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Dual Offset Reflector Antenna Systems With
Rotationally Symmetric Aperture Distributions
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1. INTRODUCTION
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A rotationally symmetric paraboloid reflector fed by a rotationally symmetric
feed aligned with the reflector axis and located at the paraboloid focus gives rise to
a rotationally symmetric aperture distribution and far field pattern. If the feed is
linearly polarized, then so is the aperture and far field, This positioning of the
feed, however, partially blocks the reflected field. Offset reflectors can be used
to reduce this blockage, but rotational symmetry and polarization purity are then
lost to an extent proportional to the offset angle, The principal attraction of dual
" offset reflector systems, Cassegrainian and Gregorian, is that if they are suitably
& designed, it is possible not only to eliminate blockage but also to preserve rota-

:'.,3 tional symmetry and polarization purity of the pattern. The geometries for such
ideal dual reflector systems were first discovered by Japanese inveatigatorsl' 3

and then generalized in an elegant way by Dragone.

e
-
.

2 (Received for publication 12 July 1984)

varer

1, Tanaka, H., and Mizusawa, M, (1975) Elimination of cross polarization in off-
2 set dual reflector antennas, Trans, IECE Japan, 58-B (No, 12),

d *

2, Mizugutch, Y,, Akagawa, M,, and Yokoi, H, (1976) Offset dual reflector an-
tenna, IEEE Sympos, Digest, University of Massachusetts, Amherst,
AP-S8:2-5,

3. Dragone, C. (1978) Offset multireflector antennas with perfect pattern sym-
metry and polarization discrimination, Bell System Tech, J., 57 (No. 7):
2663-2683, e
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The purpose of this report is to present a detailed derivation of the Japanese
formula to design an offset dual reflector antenna system with a rotationally sym-
metric aperture distribution. Such a derivation has not appeared in an English
language publication, The derivation given here amplifies at some length a
personal communication of Mizugutch, In addition, we derive an expression for
the aperture power distribution not given in the Japanese papers.

2, ANALYSIS

We consider a dual reflector system as shown in Figures 1A and 1B, The
The sub-
reflector is a section of either an ellipsoid (Gregorian system) or a hyperboloid
The focal
point F ° of the main reflector is also one of the foci of the parent subreflector
surface, and the feed phase center is located at the other subreflector focal point,
F

main reflector is an offset section of a paraboloid with focal length f.

(Cassegrainian system) with eccentricity e and interfocal distance 2c,

' Several coordinate systems are employed during the course of the analysis
(see Figure 2). Anx,y,z-system is established with origin at F_, z-axis along
the axis of the parent paraboloid in the plane of the paper and directed outward
from the reflector, y-axis in the plane of the paper and directed downwards, and
x-axis directed out from the plane of the paper., The feed pattern is described
with reference to the spherical coordinates 00. ¢o' related in the usual way to
the Cartesian X0 Yo z,-system with origin Fl' zo~axis directed from Fl along the
axis of the feed in the plane of the paper, and xo-axis parallel to the x-axis, Also
used is an X, ¥)» 2)-System with origin at Fl' zl-axis directed along the subreflector
axis in the plane of the paper, and xl-axis parallel to the x-axis; and an x',y', z'-
system which is simply the x, y, z-system translated to the origin Fl'

The entire dual reflector system is assumed to be symmetric with respect
to the x, y-plane. The orientation of the subreflector axis with respect to that of
the main reflector is specified by the angle 8 through which the subreflector axis
must be rotated around F, to coincide with the z-axis. Counterclockwise rotation
is taken to be positive., The orientation of the feed axis with respect to the subre-~
flector axis is specified by the angle a through which the subreflector axis must be
rotated around Fl to coincide with the feed axis, Positive & is associated with a
counterclockwise rotation direction,

The analysis employs geometric optics throughout, In the following, we will

first trace through the dual reflector system a ray emanating from the feed phase
center at F, in the direction specified by 00 and ¢o' and express the image point
P of the ray on the main reflector aperture as a function of 00, ¢°, and the
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Figure 1A, Cassegrainian Reflector System Geometry

system parameters e, f, a, and 8. We will then show that if the angles o and 8,
and the subreflector eccentricity, e, satisfy a certain condition (Eq, 24), then the
. images of the cones of rays, 00 = constant, are concentric circles on the para-
boloid aperture with center the image of the feed axis, Furthermore, we will show
) that if the feed pattern is rotationally symmetric (that is, dependent only on 00),
then the paraboloid aperture power distribution is likewise rotationally symmetric,

Accordingly, we begin with a ray emanating from the feed phase center at
F| in the direction specified by the angle 00 between the feed axis (zo-axis) and the

ray, and by the angle ¢0 between the xo-axis and the projection of the ray on the
X yo-plane. Let Q be the point of intersection of this ray with the subreflector

surface, Then, in the X,y zo-system, the coordinates of Q are given by
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i XoQ - F1Q 8iP (6,) cos (&) (1a)
YoQ = T1Q sin (9 o) sin (¢°) {1b})

25Q = T1qQ 08 (90) (1c)

The distance from F1 to Q, which, instead of roQ’ we have denoted rl(;2 referring
to the %y, y;, 2;-System, is given by the polar form4 for either the hyperboloid or

the ellipsoid,

) . _(cle)1 - ¢?)
. 1@ "T-ecos (g 1Q) @

4, Beyer, W.H., Ed. (1978) CRC Standard Mathematical Tables, 25th Edition,

CRC Press, Inc., West Palm Beach, Fla,
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Since the X5, Y %y° and Xge Yoo zo-systems are related by a rotation of the
y;~ and z;-axis by an angle a about the x)- (or xo) axis (see Figure 2)

21Q © ZoQ cos(a) - YoQ sin{a)
and hence, substituting from Eq. (1),

cos (olQ) = coswo) cos(a) - sin(oo) sin(¢°) sin(ot) (3)

Figure 2, Coordinate Systems

To obtain the coordinates of Q in the x,y, 2-system, we first obtain the
coordinates of Q in the x', y', z'-system which is related to the x o0 Yor Zo-8YStem
by a rotation of the y'- and z'-axes by the angle ¥ = a-8 about the x'- (or xo-)
axis,
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X Q

YoQ cos(y) + 2,Q sin(y)

z'Q 25Q cos(¥) - YoQ sin(7)

and then use the fact that the x, y, z- and x', y', 2'-systems are related by a
simple translation to obtain

xQ x’Q

yQ y'Q +2c¢ sin({ff)
2q *© z'Q - 2c¢ cos(f)
It follows that

XQ * *oQ (4a)

YQ © Yog 0S(¥) *+zoq sin(?) +2¢ sin(B) (4b)

1

2Q * ZoQ cos(?) - YoQ sin(¥) - 2c cos(B) {4c)

If we let r é Q’ ¢Q be the coordinates of Q in the spherical polar coordinate
system based on the x, y, z~system, then

xQ * rq sin (6y) cosl ¢Q)
yQ = rq sin (OQ) sin(¢Q)
7Q ° TQ cos(GQ)

or
sin(0 o) cos(¢Q) = xQ/rQ (58)
sin(OQ) sin(¢Q) = yQ/rQ (5b)

cos(OQ) = zQ/rQ (5¢)

10




The distance, rQ from Fo to Q is related to the distance, rlQ’ from F‘1 to Q by
the equation

T~ 2cle (6)
for the hyperboloid, and by the equation
+ =
rg *trg 2cle {7
for the ellipsoid. The distance 2c¢/e is the length of the transverse axis of the
hyperboloid or the length of the major axis of the ellipsoid.
Now, let o) ] P ¢P be the coordinates of P, the image on the main

reflector of the point Q on the subreflector, in the spherical polar coordinate
system based on the x, y, z-system. Then

xp = rp sin(fp) cos(¢P)

yP = rP Sm(ep) Sm(¢p)

2 2
2p (xP + yP)/4f - f

For the hyperboloid
;. p =6q

¢p

%Q

Xp = Ip sin (OQ) cos (¢Q) (8a)
Yp = rp sin (GQ) sin (¢Q) (8b)

with rp given by the polar form of the paraboloid,

. 2f
rl>-1+cos(7r-9Q)

2f

*1-cos (OQ) (9)
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For the ellipsoid, the ray passes through the focal point F o 50 that

op = m - OQ

¢P s g+ ¢Q
and

Xp = -rp sin(oq) cos(¢Q) (10a)

yp = -rp sin(é Q) sin(¢Q) (10b)
with

o s 21

P 1+ cos(oQ) an

With Eqs. (8) and (9) for the hyperboloid case [or Egs. (10) and(11) for the
ellipsoid case] along with Eq, (5), Eq. (6) or Eq. (7), and Egs. (4), (), (2),
and (3), we have thus expressed the image on the main reflector aperture of a
ray emanating from the feed phase center in terms of the parameters ¢, e, and f,
and trigonometric functions of the angles o, 8, 6 o’ and ¢ o Substituting and
performing some algebraic and trigonometric manipulation then leads to the
following equations for xp and yp, for either the Cassegrainian or the Gregorian

system:
E cos ($g)
2 oOf —e O YO (12a
*p * "2 LB sin (9y) )
C+ D sin (¢ )
yP = -2f o (12b)
A + B sin (@)
where
A =u, +u,cos (00)
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8 B = ug sin( 00)
C=uy+uyg cos(oo)

D = ug sin( 00)

MPLNAS AT MR

E = (1 - e?) sin(6,)

% and
- w = cos(@-f) + e cos(a +8) - 2e cos{a) (13a)
‘ uy =1 ve? - 2e cos(f) (13b)
.:: ug = 2e sin(a) - e sin(a +8)- sin(a - B) (13¢)
u, = sin(a - B) - e sin(a +8) (13q)
: ug = 2e sin(g) (13¢)
- ug = cosla - B) - ¢® cos(a +g) azn
‘; Note that the interfocal distance, 2c, of the parent subreflector surface does not
, appear in this result, Thus, the image point on the paraboloid aperture depends
M only on the subreflector eccentricity, e; the paraboloid focal length, f; the
_: angles, «a and fJ, specifying the relative orientations of the axes of the feed,
subreflector, and main reflector; and the ray direction, The dependence on the
paraboloid focal length is that of a scale factor only,
‘ We next show that the image on the paraboloid aperture of the circular cone
. of rays, oo = constant, is a circle. For squaring Eq. (12a)
. 1
" 2 . 2 2 ) 2
xp [A+8B sm(¢o)] = 4fE [1 - sin®(¢)] (149
‘. while from Eq. (12b)
4
2 - . Ayp +2C (15)
4 sin(¢,) Byp + 21D

Substituting Eq. (15) in Eq. (14) and completing the square, we obtain
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(AD-BC®  (16)

2
4D - BO® %% + (y, + 2¢ AC-BD 2 _at
e e’ SEmmmey Aa

E%(A° - B°) A2 . g2 (A -B

In Appendix A, it is shown that the following relations hold among the { LY }
defined in Eq. (13):

2 2 _ 2
1 u tuy = o (17a)
:' uu, tougle = Ugug (17b)
b -
: Wug - uquy = (1 - eAu (17¢)
176 374 2
Bl 2
‘ ugug = ugug = (1 - ey (17d)
}1 Using Egs. (17¢) and (17d), it is then straightforward to show that
p -
AD - BC = (1 - €®) sin(f ) [w +uy cos()); (18)
—';.'j by using Eq. (17a), that
2
A% - B% = (u +u, cos(6)]% (19)
- and by using Eq. (17b), that
3
:' AC - BD = [u +uy cos (§,)]) [u, +ug cos(8.) (20)
. Substituting Eqs,. (18), (19), and (20) in Eq, {(16), we obtain the equation of the
'_-'; circle with center at (0,y_) and radius r,
o 2 2 _ 2
xp * yp - ¥ 7
where
.':2 ugq +ug COS(OO)
e y = -2f———————0 (21
e c uy + ug cos(fy)
_: and

26(1 - e2) sin(d A

(22)

N =
T c u +u, cos (4 )
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It will be noticed from Eq. (21) that the center of the circle is a function of
6, 8o that the circles corresponding to different values of 00 are not in general
concentric. However, differentiating Eq. (21) with respect to 90 and equating
the derivative to zero to make y c independent of 00 yields the equation

X

ulg = uguy 23 :
s
Substituting from Eq. (13) and performing some manipulation then gives the =
condition
2, .
tan(a) = (1 - €°) sin{B) (24)

(1 +e4) cos(B) - 2e

which is equivalent to the equation

et e e ek

ug = 0 (25)
or
2e sin(@) - e gin(a +8) - sin(a-8) = 0 (26)
: Eq. (24)- is the central result of this report, It gives the relation between

the angle a (between the subreflector axis and the feed axis), the angle 8
(between the subreflector axis and the main reflector axis), and the subreflector
eccentricity, e, that must be satisfied for the images of circular cones of rays
from the feed phase center, @ = constant, to be concentric circles on the main
reflector aperture,

Before proceeding to examine the transformation of power from the feed
pattern to the main reflector aperture, it is worth noting some useful implica-
tions of Eq. (24) or Eq. (25), As shown in Appendix B, it is possible to express

the angle #8 in terms of e and the angle a by the equation

2
. (1-e)sin(a) 27)
tan(8) (1 +e®) cos(at) +2e

Eq. (27) is equivalent to the relation

2e gin(B) + e2 sin(a+8) - sinlae -8) =0 (28)

Using Eqs. (26) and (28), it is then simple to derive the formula (see Appendix C)
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tan(e /2) = il_+i tan( 8/2) 29)

obtained by Dragone by a different method. 8 Conversely, Eqs, (26) and (28) can
be derived by a single geometric argument starting with Dragone's method for
determining the feed axis (see Appendix D).

Substituting Eq. (25) in Eq. (17a) gives

[l = o

(note that u, is always positive), whereupon substituting Eq. (26) in Eq. (23)

gives

f?.:'-. [ug| = us

(referring to Figure 1, B can always be taken to be positive if the feed is not to
block the main refiector, so that ug is positive). Egq. (23) then also implies that
v and U, have the same sign, The possibility that v and u, are both negative
can be excluded by observing from Eq. (22) that then

- 2f L2 30
r, o |1 e Icot(oo/?.) (30)

so that the feed pattern is inverted with the image of the central ray appearing
at infinity, Hence, u and u, are both positive and

(31)

or

cos(a - 8) - e? cos(at +8) = 1 - &2

The expression, Eq. (21}, for the y-coordinate of the center of the circular
image on the main reflector aperture of the circular cone of rays 00 = constant,

reduces to
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-4f ¢ sin (B)

s
y, = -2f—=
¢ U2 1+ e2-2ecos (g

independent of §,, while Eq. (22) for the radius of the image circle becomes

2
- 2. ez; tan(g J2) = 2Ll - €| tan( 9 ,/2)
° T+ 2 - 2¢ coslf)

r (32)
c T,

Eqs. (12a) and (12b) for the x- and y-coordinates of the image point of the ray in
the direction ¢,, ¢, become

n am aa aa aa g

= .z (1 -e?) sin( 6,) cosl¢.)

*p
u, [1+ cos(6)]
- 2f (l - 92) t ( /2)
- - an( 9, cos(do) (33)
1+ e° - 2e cos(B)
and
ug (1 + cos(oo)] + ug sin(oo) sin(¢°)
yp = =2f u2[1 ¥ cog—fooﬁ
a5 . g (1-€d) tan(8,/2) sin(g )
Uy Uz
211 - e?) tan(@ ./2) sin(¢@ ) (34)
= Yo © an 00 sin(@

1 +e“ - 2e cos(p)

Referring to Egs. (33), (34), and (32), we can also write

xp = % r, cos(d’o)

Yp = Yo * T, sin(éo)

where the plus and minus sign refers to the Cassegrainian and Gregorian system
respectively. This means that for the Cassegrainian system the angle ¢o which
defines the projection of a ray on the X yo-plane of the feed coordinate system,
equals the azimuth angle ¢p of the image point on the main reflector aperture

4 in the spherical coordinate system based on 'he x,y, z-system, while for the

: Gregorian system, ¢o = ¢P + T, This difference between the Cassegrain-

ian and Gregorian system is, of course, attributable to the fact that in the Casse-
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grainian system, the rays do not pass through the focal point F , while for the
Gregorian system, they do.

Turning now to the distribution of power in the paraboloid aperture, let
G(6 o ¢ o) be the distribution of power on a unit sphere around the feed phase cen-
ter. The power radiated through an element of area on the unit sphere is given by

G(6,, @) sin(6 )d6 d¢
Letting P(x, y) be the aperture power distribution, we then have

P(x, y)dxdy = G(@ o* ") o) sin(g o)d ood¢°

with
- (x,¥)
By ey |40
80 that
Gl(o,, @,) sin(6,)
Plx,y) = 7 3x,y)
6(00. ¢o) ‘

From Eqs, (33) and (34),
1/2 secz(0°/2) cos(¢,) - tan 6,/2) sin(g,)

1/2 sec2(0°/2) sin(¢o) tan(0°/2) cos(d,)

2
-F 2
. tan(oo/z) sec (00/2)

A

with

F = 2001 - e) = 201 - %)

(35)
uy 1+ e2 - 2¢ cos(f)
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Hence

G(6,, &) sin(6,)
tan(6 /2) sec2(0°/2)

P(x,y) =

n'q m'

-#c(oo. @) 1 +cos(g )] 2 (36)

The feed pattern is thus transformed to the main reflector aperture distribution by
multiplying by the factor

1 2
E [1 + cos( 00)]

which is independent of ¢o' Hence, if the feed pattern is rotationally symmetric,
then so is the main reflector aperture power distribution.
It is worth noting that Eq. (36) can also be derived from the relation

2
- r
Plxp,yp) = G(6,, o) Q
rQ '
which expresses the fact that the power density decreases as a diverging spherical
wave from F1 to Q, increases as a converging spherical wave from Qto F o’ and
decreases again as a diverging spherical wave from F o to P, (This relation ap-

plies equally to Cassegrainian and Gregorian systems.) To show this, we use
Eqgs. (6) or (7), (9) or (11), and (5¢c) and (4c) to give

. rQ ¢[1 -e cos (B)] __1. cos {¥)cos (6,) - 8in(¥)sin(6 ) sin (¢°) -1
rlQrP = ef r1Q+ 2f

whereupon, using Eqs. (2) and (3) we obtain

r
I‘IQQI‘P = %. {[l - € cos(ﬂ)] e sin(ar) - Sin(a 'é)} sin(oo) sin( ¢°)

+

1|1 - e cos 1 1 8 (ot - - B8) .
+?[__e_2_@ -_]4- _;°° @-8)  [1-ecos 2]e cos (e { .,g 0, (37) %y
1-e 2) f 2 1-e SR
SATpr e
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The coefficient of sin(oo) sin(¢o) in Eq. (37) is equal to

N B
% R
! u T
Py deeee. [2e sin(@) - sin(a - g ) - e? sin(a + B)] = —-3—2 \-'-':‘-'}7-':
A 21(1 - e2) 21(1 - e9) Ao
N ":;\I -;
.’ LAY
. which is zero because of Eq. (25); the second term of the RHS of Eq. (37) equals

1-2ecos()+e2 _ u

2f( 1 - e°) 21(1 - e2)

while the coefficient of cos( @ o) is found to be

. s
: 2 F
E cos(a - B ) - 2e cos(an) + e cos(a +8) ui - u .
g 2t (1-¢2) 2(1 - e2)  2f(1 - e?)
using Eq, (31). Thus, ,':_3?_?.
: RS
YRR
r
X t . % . 2 w  [1+ cos(6,)]
1Q°P  2f(1-¢)
" 1+e - 2¢ cos(8)
" = ” [1 +cos(6)]
2f(1 - e°)
g 1+ cos(g,)
i F
- with F defined by Eq. (35), so that T
.Z - ::’:.\ :..
4 St
: . l‘2 2 ':“'-:‘t:“
DI TH
Q 5 - [@ + cos(@ o)] RS
N T . - ..
: "1Q'P F 1
N
N
) 20 i
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Although polarization will not be considered in detail here, it is important
to note that the condition, Eq. (24), which guarantees that the images of
circular cones of rays around the feed axis are concentric circles on the main
reflector aperture and that a rotationally symmetric feed pattern produces a
rotationally symmetric aperture power distribution, also guarantees that afeed
with no cross polarization gives rise to an aperture field with no cross polari-
zation, Cross polarization here is defined as in the third definition of Ludwig.
For a transmitted field polarized in the X, direction at @ o ° 0, this definition
implies that the 6 and ¢° components of the transmitted electric field satisfy
the equation

L5

E

. P sin(¢ ) = -E¢ cos(¢ )
o

[+

while for a transmitted field polarization in the yo-di.rection,

E (¢ ) = E sin(¢ )
o, cos(¢,, %, ¢

The field of a Huygens source—that is, a combination of crossed electric and
magnetic dipoles of equal strength--satisfies these equations. If Eq. (24) is
satisfied, an xo-polarized transmitted field gives rise to a paraboloid aperture
field with Ey = 0, and a yo-polarized field to an aperture field with Ex =0,
These results are theoretically establishedz' 3and can be readily verified by
computer calculation using the equation

)& - E

inc

Eefl"'z(ﬁ.gi

r (38)

ne

to handle the reflections at the subreflector and main reflector. In Eq, (38),
flmc and Er oy re the incident and reflected electric field vectors respectively,
and ' is the unit normal to the surface directed into the space from which the
field is incident,

Pite B e e r o——E A W .N i "

c—— - W w.m . —eT

5. Ludwig, A,C, (1973) The definition of cross polarization, IEEE Trans,
Antenna Propag., AP-E'I.:IIS-HQ.
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Appendix A

Proof of Four Identities

In Appendix A, we prove four identities used in the main body of the report.

Let u,, i= 1, 6 be defined as in Eq. (13) by

u; = cos (a-8)+ e2 cos (0 +B) - 2e cos (O0)

u2'1+e2-2ecos(ﬂ)

ug = 2e sin (a) - e? sin (a+8) - sin (a - B)

u, = sin (a-8) - &2 sin (a+8)
ug = 2e sin B3

2

ug = cos (a - f) - e” cos (a+8)

Then we will prove here that

uy +u3 =u2

G A S A G S RS LA
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uju, + ugue ® uyug (A3)
e u,u, -u.u, = (1 - e2) u (Ad)
= 1% " Y344 2
o
:::: u,u, -~ umu,. = (1 - e2) u (A5)
v 2°6 375 1

T To prove Eq. (A2), substituting from Eq. (A1) in the LHS and using the rela-
o tion for the cosine of the difference of angles gives

H \1124‘u32 =1+et+ 4e? + 2¢% cos [(a-B)-(a+B)] - 4e cos [a - (a-ﬂ)]

-4e3 cos [a - (a+f)]

2
= (1+e?) +2e2 [1 + cos (28)] - 4e cos (B)(1 + e?)

2

=(1+ e2) + 4e2 cosz(ﬁ) - 4e cos (BN1 + ez)

IR
.
et e

= [(1+e?) - 2e cos (3] 2

. s
]

.

To prove Eq. (A3), substituting from Eq. (A1) in the LHS and using the relation

for the sine of the difference of two angles, we obtain

e
»

uju, +ugug = 2e2 [sin (a - 8) cos (o +8) - sin (o +8) cos (& -;3)]
+ 2e sin[a - (a-8)] + 2e3 sin [(a+8) -d]

2¢2 sin (&t -B) - (@ +8)] + 2e sin (B)N1 + ?)

':: -4¢? sin (B) cos (B) + 2e sin (B)(1 + e?)

f1+ e? - 2e cos (B)] 2e sin (B)

* Uglg
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To prove Eq, (A4), substituting in the LHS and using the relation for the co-
sine of the difference of two angles,

uug - ugu, =1 - e? - 2¢ cos (e - (a-ﬂ)]+2e3 cos [a - (a-8)]
%)

=1-e4—2ecos(ﬁ)(1-e

=(1 - ez) [1+ e2 - 2e cos (8)]

=(1-edu,

Finally, to prove Eq. (A5), substituting from Eq. (A1) in the LHS and using
the relations for the cosine of the sum and the difference of two angles gives

Uglg - ugug = cos (o - B)+ e2 [cos (a - B) - cos (o +8)]

;: - 2e cos [ﬁ+(a~ﬂ)]-e4cos (a+8)

+ 2¢2 cos [B-(a+8)] - 4e? sin (@) sin (8)

cos (a0 - B) + e2 cos (o +B) - 2e cos (a)

2

- e“ cos (ot-ﬁ)-e4

3

cos (e +8) + 2e” cos (o)

(1 -e? [cos (- 8) + e?

cos (o + ) - 2e cos (a)]

_ _ .2
=(1 e)u1
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Appendix B
Inversion of Eq. (24)

In Appendix B, we show that Eq. (24), or, equivalently, Eq. (26) can be
used to obtain the angle 8 in terms of & and e, Substituting cos (8) =
[ 1 - sin® (,8)] 1/2 in Eq. (26) gives a quadratic equation for sin (8) with the solutions

(1- ez) sinlet) [-2e cos(a) + (1 + ez)]
sin(B) = (1- €2)2 + 4e2 sin? (a) (B1)

The "+" sign must be taken for sin(8) to be positive as is assumed in the main
body of the report, Similarly, substituting sin(8) = [1 - cosz(ﬂ)]ll2 in Eq. (26)
gives a quadratic equation for cos{8) with the solution

2e(l +e2) sinz(a) +(1 - e2)2 cos{ot)
(l-ez)2 + 4e° si:z(a)

cos(B) = (B2)

corresponding to the ''+" solution in Eq, (Bl). The ratio of Eq, (Bl) and Eq.
{B2) then yields

tan(B) = (l-ez) sin{at) |1 +e2 - 2e cqs(a)]
[(1 +€*) cos(a) + 2¢][1 + e® -2e cos(ar)]

. - e?) sin(a)
(1 + ¢°) cosla) + 2e

29
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Appendix C

Derivation of Eq. (29)

Using the half-angle formula
tan (X - sint)
2 T +cos(x)

Eq., (29) is equivalent to

sin(at) - sin(8) - e sin(a +8) - e[sin(a) +sin(B)] +sinfa~B) =0 (C1)
Adding Eqgs. (26) and (28) gives

e [sin(a) + sin(B)} - sin(@-8) = 0
while subtracting Eq, (28) from Eq, (26) yields

sin(a) - sin(B) - esin(a+B) = 0 (C2)

and so Eq. (Cl) is satisfied.
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Appendix D

Derivation of Eqs. (26) and (28) From Dragone’s
Construction of the Feed Axis

Dx‘agone3 has given a simple method of determining the orientation of the
feed axis of a multi-confocal reflector system consisting of ellipsoids, hyper-
boloids, and paraboloids, so as to ensure circular symmetry and zero cross-
polarization of the antenna far field., Applied to the dual reflector systems we
consider in this report, the feed axis orientation is determined by the point of
intersection, I, of the paraboloid axis with the parent subreflector surface (see
Figures Dl and D2.) This construction guarantees that the ray from the feed
phase center at F1 in the direction of the feed axis is unchanged in direction
after four successive reflections. the first from the subreflector, the second
from the paraboloid, the third from infinity coinciding with the paraboloid axis
(regarding the paraboloid as an ellipsoid with its second focus at infinity), and
the fourth from the parent subreflector surface,

First, considering the Cassegrainian system and referring to Figure 3a,

(- /e)(ez-l)

T
e cos({a) +1
2
e =l le)(e® - 1)

e cos(f) - 1
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7
'. Applying the Law of Sines to the triangle FOFII we have (remembering that a is
~ taken to be negative for the Cassegrain system),

7 sin(-a) - sin[m- (-a +8)]

L ¢, 2

a - {(e”- 1D 2e

e cos(g) - 1

" PARABOLOID
HYPERBOLOID
- FEED AXIS

. SUBREFLECTOR AXIS

: 2

5 Fy ! T~ /

-, [ H
! " \ W PARABOLOID AXIS
- | !
_ =<- —————— 20 e ——— —-:

- Figure Dl. Geometric Construction of Feed Axis for Cassegrainian System
s:
\’ whereupon we obtain

: Ze sin(at) - e2 sin(a +8) - sinla-g8) = 0 (26)
::: A second Law of Sines relation for the same triangle gives ::
: —sinlB) . gnr- (-a+8)]

: c (.2
_:_ -é- (e 1) 2¢
S e cos(a) +1

;‘: and hence

. 2e sin(8) + 2 sin(a+B) - sin(a-B8) = 0 28)
Td

.: T
. 34 -
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PARABOLOID

/ SUBREFLECTOR AXIS

FEED AXIS

\ ELLIPSOID

Figure D2. Geometric Construction of Feed Axis for Gregorian System

PARABOLOID AXIS

[The third Law of Sines relation gives the equation
sin{fa) - sin(8) = e sin(a+f)

Eq. (C2).]
For the Gregorian system, referring to Figure 3B

(c/e)(l - e?)

n
1 +e cos(at)
2
(c/ell - %)
ra P

1 - e cos(fB)

Again applying the Law of Sines to triangle FOF’1 I, we have

sin (7 - at) = sin(a - 8)
c 2 2¢
3(1 -¢e7)

1-ecos(f)

from which Eq. (26) is readily obtained, and

sin(f8) = sin(a-é)
S(1-¢9 ¢
€

1 +e cos{at)

yielding Eq. (28). The third Law of Sines relationship again gives Eq. (C2).

35




MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
<8 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

;

%

' 3
Printed by

United States Air Force
H:nuon AFB, Mass. 01731







