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ANNUAL SUMMARY REPORT

"Quantum Monte Carlo for Molecules"
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William A. Lester, Jr.

Peter J. Reynolds

Materials and Molecular Research Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Description of Problem and Approach

Monte Carlo approaches to solving problems with many degrees of freedom

are a class of statistical methods having in common the generation of "random"

numbers. In the past few years, Monte Carlo approaches have seen increased

application in a number of diverse fields. In particular, quantum mechanical

Monte Carlo (QMC) methods - s have been successfully used for the treatment of

molecular problemsa ', -' 2 . What we mean here by QMC is a Monte Carlo pro-

cedure which solves the Schr~dinger equation. This is to be distinguished from

so-called variational Monte Carlo, in which one obtains expectation values for a

given trial wave function.

This ability to stochastically solve the Schr~dinger equation provides an --

alternative to conventional techniques of quantum chemistry. Early work 8 has

shown that highly accurate total energies and correlation energies can be

, obtained by QMC. In fact, in a procedurally simple manner, accuracies exceed-

ing those of the best ab initio configuration interaction calculations have been

" obtained.

Much of chemistry takes place predominantly in the valence electrons of a

system. Thus the quantities of interest are usually small differences of large

total energies. If QMC is to be useful in calculating binding energies, affinities,

* reaction barriers. etc., it needs not only to be able to calculate accurate total

energies, but also these more relevant energy differences. This is a far more

difficult task for Monte Carlo, since a statistical uncertainty of as little as 0. 1% in
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the separate total energies can mask the sought-after energy difference. To

reduce the statistical error to the level needed by "brute force" is costly in

computer time, as the standard deviation decreases only as (CPU tine) "*.

Algorithmic developments, such as differential QMC 14. hold promise for reduc-

tions in variance through correlated sampling techniques. Another approach is

based on noting that the variance decreases as '4'T better approximates the true

eigenfunction. To take advantage of this we have developed an iterative pro-

cedure for improving T. We describe this approach in the next section.

Also under development is the use of pseudo-potentials in QMC to describe

the core electrons; in this way only the valence electrons need to be involved in

the QMC calculation. One wants also to be able to use QMC to calculate potential

energy surfaces, excited states, dipole moments, and other molecular proper-

ties. Research is continuing along these lines. We describe in the next section

some of the results we have obtained. Among these results is the first calcula-

tion of an excited state energy by Monte Carlo. Before going into more detail, in

what follows we describe the actual QMC approach.

Briefly, the procedure is to simulate the quantum system by allowing it to

evolve under the time-dependent Schr6dinger equation in imaginary time. It is - -

easy to show8 that the use of imaginary time causes the system to approach a

stationary state which is the lowest state of a given symmetry. Properties may

then be "measured" as averages over the resulting equilibrium distribution.I1
By writing the imaginary-time Schr6dinger equation with a shift in the zero

* of energy as

= DV2.(Rt) + [Er-V(LR)1,(H.t) (1)

we see that it may be interpreted as a generalized diffusion equation. The first

term on the right-hand-side is the ordinary diffusion term, while the second ,

term is a position-dependent rate (or branching) term. For an electronic sys- -

tem, D=X2/ 2m,, R is the three-N dimensional coordinate vector of the N elec- -

trons, and V(B) is the Coulomb potential. Since diffusion is the continuum limit
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1' 3
of a random walk, one may simulate Eq. (1) with the function 4 (note, not +2) as

the density of "walks". The walks undergo an exponential birth and death as

given by the rate term. This connection between a quantum system and a ran-

dom walk was first noted by Metropolis, who attributes it to Fermi .

The steady-state solution to Eq. (1) is the time-independent Schrdinger

equation. Thus we have W(R.t)- (R), where rp is an energy eigenstate. The

value of ET at which the population of walkers is asymptotically constant gives

the energy eigenvalue. Early calculations employing Eq. (1) in this way were

done by Anderson on a number of one- to four-electron systems .

Unfortunately, in order to treat systems larger than two electrons, the

Fermi nature of the electrons must be taken into account. The antisymmetry of

the eigenfunction implies that * must change sign; however, a density (e.g. of

walkers) cannot be negative. To handle this. Anderson made simplifying

* assumptions about the positions of the nodes. His method is ad hoc,* and not

readily generalizable. Another method which imposes the antisymmetry, and at

the same time provides more efficient sampling (thereby reducing the statisti-

cal "noise"), is importance sampling with an antisymmetric trial function Ir

(see e.g. Ref. 8). The zeroes (nodes) of 4', become absorbing boundaries for the

diffusion process, which maintains the antisymmetry. The additional boundary

condition that 4 vanish at the nodes of +' is the fixed-node approximation. The

-. magnitude of the error thus introduced depends on the quality of the nodes of

~ *T(R), and vanishes as 41T approaches the true eigenfunction. To the extent

- that 4 7T is a good approximation of the wave function, the true eigenfunction is

almost certainly quite small near the nodes of 4,T- Thus one expects the fixed-

node error to be small for reasonable choices of 'T. Work on a number of sys-

tems has borne this out e'9 ' . In addition, this error is variationally bounded.

To implement importance sampling and the fixed-node approximation, Eq.

(1) is multiplied on both sides by 41r, and rewritten in terms of the new probabil-

*ity density f(Rt)=4'T(R)+(R,t). The resultant equation for f(R,t) may be

• . • , . . ° ,- - . .- + °" " . ." • . $ °" " ". "o " .• ° . e' .' • °° ° .•° °. °. °, .. *,., ', ,. ,,*-'- ,o .° ,° - " , , ,- -'. ',." " ',- -" " "-' . ~ ffo ' ' -ff-? , '. - ¢ " ... " . .. • .. ... .. ... .. ... ..
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written

= DV2f +[Er-EL( )]f -DV'[fFQ(R)] (2)at

The local energy EL(B), and the "quantum force" FQ(W) are simple functions of

4'7. given by

ELC)=H'IT()/*T(R) ,(3a)

and

FQ(B)=2V4T(R)/TU) .- (3b)

Equation (2), like Eq. (1) is a generalized diffusion equation, though now with the

addition of a drift term due to the presence of FQ.

In order to perform the random walk implied by Eq. (2) we use a short-time

approximation to the Green's function which is used to evolve

f(B.t)-f(R'.t +-r). This process is iterated to large t. Such an approach

becomes exact in the limit of vanishing time-step size, T.

Progress During Current Year

(1) We have developed a method of improving an importance function through an

iterated use of wave-function scaling. For use in QMC one wants a trial function

which is as simple as possible, since it will require repeated evaluation at each

step of the random walk. Yet one wants a function which provides accurate

results. In principle, since QMC solves the Schr6dinger equation, one should

obtain accurate results regardless of the choice of 'T. However, as we noted

already, for Fermi systems inaccurate nodes in *T will lead to a small error

when the fixed-node approximation is used. Furthermore. the statistical

"noise" will be large for a poor choice of +T.

We have found in our work' 1' that a single determinant 'lT with only a

double-zeta basis set places the nodes extremely well as determined by the

quality of the computed total energies. Increasing the basis set beyond double

zeta appears to offer insignificant gain in either accuracy (i.e. the fixed-node

error does not noticeably decrease) or precision (the statistical uncertainty, for

S° -.

S *°
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equal computing time, remains essentially unchanged). In practice we have

included an electron-electron Jastrow factor in our functions +'I in order to

reduce statistical fluctuations, and in some cases we have also included an

electron-nuclear factor. Neither factor affects the positioning of the nodes. and

hence the fixed-node energies.

Since the fixed-node QMC approach involves an approximation in the place- I..

ment of the nodes, and, in addition, in many applications the statistical uncer- -. -

tainty needs to be further reduced, we have developed an iterative approach for

globally (rather than locally) performing this correction.

Note first that the additional boundary condition that the eigenfunction

vanish at the nodes of *7r will generally give a solution which fails to satisfy the

virial theorem. Thus the fixed-node expectation value of V is not exactly -2T.

(Here we assume an equilibrium geometry.) We may therefore consider the

fixed-node eigenfunction, which we shall denote (fr( ), as a variational function

which may be further optimized by scaling'6 . In our notation, the caret indi-

cates that ; carries the fixed-node constraint, and jr"j indicates the set of a..

coordinates.

Let us define

V(I) -pt o I Y1) ;orO, 1)> ,(4a) :

T(1) =<(jrjJ)I T I &j(J)> . (4b)

and the scaled quantities V(77) and T(i7) analogously in terms of the scaled func-

tion (T ri). The expressions in Eq. (4) must of course be divided by

<4(frto) I rt)> if V is not normalized. It is readily established that

V(i)=77V(1) since the Coulomb potential scales as 1/r. Similarly, T(77)=7T(1)

since V2 scales as 1/rg. Combining these expressions one obtains

E(17) =i V( 1) +172T(1) (5) -. ,,

Varying Eq. (5) with respect to 77 minimizes E(77) at

t=-V(1)/ 2T(l) (6a)

and



E(v)=- V(1) 2/4T(1) (6b)

Thus the function p(ir~t) has a lower variational energy than ;(j ril and in

addition satisfies the virial theorem since -V(77)/2T(77) = -n-1 V(1)/2T(1) = 1.

Note that the global scaling has uniformly expanded or contracted the nodal

surfaces originally present in *7y. As we demonstrate below, these new nodes are

better than the original nodes of +T. However, ;(O7frtj) is no longer an eigen-

function of the Schr6dinger equation. Thus we may iterate the above procedure

starting with the new nodes--i.e. using 17 a +T whose nodes are those of go(fr1 )

(see Fig. 1.). Such a function, +P4'), may be obtained by replacing all coordinates

Irt in *T by tl. (Essentially this involves scaling all the orbital exponents

and the inter-atomic separations.) Now starting with *Pi) the QMC method con-

verges to an eigenstate ;M)(ifrti). Because ;M')(i7}rt) has the same nodes as

L(ijTrt )' -0) must have the lower energy since it is the exact solution for these

.odes. Again, due to the fixed-node boundary condition with the new nodes, the

virial theorem may not be satisfied, resulting in }' = -V1 2T i 1 (for ;)). Thus

we rescale by 1' to obtain 90)(nf'td). which has a lower variational energy and

again satisfies the virial theorem. The expanded or contracted nodes may then ".-'"

be fed back into a 4,P) and the process repeated. It is expected that the

sequence t, ' ... rapidly converges to unity, so that no appreciable gains

will be obtained beyond the first few iterations. Figure 1 gives a schematic illus-"

tration of this iterative procedure. Since the fixed-node energies for the

sequence of functions (Jrtl), M(tn(rt . )(7'njrdj)... is of decreasing energy,

the nodes improve upon scaling.

(2) We have calculated the energy of the first excited state of methylene'a in

order to obtain the (until recently) elusive singlet-triplet splitting. This is the

first QMC calculation of an excited state. Our results are in excellent agreement

with the most recent experiments.

Also, as shown in Table 1, the QMC total energies for both the singlet and the

triplet states of methylene compare favorably with Cl calculations. For the best

:.- .........~~~ ~~.. .............. .... .. . .: ..... .. . . -. ---. _ ....: . . ......-.--.-.-. . .':'"
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trial function used, the total energy is correct to better than 0.008 h (5

kcal/mole) of experiment, or to 1 part in 5000. The statistical uncertainty is

roughly half this value (2-2.5 kcal/mole). The remaining error may be attri-

buted to the fixed-node and the short-time approximations. This translates to a

Monte Carlo accuracy of 99.98% of the total energy and 96-98% of the correlation

energy. Therefore in the present application, where the time-step error is negli-

gible, the fixed-node error is seen to be manageably small. Furthermore, to

within 1 kcal/mole, this error is the same for the two states. This means not

only that the absolute error is small, but that there is also a large degree of can-

cellation of this error in evaluating the energy gap. In fact, for the energy gap

the error is considerably less than the statistical uncertainty.

To obtain our best estimate for T., we calculated a weighted average of the

energy differences for our various trial functions. Our final result is T. =9.4±2.2

kcal/mole. This result is in excellent agreement with the recent experimental

results of McKellar et al".

(3) We have calculated points along the reaction path of the H + H2 exchange

reaction. Particular emphasis has been placed on the saddle point, for which

uUu5 has performed the most extensive CI calculation to date. Nevertheless, the

bound for the barrier height which we obtained 2 by QMC is 0. 16 kcal/mole below

Liu's bound (see Table II), and probably lies within 0.1 kcal/mole of the exact

answer. In addition, we were able to obtain these results with only single-

determinant trial functions, and a basis set expansion at only the double-zeta

level.

The nodes, which are so important in determining the correct energy, prove

to be quite insensitive to basis set after the double zeta level. A single-zeta basis

set, however, gives a very poor nodal description (see Figs. 2-4).

(4) Monte Carlo, as alluded to earlier, is such a computationally intensive

activity that new techniques are needed if one wishes to attack large systems or



obtain very high precision (e.g. better than 99.99%). One avenue we have

explored, in collaboration with the Advanced Computer Architecture Laboratory

at LBL. is the use of parallel computing architectures. Briefly, we have found

that Monte Carlo can be readily made to run at 95% efficiency on an 8 processor

syscem. With sufficient memory, precision will scale as the square root of the

number of processors, while computing time for a fixed precision, will scale

inversely almost linearly with processors. We explored several different direc-

tions for parallelizing QMC, as well as load-balancing techniques to keep the

efficiency near 10O.

(5) An accurate calculation of the binding energy of N2 has been a classically

difficul problem using traditional ab initio quantum chemical approaches.

Since the quantity of interest. Eb&,dft, is desired to better than 5 kcal/mole out

of a total energy (for N2 ) of over 68,000 kcal/mole, this is an example where

QMC requires very high precision. Thus we have performed this calculation on

the experimental parallel processing system mentioned above. We have

obtained the N2 binding energy to be 233 : 5 kcal/mole. To within the statisti-

cal uncertainty, this answer agrees with experiment.

(6) We have also begun investigating the electron affinity of F, since affinities are

generally difficult by traditional approaches. In addition, we are exploring some :.

new directions. As mentioned in the previous section, molecular pseudopoten-

tials hold promise for simplifying Monte Carlo calculations. Little loss of accu-

racy is anticipated. However, this must be explored. More importantly, one

must learn how to translate angular momentum dependent "effective-core-

potentials" into a form applicable to QMC. Another direction we are following is

the explicit calculation of derivatives by Monte Carlo. This would enable direct

calculation of forces and more accurate determination of potential-energy sur-

faces. Also, this would provide the ability to find equilibrium geometries.

4 . %.~ % % 4.-,% '.-
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Table Captions

Table I. Comparison of QMC results on methylene with SCF, CI, and experimen-

tal values. The results indicated as "expt" are corrected for zero-point motion

and relativistic effects to make the comparison direct. The lowest variance QMC

result for T. is not the difference of the QMC values given for the two states.

Instead T. is obtained by averaging the results of all the $r's we used in this

study.

Table I. Comparison of computed reaction barrier heights for the H + H2

exchange reaction. Fixed-node quantum Monte Carlo provides an excellent

bound, which is better than that given by C1, and is within 0.1 kcal/mole of the

exact value.

g *g I
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Table 1.

Method Energy (hartrees) To
h 3A, (Kcal/mole)

SCF -38.93486 -3 8 .8 9 44b 25.4
2C-SCF - -38.91776 10.7"
2R-CI-SD -39.11600 -39.1003' 9.9'
CI-SD(Q) -39.1220 -39. 105c 10.7"
QMC -39.140(4) -39.12B(3) 9.4(2.2)
"expt" -39.148f -39.133' 9 .5 5h

--.- ,

Glossary of Methods

SCF = self-consistent field

2C-SCF = two-configuration SCF

2R-CI-SD = two-reference configuration, single and double excitations Cl for

the singlet; one reference configuration CI-SD for the triplet.

CI-SD(Q) = singles and doubles Cl. quadruples estimated.

QMC = quantum Monte Carlo (this work).

"Ref. 19.20.

Ref. 21.

r Ref. 19.

using 1C-SCF for the state.

D Ref. 22.

f Ref. 23.

* . 9 obtained by subtracting T, from the "expt" energy of 3B 1 CH2 .

h obtained from T. of McKellar et. al. (Ref. 24), corrected for zero-point motion

and relativistic effects.

*7.
,.. °'. . ' * * * .. . .

%' ~ .~ S-.a ~ a~
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* Tableil1

Method Eb

* Best Cla

1'NQMC (present work) < 9.70 (0.13)

*Exactb 9. 65 (008)

*Ref. 25.

b Ref. 27.



15

Igure Captions

Figure 1. Schematic illustration of process for globally optimizing *' .T The origi-

nal trial function is 'lT(Irt I), while the subsequent trial functions are +P), 'if).

etc. The functions in the middle column are the solutions of the fixed-node

Schr~dinger equation, with the nodes of the I'i to the left. The final functions on

the right are the scaled fixed-node functions, but these are no longer solutions

to the Schr6dinger equation. Along the path indicated by arrows, each function

has a lower variational energy than that preceding it.

Figure 2. Exchange nodes of a single-zeta quality trial function. The circles

represent the hydrogen nuclei. The curves are cross sections through a selec-

tion of nodal surfaces arising from the exchange antisymmetry. Full nodal sur-

faces may be obtained by rotating the curves around the internuclear axis.

Each surface is obtained by fixing the position of one electron on it and finding

the locus of points for the other like-spin electron at which the trial function

vanishes. It can easily be shown that the trial function is zero whenever both

like-spin electrons are anyu$were on this surface. Distances are in bohr.

Figure 3. Exchange nodes for a double-zeta quality trial function. See Fig. 2 for

further explanation of this figure. Note how different these nodes are from those

depicted in Fig. 2.

Figure 4. Exchange nodes for a near Hartree-Fock quality trial function. See

Fig. 2 for further explanation of this figure. Note that approaching the basis-set -

limit has little effect on the nodes, past the single-zeta level.

'7,,,
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