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800 N. Quincy

Arlington, VA 22217

Re: Contract N00014-

75-C-0955
(Final Report)

Dear Dr. Wynne:

This contract terminated on August 31, 1983. In a letter dated
December 15, 1983, Mr. David R. Van Metre (ONR contracting officer)
denied my request for an extension--all ONR funds had been consumed--
but agreed to wait until August 31, 1984 for the final report.

In complying with the spirit of that agreement, I am submitting here-
with a preliminary version of the final report. In earlier correspondence
I explained the difficulties I was having with the student, whose thesis
will constitute the final report. She is currently working very well
and I expect her to complete the thesis by December 1984 (roughly the
time scale I projected for ONR last November).

No data beyond that which is contained in this preliminary report
is currently in my hands. However, a very large amount of data will
be in the Ph.D. thesis. I am sure we will all be pleased with that final
result. Thank you for your patience.
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GRADIENT POLYMERS

INTRODUCTION

Gradient polymers represent a unique type of polymer blend, consisting of

two chemically-different chains which are forced to intermingle despite

thermodynamic forces that act in the direction of phase separation. They are

prepared by first fabricating a crosslinked host polymer, then causing a

foreign monomer to diffuse into the host, and finally polymerizing and

crosslinking the penetrant in situ. In the limiting case of host saturation

(i.e., a unifrom distribution of the penetrant), the resulting blend is called

an "interpenetrating network" (IPN); this name is not fully descriptive of the

penetrant uniformity, but was adopted years ago when the IPN was the only

variant being studied. luazui work, -we--studied the more general case of

'nonuniform and nonequilibrium penetrant distributions, wherein a gradient of

the second polymer is tfrozeni in place by the crosslinking reaction. In a

general sense, 4A&e4 t that ultimately a wide range of physical properties--

possibly some quite unique-will arise from controlling not only the choice of

the two polymer species but also the composition gradient.-

* The early years of this project, under the direction of Prof. Mitchel

Shen, led to three publications 3 that will not be reviewed here. Suffice it

to say that these papers remain almost alone in the field, in part because the

task of preparing gradient polymers is so difficult. Perhaps for this reason,

12there were many questions raised about the earlier work, 1
' and some of those

results2 could not be reproduced. 3  Thus, the focus of the work since 1979

(directed by Prof. Michael C. Williams) was to select one new chemical system,

develop reproducible methods of sample preparation, invoke new analytical
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techniques for sample characterization, and conduct mechanical property tests

of great variety (linear and nonlinear).

->The chemical system ultimately selected was a crosslinked polymethyl-

methacrylate (PMMA) host that was penetrated by a low-molecular-weight grade

of polybutadiene (PB), subsequently to be further polymerized and crosslinked

in its gradient position. Such a choice necessarily limits the scope of the

present study to represent variations of only one class of material: the two-

component rubber-toughened plastic. However, this is a very important class

of structural plastic, and the possible compositional variations are highly

diverse in principle.

Primary results consist of the measured responses to various types of

mechanical deformation, including ultimate limits. These are coupled with

information about the chemical composition (averages, and gradient character)

and the microstructure to develop correlations and predictive rules for

material performance. The present preliminary report does not include all of

these results, but the final version of the report will do so.

SAMPLE PREPARATION

Roughly 80% of the time and effort on this project (i.e., the first four

years, 1979-83) has been devoted to optimization of the PMMA/PB preparational

variables and implementation of characterization methods. These phases of the

work can be described with some completeness, though a full recitation of

details will await the final version of this report.

A. Host Polymer

The hard plastic host was chosen to be PMMA, lightly crosslinked, which

is inexpensive and is easily machined into specimens for mechanical testing.

It was polymerized here and machined in the UCB College of Chemistry shops, so

that its composition and history were entirely known to us.

4o
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The mixture of monomer (MMA) plus azo-bis-isobutyronitrile (AIBN)

initiator plus ethylene glycol dimethacrylate (EGDMA) crosslinker was degassed

twice, to reduce subsequent irregularities such as bubble formation and

shrinkage; omission of this step initially caused so many imperfections in the

specimens that very few were suitable for testing. Polymerization was

conducted in ordinary fluorescent lighting. The reaction rate was kept slow

by using very little AIBN, and 48 hours was needed to approach completion.

The resulting PMMA was then crosslinked in a vacuum oven at 130°C for two days

and slowly cooled to room temperature over a 24-hour period; substantial

annealing also occurred during this treatment. The choice of 130°C was

dictated by the activation of the crosslinker, but it also proved to be high

enough to ensure chain mobility (note, Tg for PMMA ranges from 105* for

uncrosslinked samples to no more than 115* for the crosslinked samples used

here) and this permitted virtual completion of all reactions; only a trace of

unreacted MMA has been detected in the final material.

The rough cylindrical samples -- having been produced in cylindrical

ampules - were next machined on a lathe to either a symmetrical dumbbell

shape or a perfect cylinder, suitable for subsequent tensile or torsional

testing. Meticulous polishing of the surface was conducted with a sequence of

agents, from fine emery paper through several grades of alumina (to 0.05 U),

and thus surface imperfections which often distort the results of mechanical

tests were removed. Examination of samples under polarized light showed no

residual anisotropic strains due to production or processing steps to this

point.

B. Penetrant Phase

The penetrant molecule was required to be one which forms a rubbery

polymer at room temperature, so that the full range of physical states (glassy

% %
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to rubbery) in the blend could (in principle) be explored. However, this

basic contrast of properties was itself a source of numerous obstacles: even

small molecules do not generally penetrate well into glasses, and diene

hydrocarbons (most monomers for rubbers) are usually incompatible -- i.e., of

marginal solubility -- in polar compounds such as methacrylates. All these

problem were eventually surmounted.

(1) Selection of penetrant. Testing of numerous unsaturated monomer

types verified their lack of compatibility with the host plastic; contact of

these pure liquids with PMMA caused very little swelling of the latter at room

temperature. Working at higher temperature to soften the host was not

possible because the candidate monomers were too volatile. However, a low-

molecular-weight (1 = 1050) prepolymer of polybutadiene (PB) was obtained from

Polysciences (Warren, PA) and found to remain stable as a viscous liquid even

at 1300C. This PB was thus chosen as the penetrant, with the expectation that

a coiled chain molecule of R = 1050 would still be small enough to diffuse

into the matrix of another rubber (PMMA at 130*C is in the rubbery state).

Information provided by Polysciences included the R and the chain isomeric

structure: 85% vinyl (1,2 linkage) with the remaining 15% (1,4 linkage)

mostly in the cis state.

(2) Polymerization considerations. Several initiator schemes for

extended polymerization of the PB prepolymer were examined: AIBN with UV

light, benzoyl sec-butyl ether with UV light, ammonium persulfate with UV

light, benzoyl peroxide with heat, AIBN with heat, and dicumyl peroxide (DCP)

with heat. No appreciable polymerization took place with the UV schemes and

these were discarded. The thermal methods were more successful, and DCP was

selected because a great deal of information on its behavior in such systems

is available.
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Since the gradient samples were to be produced by diffusion of PB into

PMMA at 130*C, it was important to examine also the rubber stability at this

V'-. temperature. Only a slight degree of yellowing was observed even in the bulk

rubber after exposure to 130C for four days. However, it was deemed prudent

to add an anti-oxidant stabilizer - butylhydroxy tin (BHT) - to eliminate

all such problems during sample preparation, storage, and testing.

Preliminary tests made by polymerizing the PB prepolymer mixture alone

showed that the resultant rubber was not of optimal quality when DCP was the

only initiator/crosslinker. Addition of EGDHA (used also in the PMMA

crosslinking) led to superior rubber properties. Thus, for preparing the

gradient samples, both DCP and EGDMA were used in the prepolymer mixture.

Diffusion enhancement. Preliminary trials with the prepolymer PB

containing 1% DCP showed that penetration into the host PMHA at 130*C was

negligible in the time available before the rubber polymerized. The PMMA

cylinders appeared to be unmodified, and even at their surfaces no softened

areas were observed. In view of possible free volume limitations in the host,

even though T > Tg, it was decided to produce additional swelling with a

solvent reasonable good for both PMMA and PBo Experiments at room temperature

s were conducted with p-xylene, toluene, cyclohexanone and tetrahydrofuran. All

* except p-xylene were eliminated; toluene caused cracking of PHMA, and the

others were not sufficiently good solvents for both polymers. P-xylene, which

boils at 135*C, caused no PMMA cracking or crazing even at 130*C; samples

remained visibly clear, yet swelled to approximately double their original

volume within 48 hours. Such samples were highly plasticized and rubbery when

removed from the ref luxing (sealed) glass ampules.

Although p-xylene (pX) was successful in producing PHA swelling, it was

not initially clear whether the pretreatment of the host cylinder in a

L.-2
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solution of pX and PB (with additives) would have the desired effect while

maintaining simplicity of operation. A number of trials of such an operation

were conducted, and one sequence is described below.

The base mixture of PB plus 1% DCP was diluted with pX to prepare three

solutions: 80%, 70%, and 50% PB by weight. These solutions were used in the

role of penetrants for PMMA, and the now-standard procedures led to three

samples of gradient polymers. Staining sample cross-sections with bromine

(see below) for 2 hours showed significant PB penetration, by the intensity of

brownish color across the cylindrical cross-section. The samples prepared

from 80% PB and 70% PB had "skins" (dark and light brown, respectively) of

high PB concentration near the surface, with clear uncolored centers, while

the sample prepared from 50% PB was hazy and yellow throughout. Thus, the pX

content of the PB solutions can be manipulated as an extra degree of freedom

in controlling the ultimate PB distribution in the blend.

However, visual inspection of various samples suggested that the gradual

composition profiles characteristic of Fickian diffusion may be unattainable

with these systems. Penetration of the PB appeared to take place behind a

sharp front, leading to a two-step region of compositions (or, as the only

alternative, the uniform IPN case). This occurred also when samples were

prepared from PMHA hosts which had been preswollen with pure pX and thus had

more than ample free volume. The preswelling did, however, facilitate the

extent of PB penetration, as shown by much thicker "collars" of PB-rich

regions when using solutions of 80% PB and 70% PB.

This latter observation, together with the result that using a host PMMA

preswollen with pX gave more reproducible samples, led ultimately to adoption

of such a technique. Samples designed for mechanical property testing were

subsequently made by infusing a pX-swollen PMMA host with three PB prepolymer

solutions in pX: 85% PB, 80% PB, and 70% PB; this superficially small range



7 7

~7

of composition corresponded to dramatic variation of the prepolymer solution

viscosity and hence diffusivity. The penetration, polymerization, and

crosslinking process was continued for 18 hours, under vacuum, at 120*C.

COMPOSITION ANALYSIS

Use of an unsaturated penetrant (PB) in PMMA made possible the composi-

tion profile determination by staining agents that adhere to (or react with)

the O-C bond. The most common stain, osmium tetroxide, was rejected for

reasons of toxicity and also because it tends to rigidify the rubber and thus

prevent its own further penetration. Bromine, while a less intense stain,

reacts quantitatively with the OCC bond and gives far less severe problems

than OsO4 in other ways. Thus, our choice was to employ bromine.

Visual inspection of bromine-stained samples permitted a convenient and

immediate assessment of gradient polymer composition, albeit a qualitative one

(see above). However, scanning electron microscopy (SEM) and energy dis-

persive X-ray analysis (EDAX) were combined in a more-detailed method of

analysis. First, cross-sections of the gradient samples (plus pure PMMA and

pure PB) were cut, highly polished by standard methods, and exposed to bromine

vapor for 2 hours at room temperature. Next, the brominated samples were

placed in the SEN at Lawrence Berkeley Laboratory's Molecular and Materials

Research Division, and EDAX was used to count the local density of the bromine

Ka peaks.

Examples of these results are given in Figs. 1-3. Other tests, using

this technique, confirmed that sample preparation methods were capable of

reproducing composition profiles with a high degree of success. It should be

noted that these profiles were unlike those predicted by Fickian diffusion

kinetics, despite the fact that only amorphous materials and a common solvent

-. %
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Fig. 1. EDAX measurement of PB concentrations in PMMA across a cyl-
indrical specimen, prepared by immersion of swollen PMMA in a 70% PB
solution. Pure PMMA gives 100 counts, so the level of the horizontal
axis represents 0% PB. Pure PB gives 2,263 counts (off scale). In
this specimen, PB is seen to penetrate into all parts of the cylinder.
Composition across the central 80% is nearly uniform; only in a small
inner core is there a minor PB deficit. The drop-off at the outer
surface is not completely understood and may be an artifact of the
sample manipulation in the SEM.
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were involved. There was always a relatively sharp boundary between the

advancing PB penetrant front and the soft plastic core. Samples prepared with

* the 70% PB solution (lowest viscosity) had profiles closest to being uniform

* --e.g., Fig. 1--and thus were very similar to an IPN. On the other hand, use

of the 80% PB and 85% PB solutions always produced the steeply peaked patterns

* of Figs. 2 and 3, with virtually no PB reaching the PMMA core.

MECHANICAL PROPERTIES

Two principal devices-- the MTS Tester and the torsion pendulum--were

used to obtain a wide range of linear and nonlinear mechanical properties for

the specimens whose compositions were characterized as described above.

- Ultimately, the correlation between composition and properties will be made,

* which is the objective of this project; the final version of this report will

deal extensively with this problem.

MTS Tester

A variety of static and dynamic polymer properties can be obtained, all

in a tensile mode, by appropriate programming of the time-dependent strains

being imposed in the MTS. In this study, we measured the ordinary "static"

* stress-strain relationship (thus providing the low-strain modulus and several

0 ultimate properties, such as tensile strength, ductility, and toughness), slow

cycling stress-strain (giving hysteresis and insight about internal repair),

and fatigue properties. Fracture surfaces were also observed by SEM to assess

* failure mechanisms.

Initially, Ms. Stoughton received expert training on use of the MTS by

W
spending a week at the General Electric Co. Corporate Research Laboratory

4 (Schenectady, NY) working with Dr. Albert Yee. She subsequently made a

detailed evaluation of our MTS and several modifications were introduced:

Ai



(1) Two types of grips were obtained to accommodate small cylindrical

samples. One set was ridged and wedge-shaped (especially suitable for

materials of rubbery texture), while the other resembled drill chucks.

(2) Load cell capability was made more sensitive by scaling down from 5000 to

1000 lb.

(3) Vibrations which interfered with stress measurement at high strain rates

(in fatigue tests and others) were eliminated by developing a special

damping segment for insertion into the load train.

.?.C(4) Certain machine transients upon start-up were minimized. Design of a

novel "slack grip" allowed a specified speed to be reached before the

sample was subjected to any stress, thus avoiding problems related to

machine inertia.

In addition, to obtain data on sample dimensional and volumetric changes

during tensile testing (thus providing insight on failure mechanisms such as

crazing), a sensitive diametral extensometer was purchased.

Tensile stress-strain measurements were performed on about 80 samples

(2-5 replicates of each type of test on each type of sample). The range of

elongational strain rates was 10 to 10o1 sec , to assess strain-rate

0sensitivity variations among the different samples. From these curves were

determined the low-strain elastic modulus, toughness, overall curve shape, and

the stress and elongation at break. Our preliminary evaluation suggests that

these characteristics, when averaged among the replicate tests, reveal few

differences from the pure PMMA. However, several samples made with 80% PB

solutions achieved distinct improvement in toughness at the lowest strain

rate. In addition, samples made with 70% PB solutions appeared to be more

* highly plasticized and to reach greater elongations at a lower stress level.
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The lowest -s train-rate tensile tests were also monitored by two strain

gauges, reading axial and diametral strain, in an attempt to determine the

K. percent of volumetric deformation taking place before extensive necking in

each sample type. Since crazing leads to a high increase in void volume, it

was hoped that this could be related to the observations of fracture surface

* phenomena (exhibition of the characteristic markings of either shear or

crazing mechanisms for energy dispersion). Significant differences in

volumetric deformation were observed among the sample types, and these will

subsequently be discussed in terms of various possible interpretations

involving the measured composition profiles and overall rubber content.

Fracture surface morphologies were examined from low to high SEM

magnification for each of the four strain rates# This was the most conclusive

evidence that the gradient types were quite different in their deformation

response. They exhibited different proportions of shear steps, large and

small cracks of varied shape, number of bifurcations, and implied crack

propagation speeds related to the strain rates at which the tests were run.

Fatigue tests were conducted on a limited number of samples in tension-

compression load control. The results appeared to indicate a trend towards

- softening and weakening the fatigue resistance of the polymer by inclusion of

the PB rubber. The homopolymer IMMA gave the largest number of cycles to

failure, with the lowest fatigue cycles to failure given by samples made with

the 70% PB solutions. We conclude that a hypothetical mechanism by which the

* PB rubber might have enhanced fatigue resistance by filling in surface cracks

or flaws was not operative here.

- B. Torsion Pendulum (TP)

Out TP, built here and used with reasonable success In several earlier

projects, provided the elastic and storage moduli (G' and G") over temperature
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ranges of hundreds of degrees. This linear data in shear supplemented the

nonlinear data in tension, obtained with the MTS, and moreover was used as a

diagnostic of phase mixing and thermal transitions in polymer samples by what

is known as "dynamic mechanical spectroscopy".

The TP operates by free angular oscillation in a torsional mode. A small

shear strain is initially imposed on the sample by twisting the heavy

"inertial assembly" which grips the specimen end. Releasing the assembly

permits free oscillation of decreasing amplitude, until motion is entirely

damped out by energy dissipation in the polymer sample. Tracings of the

decaying oscillations are derived from an optical transducer system whose

accuracy is vital for data analysis, and this system received substantial

upgrading:

(1) The previous light source was a tungsten filament that produced a

spectrum similar to the room lighting, so that various forms of

interference were common. This was replaced with a GaAs infrared emitter

and band pass interference filter.

(2) Anguilar motion is measured by the intensity of light transmitted between

crossed polarizers, one of which rotates with the sample while the other

is stationary. The previous polarizers were made of plastic, were not

*entirely uniform, and developed warpage which caused random errors from

run to run; moreover, they were not suitable for the new IR light

source. New glass-laminated Polaroid HR infrared polarizers were

* obtained and installed.

(3) A suich-improved IR photodetector assembly was installed.

(4) On-line data analysis was added through coupling to a PET computer, with

both analog and digital capabilities. This improved speed and accuracy

of obtaining the G'(T) and G"(T) spectra from the raw data.
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* . One result of TP testing was identification of the sample glass

. transition temperatures, Tg (by peaks in the G"(T) spectrum). For the pure

* a unswollen PMlA, Tg- 120*C was found. Such a value is typical of high-K and

*'- ." crosslinked MIMA. Addition of the pX solvent plasticized the PHMA consider-

- ably, lowering Tg to about 69*C. Gradient polymers produced with 85% PB and

80% PB solutions (i.e., 15% and 20% showed even greater plasticization, with

. Tg -51*C; this was surprising in view of the chemical evidence (Figs. 2 and
-.

- 3) that no PB penetrated into the PHMA core, so the implication is that more
'l

pX reached the core--ahead of the PB front--than when pX alone was diffus-

ing. The result that samples made from 70% PB solutions lowered T still

. _further, to about 47*C, continued this progression but was less surprising

"- since Fig. I shows that pX penetrated all parts of the sample.

Evaluation of the Tg data and other features of the TP evidence is

continuing. In passing, we note that no T for PB could be detected. This

indicates that no microphase separation of the rubbery PB occurred, despite

its intrinsic incompatibility with FIIA. Apparently the PB-crosslinking

reaction succeeded in "locking" the PB chains irreversibly around the host

PMMA network chains, preventing PB segregation. This sort of microscopic

- homogeneity is highly desirable, as phase separation would almost surely lead

to inferior properties.

CONCLUSION

The final stages of this project (Ms. Stoughton's Ph.D. thesis research)

are still in progress. Attached is the thesis Table of Contents. Our plan is

to submit the thesis itself as the completed version of this Final Technical

Report. All the mechanical property data, property correlations, and compari-

sons with theoretical models for predicting linear behavior, will be contained

therein.

1.*Z
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