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ABSTRACT

The concept and application of silicon coapilers is
described. The prccess of employing the MacPitts silicon
compiler to design an 8-bit pipelined digital multiplier is
Fresented, and the resulting design is evaluated. The
process of installing and debugging the MacPitts Coafpiler
and tke Caesar VLSI graphics editor on the VAXI-11/780
computing facilities at NPS is documented in appendices.
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I. IEIRODUCTION

4. BACKGRCUND

The initial work done on the design of very large scale
integrated circuits (VLSI). at the Naval Postgraduate School
(RPS) used a set of softvare tools which require designer
interaction at all levels of the design process. These
tools and their use is described in a recent thesis by
Conradi and Hauenstein [Ref. 1].

Their design approach centers around the use of: m
sachine~generated prcgrammable logic arrays (PLA's) sreci-
fied in a language which tramslates boolean equations into
circuit layouts, and (2) a litkrary of standard cell layouts
from which other required circuit primitives are selected.
The designer arranges the PLA's and standard cells cn a
"floorplan® designed Lty heuristic methods, and interconnects
them with a network of individual wires devised by the
designer and encoded as a "wirelist."™ The floorplan layout
and addition of interconnecting wires must be done manually,
typically on grarh pager at the drawing board. The results
are manually encoded in an input file format readakle by a
layout language program ("cll" in the case of the cited
research) which merges the designer's floorplan and wirelist
with: (1) the selected library cell layout descriptions and
(2) the FLA layout descriptions produced by the separate FLA
generaticn progranm. The circuit layout program then
Froduces a descripticn of the total design in another stan-
dard file interchange format, the Caltech Intermediate Form,
(CIP) described by Mead and Convay [Ref. 2: pp. 115-127].
The CIF file can then be used as a source for extracting
design validation information, as well for producing the

N Fhotograrhic masks used for circuit fabrication.
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The design ﬁrocess outlined has the advantage of giving
the designer thorough control over the architecture of the
circuit. The human atility to evaluate alternatives, reccg-
nize patterns and grasp cosplex multi-dimensional relation-
ships letween individual elements and the whole design
exceeds that of any current machine algoritha.

Cn the cther hand, this process absorbs large amcunts of
the designer's time in performing the drudgery of planning
and encoding the 1laycut details. There are at least four
things wrcng with invelving the designer at this level:

(1) It is repetitious work, and therefore error-prone.

(2) It is slow. (Southard [Ref. 3] and others have noted
that design costs far outweigh production costs for custom
VLSI.)

{3) Precccupation with mechanical details restricts a
designer's freedom tc explore high-level architectural
issues such as bus structure, degree of pipelining, and
speed-complexity tradeoffs.

(4) #Majcr modifications to the layout are very expensive to
make if they come late in the design cycle, i.e. after cell
interconnection. o

E. CUBRRENT RESEARCH GOALS

With this backgrcund for motivation, it was decided to
investigate additiomal VLSI computer-aided design tocls
vhich would reduce time-to-design, mainimize the occurrence
of husan error in layout, and make it possible to explore
design alternatives with greater ease.

The major tool available in the VLSI research comsunity
for this purpose is MacPitts. HNacPitts (the name is derived
from twc early researchers, McCulloch and Pitts who studied
neurological systeas from a sathematical and logic stand-
po.nt) 4is a silicon compiler developed at the Massachusetts

12
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Institute of Technolcgy's Lincoln Laboratories in 1981-1982
[Bef. 4]). A silicon compiler, according to one recent defi-
nition [Bef. 5] which captures current usage of this cften
sisunderstood tera, is "a program t.at, given a descrifption
of what a circuit is supposed to do, will produce a chip
layout that implements that function in silicon." There is
enough latitude to allov fundamentally different aprroaches
to siliccn compilaticn to coexist under this definition, a3
will le demcnstrated in the following chapter. In any case,
however, the term coariler is apt. Like software coapilers,
these programs take high-level source code descriptions
wvhich are human-readakle (and perhaps, -but not necessarily,
algorithmic) and "ccnvert"™ thes into low-level object code
(@ CIF file) which is directly readable by a machine. In
the case of a silicon compiler, hovever, the machine is not
a general-purpose computer, but a photo-resist mask gener-
ator at a silicon foundry facility that fabricates inte-~
grated circuits. '

Another function that the aost advanced silicon
compilers rperfornm is resource allocation. Software
compilers free the programmer from making decisions on where
in available aemory space to store a particular machine code
vord. Silicon compilers, at their best, free the designer
from deciding wvhere cn available silicon area to place a
particular circuit element. Resource allocation is a one-
dimensional job in scftware compilers, but a two-dimensional
job in silicon compilers. The constraints on efficient
resource allocation in silicon are severe--compactness is
almost alvays one gcal, as is speed of operation (minimum
propagation delay.) In aemory allocation, compactness is not
essential, unless one is using a sequential access memory.

Installation of MacPitts on the NPS VAX-11/780 computer
facility was expected to be a "turn-key" operation. This
was in fact not the case. A large amount of effort was

13
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spent in researching and perforaing the modifications tc the

host ccrputer envircnment vwhich enable it to run the
MacPitts systea, as well as in troubleshooting the distrib-
uted MacPitts source code itself. The installaticn process
is described in Appendix A.

MacPitts has no fprogressive breakpoint facilities to
allow a designer freedom to observe or alter the layout
process at any point during execution. Once invoked,
MacPitts produces a final interconnected layout, comglete
with kcnding pads, or no layout at all. Therefore, it vas
considered wvorthwhile to iampleaent the color grarhics
editoxr, Caesar, designed by John Ousterhout at the
University cf Califcrnia at Berkeley [Ref. 6]. This tool
allovs tbhe chip laycut to be examined in detail on a color
CRT mcnitor, and peramits editiang of the 1layout. Caesar
represents the layout internally as a hierarchy of cells,
which yields insight into the ways that MacPitts partitionms
the laycut rrocess.

The installation of Caesar, while not as difficult as
BacPitts, involved setting some site~dependent parameters as
well as finding and correcting a bug in the distributed
source ccde. These activities are described in Appendix B.
Appendix C contains a copy of the on-line manual pages for
Caesar and cther Berkeley tools used in this research.

14
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II. ARRROMCHES TQ SILICON COBRILATION

d. VISI DESIGN ACTIVITIES DOMAIN

Wheén trying to understand bow silicon compilers work it
is instructive to think of two design problems in the crder
in which they must be attacked. The first is translaticn of
a brief bebavioral or fuanctional description into a =cre
Frecise intermediate description that is still independent
of the specific isplementation technology. The second is
the autcmatic generation of a chip 1layout in a target sesi-
conductor mediup, using the intermediate descripticn as a
guide. It is important to separate the second activity froa
the first when one is designing a silicon compiler Lkecause
of the speed at which the target semiconductor technolaogies
are evolving. That is, complementary metal oxide semicon-
ductor (CMGS) frocesses are rapidly overtaking N-channel
metal oxide semiconductor (NMOS) processes. Multiple-layer
metalization is alsc becoming more common, and amininmum
circuit feature sizes are shrinking as better coamtrol over
the manufacturing prccesses is achieved. Computer architec-
tures and functions evolve more slowly, by comparison.

These tvo problems may be further subdivided. Werner
[Ref. 7] has contrituted the idea that a spectrum of VISI
design activities ezists with corresponding media for the
€xchange of infcrmation by the coaputer-aided design tools
employed at each band in the spectrum. (See figure 2. 1.)
Silicon coapilers try to span the whole spectrum, an aski-
tious undexrtaking.

15
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B. EVALUATION CAVEAT

It should be recognized that all silicon éonpilers
designed to date have to some extent traded performance of
the ultisate VLSI design (as measured by operating speed and
area e€fficiency) for reduced design time for the chip (and
for the silicomn compiler itself.) Gross [Ref. 8] quotes
estimates for reduced design costs (time) by use cf trcad
spectrum silicon coarilers to be a factor of 20. But
Wallich, in a recent survey of silicon compiler efforts
[Ref. 5], states that desigms produced by silicomn coampilers
available today tend to range from 15 to 200 percent larger
than egquivalent bhand-crafted designs.

still, silicon compilers have been misunderstood by
researchers as noted ry Gross. Some, without fully under-
standing the dimensicnality of the VLSI design process,
believe that the design problem can be almost completely
solved by the arplication c¢£ current software methods and
tools. Others, seeing the obvious limitations of ccntemfo-
rary siliccn compilers and not grasping the potential
contributions to VISI froama computer science technclogy
transfer, Lelieve that efficient VLSI designs will always be
essentially manual. Murphy of Bell Latoratories, quoted by
Werner [Ref. 7], states that "total automation is
inappropriate--either nov or in the foreseeable future--in
anything vhere you have a competitive need for perfcrmance."”
Bevertheless, Bell labs is conducting research of its own
into silicon compilers. Their "Plex" project reported in a
more recent paper [Ref. 9] produces 1layouts of micrccem-
puters given, as ipput, the program (in assembly or C
language) that the microcomputer is to execute.

According to Wallich, the ultimate silicon compiler, now
just a dream, will not only be able to take a behavioral
descrirtion and produce a geometrical description of the

17
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chip suitalle for input to a sask making machine, Lkut will
do sc for agy kind of chip--microprocessor, signal
processor, or even analog-digital hybrid for which the
design rules are far more coaplex. The subtle process of
architectural optimization (i. e. selecting a best floor
plan frcm the myriad possibilities,) vhich occurs in the
middle of the design activities spectruam, has so far not
been captured in an algoriths. To achieve some breadth
without leing overvhelmed by coamplexity, silicon coapilers
have tended to contain built-in assumptions about a "target
architecture." They are optimized for producing a certain
class of <circuits--mostly pwmicroprocessors-—and produce
layouts cf reasonable area and speed only for applications
test suited to their target architecture.

C. LIBITED SPECTRUB CONPILERS (TRANSLATORS)

For completeness, it is necessary to mention thcse VISI
design tools in current use which fall short of covering the
design spectrum. They are:

e Randcm logic/Standard-cell place-and-route systesms,
e Nodule compilers to implement boolean logic, including:
e Gate array coagilers,
e PLA generators,
e Regular exgressiom coampilers for
finite-state mackhines,
e layout languages,
e Interactive graphical layout editors.

18
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D. BEROAI-SEECTRUH SIIICON COMPILERS

1. Rlock Rlanpers

a. Common Properties

The first broad spectrum translators of interest
are the flcor planners. They all employ a gtructural sreci-
ficaticn language in which the specification alwvays ccrre-
sponds extremely closely to a description of the desigper's
sental mcdel of how the chip should be 1laid out. They
produce, as an initial output, a skeleton of the layout
similar to an architect's floor plan. Subsequently, flcor
Flannexrs £ill the “rooms®™ with cells from a standard
library. Some floor planners, of wvhich Johamnnsen's Bristle
Blocks is a pioneering exasple [Ref. 10]), can 1linearly
stretch cells to match up the interconnections of abutting
cells (sc-called "pitch matching.")

h. r.I.R.s‘!.

The current state of the art in floor fplapners
is regrresented by the P.I.R.S.T. (Past Implementation of
Beal-Time Signal Transforms) silicon compiler developed at
Edinturgh University [Ref. 11). The P.I.B.S.T. coafpiler
froduces layouts of digital signal processing systeams imple-
sented as hard-wired networks of pipelined bit-serial crera-
tors. The floor plap of F.I.R.S.T. chips (see figure 2.2)

consists of a central wiring channel with operators arranged
as function blocks arcund the "vaterfront." Each bit-serial
operator is implemented as a separate function block which
in turn is assembled froa a library of hand-designed cells.
The function blocks are arranged, in the order of their
high-level specification by the designer, in two rows along
either side of the viring channel wvhich accommodates all
interccapections betveen the blocks. This uncomplicated and
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Fiqure 2.2 Tipical floor plan produced by the
P.I.B.S.T. Silicon Compiler.

novel layout methodolcgy results in the non-use of akout 20%
of the total chip area (because the blocks may have varied
heights.) At present, F.1.R.S.T. supports only the
N-chanpel metal oxide semiconductor (NMOS) technology.

The P.I.R.S.T. software consists of a small
suite c¢f rrograms which provides the designer with a
complete specialized design environment. At the tcp level
is a language compiler that accepts a structural descrirtion
of the circuit in terss of a net list of bit-serial opera-
tors. The F.I.R.S.T. systea contains a library of primitive
operators, (such as NOLTIPLY, ADD, SORT, BIT DELAY, ETC.) as
well as a number of more complex procedural definiticas
(such as Biquad, LlLattice, Butterfly, etc.) that enakle a
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range of signal prccessing architectures. The language
compiler pFproduces an intermediate level format file as
output. This file is used by both a layout program, which
produces the mask gecmetry, and a simulator. The simulator
is event driven, which means that the voltage values on
circuit nodes are modeled as discrete bits of data occurring
at discrete time intervals. The functioning of individual
operators is simulated on a word-by-word basis in resfpomse
to a file of input ccamands. It is asserted that the simu-
lator has the ability to uncover timing bugs in the data
streasn.

A unigque and useful aspect of F.I.R.S.T. is
incorroration of a translator program to convert the simula-
tor's output into a fcrm suitable for use with an automatic
test pattern generator systea.

2. [fehavioral Srecification Compilers
a. Common Prcperties

In contrast to the floor planners, which accept
Structural specifications at the top level, are the behav-
joral specification compilers, which do not reguire the
designer to possess a prior mental model of the architecture
to be designed. These systems attempt to translate a high-
level bebavioral description of the circuit into a geometric
sask descrirption. This step is a significant one over floor
Flanners,

L. Ayres' Wcrk

Ayres is the first to have written a book-length
treatment of silicon compilation [Ref. 12]. Ayres' compiler
approach starts with a synchronous logic specification of
the chip tebavior. Then follows a decomposition of this
specificaticn repeatedly into a hierarchy of implementing
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BM0S FElA's which beccme successively more area-efficiernt as

they become smaller. The system includes heuristics to
manage and optimize cn-chip rcuting among the PLA‘'s gener-
ated. Ayres' coagpiler is potentially applicable to a

troader class of circuits than F.I.R.S.T., but is still not
efficient fcr a general range of probleas. The sccre of
applicatioans vas zrestricted intentionally to control
complexity. The very use of PLA's as the sole tasic
tuildicg blcck restricts the area efficiency of this system.
Even though the PLA's theaselves become more area-efficient
as they become smaller, the difficulty of managing their
interccnnections 1lisits the ultimate. efficiency of the
layout.

C. MacPitts

MacPitts is the only broad spectrum silicon
compiler with which this author bhas had any first-hand
experience. It is also the most widely known and most amki-
tious bebavioral specification compiler in operation.

The bardware specification generated by MacPitts
is in the fcrm of an BMOS techmnology CIF file. To cope with
the ccafplexity of this project the designers restricted the
target architectures to microprocessors consisting of a data
path and a controller (see figure 2.3.) Other restrictions
include <fixing the width of the data path to one value
throughout the design, and requiring the designer to srecify
control and parallelisms explicitly. The latter is not actu-
ally a restricticn in one sense, hovever, because it affords
greater generality in desigsns. Except for making pin
assignments, the MacEkitts user has no explicit control over
the floor plan of his design. The MacPitts target architec-
ture results in the same basic floor plan for all desigms,
although this particular architecture is applicable to a
greater variety of digital problems than any other scheame
presently available.
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Pigure 2.3 Ploor Plan of the MacPitts Target Architecture.

The data path portion of the layout consists of
a rectangular array of uanits called "organelles." Amn crga-
nelle is a tit-wise functional unit. A standard likrary of
functions~-adder, subttracter, shifters, incrementers, compa-
rators, etc.--is rrovided. Also, if the algcerithmic
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behavior specificaticn calls for conditional data f£flcw or
looping, the data path may also include multiplexers which
have ccnnections for control signals. This multiplexer
organelle is not a litrary cell but is built into MacPitts.
Data storage registers, isplemented as master-slave flip-
flops, are also "built-in organelles." These are instanti-
ated in the data grath if their use is implied by the
algorithasic specification.

The vertical diszension of the data path outline
in figure 2.3 correstonds to the number of bits in the data
word. Lcnger word-lengths produce a taller chip. The
varicus crganelles are cascaded along the horizontal dimen-
sion of the data path outline.

The control portion of the layout acts on
various signals, either derived from the data [fath or
outside the chip, ard implements vhatever boolean logic is
necessary (as inferred from the algorithmic specification)
to gemnerate controls signals to drive the multiplexers in
the data path. The result is an implementation of a finite
state pachine, (PSH) as described in Mead and Conway
[Ref. 2]. The control unit does not use PLA's, Lut rather
structural NOR gate arrays called "Weinberger Arrays"™ which
can irsplement arbitrary combinational 1logic functioans.
Weinkerger [Ref. 15] demonstrates that his logic arrays have
three features vhich contribute to efficiency in an auato-
mated circuit layout scheme.

e They simplify the formation of interconnection patterns
within the framewcrk of a standardized layout.

e They significantly reduce the required area (by elimi-
nating unused inpats and Separate interconnection
areas.)

e They eliminate crcssing of signal nets (by using single
level wiring.)
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State tising is ccntrolled not by a twvo-thase
non-cverlapping clock, vhich is somevhat standard in NMOS
V1sI, ktut by a three-phase clock which drives the register
circuit shown in figure 2. 4. This clocking scheme arpar-
ently allovs a acre compact layout of the register crga-
nelle, but requires an ext:a‘pin in the package.

|-
T
ot e P o
ST LT
phia phib phic

t1 t2 t3 t4 5

t1 = static storage

phia t2 = isolate output
—_ O t3 = sample input
phid ;
t4 = isolate input
—_— t5 = connect to output
phic H H :

Output™ 1 T | Y

Pigure 2.4 HacPitts Register Circuit and Tiaimg Diagras.
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One of the authors of MacPitts, Siskind guoted
in [Ref. 7], admits that optimizing chip performance was not
a primary design gcal. Circuit densities reported were
80-100 transistors per square millimeter in 5 micron feature
size B§MOS--approximately 2 orders of magnitude 1lower than
the state c¢f the art layouts reported in Gross [Ref. 8).
Southard ccntends that the cells he helped desigr for
BacPitts cculd fairly easily have been made 20 per cent
smaller than they are [Ref. 5].

MacPitts cnly produces NMOS output in CIF, Lut
the wuser has a chcice of either 4 or 5 micror minimun
feature size, which the compiler bandles by linearly scaling
all features except the pads. The latter are contained in
two separate libraries for 4 microa and 5 micron desigms.

Prom the programming viewpoint, MacPitts is a
very ccagplex systea. It consists of a binary executakle
module of over 1.5 megabytes which was built up as a LISP
Frogramging environment and then dumped, as described in the
Franz Lisp manual [Ref. 13]. A synopsis of the functional
elements which @make ur this LISP environment is shown in
figure 2.5 . Unlike F.I.R.S.T., these programs (except the
functional simulator or "interpreter"™ as its authcrs call
it) are not individually accessible. MacPitts runs automat-
ically fros beginning to end with no possibility fcr oper-
ator intervention. The only control available at the
console when the cospiler is running is the standard UNIX
systens alkort signal. ‘

The authcrs of MacPitts were careful to separate
all the »rocessing into technology independent (frcnt-end)
and tecknoclogy depemndent (back-end) portions, with the
intersediate-level description being the point of division.
This intermediate-level description is available to the user
as an "okject file" in human readable form. It is possible,
although nct very frractical, to vwrite an object file
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Pigure 2.5 MacPitts Program Data Flow.

directly for input to the back end of MacPitts. The okject
file is a long 1list containing S5 elements, each element
being itself a list. The 5 elements are: definitions,
flags, data path, ccatrol, and pians. This list is, of
course, in a fors readaltle ky the layout programs.

The layout programs produce only NMOS tech-
nology. As mentioned above, twvo bonding pad libraries are
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included: the Stanford standard cell 1library pads for 5
micron designs, and the NOSIS ARPA coamunity pads for 4
ricron designs. The "layout language™ and CIF generaticn
prograa, 1S, which is emlkedded in MacPitts, was written
especially for the project by Crouch [Ref. 14]. It has
built-in facilities to handle koth NMOS and CMOS technclcgy
layouts. Therefore, expanding MacPitts to produce CMOS CIF
would not entail a c¢omplete rewrite of the back end
Frogranms.

An inportant feature of the MacPitts software is
the functional simulator or interpreter. A MacPitts prcgram
is not cnly an IC specification, it is also an algorithaic
specification. The inferpreter executes the specification
program as a general-purpose computer using an interactive,
screen-oriented inputs/output style. By invoking this orptiom
of MacEitts the user can exercise his design, thereky vali-
dating (to whatever extent the exercise is coamplete) its
functional fidelity. Once the functional simulation is dome
to satisfaction, Mackitts can be restarted without setting
the interpreter opticn. This produces a finished layout and
corresgonding CIF file. By using the same language to drive
both the interpreter and the integrated «circuit compiler,
human error is reduced.

MacPitts lacks some features. It has ncne of
the capatilities of F.I.R.S.T. to produce a test pattern to
exercise the chip. It also lacks any built-in mechanism to
identify worst-case rath delays or to predict the maxinum
clock frequency of the finished chip. It does keep account
of conductivity infcrmation, however, which it uses to
predict chip power ccansumption.

MacPitts uses a "correct by construction”
doctrine in the laycut process. By denying the user the
seans to srecify tle layocut details of the chip, this
approach also denies the user the opportunity to commit
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design rule errors or to translate the specification program
into a non-corresponding layout. But can MacPitts itself
sake design rule errcrs?

The follcwing chapters examine how to use
MacPitts to produce an integrated circuit layout, hew to
validate the design, and where to 1look for ways to iafrrove
chip rerformance.
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I1IT. USING MACRITTS

A. TEE INPUT PILE
1. Iundamentals cf the MacRitts Lapguage

"MacPitts,™ the system for generating a custca inte-
grated circuit, is also "MacPitts," the language 4in which
the algorithm is specified. In this section the second
meaning is the one isplied. All of the informaticn which
specifies what functional behavior is required of a V1SI
circuit is communicated to MacPitts in a single text file.
This file, which must have the extemsion ".mac", is written
using syntax which closely resembles that of the LISP
prograraing language. Because the MacPitts compiler is
iaplemented in LISP, it is reasonable to expect the syntax
cf the MacFkitts design language to follow the LISP paren-
thesized notation. This choice was made by the authors of
MacPitts because it eliminates the need for a separate
parser.

LIS is a 1list processing language. Its data
elements are "syaktclic exrressions" made up of M"atoas"
(fundasental word-like objects separated by spaces), lists
of atcms, lists of 1lists of atoams and so on. One of the
strengths of LISP is the ability to concatenate atces or
lists into new lists, and to perform other operations on a
list cr a hierarchy of lists to produce new lists modified
in useful ways. LISP has nmany built in functional defini-
tions which are an "environment" of specifications fcr the
operaticns to be performed on lists. These defipitions are
all ccntained in The Franz Lisp Manyal (Ref. 13]. In addi-
tion to using these definitioms, the LISP user is free to
extend the 1ISP envircnament by defining new functions which
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specify cther operaticns on lists. The types of operationms
may e sisple manipulations of the atoams by partitioning or
persutation, or, if the atoas which comprise the list hapfen
to be nusbers, arithmetic orerations may be performed. The
definiticns of the oferations themselves may also be assem-
tled frca lists cf mcre primitive operational atoams. This
functional extension of operations is what the authors of
BacPitts have dome in creating the HMacPitts Lisp
environment.

The design of a VISI circuit can be thought of as a
list-kuilding process in which the 1lists are electrical
ports, registers, interconnection nets, . data testing ofpera-
tions, and ultimately a string of words which define a
unique patterning of siliccen in the mask level descrifptive
language, CIF. These lists are built according to rules
contained in another list--the algoritheic specification
source file. Although the MacPitts design language resem-
bles 1ISE syntactically, its semantics is different and much
more limited. A poverful feature of LISP is, for example,
recursive definition. This feature is absent in the
BacPitts design language. A description of the NacPitts
grammar in Backus norsal form is given in [Ref. &].

In its most general foram, a MacPitts "progras" to
specify a circuit's behavior consists of a set of
"processes," each of vhich executes sequentially, but all of
vhich run in parallel. The states of each process are
fundamentally disjoict fros those of the other frrocesses.
This allows the hardware for each process to run indepen-
dently of the other fprocesses, if desired, and concurrently
vith the states of the other processes, in any case. The
operaticns performed Ly a given process in a given state are
specified by a "foram." Each form corresponds to a single
sachipe state, and is executed in one clock cycle. A state
may te¢ ¢iven a name by preceding the form with a label.
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Normally execution froceeds sequentially from one state to
the fcllowing state in the .mac file at each clock cycle. A
"go" fors can be used, however, to deviate from this sequen-
tial flcw by causing the named state to be executed next
instead of the syntactically following state.

Lata is communicated letveen the data path and the
external world through "ports" which have the same bit width
as the data path. Only a single data path vidth defipition
is allcwed per progras. A port may be declared "ingut,"
"output," “tri-state cutput," -or "i/o." Ports may also be
declared as "internal," in which case they simply cascade
the output of one data path operation to the input of
another. The data path may also be specified to ccntain
registers. The difference between internal ports and regis-
ters is that registers can store data indefinitely after it
has been clocked in, whereas ports are only electrical nodes
in the data path and therefore do not store data. Ports
simply are arrays of named teraminals for conducting data
from cpe point to ancther.

Control of orerations performed on the data by the
data path crganelles is governed by the Weinberger array
contrcl unit. Control outputs from the control unit to the
data path @say detersine, by means of their control over
multiplexer organelles within the data path, which cpera-
tions cccurring withir the data path will affect downstrean
organelles. Status outputs froam the data path returning to
the control unit allcw the sequence of operations performed
by the control unit to vary depending on the data present
either in the registers or at any other point in the data
pFath. The control unit functions may also be made tc depend
upon external inputs. The control unit communicates with
the ocutside wvorld using "signals," which are analcgous to
the "rorts"™ used by the data path except that each signal
appears on a single wire. Signals may be declared as
"input," "output," "tri-state output,™ ™i/o" or "internal."
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Operations performed by the data path during a given
state are specified by the 1ISP "setg"™ fora. The setg
causes tle data fath to evaluate a sequence of operations on
either input port data, internal port data or register data.
(The setg Bmay also be used with signals.) The result of
these specified operations is then conducted to ancther
pamed port or loaded into a data path register during the
next clock cycle. The compiler includes enough copies of
each operatcr in the data path so that separate processes,
intendea torun in parallel, do not conflict over the
attempted shared use of a single resource. The data path
can cascade several crerations together in a single fora.
This allows forms such as the following example, which
computes a=t-c using 2's complement arithmetic, to execute
in one clock cycle:

(setga (+ £ (1+ (not ¢))) .

The list consisting of everything on the preceding line is a
single fcra. There are three operators in this expression:
"+," which specifies use of an adder, "1+" wvhich srecifies
an incresenter, and "pot" which specifies an inverter. Each
operator is followed by its operands 1listed in sgyplolic
notation. Therefore, the single operand of 1+ is the
integer that results from evaluating the expression "(not
C)."™ Note that there is not a default hierarchy of opera-
tions within a fors. As vith LISP, the order of operatioas
in MacPitts must be specified explicitly by the use of
nested parentheses.

Sequences of setq forms normally operate segquen-
tially, each being executed on a separate clock cycle. By
encloeing the forms within another "parallelizing fcra," of
which ®"par"™ is an exasple, several foras can be made to run
in parallel, gaining speed over sequential operation at the
cost cf more bhardvare¢ and hence amore area in silicon. The
Far fcre is used as fcllows:
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(par fcral form2 form3...) .
Of <course the results obtained by running setqg fcrms in
parallel wmay be gquite different from those obtained by
running thez all seguentially within one process. Consider
the fcllcwing example where "a®™ and "b"™ have already been
declared registers (i.e. master~-slave flip flops) :

(par (setq a b) '

(setg b a)) .

This expression will result in exchanging the contents of
"a® yith contents of "b."” The exchange will be dopne in cne
MacPitts clcck cycle. This action is made possitle by the
input isclation shich occurs during the flip-flop operating
cycle. All such data storage elements are read before they
are written. On the cther hand, sequential operation of the
same setg's is implied in the following process:

(process load1 (setg a b)

{setq b a)) .

This prccess will 1lcad both b and a with the criginal
contents of b, and require two cycles to do it. (Here
"load 1™ merely furnishes a process name, as demanded by the
MacPitts grammar.) We have used two 1lines and indented
format cnly for the sake of clarity. All the functional
information needed by MacPitts is denoted by the ordering of
forms within the nests of parentheses.

The "cond™ fcra allows the conditional execution of
cther forms it contains during a given state. It consists
of a 1list of guards, only one of wvhich is to be executed.
Bach guard begins with a "condition" which determines
vhether the remaining forms in the guard are to be executed.
The first guard whose condition is true enables the execu-
tion cf the forms following the condition in that guard.
This is illustrated Ly the following example adapted froa
[Ref. 8]
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(cond (condition1 (cond (condition2 form1 form2)
(condition3 form3 formid formb)
(t formé)))
(conditiond (cond (conditionS5 foram7 form8))
(cond (conditioné form9))
form10)) .

This examfple is heavily nested. Nevertheless, close exapi-
nation reveals that the outermost " (cond..."™ has only two
guards in its list, each of which contains other " (cond..."
forms. The two guards are:

(conditior1 (cond (condition2 forml1 foram2)

(condition3 form3 form4 form5)
(t formé6)))

and

{conditiorld (cond (condition5 form7 foram8))

(cond (conditioné form9))
fora10) .

If conditionl is false and conditiond is true then form10 is
executed. If condition5 is true then form7 and form@ are
executed alcng with fcrm10. Likewise if conditioné is true
then fcra9 is executed in parallel as well.

The semantices of the cond statement is irherently

parallel. The conditions of the alternate guards are
checked in parallel. Likewise, all forms within the guards
are executed simultaneously in one clock cycle. The

compiler makes the conditions of different guards in one
cond forms mutually exclusive, and iamplements them using
combinational logic in the control unit as described atove.
This logic is used to enable or inhibit the executicn of
foras ccntrclled by that guard in parallel.

Note that the form:
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(cond (t form! form2 foram3 ...))
is used to enable parallel execution of several forms during
one clock cycle withcut being dependent on any condition.
(The *t® stands for "true.") The " (par..." form already
encountered is actually just a shorthand macro expression
for the "(ccnd (t..." form.
In a MacPitts layout, the conditions are fcrmed in

the control unit, which is a Weinberger array of NOR gates’

[Ref. 15]. Therefore, they are not 1limited to cnly the
sua-cf-prcducts notation used by PLA-based finite state
machine comgpilers. The conditions are derived frcm either
signals arriving on an input pin, signals from the data
Fath, or signals arriving from other processes. More
conplex conditions can be constructed from these signals
using the logical orerators "and,"™ "or" and "™not" to tuild
arbitrary Boolean exiressions. These operators are fpart of
the MacPitts library cf functions. Thus, the cond statement
is c¢pe c¢f the most poverful features for providing high
perforsance desigmns.

With this brief and somewhat condensed description
of the features available in the MacPitts algorithmic
languvage, tbhe way is rrepared to to understand an example of
some code vhich will produce a complete integrated circuit
chip. A full detailed description of all the facilities of
MacPitts is found in a report authored by its creators
[Ref. 16], vhich also serves as a fairly complete users'
sanual.

2. Juwo Multiplier Exaarles

Consider, line by 1line, figure 3.1 which is a
listing ¢f the file multic.mac. This example and the cne
wvhich fcllows it are inspired by similar ones in [Ref. 16].
It contains all of the Gesign information needed by MNacPitts
to prcduce a 4§ bit ccabinational multiplier. On any line,
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1 ; multiplier, no state combinational

2 (program multic 4

3 (def 1 ground)

4 (def ain port input (2 3 4 5))

S (def bin port input (6 7 8 9))

6 (def res port output (10 1l 12 13)); result
7 (def r0 port internal)

8 (def rl port internal)

9 (def r2 port internal)
10 {(def 14 phia)

11 (def 15 phib)

12 (def 16 phic)

13 (def 17 power)

14 {(always

15 (cond ((bit 0 bin) (setq r0 (>> (bit 0 ain) ain)))

16 (t (setq r0 0)))

17 (cond ((bit 1 bin) (setq rl (>> (bit 0 (+ r0 ain)) (+ r0 ain))))
18 (t (setg rl (>> (bit 0 r0) r0))))

19 (cond ((bit 2 bin) (setq r2 (>> (bit 0 (+ rl ain)) (+ rl ain))))
20 {t (setq r2 (>> (bit 0 rl) rl)))) -

21 (cond ((bit 3 bin) (setq res (>> (bit 0 (+ r2 ain)) (+ r2 ain))))
22 {(t (setq res (>> (bit 0 r2) r2))))))

Figure 3.1 Multic.mac Source File.

text fcllowing a semicolon is treated as a coament, which
the ccmpiler ignores. Line 2 tells the compiler that a
“prograa®™ (which is arother way of saying, "circuit design")
called "multic"™ starts here, and that the data rath is 4
kits wide. Because the data path is only 4 bits, this
siaple aultiplier will oanly be able to output numbers from 0
to 1S. Even though the input rorts are also four bits wide,
ve nust restrict input numbers to only those whose prcduct
falls in the range of values from 0 to 15. Purthermore, if
this algcritha is tc give correct results for all aulti-
pliers, without overflow, the leading bit of the multipli-
cand must ke zero. Nc¢ provision is made to output a flag if
the dynamic range of the multiplier is exceeded.

Llines 3 through 13 declare the various signals and
integer data words input to, output from and existing within
the multiplier. Line 3 assigns the ground connection to Fpin
1 vhich is always in the upper left corner of the layout;
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subsequent pin pumbers proceed clockwise from this point
around tbke layout perimeter. Line 4 assigns pins 2-5 to an
input port labeled "ain." This input is the multigplicand.
By MacPitts conventicn, the most significant bit (MSB) of
ain is read from the first pin on the list, pin 2, and the
least significant bit (1LSB) from the 1last pin on tlke list,
pia 5. Line 5 similarly defines the multiplier inrut port,
*bin."® 1line 6 assigns an output port labeled "res" (for
result) tc another tlock of 4 pins. This port also serves
as the accumulator fcr the fourth and final partial product.
lines 7 through 9 define 3 internal ports (necessarily of
width 4 rits) lalkeled r0, r1 and r2. These serve to cascade
the three stages of a standard shift and add algoritha.
Each port ccntains one of the first three partial products,
each being the result of operations conditioned on cne of
the multipler bits. Lines 10 through 12 assign pins tc the
three phase clock, whether that clock is used by the circuit

or not, In multic.mac tbhe clock is pot used. Lipe 13
defines the ¢+ 5 volt direct current powver, Vvdd, connected to
Fin 17.

line 14 signifies that the functions which fecllcw,
up to the matching «right parenihesis on 1linpne 22, are to
execute cn every clock cycle. The " (always..." form |is
really tte "(process...® form, reduced to a single state.
Moreover in this case, given the (always... form, 3apd given
that the data path ccntains only ports and not registers,
the inputs will affect the result after an interval governed
only ty the sum of tke physical gate delays in the data path
and ccntrol unit. There is po controlled latency in the data
rath, Lecause there are no registers in this design im which
to store data.

lines 15 through 23 contaia the shift and add
schese. In lines 15 and 16 the controller is tcld to
exanine kit 0 (the LSB) of bin. If it is high (true) the r0
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port takes on the value of the ain port rotated right by cne
bit, i.e. r0 is actually connected by means of a multiplexer
organelle tc a right rotated version of ain. The shift-
right-one-rit form, ">>," takes tvo arguments., The second
arqument specifies what data word is being shifted, and the
first tells what to put in the MSB of that data word. Thus,
a rotate is also within the capabilities of the shift fora,
as it is aprlied in this case. If bit 0 of bin is not high,
then, by line 16, the r0 port--all 4 bits--is connected to
ground. In lines 17 and 18 the comtroller is told to
examine kit 1 of bipn. If it is high, then r1, the next
internal port in the data path, is connected to a right-
rotated version of the sum of r0 and ain. The adder orga-
nelle in MacPitts [performs this summation as a standard
ripple carry full addition. Note again that the expressicn:
(bit 0 (+ r0 ain))
in line 17 turns tle single shift operator into a right
rotate oferator by making the MSB of r1 contain the same
value as bit 0 of the sum of r0 and ain. If bit 1 of kin is
low, on the other hand, 1line 18 instructs the contrcller to
connect r1 to simply a right-rotated version of r0. Note
that no rotations are being performed by any of these opera-
tions in the sense that a shift register would perform thenm.
It is only the interccmnections between organalles that are
reing set uf variously by the controller to give an aprear-
ance of forwarding a rotated version down the data fpath.
Also note that even though the addition fora appears twice
in lipge 17, 1logically only one adder need be instantiated,
since the operands are identical in both occurrences.
BacPitts, tco, can recognize this, and will not waste space
creating more adders than the minimum necessary. In lines
19 and 20 the ccatrcller examines bit 2 of bin. If it is
bigh, rort 12 is connected to a right-rotated version cf the
sum of r1 and ain. If bit 2 of bin is low, r2 is connected
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to a right-rotated version of r1. In lines 21 and 22 the
contrcller finally examines the MSB, bit 3, of bin. If it
is high, the output port, res, is connected to a right-
rotated version of thke sum of r2 and ain. If bit 3 of bin
is low, res is connected to a right rotated versionm of r2.
For ccncreteness, a schematic trace of this algoritham in
acticn on the problem "4x3=12" is presented in figure 3.2.

ain=4 bin=3 Algorithm Statement Result
0100 0011
E:::g; (setq r0 . .
(>> (bit 0 ain) ain))
r0=2
0010
P (setq 1 (>> (bit0
— ‘(+ 0 a.ug)) + r0 ain))) £1=3
0011
™ (setq r2
——— 83983t 0 1) 1)y
r2=9
1001
Ire————evma set
7 ((>>g(b1t 0 r2) r2))
res=12
1100

Pigure 3.2 Exasple of the Multic Behavioral Specification.

Fcr compariscn, consider nov another design. This
one ie specified by the file nmultip.mac shown in fiqure 3.3
This is a fcur bit pipelined multiplier in which the prcduct
does pct arpear at the result port until the third clock
cycle after values have been applied to the inputs, ain and
kin. Chapnging the combinational design to a pipelined
design can most easily be accoaplished in two steps. First,
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1l ; multiplier, with pipelining

2 (program multip 4

3 (def 1 ground)

4 (def ain port input (2 3 4 S))
5 (def a0 register)

6 (def al register)

7 (def a2 register)

8 (def bin port input (6 7 8 9))
9 (def b0 register)
10 (def bl register)
11 (def b2 register)

12 (def res port output (10 11 12 13))
13 (def r0 register)

14 (def rl register)
15 (def r2 register)

16 (def 14 phia)

17 (def 15 phib)
18 (def 16 phic)
19 (def reset signal input 17)
20 (def 18 power) .
21 (always
22 (cond ((bit 0 bin) (setq r0 (>> (bit 0 ain) ain)))
23 (t (setq r0 0)))
24 (cond ((bit 1 b0) (setg rl (>> (bit 0 (+ r0 a0)) (+ r0 ao0))))
25 (t (setq rl (>> (bit 0 r0) r0))))
26 (cond ((bit -2 bl) (setq r2 (>> (bit 0 (+ rl al)) (+ rl al))))
27 (t (setq r2 (>> (bit 0 rl) rl))))
28 (cond ((bit 3 b2) (setq res (>> (bit 0 (+ r2 a2)) (+ r2 a2))))
29 (t (setq res (>> (bit 0 r2) r2))))
30 (cond (reset (setq a0 0)
31 (setg b0 0)
32 (setq al 0)
33 (setq bl 0)
34 (setq a2 0)
35 (setq b2 0j)
36 (t (setg a0 ain)
37 (setg b0 bin)
38 (setq al a0)
39 (setq bl bo)
40 (setq a2 al)
41 (setg b2 bl)))))
Pigure 3.3 HMultip.mac Source file.

the three internal pcrts of aultic, ro,
redefined as registers. Then six other new registers, a0-a2
and 0-t2 are defined to send successive
inputs ain and bin dcwn the pipe in step
sponding partial products.
{(from a user's

r1 and r2, are all

values of the
with their ccrre-
The ease with which this is done
point of viev) is evidence of the fower of
BacPitts to create custoam designs.
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Referring to figure 3.3 ve see that the shift and
add algoeritha, lines 22-29, is identical to that of ,
sultic.mac. In line 19 pin17 is defined as a "reset" signal -
input. The reset signal is required for any MacPitts design
wvhich uses one or scre “"process® forms in order that the
Frogram counters for all processes can alwvays be reset to o
the same kncwn state. This is obviously vital when two or .
Bore fprocesses on the same chip must be synchronized. In :
the multip design, bhowever, which uses the " (alwaysS..."
form, the reset signal perforss no such built in autcmatic
function. The reset signal is available, however, for user-
specified functions as well, and in this case is used only :
to signal a setqg of all internal multiplier and multiplicand ¥
registers to zero, instead of passing the values one more :
step down the pipeline. Therefore, the reset is not essen-
tial to the pipeline multiplier operation here but only acts
to allov the pipeline to be epptied out and to inhibit any
new input data from fropagating to completion, for what that
may be worth in whatever the intended application. It is )
included bhere for illustration only. Recall that prcpaga- **i
tion of all input data in the pipeline (lines 30-35 or, if e

;

-

v

reset is false, lines 36-41) occurs in a single clock cycle
as well, because these setq's are enclosed in the " (cond..."
form, which causes tikem to be executed in parallel.

B IBVCCATION OPTIONS

———ya

Equirped with one or more .mac files written to reflect
the desired behavior cf a circuit, the user is ready to run
macpitts.? The form cf the cosmand line invocation from the
ONIX sbell is sisply

% macpitts <prograa_name> <opti >

1The nage assigned t9 the executable b1nar¥ file cn the
UNIX igeratzng systen vh;ch emkodies the MacPitts system is
"macpitts." _
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vhere <rrogram_name> would be either multic or amultip, in
the case of the previous examples, and <options> is any or

none of the words frcs the list: —
S stat# nostat# L
i‘ herald noherald#
- cifs nocif 5
h obj* noobj —
- int noint* -
ﬁ. opt-d* noopt-d )
= opt-c* noopt-c
4u Su* -

vhere the * options are the defaults and the left and right
columns are mutually exclusive.

The "stat" cption tells macpitts to output statistics about
the cbifp design to the standard output device (terminal
screen, normally) as various parameters are calculated.
Figure 3.4 shows the statistics generated for the aultip

1 Statistic - for project multip

2 Statistic - options: (\5u herald opt-d opt~c stat obj cif)

3 Statistic - Maximum control depth is 4

4 Statistic - Number of gates is 60

5 Statistic - Data-path has 25 Units

6 sStatistic - Control has 69 columns -
7 Statistic - Circuit has 1129 transistors e
8 Statistic =~ Control has 17 tracks <
9 Statistic -~ Power consumption is 0.172120 Watts i
10 sStatistic - Data-path internal bus uses 5 tracks o
11 Statistic - Dimensions are 6.320000 mm by 2.847500 mm o
12 sStatistic - Memory used - 526K
13 statistic - Compilation took 30.432777 CPU minutes

14 sStatistic - Garbage collection took 18.520277 CPU minutes '
1S Statistic - For a total of 796 garbage collections —_—

Figure 3.4 Compiler Statistics for sultip.

chip. The meaning of these statistics is as follows.
Line 1 simply echoes the prograz name which was given at the
teginping of the multir.mac source file.
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line 2 summarizes the invocation options in effect either by
user selection or default.

line 3 gives the worst-case number of 1logic levels letween
any input and any output in the control umit.

line 4 gives the total number of NOR gates needed in the
control unit. )

line S5 is the number of data path "organelle units," where
an organelle unit is a'vord—length assembly of organelle
Lits. This number is the same as the nuamber of elements in
the data path list of the multip.obj file.

line 6 is the numler of vertical nmetal coluans in the
contrcl array, excluding the ground columans.

line 7 is the total pumber of tramsistors in the circuit,
including the data path, control unit, and all bonding pads.
Line 8 is the stack beight of horizontally running polysi-
licon lines used to intraconnect the control unit.

line 9 is an estimate of the worst-case static [ower
consuapticn of the chip obtained usiang the layout topology,
heuristic values of undeterained origia for the conductivity
of each electrical feature, and a 5 volt powver supply.

line 10 is the smaximum stack height of horizontally placed
rolysilicon lines, rer bit in the data path, needed to
interccnnect the orgarnelles.

line 11 is the overall outline size of the chip layout.

line 12 is the peak storage allocation demanded by macpitts
during the run.

line 13 is the CPU time required for compilation and layout,
which is alvays less than the apparent running time Lty an
amount vhich depends on the average system usage rate.

lines 14 and 15 reflect a function of Franz Lisp wherein
past used storage locations are reclaimed for the available
memory list. The last three statistics were rrolatly
included because macpitts can be very demanding of coamputing
resources.
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The ™herald"™ opticn ovutputs messages to the terminal
screen at each amilestone in the sometimes lengthy comfpila-
tion frocess. These reassure the user that macpitts is
still running. In addition to heralding what point in the
design process macpitts is curreantly vworking on, information
on current accumulated CPU time and CPU garbage collection
time is rrinted at the beginning of each bterald line in
units of sixtieths of a second.

The "cif"™ option keys the compiler to output a mask
level description .cif file in the Caltech Intermediate
Form. The cif opticp is normally not deselected unless the
availatle disk storage space is limited and the user is only
interested in reading the statistics for his comfpiled
design. (The cif file for a relatively simple design,
sultig.cif, is over 158 kilobytes long.) If no cif is
produced on a given macpitts run, the entire lay.nt prccess
sust e repeated to subsequently obtain a cif file. This is
done most expeditiously by running macpitts with the nocbj
cption.

The "nochbj"™ opticn tells macpitts to start with a frevi-
ously created object file (the output of the macpitts "frent
€nd,") rather than a source file. MacPitts will then effec-
tively start at tte "back end," doing the layout and
outputing statistics and cif, assuming these are included in
the cpticns list. .

"Int" tells macpitts to use the interpreter mode, which
allous functional sisulation of the chip without actually
perfcrsing the layout and generating a .cif file.

"Cpt-c"® and “"opt-d" invoke optimization routines for
normalizaticn of the combinatorial 1logic of the cecntrol
unit. Investigation of the four possible combinations of
these twc options reveals that they do not affect the
overall dimensions of the final 8 bit multiplier design (to
te descrited later.) This is probably because the fins,
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data path layout and tus wiring dominate the chip area, not
the ccentrol umit, which is coaparatively small for this
chip. The compilation time reguired, however, was ‘approxi-
mately 20 fpercent greater vhen opt-c and opt-d were used
than when they were not used. Using opt-c and ofpt-4d dces
reduce the complexity of the control unit, and therefore
vill reduce signal delays, to the benefit of operating
speed.

The "4u" option sets the ninimum feature size for the
layout to 4 microns, and accordingly lambda, the commonly
used rarameter which represents the half line width dimen-
sion, is set to 200 centimicropms. :

Another option, logo, was available in the original
E macpitts, Lut is not supported at NPS beganse suitable font
files are not currently availatle.

- e T TE
‘-""'""1
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C. USE COF THE BACPITIS INTERPRETER

Ipvoking macpitts with the int option should be the
first step in every Macpitts design cycle. Macpitts has
good facilities for catching grammatical errors in the
user's .mac source ccde which cperate whether or not the
interrreter is invoked. After the .mac file passes grammar
checks, the interpreter allows the extracted algorithsic
description to be exercised with arbitrary inputs. The
results are displayed on the screen to provide an indication
that the design is functionally correct. Assuming the
user's path list is set up in the .login file to include the
directory, /vlsi/macpit, the following command can be
issued:

% macpitts multip int herald
This will cause macpitts to scan the multip.asac source file
and extract from it the circuit behavior information. Then
sacpitts will display a tatle of all declared ©pcrts,
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reaisters, flags, =signals and processes, noting that they
ar. all currently undefined. The wuser may select for
display, at this point, a menu of interactive commands which
clearly states how tc interact with the interpreter. The
user can set the values of input‘ ports and signals as
desired. 1INct all internal ports will necessarily te defined
simply by setting the inpat ports. Generally several clock
cycles nust be simulated before the chip internals are all
defined. Macpitts tells the user vhich antecedants stand in
the way of resolving data definitioms. Next the user will
Frobatly single ster (or multi step) the macpitts clock
vhile cbserving the effect on the internal registers and
output port(s) after each cycle. There is also provision to
write out the current state of the circuit to a file,
sultigp.int. Any number of states can be saved by appro-
priate repaming of files as they are written. Since
gacpitts does not allov the user to specify different file
names for each state saved, newly written .int files can
inmediately be renamed uniquely from an adjacent terpinal

logged on tc the sase account as the one running macpitts.

This is ccapletely feasible under UNIX.

As an example, figure 3.5 shows a concatenated listing
of 4 such files frcs a single session with the macpitts
intergieter. As would be expected, the format c¢£f these
files is that of a LISP list, whose meaning can be clearly
inferred because it follows the same syntax as the MacPitts
language itself. The first file, lines 1-14, is a dump of
the state of the circuit after setting the input ports ain
and bin to 4 and 3, respectively, and the reset signal to
false. ©HNote that all data downstrean of the inputs is still
undefined at this point. Lines 16-28 show the result after
one clock cycle. lines 30-42 show the result after two
clock cycles. Lines 44-56 show the result after the third
clock cycle vhen the result, 12, is present for the first
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I $ cat =-n multip.int{1=4)

((register a0 undefined~integer)
(register al undefined~integer)
(register a2 undefined-integer)
{register b0 undefined-integer)
(register bl undefined-integer)
(register b2 undefined-integer)
(register r0 undefined-integer)
(register rl undefined-integer)
(register r2 undefined-integer)
(port ain 4 console)

{(port bin 3 console)
(port res undefined-integer chip)
(signal reset f console))

H l6 ((register a0 4)

b o s e
VaWNHFOWOWENOAW S WN -

17 (register al undefined-integer)
- 18 (register a2 undefined-integer)
I 19 (register bo 3)

20 (register bl undefined-integer)

21 (register b2 undefined-integer)

22 (register r0 2)

(register rl undefined-integer)
(register r2 undefined-integer)
(port ain 4 console)

(port bin 3 console)

27 (port res undefined-integer chip)
28 {signal reset f console))

M
Sy N]
-» W

[ SR
awm

30 ((register a0 4)

. 3 (register al 4)

32 (register aZ undefined-integer)
a3 (register b0 3)

34 (register bl 3)

35 (register b2 undefined-integer)
36 (register r0 2)

37 (register rl 3)

a8 (register r2 undefined-integer)
39 (port ain 4 console)

40 (port bin 3 console)

41 (port res undefined-integer chip)
42 (signal reset £ console))

44 ((register a0 4)

45 (register al 4)

46 (register a2 4)

47 (register b0 3)

48 (register bl 3)

49 (register b2 3)

S0 (register r0 2)

51 {register rl 3)

52 (register r2 9)

53 (port ain 4 console)
54 {(port bin 3 console)
55 (port res 12 chip)
56 (signal reset f console))

P

Pigure 3.5 A BacPitts Interpreter Session for multip. -
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time on the output pcrt. Note that at this point the infut
data, wvhich wvas never changed during this session, has also
propagated down the three stage pipeline. 0f course, ocne
wvould ncreally not use a pipelined processor with static
data, bLecause the advantage of higher throughput is wasted.
The exercise only serves to demonstrate the behavior of the
intexgreter option. '

Tvwo pcints of practical interest should be made before
closing the interpreter discussion. First, it should be
cbserved that the lcttom 1lipnes of text in the terminal
display will be jumbled on the ADM-36 terminals because the
/etc/terncarp libraries in UNIX version 4.2 differ slightly
from those in UNIX version 4.1. Proper screen presentation
is obtained, howvever, if the GIGI terminal is used. Second,
the interpreter runs very slowly. It is not unusual during
hours of heavy system useage for one to two minutes of
terminal time to elarse while the interpreter is processing
a single comsmand to cycle the clock. At night, with cnly 2
users logged on, this clocking operation only takes ten to
fifteen seccnds.

L. BVOLUTICE OF THE 8 BIT PIPELINED MULTIPLIER

1. Desjgn Motivation apd Comstrainmts

Cne possible application for a digital pipelined
sultiplier cf unsigned integers is as part of a high speed
digital filter realization. Work done by Loomis and Sinha
[Ref. 17] indicates that the impact of pipelining delays on
the tehavior of digital recursive filters can be compensated

BRI
e
aa _a oal i ot .

for ty adjusting the filter weights. Purthermore, their

work shous that the stability of the filter can be improved ;;,
by increasing the numter of pipeline stages. It was decided ;;
that the design of a wmultiplier for such applications could i{ﬁ
be a suitakle vehicle from which to study the MacEitts ffé

coapiler. -
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The design of circuits which can be fabricated using
the available ARPA/MOSIS inplementation service is
constrained by two standard paraneters: a maximum prcject
size of 6890 x 6300 microns, and a maximum bonding pad count
of 64 fpins. To fully explore the capabilities of MacPitts,
it is proltaltly most enlightening to proceed in steps toward
the ultimate design.

2. F¥irst Design: 3 Stages, 8 Bits on One Chip

To rtetter aprreciate the issue involved, the first
design is an expansion of multip.mac to an 8 bit wide data
Fath with enough "cond" forms to realize an 8 bit multipli-
cation. Note, bhowever, that the MSB of the multiplicand
(ain) must le zero tc avoid overflows of the partial prcduct
and results ports. Ivo output ports are used, one for the
high order 8 bits of the result (hres), and one for the low
crder 8 bits of the result (lres). Together these ports
form a 16 kit product. One exrects the hres NSB always to
Le zero recause the largest valid product is 127x255=32385,
which is less than 218, Because the design has three sets
of registers, there are three stages of pipelining, and
there is rocm in the chip for three distinct multiplication
Frobleas to be in process simultaneously. A speed vs. area
tradeoff is effected ky alternating ports with registers in
the data rpath, Ports consuae less area than registers.
Hovever, rorts also introduce more delay in the pipeline
stages (vhose boundaries are defined by registers) thereby
lovering the maximum clock frequency. To further save area,
the multiprlier bits from bin share space in the 1low crder
intersediate results registers (1ro0, lr1, 1r2) and rports
(1p0, 1p1, 1p2, 1p3, 1lres) by using the following device:
after each kit of the multiplier is tested, it is shifted
off the right end of the register/port, leaving rocoam at the
left end for apother bit of the 1low order result to be
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shifted in. The source file for this design, multip8.mac,
is shcwn in figures 2.6 and 3.7. This file was arrived at
after first coasidering vhat resources would be needed to
perfora the amultiplication. Then register/port teaplates
vere written down on paper, and the flow of data traced for

a specific case. Next the algorithm depicted by the data
flow vas translated into MacPitts language resulting in a
diagras resembling the style of <figure 3.2. Finally the

definiticns, conditions, and reset functions were added to
complete the multip8.mac file. Figure 3.8 partially illus-
trates the manner in which this wvas done for the exanfgle
104x22=2288. Only thke first pipeline stage is shown, repre-
senting the first twc multiplier bits.

Figure 3.9 shcws the linear arrangement of the fports
and registers in the data path for this multiplier, as well
as the placement of shift and add organelles. The flow of
data is down the page. The 1large size of the full adders
relative to the other organelles is not reflected in the
scale of this figure. The resulting macpitts 1layout for
this design measures 11848 x 4897.5 microns, which is far
too large to be falrricated in a standard MOSIS run. It
appears that the design aust therefore be partitioned in
some vay among two cr more chips. Ideally, these fparti-
tioned "partial wmultipliers" should be identical in design
if fabrication and testing costs are to be minimized.

3. Jirst Partjticaning: 2 Bits, 1 Stage Pipeline

The multip8 design may be partitioned in a number of
vays. 1The first apprcach might be to process two multiplier
ktits opn tbe chip using one register stage and then cne pcrt
stage to hold the two partial products in a single pipeline
stage, then pipe the partial result to another identical
chip. Such a design requires 4 chips to do a complete 7 Lit
Yy 8 bit multiplicaticn with 4 stages of pipelining in all.
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1 ; 3-stage pipelined multiplier, product is 16 bit unsigned integer
2 (program multip8 8 ; data path is 8 bits wide
3 (def 1 ground)
4 (def ain port input (2 3 4 56 7 8 9)) ;jmultiplicand
5 (def bin port input (10 11 12 13 14 15 16 17)) smultiplier
6 (def a0 register)
7 (def al register)
8 (def a2 register)
9 (def hp0 port internal)
10 (def 1lp0 port internal)
11 (def hr0 register)
12 {def 1r0 register)
13 (def hpl port internal)
4 (def lpl port internal)
15 (def hrl register)
16 (def lrl register)
17 (def hp2 port internal)
18 (def 1p2 port internal)
19 (def hr2 register)
20 (def 1r2 register)
21 (def hp3 port internal)
22 (def 1p3 port internal)
23 (def hres port output (18 19 20 21 22 23 24 25)) ;high bits of result
24 (def lres port output (26 27 28 29 30 31 32 33)) ;low bits of result
25 (def 34 phia)
26 (def 35 phib)
27 (def 36 phic)
28 (def reset signal input 37)
29 (def 38 power)
30 ; end of definitions
31 (always
32 (cond ((bit 0 bin)

33 (setq hpO (>> ain))
34 (setg 1p0 (>> (bit 0 ain) bin)))
y 35 (t
36 (setq hpo 0)
37 (setq 1p0 (>> bin))))
38 (cond ((bit 0 1p0)
39 (setq hr0 (>> (+ hpO ain)))
40 (setq 1r0 (>> (bit 0 (+ hp0 ain)) 1p0)))
41 (t
42 (setq hr0 (>> hp0))
43 (setq 1r0 (>> (bit 0 hpO) 1p0))))
4“ (cond ((bit 0 1r0)
45 (setq hpl (>> (+ hro a0)))
46 (setq 1pl (>> (bit 0 (+ hrD a0)) 1ro0)))
47 (t
48 (setq hpl (>> hr0))
49 (setq 1pl (>> (bit 0 hr0) 1ro0))))
S0 (cond ((bit 0 1lpl)
51 (setq hrl (>> (+ hpl a0)))
52 (setg 1rl (>> (bit 0 (+ hpl a0)) 1lpl))) :
53 (t o]
54 (setg hrl (>> hpl)) oo
55 (setg 1rl (>> (bit 0 hpl) 1lpl)))) RPN
56 {cond ((bit 0 1lrl)
57 (setq hp2 (>> (+ hrl al)))
S8 (setq 1p2 (>> (bit 0 (+ hrl al)) 1lril))) C
59 (t e _
60 (setq hp2 (>> hrl)) E
61 (setq 1lp2 (>> (bit 0 hrl) 1rl)))) T i
o
R
. N 1
y Figure 3.6 Bultip8.mac Source Pile. ’~-—1
.-'.1
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62 (cond ((bit 0 1p2) .

63 (setqg hr2 (>> (+ hp2 al)))

g; (setq 1r2 (>> (bit 0 (+ hp2 al)) 1p2)))
{t

66 (setq hr2 (>> hp2))

67 {setq 1r2 (>> (bit 0 hp2) 1p2))))

68 (cond ((bit 0 1r2)

69 (setg hp3 (>> (+ hr2 a2)}))

70 (setq 1p3 (>> (bit 0 (+ hr2 a2)) 1lr2)))

71 (t

72 {(setg hp3 (>> hr2))

73 (setq 1p3 (>> (bit 0 hr2) 1lr2))))

74 (cond ((bit 0 1lp3)

5 (setq hres (>> (+ hp3 a2)))

76 (setq lres (>> (bit 0 (+ hp3 a2)) 1p3)))

77 (t

78 (setq hres (>> hp3))

79 (setqg lres (>> (bit 0 hp3) 1p3))))

80 (cond (reset

81 {setg a0 0)

82 (setg al 0)

a3 (setg a2 0))

84 (t

85 (setq a0 ain)

86 (setq al a0)

87 (setqg a2 al)))))

Figure 3.7 Hultip8.mac Source Pile (Continued).

Figure 3.10 is a block diagram of this design approach. The
MacPitts source file for this design, given in figure 3.11,
defines ancther input port, "hin," which should be connected
to the high order 8 bit partial product output of the
previcus stage, unless the chip is the first one in the
array. In that case, "hin" is connected to grecund (i.e.
zero.) 10 further reduce area, the reset function was elim-
inated, Lecause it is not in apy way essential to the func-
tioning ¢£ a multiplier used in a high throughput signal
processing environment such as is envisioned for this
design.

This arrangement of identical processing elements
connected in a linear array to produce a pipelined result is
similar in concept to the systolic array approach formulated o
by Kung [Ref. 18], although he was more generally ccncerned .ﬁ
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Ecrts & Registers Algorithm Statements

ain=104 bin=22
0110100C0 0010110

L (setq hp
—= {(setq lp

9.9 .,
0(>> bin))

bp0=0 1p0=11
ooccooo0 t001011
+01101000 ___,‘setg hrQ (>> (+ hp0 ain)
L (setg 1lr0 .
1110100 (>>"(bit 0 (+ hpO ain)) 1p0))
bro=£2 1r0=%

0&110100 8000101

setq a0 ain
ald=104 ( 9 )

01101000

Pigure 3.8 Use of Ports and Registers in multip8.mac.

with individual processing elements of greater complexity
than that of multip8a cells.

The macpitts layout of multip8a has outline dimen-
sions of 5848 x 6140 microns. The data path and control
unit cply cccupy aprroximately 3000 x 2500 aicronms. The
overall chip is large compared to its "working circuitry"
because of the npeed to place 53 pin pads around only three
sides of the perimeter. This design does not approach full
utilization of the available 6890 x 6300 micron silicom
area.

. Second Partitioping: &4 Bits, 2 Stage Ripelipe

It seems clear that more of the design will fit on
the chif and still not exceed the nmaximum size for
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Pigure 3.9

55

Data Path Architecture of HMultip8 Chip.

Designp multip8b (source file shown in figure
3.12) tests four bits of the multiplier on one chip,
fore,
multirlication.
of multirsa.

there-

cnly two of these chips are needed to do a complete
Essentially this is just a doubled version
The MacFitts layout is 7130 x 6140 microns for
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h clock ain gnd bin gnd +S
1 L |
¥ T 7======0 J======0
& ain hin bin
phia . pover
p%ib multip8a ground
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aout hout lout
? AR Sl G e - bl I - e --o
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ain hin bin
. {(/1in)
phia . - pover
phib multipBa ground
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aout hout lout
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16 bit product

the 5 mzicren option.

Figure 3.10

This is too large to fabricate.
with the 4 zicroa option, the multip8b chip has satisfactory

Bleck Diagram of Pirst Partitioaing.
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dimensions: 5884 x 6C24 microns.
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1 ; 1 stage of a 4-stage pipelined multiplier

2 ; product is a 16 bit unsigned integer

3 (program multip8Sa 8 ; data path is 8 bits wide

4 {(def 1 ground)

5 (def ain port input (2 34 56 7 8 9)) ‘smultiplicand input
6 (def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
7 ; this port also receives the lower 8 bits of the partial product
8 (def hin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of

9 ; partial product from preceding stage, zero If first stage.

10 (def aout port output (26 27 28 29 30 31 32 33)) ; multiplicand output
11 (def hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of

12 3 partial product output :
13 (def lout port output (42 43 44 45 46 47 48 49)) ; lower 8 bits of
14 ; partial product output and shifted multiplier output

15 (def al register)
16 (def hrl register) BRI
17 (def 1lrl register) B
18 (def S0 phia) ;"‘*
19 (def S1 phib) SR
20 (def 52 phic) .

21 (def 53 power)

22 ; end of definitions

23 (always

24 {cond ((bit 0 bin)

28 (setqg hrl (>> (+ hin ain)))

26 (setq 1rl (>> (bit O (+ hin ain)) bin))) i
27 (t R
28 (setq hrl (>> hin)) o
29 {setq lrl (>> (bit 0 hin) bin)))) S
30 (cond ((bit 0 1rl) RN
31 (setq hout (>> (+ hrl ain))) el
;z (setg lout (>> (bit 0 (+ hrl ain)) 1lrl)))

3 (t '

34 (setg hout (>> hrl))

gg (setq lout (>> (bit O hrl) 1rl))))

f
37 (setq al ain)
38 (setq aout al)))

Pigure 3.11 HNultipB8a.mac Source Pile.

5. 1bjrd Partitioping: 2 Bits, & Stage Pipeline

By replacing every internal port with a register,
and providing two additional corresponding pipeline regis-
ters for the multiplicand, the delay per pipeline stage can
be reduced by a factor of approximately two because the

adders drive a register directly instead of through a pert |”}
and another adder. 1Tbe clock rate can therefore be approxi- ¥'
mately dcubled. This modification has another attractive S
feature in that it allows the output port to be driven ?ff;
L
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50

52
53
54

56

;i 2 stages of a 4-stage pipelined multiplier
{ product is a 16 bit unsigned integer
(program multip8h 8 ;

(def

(def ain port input (2 3 4 56 7 8 9))

1 ground)

data path is 8 bits wide

;jmultiplicand input

(def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
i this port also receives the lower 8 bits of the partial product
(def hin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of

; partial

(def
{def

; partial

(def

; partial

(def
(def
(def
(def
(def
(def
(def
(def
(def
{def
(def
(def

aout port output (26 27 28 29 30 31 32 33))
hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of

product output

lout port output (42 43 44 45 46 47 48 49))

al register)

a2 register)

hrl register)

1rl register)

hpl port internal)
1pl port internal)
hr2 register)

lr2 register)

50 phia)

S1 phib)

52 phic)

53 power)

; end of definitions
(always
(cond ((bit 0 bin)

(setq hrl (>>

(setq 1lrl (>>
(t

(setq hrl (>>

(setqg 1rl (>>

(cond ((bit 0 1rl)

(setq hpl (>>

(setq 1pl (>>
(t

(setq hpl (>>

(setg 1pl (>>

(cond ((bit 0 1pl)

(setq hr2 (>>

(setqg 1r2 (>>
(t

(setg hr2 (>>

(setq 1r2 (>>

(cond ((bit 0 1lr2)
(setq hout (>> (+ hr2 al)))
(setq lout (>> (bit 0 (+ hr2 al)) 1lr2)))

(t

(+ hin
(bit 0

hin))
(bit 0

(+ hrl
(bit ©

hrl))
(bit O

(+ hpl
(bit 0

hpl))
(bit 0o

(setq hout (>> hr2))
{setq lout (>> (bit 0 hr2) 1r2))))

(setq al ain)
(setq a2 al)
(setg aout a2)))

ain)))

(+ hin ain)) bin})))
hin) bin))))

ain)))

(+ hrl ain)) 1rl)))
hrl) 1lel))))

al)))

(+ hpl al)) 1pl)))

hpl) 1pl))))

-
’

product from preceding stage, zero if first stage.

multiplicand output

lower 8 bits of

product output and shifted multiplier output

s, -

Pigure 3.12

Nul tip8b.mac Source File.
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3 2 stages of a 4-stage pipelined multiplier RS
;i product is a 16 bit unsigned integer S
(program multip8c 8 ; data path is B8 bits wide
(def 1 ground)
(def ain port input (2 3 4 56 7 8 9)) smultiplicand input
(def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
3 this port also receives the lower 8 bits of the partial product
(def hin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of
i partial product from preceding stage, zero 1f first stage.
10 (def aout port output (26 27 28 29 30 31 32 33)) ; multiplicand output
11 (def hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of
12 : partial product output
13 (def lout port output (42 43 44 45 46 47 48 49)) ; lower 8 bits of
14 ; partial product output and shifted multiplier output
15 (def al register)
16 (def a2 register)
17 (def a3 register)
18 (def a4 register)

OXRIRYL BN P

- et

19 (def hrl register)
20 (def 1lrl register) 2 1
21 (def hr2 register) . -

22 (def 1r2 register)
23 (def hr3 register)
24 (def 1r3 register)
25 (def hrd4 register)
26 (def 1lrd4 register)
27 (def 50 phia)

28 (def S1 phib)

29 (def 52 phic)

30 (def 53 power)

31 ; end of definitions

| T Ut
e P
PN R I

»

32 (always D 1
33 (econd ((bit 0 bin) -
34 (setq hrl (>> (+ hin ain))) K ”J
. 3s (setq 1rl (>> (bit 0 (+ hin ain)) bin)))
36 (t P
37 (setqg hrl (>> hin)) S
38 (setq 1rl (>> (bit 0 hin) bin)))) RS
39 (cond ((bit 0 1lrl) . 1}
40 (setq hr2 (>> (+ hrl al))) Cee
:; (setg 1r2 (>> (bit 0 (+ hrl al)) 1lrl))) ;.;ﬂ;:
(t )
43 (setq hr2 (>> hrl)) -
44 (setq 1r2 (>> (bit 0 hrl) 1rl))))
45 (cond ((bit 0 1r2)
46 (setq hr3 (>> (+ hr2 a2)))
:Z (setq 1r3 (>> (bit 0 (+ hr2 a2)) 1r2)))
(t
49 (setqg hr3 (>> hr2)) .
50 (setg 1r3 (>> (bit 0 hr2) 1r2)))) -
51 (cond ((bit 0 1r3) i“
52 (setq hrd (>> (+ hr3 a3l))) -
33 ( (setq lrd4 (>> (bit 0 (+ hr3 a3l)) 1r3))) L
t
55 (setg hrd (>> hr3))
:g (setqg 1lrd4 (>> (bit 0 hr3) 1r3))))
;

58 (setq hout hr4)

59 (setq lout 1lrd)

60 (setq al ain)

61 (setq a2 al)

62 (setqg a3 a2)

63 (setqg a4 al)

64 (setq aout ad)))

Pigure 3.13 HMultip8c.mac Source File.
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directly by a register rather than by an adder. Thus, the
output data is valid sooner after the completion of a clock
cycle than it was in the case of multip8b.

Scme room to spare on the aultip8b 4 microm layout
leaves hcpe that this four stage pipeline algoritha, figure
3.13, may le feasible. In fact, the macpitts layout for
sultif8c measures 8218 x 6140 microns in 5 micron tech-
nology. In &4 micrcn technology the chip measures 6766 x
6024 n@micromns, vwhich consumes almost 94 per cent of the
saxiaus allowable chif area. This is a good indication that
the lisit may in fact have been reached on obtaining any
more elatorate design variations for the multiplier which
can le fabricated by the standard MOSIS facilities.

A summary of statistics produced by macpitts for all
the multiplier designs explored in this chapter is given in
table I. Bach line represents a different cif file, scme of
vhich may le derived froa the same source file, with the
ocnly difference being the invocation ofptioms. The roct of
€ach entry in the "DESIGN" column corresponds to the name of
a nwmultigplication algoritha introduced previously in this
chapter. To clarify the notation of the "DESIGN" coluamn,
note that the last digit gives the aminimum feature size
selected, in microns. Where no digit is explicitly stated,
the minimum feature size is S5 wmicronms.

E. DESIGE VALIDATIOR
‘1. Iupctiopal Sipulaticn
Before proceeding with fabrication it is necessary
to validate the aultip8ch4 design by functional simulaticnm,

design rule checking and node extraction vith subsequent
event simulation.
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In any functional simulation the first issue to
address is, "How exhaustive shall the simulation be?" 1Iruly
exhaustive testing c¢f multip8c4 is a formidabls task, at
test. The number of different electrically possible ccmki-
nations of bits for the three input ports--ain, bin and
bhin--is

(28)3 = 224 = 16,777,216.
Then, there are four internal pipeline.stages.. Therefore,
ideally, every sequence of 4 of these 16,777,216 inputs
should ke tested because there should be no restricticns on
the crdering of problems in the pipeline. This ccnsidera-
tion increases the number of possible states to
(16,777,216)% = 7.92x1028 states.

Fach state transition requires five transitions of the raw
clock, as will e recalled from figure 2.4. It is reason-
able to assume a raw clock frequency of 10 MBz for an NMOS
circuit. For the master-slave flip flops used in MacPitts
this translates to a state transition rate of 2 MHz. From
this assumption the time to cover all states of this circuit
is calculated to be

7.92x1028% states / 2x108 states/sec = 3.96x1022 seconds

3.96x1022 sec / 8.64x104 secsday = 4.58x1017 days

4.58x1027 days / 3€% days/year = 1.26x101S years
Therefore testing every electrically possible state, even
once, is obviously ixgractical.

1f only each 24 bit dinput combination were tested
once, withcut regard for the order in which these tests were
conducted, the time required is only

16,777,216 , 2x108 = 8.38 seconds.
It shculd be remembered that, in its intended applicaticn,
the nusker of expected input combinations to multip8c is
considerably ssaller. There are only (255x127) +1 or 32386
possikle 7x8 bit multiplication problens. Each of these
vill have bhin=0 on the first chip. The second «chip will
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have cply one unigue set of inputs passed to it by the first
chip for each of these 32386 problems. Therefore, the total
nuaber of different ipput ccmbinations of ain, bin apd hin
that will ke encountered in actual operation is no greater
than 2x32386 or 64772. The precise number is somewbhat
smaller still because some problems, such as those which
have zerc fcr the multiplier or sultiplicand, will outfput a
zero frca bout in the first chip to hin of the second chip
thus duplicating the first chir set of inputs for scme cther
froblea.

bhen using tte macpitts interpreter to rumn a func-
tional simulation, at least fifteen seconds must be allowed
for ccaputing the changes at each clock cycle. This fact
makes testing even all expected input coambinations imgrac-
tical. Instead one randoa problea is chosen: 104 x 22 =
2288. The product 2288 is represented as hout=00001000=8,
decinmal and lout=11110000=240, decimal, since
(256x€) +240=2288. Figures D.2 through D.6 in Appendix D
show interpreter outrut files for each of the 8 clocck cycles
needed tc froduce tlie result, amnd a ninth clock cycle to
demonstrate that the output is not subject to unccaaanded
changes. Between clock cycles 4 and 5 the inputs were
changed to simulate two chips in cascade. The results are
correct, indicating proper behavior of the specification
algoriths.

1 source listing for the program "values" apfpears in
figure 3.14, together with a sample run using the problea
given abcve. This program allows generation of the multig8c
result giver any costination of ain, bin and hin values
entered from the terminal keyboard.

2. [esian BRule Shecking

The reality of the claia that MacPitts designs are
"correct by construction" can be tested. The multip8c.cif
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?ain() /* interactive simultation of multip8c chip */

unsigned int ain, bin, hin, hout, lout, result;
unsigned int testl, test2, c;
printf ("Type °“C anytime to quit.\n\n"):

/* Loop until interupt is signaled from keyboard */
top:

/* Read input val £ keyboard. *
printef (esntcr a :Q.foq);ey oar /

scanf ("sd", &ain);
printf ("Enter bin... ");
scanf ("$d4*, &bin):
printf ("Enter hin... ");
scanf ("sd", &hin);

/* Compute the results: first initialize output registers. */
lout = bin; :
hout = hin;

/* Simulate multip8c algorithm. */
for (c=l; c<=4; c++)
testl = lout & 001;
if (testl == 1)
hout = hout + ain;
lout = lout >> 1;
test2 = hout & 001;
if (teat2 == ])
lout = lout + 128;
hout = hout >> 1;
}

/* Put output reister values into concatenated decimal form. */
result = 256*hout + lout;

/* Display all values on the screen. */
printf ("ain=%-4d bin=%-4d hin=3-4d hout=$-4d lout=%-~4d result=3-5d\n\n",
ain,bin,hin,hout,lout,result);

}goto top:

RRREENNRAANREL SAMPLE RUN f#evaasssseannntsne

t values
Type “C anytime to quit.

Enter ain... 104

Enter bin... 22

Enter hin... 0

ain=104 bin=22 hin=0 hout=39 lout=]1 result=9985

Enter ain... 104

Enter bin... 1

Enter hin... 139

ain=104 bins=) hin=39 hout=8 lout=240 result=2288

Enter ain... “C%
]

Pigure 3.14 Values: Progras to Compute Multip8c Output.
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file wase checked for design rule errors by running it
through the Stanford ®drc" prograa via "cll"® [Ref. 13 pp.
147-151] to reformat the file. The command sequence is:

% cif multip8c.cif =-gng

X ¢cll multigéc.co

X drc multig8c.sco . _
There are tvo problexzs, however, wvith nsing drc on this
design. One is that the design rules used by MacPitte are
not the standard Mead Conway rules [Ref. 2: pp. &47-51], but
are a ccrbipation of these and the MOSIS design rules which
include burried contacts [Ref. 2: page 133]. Burried
contacts are not reccgnized by "drc." -The other problem is
that the ¥cif" program does not correctly read .cif files
wvhich use the 200 centimicron lambda dimension--round-off
error is introduced. Therefore, the design rule check can
only ke performed on multip8c5, not on =multip8cl which is
the versicm to be falricated.

The results of this drc run, thus caveated, produced
2 types cf stated errxors, both of which are spurious. One
is a "pcly to diffusion contact separation®" error in the
controller where macritts abuts two contacts, omne to pely
and cne to diffusion, but both through the same overlying
metal conductor. The intent of the design rule checker, in
this ipstance, is tc forewvarn of the possibility of a short
circuit; a short circuit is in fact the desired result of
this uncrthodox structure. The other stated error is an
"implant surround®™ error in the register clock. This struc-
ture is flagged because the Lurried contact to that layer
vas ignored by drc. Eased on this non-ideal but only avail-
able cleck of design rules, it wvas concluded that the
aultir8cS5.cif file does define processable mask layers. It
is assumed that the =zultip8ct.cif file is also processable
because it differs only in scale from amultip8cS5.cif, except
for the pads, wvhose design is supposedly froma a standard
library suprlied by HNCSIS.
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3. BNode Extractjcp and Event Sjmuylation

The node extraction program “Mextract” which is part

of the Stanfard VLSI design tools does not accurately inter-
pret .cif files with lamkda egual to 200 centimicronms.
Portunately, the "mextra" program, written at Berkeley,2 can
accoasodate both 200 and 250 centimicromn cif files.

To obtain an extraction and simulation of the
aultir8c design in 4 aicron size, the correspbnding cif
file, multip8cl.cif vas converted to the ".ca" format used
Ly the Berkeley "caesar" layout editor. Then labels for all
the rads vere added to the design using caesar so that
mextra wculd kaow which nodes are to be accessible fcr moni-
toring. Before exiiing caesar, a new cif file, pmul8c.cif,
is written using the caesar coamand

¢ cif -p mul8c.
The ncde extraction is made by issuing the command

% mextra mul8c.
The result of the mextra run is a .sim file suitable for
input to the "esia™ event simulator [Ref. 1: pp. 152-155],
and also a .log file (figure 3.15) in which is contained
summary statistics of the extraction.

Window: 0 676600 0 602400
801 depletion
1612 enhancement
1398 nodes

Pigure 3. 15 Bextra .log Pile for Mul8c.cif..

2See Aprendix C.
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The simulaticn, using extracts of aul8c.cif was set
up to perform the same tests used in the macpitts inter-
preter session of wmultip8c. To do this, two macro files
were created. One defines the three phase clock sequence,
declares wbhich nodes to watch, and sets the values of the
inputs to those wvhich simulate the problem 104x22. The
second macro file, which vas designed to be read in at the
midpcint of the simulation, redefines the input values to
make tle chip 'perfors like the second multip8c unit in the
pipeline. These files are both listed in figure 3.16.

cat mul8c.macro

phia 11011 phib 10000 phic 10001

ain ain7 ain6é ain5 ain4 ain3 ain2 ainl ain®

bin bin7 bin6é binS bin4 bin3 bin2 binl bin0

hin hin7 hiné hin5 hin4 hind4 hin2 hinl hino

hout hout7 hout6é houtS5 hout4 hout3 hout2 houtl houtO
lout lout?7 lout6é lout5 loutd loutld lout2 loutl loutl
aout aout?7 aout6 aout5 aoutd aout3 aout2 aoutl aoutl
clock phia phib phic

ain6 ain5 ain3 bin4 bin2 binl

ain7 aind ain2 ainl ain0 bin7 bin6 bin5 bin3 bino
hin? hin6é hin5 hind hin3 hin2 hinl hin0

cat mul8c.macro2
hin5 hin2 hinl hin0 binO
bin7 biné bin5 bin4 bin3 bin2 binl

=ye HHITZEZEZILIEZEZIEZERS

Pigure 3.16 Two Macro Driver Piles for Bvent Sismulation.

The record of a simulation run using these files is
contained in Appendix D. It shows the same correct results
obtained with the macpitts <functional interpreter. Note
however that when the "I" command is given to esim, all the
circuit nodes are initialized to some value over which the
user bhas no coantrol. Therefore, the values of the output
ports are noct meaningful until the fourth clock cycle, even
thougbh tkey are defined during initialization.
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The event simulation result is encouraging evidence
that macpitts can produce, in at least one instance, a pmask-
level description that correctly reflects a circuit design
vwith algorithnic Lehavior specified by the designer.
Further validation evidence was obtained by performing an
extracticn and event simulation on aultip8cS5.cif, the 5
micror version of the aultiplier. This extraction could be
done using the Stanfcrd program; the result was the same as
for meatza. The event simulation produced a correct result
for the same exercise. It was concluded, therefore, that
the design was ready for fabrication.

F. SUNBARY OP ACTIVITIES IN THE BACPITTS DESIGN CYCLE

A reccnmended pattern of steps to follow in the MacPitts
design cycle can be scamarized by presenting the sequence of
UNIX ccmmands issued by the designer for a typical case.
This sequence divides into two paths after the cif file is
created, depending cn whether 4 nmicron or 5 micror minimum
feature size is selected. For the 4 nmicron option the
caesar/mextra tools must be used. For the 5 micron ofption
it is more convenient to use extract, a program which reccg-
nizes node labels furnished by MacPitts with the cif user
extensicn 0.

As a starting pcint, it is assumed that the designer
already has fornulated a precise idea of what bebavior the
chip is to exhibit, and has translated the behavioral speci-
fication into MacPitts language.

The £ micron path, using the multip8c.mac source file as
an exaamtle, is as follows:

% vi multip8c.aac
{Create the source file.)

% macpitts sultip8c int herald
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(Run the interpreter to debug the source file and verify the
functional correctness of the specification. Save states as
desired using the "p" interpreter coamand, renanming files

ol from a second terainal keykoard to prevent overwriting.
E Quit the interpreter.)
. % script
h! (Start a recording session for the terminal screen.)
ié % macpitts multip8c 5u herald

(Generate 5 micron multip8.cif and coaplete design statis-
tics.)

% zv multip8c.cif multip8cS.cif

(Rename cif file to rroclaiam that it is a 5 micron design.)
% ctrl-D

(Stor the recording session.)
% print typescript

(Get bardcopy of comriler statistics and heralds.)

% cif multip8cS.cif ~-gng
% cll aultifp8c5.co
% drc multip8cS.sco

. (Obtain design rules check.)
% extract =multip8c$h
(Obtaip a ncde extract.)
% vi multipBcS.sya

(Change spelling of VDD and ground node labels to Vvdd and
GND, resrectively.)

% sim aultif8cS
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(Obtain the multip8cS.sim file.)

% vi multipé8c.macrel

(Create cne or more testing sequence files for the event
simulator. See tle M"esim" section of Appendix C for
details.)

R script
% esim multip8cS5.sim multip8c.macrol

(Perform event simulation of chip.)

% ctrl-D
% rrint typescript

% vi multip@cS.cif

("Comment out" the user extension 0 lines at the beginning
of this file by enclosing them all in one set of parentheses
followed by a semicclon. See the f"cifplot" secticn of
Appendix C for details.)

% stipple multip8cS.cif (Obtain stipple plot on the
Versatec rlotter.)

The 4 nmicron path, using the same example, contains
exactly the same steps through the interpreter run, then
continues as follows:

% script
% macpitts msultipB8c 4u herald

{(Generate 4 micrcan multip8c.cif and complete statistics.)
% sv multip8c.cif sultip8cl.cif
(Rename cif file to frroclaim that it is a 4 micron design.)

% ctrl-D
% rrint typescript

70

P . - . dhe L . o I

—— ]
®
<
o il
® 1
o .
- e
P ..
R
. S
. R |
B Lt .,
.. .-'
- -
p. ..
: hl
b
ST
. 4
N <
BRI
- i -‘_‘
- T
R .
e
R
e __
e
e _




% cif2ca multip8cl4.cif

(Convert cif to caesar format. Benign warnings are issued af;
when user extension 0 lines are encountered.)

"

% av project.ca multip8cé.ca G

(Give the top level caesar file a suitable name.) U

% caesar multip8cd : R

(Use caesar to affix labels to each bonding pad, then output ffi

a new cif file using : cif -p camul8cé. See the "caesar" Lo

-y

secticn of Appendix C for details. Quit ceasar.)

% mextra caul8cl Si;
(Obtain a node extraction.)
% vi multip8c.macrol

(Testing sequence file(s) 4is/are identical to the S5 micron
case.)

% script
% esim caul8cl.sia multip8c.macrol

(Performs event simulation of chip.) R
% ctrl-D e
% print typescript =k
% stipple caul8cl.cif

(Obtain stipple plot on Versatec. There is no need to worry ;_,
about wusger extension 0 if the cif file was created by
caesar.)
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IV. MAGRIIIS RPERFORMANGE

A. LAYCUT ERRORS ANL INEFFICIENCIES

1. JIpefficisncies

Appendix E ccntains photographs of am AED 767 color
graphics terminal screen displaying the MacPitts cbhip
layouts for each of the six nmultipliers discussed. The
presentations were generated by the caesar VLSI circuit
€ditor [BRef. 6] Examination of these layouts, aided by the
zoon-in feature of caesar, prompts several observations
about MacPitts' perfcrmance.

In any VLSI circuit layout a primary goal is to
cover the available silicon area as densely as possible with
circuitry. A varialtle, but generally small amount of the
siliccn area within the bounding box of MacPitts layouts is
covered uith circuitry. This is due in part to the rigidity
of the target architecture--requiring the layout of data
path organelles in a strictly linear fashion. The most
serious vaste of space in the examples explored, however, is
caused by the inability of MacPitts to install bonding pads
on all four sides of the chip. The left side is never
available for this fpurpose due to certain algorithaic
simplifications made by the authors of MacPitts [Ref. 16:
pe 13]. A three-sided arrangement of pads stretches the
ocutline dimensions, particularly in designs which specify a
large nuaber of external comnections. All of the parti-
tioned sultiplier algorithss presented in the previous
chapter-—-nmultip8a, sultip8b, and multip8c-—-are in this
category.

Coe may consider the possibility of filling the
large void above the useful circuitry in multip8cd, for
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exaaple, with another identical instantiation of the
sultipécd layout, ginus the pads, and thereby produce a
complete 8 kit multiplier on one chip. Bight pads for the
hin port could then also be elilinatéd. The cell sovement
and yanksput commands of caesar would make this operation
possikle with a minimum of drudgery. But the interconnec-
tions Letveen the 2 instantiations of the multip8ct modules
would still require tedious mapual layout, and would be very
subject to human errcr. Such hand crafting, aminus the
interconnection modifications, vas, in fact, attemgpted.
Appendix E contains a photograph displaying the results of
this effort, pamed multipB8cd4d to demote "double." It
clearly demonstrates that the synergistic use of MacPitts
with caesar is feasirle.

70 pursue the manual editing approach very far would
be to alandon the basic concept of silicon compilaticn as
defined froa the outset. Nevertheless, editing is required
if one is to obtain efficient use of silicon resources. The
appreciation of siliccn compilers like MacPitts still awaits
a future in vhich tc perform such manual editing is more
costly (in custom designs intended only for small voluame
producticn) than the silicon area wasted in a suboptimal
layout. One can predict that that future will arrive, just
as it did when the cost of memory hardware dropped thus
solving an analogdns froblen: whether to waste memory Lut
write clear programs, or conserve memory fully at the cost
of sopumental programsing effort.

A lack of compactness detracts £from more than
econosy c¢f producticn, hovever. There are penalties in
circuit operating spreed as well. A closer 1look at the
details of MacPitts layouts reveals inefficiencies which
directly affect circuit perforsance. In general, the length
of wmetal and polysilicon interconnections is much 1longer
than the minimum an experienced human layout artist would be

73

Bemen B i




.............. o T, TR MR

expected to produce, even when both are limited to using
right-angle (Manhattan) layout rules. Por example, all of
the output data bits generated at the far right side of the
data rpath must be rcuted back to the left along the entire
length of the data rath, then up (or down), over to the
right again for the entire length of the data path, and
finally down (or up) agaia to reach the bonding pads. In
the multip8cld layout, MacPitts uses wire runs of up to 18 ma
to route data bits frca their sources to their bonding pads
which, in scme cases are less than 1 mm direct distance froa
the source. The proklem lies in the inability of MacEitts
to juap over the metal powver/ground bus frame in wmaking
connecticns from the data path to bonding pads. This

PIE 1 PIN 2 « o o
a{n7‘

GND
DATA PATH —oPIN 30
aout3
PIN 53 PIN %2 . . .
vID phic

Pigure 4.1 Data Path Ouput Routing.

problea is illustrate¢d in figure 4. 1. The experienced user
can bhelp equalize interconnection lengths somewhat by
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asgsigping cutput ports only to the 1lowest and highest
nusbered pins.

MacPitts, therefore, requires that the user provide
a functicnal specification wvhich is enlightened by knowledge
of the 1layout limitations if optimum performance is to be
obtained. This is ap area for improvement in pursuit of the
silicon comriler ideal. _

Another layout probles is more difficult to deal
with: the excessive length of wiring betwveen the control
unit and the data path. This could be improved by centering
the contrcl unit under the data path, which would regquire
changing the Macpitts source code in some undetermined way.
As currently vwritten, MacPitts alwvays begins the control
unit at the left margin.

There are alsc many instances of dead-ended wires in
PacPitts layouts. These "roads to nowhere"™ occur vwhen
MacPitts extends runs beyond the 1last point of interconnec-
tion. They occur most frequently on the organelles, not all
of whose capabilities may be used by the behavioral specifi-
cation ir a given instance. This appears to be a result of
an atteart to use tke same organelle for as many different
applications as possikle, apparently to control the size of
the likbrary. Untrizsed wires of this variety certainly add
to inter-node capacitance, although not to the extent that
inefficient routing dces. Nevertheless, they surely reduce
the  cperating speed of the circuit, and make oreration
noisier and perhaps less reliable at high frequencies.

2. Izzogs
In addition tc the layout inefficiencies described,
there is ancther protlem with Macpitts layouts. At least

one input file has been krown to produce a layout containing
a fatal error. Kelly [Ref. 19] attempted to use MacPitts to
produce a lutterfly switching element chip. His design
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(called kchip2) has a avuch simpler data path than the
multip8c pipeline maultiplier, but it has a larger control
unit. It also includes some finite state machine sequencer
~units which serve tle independent processes he uses in the
design. These are laid out to the right of the data fath.
The BacFitts designed layout of this circuit places a direct
short circuit across the 3 clock bus lines. A picture of
the ﬁortion of the chip where the error occurs is included
in Appendix E. The problem arises because the clock tus
contains "vias" where it must be extended from the data path
to herizontally adjacent elesents in the design. These
"vias" allov the metal bus lines to cross vertical metal
frame power or ground lines via a brief transition tc¢ the
polysilicon layer, then back to the metal layer. MacPitts,
hovever, apparently does not check <for the presence of any
intersecting vertical polysilicon runs to the control unit
which may be placed at the same horizontal coordinate as the
clock Lus vias. None of the wmultip8 series of designs has
any ccntrol lines entering the extreme right end of the data
path. Therefore, tbe vias are safe, and the problem dces
not occur. It is interesting to note, however, that
MacPitts still extends the <clock bus well to the right
Leyond the point of last use , and includes a dead-end set
of vias to jump over the data path frame, even though there
is 1pc need for that extension in the nmultip8 family of
designs. It may be concluded from these observations that
this proklem is latent in all MacPitts designs, and cne
would do well to examine the control unit wiriang in the
vicinity of the clock bus at the right end of all frames.
Caesar can te used, if necessary, to adjust the local wiring
slightly to route the offending control line away from the
clock vias.
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B. OBGANELLES VS. SIANDARD CBlLS

This seqtion briefly examines some comparative asgects
of the Stanford standard cell approach used by Newkirk and
Bathews [Ref. 20) and the organelles used in MacPitts.

Bcth standard cells and organelles are laid out as kit
slices. It was hoped that there would be a one~to-one func-
tional correspondence betwveen at least some of the cata-
logued standard cells and the organelles which could fors a
basis for comparison. Unfortunately, there is very little
functicnal correspondence, 1let alone structural correspon-
dence, Letveen the two. The standard cells contain only
dynamic storage elements, and use a 2 phase clock. The
MacPitts organelles use a 3 phase clock, and the only memory
elements available are static master-slave flip-flop regis-
ters. The standard cells are designed for matched pitch.
That is, they can be directly abutted, in many cases, to
foras full length words and arrays. Organelles, on the cther
hand, generally require some margin around them for inter-
connecticns (called "river routing") which apparently aust
be specifically tailored for each instantiation of the
organelle.

It vas hoped that at least the MacPitts adder organelle,
vhich is simply a standard asynchronous full adder made
entirely frcm NOR gates, could be compared with something
froa the standard cell library. The most similar standard
cell in the catalogue is an adder/subtractor [Ref. 20:
p-10], vhich is based on the OM2 arithmetic logic unit
[Ref. 2: PP 145-181]. This cell is much more flexible,
yet also more specialized, than the MacPitts adder. It is
capable of a full range of boolean operationms, not just .
addition, as determined by the values on two 4 bit control 3
port lines vwhich are threaded through the cell. It also
differs fros the organelle in that its operation is clocked.
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Althcugh a comparison based on size hardly seems meaningful
for these two dissimilar units, it is noted that the crga-
nelle measures 250 x 40 1lambda wunits using measurements
taken frcm actual layout plots. The standard cell adder
measures 211 x 32 lastda units as specified in [Ref. 20: p.
11].

The MacPitts static register organelle has no functional
parallel in the standard cell 1library for the reascas
sentioned above. It nmeasures 64 x 30 lambda  units,
excluding the clcck tuffer unit which contains a load enalkle
line affecting all tke bits in the same register. The stan-
dard cell dymamic shift register bit measures 88 x 24 lamkda
units, and contains a selector input line for each bit of
the register built fica these cells.

C. SCFTWARE INCONPATIBILITIES

The authors of PMacPitts have extended the CIF language
to make "OQ0" at the bteginning of a line indicate that the
rest cf the line contains the c¢oordinates of a node, the
mask layer to which it applies, and a label name for that
node. This is a useful feature with the Stanford ncde
extracticn rrograms which recognize this label device and
use it autosatically to make the node accessible to simula-
tion prograss sisply Ly calling its name. This extenmsion of
CIP is unkncwn to the Berkeley VISI tools. The latter use
another CIF extemsion--"94"--to flag node labels.
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Y. CONCIUSION

A. SUBBARY

This thesis has described silicon compilers, and deamon-
strated how the HacPitts silicon compiler can be employed to
design a digital pipelined multiplier using a partitioning
concert.

Shertcorings of this silicon compiler have been found
vhich make the results produced by it inferior in some ways
to those produced by practiced designefs. These shortcom-
ings may be outweighed, for soae applications, by the reduc-

tion in design tinme. The functional correctness of the
BacPitts amultiplier design has been demonstrated to the
extent allcwed by available simulation tools. Otker

MacPitts designs may contain errors vwhich can be edited out
with relative ease.

The user of MacPitts can affect the output of the compi-
laticn process in two meaningful ways. First, it may be
possitle to write the behavioral specification algoritha to
allow partitioning of the design among more than one chip.
This pcssitility shculd be explored vwhen layout size is a
Froblen. Second, rroper assignment of pins can reduce the
worst-case length of fin pad wiring. _

Bacritts has been found coampatible, except in a few
cases, with other VLSI design tools at NPS. The caesar VISI
editor has keen particularly useful, along with the cifplot
stiprle gplctter, in gaining insight into the processes
emplcyed by MacPitts in producing a layout.

Althcugh the fipal multiplier design was submitted for
fabrication, unexpected delays in production schedules
precluded testing tle finished product as part of this
research.
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Be REICOEHEEDATIONS
The following reccamendations should be considered:

1. Test the multiplier chips, vwhen they become available,
using the event simulation macros and as many other ingut
combinations as facilities allow. Single~-cycle _testing
should be dcne before dynamic testing is undertaken using a
direct memory access tester.

2. Dissect MacPitts designs with caesar, saving in separate
cif files useful syatols to add to the 1local VLSI lifrary.
Syabcls such as pad frames or entire data path units may be
of interest. '

3. Write nev organelles for the MacPitts library. A carry-
look-ahead adder would be a useful addition.

4. Enlarge the capatilities of MacPitts to produce desigms
in a CMOS technology. This would involve not only writing
new data fpath organelles, but modifying the control unit
architecture, as well.

Se Ortain a capability locally to handle file transfers
over the ARPANET/MILNET systea.
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ARREEDIX A
INSTAELATION OF BACPITTS ON VAX~11/780 UNDER UNIX 4.1 AND

8.2

4. IBSTALLATION URDPZE UNIX 4.1 OPERATING SYSTEM

MacPitts is distributed as a collection of discrete
source ccde files written in the "C" programming language
and ip Pranz Lisp Opus 38. Also included in this distritu-
tion are two library files containing the bonding frad
layouts in CIP, and a 1library file coitaining the standard
organelles. The comfplete list of files is given in talkle II
These files are located in the directory /vlsi/macpit under
cwnershir of vlsi.

A1l of the operations necessary to build wmacpitts are
sequenced by the "Makefile, "™ a feature of the UNIX operating
systes that directs the automatic compilation and asseamtly
of source programs tc produce large software modules.

Building an executable version of the macpitts program
regquires that each =source file be first compiled by the
"liszt" lisp compiler or the "“cc" compiler, as apprcpriate.
The pads.l file is a lisp source which is actully generated
by ancther lisp source. The latter source, padgen.l,
filters the bonding pad CIF information c¢ontained in the
rinout and pads20 files, and [produces pads.l, a 1list of
tonding pad information in the standard syntax of Franz
lisp. Fads.l is then "liszt'ed" (compiled) to produce the
pads.o orject file. 1The next step of the process fast-loads
all of the compiled ckject files, linking them together in a
single lisp "environgent." Finally, the default settings
for all the aacpitts options invoked at run time are over-
layed. It is this 1linked 1lisp environaent, with the
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TABLE II.
BHacPitts Source FPiles

Makefile - a makefile used to build
-the complete MacPitts system

15.1 - layout language used by macpitts
toygeneratg Cg Y P

- pext 13 files are the lisp
source code for MacPitts

¢centrol.l ] )
data-path.1l - bas built-in organelles
defstructs.l
eitraci.l

ags.

rage. - layont of obj file starts here
front- ge.

genera . ] .
1n§e:p§et.1 - interactive interpreter
crder,
pads.l - created during "make macpitts"
prerass.l - execution stafts here

gad en.l - makes gads from next 2 files
Stanfo d Cell letary pads

;adzcb - £ 2.0 micron pads
likrary - standard macro function, test,

-_and org ibrar )
organelles.l mpi ed portioh of organelle library

linccln.l - the lincoln Laboratory lisp environment
c-routines.c - interfaces to opérating systenm

macpitts - dumped MacPitts environment

defaults set, which is finally dumped as the binary execu-
table mcdule: macpitts. To repeat: this entire process is
rerformed automatically by the Makefile.

Because this dusred lisp environment embodies all the
built in functions of Pranz lisp, as well as the functicas
of macpitts, it contains a very large number of lisp func-
tions. To accommodate all these functions, the Pranz lisp
compiler pyst be done over with new values for the parame-
ters MAXFNS and TRENTS which set the maximum number of
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functicns and functicn table entries allowvable. Also, the

radgen.l file uses the "untyi®™ function of the Franz Lisp
Opus 38 fast loader which permits insertion of a single
character in the input buffer string. The "untyi" is not a
part of the Franz 1lisp Opus 36 source supplied with ONIX
4.1. Therefore, wvhen Pranz Lisp 4is remade with the new
BAXFNS and TRENTS values, the "untyi" function must Le added
to the fast loader scurce code. The steps to accosmplish a
remake of Franz lLisp are as follows: ' '

-

e In the file /usr/src/cmd/lisp/franz/sysat.c add the
follwing line tc the grour of MK declarations:
EK(*untyi*, Luntyi, lambda);

e In the file /ustysrc/cnd/lisP/franz/h/lfﬁncs.h add the
fcllowing line tc the group of lispval declarations:
lispval Luntyi();

e in the file /usr/src/cmd/lisp/franz/lamé.c

append the follcwing code segment:

lispval

Luntyi(

{
lisgval port,ch;
Fort = nil;
switch (ap-1lbct) {

case 2: port = lbot{ 1].val

case 1: ch = 1lkct[0].val;

break;

default:

argerr(*untyi');
} :
if (TYPE(ch) = INT }

errorh(Veramisc, "untyi: expects fixnum character",

nil,Palse,),ch);
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]

ungetc { (int) ch->i, okport (port,okport (Vpiport->a.clb,
stdin))) ;

return (ch) ;

}

@ e In the file /usr/src/cad/lisp/franz/nfasl.c
‘ change the value cf MAXFNS to 10000.

? e In the file /usr/src/camd/lisp.franz/h/structs.h
’ change the value cf TRENTS to 1024.

e Do a "make all" from the directory./usr/src/cad/lisp.

Franz Lisp is now ready to compile MacPitts. The pext step
is to correct and aodify the source code for Macpitts itself.

e In the file /vlsi/macpit/c~routines.c add these
linpes at the beginning:
#define VYPRINT 0100
- #define VPLOT 0200
#define VPRINTEIOT 0400
#define VGETSTATE (('v'<<8) (0
#define VSETSTATE ((*v'<<8) |1

e In the same file add the following lines after line 188:
static int plotad[ ] = VELOT,0,0 ;
static int prted( ] = VPRINT,0,0 ;

e In the same file change line 199 to:
ioctl (plotter, VSEISTATE,flotnd) ;

e In the sanme file change line 207 to:
ioctl (plotter, VSETSTATE,rrtad);

e In the file /vlsi/macpit/Makefile change line S to:
MacPitts = /vlsi/macpit/bin/macpitts

e In the same file change line 83 to: ‘
(lcad 'interpret.l)\ )
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In the same file éhange line 84 to:
(setqg macpitts-directory '/vlsi/macpit)\

In the same file change line 87 to:
(setqg option list ' (opt-d opt-c stat obj cif nologo))\

In the same file change line 94 to;
By macpitts $ (MacPitts)

In the file /vlsi/macpit/interpret.l change line 18 to
(setq library (get-1litrary ))

In the file /vlsi/macpit/lincoln.l change line 1093 to
(cfasl *|/vlsi/macpit/c-routines.o -lcurses -lteracap|

After making these changes, macpitts is ready to "make."
Type "make macpitts." All the files will be compiled,
linked, loaded, and then dumped as a complete macpitts lisp
envircnaent. This takes about 45 nminutes on a 1lightly
loaded systea. Next type "make install.® This command
siaply moves the dqumpred executable amodule imnto the directory
/v1si/macpit/bin. Bov type "make cleaan" to remove all the
lisp ckject files that are no longer needed. The size of
the macpitts executable module is 1384704 bytes. Finpally,
any uger of macpitts should add the directory /vlsi/macpit/
tin to the path 1list in the .login file in his hcme
directory.

Bo INSTALLATION UNDEE UNIX 4.2 OPERATING SYSTENM

The macpitts generated on a UNIX 4.1 system will nct run
under UNIX 8.2.  This is because the systea calls are
different. The versicn of Franz Lisp supplied with UNIX 4.2
is OPUS 38, which already includes the *"untyi®" function.
Therefore it is pct necessary to modify the sysat.c,
lfuncs.h, c¢r lamé.c tiles. It js necessary, hovever, to

85




increase the MAXPNS and TRENIS values just as in the case of
a UNIX 4.1 installation. PFor 4.2 these parameters are found
in the files susr/srcsucb/lisg/franz/fasl.c and ,usr/scc/
ucb/lisp/franz/h/structs.h, respectively. After wmaking
these two changes, cbhange directories to /usr/src/ucb/lisp,
enter super-user, apnd issue the coamand "lispconf." This
starts ur an. interactive program vhich allows you to specify
the type of machine cr vhich Pranz Lisp is being installed.
The answers to the gquestions posed by this script will be
obvious if you are tsing a VAX computer running UNIX 4.2.
Next issue "make fast" from the same directory and the lisp
systes will be generated. This step takes about 2 hours on
a lightly loaded machine. After this is done, issue "make
install" to aove the files into the standard system directo-
ries.

The 4.2 operating system also contains another bug that
will prevent the macritts interpreter froam running. In the
file /usr/src/usr.lik/libterm/tputs.c change OSPEED to
TOSPEED everyvhere it occurs. Then recompile tputs.c This
is tc avoid multiple definition of OSPEED in this file and
in ancther file, /usr/src/usr.lib/libcurses/cr_tty.c.

The zodifications to the MacPitts source code itself are
the sase as those required for a UNIX 4.1 installation, with
the fcllcwing excepticn and addition:

e In the file /vlsi/macpit/BMakefile it is not necessary
to change line 83. This line should remain:
(fasl 'interrret)

e Cpus 38 of Franz lisp, unlike Opus 36, complains if
Farameters declared in a functional definition are
not used in the definition itself. The MacPitts
source code contains an instance of this malpractice.
Therefore, in the file /vlsi/macpit/frame.l
chs age line 1338 to:
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The rrocess of "gake macpitts® is done the same as for
UNIX 4.1, Lkut the results are somewhat different. Franz
lisp issuves wvarnings during compilation whenever an exfres-
sion is enccuntered which does not have the proper number of
paraseters imamediately available. These waranings cccur
frequently wvhen macritts is made under UNIX 4.2. This
happens Lecause the macpitts source code is contained in
many separate files, eack of which may have external refer-
ences that remain unresolved until the object modules are
all lcaded and linked together. These vwvarnings have 1no
effect on the quality of macpitts produced, but their
delivery does consuse cpu tinme. As a result, it takes
approximately 90 minvutes to "make macpitts™ under UNIX 4.1.
The final Macpitts executable is 1567888 bytes long in Ofus
38 on 4.2. Pinally, reamember to add the /vlsi/macpit/tin
directory to the path list in the .login file in your hcme
directory.
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ARRESDIX B
INSTAILATICE OF THE CAESAR VLSI EDITOR UNDER UNIX 4.1 AND

4.2

A. IBSTALLATION UNDER UNIX 4.1

The caesar VISI circuit editor is one of many frograas
contained in the distribution of 1983 VLSI C.A.D. tools from
0. C. Berkeley. The distribution tape is loaded, in its
entirety, in the directory /vlsi/berk83 under ownership of
vlsi. Before installing the tools, perforn the following:

1. Have the system programmers create a new user,
"sleerer," with password "caesar,"™ and home directory
/v1si/berk83/bin. Create a ".login® file in /vlsi/
Lerk83/bin vhich consists of only the following two
lines:

sleeper

logout
This step allows the use of a graphics tablet to fposi-~
ticn the cursor in caesar, an important facility.

2. Have the system programmer create another new user,
"cad" with the password close-held, and home directory
/vlsi/berk83. This step resolves the many references
to "~cad" which are scatered throughout the distribu-
ticn tape.

3. In the file /vlsi/berk83/man/tmac.anc replace every
occurrence of the string ~“cad with the string /vlsi/
berk83.

4. Edit the file /vlsi/berk83/l1ib/displays tc contain
oply the following one linpe:
s/dev/tty22 /dev/tty20 std AED767
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5. Bdit tye file /vlsi/berk83/src/caesar/config.c to
regplace every cccurrence of the string cad with the
string /vlsi/berk83.

6. in the file /vlsi/berk83/src/caesar/main.c find the
single "returan" statement in the rrocedure
"opCcamand.” Just before that stateaent, add a line
containing the statement "GrFlush():".

"7« In the file /vlsi/berk83/src/makevhatis.csh remove the
etring "mand4" from line 8.

Recw proceed with the installation by issuing the
following commands. Allov each command to run to cospletion -
before issuing the pext. Completion is indicated by the
return of the system frompt, "%."

cd /vlsi/berk83/srxc/caesar

make

BV caesar /vlsi/berk83,/bin/caesar
ra *.0

cd ..

src/makevhatis.csh

This ccarletes the installation of caesar, mextra, cadman,
and cif2ca. There are other programs on this distribution
for which the foregoing procedure should have also been
sufficient to achieve a satisfactory installation, but thése
remain untested.

Finally, any user of these tools should add the direc-
tory /vlisi/terk83/bin to the path list in the .login file of
his bcame directory.

B.  INSTALLATION UNDER THE UNIX 4.2 OPERATING SYSTENM

The Unix 8.2 operating system uses timing and interrupt
calls vhich differ seignificantly from those used by Unix
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4.1. Therefore, because caesar makes extensive use of these
calls, the tool as installed for 4.1 will not run under 4.2.
A different distribution tape has been written for the
Berkeley 1983 design tools under UNIX 4.2. Installation of
this distribution gproceeds in the same way as the 4.1
distritution except that step 6 is unnecessary. The tug
that this step corrects has already been corrected on the
4.2 distribution tape.
It is also necessary to change a line which occurs in

five files in the directory /vlsi/berk83/src/caesar

frcn #include <time. h>

to #include <sys/time.h>
The five files affected are main.c, aedd.c, omegal.c,
rantekd.c and vecté.c.

Bowv procsed with the installation by issuing the

following ccammands:

.cd /vlsi/berk83/src/caesar

nake

av caesar /vlsi/berk83/bkin/caesar

I %.0

cd ..

src/makevhatis.csh

Finally, add the directory /vlsi/berk83/bin to the path
list in the .login file in your home directory.
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ARRENDIX C
EANUAL PAGES FPOR BERKELEY DESIGN TOOLS

An online operator's manual exists for all of the VISI
design tools in the 1983 distribution froa Berkeley.
Information on the use of any of thesé can be made to arpear
on the terminal screen by issuing’

cadman <prograa>

vhere <program> c¢an be cadsan, caesar, cif2ca, «cifrlot,
esim, mextra, or any of the other programs in that distribu-
tion. Cnly those pages affecting tools used in this silicon
compiler research are reproduced in this appendix.

Note that the cadman program is contained in the direc-
tory

/v1lsi/berk83/bin

Therefore either include this directory in the search path

of your ".login? file or invoke cadman by the £full rcoted
command:

/vlsi/berk83/bin/cadman <program>,
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CADMAN(I) CAD Toolbox User's Manual . CADMAN (1)

NAME :
cadman ~ run off section of UNIX manual
SYNOPSIS
cadman [ - ] [ =t ] [ section ] title ...
DESCRIPTION

Cadman is a program which prints sections of the cad manual.
Section is an optional arabic section number, i.e. 3, which
may be followed by a single letter classifier, i.e. 1m indi-
cating a maintenance type program in section 1. It may also
be “‘cad'', “‘new'', ‘‘“junk'', or ‘‘public''. If a section
specifier is given cadman looks in the that section of the
cad manual for the given titles. If section is omitted, cad-
man searches all sections of the cad manual, giving prefer-
ence to commands over subroutines in system libraries, and
printing the first section it finds, if any.

If the standard output is a teletype, or if the flag - is
given, then cadman pipes its ocutput through ssp(l) to crush
out useless blank lines, ul(l) to create proper underlines
for different terminals, and through more(l) to stop after
each page on the screen. Hit a carriage return to continue,
a control-D to scroll 12 more lines when the output stops.

The -t flag causes cadman to arrange for the specified sec-
tion to be troff'ed to the Versatec.

FILES
“cad/doc/cadman/man?/*

SEE ALSO

Programmer's manual: more(l), ul(l), ssp(l), man(l), appro-
pos(l)

BUGS

The manual is supposed to bte reproducible either on the pho-
totypesetter or on a typewriter. However, on a typewriter
some information ls necessarily lost.
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CAESAR({1l) CAD Toolbox User's Manual CAESAR(1l)

NAME
caesar ~ VLSI circuit editor

SYNOPSIS

caesar ([ ~-n -g graphics_port -t tablet_port -p path -m
monitor_type ~d display_type ] [ file T

DESCRIPTION

Caesar is an interactive system for editing VLSI circuits at
the level of mask geometries. It uses a variety of color
displays with a bit pad as well as a standard text terminal.
For a complete description and tutorial introduction, see
the user manual "Editing VLSI Circuits with Caesar™ (an on-
line copy is in “cad/doc/caesar.tblms).

Command line switches are:
-n Execute in non~interactive mode.

-g The next argument is the name of the port to use for
communication with the graphics display. 1If not speci-
fied, Caesar makes an educated guess based on the ter-
minal from which it is being run.

-t The next argument is the name of the port to use for
reading information from the graphics tablet. If not
specified, Caesar makes an educated guess (usually the
graphics port).

-p The next argument is a search path to be used when
opening files.

-m The next argument is the type of color monitor being
used, and is used to select the right color map for the
monitor's phosphors. "std® works well for most moni-

tors, "pale” is for monitors with especially pale blue
phosphor.

-d The next argument is the type of display controller
being used. Among the display types currently under-
stood are: AEDS12, UCBS512 (the AEDS512 with special
Berkeley PROMs for stippling), AED767, AED640 (an
AED767 configured as 483x640 pixels), Omega4d40, R9400,
or Vectrix.

When Caesar starts up it looks for a command file with the
name “.caesar” in the home directory and processes it if it
exists. Then Caesar looks for a .caesar file in the current
directory and reads it as a command file {f it exists. The

.caesar flle format is described under the long command
source.
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You generally have to log in on the color terminal under the
name "sleeper" (password "caesar"). This is necessary in
order for the tablet to be useable. Sleeper can be killed
by typing two control-backslashes in quick succession on the
color display keyboard (on the AED displays, control-
backslash is gotten by typing control-shift-L.)

The four buttons on the graphics tablet puck are used in the
following way:

left (white) (#2)
Move the box so that its fixed corner (normally lower-
left) coincides with the crosshair position.

right (green) (#4)
Move the box's variable corner (normally upper-right)
to coincide with the crosshair position. The fixed
corner is not moved.

top (yellow) (#1)
Find the cell containing the crosshair whose lower-left
corner is closest to the crosshair. Make that cell the
current cell. If the button is depressed again without
moving the crosshair, the parent of the current cell is
¢ made the current cell.

bottom (blue) (%3)
Paint the area of the box with the mask layers under-
neath the crosshair. 1If there are no mask layers visi-
ble underneath the crosshair, erase the area of the
box.

SHORT COMMANDS
Short commands are invoked by typing a single let.er on the
keyboard. Valid commands are:

a Yank the information underneath the box into the yank
buffer. Only vank the mask layers present under the
crosshair (if there are no mask layers underneath the
crosshair, vank all mask layers and labels).

<] Unexpand current cell (display in bounding box form).

d Delete paint underneath the box in the mask layers
underneath the crosshair (if there are no mask layers
underneath the crosshair, the delete labels and all
mask layers).

e Move the box up 1 lambda.
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3
| Toggle grid on/off. -
o
Redisplay the information on both text and graphics S
sCreens. NN
q Move the box left 1 lambda. ;;‘
r Move the box down 1 lambda. .
s Put back (stuff) all the information in the yank buffer
at the current box location. Stuff only information in L
mask layers that are present underneath the crosshair o
(1 there are no mask layers underneath the crosshair, »
stuff all mask layers plus labels). o
u Undo the last change to the layout. ;ff
w Move the box right one lambda. 2:{
P
X Unexpand all cells that intersect the box but don't ..
contain it. .
4 Zoom in so that the area underneath the box fills the h{;
. C Expand current cell sno that its paint and children can i
be seen. .
X Expand all cells that intersect the box, recursively, :ifQ
until there are no unexpanded cells intersecting the R
box. R
A Zoom out so that everything on current screen £ills the e
area underneath the box. -
5 Move the picture so that the fixed corner of the box is A
in the center of the screen. o
6 Move the picture so that the variable corner of the box ,fﬁz
is in the center of the screen, .
g e
“L Redisplay the graphics and text displays. i
. Repeat the last long command. j!ﬁ
LONG COMMANDS -;;
Long commands are {nvoked by typing a colon character (":"). ’
The cursor will appear on the bottom line of the text termi-
nal. A line containing a command name and parameters should
be typed, terminated by return. Each line may consist of
multiple commands separated by semi-colons (to use a colon
|
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CAESAR (1) CAD Toolbox User's Manual CAESAR (1) SR

as part of a long command, precede it with a backslash).
Short commands may be invoked in long command format by iﬁd
preceding the short command letter with a single quotae. -
Unambiguous abbreviations for command names and parameters

are accepted. The commands are: ;;ﬂ

5 al ign <scale> ) m
- Change crosshair alignment to <scale>. Crosshair posi- ]
- tion will be rounded off to nearest multiple of ’ T
<{scale>. B

array <xsize> <ysize>
Make the current cell into an array with <xsize>
instances in the x-direction and -<ysize> instances in
the y-direction. The spacing between elements is
determined by the box x- and y-dimensions.

array <xbot> <ybot> <xtop> <ytop>
Make the current cell into an array, numbered from
<xbot> to <xtop> in the x-~direction and from <ybot> to
<ytop> in the y-direction. The spacing between array
elements is determined by the box x~ and y-dimensions.

box <keyword> <amount>
Change the box by <amount> lambda units, according to
- <keyword>. 1If <keyword> is one of "left", “"right”,

"up", or "down", the whole box is moved the indicated
amount in the indicated direction. If <keyword> is one
of "xbot", "ybot”®, "xtop”, or "ytop”, then one of the
coordinates of the box is adjusted by the given amount.
<amount> may be either positive or negative.

button <number> <x> <y>
Simulate the pressing of button <number> at the screen
location given by <x> and <y> (in pixels). If <x> and
<y> are omitted, the current crosshair position is
used.

cif -sblpx <name> <scale>
Write out a CIF description of the layout into file
<name> (use edit cell name by default; a ".cif" exten-~
sion is supplied by default). <scale> indicates how =
many centimicrons to use per Caesar unit (200 by S
default). The -s switch causes no silicon (paint) to s
be output to the CIF file. The -b switch causes bound- RN

ing boxes to be drawn for unexpanded cells., The -1 T
causes labels to be output. The -p switch causes a CIF o

point to be generated for each label. The -x switch -
causes Caesar not to automatically expand all cells C
(they are expanded by default). :;
cload <file>
1
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Load the colormap from <file>. The monitor type is
used as default extension,

clockwise <degrees> [y]
Rotate the current cell by the largest multiple of 90
degrees less than or equal to <degrees>, <degrees>
defaults to 90. If the command is followed by a "y”
then the yank buffer is rotated instead of the current
cell.

colormap <layers>
Print out the red, green, and blue intensities associ-
ated with <layers>.

colormap <layers> <red> <green> <b1ue$
Set the intensities associated with <layers> to the
given values,

copycell
Make a copy of the current cell, and position it so
that its lower-left corner coincides with the lower-
left corner of the box.

csave <file>
Save the current colormap in <file> (the monitor type
is used as default extension).

deletecell
Delete the current cell.

editcell <file>
Edit the cell hierarchy rooted at <file>. A ".ca"
extension is supplied by default. If information in
the current hierarchy has changed, you are given a
chance to write it out.

erasepaint <layers>
For the area enclosed by the box, erase all paint in
<layers>. 1If <layers> is omitted it defaults to "*1".

£1i11 <direction> <layers>
<direction> is one of “left", "right", "up", or “"down".
The paint under one edge of the box (respectively, the
right, left, bottom, or top edge) is sampled; every-
where that the edge touches paint, the paint is
extended in the given direction to the opposite side of
the box. <layers> selects which layers to £ill; if
omitted then a default of "*" is used.

flushcell

Remove the definiticy of the current definition from
main memory and reload it from the disk version. Any
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changes to the cell since it was last written are lost.

getcell <file>
This command makes an instance of the cell in <file> (a
*.ca" extension is supplied by default) and positions
that instance at the current box location. The box
size is changed to equal the bounding box of the cell.

gridspacing
The grid is modified so that its spacings in x and y
equal the dimensions of the box. The grid is set so
that the box falls aon grid points.

gripe .
- The mail program is run so that comments can be sent to
the Caesar maintainer.

height <size>
The box's height is set to <{size>. 1If <size> is pre-
ceded by a plus sign then the fixed corner is moved to
set the correct height; otherwise the variable corner
is moved. <size> defaults to 2.

identifycell <name)>
The current cell is tagged with the instance name given
by <name>. This feature is not currently supported in
any useful fashion. <name> may not contain any white
space.

label <name> <position>
A rectangular label is placed at the box location and
tagged with <name>. <name> may not contain any white
space. <position> is one of "center®, "left”, "right”,
"top®, or "bottom®"; it specifies where the text is to
be displayed relative to the rectangle. If omitted,
<position> defaults to "top”".

lyra <ruleset>
The program ~“cad/bin/lyra is run, and is passed via
pipe all the mask features within 3L of the box. The
program returns labels identifying design rule viola-
tions, and these are added to the edit cell. If
<ruleset> i{s specified, it is passed to Lyra with the
-r switch to indicate a specific ruleset. Otherwise,
the current technology is used as the ruleset.

macro <character> <command>
The given long command is associated with the given
character, such that whenever the character is typed as
a short command then the given command is executed.
This overrides any existing definition for the charac-
ter. To clear a macro definition, type ":macro
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<character>®, and to clear all macro definitions, type
® :macro"

mark <markl> <mark2>

The box is saved in the mark given by <markl>. <markl>
must be a lower—-case letter. If <mark2> is specified,
the box is changed to coincide with <mark2>.

movecell <keyword>

The current cell is moved in one of two ways, selected
by <keyword>. If <keyword> is "byposition®, then the
cell is moved so that its lower-left corner coincides
with the lower-left corner of the box. This also hap-
pens if no keyword is specified. 1If <keyword> is
“bysize®, then the cell is displaced by the size of the
box (this means that what used to be at the fixed
corner of the box will now be at the variable corner).

paint <layers>
The area underneath the box is painted in <layers>.

path <path>
The string given by <path> becomes the search path used
during file lookups., <path> consists of directory

names separated by colons or spaces. Each name should
end in “/".

peek <layers>

Display all paint underneath the box belonging to
<layers>, even for unexpanded cells and their descen-
dants.

popbox <mark>
If <mark> is specified, then the box is replaced with
the given mark., Otherwise the box stack is popped and
the top stack element overwrites the box.

pushbox <mark>
The box is pushed onto the box stack. If <mark> is
specified then it is used to overwrite the box, other~
wise the box remains unchanged.

put <layers>

The yank buffer information in <layers> is copied back

to the box location. If <layers> is omitted, it
defaults to "*sl".

quit If any cells have changed since they were last saved on
disk, the user is given a chance to write them out or

abort the command. Otherwise the program returns to
the shell.
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reset
The graphics display is reinitialized and the colormap
is reloaded.

return
The current subedit is left, and the containing edit is
resumed.

savecell <name>
If <name> is specified then the current cell i{s given
that name and written to disk under the name (a ".ca"
extension {s supplied by default). If <file> isn't
specified then the cell is written out to the disk flile
from which it was read. )

scroll <direction> <amount> <units>
The current view is moved in the indicated direction by
the indicated amount. <direction> must be one of
“left®, “"right®", "up", or "“down", <amount> is a
floating-point number, and <units> is one of "screens”
or "lambda®". <units> defaults to "screens”, and
<amount> defaults to 0.5.

search <regexp>
Search labels and bounding boxes underneath the box for
text matching <regexp>. See the manual entry for ed
for a description of <regexp>. Push an entry onto the
box stack for each match. Even unexpanded cells are
searched.

sideways (y]
Flip the current cell sideways (i.e. about a vertical
axis). If the command is followed by a “"y" then the
yank buffer is flipped instead of the current cell.

source <filename>
The given file is read, and each line is processed as
one long command (no colons are necessary). Any line
whose last character is backslash is joined to the fol-
lowing line.

subedit
Make the current cell the edit cell, and edit it in
context.

technology <file>
Load technology information from <file>. A ".tech"
extension is supplied by default.

upsidedown ({y]

Flip the current cell upside down. If the command is
followed by a "y" then the yank buffer is flipped
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instead of the current cell.

usage <file>

- Write out in <file> the names of all the files contain-
ing cell definitions used anywhere in the design
hierarchy.

view <mark>

If <mark> is specified, set view to it, otherwise,
change the view to encompass the entire edit cell.

visiblelayers <layers>
Set the visible layers to include just <layers>., Pre-
face <layers> with a plus or minus sign to add to or
remove from the currently visible ones.

width <size>
Set the box width to <size> (default is 2). Move vari=-
able corner unless width is preceded by *"+", else move
fixed corner.

writeall
Run through interactive script to write out all cells
that have been modified.

- vank <layers>
Save in the yank buffer all information underneath the
box in <layers>. <layers> defaults to "*1",

ycell <named>
If <name> is specified, do the equivalent of ":getcell
<name>". Then expand current cell, yank it, delete the
cell, and put back everything that was yanked. This
flattens the hierarchy by one level.

ysave <name>
Save the yank buffer contents in a cell named <name>, A
*.ca”" extension is provided by default.

LAYERS
nMOS mask layers are:

porr AR
Polysilicon (red) layer. T

d or g N
Diffusion (green) layer. R,

m Metal (blue) layer. )
iory ;:;ﬁ;i
]
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Implant (yellow) layer.

b Buried contact (brown) layer.

c Contact cut lavyer.

o Overglass hole (gray) layer.

e Error layer: used by design rule checkers and other
programs.

CMOS P-well mask layers are (using technology cmos-pw):

porcr
Polysilicon (red) layer.

d or
Diffusion (green) layer.

m Metal (blue) layer.
c Contact cut layer.

Pory
P+ implant (pale yellow) layer.

w P~well (brown stipple) layer.

-] Overglass hole (gray) layer.
e Error layer: used by design rule checkers and other
programs.

Predefined system layers are:
* All mask layers.

Label layer.

Subcell layer.

Cursor layer.

Grid layer.

m QQ O un e

Background layer.

SYSTEM MARKS

(o] The bounding box of the current cell,

B The bounding box of the edit cell.
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|4 The previous view.

R The bounding box of the root cell.

v The current view.

FILES
“cad/new/caesar, ~“cad/doc/caesar.tblms

SEE ALSO
cif2ca(l)
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NAME

cif2ca - convert CIF files to CAESAR files
SYNOPSIS

cif2ca { -1 lambda ] ([ -t tech ] [ -0 offset | ciffile
DESCRIPTION

cif2ca accepts as input a CIF file and produces a CAESAR

e for each defined symbol. Specifying the -1 lambda
option scales the output to lambda centi-microns per Tambda.
The default scale is 200 centi-microns per lambda. The -t
tech option causes layers from the specified technology to
be acceptable. The default technology is nmos. For a list
of acceptable technologies, see caesar (l). The =-o offset
option causes all CIF numbers to be incremented by offset.
This is useful when the CIF numbers are used for Caesar tile
names, and when several CIF files with overlapping numbers
are to be joined together in Caesar.

Each symbol defined in the CIF file creates a CAESAR file.
By default, the files are named '“symbolm.ca'', where m is
the CIF symbol number (as modified by the -o offset). Sym-
bols can also be named with a user-extension ~ 9'' command,
giving a name to the symbol definition which encloses it.
CIF commands which appear outside of symbol definitions are
gathered into a symbol called, by default, '‘project'’, and
are output to the CAESAR file '‘project.ca’’.

SEE ALSO
caesar(l)

DIAGNOSTICS
Diagnostics from cif2ca are supposed to be self-explanatory.
Each diagnostic gTves the line number from the input file,
an error class (informational, warning, fatal, or panic),
the error message, and the action taken by cif2ca, usually
to ignore the CIF command. Informational messages usually
refer to limitations of cif2ca. Warning messages usually
refer to inconsistencies in the CIF file, these will typi-
cally result in CAESAR files which do not accurately reflect
the input CIP file. Fatal messages refer to fatal incon-
sistencies or errors in the CIF file. A fatal error ter-
minates cif2ca processing. Panic messages refer to internal
problems with cif2ca., If any diagnostics are produced, a
summary of the diagnostics is produced.

BUGS
‘‘Delate Definitions’' commands are not implemented. cif2ca
also has certain restrictions due to restrictions of C :
e.g. non-manhattan objects are not allowed.
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.Libtary cells are not automagically included.

Some care should be taken in naming symbols, since symbol
names are used for CAESAR file names. Names which are not
unique in the first 14 characters will attempt to create the
same CAESAR file, and only the last one wins. Similarly,
one should avoid trying to have two project.ca files in the
same directory.
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NAME
cifplot = CIF interpreter and plotter

SYNOPSIS
cifplot [ ogtions ] gilel.cif [ file2.cif ... ]

DESCRIPTION
Cifplot takes a description in Cal-Tech Intermediate Form
ZCIES and produces a plot. CIF is a low-level graphics
language suitable for describing integrated circuit layouts.
Although CIF can be used for other graphics applications,
for ease of discussion it will be assumed that CIF is used
to describe integrated circuit designs. Cifplot interprets
legal CIF 2.0 description including symbol re-aming and
ste Dctinition commands. In addition, a number of local
extonsions have been added to CIF, including text on plots
and include files. These are discussed later., Care has
been taken to avoid any arbitrary restrictions on the CIF
programs that can be plotted.

T,
f
-

A lam. dimee e W w4 e ma

3 To get a plot call cifplot with the name of the CIF file to
"y be plotted. If the CIF description is divided among several
" files call cifplot with the names of all files to be used.
Cifplot reads the CIF description from the files in the
order that they appear on the command line. Therefore the
CIP End command should be only in the last file since cif-
plotTignores everything after the End command. After Tea
ing the CIF description but before pl plotting, cifplot will
print a estimate of the size of the plot and then ask if it
should continue to produce a plot. Type y to proceed and n
to abort. A typical run might look as follows:

'

AR

P - .

% cifplot lib.cif sorter.cif
Window «5700 174000 -~76S00 168900
Scale: 1 micron is 0.004075 inches
S The plot will be 0.610833 feet

,~§ Do you want a plot? vy

i " After typing y cifplot will produce a plot on the Benson-
J Varian (11 inch Versatec) plotter.

Cifplot recoqnizes several command line options. These can
be used to change the size and scale of the plot, change

j default plot options, and to select the output device.
Several options may be selected. A dash(-~) must precede
each option specifier. The following is a list of options
that may be included on the command line:

-w xmin xmax % min ymax

. “(window) The -w options specifies the window; by
default the window is set to be large enough to contain
the entire plot. The windowing commands lets you plot

T
4

- -
B

-y Pr-.— e s
Tt '.'-‘l‘l .
——
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.

106

T W mpgrywem—— e

—— T Ty

o




CIFPLOT (CAD1) CAD Toolbox User's Manual CIFPLOT (CADI)

just a small section of your chip, enabling you to see

it in better detail. Xmin, xmax, ymin, and ymax should
be ‘specified in CIF coordinates,

-s float
{scale) The -s option sets the scale of the plot. By
default the scale is set so that the window will fill

the whole page. Float is a floating point number
specifying the number of inches which represents 1

micron. A recommended size is 0.02.

-1 layer list )

(layer) Normally all layers are plotted. The -1 option
specifies which layers NOT to plot. The layer list
consists of the layer names separated by commas, no
spaces. There are some reserved names: allText, bbox,
outline, text, pointName, and symbolName. Including
the layer name allText in the list suppresses the plot~
ting of text; bbox suppresses the bounding box around
symbols. outline suppresses the thin outline that
borders each layer. The keywords text, pointName, and
symbolName suppress the plotting of certain text
created by local extension commands. text eliminates
text created by user extension 2. pointName eliminates
text created by user extension 94. symbolName elim-
inates text created by user extension 9. allText,
pointName, and symbolName may be abbreviated by at, pn,
and sn repectively.

n

_(copies) Makes n copies of the plot. Works only for
the Varian and Versatec. Default is 1 copy.

U RN POFP

bos nartdno

-d n
“(depth) This option lets you limit the amount of detail
plotted in a hierarchically designed chip. It will
only instanciate the plot down n levels of calls.

Sometimes too much detail can hide important features
in a circuit.

-3 n

T(grid) Draw a grid over the plot with spacing every n
) CIF units.
j -h {half) Plot at half normal resolution. (Not yet imple-
mented. )
-e (extensions) Accept only standard CIF. User extensions

produce warnings.

3
-

(non=Interactive) Do not ask for confirmation. Always
r plot.
-
— P ——— - ._
R
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=

-L  (List) Produce a listing of the CIF file on standard Y
output as it is parsed. Not recommended unless debug- st
ging hand-coded CIF since CIF code can be rather long.

~(approximate) Approximate a roundflash with an n-sided
polygon. By default n equals 8. (I.e. roundflashes
are approximated by octagons.) If n equals 0 then out-
put circles for roundflashes. (It is best not to use
full circles since they significantly slow down plot-
ting.) (Full circles not yet implemented.)

-b "text" :
(banner) Print the text at the top of the plot,

-C {(Comments) Treat comments as though they were spaces.
Sometimes CIF files created at other universities will
have several errors due to syntactically incorrect com-
ments. (I.e. the comments may appear in the middle of
a CIF command or the comment does not end with a semi-
colon.) Of course, CIF files should not have any errors
and these comment related errors must be fixed before
transmitting the file for fabrication. But many times
fixing these errors Seems to be more trouble than it is
worth, especially if you just want to get a plot. This
option is useful in getting rid of many of these com-
ment related syntax errors.

-r {(rotate) Rotate the plot 90 degrees.

-V (Varian) Send output to the varian., (This is the
default option.)

-W (Wide) Send output directly to the versatec. (Not
available at NPS,)

-S (Spool) Store the output in a temporary file then dump
the output guickly onto the Versatec. Makes nice crisp
plots; also takes up a lot of disk space.

-T (Terminal) Send output to the terminal. (Not yet fully
implemented.)

~Ga (Graphics terminal) Send output to terminal using it's
graphics capablities, =Gh indicates that the terminal
is an HP2648. <-Ga indicates that the terminal is an

AED 512. :

-X basename -
(eXtractor) From the CIF file create a circuit 1
0_

-

C
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-

description suitable for switch level simulation. It C

creates two files: basename.sim wh..r contains the cir- I

cuit description, and basename.node which contains the :

node numbers and their location used in the circuit S
descripticn. , .

1
When this option is invoked no plot is made, Therefore ]
it is advisable not to use any of the other options 1
that deal only with plotting. However, the window,
layer, and approximate options are still appropriate. ]
To get a plot of the circuit with the node numbers call
cifplot again, without the =X option, and include
basename.nodes in the list of CIF files to be plotted.
{(This file must appear in the list of files before the
file with the CIF End command.)

-c n
“(copies) The =c specifies the number of copies of the
plot you would like, This allows you to get many copies
of a plot with no extra computation.

-P pattern file

{(Pattern) The ~P option lets you specify your own
layers and stipple patterns. Pattern file may contain
an arbitrary number of layer descriptors. A layer
descriptor is the layer name in double quotes, followed
by 8 integers. Each integer specifies 32 bits where
ones are black and zeroes are white. Thus the 8
integers specify a 32 by 8 bit stipple pattern. The
integers may be in decimal, octal, or hex. Hex numbers
start with '0Ox'; octal numbers start with '0'. The CIF

- syntax requires that layer names be made up of only
uppercase letters and digits, and not longer than four 4
characters. The following is example of a layer S
description for poly=silicon: .

*NP" 0x08080808 0x04040404 0x02020202 0x01010101
0x80808080 0x40404040 0x20202020 0x10101010

-F font file -
(Font) The ~F option indicates which font you want for b
your text. The file must be in the directory 4
‘/usr/lib/vfont', The default font is Roman 6 point. o
Obviously, this option is only useful if you have text B
on your plot. 4

-0 filename
{Output) After parsing the CIF files, store an
equivalent but easy to parse CIF description in the
] specified file. This option removes the include and R
array commands (see next section) and replaces them frj
Fp-‘ . with equivalent standard CIF statements. The resulting “
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file is suitable for transmission to other facilities
for fabrication.

In the definition of CIF provisions were made for local
extensions. All extension commands begin with a number.
Part of the purpose of these extensions is to test what
features would be suitable to include as part of the stan-
dard language. But it is important to realize that these
extensions are not standard CIF and that many programs
interpreting CIF do not recognize them. If you use these
extensions it is advisable to create another CIF file using
the «0 options described above before submitting your cir-
cuit for fabrication. The following is a list of extensions

recognized by cifplot.

0I filename;
(Include) Read from the specified file as though it
appeared in place of this command. 1Include files can
be nested up to 6 deep.

0CA s mndx 4y ;
(Atray) Repeat symbol $ m times with dx spaczng in the
x-direction and n times with dy spac1ng in the y-
direction. s, m. and n are unsigned integers. dx and
dy are signed integers in CIF units,

1 message;
(Print) Print out the message on standard output when
it is read. .

2 "text" transform ;

2C "text" transform ;
(Text on Plot) Text is placed on the plot at the posi~
tion specified by the transformation. The allowed
transformations are the same as the those allowed for
the Call command. The transformation affects only the
point at which the beginning of the text is to appear.
The text is always plotted horizontally, thus the mire
ror and rotate transformations are not really of much
use. Normally text is placed above and to the right of
the reference point. The 2C command centers the text
about the reference point.

9 name;
(Name symbol) name is associated with the current sym~
bol.

94 name x y;

94 name x y laver;

et ne—

(Name point) name is associated with the point (x, y).
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Any mask geometry crossing this point is also associ-
ated with name. If layer is present then just geometry
crossing the point on that layer is associated with
name. PFor plotting this command is similar to text on
plot. When doing circuit extraction this command is
used to give an explicit name to a node. Name must not
have any spaces in it, and it should not be a number.

USE WITH MACPITTS CIF

The lines starting with user extension 0, which MacPitts
places at the beginning of every CIF file, must either be
removed or "commented out® by enclosing them in an all-
encompassing set of parentheses, thus: -"( .... );".

MacPitts CIF files are usually very long. It has been found
most convenient to run MacPitts cifplots in the background
with the none-Interactive mode selected, A convenient way to
do this is by using the "“stipple®" command:

stipple filel.cif

FILES

ALSO

BUGS

“cad/.cadre

“/.cadrc

“cad/bin/vdump (only in 4.1 BSD UNIX)
“cad/bin/stipple

/usr/lib/vfont/R.6

Jusr/tmp/#cif*

SEE

mcp (cadl), vdump(cadl), cadrc(cadb)

A Guide to LSI Implementation by Hon and Sequin, Second Edi-
tion (Xerox PARC, 1980) for a description of CIF.

The =r is somewhat kludgy and does not work well with the
other options. Space before semi-colons in local extensions
can cause syntax errors.

The «0 option produces simple cif with no scale factors in

the DS commands. Because of this you must supply a scale
factor to some programs, such as the =1 option to cif2ca.
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NAME
esim - event driven switch level simulator

SYNOPSIS
esim (filel (file2 ...]}

DESCRIPTION
£sim is an event~driven switch level simulator for NMOS
transistor circuits. Esim accepts commands from the user,
executing each command before reading the next. Commands
come in two flavors: those which manipulate the electrical
network, and those to direct the simulation. Commands have
the following simple syntax: -

c argl arg2 ... argn <newline>

where 'c' is a single letter specifying the command to be
performed and the argi are arguments to that command. The
arguments are separated by spaces (or tabs) and the command
is terminated by a <newline),

To run esim type

esim filel file2 ,..
Esim will read and execute commands, first from filel, then
file2, etc. If one of the file names is preceded by a '~',
then that file becomes the new output file (the default out~
put is stdout). For example,

esim £.sim ~£f.out g.sim
This would cause esim to read commands from f£.sim, sending
output to the default output. When f.sim was exhausted,
£.out would become the new output file, and the commands in

-

g.sim executed.

After all the files have been processed, and if the "q° com=-
mand has not terminated the simulation run, esim will accept
further commands from the user, prompting for each one like
s0:

sim> -
The user can type individual commands or direct esim to
another file using the "2" command:

sim> @ patchfile.sim
This command would cause esim to read commands from
*patchfile.sim”, returning to interactive input when the
file was exhausted.

It is common to have an initial network file prepared by a
node extractor with perhaps a patch file or two prepared by
hand. After reading these files into the simulator, the
user would then interactively direct esim. This could be
accomplished as follows:

. esim file.sim patch.l patch.2
After reading the files, esim would prompt for the first
command. Or we could have typed:

$ asim file.sim
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sim> @ pateh.l
sim> @ patch.2

Network Manipulation Commands

The electrical network to be simulated is made up of
enhancement and depletion mode transistors interconnected by
nodes. Components can be added to the network with the fol=-
lowing commands:
e gate source drain
e gate source drain length width key xpos ypos area
Adds enhancement mode transistor to network with
the specified gate, source, and drain nodes. The
longer form includes size and location information
as provided by the node extractor - when making
patches the short form is usually used.
d gate source drain
d gate source drain length width key xpos ypos area
Like "e" except for depletion mode devices.
C nodel node2 cap
Increase the capictance between nodel and node2 by

cap. Esim ignores this unless either nodel or
node2 1s GND.

= node namel name2 name3
. Allows the user to specify synonyms for a given
node. Used by the node extractor to relate user-
provided node names to the node's internal name
(usually just a number).
| comment...
Lines beginning with vertical bar are treated as
comments and ignored -- useful for deleting pieces
of network in node extractor output files.
i node
Input record ==~ output by node extractor and not
used by esinm.
Currently, there is no way to remove components from the
network once they have been added. You must go hack the
input files and modify them (using the comment character) to
exclude those components you wished removed. "N" records

need not be included for new nodes the user wishes to patch
into the network.

Simulator Commands

The user can specify which nodes are to have there values
displayed after each simulation step:
w nodel =node2 nodel ...

Watch nodel and node3, stop watching node2. At

the end of a simulation step, each watched node
will displayed like so:

nodel=0 nodeld=X ... ‘
. To remove a node from the watched list, preface
113
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its name with a '=' in a "w" command.
W label nodel node2 ... noden
watch bit vector. The values of nodes nodel, ...,
noden will displayed as a bit vector:
label=010100 20
where the first 0 is the value of nodel, the first
1 the value of node2, etc. The number displayed
to right is the value of the bit vector inter~
preted as a binary number; this is omitted if the
vector contains an X value., There is no way to
unwatch a bit vector.
Before each simulation step the user can force nodes to be
either high (1) or low (0) inputs (an input's value cannot
be changed by the simulator!): ’
h nodel node2 ..
Force each node on the argument list to be a high
input. overrides previous input commands if
necessary.
1l nodel node2 ...
Like "h" except forces nodes to be a low input.
x nodel node2 ...
Removes nodes from whatever input list they happen
to be on. The next simulation step will determine
their correct value in the circuit. This is the
default state of most nodes. Note that this does
not force nodes to have an "X" value -- it simply
removes them from the input lists.
The current value of a node can be determined in several
ways:
v
View. prints the values of all watched nodes and
nodes on the high and low input lists.
? nodel node2 ... .
Prints a synopsis of the named nodes including
their current values and the state of all transis-
tors that affect the value of these nodes. This
is the most common way of wondering through the
network in search of what went wrong...
!t nodel node2 ...
For each node in the argument list, prints a list
of transistors controlled by that node.
"?® and "!" allow the user to go both backwards and forwards
through the network in search of that piece causing all the
problems.

The simulator is invoked with the following commands:
s
Simulation step. Propogates new values for the
inputs through the network, returns when the net-
work has settled. 1If things don't settle, command
will never terminate «=- try the "w* and "D" com=-
mands to narrow down the problem.
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Cycle once through the clock, as define by the K
command.

Initialize. Circuits with state are often hard to
initialize because the initial value of each node
is X, To cure this problem, the I command finds
each node whose value is charged~X and changes it
to charged-0, then runs a simulation step. 1If one
iterates the I command a couple times, this often
leads to a stable initialized condition (indicated
when an I command takes 0 events, i.e., the cir~-
cuit is stable).

Try it == if circuit does not become stable in 3
‘or 4 tries, this command is probably of no use.

Miscellaneous Commands

D
toggle debug switch. useful for debugging simula-~
tor and/or circuit. If debug switch is on, then
during simulation step each time a watched node is
encounted in some event, that fact is indicated to
the user along with some event info. If a node
keeps appearing in this prinout, chances are that
its value is oscillating. Vice versa, if your
circuit never settles (ie., it oscillates) , you
can use the "D" and "w" commands to find the
node(s) that are causing the problem.

> £filename
write current state of each node into specified
file. useful for make a break poinc in your simu-
latjion run. Only stores values so isn't really
useful to "dump” a run for later use -==- see "<"
command.

< filename
read from specified file, reinitializing the value
of each node as directed. Note that network must
already exist and be identical to the network used
to create the dump file with the ">" command.
These state saving commands are really provided so
that complicated initializing sequences need only
be simulated once,

invokes network processor that finds all subnets
corresponding to simple logic gates and converts
them into form that allows faster simulation.
Often it does the right thing, leading to a 25% to
50% reduction is the time for a single step. [We
know of one case where the transformation was not
transparent, sSo caveat simulee...]
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X... : .
call extension command -~ provides for user exten-
sions to simulator.

exit to system.
Local Extensions

V node vector

Define a vector of inputs for the node. The first
element is initially set as the input for node.
Set the next element of the vector as the input
after a cycle,

Rn
Run the simulator through n cycles. If n is not’
present make the run as long as the longest vec-
tor. All watch nodes are reported back as vec~
tors.

N

Clear all previously defined input vectors.

K nodel vectorl node2 vector2 ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N
must run through their respective vectors.

SEE ALSO
mextra (CADL)
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- .
s NAME R
- mextra - Manhattan Circuit Extractor :ﬂf

: SYNOPSIS __y

. mextra [-gho] {[-u scale] basename —

DESCRIPTION "%
Mextra reads an intergrated circuit layout description in e
Caltech Intermediate Form (CIF) and creates a circuit |

: description. From this circuit description various electi-

. cal checks can be done on your circuit. The circuit
Ii description is directly compatible w1th esim, moserc, and

powest.

[f Names

Mextra uses the CIF label construct to implement node names
and attributes. The form of the CIF label command is as
follows:

94 name x y [layer];
This command attaches the label to the mask geometry on the
specified layer crossing the point (x, y). If no layer is
present then any geometry crassing the point is given the
label. Mextra does not recognize the CIF user extension "0°
which i3 used by MIT and Lincoln Labs programs (eg. mac~
pitts) to indicate node labels.

Mextra interprets these labels as node names. These names
are used to describe the extracted circuit. When no nanme is
given to a node, a number is assigned tu the node. A label
may contain any ASCII character except space, tab, newline,
double quote, comma, semi-colon, and parenthesis. To avoid
conflict with extractor generated names, names should not be
i numbers or end in '#n' where n is a number.

A problem arises when two nodes are given the same name

although they are not connected electrically. Sometimes we

- want these nodes to have the same names, other times we

3 don't. This frequently happens when a name is specified in

a cell which is repeated many times. For instance, if we

define a shift register cell with the input marked 'SR.in'
then when we create an 8 bit shift register we could have 8
nodes names 'SR.in'. If this happens it would appear as
though all 8 of the shift register cells were shorted
together. To resolve this the extractor recognizes three
different types of names: local, global, and unsgecified.
Any time a local name appears on more than one node [-]
appended with a unique suffix of the form '#n' where n is a
number. The numbers are assigned in scanline order and
starting at 0. 1In the shift register example, the names
would be 'SR.in#0' through 'SR.in#7'. Global names do not

. have suffixes appended to them. Thus unconnected nodes with
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global names will appear connected after extraction. (The
-g causes the extractor to append unique suffixes to uncon-
nected nodes with the same global name.) Names are made
local by ending them with a sharp sign, '$#'. Names are glo-
bal if they end with an exclamation mark, '!'. These ter-~
minating characters are not considered part of the name,
however. Names which do not end with these characters are
considered unspecified. Unspecified names are treated simi-
lar to locals. Multiple occurrences are appended with
unique suffixes. By convention, unspecified names signify
the designer's intention that this name is a local name, but
is connected to only one node. It is illegal to have a name
that is declared two different types. - The extractor will
complain if this is so and make the name local.

Optionally mextra will expand local and unspecified node
names with the path name of the symbol instances through
which they were called. By using the -h option mextra will
produce node names of the form:
/calll/call2/.../callN/node-name
where callN is the name of the symbol instance which con-
tains the label node-name, callN-l is the name of the
instance which contains callN, and so on. Named symbol
instances take the following form in CIF:
91 name; C number {a bl;
Unnamed CIF calls are assigned names of the form '#n', where
n is a number.

It makes no difference to the extractor if the same name is
attached to the same node several times, However, if more
than one name is given to a node then the extractor must
choose which name it will use. Whenever two names are given
to the same node the extractor will assign the name with the
highest type priority, global being the highest, unspecified
next, local lowest. If the names are the same type then the
axtractor takes the one with the fewest slashes('/'); if the
number of slashes is equal, the shortest name is taken.

This causes the name highest up in the symbol hierarchy to
be taken when hierarchical names are expanded. At the end
of the log file the extractor lists nodes with more than one
name attached. These lines start with an equal sign and are
readable by esim so that it will understand these aliases.

Attributes

In addtion to naming nodes mextra allows you to attach
attributes to nodes. There are two types of attributes,

node attributes, and transistor attributes. A node attri- N
ute 1s attached to a node using the CIF J4 construct, just R

the same way as a node name. The node attribute must end in T
an at-sign, '@'. More than one attribute may be attached to NRRCRNS
a node. Mextra does not interpret these attributes other S
L.

.
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bt 1
than to eliminate duplicates. For each attribute attached y
. toc a node there appears a line in the .sim file in the fol- RS
lowing form: . e
A node attribute o
Node is the node name, and attribute is the attribute . P—
attached to that node with the at-sign removed. et

Transistor attributes can be attached to the gate, source,
or drain of a transistor. Transistor attributes must end in
a dollar sign, '$'. To attach an attribute to a transistor
gate the label must be placed inside the transistor gate )
region. To attach an attribute to a source or drain of a a
transistor the label must be placed on the source or drain
edge of a transistor. Transistor attributes are recorded in
the transistor record in the .sim file. A transistor
description has the following form:

type gate source drain 1 w x y g=attributes
ssattributes d=attributes

Attributes {s a comma-separated list of attributes. If no
attribute is present for the gate, source, or drain the g=,
s=, or d= fields may be omitted.

Capacitance

The .sim file also has information about capacitance in the
circuit. The lines containing capacitance information are
of the form:
C nodel node2 cap-value
cap-value is the capacitance betweens the nodes in femto-
arads. Capacitance values below a certain threshold are
not reported. The default threshold is 50 femto-farads.

The extractor reports capacitance from two sources - capaci-
tance between node and substrate, and capacitance caused by
poly overlapping diffusion but not forming a transistor.
Transistor capacitances are not included since most of the
tools that work on the .sim file calculate the transistor
capacitance from the width and length information.

The capacitance for each layer is calculated separately.
The reported node capacitance is the total of the layer
capacitances of the node. The layer capacitance is calcu-
lated by taking the area of a node on that layer and multi-
plying it by a constant. This is added to the product of
the perimeter and a constant. The default constants are
given below. Area constants are in femto-farads per square
micron. Perimetsr constants are femto-farads per micron.

layer area perimeter :j B
metal 0.03 0.0 IR
. poly 0.05 0.0 o
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diff 0.1
poly/diff 0.4

Poly/diffusion capacitance is calculated similar to layer
capacitance. The area is multiplied by constant and this is
added to the perimeter multiplied by a constant.
Poly/diffusion capacitance is not threshold, however.

The -0 option supresses the calculation of capacitance, and
instead, gives for each node in the circuit the area and
perimeter of that node on the diffusion, poly, cnd metal

layers. The lines containing this information look like
this: .

N node diff-area diff-perim poly—-area poly-perim
metal-area metal-perim

Node is the node name. Diff-area through metal-perim are
the area and perimeter ol the diffusion, poly, and metal
layers in user defined units. (In addtion the =~o option
causes transistors with only one terminal to be recorded in

the .sim file as a transistor with source connected to
drain.)

Setting Options

By default, mextra reports locations in CIF units. A more
convenient form of units may be specified either in the
‘.cadrc' file or on the command line. The form of the com-

mand line option is:
units scale
To set units on the command line use the -u option.

The parameters used to compute node capacitance may be
changed by including the following commands in your *.cadrc'
file.

areatocap layer value
perimtocap layer value

value is atto-farads per square micron for area, and atto-
arads per micron for perimeter. layer may be "poly",
"dif£f", "metal®™, or "poly/diff". The threshold for report-

ing capacitance may set in the ' ,.cadrc' file with the fol-
lowing 1line.

capthreshold value

A negative value sets the threshold to infinity.
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Mextra knows of two technologies, NMOS and CMOS p-well.
NMOS is assumed by default. To set the technology to CMOS
p-well, include the following line in your '.cadrc' file:

tech cmos-pw

FILES
“cad/lib/extname
“cad/lib/log
“cad/.cadrc
~/.cadrc
/usr/tmp/#mext*

ALSO SEE
caesar(cadl), kic(cadl), powest{cadl), cadrc(cads)

BUGS .
ﬁ: Accepts manhattan simple CIF only. The length/width ratio

for unusually shaped transistors may be inacurate. Attri-
butes for funny transistors are not recorded.
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ARREINDIX D
SIBULATION RESULTS FCR MULTIPSC MULTIPLIER

v

The first five figures shcw, in the order that they vere
hl produced, .int files from a MacPitts interpreter session
using the scurce file, aultip8c.mac.

The last three figures show the terminal output produced
Iy the switch level event =simulation program, esim, oper-

h{ ating cn the node extraction file of the MacPitts layout for
aultigsc. The node extractiom was petforned by the mextra
Frogranm.

"multip8c®
MacPitts interpreter state after initial data entry.

((register al undefined-integer)
(register a2 undefined-integer)
(register a3 undefined-integer)
(register a4 undefined-integer)
(register hrl undefined-integer)
(register 1lrl undefined-integer)
(register hr2 undefined-integer)
(register 1lr2 undefined-integer)
(register hr3 undefined-integer)
(register 1r3 undefined-integer)
(register hr4 undefined-integer)
(register 1r4 undefined-integer)
(port ain 104 .console)

(port bin 22 console)

(port hin 0 console)

(port aocut undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))

Pigure D.1 Bacpitts Interpreter Results.
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"multip8c®

MacPitts interpreter state after 1 clock cycle.

al 104)

a2 undefined-integer)
a3 undefined-integer)
ad undefined-integer)

((register
(register
(register
(register
(register
(rvegister
(register
(register
(register
(register
{register
(register
{port ain
(port bin
(port hin

(port aout undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))

hrl
1rl
hr2
1r2
hr3
1r3
hrd
lr4
104

0)

11)
undefined-integer)
undefined-integer)
undefined~integer)
undefined-integer)
undefined-integer)
undefined-integer)

console)

22 console)
0 consple)

*multip8c”

Macpitts interpreter state after 2 clock cycles.

({register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
(port bin
{port hin

(port aout undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))

al 104)
a2 104)
a3 undefined-integer)
a4 undefined-integer)

hrl
1rl
hr2
1r2
hr3
1r3
hré
1rd
104

0)

11)

52)

5)
undefined-integer)
undefined-integer)
undefined-integer)
undefined-integer)
console)

22 console)
0 console)

Pigure D.2

BacPitts Interpreter Results,
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*multip8e”

Macpitts interpreter st:%e after 3 clock cycles.

al 104)
a2 104)
al 104)
a4 undefined-integer)

({register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
{port bin
{(port hin

hrl
1lrl
hr2
1r2
hrl
1lr3
hr4
1rd
104

0)

11)

52)

5)

78)

2)
undefined-integer)
undefined-integer)
console)

22 consocle)

0 console)

(port aout undefined-integer chip)

(port hout undefined-integer chip)

{(port lout undefined-integer chip))

"multipBc®

Macpitts interpreter state after 4 clock cycles,

({register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
{port ain
(port bin
(port hin

al 104)
a2 104)
a3l 104)
a4 104)

hel
irl
hr2
1r2
hr3
1r3
hr4
1r4
104

0)

11)

52)

S)

78)

2)

39)

1)
console)

22 console)
0 console)
{port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

Pigure D.3

BacPitts Interpreter Results,
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*multip8c”

MacPitts interpreter state after 4 clock cycles and
resetting the input ports to the values of the output ports.
This simulates a second chip in cascade with the first.

({register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
(port bin
(port hin

al 104)
a2 104)
a3l 104)
a4 104)

hrl
1rl
hr2
1r2
hr3
1r3
hr4
1r4
104

0)

11)

52)

5)

78)

2)

39)

1)
console)

1 console)
39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

*multip8c*

Macpitts interpreter state after S clock cycles,

al 104)
a2 104)
a3 104)
ad 104)

((register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
{port bin
(port hin

hrl
1rl
hr2
1r2
hr3
13
hr4
1r4
104

1)

128)

52)

S)

78)

2)

39)

1)
console)

1l console)
39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

Pigure D.4 BacPitts Interpreter Results,
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((register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
{port bin
(port hin

*multip8c®
Macpitts interpreter state after 6 clock cycles.

al 104)

a2 104)

al 104)

a4 104)

hrl 71)

1rl 128)
hr2 35)

1r2 192)
hr3 78)

1r3 2)

hrd4 39)

lrd4 1)

104 console)
1 console)
39 console)

(port
(port
(port

aout 104 chip)
hout 39 chip)
lout 1 chip))

{{register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(register
(port ain
(port bin
(port hin

*multip8c*®

Macpitts interpreter state after 7 clock cycles.

al 104)

a2 104)

a3 104)

a4 104)

hrl 71)

lrl 128)
hr2 35)

1lr2 192)
hr3 17)

lr3 224)
hr4 39)

1r4 1)

104 console)
1l console)
39 console)

(port
(port
(port

aout 104 chip)
hout 39 chip)
lout 1 chip))

: Pigure D.5

MacPitts Interpreter Results,
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(Continued).
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"multip8c"”

({register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register 1rl 128)
(register hr2 35)
(register 1r2 192)
(register hr3d 17)
(register 1r3 224)
(register hr4 8)
(register 1r4 240)
(port ain 104 console)
(port bin 1 console)
{port hin 39 console)
(port aout 104 chip)
(port hout 8 chip)
(port lout 240 chip))

*multip8c*”

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register 1lrl 128)
(register hr2 35)
(register 1r2 192)
(register hr3 17)
(register 1r3 224)
(register hr4 8)
(register lrd 240)
(port ain 104 console)
(port bin 1 console)
(port hin 39 console)
(port aout 104 chip)
(port hout 8 chip)
(port lout 240 chip))

Macpitts interpreter state after 8 clock cycles.

MacPitts interpreter state after 9 clock cycles.

: Pigure D.6 MacPitts Interpreter Results,

127

(Continued).
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$ esim mul8c.sim mul8c.macro

1612 transistors, 1398 nodes (801 pulled up)
1612 transistors, 1398 nodes (801 pulled up)
sim> s

step took 605 events

clock=XXX

aout=XXXXXXXX

lout=XXXXXXXX

hout sXXXXXXXX

hin=00000000 0

bin=00010110 22

ain=01101000 104

sim> I

initfalization took 2119 steps
sim> I

inftialization took 0 steps
sim> s

step took 0 events

clock=000 [¢]

aout=11111111 25%
lout=11111111 255
hout=11111111 255
hin=00000000 0
bin=00010110 22
ain=01101000 104
sim> ¢

clock=l0l 5
aocut=11111111 255
lout=01111111 127
hout=01111111 127
hin=00000000 0
bin=00010110 22
ain=01101000 104
cycle took 1433 events
sim> ¢

clock=101 5
aout=11111111 255
lout=00111111 63
hout=00111111 63
hin=00000000 0
bin=00010110 22
ain=01101000 104
cycle took 1210 events

Last line is repeated at top of following page.

rigure D.7 Event Siamulation Results.
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cycle took 1210
sim> ¢ .
clock=10l
aout=11111111
lout=00011111
hout=00011111
hin=00000000
bin=00010110
ain=01101000
cycle took 1231
sim> ¢
clock=101
aout=01101000
lout=00000001
hout=00100111
hin=00000000
bin=00010110
ain=01101000
cycle took 1139
sim> ¢
clock=101
aout=01101000
lout=00000001
hout=00100111
hin=00000000
bin=00010110
ain=01101000
cycle took 1052

events

]

255

31

3l

0

22

104
events

5

104

1

39

0

22

104
events

5

104

1

39

0

22

104
svents

sim> @ mul8c.macro2

sim> s

step took 177 events

clock=101
aout=01101000
lout=00000001
hout=00100111
hin=00100111
bin=00000001
ain=01101000
sim> ¢

5
104
1
39
39
1
104

Last line is repeated at top of following page.
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Pigure D.8 Bvent Siaulation Results, (Continued).
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sim> ¢

clock=101 S
aout=01101000 104
lout=00000001 1
hout=00100111 39
hin=00100111 39

-, bin=00000001 1

& ain=01101000 104
. cycle took 1164 events
: sim> ¢

. clock=101 5

. aout=01101000 104

. lout=00000001 1

. hout=00100111 39
hin=00100111 39
bin=00000001 1
ain=01101000 104
cycle took 1154 events
sim> ¢

clock=101 5
acut=01101000 104
lout=00000001 1
hout=00100111 39
hin=00100111 39
bin=00000001 1
ain=01101000 104
cycle took 1131 events
sim> ¢

clock=101 S
aout=01101000 104
lout=11110000 240
hout=00001000 8
hin=00100111 39
bin=00000001 1
ain=01101000 104
cycle took 1123 events

sim> ¢

clock=l0l 5

aout=01101000 104
‘ lout=11110000 240

hout=00001000 8
hin=00100111 39
bin=00000001 1

ain=01101000 104
¢ycle took 1052 events

sim> g
s
3
E;: :.:-a
R ?igure D.9 Event Simulation Results, (Continned).
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Exposure data:

ARRENDIX E
IAYOUT PHOTOGRAPHS

Display: AED 767 Color Graphics Termiral
Westco Lighf Value: 7.5 to 8.5

Camera: Peptax SLR, Tripod Mount ed

Film: Tri~X, ASA 400

lens-to-screen distance: & feet

lens: 85 mn, £1.9

lens Cpening: £16

Shutter Speed: 1 second
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Figure BE. 1 sultic (top), aaltip (bot).
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Pigure B.2 sultip8 (top), maltip8a (bot).
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Pigure B.3

sultip8b (top),
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sultip8c5 (bot).
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Figure BE. 4§

sultip8ca4 (top),
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multip8cid (bot).
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