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Dual Offset Reflector Antenna Systems With
Rotationally Symmetric Aperture Distributions

1. INTRODUCTION

A rotationally symmetric paraboloid reflector fed by a rotationally symmetric

feed aligned with the reflector axis and located at the paraboloid focus gives rise to

a rotationally symmetric aperture distribution and far field pattern. If the feed is -

linearly polarized, then so is the aperture and far field. This positioning of the 510%

feed, however, partially blocks the reflected field. Offset reflectors can be used

to reduce this blockage, but rotational symmetry and polarization purity are then .

lost to an extent proportional to the offset angle. The principal attraction of dual
offset reflector systems. Cassegrainian and Gregorian. is that if they are suitably

designed, it is possible not only to eliminate blockage but also to preserve rota-

tional symmetry and polarization purity of the pattern. The geometries for such '-

ideal dual reflector systems were first discovered by Japanese investigators1 2

and then generalized in an elegant way by Dragone. 3

(Received for publication 12 July 1984)

1. Tanaka, H., and Mizusawa, M. (1975) Elimination of cross polarization in off- ";'""
set dual reflector antennas, Trans. IECE Japan, 58-B (No. 12). P-

2. Mlzugutch, Y., Akagawa, M., and Yokoi, H. (1976) Offset dual reflector an- -"' -
tenna, IEEE Sympos. Digest, University of Massachusetts, Amherst,

3. Dragone, C. (1978) Offset multireflector antennas with perfect pattern sym- .
metry and polarization discrimination, Bell System Tech. J., 57 (No. 7):

%: 2663-2683. - "- 3*
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The purpose of this report is to present a detailed derivation of the Japanese
formula to design an offset dual reflector antenna system with a rotationally sym-

metric aperture distribution. Such a derivation has not appeared in an English

language publication. The derivation given here amplifies at some length a '.?-

personal communication of Mizugutch. In addition, we derive an expression for
the aperture power distribution not given in the Japanese papers.

2. ANALYSIS

We consider a dual reflector system as shown in Figures 1A and l. The

main reflector is an offset section of a paraboloid with focal length f. The sub-

reflector is a section of either an ellipsoid (Gregorian system) or a hyperboloid..op

(Cassegrainian system) with eccentricity e and interfocal distance 2c. The focal

point Fo of the main reflector is also one of the foci of the parent subreflector

surface, and the feed phase center is located at the other subreflector focalpoint,

F1 .
Several coordinate systems are employed during the course of the analysis

(see Figure 2). An x, y, z-system is established with origin at F o, z-axis along

the axis of the parent paraboloid in the plane of the paper and directed outward

from the reflector, y-axis in the plane of the paper and directed downwards, and

x-axis directed out from the plane of the paper. The feed pattern is described

with reference to the spherical coordinates 00, 4o0 related in the usual way to
the Cartesian xo , Yo, Zo-system with origin Fl, zo-axis directed from F1 along the

axis of the feed in the plane of the paper, and xo-axis parallel to the x-axis. Also

used is an x1 , yI , .1 - system with origin at Fl, zl- axis directed along the subreflector a',

axis in the plane of the paper, and xl-axis parallel to the x-axis; and an x', y', z'-""
system which is simply the x, y, z-system translated to the origin F1 .

The entire dual reflector system is assumed to be symmetric with respect

to the x, y-plane. The orientation of the subreflector axis with respect to that of

the main reflector is specified by the angle 6 through which the subreflector axis

must be rotated around Fo to coincide with the z-axis. Counterclockwise rotation

is taken to be positive. The orientation of the feed axis with respect to the subre-

flector axis is specified by the angle ce through which the subreflector axis must be

rotated around F1 to coincide with the feed axis. Positive ot is associated with a .,. -

counterclockwise rotation direction.

The analysis employs geometric optics throughout. In the following, we will

first trace through the dual reflector system a ray emanating from the feed phase

center at F1 in the direction specified by 0 and and express the image point
P of the ray on the main reflector aperture as a function of 0o, 0, and the

6
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Figure 1A. Cassegrainian Reflector System Geometry

system parameters e, f, at, and $.We will then show that if the angles or and ,

and the subreflector eccentricity, e, satisfy a certain condition (Eq. 24), then the

images of the cones of rays, t0o constant, are concentric circles on the para-

boloid aperture with center the image of the feed axis. Furthermore, we will show
'Ip

that if the feed pattern is rotationally symmetric (that is, dependent only on 0 o),

then the paraboloid aperture power distribution is likewise rotationally symmetric.

Accordingly, we begin with a ray emanating from the feed phase center at

F1 in the direction specified by the angle 9 between the feed axis (z -axis) and the ...
0 0

ray, and by the angle 0. between the xo-axis and the projection of the ray on the

x 0 1 Yo-plane. Let Q be the point of intersection of this ray with the subreflector
surface. Then, in the x z system, the coordinates of Q are given by.. -

0 00

. .%.

1 '

/. -5.--........ ...
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with ...

cos(OlQ) z]Q/r]Q

Since the x,. Y1 . Zi- and x0 . y0 , zo-systerns are related by a rotation of the
y and zl-axis by an angle a about the x-(or xO) axis (see Figure 2) .

Z1 Q = Z2O cos(a) - yO sin(a)

and hence, substituting from Eq. (1),

Cos (0,Q cos(O0 cos(a) -sin(O ) sin(#0 ) sin(O) (3)

2C2

2c .1

zo* Y

Figure 2. Coordinate Systems

To obtain the coordinates of Q in the x, y, z-system we first obtain the
coordinates of Q in the x', y', z' -system which is related to the K0 , y 0 , z0 system
by a rotation of the y'- and zl-axes by the angle Y = G-f about the x'- (or x -)

axis,

.- UN



YQ YoQ Cs( 7) +YQsin(Y) '

and then use the fact that the x, y, z- and x', y', z'-systems are related by a

simple translation to obtain

x AX

Q Q

YQ =y'Q + 2c sin(g?)

Q Q

It follows that

xQ Xo (4a)

yQ y 0 Q cosCY) + ZQ sin(Y) + 2c sin(,8) (4b)

Z Q - oQ co( - Y0Q sin(Y') -2c cos(,6) (40)

If we let rQ, 0 be the coordinates of Q in the spherical polar coordinate *

Q, O
system based on the x, y, z-system, then

Y Q =rQ sin (OQ ) Cs~f(OQ)

7 r~ Co'0
~Q Q (Q)

or

sin(OQ cos(OQ) AxQ/rQ (5a)

sinl(0 Q sin (0 Q =yQ/rQ (5b)

Cos(Q zQIrQ (5c)

10
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The distance, rQ. from Foto Q is related to the distance, r1 Q. from F, to Q by
the equation

r,, - r 2c/e (6)

for the hyperboloid, and by the equation

r 1Q + rQ 2c/e (7)

for the ellipsoid. The distance 2c/e is the length of the transverse axis of the P.

hyperbaloid or the length of the major axis of the ellipsoid.
Now, let rp 6 p, q~ be the coordinates of P, the image on the main

reflector of the point Q on the subreflector, in the spherical polar coordinate

system based on the x, y, z-system. Then

XP rp sin(BP) COS(46P)

* yp =rp siii(0~ sin(op)

= 2 2
Zp (xp + Y )/ 4f - f

For the hyperboloid

op=G

so that

Xp rp Qsin (9Q Cos (-0Q) (8a)

"Yp = rp sin (0Q sin (0~ (8b)

-- with r given by the polar form of the paraboloid,
p S

2f
rP 4COS (7r-Q

2f
= -Cos (O)(9)

Q1

% 

.



For the ellipsoid, the ray passes through the focal point F so that .J.

*p i7T+OQ

and

xP -rP sifl(Q Cos(~Q (10a)

with

rp ~ + 2f (1r P I +COMO Q)

With Eqs. (8) and (9) for the hyperboloid case (or Eqs. (10) and (11) for the

ellipsoid case] along with Eq. (5), Eq. (6) or Eq. (7). and Eqs. (4), (1), (2),

and (3), we have thus expressed the image on the main reflector aperture of a

ray emanating from the feed phase center in terms of the parameters c, e, and f,

and trigonometric functions of the angles of, 8, 9 o' and q~o Substituting and

performing some algebraic and trigonometric manipulation then leads to the

following equations for x. and yp for either the Cassegrainian or the Gregorian

system:

=a -2 E cog (00) (12a)
P A+ B sin (0o)

C + D sin (02b
p= 2f _____

Yp A + B sin (40o)

where

A u1 + U2 Cos (

12



-. -. -. . ' -. o.,-.
A Vi 7 -.

B = sin( 0o )

C = u4 + u 5 cos(l o)

D = u6 sin( 0 )

E = ( e 2 ) sinl
0o )

and

u= cos(a-P) +e 2 coslo +,) - 2e cos(a) (13a)

u2 =1+e 2 - 2e cos(.8) (13b)

u = 2e sin( -) e2 sin(a + )- sin(a-$) (13c)

u4 = sin(a-#)- e2 sin(*+ ) (13d)

u= 2e sin(fl) (13e)

u6 = cos(a -)-e 2 cos(a +) (13f)

Note that the interfocal distance, 2c, of the parent subreflector surface does not
appear in this result. Thus, the image point on the paraboloid aperture depends
only on the subreflector eccentricity, e; the paraboloid focal length, f; the ,.
angles, a and fl, specifying the relative orientations of the axes of the feed,
subreflector, and main reflector; and the ray direction. The dependence on the
paraboloid focal length is that of a scale factor only.

We next show that the image on the paraboloid aperture of the circular cone
of rays, constant, is a circle. For squaring Eq. (12a)

0,

2 [A + B sin(,o)] 2 = 4f2 E2 [1 sin2 ( 0 )] 2  (14)

while from Eq. (12b) ..

sinO',) Ayp + 2fC (15)
Byp + 2fD

Substituting Eq. (15) in Eq. (14) and completing the square, we obtain

13
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(AD BC)2 x2 Yp + 2f AC VBD)2 4f2 (AD-BC) 2  (16)
E2 zA .Ba) A 2  B2  (A

(A B°. ,-

In Appendix A, it is shown that the following relations hold among the ui  .

defined in Eq. (13):

u 2 = u (17a)
1 3

ulu 4 +uu 6  =u 2 u5  (17b)

2UlU6 -u 3u4  (1-e)u 2  (17c)

2p
uu - uu ( 2U (17d)
2o6 35 1

Using Eqs. (17c) and (17d), it is then straightforward to show that

AD - BC = (1 - e 2) sin(0o ) [u I +u 2 cos(o)]; (18) P....

by using Eq. (17a), that

A 2 
- B 2 = lul + u 2 cos( 00)] 2 (19)

and by using Eq. (17b), that

AC - BD = [u + u2 cos (0o)] [u 4 + u5 cos( 0j .  (20)

Substituting Eqs. (18), (19), and (20) in Eq. (16), we obtain the equation of the----

circle with center at (0, yc ) and radius rc,

+2 y 2 2
x 2  + (ypY c ) d r2  '':

" C ""

where S
u 4 + u 5 cos( 0o )

= -2f Ul + u2 cos(0o) (21)

and 3
2f(l - e2 ) sin(Oo (22)

+ u2 cos (6 0)

14
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It will be noticed from Eq. (21) that the center of the circle is a function of

00 so that the circles corresponding to different values of 00 are not in general

concentric. However, differentiating Eq. (21) with respect to 0 and equating .. ;

the derivative to zero to make y independent of 69 yields the equation

UIU 5 = u 2 u 4  (23)

Substituting from Eq. (13) and performing some manipulation then gives the

condition -'

tan((a) G - e2 sin(fl) (24)tan~c (1 : ( +e4) cos(P) 2e

which is equivalent to the equation -7.

= 0 (25)

or

2e sin() e sin(a + ) sin(- 6) 0 (26)

Eq. (24) is the central result of this report. It gives the relation between

the angle Ot (between the subreflector axis and the feed axis), the angle AD

(between the subreflector axis and the main reflector axis), and the subreflector %

eccentricity, e, that must be satisfied for the images of circular cones of rays

from the feed phase center, 00 = constant, to be concentric circles on the main

reflector aperture. . "-

Before proceeding to examine the transformation of power from the feed

pattern to the main reflector aperture, it is worth noting some useful implica-

tions of Eq. (24) or Eq. (25). As shown in Appendix B, it is possible to express .

the angle f in terms of e and the angle a by the equation

2
tan(O) = (I - e ) sin(a) (27)

(1 +e') cos(ct) +2e

Eq. (27) is equivalent to the relation *

2e sin(fi)+e 2 sin( a+6) - sin(a -) - 0 (28)

Using Eqs. (26) and (28), it is then simple to derive the formula (see Appendix C) .

, '. *. .'% .q
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tan( /2) + e tan( /2) (29)
1e

obtained by Dragone by a different method. 3 Conversely, Eqs. (26) and (28) can

be derived by a single geometric argument starting with Dragone's method for

determining the feed axis (see Appendix D).

Substituting Eq. (25) in Eq. (17a) gives

(note that u2 is always positive), whereupon substituting Eq. (26) in Eq. (23)

gives

u4 1 = 5

(referring to Figure 1, fi can always be taken to be positive if the feed is not to
block the main reflector, so that u5 is positive). Eq. (23) then also implies that

u1 and u4 have the same sign. The possibility that u1 and u4 are both negative

can be excluded by observing from Eq. (22) that then

- f 2f - 21 cot 0 /2) (30) . -

so that the feed pattern is inverted with the image of the central ray appearing
at infinity. Hence, u1 and u4 are both positive and

u= u2 (31) bL

u4  u5

An additional equation results from substituting Eqs. (25) and (31) in Eq. (17c),

| ~u6  - e .- -

or

2 2

cos(a-fl) - e cos( 0+9 ) - e.

The expression, Eq. (21), for the y-coordinate of the center of the circular

image on the main reflector aperture of the circular cone of rays 00 f constant,

reduces to

16
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4'~'%~ ... *u~itU 1 I. 1,'.II.-,

Y 2 1 ." A. -4f e sin (.)
u I + e 2 - 2e cos(p)

independent of t o , while Eq. (22) for the radius of the image circle becomes

rc - u2.f1. e 2 1 tan(9o/2) 2f l - e j tan(go/2) (32)
u2 0 1 + e-6 - 2e cos(fi) .-Q-'

Eqs. (12a) and (12b) for the x- and y-coordinates of the image point of the ray in

the direction 0o, *0 become

Xp = -2f (i-e 2 ) sin( 0 ) cos(O) -.

u2 [1 + cos(o)].

2.. -

-2f (1- e tan( /2) cos(,) (33) "
1 + ez  2e cos(0) 0

and

u 5 - + coS(o)] + u 6 sin(9 o ) sin($o ) .".. '_' "
yp u -2) + Cos( os

= -2f u5 - 2f (1 -
2 ) tan(G0o/2) sin(@o)

u 2  U2

2f( - e2 ) tan(G /2) sin(o)341 ..

Y 1 + e' - 2e cos(p) 0.'

Referring to Eqs. (33), (34), and (32), we can also write

Xp + r c cos( 0o )

Yp Yc - rc sin4o) ""

where the plus and minus sign refers to the Cassegrainian and Gregorian system

respectively. This means that for the Cassegrainian system the angle o which

defines the projection of a ray on the xo , yo-plane of the feed coordinate system, -.

equals the azimuth angle Op of the image point on the main reflector aperture

in the spherical coordinate system based on the x, y, z-system, while for the

Gregorian system, 00 = OP ± 7r This difference between the Cassegrain-

ian and Gregorian system is, of course, attributable to the fact that in the Casse-

L" . . .

17 6
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grainian system, the rays do niot pass through the focal point Fc, while for the

Gregorian system, they do.

Turning now to the distribution of power in the paraboloid aperture, let

G(60, 00 be the distribution of power on a unit sphere around the feed phase cen-

ter. The power radiated through an element of area on the unit sphere is given by *

GoP 40) sin( *O~~ Godo

Letting P(x, y) be the aperture power distribution, we then have

P (xy)dxdyo G(O0 , 40) sin(t80)dGodo0

with

didly (X I)dSdoA

so that

GOO, 00) sin(O0)

From Eqs. (33) and (34),

1/2 se 0/)cos(4i0 ) -tan(O 0 2) sin(4O0)
OX. .
0F2

' '00

22

22

F _201_-_e_ 2M(1- e) (35)
u I +2 le 2 -2e cos(O)

18
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Hence

G(So.400) in(O-

P(X.* Z2-

2 tan(O 2/2 se 02

I GOO, 6) [1 + coo(G0 )1 2 (36)

The feed pattern is thus transformed to the main reflector aperture distribution by
multiplying by the factor

L.[I + cos(e~~

0

It is worth noting that Eq. (36) can also be derived from the relation

2

r1Q rp

which expresses the fact that the power density decreases as a diverging spherical
wave from F1I to Q. increases as a converging spherical wave from Q to F0 , and .

decreases again as a diverging spherical wave from F, to P. (This relation ap-
plies equally to Cassegrainian and Gregorian systems.) To show this, we use
Eqs. (6) or (7), (9) or (11), and (5c) and (4c) to give

+ Q c* 4 -e cos (P]1 coosy) coo (00) -sin (Y)sin( 0  sin (40 )
r1 Qrp ef r1 Q- 2f

whereupon, using Eqs. (2) and (3) we obtain

±rQp = e cos(dB)] e sin(a) s !i~Aji( 0 (et ~ 0

+ e cs + Cos (a -6) (I -eco(0)1eco(a) -
eCB -~Cos(00) (37)

2 2
1 e 2j f 2 1 -e %

19 i%



The coefficient of sin(6 o0 sln(O0 ) in Eq. (37) is equal to

2 U.1~ .

V [2e sin(a)- sin(a - 4 61-e sin(a+ 8i) = u"--6.
2f(1 - e 2 ) 2f( -e2

which is zero because of Eq. (25); the second term of the RHS of Eq. (37) equals

2e cos()+ 2 + e ;

2f( 1 - e) 2f (1 - e 2 )

while the coefficient of cos(Go is found to be

cos(a -8)- 2ecos(a) + e2 cos(O+P) .° 

2f (1-e2) 2(1 - e21 21(1 - e2 )

using Eq. (31). Thus, '

u2
r2 [1 + cos(O9)"I rP 2f(- e;)

2I+e2 2e cos(B) [1 +cos(o..
2f(l - e )

I + cos(Go)

F

with F defined by Eq. (35), so that

rQ 2
.', ~ ~[ cosl(o]2 .•

2 2
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Although polarization will not be considered in detail here, it is important

to note that the condition. Eq. (24), which guarantees that the images of

circular cones of rays around the feed axis are concentric circles on the main

reflector aperture and that a rotationally symmetric feed pattern produces a

rotationally symmetric aperture power distribution, also guarantees that a feed
with no cross polarization gives rise to an aperture field with no cross polari-

zation. Cross polarization here is defined as in the third definition of Ludwig. 5

For a transmitted field polarized in the x direction at 0o = 0, this definition

implies that the 0 and 4o components of the transmitted electric field satisfy

the equation

E sn(o) = -E cos( o )so .0..:,-

while for a transmitted field polarization in the yo-direction,

E0 cos( o) =N sln( o)

The field of a Huygens source-that is, a combination of crossed electric and
magnetic dipoles of equal strength-satisfies these equations. If Eq. (24) is

satisfied, an xo-polarized transmitted field gives rise to a paraboloid aperture

field with Ey = 0, and a y0 -polarized field to an aperture field with E x = 0.

These results are theoretically established 2 , 3nd can be readily verified by

computer calculation using the equation .

ref2(" inc inc (38)

to handle the reflections at the subreflector and main reflector. In Eq. (38),

Einc and Erefl are the incident and reflected electric field vectors respectively,

and is the unit normal to the surface directed into the space from which the

field is incident. -"

.- .

5. Ludwig, A. C. (1973) The definition of cross polarization, IEEE Trans,
Antenna Propag., AP-21:116-119.
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Appendix A

Proof of Four Identities

In Appendix A. we prove four identities used in the main body of the report.

Let u1 , i - 1. 6 be defined as in Eq. (13) by

ucos (a- +)e 2 cos (e f+,B)-2e cosn NOa (A Ia)

U I+ e2  2e cos (f)(Alb)
22

U 3 2esin (a) -e sin (a + j)-sin (a -) (Aic0

N msin (or-,6)-e sin(a +,6) (Aild)

*2e sin W~) (A le)

U6  cos (0-)e 2 cos (a+fl (A If)

Then we wll prove here that

2 32 2
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U
14

+ U
3 6

U
2

U (A3)

ulu6 - 3 u6 '(- 2 u (4

2

U2 U 6  U u 5 *(1e u1  (A 5)
2 6 30

To prove Eq. (M2), substituting fromi Eq. (Al) in the LHS and using the rela-

tion for the cosine of the difference of angles gives

u 2 + u3 
2 -+ e 4  4e 2 +2e 2 cos [(a3(a +/3 4e cos [a (a/3)

-4e
3 Cos [Ot - (a+/

(+ e2 2 + 2e 2 [I+ cos (2,6)]4e cos (0)(1+ e 2 )

22 2 2 2
l+ e + +4e cos (/)4e cos(/(+ e)

-[(0 + e)- 2e cos(3)2

To prove Eq. (M3), substituting from Eq. (Al) in the LHS and using the relation

for the sine of the difference of two angles, we obtain

+ 2e sin [Ct - (cci-/) + 2e 3 sin [(a+#8) _C1]

2e2 sin [((a- fl) - (at+,6)] + 2e si (PI1( + e2 )9.

2. 2
=-4e sin (/6) cos (/3) + 2e sin (fl)(l + e)

[l 1+ e2  2e cos ()]2e sin (/3)
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To prove Eq. (A4), substituting in the LHS and using the relation for the co-

sine of the difference of two angles,

uU 6 -u 3 u 4  -e 4 -2e os [- (a-)]+ 2e 3 cos [a- (a-)
1- 6 uC ;... -.

= 1- e
4 
-2e cos (0l)(1 - e2)

=(1 -e 2 ) [1+ e2 -2e Cos (,)]

(1 - e2 ) U2

Finally, to prove Eq. (A5), substituting from Eq. (Al) in the LHS and using

the relations for the cosine of the sum and the difference of two angles gives

2

u2 u6 -u 3 u 5 =cos (G-6)+e [cos(a-#8)- cos (+)]

-2e cCos+(- )-e 4 cos (+, ) ".-.

+ 2e 3 cos [ 8- (a +,)] -4esin (a)sin (P )

= cos (ci - fi) + e 2 cos (ci + ,8) - 2e cos (a) ?i' -"

-e 2 cos (oe-j8)-e cos (+P)+2e 3 cos (a

= ( - e2 ) [cos (a -,) + e 2 cos (a + P) - 2e cos (a)]

= (I- e2 ) u I

2..
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Appendix B
Inversion of Eq. (24)

In Appendix B, we show that Eq. (24), or, equivalently, Eq. (26) can be

used to obtain the angle fl in terms of at and e. Substituting coo (fl)
I- sin2 (,q)] 1 /2 In E q. (286) gives a quadratic equation for sin (P) with the solutions

sinPP (I-e ) si() [-2e cos(a) ±(1 + e 2 )]

( (- A 2 + 4e 2 sin2 (a) (BI)

The 'Y' sign must be taken for sin(p) to be positive as is assumed in the main

body of the report. Similarly, substituting sin(fl) = [l - cos 2 ()] 112 in Eq. (26)

gives a quadratic equation for cos($6) with the solution

2 2 2 2
cos~i) = 2e 0 +e )sin (a) + (1 -e ) COsMO) (

(l-e + 4e 4 sin (cc)

corresponding to the "+" solution in Eq. MOl. The ratio of Eq. (Bl) and Eq.

(B2) then yields

(l-e)2 sin(ce) [I +e 2- 2e cos(o)tfl ,,-
tanWR _________________

f(1 -te )cos(O) + 2e] C1 + e -2e cos(a)]

* i? ... ..2

G - e 2. ) s,-a

(1~~ +:'. e").o'e) 2

29'~'7:



..

.. .'. .,,~.'..:.:.

Appendix C

Derivation of Eq. (29)

Using the half-angle formula

tan ('i) .3.

Eq. (29) is equivalent to

sin(ce) - sin(.8) - e sin(a +fl) - e sin(ot) + sin(p)] + sin(O -,6 0 (Cl)

Adding Eqs. (26) and (28) gives

e [sin(ce) + sin(/3)] -sin(c-fl) 0

while subtracting Eq. (28) from Eq. (26) yields

sin(ce) - sin(fi) - e sin(ot +/3) 0 (C2)

and so Eq. (Cl) is satisfied.

! 'S
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Appendix D

Derivation of Eqs. (26) and (28) From Dragone's
Construction of the Feed Axis

3

Dragone has given a simple method of determining the orientation of the

feed axis of a multi-confocal reflector system consisting of ellipsoids, hyper-

boloids, and paraboloids, so as to ensure circular symmetry and zero cross-

polarization of the antenna far field. Applied to the dual reflector systems we

consider in this report, the feed axis orientation is determined by the point of

intersection, I, of the paraboloid axis with the parent subreflector surface (see

Figures DI and D2.) This construction guarantees that the ray from the feed

phase center at F1 in the direction of the feed axis is unchanged in direction

after four successive reflections, the first from the subreflector, the second

from the paraboloid, the third from infinity coinciding with the paraboloid axis

(regarding the paraboloid as an ellipsoid with its second focus at infinity), and

the fourth from the parent subreflector surface.

First, considering the Cassegrainian system and referring to Figure 3a,

2_
""(c le)(e -1)

e cos() + I

2
= (c /e)(e - )i ~~r2 

;-,-.
e cos(fl) -1 9
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Applying the Law of Sines to the triangle F F I we have (remembering that a is

taken to be negative for the Cassegrain system).

sin(-a) sin~yr - (-a +P0)]

e 1 2e

ecos(fl)

PARABOLOID

F2 SUBREFLECTOR AXIS

PARABOLOID AXIS

Figure DI. Geometric Construction of Feed Axis for Cassegrainian System

whereupon we obtain

2e sin(a) - e2 si(+#) -sin(ot-fl) =0 (25)

A second Law of Sines relation for the same triangle gives

sin#)sin [7r- (a+48)

~(e 2_0 2c

e cos(a)+

and hence

2 e sin(48) + e2 sin(a+4) sin(a -48 0 (28)
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PARABOLOID

2 SUBREFLECTOR AXIS

F 2c F0

FEED AXIS~

ELLIPSOID PARABOLOID AXIS

Figure D2. Geometric Construction of Feed Axis for Gregorian System

[The third Law of Sines relation gives the equation

sin(af) - sin($6) =e sin(0'+j)

Eq. (C2).]

For the Gregorian system, referring to Figure 3B

S
2 )

r (cl/e) (l-e
1+ e cos(o)

2
(cle)(1 -e)

2 -e cos($R)

Again applying the Law of Sines to triangle F 0F 1, we have

sin (7r - o) sin(of- 0)

e 2 ) 2c

2e

yielding Eq. (28). The third Law of Sines relationship again gives Eq. (C2).
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