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INTRODUCTION

The diffraction model (ref 1) provides the basis for quantitative studies
of electrical transport in liquid and amorphous metals. Surprisingly good
agreement with experimental data has been obtained. However, significant
discrepancies between diffraction model predictions and the data are well
knowa in high resistivity (¢ > 100 uQcm) amorphous metals. Such discrepancies
are called saturation effects (ref 2).

Recently, detailed experimental electrical transport studies of low
resistivity amorphous alloys have been reported (ref 3). The present authors
reported diffraction model studies (ref 4) of these alloys employing an
effective t-matrix adjusted to satisfy the Friedel sum rule and to yield the
observed magnitude of p. The surprising result of the theoretical analysis

was that although qualitative agreement with the experimental results vas

obtained with the standard diffraction model, substantially improved
quantitat}ve agreement was obtained vhen saturation effects were incorporated
into the model in a manner consisteant with that employed to treat saturation
effects in high resistivity metals (ref 5). That is, improved agreement with
experiment was obtained when the Pippard-Ziman constraint (ref 6) on the
electron-phonon interaction was included. (It had been shown previously that
the Pippard-Ziman constraint can also provide a basis for understanding the
electronic contribution to the ultrasonic attenuation (ref 6) at small gA, and

the degradation of T, in disordered superconductors (ref 7).)

References are listed at the end of this report.




(;~’.\ + ¢ o, g
:Q
e,
3
N The implications of the diffraction model incorporating phonon
P,
;f ineffectiveness through the Pippard-Ziman constraint for low resistivity
. alloys are explored in more detail in this report. A broader class of t-
%f matrices as well as larger ranges of A and ka/kp than in Reference 4 are
;‘ treated. We work in the context of the substitutional model (ref 8), which
ﬁ; assumes the equality of all partial structure factors, but allows for
N
P
?:§ different t-matrices for different species; thus, a better basis for
'x interpretation of concentration dependent features of the T dependence of p
- than can be obtained in an effective potential treatment (ref 4) is
o
?: established. We also restrict our analysis to binary alloys. The results
" specific to amorphous magnesium zinc (a-MgZn) alloys, for which qpA ranges
A between about 12 and 15 and 2kp/kp ® 1.1 are reported in Reference 9.
S
X THEORETICAL MODELS
. The diffraction model (ref 1) (Ziman-Faber theory) result for the
Y
:3 electrical resistivity 1is
- p= . [ (=) (=213 |0R) |2 (L)
WY e2nvp? ‘0 2kp 2Ky
4
‘~ﬁ vhere 2, is the atomic volume, Vy is the Fermi velocity, ky is the Fermi
;ﬁ wavevector, K is the scattering vector, h is Planck's constant divided by 2w,

e is the electron charge, and in the "substitutional model,” assuming a Debye
phonon spectrum, and a binary alloy
[U(K)2| = cpep]ei(K) = t2(R) | 21P(K)

+ |e1t1(K) + egea(K)|28P(K) 2)

N .-\1hHhxixhxKx&xixixuxuxuxxxuxuuuruy:ﬂnlx
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where cy and tj(K) are the concentration and t-matrix for the ith coaponent,

#)
g

. ,.;

SP(K) = &~2W(K)q(x)

e K d - ‘

R + a2 o2 [F a3 2atx) (a(ar)P(an | 2 acRee) (€)) !
‘ T 2kyp 0 q O 4% |
P
N and ,
> (K) = K + a2 22 a3 Aoy 2aix (aer+117(eM) )

. T 2kp 0 a 9 “
E‘G . in Sham=Ziman approximation. Here «2W(K) 14 the Debye-Waller factor, x = l
t} ' (8/T)(q/qp), qp the Debye wave number, 9 the Debye temperature, T the

temperature, n(x) = (¢*-1)"!, a = 3(2&:)2/&30, M is the averaged ionic mass,

) kg 1is Boltzmann's constant. PF(qA) is referred to as the Pippard fumction and
3?.7' 1s given by
i -l
b 2 ytax"'y 3
y) == [ - =] (5)
R v ytan~ly vy
1 %
' We refer to SP(K) as the resistivity static structure factor. IP(K) is the
LN,

tesistivity static structure facter for a perfectly raadom array. SP(K) and
IP(K) determine the temperature dependences of electrical tramsport

L
) The gecmstric structure factors (assumed ideantical ian the substitutional
,* sodel) are given by
% 1 - -
2 a(K) = a11(K) = az2(K) = a12(K) " I emp(iK:(w-n)) (6)
> 8,0
‘:, where u and n run over averaged ionic positicns. The scattering matrix
‘Q . elements (which incorporate single site multiple scattering) ave given by
R 2w tng3(xp)
% ty(K) = 7 1(2841)e1a ngd(xp)e Py(cos ©) )
= u(2uiy) /40,
A
3
1S
ol
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where ngJ(Ep) is the scattering phase shift for angular momentum quantum
number £ evaluated at the Fermi energy Ep for the jth congtituent, m is the
electron mass, Py(x) is the Lth Legendre polynomial and cos 6 = 1 - Z(K/ka)z.
These equations are a generalization of those usually employed in studies of
transport in liquid metals (ref 10) and will be discussed in more detail
elsewhere.

We also give results based on the effective potential model. In this
model, tj(K) 2 t3(K) Z tp(K) and

|0g(R) |2 = sgo(R) | tg(R) |2 (8)

where SgP(K) is defined analogously to SP(K) in Eq. (3) with the effective
geometrical structure factor

ag(K) = 1} cgc gy 4(K) (9)

RESULTS

Results are given for an effective potential and for model t-matrices in
a binary substitutional model. Percus-Yevick hard sphere structure factors
(ref 11) (with packing fractiom 0.525) are used to approximate a(K) and ag(K);
the hard sphere diameters are varied to adjust 2kp/kp where kp is the position
of the principal structure factor peak.

The effective potential has phase shifts ng(Ep) given by 0.354, 0.294,
-0.057, and 0.002 for & = 0,1,2,3, respectively, which yield approximate
cancellation for K = 1.6 kg and lead to p vs. T curves similar to those
obtained in Reference 4 for Born approximation pseudopotentials in the large

qpA limit. However, this effective potential heavily weighs backscattering

and so is quite different in form from pseudopotentials. (These NY(Ep) were
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=
\ﬁ: computed for Zn with X4 = 0.85.)
I$: The t-matrices employed in the substitutional model calculations were
B computed using Herman and Skillman (ref 12) neutral atom wavefunctions for
58
;’S a-Mg7Zn3. The values of nti(Ep) are: =-0.175, 0.085, 0.034, and 0.001 for Mg
ij; and 0.354, 0.294, -0.057, and 0.002 for Zn (as in the effective potential) for
4 ) £ = 0 to 3, respectively. (The phase shifts are quite sensitive to exchange.
CQ; ) Xy was taken as 0.75 and 0.85 in Mg and Zn, respectively.) Very similar
Ao
;3% . results (not discussed here) have been obtained for other t-matrices
7N constructed to represent column I and column II metals in the substitutional
hts
?3 model.
%5
b
) DISCUSSION OF RESULTS
254
;jg } The Temperature Coefficient of Resistivity (TCR)
K's.
.;4 Figure 1 shows graphs of ter, the normalized TCR, where
| ter = (8/a)~TCR = (8/ap)dp/dT|®
-
< versus 2kp/kp for the two model potentials.
:_w
T All the results were obtained with Ep fixed and qp = kp which would not
U3
. apply in an alloy series with varying electron-to-atom ratios. The curves
lf were computed for a = 0.114, but are very good approximations for reasonable
.
:j values of a. One sees a shift of the region of negative TCR to larger values
o
(j‘ . of Zkg/kp with respect to the results of the simple analysis based on the
Q0 temperature dependence of the resistivity static structure factor by Meisel
3 ' and Cote (ref 13). Futhermore, analysis of data in a-MgZn alloys indicates
. that 50 ullem corresponds to qpA near 12 which produces dramatic changes in the
18
™~ TCR from the predictions of standard (qpA = ®) Ziman-Faber theory.
‘“5
L«
e
! 5
L
-

b

LW - » < A4 " ) \ . i
LR SO MRS Y DAY N DSOS A M A OSBRI AN 5 I K OGS AL b h O R U DTS T % DA N L R DR DL WAL




Comparison of Figures l1(a) and 1(b) illustrates nom~structural effects
1SS (1.e., effects produced by different scattering matrices) that might occur.
{ ] One can also infer that (especially in cases for which qpA < 15) the averaging
required in treating real binary alloys - whose partial structure factor peaks

o
>
X might be separated by kpllo = would not yield qualitatively new effects; for
‘; example, about the same range of Zkglkp would yield negative TCR.

0.4 T T Y T

0.2}

P
ter

20 Pigure 1. Normalized TCR vs. 2kp/k, for various qpA. (a) For the
S effective potential. (b) For the substitutional model.
s qpA is indicated for each curve.
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The Temperature Dependence of the Electrical Resistivity

Figure 2 shows results of calculations at various values of ZkF/kp and
qpl for the substitutional model potential and also at 2kp/kp = 1.1 for qpA =
8 for the effective potential case. (Results at 2kp/kp = 1.1l for the
substitutional model applied to a-MgZn are shown in Reference 9. The graphs
show the normalized relative change in the resistivity,

r = (p(T) = 2(0)/(ap(0))
plotted against normalized temperature. (Most results were computed for a =
0.168 but hold for reasonable a.)

The results show that deviations from standard diffraction model

predictions can be explained by incorporating phonon ineffectiveness effects

into the theory.
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