented.

COLD OFDO

Entry point for re-initializing monitor. Resets all vectors
to their initial power-up values. This is equivalent to hardware
reset. Turns off interrupt I/0.

MON OFD4

Return to monitor command prompt. Leaves system configured
as it was prior to entry. Does not store register contents in
temporary, so 'R' command does not display this information.

SETTING SYSTEM VECTORS

The Input/Output routines and 68000 traps are all indirectly
vectored through system RAM in locations $1000 - $10SF. These
are shown in Table 1. These locations each contain a 32-bit
address pointing to the routine which will perform the vectored
function. On power-up, the I/O vectors are set to GETCHR and
BRKCHR and the system error traps are set to individual error
handlers. The interrupts and software trap vectors are set to a
.trap handler within the monitor which prints an error message.

The user will probably want to re-direct many of these
vectors to other handling routines. This may be accomplished by

- storing the new vector addres, as a long word in the appropriate
vector location. For temporary testing this can be done with the

M command in the monitor for all vectors e:x:cept INVEC and
OUTVEC. These can't be modified while the monitor is using them
to input the new addresses, A much more satisfactory method of

*changing vectors Is to include the change in your program
initialization routines, This allows You to recover if You need
to press RESET which would destroy all your vectors+ The address

Scan be set with a long word move instruction such as:

MOVE.L *GETCHR, INVEC

B-10
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SETTING 68000 REGISTERS

When the GO command is e::ecuted the monitor loads 110-117 and
* AO-A6 from a table in RAII before juTrping to the GO address. This

table receives the contents of these reciisters whenever a t.rpce,
bre.[akpoint cr error trap occurs but the contents are randc:I,, on
power-up. The user may directly modify this table to initialize
any of the registers (except A7) before .juTPiflg to a progrTn,
.The tble is in , erory loc, tions $109C. throuk'h $].0DB with DO ir,

$109C through $109F and the other reqisters in consecutive double
Word locations. See Ta:ble 1.

B-1
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SUNMMARY OF MONJITOR COMMANDS

B aaaaaa - Set breakpoint at "aaaaaa" (RAM or ROM)
B K - Clears all breakpoints

C - Continue after a breakpoint

D aaaaaa bbbbbb - Display a block of memory

G aaaaaa - Go jump to code at aaaaaa

HB - Binary load tape on port #3
H L -Load a HEX tape on port #3 (see L)
H P aaaaaa bbbbbb - Write HEX dump of aaaaaa-bbbbbb (see P)

I - Enable interrupts

L - Load a Motorola "Si" format HEX tape -
... lower 65K only

M aaaaaa - Examine/change memory at aaaaaa

0 - Enter transparent mode with UARTS 0-3

P aaaaaa bbbbbb - Write Motorola "Sl" tape of aaaaaa--bbbbbb

* .- R - Display DO-D7 and AO-A7 from last break

S aaaaaa bbbbbb dd - Set "dd" into block of memory aaaaaa-bbbbbb

T aaaaaa bbbbbb tt - Set TRACE if PC is in aaaaaa-bbbbbb block
U - Turn off TRACE

-..

•- .# X aaaaaa bbbbbb
cccccc - Block move aaaaaa-bbbbbb to cccccc-

7 aaaaaa bbbbbb - Random pattern memory test of aaaaaa-bbbbbb

-----

[ (ctrl C) Restarts monitor
(ctrl S) Stops output
(ctrl Q) Re-starts output

:..-o.
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APPENDIX C

M,'..800O-B1ased Navigation Comiputer for EAVE-East

The IM6100-b,sed navigation coUIputer has some shortcorysings,

which make it unacceptable for future technology development on

the vehicle. For example:

a 12-bit counters limit the effective range of the system,

to appro:. 200 feet.

a A 1n au:iliary math processor is required to coMpute the

trigonometric functions. It has high power consu,,ption,

and requires elaborate strobing circuitry to rinirriize
-

battery drain.

" Assembly-l anguage prograrirring makes software changes

difficult to find, and implement.

, Extended features, such as Hedulti-beam listening, and

autocalibration of beacon location, are impossible.

iesign Philosorhw
,-'. : To overcome these problems, an M68000-based navigtion

[-a d a g i

'-- computer has been designed for EAVE-East. The reasons for

selecting the M68000-based design are Picnifold:

- An M68000 is used for the EAVE-East commiand coMIputer.

L-. The development stations, hardware, and software

expertise exist in-house.

a 16-bit architecture allows the range to be e:x:tended to

800 feet (total path travel- aSSupming no dela-ys) with
0

better thcjn 3/10-inch resolution, Under software control

C-1K'7 C%% ~V~~ ~-~~ i : N



the theorletical range is 10,O00 I iles with 1,600 feet

r esolution.

" The M68000 has enou.h corTputtional power to:

- elirninate the math processor.

- perform autoclibration of tra.nsponder loca:tion.

- listen to several beacons for long--range navigation.

- handle inputs froms future navigationl, and control
options (i.e. compass, IMLI's, orientation sensors).

0 Program ming can be done in a high-level language ('C').

making it easier to modify programs.

In1 addition, most of the analog electronics were updated to

provide higher pinger output power, and better noise perfor.,ance.

Con f i.r ion

The structure of the navigation computer is shown in Figure

1. The digital portion of the computer consists of the CPU card,

UART card, and one or more 32Kbyte m~emtory cards*

The basic navigation algorith, should easily consuryie less

than 32KEB. The autocalibration algorithm will need appro:im.ately

32KEB by itself. A slot for future e::pansion will be included in

the card cage.

The analog section consists of a receiver prea.rp/transmitter

power boost (PRA/PE') located at each transducer, a receiver (3-

channel), three mechanical filters (110, 114, 118kHz) Per

channel, and a nine-channel detector card.

The detectors produce a TTL-compatible, 1Is pulse when a

transponder return pulses arrive at each transducer. These

pulses are used to stop each of the nine counters on the counter

board.

C-2

_- Z .



V>/T or

-F - F~

pSr

w ~ F-

T lo
00097~ F r

P.Sp-

Po ho~

coJ

Ir FIL. K UA RTOUL L, L.

S'

-~ -~ C - 3



TABLE 1

AIMS NAV COUNTER MEMORY

ADDRESS MAP

003001 - Illegal Address
003003 - Illegal Address
00305 - "N-Clock" Counter LSB

003007 - "Hold-Off" Counter LSB
003009 - Interrupt Status Reg U6 (Read only)
00300B - Interrupt Status Reg U6 (Read only)
00300D - "N-Clock" Counter MSB
0030O0F - "Hold-Off" Counter MSB

003011 - Illegal Address
003013 - Illegal Address
003015 - Counter 1 LSB
003017 - Counter 2 LSB
003019 - Interrupt Status Reg U7 (Read only)
00301B - Interrupt Status Reg U7 (Read only)
00301D - Counter I MSB
00301F - Counter 2 MSB

003021 - Illegal Address
V.. 003023 - Illegal Address

003025 - Counter 3 LSB
003027 - Counter 4 LSB
003029 - Interrupt Status Reg UB (Read only)
00302B - Interrupt Status Reg US (Read only)
00302D - Counter 3 MSB
00302F - Counter 4 MSB

003031 - Illegal Address
003033 - Illegal Address
003035 - Counter 5 LSB

* 003037 - Counter 6 LSB
003039 - Interrupt Status Reg U9 (Read only)
00303B - Interrupt Status Reg U9 (Read only)
00303D - Counter 5 MSB

. 00303F - Counter 6 MSB

003041 - Illegal Address
003043 - Illegal Address
003045 - Counter 7 LSB
003047 - Counter 8 LSB
003049 - Interrupt Status Reg Ul (Read only)

- 00304B - Interrupt Status Reg U10 (Read only)
00304D - Counter 7 MSB
00304F - Counter 8 MSB

C-4
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.1 7 JIM. IF JYr -W. ir

TABLE 1 continued

003051 - Illegal Address
003053 - Illegal Address

003055 - Counter 9 LSB
. - 003057 - Counter 10 LSB (not used)

003059 - Interrupt Status Reg Ull (Read only)
00305B - Interrupt Status Reg Ull (Read only)
00305D - Counter 9 MSB
00305F - Counter 10 MSB (not used)

003061 - Master Stop
003063 - Master Stop
003065 - Master Stop
003067 - Master Stop
003069 - Master Stop
00306B - Master Stop
00306D - Master Stop
00306F - Master Stop

003071 - Start
003073 - Start
003075 - Start
003077 - Start
003079 - Start
00307B - Start
00307D - Start
00307F - Start

Notes: 1. Even Addresses will not give VPA.

2. Top 2 bytes of Address may vary from

OOOOXX - OOFFXX
OO3OXX selected arbitrarily.

0"-5
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Counter Boar d 0Opera~tion

The counter board serves as the analog/digital converter for

the system, The counter board appears as an M68000 peripheral to

the CPU, (i.e., the processor must assert VMA, look for VPA, and

synchronize data transfers with the E-line# The E-line is also

used as the counter clock. (400kHz).

The counters used are the RCA CEIFI878 CMOS dual counters.

There are six chi-ps for a total of twelve counter sections. One

- * section is used as a divide-by-N counter for the E-signal. N is

chosen to provide the required transponder range. Another

counter is used for 'hold-off', aimd provides a programmable-width

pulse to disable the receive', and counter circuitry for a few

microseconds after the pinter. has been triggered.

The counter board also produces the 951Hz burst used to ping

and circuitry used to route the burst to the correct pinger.

A transponder cycle begins by jam-loading the range number

(N) into the first counter, then the hold-off time into 'hold-

off' counter. The appropriate pinger transducer is selected,

The number $FFFF is then jam-loaded into the nine counters

(the last counter is disabled)*

A start pulse is generated by writing to the appropriate

memory location (see Table 1), Simultaneously a lis long, 95VHz

burst is sent to the selected pinger, and the counters begin

couting down.

After some arbitrary time period, a master stop location is

addressed, and the counters are interrogated, Overflows are

W, looked fort and the numbers are read from the counters. The nine

times are then used to calculate x:, Y, and heading information

for the command computer.
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The system is not complete at this time. The hardware

design is completer but the software has not been written, and

Much of the testing needs to be done.

68000 CPU - complete

UART - complete

Memory- complete

Counter - breadboarded, not tested

Preamplifier/Power Stage - complete

Filter - complete

Reciever - not built, but design proven/AGC need tweaking

Detector - built, not tested

Software - outlined

'.5- .p
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APPEIDIX D

NAVIGATION SYSTEM SENSITIVITY

Discussion of Errors

In the :ourse of this worK several sources of error were

located And their mpqnitude was approximpted, Tre errors can be

divided into two gener-! categories* random and motion errors#

The term error is used loosely as any unaccounted for or

nonlinear phenomenon. So, in our case motion errors, though

deterministic, are not compensated for in the Algorithm and lead

.V to incorrect predictions of position.

Random errors exist in the system due to uncertainty in the

delays of all transponders and hydrophones. The local sound

velocity error is also considered to be random error for our

Purposes. The above parameters wili act as 'noise' on all of the

range measurements so their effect must be considered in

calculations. The speed of sound error is considered a random

* because of its complex dependence on temperature, pressure, and

density of the water. It is not uncommon for the sound velocity

to differ by .5% locally. A .5% error in sound velocity leads to

a .5% error in range measurement which is one foot at a range of

200 feet,

In many cases the error found denoted the worst case error

(see Table 1). In order to get a more useful representation of
0

errors one standard deviation was used (see Table 2). The worst

case error corresponds to three standard deviations as a generalI. ule so the statistical errors were divided by three, Going

- further the rms error was found by t$king the sum of the squares

.nd then the square root.

,. D-1
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TABLE 1

ABSOLUTE ERRORS

Statistical

Transponder detect delay .3+ .1 ms

Turn around detect delay 10, 30, 50 + .01 ms

Hydrophone detect delay .55 + .035 ms

Total delay means 10.85, 30.85, 50.85 + .145 ms

Speed of sound - 4800 + .5% ft/s at 60°F

Motion Errors

Errors in 2 way times due to skew

Errors in 2 way times due to rotation

Errors in 2 way times due to transponder delays

(function of velocity, heading, heading dot, distance)

.4D
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TABLE 2

Determination of Statistical Error

Hydrophone detect delay uncertainty .035 ms

Transponder turn around delay uncertainty .01 ms

.. *Transponder detect delay uncertainty 0.1 ms

The above numbers are absolute errors which are three standard
deviations away; for rms error use 1 S.D.

.035 ms - 3 = 1.1667 x I0-5 sec

.010 ms t 3 = 3.333 x 10- 6 sec

" .100 ms t 3 = 3.333 x 105 sec

RMS STAT ERROR SQRT (4800(1.1667 x 10-5))2 +(4800(3.33 x 10-6) 2 +

(4800(333 x 10- 5 ) 2fi .17 ft = 2.04 inches

-D-3
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Moticn Errors
T 4+ foS n ,-hatisee

d w s nd hat notion errors are deper.dert or. seed,

..ot . ...on. -eed, S V di.tnce f the ve icle fo.

tr.ns-.onders. A prog .P was written to siUlate these errors as

the vehicle rioves fror.; a source to destinatLon.

U. The -Ia:XsiiurT vehicle underwater speed is ab ot one know, For..

F safety rtiargin of 50% 1.5 knots will be used in this analysis

where the ,a:,:iMui, rotion error is found, At a rane of 200 feet

_.3. 0 nd a speed of 1.5 knots, the vehicle will r.,ove

1.5 knots -x 1.688 ft/s :X ((200 ft. :.: 2)1(4800 ft/s) + 50.5 is)
knots

..33Q ft. = 4 in. = 2 in., etc.

This is an absolute worst case error at a given range.

The problem of rotation is considered next. The vehicle gains

are set such that the rotation rate is nominally not larger than

.157 rad/sec. Again at a range of 200 ft the At is

((200 x2)/4800 = .0508 = .134 sec .134s x .157 rad/s = .02104 rad

In this arount of tire the vehicle has gone through .02104 x

1.5 ft. = .0316 ft. of arc or .38 inches which is then resolved

into :.: and y errors. Since the fastest rotation is .157 rad/s

and the corresponding error is .38 inches it can be stated that

the rotation of the vehicle has little effect on the rande

:ieasurenents and therefore negligible effect on the calculated

position, The skew orientation cf the vehicle does not present a

* proble,, if the dats is interpreted properly. The ,iffere;ce in

hydrophone position cen change by as Much as three feet fror, the

unskewed to the worst case skpew position.

D-
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In suManry, the transponder and hydrophone delays account

for z rrs error of appr, iatel' 2.04 inches. The error due to

Sotion of the vehicle in the water at 1.5 knots at various

ranges is:

Ceed -n c e Error

1 . 5 knot 200 ft. 4 in.

1 . 5 knot 100 ft. 2 in.

1.5 knot 50 ft. 1 in,

'V .,The error due to cl Sound velocity error is*#

Percent Error in Sound Velocity Range Error

.5% 200 ft. 1 ft.

100 ft. 6 in.

.5% 50 ft. 3 in.

.25% 200 ft. 6 in.

.5% 100 ft. 3 in.

, . 5 50 ft. 1.5 in.
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APPENDIX E

'4' EAVE VEHICLE CAMERA

Introduction

The following paper is not meant to be either a detailed

report or a technical manual. It is simply an account of how

we procceded in designing and fabricating the project that

was assigned.

The project assigned was to work in conjunction with the

Marine Systems Division at the University of New Hampshire.

During our introductory meeting with the members of this group

S.. we discussed the possibiity of designing an automated camera

ii- -system that could be attached to an existing submersible

vehicle. It was required that our system be able to take

commands and send back messages to the micro-computer that

controls the vehicle. The system would also have to be designed

around an already purchased Sankyo EM 40-XL 8mm movie camera.

On the following page is an outline of what we thought
would have to be done in order to complete the project.

4--
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"E.A.V.E.

CA"7PA SYSTM

I. ,eserrch - ethods of underv.ater photography.

.- L .ting tcchnioues
- Focusing
- Film types

II. Cbtain all available information on the Sanko 1'40XL movie camera.

- Dimensions, schematics, operating instructions, ect.
- Obtain infcrmation on light meters. Those that can be

used 'ith the light levels at the leth the ca-era "ill
be vorking at.

III. Investigate the use of an alternative camera system.

- For bettor picture quality
- ?Iore efficient use of power

IV. Determine ,'hat au,,tomated controls ;,ill be required.

- On/Off

- Lightirg
- Frame rate, etc.

V >esearch and design of camera housing. (Carl)

- Materials to be used
- Stress calculations

Vi 71ectrical interface Oe-irn. (Jim)

- Decide on I/O methods
- Designing any hardware and software required

VII. Final assembly and test.

- he final s':stcm should consist of a housing containing a
ca-era with t.e electrical and mechanical co,-nonents reouired
to perform all the automated controls.

F,.
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r.echanical Design

I started my design by determining just where I wanted

to mount the camera housing. The mounting location was very

important to the quality of the photographs as I explained

on pages 16 and 17 of my note book. Iy next step was to deter-

mine the method I would use to mount the camera and electron-

ics within the housing. Easy acessibility to the components,

as well as being free from disturbance caused by deflection

in the housing that will occur under deep sea pressures was

of prime importance here. The next step was to decide how I

was going to mount the housing onto the vehicle. The limiting

factor here was that the housing had to have two degrees of

freedomt left & right, up & down. ±t also had to be easily

moveable from one side of the vehicle to another. This was

to give complete freedom as to where they could photograph

with respect to the vehicles all four sides as well as a

wide range of area on any of the four sides. Now that this

was all determined I had a good handle on just what I needed

for a housing.configuration.

..,y next step was to determine what materials I was going

to use. I choose 6061-T6 aluminum for four reasons:

1) Its resistance to corrosion.

2) It was a stock material for aluminum tubing.

3) I needed a non-magnetic material because of the

vehicles navigation system.

4) It had a high yield strength for its price.0
I then choose a high tensil strength clear plastic for the

window plate. I choose this over glass mainly because of

cost, as well as its resistance to breaking..

. E-3
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I then did all the necessary stress calculations required

on the components. I used two different methods for these

calculations.to double check each other. Also the second method

I used was much more detailed and accurate than the first

method. These calculations are on pages 34 thru 43 in my note

book. I then detailed all my components, ordered the materials

and spent the rest of the semester fabricating the components.

°-.
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Electrical Design

Before any of the electrical design could begin, two

things had to be known. They were, what controls would be

required to do the job and what the camera's abilities were.

After numerous meetings with our technical advisors at

40 arine Systems, it was decided that there were five functions

that they would like to be controllable; 1) camera on/off,

2) variable frame rates, 3) a frame counter, 4) preset-

table frame count and 5) a light meter to measure ambient

light in the environment.

Knowing what had to be controlled, it then had to be

determined what the camera was capable of doing. I first

contacted Sankyo of America, but after two phone conver-

sations with them it was very apparent that they were not

geared to answer technical questions as to the performance

of their cameras. So it was required that I test the camera

myself to find its limitations. It was found that using the

remote control jack to advance frames, the camera would

only work reliably at speeds up to 4-5 frames per second,

any faster and the switching became very erratic. The

'arine Systems group had originally wanted to run the camera

externally at up to standard movie rates of 12 and 18 frames

per second, but we now knew that this would be impossible

without modifications to the camera's electronics. They

decided they did not want to modify the camera in that way,

E-5
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so it was decided that rates up to 4 frames per.-second

would be fast enough. I also contacted a number of photo-

dealers in order to find out how the camera would perform

in very low light situations, as it would encounter under-

water. What we found out was that the camera we had was

. Jadvertised as one that was good in low light applications.

-hat was meant by this, though, was that the camera could

be used in normal room light without added illumination.

One of the biggest limititions was that the faste4 film

available was only ASA 160. What all this meant was that

in many of its applications our camera system would require

an additional light source,.be it constant or strobe. It

was also found in the tests that the camera drew more cur-

rent while in operation then previously thought; 20 ma at

idle, approximately 300 ma at 18 frames per second and

instantanious currents of over 500 ma in its single frame

0
mgde. This required that the camera would have to be tied

-"directly to the batteries that power the vehicle and not

off the power to the electronics.

Knowing the controls required and the limitations of

the camera, the final design could begin. Figure 1 shows a

basic block diagram of the result. This controller recieves

and transmits infor)iation as an 8 bit digital word. This

word is decoded to do the various functions. The three

most significant bits determine what function will actually

be done. The lower five bits sent are used to program the

E-6
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frame rate, to preset the number of frames to be shot and

to turn the camera on, depending on what function was

selected.

Figure 2 is a detailed schematic, ( minus UART con-

trols ). The following is a short description of its

operations.

The frame rate is determined by the output frequency

of the 4047 astable. -One cycle per second equals one frame

per second, two cycles per second equals two frames per

second, etc., up to four frames per second. The different

frequencies of operation are obtained by switching in

different R-C time constants to the 4047. This is accom-

plished by switching in different values of resistance

using a 4051 One of eight switch. The three bit word used

to select the channels in the 4051 is latched from the out-

puts of the UART by a 4174 Hex-D-flip flop.

The counter circuitry is made up of two cascaded

4040 twelve stage binary counters. The count is read back

as two eight bit words, giving a maximum count of 216 frames,.

.. the count is held for transfer by two 74LS244 tri-state

*i latches.

This camera system can be programmed to shoot at a

specified frame rate indefinately, or it can be preset to

shoot a specific number of frames. The latter is done with

0- two 4029 synchronous presettable down-counters. Each

counter is loaded individually by latching a four bit word

into its inputs. The counters are cascaded so that up to

2 or 256 fram!!s can be preset.

E-7



The liGht meter is built up aiound an ADC 1211 A/D

converter. The A/D recieves a analog signal from a vol-

tage divider network consisting of a CDS light sensor and

a fixed resistence. The A/D is configured so that it is

continually sampling and latching in the latest light

reading. The data is stored in two 74LS374 octal D-flip-

flops. The light intensity is read back as two eight bit

words.

mE-8
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Conclusion

In conclusion we would like to point out that our sys-

tem meets all performance criteria. All the components fit

together and the electrical controller performs all the

necessary automated functions.

Ile completed what we set out to do. The Miarine Systems

Lab is happy with the product, and we did keep pace with our

estimated time schedule.

E.9
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APPENDIX F

MECHANICAL DRAWINGS FOR EAVE

Thrusters:

100021C - Thruster assembly
100022A - Pressure well face cap
100023B - Diaphram housing
100025B - Casing length
100026A - Propeller shaft
100052A - Propeller bearing shaft
100056A - Shaft assembly
100063A - Prop shaft bushings
100066D - Thruster final assembly

. 100067A - Diaphram plate
100162C - Kort nozzle and thruster
100163B - Kort nozzle mounts
100164B - Shaft housing modifications
100165B - Motor housing lower bulkhead
100166B - Motor housing upper bulkhead
100167B - Motor housing
100168B - Bellows retaining disk
100169B - Motor modifications
100170C - Motor housing assembly
100183B - Thruster physical layout

Navigation:

100140A - Navigation transducer frame (sketch)
100171B - Transducer mount

AIMS Sonar:

100178C - AIMS echo sounder pressure case
100179C - AIMS echo sounder lower end cap

Frame:

100211C - EAVE dimensional outline
S100191B - Thruster mount parts

100192B - Thruster mount assembly
100182D - Battery frame

Computers:

100019 - Side rail computers
100083B - Face cap assembly
100070 - Edge connector (side rails)
100111B - Thruster card cage side rails
100137B - Bulkhead for bubble memory
100139B - EAVE thruster card cage

S100142B - 68K card cage and mounting rails
100152B - EAVE control end cap
100173D - Thruster heat sink layout
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APPENDIX G

EAVE SYSTEM SCHEMATICS LIST

Bus Layouts:

100058A - Thruster computer bus
10116B - Navigation receiver bus
100189B - MBM Bus
IL00147B - 6100 CPU slotted bus
100186D - 68000 bus (see split 68000 CPU)

* .' 6100 Computer Systems:

" 100015D - 2K Prom

100042D - 3K Prom
100043D - MEX/Drvr.
100044D - Bus driver
100045C - 6100 CPU
100046C - UART
100047D - 4K RAM

100051C - Thruster driver card (Rev. A)
100051B - Thruster interface card
100097B - Navigation receiver
100100D - Navigation detector/counter
10010IB - Navigation preamp

100104C - Math processor
100138B - Navigation interface
100095C - MBM interface

68000 Computer Systems:

100187D - Main CPU
100184D - Support CPU
100148D - UART
100149D - ROM/RAM
100l54aD - Application Card
100177C - Video display card
100181C - Video frame digitizer

S100165C - 8mm camera interface
- 100190C - Sonar drawing application card

100176B - Battery system charger

0
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APPENDIX H

EAVE SOFTWARE LIST

Computer Software Package

68000 Command A. VOS
* B. Monitor

C. Controller Task
D. Thruster Task
E. Bubble Task

6100 Navigation A. SIMNV1
. B. M56XB

C. NAVC02
D. NAV46

6100 Thruster COMC18.PAL

6100 MBM BUB.PNL
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