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0. Introduction

Methods of estimating the scale parameter of exponential life
distributions are generally based on complete information of the failure
times, with or without censoring. More specifically, the estimation is
based on life testing of n identical systems which are subjected to
similar experimental conditions. The failure times of the systems are
recorded, and the experiment is censored either at the r-th failure

(1 <r<n) , which is called censoring of Type II, or at a fixed time,
t, s which is censoring of type 1. In some cases the minimum of to and

the r-th failure is used. The reader is referred to any one of the text-
books on statistical methods in reliability for the details of the

estimation procedures (see for example W. Nelson [5]). The present
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:;3 paper has been motivated by two papers of Epstein et al [2,3], which discuss
?: photodynamic bioassays for estimating the potency of benzo-solubale organic
\1 extracts from particulates in air samples. In these experiments various
fi dosages of organic extracts and of their derived fractions (basic, acidic,
%5: aliphatic, aromatic, oxygenated and water soluble) were applied on n = 30
>, living organisms (Paramicium coudatum) under ultraviolet irradiation.
i_ In each application the measured biological response was the time required |
ii (in minutes) to immobilize 90X of the cells. This response variable was %
%f called the lethal time 90 (LT90). Each trial was censored at t_= 90
= minutes, and the number of cells still living at the time of censoring
;. was not recorded. Empirical fitting of a dosage-response curve was done
{E by Epstein et al [2]. Serious questions arise concerning the validity
?E of such an empirical analysis, which is performed without sufficient
iﬁ theoretical justification. The present paper is devoted to a theoretical
{f analysis of two possible estimators of a scale parameter, when the data
;35 are the censored r-th order statistic. More specifically, let xn,r
:i‘ denote the r-th order statistic of a sample of n i.i.d. random
; variables from an exponential distribution with mean € . Let
tfi X:’r = min(Xn’r, co) . A random sample of m observations on x:’r

is available. In Section 1 we present the model and define some basic
notions. In addition we provide formulae of the expected value and

*
variance of Xn - On the basis of these formulae we study in
]

Section 2 the structure and properties of a moment-equation estimator
: *
(MEE) of 6 . This is the value of 6 for which Ee{xn r} is equal

] ) AN
(L OGRS . R

. »

*
to the sample mean of the m observations on Xn . We show that
14

...
A
S
Ny

if at least one observation is not censored then the MEE is unique.

,i: We further show that as m grows, the asymptotic distribution of the
) MEE is normal. Formulae for the asymptotic bias and asymptotic variance
?:
:? of the MEE are also derived. In Section 3 we study the structure of
{i the maximum likelihood estimator (MLE) of 6 and show that it is unique,
fk provided at least one observation is uncensored. The Fisher Information
2 Function and the asymptotic normal distribution of the MLE are derived
o
\; -2 -
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\d
-
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in Section 4. In Section 5 we discuss the asymptotic relative efficiency
of the MEE compared to the MLE, and provide some simulation results which
illustrate the performance of these estimators in samples of size

m = 20(10)50. The results of the present study can be applied not only
to the analysis of the photodynamic bioassays data of Epstein et al [2,3]
but also to reliability studies, in which the observed failure times of
systems are based on censored r-th order statistics. This is the case,
for example, when n identical components within a system function
independently, and the system fails when the r-th component failures

happen. The times of the component failures are not available.

1. The Model and Moments of the Censored Observations

Consider a sequence of independent replicas of an experiment in
which n systems are subjected t; life testing (possibly accelerated).
Each experiment is terminated either at the r-th failure (1 < r < n) ,
or at a fixed time point, ty, whichever comes first. The recorded random
variable is the time-censored r-th order statistic. We further assume
that the life distribution of the individual systems is an exponential
distribution, i.e., F(x/0) = 1 - exp {-x/6} , 0 < x <o and 0< 9 < = ,
Let Xn r denote the r-th order statistic in a sample of n i.1i.d.

random variables, having a common distribution F(E) . The observed

6
*
random variable in the time-censored experiment ic X = min(to . Xn r) .
1]

Since the life-time distribution F(%) is exponential, the p.d.f. of
xn c is (see David [1))

(1.1) fn‘r(x;e) = r(:) % exp{-(n-t+1)‘§} (1-exp{- g})r-l ,

for 0< x<>o®, Let U = X /6 be the standardized r-th order
n,r n,r

statistic, and let fn r(u) denote the standard density, i.e.,
»

.0y = & X
fn’r(x.e) ) fn,r(e) . Let Gn

*
X . This c.d.f. is absolutely continuous on [O,to) and has a jump

r(x; 0, to) designate the c.d.f. of

point at t° , 1.e.,
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0 » x<0
x
(1.2) Gn,r(X; 9, to) = .{ fn’r(x'; 0) dx”~ » O <x <t
1 y X > to .

The height of the jump of this c.d.f. at x = to is

t

o]
(1.3) PplXx _ >¢} = B(r-1; n, F(5)) ,

n,r
where B{(j; n, p) designates the c.d.f. of the Binomial distribution with
parameters (n, p) . We derive now formulae for the expected value and

*
variance of the censored variable X . It is well known (see David [1])

r-1

*
that if t_ = » , (no censoring) then E {X IG, t =} =9 I A
o o =0 n-j
r-1
* 2 1l
and V{X |6, t =} =08" I . This is due to the fact that
o 2

j=o (n-3)

the r-th order statistic in the exponential case can be represented as a
sum of r independent random variables, having exponential distributions

with means 6/(n-j) , j=0,...,r~1 . In the time censored case one obtains

*
Lemma 1.1. The first two moments of X in the time censored case are:

. -1 t,
(1.4) E{x'|8, t } =6 jio =7 [-3(15 o, FgD)])
and
*2 2f%1 1 31 %
1.5) E{x |e, to} = 20 { L = I (1 - B(k;n, F(—5))] -
=0 k=0

to r-1 1 to
——e- 'jio n—_j' B(j; n, F('_e))}

e SR RN I8 IR Ty ..._. (»—f_-\.(......'. -
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Proof: ‘
According to (1.2) , |
t
* o o
(1.6) E{X'[e, t } = {x £, ¢(x:6) dx + £ B(r-1; n, F(-2)) ,
and
2 to t
* 2 . 2 . _O.
1.7 EX |e, t} { x" £ (xi0) dx + t] B(r-1; n, F(D) .

Let n = to/e then

t
o n

1.8) f x £ ,(x;0) dx =@ fuf (u) du
o 1 o 1]

e

(1)
6 un’t(n) .
HMoreover, by interchanging the order of integration we obtain

a.9 P
n,r

"
0 Yo

u
({ dt) fn,r(u) du

n

n
= { ({ fn,t(u) du) dt
n t to
= {[B(r-l; n, F(g)) - B(r-1; n, F())] dt
1 -t -n
= .[ B(r-1; n, 1-e ") dt - n B(r~1l; n, l-e ') .
o
Furthermore,
n r-1 n
(1.10) £ B(r-1; n, 1 %) dt = £ () f (1-e"8HI (" Dtq,
o j=0 3 o
-5 -
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r-1 n
n 1
"L @Dy L ®
o (s42) *
r-1
=t L [1-B(4;n, 1~eM] .
j=o ™I

Finally, substituting (1.9) and (1.10) in (1.6) we obtain (1.4). Notice

that lim B (j; n, i-e-n) = (0 for each j < n . Hence, the well known
n-e ’

*
formula of E{X |8, t = »} is a limiting case of (1.4). In a similar

fashion, we derive the formula

n
(1.11) uf‘zz(n) f uzfn _(w) du
2 ° ]

"
~N

u
({ tdt) fn,r(u) du

n
e (f£ _(wawae
c ”

L}
N

"
N
Clm 3 o%m 3 0 ‘=

t B(r-1; n, 1-e-t)dt - nZB(r-l; n, l-e-n)

Furthermore,

n r-1l n
(1.12) ft B(r-1; n, 1-e Ddt = £ () ft (1-e~tyd o t@=3) 4,
0 .j-o j o
r-1 1 n
= 'Z Py j t fn’jﬂ(c)dt
j=o o

b
r-1
= jz nfj [kfo nfk (1-B(k; n, 1-e™M) - n B(3; n, 1-e"")] .
=0
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Substituting (1.11) and (1.12) in (1.7) with the proper scale factor, we
obtain formula (1.5).
(Q.E.D.)

From formulae (1.4) and (1.5) one obtains immediately the following formula

*
for the variance of Xn r? namely:
?

2 » — * )
(1.13) o“(8; to)-V{Xn i 6, t }

, o
r=1 j t
2 1 1 o)
= 8°¢2ZI == I == [1-B(k; n, F(—))]
{ j= n-j k=o ® k 6
to r-1 1 to
-2—5 I 3 B(j; n, F(-g)) -
j=o
2
r-1 t
1 . o
( = (1-(¢55 m, F(-g'))) :
i=o
2 2 L
One can easily check that 1lim o0°(0; to) =9 z — .
t - j=o (n-j)

o

In the following section we apply the above formulae for the study

of the moment-equation estimator, MEE.

2. The Moment Equation Estimator and its Asymptotic Properties

In the case of no time censoring, i.e., when to =0 , an

unbiased estimator of © 1is obtained by equating the sample mean

- 1 B *
X == I X to E{X IO, t = oo} and solving for 6 . In other
Bom ., BT o

words, if to = © then

2, s 1
(2.1) e(xm) = Xm‘ jz.o -T;:J-

------- K R

IR TN RS LA G IR A LR LY |



' is an unbiased estimator of O , having a variance
* A l‘—l t-l
t (2.2) vie)le, £ ==} = 8% 1 —L z/m,( > ;—f—)z :
o j=o  (n-3) j=o "™
N
Y
:i In the present section we generalize this estimator for the case
o of 0 < to < » and determine its asymptotic properties. Since to is
-~ %*
o fixed, we simplify the notation by letting E(6) = E{X |6, to} .
& 2
N * *
-, Since the sample represents m i,i.d. random variables Xl ,...,Xm s
N % 1 0 x
e the sample mean X =-E I X, 1is an unbiased, strongly consistent
o j=1
E A -
:{ estimator of E(0) . Accordingly we say that 6 (X;) is a moment
-_:’
N equation estimator (MEE) of © if it is the root of the equation
o r-1
o (2.3) 8 I =2 [1-B(4; n, 1-e"%/%)) = x* .
AN . n-j m
-~ j=o
A\
i The left-hand side of (2.3) is the function E(6) , which is defined
- on the domain (0,®) .
- Lemma 2.1
W, —
o
"t (i) E(O) 1is a strictly increasing function on (0,®) ;

~

BLALS L PRI
AARE FAXAAR

——

(i1) E(8) 1is concave on (1,®) ;

(iii) 1lim E(8) = to .

8->

fﬁ Proof :

o (i) straightforward differentiation yields

o d -(n—

2 (2.4) Ty B(j; n, p) = -S%:%l b(j; n, p) s §J=0,..04n
1A

and every 0 < p <1, where b(j; n, p) is the Binomial p.d.f., i.e.,

-

'-‘\f.\t'.‘il L N AN [

b(j; n, p) = B(j; n, p) - B(j-1; n, p) .

[4
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Thus,
r-1 -t /8
d 1 . _ o
(2.5) 30 E(0) X a3 [1-B(j; n, l-e )]
j=o
to r-1 -to/O
j=o
r-1 -t /O t
= I —lﬁ-[l-B(j; n, l-e ° )] - —2-B(r-1; n, l-e
n=j}
j=o )

Comparing (2.5) with (1.9) - (1.10) we obtain that

d

(2.6) 90

This proves that E(0) is a strictly increasing function over

(ii)
2
d
.71 4=
62

Thus, for every

of E(6)
(2.8) 1lim
6+
Starting
(2.9) 1lim
§-ro0

t
E() = ul(—g) >0 , for all 6

Differentiating (2.5) we obtain

t -t /6
E®) = - —% B(r-1; n, l-e
(n-r+1)t 2
- b(r-1; n,
e3
42
©>1, =5 E(® <0, vhich
doé

over the interval (1l,») .

r~1 1
E@B) = 1lim 6 I —— [1-B(j;
6+  j=o n=j
with j = 0 we obtain
-t /6
® [1-B(0; n, 1l-e )] =
-nt /6
lim 6(l-e ) = nt_ .
) °
-9 -

in (0,x) .

(0,@) .

t -:o/e
) +—% B(r-1; n, l-e

+]

-cO/e
l-e

) .

proves the concavity

-t /6
)]

n, l-e

-:o/e

)

)
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On the other hand, for every j >1,
-:o/e -nto/e
(2.10) 1lim 6{1-B(j; n, l-e )] = lim 6(1-e )
. G- G-rc0
j -t /o -(n~-i)t /6
-un 2 () a-e © e ° «0.
B+ im]
Indeed,
-tO/G i -(n-i)tole
(2.11) 1im 68(1-e Y e
G-
t , 1f 1i=1
{ o
0 , if 1>1
Thus, from (2.8), (2.9) and (2.10) we obtain the result.
(Q.E.D.)

Corollaries:
(1) There exists a unique solution to equation

(2.3) , é(i;) , for each 0 < i; <t .

A=k . F*
(ii) B(Xm) does not exist if Xm to .

The solution of equation (2.3) can follow the Newton-Raphson
iterative procedure
(1), =%
A ] 8™y - % ;
(2.12) e(i+1) - e(i) _ 5 m ,» 1=1,2,...
E“(@ ")

where 6(1) is any initial solution, and E“(0) 4is the derivative of
E(8) , given by (2.5). If Ms denotes the number of censored observations

in a sample of m , then ﬁs = Ms/m is a strongly consistent estimator
-t /6
of B(r-1; n, l-e ) , as mo , Thus, a solution, es , of

- 10 -
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. -t /6
(2.13) Ps = B(r-1; n, l-e )
is a consistent estimator of © and could serve as an initial value

6(1) in the sequence defined by (2.12). If Ms = 0 we can start with

r-1
the "unbiased" estimator 6(1) =X* 3 L .
m j=o n-j

We derive now formulae for the asymptotic mean and variance of B(i;) ’

as mwe

According to the Central Limit Theorem, \m (i; - E(G))-g
N(O, 02(6; to)) . Let E-l(x) denote the unique inverse of E(08) .

Notice that the MEE is the value of E-l(i;) . Moreover, since
E.l(E{iz ; 6, to} ) = E-I(E(e)) = § , we consider the Taylor expansion

of E-l(x) around E(6) and obtain

3*) = gk _ 1 1
(2.14) é(xm) 8 + (XX - E(8)) o + op Qﬂ?” , as m® .,

Thus,
a?(8; t,)

(2.15) Va (BE*) - 8) 4 x o, :
(E“(9))

- a.s. -
Moreover, since Xm —> E(0) , and since E 1(x) is a continuous

transformation, §(i;) is a strongl& consistent estimator of 0 , as

m»o , The asymptotic variance of é(i;) is thus,

2¢q.
04(6; to)

(2.16) AV{B(X*); 6, t } =
o ° m(E*(8))?

This asymptotic variance will be compared later with the
asymptotic variance of the MLE, to determine the asymptotic relative
efficiency of the MEE.
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In order to obtain an expression for the asymptotic bias of the

MEE, we add another term to the expansion (2.14).

The second order derivative of E-l(x) is

1 L _E"GETR)

(2.17) ~ -
E°(E L (x)) E Exon3

4
dx

Hence, we obtain the expansion

2ok ok 1
(2.18) G(Xm) = g + (Xm - 8) T(—e—)—

-3 @ -0 2O Lo @
E* (0))°

b
as mw® , It follows that the asymptotic bias of 6(i:) is
2
-67(8; t.)

E"@)
(2.19) B(6; t ) = .
° Zm (E°(0))>

According to Lemma 2.1 (ii) , B(8; to) >0 for all 6 >1.

3. Maximum Likelihood Estimation

*
Let im = (XI ,...,X;) be a vector of m i.i.d. random variables.

The likelihood function of 6 based on %; s up to a factor of

proportionality, is given by

m 1 t 1-1

*
(3.1) Le; X = 1 [f (X301 1 [B(r-1; n, FD))]
A i=1 n,r 1 ;)
where
1 , if X* <t
(3.2) 1, = { : °
0 , 1f xi = to .
o *
Let K = T I, and let £2(6; X ) denote the log-likelihood
TS e
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function, then

t
(3.3) 2085 X3) = - K, log &+ (@-K) log B(r-1; m, F(=g))

Y
+ I1 [(x-1) log (l-exp{- X;/G}) -
i=1

(n-r+1) xz/e]

The maximum likelihood estimator of 6 (MLE) is the value of 6

in (0,) which maximizes £(8; ﬁg) .

Consider the score-function, S(6; %;) , which is the partial
derivative of 12(0; é;) , with respect to 06 . According to (2.4) we

obtain that

K t
.oxky o _ - - -9
(3.4) S(6; zm) 3 + (m Km) (n-r+l1) ez .
-to/e
. b{r-1; n, l-e ) +
-t,/6
B(r-1; n, l-e ©°°7)
. . -x;/e
? . (n-r+1)xi (r-1) . Xi e
i 2 - 2
i=1 G G l-exp{-X;/G}

Lemma 3.1. If Km = 0 then there is no MLE of 0 .

Proof: 1If Ii =0 for all i then, according to (3.4)

S(0; %;) >0 for all 6 in (0,») .
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Theorem 3.1. If K > 1 then there exists a unique MLE.

Proof:

*
The equation S(6; %m) 2 0 is equivalent to the equation

n m I, x*
(35) 6= 2— y1 xFf- X 5 1 i _
K .°.71 71 K - -X*/6
m i=] m i=1 i
i-e
-t /6
K n -t /8 .
m B(r-1; n, l-e ° )

Let H(8; %;) denote the R.H.S. of (3.5). We show first that, for

fixed X* ,
~m
(1) lim H(O; X*) = "It ?1 X+t (@K)
6-0 e Km i=1 i ° m
and
(ii) 1lim H@®; X* ) = - =,
B0 n
Indeed,
-co/e
b(r-1; n, 1-
(3.6) BEliRadze ).
B(r-1; n, l-e ° )
r-2 (0 t /6 Y(r-1-1)7] -1
1+ % —(-l—)— (e° -1)_
370 (:2)
Thus, -t°/9
lim b(r-1; n, l-e_t /e) - 1
6o B(r-1; n, l-e ° )
(3.7) —tole
lim b(r-1; n, l-e-t /e) = 0
Caae B(r-1; n, l-e ° )
- 14 -




From (3.5) and (3.7) we obtain (i) and (ii). We show now that

'33_ H(O; %;) <0 forall 6 in (0,0) . This will prove that there

is a unique finite 0 satisfying (3.5).

Indeed, X*/G
*2 i
(3.8) = H(e; XM = - —IL 7 “ -
® A Kk 82 4=1'd X;/8 2
m (l-e )
+ 5 5 r-2 !i ! ( t /9 -r-l-j) -1
T (m—Km) (n=-1+l1) 6 1+ Z ' ) e .
m r -1
But
n -1
5 -2 ( t /0 (r-1-3)
I=o (r-l)

substituting (3.9) in (3.8) we obtain that H(6; ¥;) <0

for all 6 in (0,®) .
(Q.E.D.)

Numerical examples have illustrated that the function H(6; 5;)

might be very steep in the neighborhood of © , and the Newton-Raphson
method has proven to be instable. We have used therefore a search
procedure for the maximum of the log-likelihood function, which

provided good numerical results.

- 15 -
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?5 4, The Fisher Information Function and the Asymptotic

e Distribution of the MLE

}: The time-censored r-th order statistic X* has a c.d.f.

i 3 Gn r(y; e, to) » which is specified in (1.2). The corresponding

! ’

g‘ generalized p.d.f. is

! 1 >4

vy 6 fn,r @ » 02y <ty

< (4.1) g, [(y; 8, ) = e,

G: B(r-1; n, F(-5)) y=t

\-u We observe that these p.d.f's have the following properties:

- .

’f (1) The support of gn’r(u, e, to) is [o,tol ,
"!.

independently of 6 .

28N

N (ii) g _(y; 6, t ) has continuous partial derivatives,

Tn n,r o

;: with respect to 6, at every y € [0, tO] . Moreover, since
\ their support is independent of 6 ,

h

- T 8, ¢ (y; O, to) is a uniformly integrable function of
- a6 ’

¥ y , for every 1i=1,2,... and all 0 .

)

» (iii) The p.d.f's satisfy:
.
{xj 5 o t 5

}:.' . v H = apn ’ =
R 4.2) = JSde (38, c) = J - {6 _(v;0, t)} =0
o o o

- for all 6 ¢ (0,o) . This is proven by the following

s Lemma 4.1

- 9 *, -
::: (4.3) 56{36 log gn’r(x ; 9, to)} 0 , all 6 e(0,») .
.‘.J.

.‘(,

'L"‘

< Proof:

‘-..'

-

As in (3.3) we obtain
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=

“»

:

:; (4.4) —5~ log gn’r(y, 0, t) =

>

. /8

\ 1 r-1 ve y n-r+l

Al - - ~ + y » 0 f y<t

. ) 82 l-e y/6 e2 o

d =

2

¥ _ ¢ -to/e

) _o (n-r+1) b(r-1l; n, l-e ) L y=t .
e2 -tO/B o

B(r-1l; n, l-e )

“ Thus,

) ok, -
(4.5) Ee{—a-e— log gn’r(x ; 0, to)}
- -t /8 t -t /o
v - %- [l-B(r-l; n, l-e ° )] + —%-(n-r+1) b(r-1; n, l-e ° )
3 0
to %
n~r+l . n-r+l
X e2 { y fn,r-l(y’e)dy + e2 { y fn,r(y’e)dy *

Furthermore, according to (1.9),

X -9 *, =

D (4.6) Ey {5 log g,  (x*; 0, t)}

. 1 -t /8 t, -t /6

-5 [l-B(r-l; n, l-e )] + ;5_ (n-r+1) b(r-1; n, l-e ° )

; t

B ) -t /6
" +."_‘.§.;}. [] b(r-1; n, l-e x/e) dx - ¢t b(r-1; n, l-e ° )]
'-‘ 0

(

Finally,

;:: t, to

- 4.7) I b(r-1; n, l-e-x/e) dx = (;_‘1) f (l_e-x/O)r-l .

" o °

¢ t,

S Lo~ (n-r+1)x/0 .8 .
s e dx — { fn,r(x,e) dx

o

) -t /0

A - n-g‘l’l [I-B(r-l; n, l-e ° )] .

“
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Substituting (4.7) into (4.6) we obtain (4.3).

(Q.E.D.)

According to Lemma 4.1, the Fisher Information Function is
(4.8) 1(8; t ) =E ([ -—2—'103 g. _(x*;0, ¢t )]2}
* * Yo o EY:) n,r "’ "’ "o *
Equivalently,
to 2
(4.9) 185 t)) = Q=)/0
where

n
-y
4.10) om = f £ (G- &L -
[+ ’ 1-e7Y
bz(r-l; n, l-e-n)

(n-r+1) y1? dy + n’(n-r+1)2- _
B(r-1; n, l-e n)

Expansion of the quadratic form in (4.10) and some algebraic manipulations
yield the formula

(4.11) Q(n) = - [1-B(r-1; n, 1-e )]
+ 2n (n-r+l) b(r~1; n, l-e ™M

+ nz(n-r+1)2 bz(r-l; n, l-e-n)/B(r-l; n, l-e-n)

n-r+l (2)

+ r-2 n,r-2

(m)

2,2 (2)
+ (n-r+l) e un'r(n) s

where the second incomplete moment uéz)(n) is given in formula (1.11)
1]

and ¢ uZ = uPm - 20P e u®m .
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It is interesting to study the effect of the time-censoring on

* 1":"‘)

[
~y

the Fisher Information Function. For this purpose we prove that when

A
a~

t = then

(o]

S (4.12) 1I(8) = 1(8;=) = Q/6%
L ' where

-y
413) Q= fE () (-1 L - (n-r+1)y)2dy

l-e y

[[]
Ot g

-2y

”
(]

[ -]
1+ (r:-l)2 fyz £
o

(1-e'y)2 fn’r(y) dy

{' '.. ' ‘-

+

@r+)? fy* £ () dy
o]

2 ave s
s

+

0 -y
20-1) f y =S £ (y) dy J
o ’

l-e

‘!. "'

-

2(n-r+l) f y fn r(y) dy
o ?

_.l.. '.( “.'. R
[}

L4
Py
$a%s s

2(r-1) (n-r+1) f y? —=——

Substituting

A A 1
AT, L

\,

o

(4.14) —S— ¢ (y) = portl (y)

V]
NS

»

LN

and

e . _(n-r+l) (n-r+2)
(4.15) —————a—f__(y) (r-1) (r-2) fn,r-Z(y)

Y f A}
pr e @
]
N
<

I..

oy Yo v e
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and applying the formulae

1
y fn’j(y) dy = ooitl ’

h] 3
2 1 : ( 1 2
y° f (y) dy = X +{ z - ) .
n.J 1=1 (n-1+1)2 - it

(4.16)

%8 O%w,8

we obtain after some manipulations

r-2
-r+l 1 n-r+l
(4.17) Q=1+232 3 _— 42 BEH
n-r+2 {=1 n-i+l (n—r+2)2
2
4 _n(n-r+l) ['22 1 . (’52 1 ) ]
r-2 =1 (n-i+1)2 j=1 wifl

As shown in the present section, all the conditions for the
consistency and asymptotic normality of the MLE, 6m s, are satisfied
(see Lehmann [4]). Thus, for a fixed 6 ,

~ 1
(4.18) em -0 Op(,_)lll , as Mmoo
and

(4.19) ﬁ"(é‘m-e)iu(o,i—

The convergence, however, is not uniform. For values of 6 close to to

the probability Pe{l(m = 0} could be close to 1. For example, if

8=t , n=30, r=27 , B(26; 30, 1-e71) = .999 .

Thus, in a sample of size m=50 , P{Klll =0} = (.999)50 = ,9512 . Thus,

the probability is over .95 that the MLE would not exist. But, in a
sample of size m = 1,000 this probability drops to .368 .

- 20 -
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5. Some Numerical Comparisons of the MLE and the MEE

In the present section we numerically illustrate the asymptotic
variances of the MLE and MEE, and provide some simulation results. These
simulations demonstrate the actual behavior of these estimators in samples
of size m=20,30,40 and 50. The numerical computations of the present
section are restricted to the case of n=30 and r=27 . These are

the parameters used by Epstein et al [2] in the photodynamic bioassays.
The MLE estimator 6m and the MEE estimator 6(?;) are both

scale equivariant in the sense that, if Xn r + B xn r for some £ >0,

~ A 3 Sk - < 1
and correspondingly to + B to then em > B em and e(sxm) B e(xm) .
Moreover, since p = tO/O is invariant under such transformations, the

(asymptotic) variances of 6m and é(i;) under 6 are equal to 92

times the corresponding variances under 0 = 1 . We therefore report
here the variances of the estimators under the case of 6 = 1 and

different values of p = to/B . In Table 5.1 we provide values of

Q(p) for some values of p . This function was determined according
to (4.11) for 0 < p < » and according to (4.17) for p = ®
(uncensored). Notice that Q(p) is the value of the Fisher information
function at 6 =1, i.e., I(1;p) = Q(p) .

Table 5.1

Values of Q(6) for n=30, r=27

P 1.80 2.00 2.25 3.00 4.50 L

Q(p) | 10.6275 | 13.7234 | 16.3008 | 18.6408 | 18.8340 | 18.8344

- 21 -
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As seen in Table 5.1, the amount of information per observation

is maximal when there is no censoring (p=) . Moreover, if p > 3

the amount of information is close to the maximal one., The asymptotic

efficiency of the MLE, under p , compared to the no-censoring case is

(5.1) AE(p) = Q(p)/Q

Thus, as seen in Table 5.1, AE(1.8) = .564 . On the other hand,

AE(3) = .99 . Thus, for © values close to the censoring point t,

we need considerably larger samples, than in the uncensored case, to

attain a specified asymptotic precision,

In Table 5.2 we present the values of the asymptotic variances
of the MEE and the MLE, which have been determined according to formulae

(2.16) and (4.19), respectively. The asymptotic relative efficiency
(ARE)

Table 5.2

The Asymptotic Variances of the MEE

and the MLE (in units of 10-3], for 6 =1, m=50
n=30, r=27 and the ARE

p MEE MLE ARE
1.80 2.2723 1.8819 .828
2.00 1.6549 1.4574 .881
2.25 1.3153 1.2269 .933
2.57 | 1.1450 1.1152 974
3.00 1.0809 1.0729 .993

of the MEE relative to the MLE is defined as the ratio of the asymptotic
variances, i.e.,

Av{ém; 1, p}
(5.2) ARE(p) =

I\-*.
AV{G(Xm). 1, p}
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As seen in Table 5.2, as p increases the value of the ARE approaches
one. In other words, the asymptotic efficiency of the MEE is close to
that of the MLE when the value of © is considerably smaller than that

Cith 7~ (AR

of to y l.e.y p > 3 . If we suspect that 6 1is close to to the

MLE is a more precise estimator than the MEE.

It is also interesting to study how the two estimators perform

when the samples are not very large. For this purpose we have conducted

%y v Ve

a series of simulations. In these simulations we generated random

r

*
samples of m values of Xn e’ for n=30, r =27, t0 = 90 and

3 & =30, 35, 40, 45 and 50 . For the sample size, m , we considered

- the values m = 20 , 30, 40 and 50 . For each of these samples we

computed the values of the MEE, G(i;) » and of the MLE, ém « These

t trials were repeated M=500 times independently. If all the values of

x* . vere censored, a message "NO-EST." was printed. It is interesting
; to’notice that in the case of m=20 and ©6=50 (p=1.8) we obtained this
. message two samples out of 500 independent samples. This conforms to the
theory, since in the case of p=1.8 , the probability of cemsoring is
B(26; 30, .8347) = .7543 . Thus, the probability that all m=20

observations will be censored is (.7543)20 = ,0036 . If such samples

-

PR D A

are simulated independently M=500 times, the expected number of samples

with complete censoring is 1.8 .

.

In Table 5.3 we present the means and mean square-errors of the
simulated values of the MEE and MLE. It is interesting that in all cases
the bias is negligible. In addition, the MSE's of the MEE are not
significantly larger than those of the MLE when 6 < 40 (p > 2.25) .

S dvam

Furthermore, when m=50 the MSE's of the MLE and of the MEE are not

significantly larger than the corresponding asymptotic variances, even
if 6 > 40 (p < 2.25) . For example, when m=50, =50 , p=1.8 and
from Table 5.2, the asymptotic variance of the MLE is 2.5 x 1.8819 = 4.705.

T
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Table 5.3
. Means and MSE of M=500 simulated
! values of the MEE and MLE, for n=30, re27,
t_=90, 6=30(5)50, and m=20(10)50
R MLE MEE
; M )
: MEAN MSE MEAN MSE
20 30 30.25 2,358 29.97 2.319
35 35.25 3.445 35.02 3.606
40 40.36 5.475 40.11 5.789
45 45.49 8.444 45.30 9.795
50* 50.54 18.938 50.57 23.680
30 ] 30 30.21 1.779 29.94 1.715
35 35.21 2.520 34.96 2.577
40 40,28 3.854 40.03 4.082
45 45.37 5.824 45.16 6.537
50 50.50 9.400 50.47 12.944
40 30 30.27 1.325 29.98 1.223
35 35.28 1.866 35.00 1.793
40 40.30 2,642 40.03 2.693
45 45.33 3.943 45.10 4.470
50 50.41 6.972 50.33 8.586
50 30 30.29 1.044 30.02 0.948
N 35 35.31 1.457 35.02 1.364
! 40 40.30 2.077 40,04 2.082
45 45,35 3.101 45.10 3.382
50 50.43 5.240 50.27 6.023

*The estimates are based on M“=498 samples.
Two samples were completely censored.
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The corresponding standard-error of the variance estimate is approximately

SE=4.705 (2/500)}/% = .208 . Thus, 4.705 + 2 SE = 5.300 , which is

above the MSE value of the MLE in Table 5.3 . Similarly, the MSE of

the MEE, for m=50, 6=50 , is within the .95-confidence interval
constructed around the corresponding asymptotic variance. This is not,
however, the case, when m=20 and 6 > 45 . The MSE's of the MLE and the
MEE are significantly larger than the corresponding asymptotic variances.
For m=20 , 6=50 , the asymptotic variance of the MLE is 11.762 . On the
other hand, the estimated MSE is 18.938 . This shows that the actual
variances of the MLE and the MEE are considerably larger than the
asymptotic variances if the samples are not sufficiently large and

p < 2.00 .
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