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0. Introduction

-:: Methods of estimating the scale parameter of exponential life

distributions are generally based on complete information of the failure

times, with or without censoring. More specifically, the estimation is

based on life testing of n identical systems which are subjected to

* '- similar experimental conditions. The failure times of the systems are

- recorded, and the experiment is censored either at the r-th failure

(1 < r < n ) , which is called censoring of Type II, or at a fixed time,

to , which is censoring of type I. In some cases the minimum of t and

the r-th failure is used. The reader is referred to any one of the text-

*' books on statistical methods in reliability for the details of the

-' estimation procedures (see for example W. Nelson [5]). The present



T-495

paper has been motivated by two papers of Epstein et al [2,3], which discuss

photodynamic bioassays for estimating the potency of benzo-solubale organic

extracts from particulates in air samples. In these experiments various

dosages of organic extracts and of their derived fractions (basic, acidic,

" aliphatic, aromatic, oxygenated and water soluble) were applied on n - 30

living organisms (Paramicium coudatum) under ultraviolet irradiation.

In each application the measured biological response was the time required

. (in minutes) to immobilize 90% of the cells. This response variable was

called the lethal time 90 (LT9O). Each trial was censored at to 90

minutes, and the number of cells still living at the time of censoring

was not recorded. Empirical fitting of a dosage-response curve was done

p-. by Epstein et al [2]. Serious questions arise concerning the validity

of such an empirical analysis, which is performed without sufficient

theoretical justification. The present paper is devoted to a theoretical

analysis of two possible estimators of a scale parameter, when the data

are the censored r-th order statistic. More specifically, let X
n,r

denote the r-th order statistic of a sample of n i.i.d. random

variables from an exponential distribution with mean e . Let

X n,r = min(Xn,r, to) A random sample of m observations on Xn,r

is available. In Section I we present the model and define some basic

notions. In addition we provide formulae of the expected value and

variance of X . On the basis of these formulae we study in. . n,r

Section 2 the structure and properties of a moment-equation estimator

(MEE) of 6 . This is the value of e for which E {X is equale nr

to the sample mean of the m observations on X . We show that
n,r

if at least one observation is not censored then the MEE is unique.

We further show that as m grows, the asymptotic distribution of the

*! MEE is normal. Formulae for the asymptotic bias and asymptotic variance

of the ME are also derived. In Section 3 we study the structure of

the maximum likelihood estimator (MLE) of 6 and show that it is unique,

Y. provided at least one observation is uncensored. The Fisher Information

Function and the asymptotic normal distribution of the MLE are derived

-2-
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-in Section 4. In Section 5 we discuss the asymptotic relative efficiency

of the NEE compared to the ILE, and provide some simulation results which

illustrate the performance of these estimators in samples of size

m - 20(10)50. The results of the present study can be applied not only

to the analysis of the photodynamic bioassays data of Epstein et al [2,3]

but also to reliability studies, in which the observed failure times of

systems are based on censored r-th order statistics. This is the case,

for example, when n identical components within a system function

independently, and the system fails when the r-th component failures

happen. The times of the component failures are not available.

1. The Model and Moments of the Censored Observations

Consider a sequence of independent replicas of an experiment in

which n systems are subjected to life testing (possibly accelerated).

Each experiment is terminated either at the r-th failure (1 < r < n) ,

or at a fixed time point, to, whichever comes first. The recorded random

variable is the time-censored r-th order statistic. We further assume

that the life distribution of the individual systems is an exponential

distribution, i.e., F(x/e) - 1 - exp {-x/61 , 0 < x < c and 0 < e < co

Let X denote the r-th order statistic in a sample of n i.i.d.
n,r

random variables, having a common distribution F(-d) . The observed

random variable in the time-censored experiment ir X min(to , X n).

Since the life-time distribution F(7) is exponential, the p.d.f. of

X is (see David [1])nr

(4 ) f xnl x ~ x r-l
(1.) nr (x8 m exp{(n-r+l) g}j (1-exp{- g}) ,

for 0 < x < ® . Let Un,r = X n,r/ be the standardized r-th order

statistic, and let f r(U) denote the standard density, i.e.,, n,r'

1 x
"f r(x;8) = , ) . Let G (x; 8, to) designate the c.d.f. ofn,r nr n,r0

"1 X . This c.d.f. is absolutely continuous on [O,t o ) and has a jump

point at t , i.e.,

-3-
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0 x < 0

x
A. (1.2) G (x; 0, to) f W ) dx , 0 < x < to

The height of the jump of this c.d.f. at x - to is

t
(1.3) P IXn,r > t o  - B(r-l; n, F(-j))

where B(J; n, p) designates the c.d.f. of the Binomial distribution with

parameters (n, p) . We derive now formulae for the expected value and

variance of the censored variable X . It is well known (see David [1])

r-l

that if t = - (no censoring) then E {X*16, t = E} - E 1
• Jo n-j

and V{X*Ie, t 0 .1 2  E . This is due to the fact that
0. J-o (n-J)2

the r-th order statistic in the exponential case can be represented as a

sum of r independent random variables, having exponential distributions

with means 0/(n-J) , J-0,...,r-l . In the time censored case one obtains

Le-mma 1.1. The first two moments of X in the time censored case are:

4 r-1 t
(1.4) E{X*I, to  = 0 Z 2 [1-B(J; n, F )

0. J= nO e

and
r-1

*220

(1.5) E{X le, t0 } 0 2  E kn-oj E [1 - B(k;n, F(--:.; oJ =o k=o

*to r-l 0-a rZ-i i (J; n, F(-))

6 J.o n-i

Se.

i' -* 4~ - '
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Proof:

According to (1.2)

t 0 t

6 * f x f (x;0) dx + t B(r-1; n, F(-2))0, 0} n,r 0 o

and

t• 2 0o to
(1.7) E{X 10, to -

x 2 f (x;e) dx + t B(r-1; n, F(-)

Let r = t / then

t
0 n (1)(n(1.8) f x f (x;6) dx = 0 fUfnr(U) du - n,r)

nrn,r0 0

Moreover, by interchanging the order of integration we obtain

(1)n u

(1. 9) "1() (T) - f (f dt) f (u) dunr o n'ru)d

f 5 (f fn,r(U) du) dt
o t

Ti t
f [B(r-1; n, F(-)) - B(r-1; n, F(-))1 dt
0

-t nf 5 B(r-1; n, 1-e - ) dt- r B(r-1; n, 1-e - )
0

Fur thermore,

n tr-1I T

(1.10) f B(r-1; n, 1-e ) dt f (1-e-t) e-(n-J)t dt
0 JO 0

-5-
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r-l Ti

S (') (J+l) n (1) fn,j+l(t) dtJ-o (J+l)

r-l
M ----- [1-B(J; n, 1-e - )]

*- n-i

Finally, substituting (1.9) and (1.10) in (1.6) we obtain (1.4). Notice

that lim B (j; n, i-e- ) - 0 for each J < n . Hence, the well known

formula of E{X*18, t i a} is a limiting case of (1.4). In a similar

fashion, we derive the formula

(2) 2
P(1.11) (in(rj) - f u f (u) du
n,r 0 n ,r

fu
.M 2 f (f tdt) f (u) du

0nr

I T1

M 2ft ( ifn,r(u)du)dt
-- 2- 2

a 2 f t B(r-1; n, 1-e )dt - ii2B(r-1; up l-e - )

0

Furthermore,

n t r-1 ; T1 -t e-t(n-J)

(1.12) f t B(r-l; n, 1-e-t )dt -E f t (1-et edt
0 J= 0O

f t- f nft~ ) (nldd
r-l

".' j~o n--- fo [ n, ~(t)dt

E I[ --- (1-B(k; n, 1-eri)) n B(J; n, .e-n

j0ok n-kn,-i i

-6-
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Substituting (1.11) and (1.12) in (1.7) with the proper scale factor, we

obtain formula (1.5).

(Q.E.D.)

From formulae (1.4) and (1.5) one obtains immediately the following formula

for the variance of X , namely:
0 n,r

ui'. (1.13) 02(0; to)=V{X ,r ," 0, to}

2 r-l l j 1t0'.o 2  j k n'- n.- [1-B(k; n, F(-,))]
j=o k=o -

t r-1 t
.0 1 0-2- J -o ( B(j; n, F( -

-. n- o-'( r-1

One can easily check that lim a 2(0; to) = 02 2
t 0 J=o (n-J)

In the following section we apply the above formulae for the study

of the moment-equation estimator, MEE.

*2. The Moment Equation Estimator and its Asymptotic Properties

In the case of no time censoring, i.e., when to M an

unbiased estimator of 0 is obtained by equating the sample mean

m 
M

_ . Y x(i) to E{X*je, t - } and solving for 0 In other
m m i=l n,r o

words, if t M O then0

(2.) (R ) - X'~ n-j

-7-
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is an unbiased estimator of 0 , having a variance

2 o (n-j)f \j=o

* In the present section we generalize this estimator for the case

of 0 < t < - and determine its asymptotic properties. Since t is0 0

fixed, we simplify the notation by letting E(6) E E{X 18, t 0

Since the sample represents m i.i.d. random variables X1 ,...,X m

I m
.- the sample mean X =- E X. is an unbiased, strongly consistent

m m J=l

estimator of E(0) . Accordingly we say that e (X ) is a moment
m

equation estimator (MEE) of 8 if it is the root of the equation

r-l I_to/
(2.3) 6 Z - [-B(J; n, 1-e 0

"'" n-The left-hand side of (2.3) is function E() which idefinedj=o

Th lf-hn sdeo (.) sthe fnto e) wihisdeid

on the domain (0,x o)

Lemma 2.1

(i) E(0) is a strictly increasing function on (0,-) ;

(ii) E(6) is concave on (1,-)

* (iii) lim E(6) t 0

°.-o

Proof:

*(i) straightforward differentiation yields

' °%-., d - (n-J) bj ,p =,.,
(2.4) - B(J; n, p) -) b(j; n, p)

dp 1-p

and every 0 < p < I , where b(j; n, p) is the Binomial p.d.f., i.e.,

b(j; n, p) - B(J; n, p) - B(J-1; n, p)

8-

,-. -- -
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Thus,

d r- 1 t 0A
(2.5) E(O) E j -o - (I-B(J; n, 1-e

t r-1 -t/O
- -...t E b(j; n, 1-e 0

1 1 -t /0 -ti e
r - 1[l-B(J; n, 1-e 0 ) _- B(r-1; n, 1-e 0J~o e

Comparing (2.5) with (1.9) - (1.10) we obtain that

t
(2.6) E() = ( ) > 0 , for all 6 in (0,-)

This proves that E(O) is a strictly increasing function over (0,-)

(ii) Differentiating (2.5) we obtain

d 2 t -t / t -t /6(2.7)0-- E(8e

(2.7) -- B(r-1; n, 1-e + --2 B(r-1; n, 1-e )

(n-r+l)t 02 -t oe0
0 b(r-1; n, 1-e

Thus, for every e > 1 , - E(6) < 0 which proves the concavity
de

of E(6) over the interval (1,-)

0 r-1 -t /E1 0.

(2.8) lir E(e) = limO 7 - [l-B(j; n, -e 0;:" e- e- j=on-

, Starting with j - 0 we obtain

-t /e
(2.9) lim 6 [I-B(O; n, l-e o)]".-.

'";' -nt /6

lir 8(1-e o ) = nt0

-9-
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On the other hand, for every - 1 ,

(2.10) lim O[l-B(J; n, 1-e )] -/6m 6(1-e - n t °0 )
,.-, M 0 -#W

"j n -t i -(n-i)to /
r E (l-e e -0.

Indeed,

..- t/0 -(n-t)t /0
. (2.11) 1.tm O(1-e ) e 0

" 0 if i-1

0 if i > 1

- Thus, from (2.8), (2.9) and (2.10) we obtain the result.

-.:. (Q .E .D . )

Corollaries:

(M) There exists a unique solution to equation
,.-

(2.3) , 0(X) ,for each 0 < X* < to
m m 0

(II) e(x*) does not exist if X* to• -m m 0
4'

The solution of equation (2.3) can follow the Newton-Raphson

iterative procedure

(2.12) (i+i) = 6(i) _ ) - 1=1,2,...

where 0 is any initial solution, and E'(0) is the derivative of
J. E(0) , given by (2.5). If M5  denotes the number of censored observations

Ain a sample of m , then P M Hs/m is a strongly consistent estimator
-t /0 s

0of B(r-1; n, 1-e ) , as m-* . Thus, a solution, 0 , of

-0-

-.'
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(2.13) P B(r-1; n, l-e )

is a consistent estimator of e and could serve as an initial value

6(l) in the sequence defined by (2.12). If M = 0 we can start with
-'Cl)r-l

the "unbiased" estimator (1) 1
m nm T-i

1-O

We derive now formulae for the asymptotic mean and variance of 6(X_)m

as m-Ko

According to the Central Limit Theorem, \m-(* - E(d)m
2 -N(0, 0 (0; to)) . et E- (x) denote the unique inverse of E(e)

0

Notice that the MEE is the value of E mW) . Moreover, since
%° --m

-l(E{I*; 0, to } ) = = 0 , we consider the Taylor expansion
-~m 0

of E (x) around E(6) and obtain

(2.14) 6 = + (X* - E(e)) 1( + 0 P -) as m-11W

Thus,

d ao2 (e; t0)
V (2.15) v'm (6(*) - e) )-d N

a.s. -(
Moreover, since X - E(e) , and since E (x) is a continuous

m

transformation, 6(X*) is a strongly consistent estimator of 0 , as
m

. The asymptotic variance of 6(X*) is thus,
m

02(0; t o )

(2.16) AV {(X*); 6, t - -

o m(E( ))

This asymptotic variance will be compared later with the

asymptotic variance of the MLE, to determine the asymptotic relative

efficiency of the MEE.
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In order to obtain an expression for the asymptotic bias of the

MEE, we add another term to the expansion (2.14).

The second order derivative of E- (x) is

-1
- (2.17)d 1 - E"(E (x))-(2.17) d E(E7l(x)) (E,(E l(x))) 3

Hence, we obtain the expansion

6 1e
(2.18) O(P*) 6 + ( 0)m m E'(0)

1 e) 2 E(e) + 0 1

2 in (E'(6)) m

as mo . It follows that the asymptotic bias of 6(X*) isin

~o(G; t 0) E#
(2.19) B(6; to)= "

0 ~2m3

According to Lemma 2.1 (ii) , B(6; t ) > 0 for all 6 > I

3. Maximum Likelihood Estimation

Let X (X ,...,X ) be a vector of m i.i.d. random variables.

The likelihood function of e based on X, up to a factor of
"LIM

proportionality, is given by

.. "m t)I 0o l-1

..(3.1) L(; X*) Rf [f (X ;6)] [B(r-l; n, F()]
.:. i=l nr i

where

1 , if Xi  t
(3.2) I =

0 , if X, M t

Let K - E I and let k(e; X*) denote the log-likelihood
m ili

-12-
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function, then

t
(3.3) £(e; X*) -- K log e + (u-K )log B(r-1; n, F )

+ Z [~ (r-1) log (l-exp{- X /01) -

-. (n-r+l) X*/6]

The maximum likelihood estimator of 6 (HLE) is the value of e

in (0,ao) which maximizes L(O; X *).

Consider the score-function, S(O; X*) ,which is the partial

derivative of Z(6; X*) , with respect toe. According to (2.4) we
.J.m

obtain that

(3.4) :S(6; X* -1 (m-K) (n-r+l) -

b(r-l; n, I-e )o/ +

m (n-r+l)X* Xe -i

1 2 2

Lemma 3.1. If K =0 then there is no HLE of 6

Proof: If I, 0 for all i then, according to (3.4)

* SO; X) > 0 f or all e in (0,oo)

-13-
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Theorem 3.1. If K > 1 then there exists a unique MLE..f m -

Proof:

The equation S(6; X) - 0 is equivalent to the equation

m m I X*
nr-1 -i e

(3.5) 0 = I- Ii Xi  C r. -X-/8SKm ii K i--
m i1i m i=l i-e

- -t /0
+ 0 (m-K ) (n-r+l) b(r-1; n, l-e oK ' -t Ie

m B(r-1; n, l-e 0

Let H(8; X*) denote the R.H.S. of (3.5). We show first that, for

fixed X*
0-*.K r, x t in

*" and

.. ~~(ii) llm H(6; X*) -o.

m

Indeed,
J -t /8

.(3.6) b(r-1; n, 1-e 0 )

-t /0
B(r-1; n, 1-e

Thus, -/O

-lm b(r-1; n, 1-eo = 1,,," -t /0
B(r-1; n, 1-e 0)

(3.7) -t /e

urn b(r-1; n, l-e 0)llm -t /6= 0

B(r-1; n, 1-e )

-14-
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From (3.5) and (3.7) we obtain (i) and (ii). We show now that

" -- 11(O; X*) < 0 for all e in (0,) This will prove that there

is a unique finite 0 satisfying (3.5).

Indeed,* -X /6

m X *2 e

(3.8) H(; X*) = E I i__36 " " K 62 i=l2
m (1-e

to  r2 r /0
+ 0 (m-K ) (n-r+l) --a 1 + L (e-

m [ j=o (n

But

(3.9) to  to/r-2 n t o/0) - (r-l-J) - 2

t t
(3 E (r-- I) (E ey

(r",l
9.. t r-2 r- (nto/0(rl-J i

substtutig j~ (in G- ) (r )

substituting (3.9) in (3.8) we obtain that -e- 11(0; X*) < 0

• for all 0 in (0,-).

(Q.E.D.)

Numerical examples have illustrated that the function H(6; X*)

* might be very steep in the neighborhood of 0 , and the Newton-Raphson

method has proven to be instable. We have used therefore a search

procedure for the maximum of the log-likelihood function, which

provided good numerical results.

[7-'- -15-
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4. The Fisher Information Function and the Asymptotic
Distribution of the 14LE

The time-censored r-th order statistic X* has a c.d.f.

G n,r(y; 6, to ) , which is specified in (1.2). The corresponding

generalized p.d.f. is

. . g fn~ 0 < y < t o

(4.1) gn(y; O, to ) r t

*B(r-; n, F(- )) , y - t

We observe that these p.d.f's have the following properties:

(i) The support of g n,r(U; 0, to) is [O,t o]0

* independently of 6 .

(ii) g n,r(y; 6, to) has continuous partial derivatives,

with respect to e , at every y c [0, t ] . Moreover, since

their support is independent of 6 ,

i

ae gn,r (y; 6, to) is a uniformly integrable function of

y , for every i=1,2,... and all 0

(iii) The p.d.f's satisfy:
-S." to t

t0 t0

(4.2) f d ,-- {dGnr(y; e, to) - 0
0 0

for all 6 e (0,-) . This is proven by the following

Lemma 4.1

(4.3) EO  log g (X*; 8, t o ) = 0 all 6 £(O,-)

Proof:

As in (3.3) we obtain

S- 16 -
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(4.4 log g n~ y e, t 0

6 0 2  l-e-yi0 6 2 y

o b(r-1; n. l-e 0
2 (n-r+l) -ti 0 6Y to

Thus,

(4.5) log log g (X*; e, to~

-to/e to-to/e-1 [I-Br1 n,~ 1-e + -] (n-r+1) b(r-l; n, 1-e0

-*n-r+i 0 n-r+l 0

~ f~r~(Y;e)dy + f2  Y f'~~ (y,0)dy

Furthermore, according to (1.9),

(4.6) E loge log r (X*; e, t0

tI 0 0 -
+ 1-Br- n,/ l-0 nrl ~-;a -

+ n ~ l f o b r ; n 1-e 1 ) dx - to b(r-; n, 1ie
0 0

Finally,

t t

(4.7) f b(r-l; n, )--/ dx n f (l-eX/O )-
0 0

4to
.e- * nlxe dx- e f (x;e) dx

n-r~l J n,r

-17-
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Substituting (4.7) into (4.6) we obtain (4.3).

(Q.E.D.)

According to Lemma 4.1, the Fisher Information Function is

(4.8) 1(8; to) = E a log n8r , t 2
0 0 Be"~

Equivalently,

(4.9) 1(8; to) = )

where

11 -yy(4.10) Q() f n,r (y) [l+(r-1e

(n-r+l) y]2 dy + n2 (n-r+l)
2
* b (r-l; n, l-e

- )
VB(r-l; n, 1-e - n)

Expansion of the quadratic form in (4.10) and some algebraic manipulations

yield the formula

(4.11) Q(n) -- [l-B(r-l; n, i-e-n)A

+ 2'l (n-r+l) b(r-1; n, 1-e - r )

+ n 2 (n-r+l)2 b2 (r-1; n, 1-e- )/B(r-1; n, l-e
- )

+ n-r+l . (2) (N). +n r-2 Un,r- 2

2 2 (2)+ (n-r+l) A  ingrn)
r

where the second incomplete moment p (2)(n) is given in formula (1.11)n,j

and A2 (2) W P (2)(n) - 2 , + (2) Wi)Un,r r rl r_

-18-
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It is interesting to study the effect of the time-censoring on

the Fisher Information Function. For this purpose we prove that when

t = then0

(4.12) 1(0) - I(e;o) a Q/82

where

(4.13) Q = f n,r(y) [1+(r-1) ye-Y - (n-r+l)y]2dy
o 1-e-y

= 1 + (r-1)2  Y2 e y  f ( dy
o (1-e-y)

00

+ (n-r+l)2  f y fn,r (y) dy

0
Go

2( ) 0 1e-Y fr(

- 2(n-r+1) f Y f nr(y) dyw 2-e -y
- 2n-~l f n,ry)d

- 2(r-1) (n-r+l) f Y f£ (y) dy
-

1-e Y  n,r

Substituting

) e-y ) n-r+1
(41) l-e-y n,r r-l

and

(4.15) e 2  (n-r+l)(n-r+2) f (y)(45 2 n,r y  (r-1) (r-2) n,r-2

I1~195%
-p-
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and applying the formulae

Y fnJ (y ) dy E u-ii
(4.16) 0 i

fy 2  y 2i 2
o fn,j ( y ) dy n 2 E01-1 (n-i+l)2  =

we obtain after some manipulations

n-r+l r-2 1 n-r+1
(4.17) Q - 1 + 2 +-----nr+2 il (n-r+2)

n(n-r+l) 2 1 + r I )2]

r-2 i-I (n-i+l) 2 i=1 n-i+1

As shown in the present section, all the conditions for the

consistency and asymptotic normality of the MLE, m , are satisfied

(see Lehmann [4]). Thus, for a fixed e

(4.18) em- 0 -0 , as m-

-: and

(4.19) ym Oi -e) _-dN (O , (t

The convergence, however, is not uniform. For values of e close to tO

the probability P0 {Km - 0} could be close to 1. For example, if

0- t , n-30, r-27 , B(26; 30, 1-e- 1) - .999 .

Thus, in a sample of size m"50 , P{K - 0} - (.999) - .9512 . Thus,

the probability is over .95 that the .fLE would not exist. But, in a

* sample of size m - 1,000 this probability drops to .368

20



*O T-495

5. Some Numerical Comparisons of the MLE and the MEE

In the present section we numerically illustrate the asymptotic

variances of the HLE and MEE, and provide some simulation results. These

simulations demonstrate the actual behavior of these estimators in samples

of size m=20,30,40 and 50. The numerical computations of the present

section are restricted to the case of n=30 and r-27 . These are

the parameters used by Epstein et al [2] in the photodynamic bioassays.

The HLE estimator 0 and the MEE estimator 6(X*) are bothm m

scale equivariant in the sense that, if X n 8 X for some 8 > 0 ,n,r n,r

and correspondingly t - B t then 0 - a 0 and 0(8:*) - B §(X*)o o m m m m

1oreover, since p = t /0 is invariant under such transformations, the
02

(asymptotic) variances of e and 0(X) under 0 are equal to 62m. m

times the corresponding variances under 0 - 1 . We therefore report

here the variances of the estimators under the case of 0 - 1 and

* different values of p = t /0 . In Table 5.1 we provide values of

Q(p) for some values of p. This function was determined according

to (4.11) for 0 < p < - and according to (4.17) for p =

(uncensored). Notice that Q(p) is the value of the Fisher information

function at 0 1 , i.e., I(l;p) - Q(p)

Table 5.1

Values of Q(0) for n-30, r=27

* p 1.80 2.00 2.25 3.00 4.50

Q() 10.6275 13.7234 16.3008 18.6408 18.8340 18.8344

- 21 -
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As seen in Table 5.1, the amount of information per observation

is maximal when there is no censoring (p-) . Moreover, if p > 3

the amount of information is close to the maximal one. The asymptotic

efficiency of the ?ILE, under p , compared to the no-censoring case is

(5.1) AE(p) - Q(p)/Q

Thus, as seen in Table 5.1, AE(1.8) = .564 . On the other hand,

AE(3) = .99 . Thus, for 6 values close to the censoring point t

we need considerably larger samples, than in the uncensored case, to

attain a specified asymptotic precision.

In Table 5.2 we present the values of the asymptotic variances

of the HEE and the IDLE, which have been determined according to formulae

(2.16) and (4.19), respectively. The asymptotic relative efficiency

(ARE)

Table 5.2

The Asymptotic Variances of the M4EE

and the HLE [in units of 10 ], for 6 = 1 , m=50
n=30, r=27 and the ARE

p MEE lLE ARE

1.80 2.2723 1,8819 .828

2.00 1.6549 1.4574 .881o
2.25 1.3153 1.2269 .933

2.57 1.1450 1.1152 .974

3.00 1.0809 1.0729 993

of the MEE relative to the MLE is defined as the ratio of the asymptotic

variances, i.e.,

(5.2) ARE(p) m.
AV{e; 1, P

m

-22 -
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As seen in Table 5.2, as P increases the value of the ARE approaches

one. In other words, the asymptotic efficiency of the MEE is close to

that of the MLE when the value of e is considerably smaller than that
of t 0, i.e., p > 3 . If we suspect that e is close to t 0the

MLE is a more precise estimator than the MEE.

It is also interesting to study how the two estimators perform

when the samples are not very large. For this purpose we have conducted

a series of simulations. In these simulations we generated random

samples of m values of X nr, for n = 30 , r = 27 , to 90 and

6 = 30 , 35, 40, 45 and 50 . For the sample size, m , we considered

the values m = 20 ,30, 40 and 50 . For each of these samples we

computed the values of the MEE, O(X*) . and of the MLE, 0e . These
m m

trials were repeated M=500 times independently. If all the values of

X* were censored, a message "NO-EST." was printed. It is interesting
n, r

to notice that in the case of m=-20 and 0-50 (p-1.8) we obtained this

message two samples out of 500 independent samples. This conforms to the

theory, since in the case of p=1.8 , the probability of censoring is

B(26; 30, .8347) - .7543 . Thus, the probability that all m20

observations will be censored is (.7543) 20 .0036 .If such samples

are simulated independently 1-=500 times, the expected number of samples

with complete censoring is 1.8

In Table 5.3 we present the means and mean square-errors of the

simulated values of the MEE and MLE. It is interesting that in all cases

the bias is negligible. In addition, the MSE's of the R*EE are not

significantly larger than those of the 111.E when 6 < 40 (p > 2.25)

Furthermore, when m=50 the MSE's of the MLE and of the MEE are not

significantly larger than the corresponding asymptotic variances, even

if 0 > 40 (p < 2.25) . For example, when in-5O, 6-50 , p=1.8 and

from Table 5.2, the asymptotic variance of the MLflE is 2.5 x 1.8819 -4.705.

-23-
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Table 5.3

Means and MSE of M-500 simulated
values of the MEE and MLE, for n=30, r-27,

t 0-90, 0=30(5)50, and m-20(10)50

tILE 14EE14

MEAN MSE MEAN MSE

20 30 30.25 2.358 29.97 2.319
35 35.25 3.445 35.02 3.606
40 40.36 5.475 40.11 5.789
45 45.49 8.444 45.30 9.795

1 50* 50.54 18.938 50.57 23.680
41

30 30 30.21 1.779 29.94 1.715
35 35.21 2.520 34.96 2.577

i 40 40.28 3.854 40.03 4.082
45 45.37 5.824 45.16 6.537
50 50.50 9.400 50.47 12.944

40 1 30 30.27 1.325 29.98 1.223
. 35 35.28 1.866 35.00 1.793

40 40.30 2.642 40.03 2.693
45 45.33 3.943 45.10 4.470
50 50.41 6.972 50.33 8.586

50 30 30.29 1.044 30.02 0.948
35 35.31 1.457 35.02 1.364
40 40.30 2.077 40.04 2.082
45 45.35 3.101 45.10 3.382
50 50.43 5.240 50.27 6.023

*The estimates are based on M'=498 samples.
Two samples were completely censored.

-24-
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The corresponding standard-error of the variance estimate is approximately

SE=4.705 (2/500)1/2 = .298 . Thus, 4.705 + 2 SE = 5.300 , which is

above the MSE value of the MLE in Table 5.3 . Similarly, the MSE of

the MEE, for m-50, 6-50 , is within the .95-confidence interval

constructed around the corresponding asymptotic variance. This is not,

however, the case, when m-20 and 0 > 45 . The MSE's of the MLE and the

MEE are significantly larger than the corresponding asymptotic variances.

For m=20 , 0=50 , the asymptotic variance of the MLE is 11.762 . On the

other hand, the estimated MSE is 18.938 . This shows that the actual

variances of the MLE and the MEE are considerably larger than the

asymptotic variances if the samples are not sufficiently large and

p < 2.00 .
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