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Abstract

Let {Xn,nzO} and {Yn,nzO} be two stochastic processes such that

« ' Yo depends on Xn in a stationary manner, i.e. P(YneAIXn) does not depend

on n. Sufficient conditions are derived for Yn to have a limiting distribution.
If Xn is a Markov chain with stationary transition probabilities and

Yn = f(xn,...,xn+k) then Yn depends on Xn is a stationary way. Two situations
are considered: (i) {Xn,nZO} has a limiting distribution (ii) {Xn,nzo}

does not have a limiting distribution and exits every finite set with
probability 1. Several examples are considered including that of a non-
homogeneous Poisson process with periodic rate function where we obtain the

limiting distribution of the interevent times.

Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous

Poisson Processes.
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§1. Let {Xn,nzO} be a discrete time Markov chain with stationary transition P

. -
probabilities. Consider a process {Yn,nzO} defined by 'Tf%{
(1.1) Yn = f(xn,xn+],...,xn+k) . o
It snould be emphasized that f and k do not depend upon n. In this paper
we address the following question: under what conditions on the Markov ;'VA
chain {Xn,nzO} and the function f will {Yn,nZO} have a limiting distribution? ‘“'.1

As a first example of the above situation, suppose {Xn,nzO} is a random -

walk, i.e. xo =0and X, = Z1 + 22 + ...+ Zn where {Zn,nZO} is a sequence "71:

of i.i.d. random variables. Let Yn = f(xn,xn+]) = Xn+1 - X,. Here {Xn,nZO} fiiE;

itself does not possess a limiting distribution (except in the trivial case S

. where 7. = 0 w.p.1 for all n0), but (Y, ,n20} does have a limiting distribution i;'“

(in fact it is a sequence of i.i.d. r.v.)
As a second example consider a nonhomogeneous Poisson process with rate

function A(t). Suppose that A(t) is a periodic function of t. Let Xn be

the n-th event occurrence time and let Y = f(xn’xn+1) = X471 - X, be the
n-th interevent time. Now, {Xn,nZO} is a transient Markov chain, but due to
the periodic nature of i(t), one expects {Yn,nZO} to have a limiting distribution. bi" '

This example is treated in detail in example 2 of section 3.

Though we have stated the problem for a Markov chain {Xn,HZO} and its .
functional process {Yn,nzﬂ}, the theory that we develop in the next section, ,'
in fact, does not use the Markov property of {Xn,nZO} or the functional :
dependence of Yn on Xn""’xn+k‘ The general structure that we assume is as
follows:

Let {Xn,nro} be a sequence of random variables and {Yn,nZO} be another
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sequence of random variables with the property that
é; (1.2) P(YneA|Xn) does not depend on n.
i; We derive a sufficient condition under which {Y_,n20} has a limiting distribu~ ,

tion. Notice that if {Xn,nzO} is a Markov chain with stationary transition

¥ probabilities and Y, is defined by eq.(1.1) then condition (1.2) is automatically
é satisfied.

' In theorem 1 in the next section we state a sufficient condition for the
existence of limiting distribution of {Yn,nzO} . We also show with an example
“: that the condition is not necessary. In the general setting of the theorem it

seems difficult to derive a useful necessary condition. Even though the

condition stated in theorem 1 is only sufficient, it is nonetheless a

powerful tool to unify several cases as is shown by the material in sections 3 .

and 4.

In section 3 we consider stochastic processes {X,,nz0} having a limiting

distribution. From theorem 1 we obtain proposition 1 which gives the limiting

<. distribution of {Y ,n=0}. In section 4 we consider countable state space

;; stochastic processes {Xn,nZO} which do not possess a limiting distribution and
have the property that {Xn,nzO} exits every finite set with probability 1. In

-5 propositibn 2 we state a sufficient condition for {Yn,n20} to have a limiting

E distribution in this case. Several examples are given to illustrate both the

. propositions. Although the results are derived for general stochastic processes,

the examples deal with Markov chains {Xn,nzO}. This is purely for the sake of

computational ease.

Limit theorems have been studied in the literature for the case when ixn,n~0t

is a Markov chain and Yn = f(xn). These limit theorems deal with the partial
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n

sums ¥ Yi' (See [3]). We are not aware of any theorems for {Yn,nzO} itself.
i=1

Another specific problem that has been addressed in the literature is : If

tX,»n=0} is a Markov chain, under what conditions is Yn = f(Xn) also a Markov 3
. chain? (See [4]). In this paper we are interested in the limiting behaviour ' liéi
and not the Markov nature of {Yn,nzO}. g%g
¢ ’
ne.  let (.,F,P) be.a probability space and let (E,E) be a measurable ;:_:
space. Llet {X , n=0} be a sequence of (E,E) valued random variables on .
(2,F,P). Let S be a complete separable metric space and let B(S) be its
i Borel o-field and #(S) be the space of probability measures on (S,B(S)). :*fi
? Let {Yn, n-0} be a sequence of (S,B(S)) valued random variables on (f,F,P) .
é such that
(2.1) P(Yyehlo(ky)) = py (A) o

where p.(-) is a mapping from ExB(S) - R such that

(2.2) for all xeE, px(-)eM(S)

' . TEW®. Y. T
-

: (2.3) for all AeB(S), p_(A) is a measurable function on (E,E). k2
i Here, u(Xn) denotes the smallest o-field on @ with respect to which Xn is it‘
g measurable.

Let S* = M(S) be’equipped with the topology of weak convergence.
! (See [ 1], [6]). Recall that u - in S* iff for all bounded continuous _

E functions f on S jfdun + [fdu . S* itself is a complete separable




metric space under this topology. (See [6]). Let B(S*) and M(S*) denote

the Borel o-field on S* and the space of probability measures on (S*,B(S*))

respectively. M(S*) is also equipped with the topology of weak convergence.

Using eq.(2.2) and (2.3) it can be shown that x - P, is a measurable
mapping from (E,E) into (S*,B(S*)) and hence Py is a (S*,B(S*)) valued random
n

variable. Llet T denote the distribution of pxn , i.e. for BeB(S*)
(2.4) o) - P(p'xn(-)ea)
With these notations we have the following
Theorem 1: Suppose
(2.5) Ty > T (say) weakly in M(S*),
then Yn converges in distribution to a measure veS* given by

(2.6) v(A) = é*u(A)dP(u) (AcB(S)).

Proof: Let f be a bounded continuous function on S and let F:S* - TR be defined

by
(2.7) Flu) = [fdu .

Then, by the definition of weak convergence, it follows that F is a bounded

continuous function. Thus from eq. (2.5), we get

)
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(2.8) JFu)dr, (u) > [F(u)dr(u) -
Now
’ (2.9) JF(4) dry(u) = ECF(py ()]
=E[If(2)pxn(d2)] .

From eqs. (2.1), (2.2) and (2.3) it follows that

E(F(Y,)lo(X,)) = [f(2)p, (d2)
n

and hence by eq. (2.9)

(2.10) JFQudry(u) = ECECF(Y,) |o(X )11
= E[f(Y,)]
Also,
(2.11) JE(u)dr{u) = IS (fsf(Z)du(Z)} dr(u)
*
= [f(2)dv(2) .
S e
| S5
The last equality in eq. (2.11) follows from the definition of v for a simple Y
S

function f and then, by the usual arguments for a general function f. L




Thus from egs. (2.8), (2.10) and (2.11) we have, for all bounded

continuous functions f on S,
(2.12) E(f(Yy)) ~ [F(z)dv(z)
and hence, Yn converges in distribution to v. O

Remark: The condition (2.5) is not necessary as is shown by the following

example. Let E = {0,%,1} and let (X , n20} be such that, for n=0,
P(XZn =0) = P(XZn =1) =4
P(Xons1 = L) = 1.
Let S = {0,1} and define px(~) as follows:
P 103) = x =1 - p ((1}) (xeE) -

Let {Yn, n=0} be S valued random variables satisfying eq. (2.1). Then,

for all n=0,

P(Yn =0) = EX

o

and hence, trivially, Yn converges in distribution. However, it is easy -

to see that Tn does not converge weakly. '
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The above theorem provides a general framework to study the problems fé

mentioned in the introduction. In later sections, we discuss several special o
problems and obtain sufficient conditions for convergence in distribution

of {Yn, n>=0}. In each of these cases, the results could be proved by

alternate techniques, but the above theorem, whose proof is simple, provides "

a unified view of the problem.

t et Aa o .

i3. In this section we restrict ourselves to the class of stochastic processes ; f>
{X,» N0} which possess 1imiting distributions, i.e. Xn converges in distribution 1

to some measure n as n»». In the framework of section 2, suppose that E is 1'
- oy

a metric space and £ is its Borel o-field. The following is an easy consequence » . 4
of theorem 1: 1£;€i
Proposition 2: Suppose that LI

(3.1) x ~» p, s a continuous function from E into S* and frl?

]

L

T

(3.2) Xn converges in distribution to some measure « on (E,E). B f

Then Yn converges in distribution to a measure v on (S,B{(S)) defined by L e

(3.3) v(A) = {px(A)dn(x) (AeB(S)) . j&:ﬁ

Proof: Egs. (3.1) and (3.2) imply that Py converges in distribution to
n

.
.
-
- -..
- .
...........
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r = no(p )'], which is the same as ro+T weakly. Hence Yn converges in

distribution to v given by, for AcB(S),

v(A)

[ u(R)dr(u)
S*

[ pR)drole )7 ()

fp, (A)d(x). 0
E

LA A

We now give two examples illustrating the above result. In the remaining

- ','--«
‘_ paper, all finite or countable sets will be equipped with the discrete -
E topology. Our first example is that of a positive recurrent Markov chain. B
Example 1. Llet E = {0,1,2,...} and let {Xn, n=0} be an E-valued Markov chain - %tj
with stationary transition probabilities given by iﬁi
-
P(X.l = k+1|X0 =k) = g (k=1) , 3 .;::
P(X, = k=1[Xg = k) =a=1-8 (k1) ,
-
P(X; = 11Xy =0) =1. ~:
Let S = {-1,1} and Yn = Xn+1'xn' Then eq. (2.1) is satisfied with 5




pk({]}) = B (k1) ,
pk({']}) =a (kx1) ,
po({l}) =1

Since the sets E and S are equipped with discrete topo]ogy, conditions (2.3)
and (3.1) are trivially satisfied. Now suppose o>g>0. Then {Xn,nzo} is

positive recurrent and its stationary distribution is given by

= —_ﬁ—a-
"0 20
= a8 (Byk
T bap (%) (k21) .

Hence {Xn, n>0} converges in distribution to n. Hence, by proposition 2,

Y, converges in distribution to v where

v({1}) = Lim P(Y_=1)= zp ({(1})m =%
N->co n k=0 k k
and
v({0}) = Lim P(Y = -1) =14 .
N> n

Thus, Y converges in distribution to (%,%). Note that Y , the increment of

the [xn,nzO} process, has a stationary distribution independent of a!

s

.! ..' 'l' A-L '
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Our next example is that of a non-homogeneous Poisson process. e

Example 2. Let {N(t), t=0} be a non-homogeneous Poisson process with -
strictly positive rate function A(t). Assume that A(t) is periodic with W

period t,i.e.,

h; At + 1) = a(t) for all t>0. e

Let Zo = 0 and Zn be the time that the n-th event occurs, j.e.

.
oy
"

'Zn+] = inf {tZZn : N(t) > N(Zn)} n=0.

and let Yn = Zn+1'zn be the nth interevent time. Now, for 0 SV SV Tl

y n
3 P(Zpyy >ulZy =

E sV <u,

il
<
—
-
[
i
<

P(N(u)

]
p=-
~—

n| N(s):0ssc< voN(v) =

exp (-fY A (s)ds) . =
Vo : R

s Hence {Zn,nZO} is a Markov chain. As Zn increases with n, it is a transient RS
Markov chain. -

Let {x] denote the largest integer <x and define
Xp = 2, - [Zn/t]t .

Also, for t>0 define )
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X
- .‘
A

. Mt) = [Ea(s)ds.

Now for 0 <y <=, iii-

1] LI
. ' etas REFEN
A & e l.A PN
tatatatal e Al

? . P(Y, > ¥1Z,) = P(Z, 4 > Z, +¥IZ) L

exp (-(MZ, +y) - MZ.)))

exp (-(A(X_+y) - A(Xp)))
For 0 < x < 1, let p, denote the probabiiity measure on (IR+.B(IQ+)) given by Lo
(3.4) P, ((¥s=)) = exp (-(A(x +y) - A(x))) .

Then for AeBUR+). we have

N f'lﬁ S
SO R

P(YocAlZ,) = P(Y cA|X ) = pxn(A)-

Let £ = [0,1). Equip E with a topology which makes the mapping

LR I

x » exp (i27x/1) a homeomorphism from E onto the unit circle in the complex

plane. Thus

- Xy > x iff exp(iannlr) > exp(i2nx/t) .

Under this topology E is a complete separable metric space and it can be easily

checked that the mapping x + p, fneq. (3.4) from E + M(IR) is continuous. BN
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We shall now show that {Xn, n > 0} converges in distribution to some
measure on E. In fact, it can be shown that {Xn, n > 0} is a Markov chain on

E with stationary transition probabilities given by
_ Py X, = x) = et (M) g)/(1.8) iF 0 < x <y < s
E (3.5) =1 - 8eM®) (1 - M)y (1 - gy 3

if 0<y<x-<rt.

where B = exp(-A(t)) . i;.
Let f(-,x) be the conditional density of X ., given X, = x. Then from eq. ;ii
(3.5) we get ::;
A(y) exp(a(x) - A(y))/(1-B)  if 0= x<y<t _ E?

(3.6) fly.,x) = _._
BA(y) exp(A(x) - A(y))/(1-B) if O0<y=< x<.. "

By a slight modifiéation of the arguments in Example (b) of VII.7 of Feller
Vol 2 [ 2], one can show that {Xn, n 2 0} has a limiting distribution. Let -

g(-) be the limiting density of xn' Then g(-) satisfies

9(y) = [ fy.x)alx)dx. e
:E Thus %@
gly) = AL @pCAN [ eMXgxyax + B f7 e ¥g(x)ax]

A Ay

‘o "
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Now let h(y) = g(y) exp(A(y)). Then i—‘-—{
h(y) = Ay) [n(x)dx + BfT h(x)dx] . f‘i:_:;.’:_:'_‘
1-B o y el
..-.il‘
. ’ 4
Differentiating the above equation we get T
n(y) = Gr§+ Ay niy) .
et
S
e
which has a unique solution
-siennigq
[

h(y) = Aly) exp(a(y)) -

. Hence we get g(y) = Cr(y), the constant of integration C is found by using

f5 9ly)dy =1 g
Thus g(y) = A(y)/A(x) (0 =y < 1) is the limiting density of X . !,_
Now, using proposition 2, we get the following: {Yn, n 20} has a A

limiting distribution given by

. v
(3.7) Lim P(Y, > ¥) 2
=[5 exp(=(A(x + ) - AMx))) A(x) de/n(q) . o

K v ) '.n." L) '_-‘.- '..\.."..‘-.. U TP
S VAW WA AT AT W AOMCR A
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§4. In this section we consider the case in which {Xn. nz0} does not
converge in distribution, but {Yn,nzO} does. First we give a general result )
and then consider some specific examples.

Suppose that E is a countable set and that

(4.1) Lim P(XneB) =0

neoo
for all finite subsets B of E. Furthermore, suppose that there exists a
partition {Ej. jed} of E, where either J = {1,2,...,k} or J = {1,2,3,...1,

and each Ej is a countable set such that

4.2 Lim P(X €E.) = a, exists .
(4.2) Lin PlXyeEy) = oy

and )
(4.3) :r a; =1

jed 9

Now, let {xij} i > 0 be an enumeration of Ej and suppose that

(4.4) Lim p =y,
B P

exists. (Recall that M(S) is equipped with the topology of weak convergence.)

With this structure we get the following ot
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Proposition 3: Let eqs. (4.1) - (4.4) hold. Then {Y,.,n201 converges in

distribution to v given by

(4.5) v(A) = 1 uj (A)a (AeB(S)).
Jed

Proof: The desired conclu(sion will follow from Theorem 1 if we show that
(4.6) Iy > T in M(S*)
where I' is given by

r(8) = x ]3(“j)°ﬁ (BeB(S*)).

Jed

Let f be a bounded continuous function on S*. Then

(4.7) lffdr - [fdr]| = ]E(f(px )) - ¢ f(u )a |
Jed

A

- x JE(f(py ) - fluy)) 0 |
jed *n 37 DhpeEy)

+ jiJ lf(uj)HP(XneEj) - ajl

r "+ I v (say) . \fﬁ
jed 3 jeg d )

n

1%

NN A
Veatay ey

. M
[

e
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n=
Let o P(XneEj). Then

I av + I a,-2°1L n Ao

n
(4.9) L Ja; - a o
jed d jed I jeg 9

il
jed 379

2-2 5 aMa.
jed J J

+2-2 % a,=0.
Jed J

(By dominated convergence theorem.) Since f is bounded eq.(4.9) implies that

(4.10) Lim £ Vi=o0.
N0 jeJ J
Eq. (4.9) also implies that, given € > 0, there exists a finite subset J0

of J such that,

(4.11) Sup T af <.
n jeJ] J 0

where J] = J\Jo . Eq. (4.11) is actually the assertion that L] - convergence
implies uniform integrability.

Next we show that, for jed

(4.12) Lim u" = 0.
N-»o J

Recall that Py uj as i== and f is continuous on S*, so that f(px )+f(uj).
i ij

R AN S IR I I S I -
S N N Y R S Ay
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Thus, given ¢>0, there is an io such that, for all i>io,

(4.13) I£(p, ) - Flu;)|<es2.
1j

| . Let B = {xij : 1<i<i }. Then in view of (4.1), there is an n, such

that for nzn ,
' (4.14) P{X,eB} < /4K
: where K is such that |f|<K. Then for nzn , we have
]
' n

Uy = E{]f(p, ) - flu) }

E{lf(Pxn) - f(uj)l{]{xneg} * ‘{xnesj\a}”

M ST
A

< 2KP(X ¢B) +§ P(XneEj\B)

A

ef2 + ¢/2 (by eqs. (4.13) and (4.14)) .

B Al Sl Sl Ly 8 8 8 B ¥
e e e e el T

This proves eq. (4.12). Now, for a given >0, define € = e/2K. For this

"o 96t J, and J; as above, so that eq. (4.11) holds. Then

DR AP ST

(4.15) jed d jed, 0’
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Since J, is finite, we have, using eq. (4.12) and (4.15)

i . n

. 4.16 Lim su I u. < €.
- ( ) n- P jed J )
E Since ¢>0 is arbitrary, this shows that

| | n

. Lim r U, =0.

N> JeJ

; In view of eq. (4.8), (4.9) and(4.10) we get

"

Lim |ffdr, - [fdr] =0
N-»oo

which implies roT weakly, and this completes the proof. (]

We now take two examples illustrating the above proposition.

Example 3.. Consider the same Markov chain {Xn, nz0} from example 1, and
suppose a<g. Then {X,s n20} is a transient Markov chain and hence eq.
(4.1) holds.

Since Lim P =¥y where u]({]}) =8 and u]({-l}) = a, the conditions

k>

of proposition 3 are satisfied if we take E; = E and Xil =i (i20). Then

Yo = Xn+]- Xn converges in distribution to u].i.e.

Lim P(Yn =1) =a, Lim P(Yn = -1) = R.
(S n




..................................................

19 of 22

Example 4. Let E = {(j,i) : j,i integers, 0 < j < i <=}. Let {X,} be a
Markov chain with state space E and stationary transition probabilities

given by

P{X

w1 = (L D)X= (0,8)} =1 i20.

Plpyy = (#1, 41)| X = (§,0)) =8 Ocjsice

P{xn+] = (j']9 i)l xn = (j’i)} = a 0<j$i<W .

Where o+g=1, 0<B<a<l. For this chain all states are inessential, as

|
E (3,1) » (§*1, i+1) but (j+1, i+1) A (j,i). Hence {X,» nz0} is transient
| . and eq. (4.1) is satisfied.

Let {Yn, n>0} be a real valued process such that the conditional
distribution of Yn given Xn = (j,i) is normal with mean j +:l—- and
variance 1+ 27" Thus ™

Jtl
t Py NG @ g t 2
|
E where N(u,nz) denotes the normal distribution with mean , and variance 02
: on (IR, B(IR)).
i . Now let J = {0,1,2,3,...} and

Ej = {(j’i) : 42§} .

'''''''''
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Also let xij = (j,j+i) be an enumeration of Ej . Then from the properties of

the normal distribution it follows that

Lim p = N(j, ) .

joo ij J+]

Now let Zn =3 if X eEJ It is easily seen that Zn itself is a Markov

chain with stationary transition probabilities as described in example 1.

Thus
Lim P(X cE ) = Lim P(Z j) =,
n-re N-»o0 J
where
L FUURE- SCUC
R
Thus = m; = 1 and hence eq. (4.2) and (4.3) hold. Hence, by proposition 3, o .
j=0 T

{Yn,nzO} converges in distribution to a measure v given by

. =B s a8 B\ n(i. )
v= 5= N(O;])*’jf]%‘l—g (57 N 337)
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55. The results in sections 2,3 and 4 can be extended to continuous time
stochastic processes in a straight forward manner. Extension of the results
in section 4 to more general state spaces seems possible but presents many
technical difficulties. The results in section 4 also suggest a relation-
ship between our approach and the boundary theory for Markov chains, but
at this stage we have not been able to make it precise. It should be
mentioned that the result in section 3 about the periodic non-homogeneous
Poisson processes is of interest in itself.

The problem considered in this paper is of interest in the theory of
partially observable processes. In this context one can think of {Xn. n20}
as the core process and {Yn,nZO} as the observation process. (See [4]).

For example Xn may represent the "state" of the internal components of a
machine at time n while Yn may represent its "performance", which may be
the only observable quantity about the machine. The limiting behaviour

. of the observation process {Yn, n20} is obviously of importance in the design

of the machine.
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