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PREFACE
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- DAAK11-79~-C-0111, titled "Research on Phase Transfer Catalysis,"

{ with the Chemical Systems Laboratory, ARRADCOM, * sponsored
through the US Army Research Office. The work was started in
December 1979 and completed in December 1980.

The use of trade names in this report does not con-
stitute an official endorsement or approval of the use of such
commercial hardware or software. This report may not be cited

" for purposes of advertisement.

s Reproduction of this document in whole or in part is
" prohibited except with permission of the Commander, Chemical

; Research and Development Center, ATTN: DRSMC-CLJ-IR (A),
Aberdeen Proving Ground, Maryland 21010-5423. However, the
Defense Technical Information Center and the National Technical
Information Service are authorized to reproduce the document
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*Now the Chemical Research and Development Center, US Army
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RESEARCH IN PHASE TRANSFER CATALYSIS

1. INTRODUCTION

Advantages of microheterogeneous sy:tems for tue
detoxification of arylsulfonyl halides became evident recentl;
to the Chemical Systems Laboratory*. Microheterogeneous
systems are capable of solubilizing and localizing such
materials and providing media for their catalytic degradation.
Research had shown that aqueous nucleophilic and functional
micelles, microemulsions, and polyelectrolytes were powerful
media for the destruction of selected arylsulfonyl halides.

An alternative approach is provided by phase transfer catalytic
systems.

Phase transfer catal{sis is an extremely useful and
versatile synthesis technique. -6 Its relative simplicity,
speed, and economy have rendered this method invaluable for
large scale industrial processes. Indeed, new syntheses and
gross improvemen.s of existing ones have mushroomed. To date,
more than 2000 papers have been published on phase transfer
catalysis. Only a handful of these are concerned, however,
with mechanistic aspects.7'

The phase transfer mechanism, proposed initially by
Starks for nucleophilic substitution,? involves the transfer
of the nucleophile, Y™, from water to the organic phase where
substitution on RX occurs. The leaving group, X7, is sub-
sequently transported back to water. Transport of the anions
is accomplished by an organic soluble phase transfer agent,
typically a quaternary ammonium or phosphonium haiide, Q*Y™:

RX + Q*y- —————= RY + QX"

organic phase

- (1)

water
Na*y~ + Q¥X~ —— Na*x~ + Q*y~

There are two basic tenets of the proposed mechanism. Firstly,
the reaction is assumed to take place in the organic phase,
rather than in water or at the interface of two immiscible
solvents. Secondly, formation of both aqueous and reversed
micelles is precluded. The observed kinetic behavior of
nucleophilic substitions under phase transfer conditions con-
stituted evidence for mechanism 1., Specifically, rate constants

*Now the Chemical Research and Development Center, US Army
Armament, Munitions and Chemical Command.
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were found to (a) increase linearly with increasing catalvise
concentrations, (b) increase with the ability of the catalyant
to extract the anion into the organic phase, and (¢) remain
invariant of the stirring rate (beyond 300 rpm). Kinetic
schemes have recently been derived for phrse transfer catalvses
characterized by mechanisms analogous to that given in

equation 1.5,10" These derivations implicitly assume that the
transfer of the reagent from the aqueous to the organic phuve
is fast compared to the substitution. Reactions other than
nucleophilic substitutions may well be governed by rate-
limiting transfer of the reagent across the boundary separating
the phases. Indeed, acceptance of mechsnism 1 for nll re-
actions occurring in two-phase immisciblc systems is not
warranted. Conceivably, reaction sites may involve the
polar-apolar solvent interface.

2. OBJECTIVES

The objective of this research has been to examine
the feasibility of phase transfer catalysis as a viable
hydrolytic method. Rates and mechanisns for the destruction
of paratoluenesultonyl fluoride have been determined under
phase transfer catalytic conditions.

3. EXPERIMENTAL

3.1 Preparation of Tetra-n-butyvl-phosphonium
Hydroxide (Bu,4POH)

Tetra-n-butyl-phosphonium bromide (BugPBr), Aldrich,
was recrystallized from ethyl acetate. Ten milliliters of 10 M
aqueous BugPBr was shaken 30 minutes with 3.0 gm of AG20 and
centrifuged. A bromide ion selective electrode was used to
determine the extent of the reaction. No bromide ion could be
detected after completion of the exchange,

3.2 Synthesis of [1-14C] BuuPBr

1-14¢-1abelled BuygPBr was made by refluxing 0.010
moles of tri-n-butyl-phosphine with 0.10 moles of [1-14C)
n-butyl bromide (specific activity = 3.87 mCi/mmol) in 2 ml
of absolute ethanol in a sealed ampoule at 85 C for 160 hours.
The reaction was stopped by cooling the ampoule with liquid
nitrogen. After distilling off the solvent, a saturated
solution of BugPBr in 10 ml of hot ethyl acetate was poured
into the ampoule. The crystallized product was washed with
cool ethyl acetate and dried under vacuum overnight. The
resulting product had a specific activity of 0.81 mCi/mole
(yield = 10%).
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Ei: 3.3 Distribution Coefficients of Quaternary lIons.

b Base concentrations in the organic phase were determined

iui as described by Herriott and Picker.8 Distribution coefficients

| & of BU4P+ 1on and Ho0O between water and cyclohexane were determined
- using 1-14C BuygPOH or bromide (.817 mCi/mol) and 3H H90 (0.074

S mCi/Mol). Radioactivities were counted on a Beckman SL100

o scintillation counter using a 137cS external standard to correct

for quenching.

3.4 Kinetics of Hydrolysis of Paratoluenesulfonyl Floride

(pTSF,.

Kinetics runs were carried out in a 100-ml two-necked
flask fitted with a stirring motor. The stirring speed was
determined with a stroboscopic tachometer at least three * ;S
during the kinetic run. The reaction vessel was immersec¢ 1 a
constant temperature bath. The temperature inside the fl.sk
was maintained at 25.0° + 0.5°C. Usually 15 ml of cyclohe: *~
phase was stirred with 50 ml of a 4 M NaOH water solution ot the
catalyst. The reaction was stopped by pouring out an aliquot of
cyclohexane phase over spectranalyzed grade cyclohexane to the
proper dilution. Concentrations of pTSF were determined
spectrophotometrically at 267 nm using a Cary 118C spectrophotometer.

4. RESULTS AND DISCUSSION

1.1 Hydrolysis of p-Toluenesulfonyl Fluoride.

Rate constants for the hydrolysis of p-toluenesulfonyl
fluoride have been redetermined in the phase transfer system
using tetrabutylphosphonium bromide (Bu4PBr) as catalyst.
Particular emphasis has been placed on determining the concentration
of the hydroxide ion in the organic phase and examining the effects
of an added electrolyte on the hydrolysis rate. The results are
contained in Table 1. It is seen that sodium chloride does not
appreciably alter the rate of hydrolysis in the absence of
catalyvst. This result obviates the need for investigating the
influence of electrolytes on partitioning p-toluenesulfonyl fluoride
between water and cyclohexane. Rate constants for the hydrolysis of
p-toluenesulfonyl fluoride in the phase transfer system in the
presence of increasing amounts of BuyPBr are given in Tables 2 and
3. Rate constants in all cases had been followed to 99.5% com-
pletion of the reaction. The agreement is good between rate con-
stants determined in the cyclohexane and in the aqueous phases, and
the correlation coefficients are excellent. The catalytic
efficiency of the transfer agent is impressive. Rate enhance-
ment as a function of added catalyst is linear (see Figure A-1),
but, as a function of OH™ concentration in the cyclohexane phase,
the rate increase is shown to be exponential (see Figure A-2).
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Table 1. Hydrolysis of p-Toluensulfonyl Flucride#*
'§‘ in HpO0-Cyclohexane in the Absence of Phase

Transfer Catalyst at 25.(0°C

A [NaoH] , M 10%[0H~], M 103k, , sec™! . 103k, sec .
s in H,0 in cyclohexane in cyclohexane in Hy0
- 1.0 4.0 3.1 .9996 2,66 . 9946
D 2.0 6.0 3.6 .9989 3.1 95
- 3.01 6.0 1.71 .9998 1.6 VRN ]
.82 8.0 1.63 .9968 1.3 LL9u
2.0 + 2.15 . 9985
2.0M
. NaCl
}? *Netermined spectrophotometrically. All rates were followed to 99.99%
35 completicons.
o
if Table 2. Hydrolysis of p-Toluenesulfonyl Fluoride*
43: in HZO—Cyclohexane in the Presence of Phase
e Transfer Catalyst at 25.0°C
103 [BugpBr) , v 104 [or7], M 103k, sec™i . 103k, sec™?!
‘f in H,0 in cyclohexane 1in cyclohexane in H,0
- 0.0 0.80 1.63 .9968 1.30 L9980
o 6.5 2.90 .9965 2.90 L298-1.30
Y 7.5 2.82 .9991 2.67 .64995
‘ﬁ) 10.0 5.0 4.50 .9980 3.67 .9438
o 12.0 3.10 .9960 3.00 .9982
il 20.0 14.0 4,20 .9960 2.90 .9¢13
L 30.0 21.5 8.07 .9117 2.58 L9904
o 40.0 24.5 10.80 .9740 6.50 .9927
f“ 50.0 17.0 17.50 .9804 19.80 .9180
100.0 32.0 41.20 .9980

*Determined spectrophotometrically. All rates were followed to 99.95%
completion

° 10




e Table 3. Hydrolysis of p-Toluenesulfony'! Fluoridet

in the Presence of

Different Types of Catalysts

103k¢, sec™1 104 [on~ 1)
Catalyst in cyclohexane in cyclohexane

10 mM (BU4P)2504 1.7 4.8
10 mM BuyPBr 2.9 5.0
Uncatalyzed 1.6 0.8
10 m4 Bu3PBuOHC1 2.3 1.4

_ 10 mM Bu,POH 3.44 34.3

5 50 mM Bu,POH 36.75 39.0

- 50 mM BuyPBr 27.0 17.5

b

- *Determined spectrophotometrically. All rates were followed to

‘!‘ 99.95% completion.
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1.2 Synthesis of Tris-butyl-(4-hydroxybutyl)phosphoniurn
Chloride.

A phase transfer agent capable of forming an in-
ternal ion pair with hydroxide ion may be a more efficiont
catalyst than BugP*Br. With this in mind, tris-butyl-(4-
hvdroxybutyl)phosphonium chloride was synthesized. The re
action was started by addition of an ethanolic solution of 4-
chlorobutanol to tributylphosphine. After four days, the re-
action was shown to be complete by means of a chloride ion
selective electrode using a potentiometer, Stirring was con-
tinued f{or an additional day to ensure that there wus no
siaturation effect of the product, phosphonium chloride (sioc
Figure A-3). The solvents and reagents were then evaporated
under vacuumn (1 mm Hg at 170°C, the boiling point of Bu«qP).
The remaining solid was dissolved in water and then extracted
with ethyl ether. Long plates c¢rystallized from the c¢ther
extract after one week. The water extract did not crystallize,
but both products showed the same NMR and IR spectrum. NMR
spectrum:  -CHg, 9H, 3.3 ppm; -CHo-, 26 H, 1.6 ppm; -OH, 1H,
1.0 ppm. The observed ratio of -OlH to -CHy, plus -CHg- =
1:35.22.) IR spectrum: S 3.4 pn, 3.5 u; W 4.05 n; W 6.1 nu;
M7.1, 7.25, 7.45, 7.7 u; §$ 8.2, 8.7 n M 9.2, 9.5, 10.0, 10.3,
11 n; S 13.2 p. The alcohol signal was identitfied by derivitiza-
tion with acetic anhydride or trifluoracetic acid; OH bands at
3100-3300 ¢m™1 disappeared.

Rate constants for the hydrolysis of p-tolucnesultfonyl
tluoride were determined by titrating the cyclohexane phase as
a function of time, as described by Herriott and Picker.
Bug(HOBU)PCT appeared to be a much better catalyst than BugPir,

. MECHANISTIC INVESTIGATIONS

Figure A-4 shows the effect of changes in concentra-
tion of tetrabutylphosphonium hydroxide (BugPOH) and changoes in
stirring speed upon the pseudo-first-order hydrolysis rate
constants for paratoluenesulfonyl fluoride (pTSF) in the two
component aqueous 4 M NaOH system. The rate is seen to in-
crease with increasing stirring speeds at all catalyst con-
centrations. At the lowest catalyst concentration (30 mM)
there is a hint of leveling off. Clearly rates do not level
off at concentrations of 40 mM and 50mM BuygPOH. Figure A-5
compares the catalytic efficiencies of BuygPOH and tetrabutyl-
phosphonium bromide, BugPBr, as a function of stirring speed.
Although the extractability of Br~ is several hundredfold
greater than OH™, appearance of a third oily phase in the
presence of BugPBr is at least partially responsible for the
poorer performance of this catalyst. The solid thick line in
Figure A-5 shows the effect of stirring speed on the rates for
a nucleophilic substitution under true phase transfer conditions,
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The mechanism for the hydrolysis of pTSF in the present aqueous

4 M NaOH-cyclohexane two-phase system is clearly different from

that described by pure phase transfer catalysis. Coexistence of
interfacial and phase transfer catalysis is more probable although a
phase transfer mechanism prevails to a greater extent for

BuyPBr than for BuyPOH. Under our experimental conditions,

most of the BuyPOH catalyzed hydrolysis of pTSF appcared to

occur at the water-cyclohexane interface.

5.1 Effect of Catalyst Concentration.

Concentrations of BuygPBr and Buyg4POH in the organic
phase were measured by a bromide selective electrode and by
titration, respectively. The observed rate for the hydrolysis
of pTSF increase exponentially with increasing catalyst con-
centrations at all! stirring speeds as indicated in Figures A-6
and A-7. At very low stirring speeds, the kinetics followed
zero-order rate laws which became pseudo-first order at
stirring speeds greater than 350 rpm. Similarly, in the
presence of catalyst concentrations above at 0.03 M, the
observed kinetics are pseudo-first order at any stirring
speed. We interpret this behavior to be a change of mechanism
from rate determining transport of the reagent to rate
determining hydrolysis.

5.2 Distribution of Water, Catalysts, and Products
Between the fqueous and Organic Phases.

The catalyst and water concentrations in the organic
phase as a function of separation time following centrifuga-
tion are shown in Figure A-8., Interestingly, the catalyst
concentration in the organic phase is independent of the
nature of the counter ion. Importantly, the distribution
of both the catalyst and water decrease exponentially to a
low level as a function of phase separation time. Con-
centrations of water and catalyst are, therefore, extremely
high during the reaction at the interface. Paratoluenesulfonic
acid, the product of the hydrolysis of the fluoride, is
soluble in cyclohexane. Unlike Starks and Liotta, we did
not find the hydrolysis to be inhibited by added para-
toluenesulfonic acid. This is not compatible with the notion
that phosphonium salts act only as phase transfer agents.

5.3 Effect of Changes in the Volume Ratios of Water
to Cyvclohexane.

Changes of the ratios of water to cyclohexane dramat-
ically affect the rate of hydrolysis (Figure A-9). Increasing

s
.

Irt: the volume ratio of water to cyclohexane increases the rate
:?- twelvefold. Increasing the volumes of both phases also
L 13
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increases the hydrolysis rate. These observations can be
rationalized in terms of creating larger interfacial arcas
for the hydrolysis by increasing volumes, increasing stirring
speed, and increasing ratios of water.

5.4 Partitioning of the p-Toluenesulfonyl Fluoridc, pTSF,.

Using the standard U-tube with cyclohexane in the two
arms, we studied the transport of pTSF from one side of the U-
tube across an ayueous solution containing NaOH and Bug4POH.

The kinetics of transport appeared to follow the
zero-order rate law. This result substantiates our postulate
that, in the presence of catalysts and at appropriate stirring
speed, transport of the reagents across the interface is fast
compared to the rate of hydrolysis,

6. CONCLUSION

Studies under this contract have demonstrated the
utility of phase transfer catalysis for the hydrolysis of
paratoluenesulfonyl fluoride. Substantial enhancements of
the hydrolysis rates have been elicited. The mechanism for
the hydrolysis appears to involve both interfacial and phase
transfer catalyses. Experimental conditions determined the
prevailing mechanism.

Based on these studies, further investigations in
order to optimize phase transfer catalysis, as well as for

critical comparison of this method with others available, are
recommended.
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