
RD-R146 328 APPLICATION OF A SILICON COMPILER TO VLSI (VERY LARGE 1/2
SCALE INTEGRRTED CI..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D J CARLSON JUN 84

UNCLASSIFIED F/G 9/2 NL

mmmhhhmhmum
llEEEIIIIIEEI
IIIIIIEIIE-ElI

1.0~~

"l
Q8

14.

W0

Wo -.

II~iIi

.4 1.8

* *. --

1.25__+'.,.,A,,
MICRC~p RESLUTON TST HAR

NAVAL POSTGRADUATE SCHOOL
Monterey, California

I ',

I .

THESIS _

APPLICATION OF A SILICON COMPILER TO
VLSI DESIGN OF

DIGITAL PIPELINED MULTIPLIERS

by

Dennis J. Carlson

SLUj June 1984

* "

Thesis Adviso.

Approved for public release; distribution unlimited

!"I
L

84 09 28 041

SECURITY C.ASSIFICATION OF THIS PAGE (fen bete .nteb.l
[REPORT DOCUMENTATION PAGE READ ISTRUCTIONS ..

BEFORE COMPLETING FORM
. R NB REIPIENT*S CATALOG NUMBER

4. TITLE (nd Subtftle) S. TYPE OF REPORT & PERIOD COVERED
Master's Thesis

Application of a Silicon Compiler to June 1984 .
VLSI Design of

.1.

Digital Pipelined Multipliers s. PERPORMNO ORG. REPORT NUMER

7. AUTHOR(a) I. CONTRACT OR GRANT NUMBER(&)

pennis J. Carlson

5. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECT. TASK -,
AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

'I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

June 1984
Naval Postgraduate School 1s. NUMBER OF PAGES

Monterey, California 93943 11
14. MONITORING AGENCY NAME S ADDRESS(il diflfret from Controllnag Office) IS. SECURITY CLASS. (of tle repor)

Unclassified
,o. OEC:LASSIICATION/ DOWNGRADING

SCHEDULE

If. OISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the absetrct entered In Block 20, It diffelnt frem Repo")

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary ed Identif by block number)

VLSI Design, MacPitts, Pipelined Multipliers, Silicon Compiler,
CAD Tools

20 . ABSTRACT (Continue on revere. side If neeoemvy end ide, ty by block IumIbeu

The concept and application of silicon compilers is described.
The process of employing the MacPitts silicon compiler to design
an 8-bit pipelined digital multiplier is presented, and the re-
sulting design is evaluated. The process of installing and de-
bugging the MacPitts compiler and the Caesar VLSI graphics editor
on the VAX 11/780 computing facilities at NPS is documented in
appendices.

I 1 IOOF I NOV6 S IS OBSOLETE

DO I '/N 1473 ED'T0,, ,060 1 SO ItS/N [02 LF-014 660! 1SECURITY CLASIFIIICATION OFr THIS PAGEl (Wen Do*l snwed)

A1rcved for public release; distribution unlimited.

0
Application of a Silicon Compiler to ..

Digital kpe ne multipliers

by

Dennis J. Carlson
lieutenant Comander, .United States Navy

E.S., Rensselaer Polytechnic Institute, 1969

Submitted in partial fulfielm nt o therequireants for the degree o."

BASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NVI POSTGRADUATE SCHOOL
June 1984

Aut hor: _..

Approved by:__

Thesis Advisor

Second Reader

Chairman, Department of Electrical and Computer Engineering

Dean of Science and Engineering

2

- . -.

A BSTRACT

lbe concept and application of silicon compilers is

described. The prccess of employing the facPitts silicon

compiler to design an 8-bit pipelined digital multiplier is

presented, and the resulting design is evaluated. The

process of installing and debugging the MacPitts Compiler

and the Caesar VLSI graphics editor on the TAX-11/780

computing facilities at NPS is documented in appendices.

Accession For
NTIS GRA&I
DTIC TAB -
Unannounced -
Justificatio , .

sOPy
aPRCTIO

By.)

Distribution/
Availability Codes

Avail and/or
Dist Special

3

7 o°

E. CURRENT RESEARC GOAS 12

IBLE OF CONTENTS .--. 1

1. FAC rUnner 11 S
A. CURRENT RESEARC GOALS 12

II• APRECAHES TO SILICO CCmPILATIOs 15
. VLSI DESIGN ACTIVTIIES DOAIN 15
P. EVL ATI C CAVEAT 17 9...

C. LIITED SPECTRUM COMPILERS (TRANSLATORS) . . 18
E. BROAI-SPOCTRU SILICON COMPILERS 19-

1. Floor Planners 19

2. Behavioral Specification Compilers 21

III. USIN GMACITPIT.... 30

A. THE INPUI FILE 0 '

1. Fundasentals of the BacPitts Language . . 30

Ppli i 54

2. Two Mer Exampes 36
B. INVOCATICI OPTIONS . .2 .. '"..°..

C. USE OF Ti! MCPIUTS INTERPRETER £16
C. EVOLUTION OP THE 8 BIT PIPELINED

NULTIPLI!! 49
1. Design Motivation and Constraints 49

2. First resign: 3 Stages, 8 Bits on One

3. First Partitioning: 2 Bits, 1 Stage

4. Second Partitioning: 4 Bits, 2 Stage

Pipeline 54
5. Third Partitioning: 2 Bits, 4 Stage .

Pipeline 57

4

1. DESIGN VALIDATION....... 60

1. Functicnal Simulation 60

2. Design Rule checking 63

3. Node Extraction and Event Simulation 66

,. SUMMARY Of ACTIVITIES IN THE MACPITTS

DESIGN CICLE 68

I. NACPITT S PERFORMANCE 72IV. . APTSEFRA...............7

A. LAYOUT ERRORS AND INEFFICIENCIES 72

1. Inefficiencies 72

2. Errors 75

B. ORGANELLIS VS. STANDARD CELLS 77

C. SOFTUARE INCOMPATIBILITIES 78

1. CCNCLUSION 79

A SUMMARY a e o e a * e e 79

B. RECOMMENLATIONS 80

APPENDIX A: INSTALLATION OF MACPITTS ON VAX-11/780

UNDER UNIX 4o. AND 4.2 81

A. INSTALLATION UNDER UNIX 4.1 OPERATING

SYSTEM o e e e o o e e o 81

B. INSTALLATION UNDER UNIX 4.2 OPERATING

SYSTEM 85

APPENDIX B: INSTALLATION OF THE CAESAR VLSI EDITOR

UNDER UNIX 4.1 AND 4.2 88 .

A. INSTALLATION UNDER UNIX 4.1 88

B. INSTALLA7ICN UNCER THE UNIX 4.2 OPERATING

SYST 89

APPENDIX C: MANUAL EAGES FCR BERKELEY DESIGN TOOLS . . . 91

APPENDIX D: SIMULATICN RESULTS FOR AULTIP8C

MULTIPLIER 122

5

ZPPEIEU 1: LAYOUT IBOTOGRIPBS . . . 131

LIST OfREPENENCES 137

EIBLICGBIPHI 139

INITIL ISIRIBUTIONILIST. e* 140

6

. -. v ..-.

I LIST OP TABLES

lI Statistics For MacPitts Multiplier Chip
Designs 61

II. acPitts Source Files 82

I7

p,

,.'o

7 ...

*

LIST OF FIGURES 0

2.1 VLSI Design Activities Spectrum 16

2.2 Typical floor plan produced by the

P.I.R.S.T. Silicon Compiler 20

2.3 Plcor Plan cf the NacPitts Target

Architecture 23

2.4 NacPitts Register Circuit and Timing Diagram . . 25

2.5 AacPitts Prcgram Data Flow 27
3.1 Hutic.mac Sarce Pile 37

3.2 Example of the Multic Behavioral

Specificaticn 40
3.3 ultip. sac Scarce file 1

3.4 Compiler Statistics for sultip '3
3.5 A 3acPitts Interpreter Session for multip . . . 48

3.6 Sultipa.aac Source File 52 "

3.7 Multip8.sac Source File (Continued) 53

3.8 Use of Ports and Registers in multip8.aac . . . 54

3.9 Data Path Architecture of Nultip8 Chip 55

3.10 Blcck Diagram of First Partitioning 56

3.11 lultip8a.mac Source File57

3.12 sultip8.mac Source File 58

3.13 Hultip8c.aac Source File 59

3.14 Values: Program to Ccapute Aultip8c Output . . 64

3.15 Nextra .log File for Eul8c.cif. 66

3.16 Two Naco Driver Files for Event Simulation . . 67

4.1 Data Path Ounut Routing 74
D.1 Bacpitts Interpreter Results 122

r.2 BacPitts Interpreter Results, (continued) . . 123

D.3 HacPitts Interpreter Results, (Continued) . . 124.

8

DA HacPitts Interpreter Results, (Continued) . .125

D.5 acPitts Interpreter Results, (Continued) . . 126

r.6 facPitts Interpreter Results, (Continued) . . 127

D.7 Event Simulation Results 128 0
D.8 Event Simulation Results, (Continued) 129

D.9 Event Simulation Results, (Continued) 130

1.1 multic (top), aultip (hot) 132

z.2 multip8 (top), multip8a (hot) 133

E.3 multip8b (tcp), multip8c5 (bot) 134

E.1 multip8c4 (top), multipc4d (bot) 135

E.5 Layout Errors in kchip2 136

9

• !

71 7

ICKNO VLBDGEMNTS -

I would like to thank the following individuals fcr

their assistance in the completion of this thesis:

laval Postgraduate School

Ex. Donald Kirk

Prcf. Robert Strum

Dr. Herschel Loomis

Mr. A1 Vong

Massachusetts Institute of Technology

lincoln Laboratcry

Hr. Kenneth I. Crouch

Dr. Antun Dcmic

University of California at Berkeley

Dr. John K. Custerhout

Dr. Keith Sklower P

Stanfcrd University

Dx. Robert Hathews

Ms. Susan Taylor

University of Kansas

Dr. Gerry L. Kelly

10

Lp

1. . 20.T

1. BICKGRCUIND

The initial work done on the design of very large scale

integrated circuits (VLSI). at the Naval Postgraduate School
(NPS) used a set of software tools which require designer

interaction at all levels of the design process. These

tools and their use is described in a recent thesis by
Conradi and Hauensteir [Ref. 1].

Their design approach centers around the use of: (1)
machine-generated programmable logic arrays (PLA's) speci-

fied in a language which translates boolean equations into
circuit layouts, and (2) a litrary of standard cell layouts
from which other reguired circuit primitives are selected.
The designer arranges the PLA's and standard cells cn a
"floorplan" designed ty heuristic methods, and interconnects

them with a network of individual wires devised by the
designer and encoded as a "virelist." The floorplan layout

and addition of interconnecting wires must be done manually,

typically on graph paper at the drawing board. The results

are manually encoded in an input file format readatle by a

layout language program ("cll" in the case of the cited

research) which merges the designer's floorplan and virelist

with: (1) the selected library cell layout descriptions and
(2) the FLA layout descriptions produced by the separate FLA

generaticn program. The circuit layout program then

produces a descripticn of the total design in another stan-

dard file interchange format, the Caltech Intermediate Form,

(CIP) described by Read and Conway (Ref. 2: pp. 115-127].

The CIP file can then be used as a source for extracting
design validation information, as well for producing the

photographic masks used for circuit fabrication.

The design process outlined has the advantage of giving

the designer thorough control over the architecture of the

circuit. The human atility to evaluate alternatives, rEcog-

nize patterns and grasp complex multi-dimensional relation-

ships tetween individual elements and the whole design

exceeds that of any current machine algorithm.

Cz the cther hand, this process absorbs large amcunts of

the designer's time in performing the drudgery of planning
and encoding the layout details. There are at least four
things wrcng with involving the designer at this level:
(1) It is repetitious work, and therefore error-prone. 0

(2) It is slow. (Southard (Ref. 3] and others have noted
that design costs far outweigh production costs for custom

VLSI.)

(3) Preoccupation with mechanical details restricts a

designer's freedom to explore high-level architectural
issues such as bus structure, degree of pipelining, and

speed-complexity tradeoffs.
(4) ajcr modifications to the layout are very expensive to p
make if they come late in the design cycle, i.e. after cell

interconnection.

B. COUBT IR RESEACH GOALS

lith this background for motivation, it was decided to

investigate additional VLSI computer-aided design tocls
which would reduce time-to-design, minimize the occurrence

0of human error in layout, and make it possible to explore
design alternatives with greater ease.

The major tool available in the VLSI research community

for this purpose is BacPitts. NacPitts (the name is derived
from twc early researchers, McCulloch and Pitts who studied

neurological systems from a mathematical and logic stand-

point) is a silicon compiler developed at the Massachusetts

12

3-

Institute of Technology's Lincoln Laboratories in 1981-1982

[Jef. 43. A silicon compiler, according to one recent defi-

nition lef. 5] which captures current usage of this cften

misunderstood term, is "a program ta4t, given a description

of what a -circuit is supposed to do, will produce a chip
layout that implements that function in silicon." There is

enough latitude to allow fundamentally different approaches
S

to siliccn compilaticn to coexist under this definition, a3
will te demonstrated in the following chapter. In any case,
however, the term compiler is apt. Like software compilers,
these programs take high-level source code descriptions
which are human-readakle (and perhaps, *but not necessarily,
algorithmic) and "ccnvert" them into low-level object code
(a C17 file) which is directly readable by a machine. In
the case of a silicon compiler, however, the machine is not -

a general-jurpose computer, but a photo-resist mask gener-
ator at a silicon foundry facility that fabricates inte-
grated circuits.

Anotber function that the most advanced silicon
compilers perform is resource allocation. Software
compilers free the programmer from making decisions on where
in available memory space to store a particular machine code
word. Silicon compilers, at their best, free the designer
from deciding where cn available silicon area to place a
particular circuit element. Resource allocation is a one-
dimensional job in scftware compilers, but a two-dimensional
job in silicon compilers. The constraints on efficient
resource allocation in silicon are severe--compactness is
almost always one goal, as is speed of operation (minimum
propagation delay.) In meor allocation, compactness is not
essential, unless one is using a sequential access memory.

Installation of HacPitts on the BPS VAX-11/780 computer
facility was expected to be a "turn-key" operation. This
was in fact not the case. I large amount of effort was

13

rS

spent in researching and performing the modifications to the

host computer envircnfent which enable it to run the

MacPitts system, as well as in troubleshooting the distrib-

uted acPitts source code itself. The installation process 0

is described in Appendix A.

flacPitts has no progressive breakpoint facilities to

allow a designer freedom to observe or alter the layout

process at any point during execution. Once invoked, .

HacPitts produces a final interconnected layout, complete

with bcnding pads, or no layout at all. Therefore, it was

considered vorthwhile to implement the color graphics

editor, Caesar, designe d by John. Ousterhout at the .

University cf California at Berkeley [Ref. 6]. This tool

allows the chip layout to be examined in detail on a color

CRT mcnitor, and permits editing of the layout. Caesar

represents the layout internally as a hierarchy of cells,

which yields insight into the ways that MacPitts partitions

the layout process.
The installation of Caesar, while not as difficult as

bacPits, involved setting some site-dependent parameters as

well as finding and correcting a bug in the distributed

source code. These activities are described in Appendix B.
Appendix C contains a copy of the on-line manual pages for

Caesar and cther Berkeley tools used in this research.

141
Bt_..

A. ?ISI DESIGN ACT17TIUS DO.AIN

When trying to understand how silicon compilers work it

is instructive to think of two design problems in the crder 0

in which they must be attacked. The first is translaticn of

a brief behavioral or functional description into a acre

precise intermediate description that is still independent

of the specific implementation technology. The second is

the autcmatic generation of a chip layout in a target semi-

conductor medium, using the intermediate descripticn as a

guide. It is important to separate the second activity from

the first when one is designing a silicon compiler tecause .

of the speed at which the target semiconductor technologies
are evolving. That is, complementary metal oxide semicon-

ductor (CMOS) processes are rapidly overtaking N-channel

metal oxide semiconductor (NMOS) processes. Multi;le-layer

metalizatiom is alsc becoming more common, and minimum

circuit feature sizes are shrinking as better control over

the manufacturing prccesses is achieved. Computer architec-
tures and functions evolve more slowly, by comparison.

These two problems may be further subdivided. Werner

[Ref. 7] has contrituted the idea that a spectrum of VLSI
design activities exists with corresponding media for the

exchange of infcrmation by the computer-aided design tools
employed at each band in the spectrum. (See figure 2.1.)

Silicon compilers try to span the whole spectrum, an ambi-
tious undertaking.

15

I_

IL

"iL ! -

*~I (nx

*. o. = - .
5O 4 1... ,- a-....-

- ' I .41

: 8 -'

416 -

gU a

16~

9. ZIALUITION CIVEA"

It should be recognized that all silicon compilers

designed to date have to some extent traded performance of

the ultimate VLSI design (as measured by operating speed and

area efficiency) for reduced design time for the chip (and

for the silicon compiler itself.) Gross rRef. 8] quotes

estimates for reduced design costs (time) by use cf broad

spectrum silicon compilers to be a factor of 20. But
vallich, in a recent survey of silicon compiler efforts

[Ref. 5], states that designs produced by silicon compilers
available today tend to range from 15 to 200 percent larger .

than equivalent hand-crafted designs.

Still, silicon compilers have been misunderstood by

researchers as noted by Gross. Some, without fully under-

standing the dimensicnality of the VLSI design process,

believe that the design problem can be almost completely

solved by the application cf current software methods and

tools. Others, seeing the obvious limitations of ccntempo-

rary siliccn compilers and not grasping the potential
contributions to VLSI from computer science technology

transfer, believe that efficient VLSI designs will always be

essentially manual. Hurphy of Bell Laboratories, quoted by
Werner [Ref. 7], states that "total automation is

inappropriate--either now or in the foreseeable future--in

anything where you have a competitive need for performance."

Nevertheless, Bell labs is conducting research of its own

into silicon compilers. Their "Plex" project reported in a

more recent paper [Ref. 9] produces layouts of micrcccm-

puters given, as input, the P.oaEam (in assembly or C

language) that the microcomputer is to execute.

Iccording to Wallich, the ultimate silicon compiler, now

just a dream, mill not only be able to take a behavioral
description and produce a geometrical description of the

17

.77.

• . .- :: -: -:. - .. -_~ -- - -. .~ • .

chip suitakle for input to a mask making machine, tut will

do sc for &j kind of chip--microprocessor, signal

processor, or even analog-digital hybrid for which the

design rules are far sore complex. The subtle process of

architectural optimization (i. e. selecting a best floor

plan from the myriad possibilities,) which occurs in the

middle of the design activities spectrum, has so far not

been captured in an algorithm. To achieve some breadth

without keing overwhelmed by complexity, silicon compilers

have tended to contain built-in assumptions about a "target

architecture." They are optimized for producing a certain

class of circuits--mostly microprocessors-and produce

layouts of reasonable area and speed only for applications -.-

best suited to their target architecture.

C. LIMITRD SPECTRUM COMPILRS (TRANSLATORS)

For completeness, it is necessary to mention those VLSI

design tools in current use which fall short of covering the
design spectrum. They are:

* Random logic/Standard-cell place-and-route systems,

e Module compilers to implement boolean logic, including:

" Gate array compilers,

" PLA generators,
" Regular expression compilers for
finite-state machines,

* layout languages,

* Interactive graphical layout editors.

S- .

18°

1

.--

D. BIOAL-SPICTIU SZZIZCO COMPILES

1. UIgg Zl/an -.#

a. Common Pioperties

The first broad spectrum translators of interest
are the floor planners. They all employ a sjuj speci-

ficaticn language in which the specification always ccrre- A

sponds extremely closely to a description of the designer's

mental model of how the chip should be laid out. They

produce, as an initial output, a skeleton of the layout

similar to an architect's floor plan. Subsequently, flcor

planners fill the "rooms" with cells from a standard

library. Some floor planners, of which Johannsen'g Bristle
Blocks is a pioneering example [Ref. 10], can linearly
stretch cells to match up the interconnections of abutting
cells (so-called "pitch matching.")

isrerlotk.y h F..L. .I.ST (as Iplenaino

The current state of the art in floor planners

is represented by the F.I.R.S.T. (Fast Implementation of
Beal-Tise Signal Transforms) silicon compiler developed at
Edinburgh University [Ref. 11) The P.I.R.S.T. compiler
produces layouts of digital signal processing systems imple-

mented as hard-wired networks of pipelined bit-serial crera-

tors. The floor plan of F.I.B.S.T. chips (see figure 2.2)
consists of a central wiring channel with operators arranged
as function blocks azound the "waterfront." Each bit-serial
operator is implemented as a separate function block which
in turn is assembled tron a library of hand-designed cells.
The function blocks are arranged, in the order of their

high-level specification by the designer, in two rows along
either side of the wiring channel which accommodates all
interccnnections between the blocks. This uncomplicated and

19

PADS

OPERATORS

WIRING CHANNEL

OPERATORS

PADS

Pigure 2.2 Tpical floor plan produced by the P
P.1 'RS.T. Silicon Compiler.

novel layout methodolcgy results in the non-use of atout 20%

of the total chip area (because the blocks may have varied

heights.) At present, F.I.R.S.T. supports only the

N-channel metal oxide semiconductor (NOS) technology.

The F.I.R.S.T. software consists of a small

suite cf programs which provides the designer with a

complete specialized design environment. At the top level

is a language compiler that accepts a structural description

of the circuit in terms of a net list of bit-serial opera-

tors. The F.I.R.S.T. system contains a library of primitive

operators, (such as HULTIPLY, ADD, SORT, BIT DELAY, ETC.) as

well as a number of more complex procedural definitions

(such as Biquad, Lattice, Butterfly, etc.) that enable a

20

SI
" - .- i '.'- . : " ,. . : " - - • - .

range of signal processing architectures. The language

compiler produces an intermediate level format file as

output. 7his file is used by both a layout program, which

produces the mask gecuetry, and a simulator. The simulator

is event driven, which means that the voltage values on

circuit nodes are modeled as discrete bits of data occurring

at discrete time intervals. The functioning of individual
oe

operators is simulated on a word-by-word basis in response

to a file of input ccamands. It is asserted that the simu-

lator has the ability to uncover timing bugs in the data

stream.

A unique and useful aspect of F.I.R.S.T. is
incorporation of a translator program to convert the simula-

tor' s output into a form suitable for use with an automatic
test pattern generator system.

2. JaAoral Specification Compilers-

a. Common Properties

In contrast to the floor planners, which accept

igi=tural specifications at the top level, are the k.4jy-
jgjj specification compilers, which do not require the

designer to possess a prior mental model of the architecture

to be designed. These systems attempt to translate a high-

level behavioral description of the circuit into a geometric

mask description. This step is a significant one over floor

planners.

k. Ayrest Vork

lyres is the first to have written a book-length

treatment of silicon compilation [Ref. 12]. Ayres' compiler
approach starts with a synchronous logic specification of -

the chip tehavior. Then follows a decomposition of this
specification repeatedly into a hierarchy of implementing

21

. -.

BmOS Ell's which beccue successively more area-efficient as
they become smaller. The system includes heuristics to

manage and optimize cn-chip rcuting asong the PLA's gener-

ated. lyres' compiler is potentially applicable to a .0

broader class of circuits than F.I.R.S.T., but is still not

efficient fcr a general range of problems. The sccpe of .. -

applications was restricted intentionally to control

complexity. The very use of PLA's as the sole tasic S
builditg blcck restricts the area efficiency of this system.

Even though the PLA's themselves become more area-efficient

as they become smaller, the difficulty of managing their
interccnnections limits the ultimate, efficiency of the

layout.

c. MacPitts

MacPitts is the only broad spectrum silicon

compiler with which this author has had any first-hand

experience. It is also the most widely known and most ambi-
tious behavioral specification compiler in operation.

The hardware specification generated by HacPitts
is in the fcr of an AMOS technology CIF file. To cope with

the ccmlezity of this project the designers restricted the
target architectures to microprocessors consisting of a data

path and a controller (see figure 2.3.) Other restrictions
include fixing the width of the data path to one value
throughout the design, and requiring the designer to specify

control and parallelism explicitly. The latter is not actu-

ally a restrictica in one sense, however, because it affords

greater generality in designs. Except for making pin
assignments, the Raclitts user has no explicit control over

the floor plan of his design. The acPitts target architec-

ture results in the same basic floor plan for all designs,

although this particular architecture is applicable to a

greater variety of digital problems than any other scheme

presently available.

22

PADS

Input
Ports4-

Outut DATA PATE

I/c
Poxts

Clcck
Bus PAD S
(3 lines) -

Output CCNTRCL
Sign ais

"1C
Signals

PADS

Pigure 2.3 Floor Plan of the Eiac~itts Target Architecture.

The data path portion of the layout consists of

a rectangular array of units called "organelles.1" An orga-

nelle is a tit-wise functional unit. A standard litrary of

functions--adder, subtracter, shifters, incrementers, coupa-

rators, etc.--is provide d. Also, if the algcrithuic

23

behavior specification calls for conditional data flcw or

looping, the data path may also include multiplexers which

have ccnnections for control signals. This multiplexer

organeile is not a library cell but is built into ffacPitts.

Data storage registers, implemented as master-slave flip-

flops, are also "built-in organelles." These are instanti-

ated in the data path if their use is implied by the

* algorithmic specification.

The vertical dimension of the data path outline

- in figure 2.3 corresponds to the number of bits in the data

word. Longer word-lengths produce a taller chip. The

i7 various crganelles are cascaded along the horizontal dimen-

sion of the data path outline.

The control portion of the layout acts on

various signals, either derived from the data Fath or -

outside the chip, ard implements whatever boolean logic is

* necessary (as inferred from the algorithmic specification)

to generate controls signals to drive the multiplexers in

the data path. The result is an implementation of a finite

state machine, (PSM) as described in Read and Conway

(CRef. 2]. The control unit does not use PLA's, but rather

structural NOR gate arrays called "Weinberger Arrays" which

can isplement arbitrary combinational logic functions.
Weinberger ERefo 15] demonstrates that his logic arrays have
three features which contribute to efficiency in an auto-

' mated circuit layout -scheme.

* They simplify the formation of interconnection patterns
within the fzamewcrk of a standardized layout.

* They significantly reduce the required area (by elimi-
eating unused inputs and separate interconnection

areas.)
* They eliminate crcssing of signal nets (by using single

level wiring.)

24

State timing is ccntroUed not by a two-phase

non-cierlapping clock, which is somewhat standard in RHOS

VLSI, tut by a three-phase clock which drives the register
circuit shown in figure 2.4. This clocking scheme appar-

ently allows a more compact layout of the register crga-
nelle, but requires an extra pin in the package.

Input Output

phia pbib phic

t.1 t2 Q3 L4 t5

* .. .U =static storage

phia *t2 =isolate output

* .t3W sample input

phibt4 isolate input

t5 connect to output
phic j

Output 11 1 1D 11

Figure 2.4 RacPitts Register Circuit and Timiag Diagram.

25

One of the authors of acPitts, Siskind guoted

in [Ref. 7], admits that optimizing chip performance was not
a primary design gcal. Circuit densities reported were

80-100 transistors per square millimeter in 5 micron feature S
size INOS--approximately 2 orders of magnitude lower than

the state of the art layouts reported in Gross [Ref. 8].

Southard ccntends that the cells he helped design for

HacPitts cculd fairly easily have been made 20 per cent

smaller than they are (Ref. 5].

HacPitts cnly produces NM0S output in CIF, but

the user has a chcice of either 4 or 5 micron minimum

feature size, which the compiler handles by linearly scaling

all features except the pads. The latter are contained in

two separate libraries for 4 micron and 5 micron designs.

From the programming viewpoint, HacPitts is a

very complex system. It consists of a binary executable

module of over 1.5 megabytes which was built up as a LISP

programming environment and then dumped, as described in the

Franz Lisp manual [Ref. 13]. A synopsis of the functional

elements which make up this LISP environment is shown in

figure 2.5 . Unlike F.I.R.S.T., these programs (except the

functional simulator or "interpreter" as its authcrs call

it) are not individually accessible. MacPitts runs automat-

ically from beginning to end with no possibility for oper-

ator intervention. The only control available at the

console when the compiler is running is the standard UNIX

system abort signal. .

The authors of HacPitts were careful to separate

all the)rocessing into technology independent (frcnt-end)

and technology dependent (back-end) portions, with the

intermediate-level description being the point of division.

This intermediate-level description is available to the user

as an "object file" in human readable form. It is possible,

although nct very ;ractical, to write an object file

26

- = , - - * _ ,

. ,1

I iI

1iSE-like Behavioral Specification (Source File)

Px ras oralre

Data-Path Sequence Control
Extractor Extractor Extractor]

Internediate-level Description (Object File)

aLF aellerpi Functionalon -C..File
irrary Simulator"

diecl f- n.tt tebaked facit h.ojc

eigisl it h el.et ar: deiitos

Data-ath Seguence Control iot i of
layout Laayout layout programs

noly fs npto e b ondin pad librares et

ben itel a lit Th 5 elmetsar:-:-.ntins

flgsdaapah, Genror and ") pis.Thslit-so

core nas eoel readabi C le by helaoutprgrms

Thgue layou pras produce only NNos tch

nology s melnt isonave, 5 bondings pa h rresen'

27

:I--

* . . .

included: the Stanford standard cell library pads for 5

micron designs, and the MOSIS ARPA community pads for 4

micron designs. The "layout language" and CIF generaticn

program, L5, which is embedded in MacPitts, was written

especially for the project by Crouch [Ref. 14]. It has

built-in facilities to handle both NMOS and CMOS technclcgy

layouts. Therefore, expanding flacPitts to produce CMOS CIF

would not entail a compete rewrite of the back end

programs.

An important feature of the MacPitts software is
the functional simulator or interpreter. A MacPitts program

is not cnly an IC specification, it is also an algorithmic

specification. The interpreter executes the specification

program as a general-purpose computer using an interactive,

screen-oriented input/output style. By invoking this option

of MacPitts the user can exercise his design, thereby vali-
dating (to whatever extent the exercise is complete) its

functional fidelity. Once the functional simulation is done

to satisfaction, Macitts can be restarted without setting

the interpreter opticn. This produces a finished layout and

corresponding CI? file. By using the same language to drive

both the interpreter and the integrated circuit compiler,

human error is reduced.
MacPitts lacks some features. It has ncne of

the capabilities of F.I.R.S.T. to produce a test pattern to

exercise the chip. It also lacks any built-in mechanism to

identify worst-case path delays or to predict the maximum

clock frequency of the finished chip. It does keep account

of conductivity infcrmation, however, which it uses to

predict chip power ccnsumption.
MacPitts uses a "correct by construction"

doctrine in the layout process. By denying the user the

means to specify tte layout details of the chip, this

approach also denies the user the opportunity to commit

28

I -

design rule errors or to translate the specification program

into a non-corresponding layout. But can MacPitts itself

make design rule errcis?

The follcving chapters examine how to use

RacPitts to produce an integrated circuit layout, hcw to

validate the design, and vhere to look for ways to improve

chip performance.

2

a-,

- ..- .

a-

29. -

|11. ulN HICPZTZS

1. 211 IIPuT PILE

1. LULMntals g Ul Hitts Liaua

"f-acPitts,, the system for generating a custcm into-

grated circuit4 is also "BacPitts," the language in which

the algorithm is specified. In this section the second

meaning is the one implied. All of the information which

specifies what functional behavior is. required of a VLSI

circuit is communicated to RacPitts in a single text file.

This file, which must have the extension ".sac", is written

using syntax which closely resembles that of the LISP

programming language. Because the MacPitts compiler is

. implemented in LISP, it is reasonable to expect the syntax
of the acitts design language to follow the LISP paren-

thesized notation. his choice was made by the authors of

flacPitts because it eliminates the need for a separate

parser.

LISI is a list processing language. Its data

elements are "symkclic expressions" made up of "atoms"

(fundamental word-like objects separated by spaces), lists

of atcms, lists of lists of atoms and so on. One of the

strengths of LISP is the ability to concatenate atcas or

lists into new lists, and to perform other operations on a

list cr a hierarchy of lists to produce new lists modified

in useful ways. LISP has many built in functional defini-
tions which are an "environment" of specifications fcr the
operaticns to be performed on lists. These definitions are
all contained in k Tranz 1 nl a (Ref. 13]. In addi-

tion to using these definitions, the LISP user is free to

extend the LISP envixcnment by defining new functions which

30

" 7, -

specify cther operaticns on lists. The types of operations

say te simple manipulations of the atoms by partitioning or

permutation, or, if the atoms which comprise the list happen

to be nuabers, arithmetic oFerations say be performed. The B

definiticns of the operations themselves say also be asses-

kled from lists cf acre primitive operational atoms. This

functional extension of operations is what the authors of

acPitts have done in creating the MacPitts Lisp

environment.

The design of a VLSI circuit can be thought of as a

list-kuilding process in which the lists are electrical

Forts, registers, interconnection nets,, data testing opera-

tions, and ultimately a string of words which define a

unique patterning of silicon in the mask level descriptive

language, CIF. These lists are built according to rules

contained in another list--the algorithmic specification

source file. Although the NacPitts design language reses-

bles 1IS1 syntactically, its semantics is different and much

more limited. A powerful feature of LISP is, for example,

recursive definition. This feature is absent in the

HacPitts design language. A description of the NacPitts

grammar in Eackus normal form is given in [Ref. 4].

in its most general form, a HacPitts "program" to

specify a circuit"s behavior consists of a set of

"processes," each of which executes sequentially, but all of

which run in parallel. The states of each process are

fundamentally disjoint from those of the other processes.

This allows the hardware for each process to run indepen-
dently of the other processes, if desired, and concurrently
with the states of the other processes, in any case. The

operations performed ty a given process in a given state are

specified by a "form." Each form corresponds to a single
machine state, and in executed in one clock cycle. A state

may to Siven a name by preceding the form with a label.

31

Normally execution Iroceeds sequentially from one state to

the following state in the .nac file at each clock cycle. A

"go" form can be used, however, to deviate from this sequen-

tial flow by causing the named state to be executed next

instead of the syntactically following state.

Data is communicated between the data path and the

external world through "ports" which have the same bit width

as the data path. Cnly a single data path width definition

is allowed per program. A port may be declared "input,".

"output," "tri-state output," *or "i/o." Ports may also be
declared as "internal," in which case they simply cascade

the output of one data path operation to the input of

another. The data ;ath may also be specified to contain

registers. The difference between internal ports and regis-

ters is that registers can store data indefinitely after it sat
has been clocked in, whereas ports are only electrical nodes

in the data path and therefore do not store data. Ports

simply are arrays of named terminals for conducting data

from cue point to another.

Control of operations performed on the data by the

data path crganelles is governed by the Weinberger array

contrcl unit. Control outputs from the control unit to the

data path may determine, by means of their control over

multiplexer organelles within the data path, which cpera-

tions occurring within the data path will affect downstream

organelles. Status outputs from the data path returning to

the control unit allow the sequence of operations performed

by the control unit to vary depending on the data present

either in the registers or at any other point in the data
path. The control unit functions may also be made tc depend

upon external inputs. The control unit communicates with

the outside world using "signals," which are analogous to

the "ports" used by the data path except that each signal

appears on a single wire. Signals may be declared as

"input," "output," "tri-state output," "i/o" or "internal." __

32

Operations performed by the data path during a given

state are specified by the LISP *setq" form. The setq

causes eke data path to evaluate a sequence of operations on

either input port data, internal port data or register data.

(The setq may also be used with signals.) The result of
these specified operations is then conducted to another .0

naned port or loaded into a data path register during the

next clock cycle. The compiler includes enough copies of

each operator in the data path so that separate processes,

intended to run in parallel, do not conflict over the

attempted shared use of a single resource. The data path

can cascade several operations together in a single form.

This allows forms such as the following example, which

computes a-b-c using 2's complement arithmetic, to execute 9.

in one clock cycle:

(setg a (+ b (1+ (not c)))

The list consisting of everything on the preceding line is a

single form. There are three operators in this expression:
M+," which specifies use of an adder, "1+" which specifies

an incrementer, and "not" which specifies an inverter. Each

operator is followed by its operands listed in glatlJc

notation. Therefore, the single operand of 1+ is the

integer that results from evaluatiuq the expression "(not

c)." Note that there is not a default hierarchy of opera-

tions within a form. Is with LISP, the order of operations
in Nacpitts must be specified explicitly by the use of 0

nested parentheses.

Sequences of setq forms normally operate sequen-

tially, each being executed on a separate clock cycle. By
enclosing the forms within another "parallelizing form," of

which *par" is an example, several forms can be made to run
in parallel, gaining speed over sequential operation at the

cost of more hardware and hence more area in silicon. The
par form is used as follows:

33

(par fcral fo,;a2 form3...)

. Of course the results obtained by running setq forms in

parallel may be quite different from those obtained by

- running then all sequentially within one process. Consider

the fcllcwing example where "a" and "b" have already been
declared registers (i.e. master-slave flip flops):

(par (setq a b)
(setg b a))

This expression will result in exchanging the contents of

"a" with contents of "b." The exchange will be done in cne

BacPitts clcck cycle. This action is made possitle by the

input isolation which occurs during the flip-flop operating

cycle. All such data storage elements are read before they

are written. On the other hand, sequential operation of the

sane setq's is implied in the following process:

(process load1 (setq a b)

(setg b a))

This prccess will Icad both b and a with the criginal
contents of b, and require two cycles to do it. (Here
"load1" merely furnishes a process name, as demanded by the

flacPitts grammar.) We have used two lines and indented
format cnly for the sake of clarity. All the functional

information needed by MacPitts is denoted by the ordering of
forms within the nests of parentheses.

The "cond" fcrm allows the conditional execution of

cther forms it contains during a given state. It consists

of a list of guards, only one of which is to be executed.
Each guard begins with a "condition" which determines
whether the remaining forms in the guard are to be executed.

The first guard whose condition is true enables the execu-

tion of the forms following the condition in that guard.

This is illustrated by the following example adapted from

[3ef.4

3. ;

::::1

dcond (condition1 (cond (condition2 form1 form2)

(condition3 form3 form4 form5)

(t form6)))

(condition4 (cond (condition5 formi form8))

(cond (condition6 form9))

foral)) -

This example is heavily nested. Nevertheless, close exami-

nation reveals that the outermost "(cond..." has only two

guards in its list, each of which contains other " (cond..."

forms. The two guards are:

(conditioal (cond (condition2 forml form2)

(condition3 form3 form4 form5)

(t form6)))

and

(conditior4 (cond (condition5 form7 form8))

(cond (condition6 form9))

form 10)

If conditionl is false and condition4 is true then form10 is

executed. If condition5 is true then form7 and forme are

executed alcng with fcrlO. Likewise if condition6 is true

then fcrm9 is executed in parallel as well.

The semantics of the cond statement is inherently

parallel. The conditions of the alternate guards are

checked in parallel. Likewise, all forms within the guards

are executed simultaneously in one clock cycle. The

compiler makes the conditions of different guards in one

cond form mutually exclusive, and implements then using

combinational logic in the control unit as described above.

This logic is used to enable or inhibit the executicn of

forms ccntrclled by that guard in parallel.

Note that the form:

35

(cond (t form1 form2 form3 ...))

is used to enable parallel execution of several forms during

one clock cycle witIcut being dependent on any condition.

(The "t" stands for "true.") The "(par..." form already

encountered is actually just a shorthand macro expression

for the "(ccnd (t..." form.

In a EacPitts layout, the conditions are formed in S

the control unit, which is a Weinberger array of NOR gates'

CRef. 15]. Therefore, they are not limited to only the

su-cf-products notation used by PLA-based finite state
machine compilers. 2he conditions are derived frcm either

signals arriving on an input pin, signals from the data

path, or signals arriving from other processes. More

complex conditions can be constructed from these signals

using the logical operators "and," "or" and "not" to tuild

arbitrary Boolean expressions. These operators are part of

the HacPitts library cf functions. Thus, the cond statement

is cne cf the most powerful features for providing high

perforsance designs.

With this brief and somewhat condensed description

of the features available in the MacPitts algorithmic

language, the way is prepared to to understand an example of

some code which will produce a complete integrated circuit

chip. I full detailed description of all the facilities of

flacPitts is found in a report authored by its creators

(Ref. 16], which also serves as a fairly complete users'

manual.

2. ul Jjj. Zur.les

Consider, line by line, figure 3.1 which is a

listing cf the file multic.mac. This example and the one

which follows it are inspired by similar ones in [Ref. 16].

It conta.'ins all of the design information needed by MacPitts

to produce a 4 bit ccbinational multiplier. On any line,

36

O_

1 ; multiplier, no state combinational
2 (program multic 4
3 (def I ground)
4 (det ain port input (2 3 4 5))
5 (dot bin port input (6 7 8 9))
6 (de res port output (10 11 12 13)); result
7 (def rO port internal)
8 (de rl port internal)
9 (def r2 port internal)

10 (def 14 phia)
11 (def 15 phib)
12 (det 16 phic)
13 (def 17 power)
14 (always
15 (cond ((bit 0 bin) (setq rO (>> (bit 0 ain) ain)))
16 (t (setq rO 0)))
17 (cond ((bit 1 bin) (setq rl (> (bit 0 (+ rO ain)) (+ rO ain))))
18 (t (setq rl (>> (bit 0 rO) rO))))
19 (cond ((bit 2 bin) (setq r2 (>> (bit 0 (+ rl ain)) (+ rl ain))))
20 (t (setq r2 (>> (bit 0 rl) rl))))
21 (cond ((bit 3 bin) (setq res (>> (bit 0 (+ r2 ain)) (+ r2 ain))))
22 (t (setq res (>> (bit 0 r2) r2))))))

Figure 3.1 Bultic.mac Source File.
. o-

text fcllowig a seaicolon is treated as a comment, which

the ccapiler ignores. Line 2 tells the compiler that a
"program" (which is another way of saying, "circuit design")

called "nultic" starts here, and that the data path is 4
tits wide. Because the data path is only 4 bits, this

simple multiplier will only be able to output numbers from 0
to 15. Even though the input ports are also four bits wide,
we must restrict input numbers to only those whose prcduct

falls in the range of values from 0 to 15. Furthermore, if

this algorithm is to give correct results for all multi-

pliers, without overflow, the leading bit of the multipli-
cand must te zero. Ic provision is made to output a flag if

the dynamic range of the multiplier is exceeded.
L Lines 3 through 13 declare the various signals and

integer data words input to, output from and existing within
the multiplier. Line 3 assigns the ground connection to pin

1 which is always in the upper left corner of the layout;

37

I . , -. . -_ -. _-

subsequent pin numbers proceed clockwise from this point

around the layout perimeter. Line 4 assigns pins 2-5 to an
input port labeled "aim." This input is the multiplicand.

By HacPitts conventicm, the most significant bit (MSB) of
aim is read from the first pin on the list, pin 2, and the

least significant bit (LSB) from the last pin on the list,

pin 5. Line 5 similarly defines the multiplier input port,

"bin." Line 6 assigns an output port labeled "res" (for

result) tc another block of 4 pins. This port also serves

as the accumulator fcr the fourth and final partial product.
Lines 7 through 9 define 3 internal ports (necessarily of
width 4 kits) labeled rO, rl and r2. These serve to cascade

the three stages of a standard shift and add algorithm.

Each port contains one of the first three partial products,

each being the result of operations conditioned on cne of
the multi;ler bits. Lines 10 through 12 assign pins to the

three phase clock, whether that clock is used by the circuit

or not. In aultic.mac the clock is not used. Line 13

defines the * 5 volt direct current power, Vdd, connected to

pin 17.

line 14 signifies that the functions which follcw,

up to the matching right parenthesis on line 22, are to

execute on every clock cycle. The "(always..." form is

really tte "(process..." form, reduced to a single state.

Soreover in this case, given the (always... form, an given

that the data path contains only ports and not registers,
the inputs will affect the result after an interval governed .
only by the sum of the physical gate delays in the data path
and ccntxol unit. There is no controlled latency in the data

path, because there are no registers in this design in which

to store data.

Lines 15 through 23 contaia the shift and add

scheme. In lines 15 and 16 the controller is told to

examine bit 0 (the LSB) of bin. If it is high (true) the rO

38

S _

port takes on the value of the ain port rotated right by cne

bit, i.e. rO is actually connected by means of a multiplexer

organelle tc a right rotated version of ain. The shift-

right-one-bit form, ">" takes two arguments. The second

argument specifies what data word is being shifted, and the

first tells what to put in the HSB of that data word. Thus,

a rotate is also within the capabilities of the shift form,

as it is applied in this case. If bit 0 of bin is not high,

then, by line 16, the rO port--all 4 bits--is connected to

ground. In lines 17 and 18 the controller is told to

examine tit 1 of bin. If it is high, then rl, the next

internal port in the data path, is connected to a right-

rotated version of the sun of rO and ain. The adder orga-

nelle in RacPitts performs this summation as a standard

ripple carry full addition. Note again that the expressicn: p

(bit 0 (rO ain))

in line 17 turns tke single shift operator into a right

rotate ojerator by making the SSB of rl contain the same
value as bit 0 of the sum of rO and ain. If bit 1 of bin is

low, on the other hand, line 18 instructs the contrcller to

connect rl to simply a right-rotated version of rO. Note

that no rotations are being performed by any of these opera-

tions in the sense that a shift register would perform then. S

It is only the interccnnections between organalles that are

being set up variously by the controller to give an appear-

ance of forwarding a rotated version down the data path.

Also note that even though the addition form appears twice

in line 17, logically only one adder need be instantiated,

since the operands are identical in both occurrences.

BacPitts, too, can recognize this, and will not waste space
creating more adders than the minimum necessary. In lines L

19 and 20 the ccntrcller examines bit 2 of bin. If it is

high, port r2 is connected to a right-rotated version cf the

sun of rl and ain. If bit 2 of bin is low, r2 is connected

39

to a right-rotated version of rl. In lines 21 and 22 the

controller finally examines the SB, bit 3, of bin. If it

is high, the output port, res, is connected to a right-

rotated version of the sum of r2 and ain. If bit 3 of bin

is low, res is connected to a right rotated version of r2.

For concreteness, a schematic trace of this algorithm in

actica on the problem "4x3= 12" is presented in figure 3.2.

ain=4 bin=3 Algorithm Statement Result
0100 0011 rpo

S (setq r0I'> (>> (bit 0 ain) ain))
r0=2
0010

(setg rl (>> bitO
(+ ru ain)) * rO ain))) r1=3 • '

0011

(setq r2"-(>> (bit 0 rl) r1)) ,-i
r2=9
1001 _

(setq res
(>> (bit o r2) r2))

res= 121100

Pigure 3.2 Example of the dultic Behavioral Specification.

Fcr compariscn, consider now another design. This

one is srecified by the file nultip.mac shown in figure 3.3

This is a fcur bit pirelined multiplier in which the prcduct

does act appear at the result port until the third clock

cycle after values have been applied to the inputs, ain and

kin. Changing the combinational design to a pipelined

design can most easily be accomplished in two steps. First,

40

1 multiplier, with pipelining
2 (program multip 4 -
3 (det 1 ground)
4 (doe ain port input (2 3 4 5))
5 (doe aO register)
6 (det al register)
7 (det a2 register)
8 (det bin port input (6 7 8 9))
9 (det bO register)

10 (det bi register)
11 (det b2 register)
12 (deo res port output (10 11 12 13))
13 (dot rO register)
14 (de rl register)
15 (de r2 register)
16 (de 14 phia)
17 (dot 15 phib)
18 (det 16 phic)
19 (def reset signal input 17)
20 (de 18 power)
21 (always
22 (cond ((bit 0 bin) (setq rO (> (bit 0 ain) amn)))
23 (t (setq rO 0)))
24 (cond ((bit 1 bO) (setq rl (>> (bit 0 (+ rO a0)) (+ rO aOf)))
25 (t (setq rl (> (bit 0 rO) rO))))
26 (cond ((bit.2 bl) (setq r2 (>> (bit 0 (+ rl al)) (+ rl al))))
27 (t (setq r2 (>> (bit 0 rl) rl))))
28 (cond ((bit 3 b2) (setq res (>> (bit 0 (+ r2 a2)) (+ r2 a2))))
29 (t (sotq res (>> (bit 0 r2) r2))))
30 (cond (reset (setq aO 0)
31 (setq bO 0)
32 (setq al 0)
33 (setq bl 0)
34 (setq a2 0)
35 (setq b2 0)) Me-
36 (t (setq aO amn)
37 (setq bO bin)
38 (sotq al aO)
39 (setq bi bO)
40 (setq a2 al)
41 (sotq b2 bl)))))

Figure 3.3 Eultip.sac Source file.

the three internal ports of multic, rO. rl and r2, are all L
redefined as registers. Then six other nev registers, aO-a2
and O-k2 are defined to send successive values of the
inputs ain and bin down the pipe in step with their ccrre-

sponding partial products. The ease with which this is done
(from a user's point of view) is evidence of the power of
fiacPitts to create custom designs.

4--

41L

Referring to figure 3.3 we see that the shift and

add algorithm, lines 22-29, is identical to that of

sultic.sac. In line 19 pinl7 is defined as a "reset" signal

input. The reset signal is required for any MacPitts design
which uses one or acre "process" forms in order that the

program counters for all processes can always be reset to
the same kncwn state. This is obviously vital when two or

more processes on the same chip must be synchronized. In

the multip design, however, which uses the "(always..."

form, the reset signal performs no such built in automatic

function. The reset signal is available, however, for user-
specified functions as well, and in this case is used only

to signal a setq of all internal multiplier and multiplicand

registers to zero, instead of passing the values one more

step down the pipeline. Therefore, the reset is not essen-

tial to the pipeline multiplier operation here but only acts

to allow the pipeline to be emptied out and to inhibit any

new input data from propagating to completion, for what that
may be worth in whatever the intended application. It is

included here for illustration only. Recall that prcpaga-
tion of all input data in the pipeline (lines 30-35 or, if

reset is false, lines 36-41) occurs in a single clock cycle
as well, because these setq's are enclosed in the "(cond..."
form, which causes ttem to be executed in parallel.

a. IVCCATION OPTIOUS

Equipped with one or more .mac files written to reflect

the desired behavior cf a circuit, the user is ready to run
nacpitts.l The form of the command line invocation from the

UNIX shell is simply

% acpitts <program_name> <opti :.>

'The na~e assigned t9 the executable binary file on the
UNIX crerating system which eatodies the MacPitts system is
"macp itts."

42

where <Frograz name> would be either multic or nultip, in

the case of the previous examples, and <options> is any or

none of the words frcs the list:

stat* nostat*

herald noherald*

cif* nocif

obj* noobj

int noint*

opt-d* noopt-d

opt-c* noopt-c

4u 5u*
where the * options are the defaults and the left and right

columns are mutually exclusive.

,he "stat" cption tells macpitts to output statistics about

the chi; design to the standard output device (terminal

screen, normlly) as various parameters are calculated.

Figure 3.4 shows the statistics generated for the multip

1 Statistic - for project multip
2 Statistic - options: (\5u herald opt-d opt-c stat obj cif)
3 Statistic - Maximum control depth is 4
4 Statistic - Number of gates is 60
5 Statistic - Data-path has 25 Units
6 Statistic - Control has 69 columns
7 Statistic - Circuit has 1129 transistors
8 Statistic - Control has 17 tracks
9 Statistic - Power consumption is 0.172120 Watts

10 Statistic - Data-path internal bus uses 5 tracks
11 Statistic - Dimensions are 6.320000 mm by 2.847500 mm
12 Statistic - Memory used - 526K
13 Statistic - Compilation took 30.432777 CPU minutes
14 Statistic - Garbage collection took 18.520277 CPU minutes
15 Statistic - For a total of 796 garbage collections

Figure 3.4 Compiler Statistics for multip.

chip. The meaning of these statistics is as follows.

Line 1 simply echoes the prograz name which was given at the
beginning of the multip.mac source file.

43

- - -- -.
o

line 2 summarizes the invocation options in effect either by

user selection or default.
line 3 gives the worst-case number of logic levels between

any input and any output in the control unit.

line 4 gives the total number of NOR gates needed in the

control unit.

Line 5 is the number of data path "organelle units," where

an organelle unit is a word-length assembly of organelle

bits. This number is the same as the number of elements in
the data path list of the sultip.obj file.
line 6 is the number of vertical metal columns in the
contxcl array, excluding the ground columns.
line 7 is the total number of transistors in the circuit,
including the data path, control unit, and all bonding pads.

line 8 is the stack height of horizontally running polysi-

licon lines used to intraconnect the control unit.

Line 9 is an estimate of the worst-case static power
consumption of the chip obtained using the layout topology, '4
heuristic values of undetermined origin for the conductivity .
of each electrical feature, and a 5 volt power supply.
Line 10 is the maximum stack height of horizontally placed
polysilicon lines, per bit in the data path, needed to
interconnect the organelles.
line 11 is the overall outline size of the chip layout.
line 12 is the peak storage allocation demanded by macpitts

during the run.

line 13 is the CPU time required for compilation and layout,
which is always less than the apparent running time by an
amount which depends on the average system usage rate.
Lines i4 and 15 reflect a function of Franz Lisp wherein
past used storage locations are reclaimed for the available

memory list. The last three statistics were probably
included because macpitts can be very demanding of computing

resouxces.

41e L-

The "herald" opticn outputs messages to the terminal

screen at each milestone in the sometimes lengthy compila-

tion process. These reassure the user that macpitts is

still running. In addition to heralding what point in the

design pzocess macpitts is currently working on, information

on current accumulated CPU time and CPU garbage collection

time is printed at the beginning of each herald line in
units of sixtieths of a second. S

The "cif" option keys the compiler to output a mask

level description .cif file in the Caltech Intermediate

Form. The cif opticn is normally not deselected unless the

available disk storage space is limited and the user is only

interested in reading the statistics for his compiled

design. (The cif file for a relatively simple design,

multiF.cif, is over 158 kilobytes long.) If no cif is

produced on a given macpitts run, the entire lay-,At prccess

must be repeated to subsequently obtain a cif file. This is

done most expeditiously by running macpitts with the nocbj

cption.

7he "nocbj" opticn tells macpitts to start with a previ-

ously created object file (the output of the macpitts "front

end,") rather than a source file. MacPitts will then effec-
tively start at tte "back end," doing the layout and

outputing statistics and cif, assuming these are included in

the c;ticns list.

"Int" tells macpitts to use the interpreter mode, which

allows functional simulation of the chip without actually

perfcrming the layout and generating a .cif file.
"Cpt-c" and "opt-d" invoke optimization routines for

normalization of the combinatorial logic of the ccntrol

unit. Investigation of the four possible cobinations of
these two options reveals that they do not affect the

overall dimensions of the final 8 bit multiplier design (to
be described later.) This is probably because the Fins,

45

S

data path layout and tus wiring dominate the chip area, not

the ccntrol unit, which is comparatively small for this

chip. The compilation tine required, however, was approxi-

ately 20 percent greater when opt-c and opt-d were used

than when they were not used. Using opt-c and opt-d does

reduce the complexity of the control unit, and therefore

will reduce signal delays, to the benefit of operating

speed.

The "4u" option sets the minimum feature size for the

layout to 4 microns, and accordingly lambda, the commonly

used parameter which represents the half line width dimen-

sion, is set to 200 centimicrons.

Another option, logo, was available in the original
macpitts, tut is not supported at NPS because suitable font

files are not currently available.

C. USE Of TiHE RIPII2S ITIRPRITER

Invoking macpitts with the int option should be the

*first step in every bacpitts design cycle. Macpitts has

* good facilities for catching grammatical errors in the

user's .sac source code which operate whether or not the
interpreter is invoked. After the .sac file passes grammar

checks, the interpreter allows the extracted algorithmic

description to be exercised with arbitrary inputs. The
results are displayed on the screen to provide an indication

that the design is functionally correct. Assuming the

user's path list is set up in the .login file to include the

directory, /vlsi/sacpit, the following command can be

issued:

% macpitts ultip int herald

This will cause macpitts to scan the multip.mac source file

and extract from it the circuit behavior information. Then

acpitts will display a table of all declared ports,

46 q 6 "Jr

0

reiisters, flags, signals and processes, noting that they

ax . all currently undefined. The user say select for

display, at this point, a menu of interactive commands which

clearly states how tc interact with the interpreter. The

user can set the values of input ports and signals as
desired. Uct all internal ports will necessarily te defined
simply by setting the input ports. Generally several clock

cycles must be simulated before the chip internals are all
defined. acpitts tells the user which antecedants stand in

the way of resolving data definitions. Next the user will

probakly single ste; (or multi step) the macpitts clock S
while cbserving. the effect on the internal registers and

output port(s) after each cycle. There is also provision to

write out the current state of the circuit to a file,

sultip.int. Any number of states can be saved by appro- 0,
priate renaming of files as they are written. Since
,acpitts does not allow the user to specify different file

names for each state saved, newly written .int files can
immediately be renamed uniquely from an adjacent terzinal t

logged on tc the sate account as the one running macpitts.

This is ccmpletely feasible under UNIX.
As an example, figure 3.5 shows a concatenated listing

of 4 such files -frcs a single session with the acitts

interlieter. As would be expected, the format cf these
files is that of a LISP list, whose meaning can be clearly

inferred because it follows the same syntax as the flacPitts

language itself. The first file, lines 1-14, is a dump of

the state of the circuit after setting the input ports ain

and bin to 4 and 3, respectively, and the reset signal to

false. Note that all data downstream of the inputs is still

undefined at this point. Lines 16-28 show the result after

one clock cycle. lines 30-42 show the result after two

clock cycles. Lines 44-56 show the result after the third
clock cycle when the result, 12, is present for the first

47 -------- :

..-. H-.

cat -n multip.int[l-4]

2 ((register aO undefined-integer)
3 (register al undefined-integer)
4 (register a2 undefined-integer)
5 (register bO undetfined-integer)
6 (register bl undefined-integer)
7 (register b2 undefined-integer)
a (register rO undefined-integer)
9 (register ri undefined-integer)

10 (register r2 undefined-integer)
11 (port ain 4 console)
12 (port bin 3 console)
13 (port res undefined-integer chip)
14 (signal reset f console))

16 ((register aO 4)
17 (register al undefined-inte.ger)
18 (register a2 undefined-integer)
19 (register bO 3)
20 (register bl undefined-integer)
21 (register b2 undefined-integer)
22 (register rO 2)
23 (register rl undefined-integer)
24 (register r2 undefined-integer)
25 (port ain 4 console)
26 (port bin 3 console)
27 (port res undefined-integer chip)
28 (signal reset f console))
29
30 ((register aO 4)
31 (register al 4)
32 (register a2 undefined-Integer)
33 (register bO 3)
34 (register bl 3)
35 (register b2 undefined-integer)
36 (register rO 2)
37 (register rl 3)
38 (register r2 undefined-integer)
39 (port ain 4 console)
40 (port bin 3 console)
41 (port res undefined-integer chip)
42 (signal reset f console))
43
44 ((register aO 4)
45 (register al 4)
46 (register a2 4)
47 (register bO 3)
48 (register bl 3)
49 (register b2 3)
so (register rO 2)
51 (register rl 3)
52 (register r2 9)
53 (port ain 4 console)
54 (port bin 3 console)
55 (port res 12 chip)
56 (signal reset f console))

Figure 3.5 a macfitts Interpreter Session for multip.

48

tine on the output pert. Note that at this point the input

data, which was never changed during this session, has also

Iropagated down the three stage pipeline. Of course, one

would ncrmally not use a pipelined processor with static

data, because the advantage of higher throughput is wasted.

The exercise only serves to demonstrate the behavior of the

interpreter option.

To points of practical interest should be made before

closing the interpreter discussion. First, it should be

cbserved that the kcttom lines of text in the terminal

display will be jumbled on the ADN-36 terminals because the

/etc/termcap libraries in UNIX version 4.2 differ slightly

from those in UNIX version 4.1. Proper screen presentation

is obtained, however, if the GIGI terminal is-used. Second,

IL the interpreter runs very slowly. It is not unusual during

hours of heavy system useage for one to two minutes of

terminal time to elapse while the interpreter is processing

a single command to cycle the clock. At night, with cnly 2
users logged on, this clocking operation only takes ten to

fifteen seconds.

Z. RICOLUTICE OF THE 8 BIT PIPELINED RULTIPLIER

1. ftsiqn aotivaion jn42 n a ins

Cne possible application for a digital pipelined

sultiplier cf unsigned integers is as part of a high speed

digital filter realization. ork done by Loomis and Sinha

fRef. 17) indicates that the impact of pipelining delays on
the behavior of digital recursive filters can be compensated

for by adjusting the filter weights. Furthermore, their

work shows that the stability of the filter can be improved

by increasing the number of pipeline stages. It was decided

that the design of a multiplier for such applications could

be a suitable vehicle from which to study the KacPitts
compiler.

49

The design of circuits which can be fabricated using
the available ARPA/MOSIS implementation service is

constrained by two standard parameters: a maximum prcject
size of 6890. x 6300 microns, and a maximum bonding pad count
of 64 pins. To fully explore the capabilities of MacPitts,

it is probably most enlightening to proceed in steps toward

the ultimate design.

2. i"_ Desgn: I Sgta.qes, it s on one _AI_

1o better appreciate the issue involved, the first

design is an expansion of multip.mac to an 8 bit wide data
path with enough "cond" forms to realize an 8 bit multipli-

cation. Note, however, that the SSB of the multiplicand
(ain) must ke zero tc avoid overflows of the partial prcduct

and results ports. Two output ports are used, one for the
high order 8 bits of the result (hres), and one for the low

crder 8 bits of the result (Ires). Together these ports
form a 16 tit product. One expects the hres MSB always to

be zero because the largest valid product is 127x255=32385, P
which is less than 215. Because the design has three sets

of registers, there are three stages of pipelining, and

there is rocm in the chip for three distinct multiplication

problems to be in process simultaneously. A speed vs. area

tradeoff is effected by alternating ports with registers in
the data path. Ports consume less area than registers.
However, ports also introduce more delay in the pipeline

stages (whose boundaries are defined by registers) thereby .
lowering the aximus clock frequency. To further save area,
the multiplier bits from bin share space in the low crder i, -

intermediate results registers (lrO, irl, Ir2) and ports
(lpO, Ipl, ip2, Ip3, ires) by using the following device: _
after each bit of the multiplier is tested, it is shifted

off the right end of the register/port, leaving room at the
left end for another bit of the low order result to be

50 : f

S

. -.. - - -Ito

shifted in. The source file for this design, multip8.zac,
is shcwn in figures 3.6 and 3.7. This file was arrived at

after first considering what resources would be needed to
perform the multiplication. Then register/port templates

were written down on paper, and the flow of data traced for
a specific case. Next the algorithm depicted by the data

flow was translated into RacPitts language resulting in a
diagram resembling the style of figure 3.2. Finally the

definiticns, conditions, and reset functions were added to

complete the multip8.mac file. Figure 3.8 partially illus-

trates the manner in which this was done for the example
104x22=2288. Only the first pipeline stage is shown, repre-
senting the first tvc multiplier bits.

Figure 3.9 shcws the linear arrangement of the ports
and registers in the data path for this multiplier, as well

as the placement of shift and add organelles. The flow of

data is down the page. The large size of the full adders

relative to the other organelles is not reflected in the
scale of this figure. The resulting aacpitts layout for
this design measures 11848 x 4897.5 microns, which is far
too large to be fabricated in a standard MOSIS run. It

appears that the design must therefore be partitioned in
some way among two cr more chips. Ideally, these parti-

tioned "partial multipliers" should be identical in design

if fabrication and testing costs are to be minimized.

3. iEst pajtijicning: 2 i, S tag Pipelin.e

The ultip8 design may be partitioned in a number of

ways. The first apprcach might be to process two multiplier

bits on the chip using one register stage and then cue pcrt
stage to hold the two partial products in a single pipeline

stage, then pipe the partial result to another identical
chip. Such a design requires 4 chips to do a complete 7 bit

by 8 bit multiplicaticn with 4 stages of pipelining in all.

I

,0

1 3-stage pipelined multiplier, product is 16 bit unsigned integer
2 (program multipS 8 data path is 8 bits wide
3 (def 1 ground) 0
4 (def ain port input (2 3 4 5 6 7 8 9)) ;multiplicand
5 (def bin port input (10 11 12 13 14 15 16 17)) ;multiplier
6 (def aO register)
7 (def al register)
8 (def a2 register)
9 (def hpO port internal)

10 (def ipO port internal)
11 (deE hrO register) S
12 (def irO register)
13 (def hpl port internal)
14 (def lpl port internal)
15 (deE hrl register)
16 (def lrl register)
17 (def hp2 port internal)
18 (def lp2 port internal)
19 (def hr2 register)
20 (def lr2 register)
21 (def hp3 port internal)
22 (deE lp3 port internal)
23 (def hres port output (18 19 20 21 22 23 24 25)) ;high bits of result
24 (def lres port output (26 27 28 29 30 31 32 33)) ;low bits of result
25 (def 34 phia)
26 (def 35 phib)
27 (def 36 phic)
28 (def reset signal Input 37)
29 (deE 38 power)
30 e end of definitions
31 (always
32 (cond ((bit 0 bin)
33 (setq hpO (>> &in))
34 (setq lpO (> (bit 0 ain) bin)))
35 (t I
36 (setq hpO 0)
37 (setq lpO (>> bin))))
38 (cond ((bit 0 lpO)
39 (setq hrO (> (+ hpO ain)))
40 (setq 1[O (>> (bit 0 (4 hpO sin)) lpO)))
41 (t
42 (setq hrO (>> hpO))
43 (setq 1tO (> (bit 0 hpO) 1pO))))
44 (cond ((bit 0 irO)
45 (setq hpl (> (+ hrO aO)))
46 (setq lpl (>> (bit 0 (4 hrO aO)) lrO)))
47 (t
48 (setq hpl (>> hrO))
49 (setq lpl (>> (bit 0 hro) lrO))))
50 (cond ((bit 0 lpi)
51 (setq hrl (>> (+ hpl aO))) L
52 (setq Irl (>> (bit 0 (+ hpl aO)) lpl)))
53 (t
54 (setq hrl (>> hpl))
55 (satq lrl (>> (bit 0 hpl) lpl))))
56 (cond ((bit 0 lrl)
57 (setq hp2 (>> (+ hrl al)))
58 (setq lp2 (>> (bit 0 (+ hrl al)) lrl)))
59 (t
60 (setq hp2 (>> hrl))
61 (setq lp2 (>> (bit 0 hrl) irl))))

rigure 3.6 lultip8.uac Source Pile.

52

4

62 (cond ((bit 0 1p2)
63 (setq hr2 p> (+ hp2 al)))
64 (setq 1r2 (>> (bit 0 (+ hp2 al)) lp2)))
65 (t
66 (setq hr2 (>> hp2))
67 (setq 1r2 (>> (bit 0 hp2) lp2))))
68 (cond ((bit 0 1r2)
69 (setq hp3 (>> (+ hr2 a2)))
70 (setq 1p3 (>> (bit 0 (+ hr2 a2)) lr2)))
71 (t
72 (setq hp3 P> hr2))
73 (setq 1p3 (>> (bit 0 hr2) 1r2))))
74 (cond ((bit 0 1p3)
75 (setq hres (>> (+ hp3 a2)))
76 (setq Ires (>> (bit 0 (+ hp3 a2)) 1p3)))
77 (t
78 (setq hres (>> hp3))
79 (setq Ires (>> (bit 0 hp3) lp3))))
80 (cond (reset
81 (setq aO 0)
82 (setq al 0)
83 (setq a2 0))
84 (t
85 (setq aO ain)
86 (setq al O)
87 (setq a2 al)))))

Pigure 3.7 Rultip8.mac Source File (Continued).

Pigure 3.10 is a block diagram of this design approach. The
flacPitts source file for this design, given in figure 3.11,
defines another input port, "hin," which should be connected
to the high order 8 bit partial product output of the
previous stage, unless the chip is the first one in the

array. In that case, "hin" is connected to ground (i.e.

zero.) To further reduce area, the reset function was elim-
inated, because it is not in any way essential to the func-
tioning of a multiplier used in a high throughput signal
processing environment such as is envisioned for this

design.

This arrangement of identical processing elements
connected in a linear array to produce a pipelined result is
similar in concept to the systolic array approach formulated

by Kung [Ref. 18], although he was more generally concerned

53

Ecrts 8 Registers Algorithm Statements

ain=104 bin-22 .

oloooCO oo10 110

Sse tg lhpO 0)
setq lpO(> bin))

bpOs0 IPO-li
OOCCO000 oe01l

+01101000 (setq hrO (>> (+ hpO ain)(1setq frO
110100 (>> (bit 0 (+ hpO ain)) IpO))

brO=52 lrO-5
obl1o1oo 800o1O1

aO-1OL# (setq aO ain)

01101000 0I

Pigure 3.8 Use of Ports and Registers in multipS.mac.

with individual processing elements of greater complexity

than that of multip8a cells.

The aacpitts layout of ultip8a has outline dimen-

sions of 5848 x 6140 microns. The data path and control

unit cnly cccupy approximately 3000 x 2500 microns. The

overall chiF is large compared to its "working circuitry"
because of the need to place 53 pin pads around only three

sides of the perimeter. This design does not approach full
utilization of the available 6890 x 6300 micron silicon

area.

4. Second Partitioning: t ag, tA e.2i _

It seems clear that more of the design will fit on

the chil and still not exceed the maxiaum size for

54

a,.- .

> 3 Phase clock >
<tit 8 to contici < a port

< bit to contl < /, nort
> select fro ccntrol > r ht shift
> or setq 0 frol control > h9 prt

>SB filled frcm control > ri h shift<b t 0to contzel < |p .port

> selct freeccczntrol > right shaft

bit 0 to conticl < or register
> N$B filled frc control > ijg~ht shift
bit O to conticl < r0 register

> sqtg 0 frcm ccntrol > aO register
< bit 0 to conticl < full adder
> sqlect from ccntrol > right shift
<bit 0 to control <]hp. port
> N$B filled frcm control > right shift
< b;t 0 to control < lp1 port
< bit 0 to control < ful. adder
> sqlect from ccmtrol > right shift
< bii 0 to control < QUC register
> B fill ed frcs contrcl > riht shift
< bit S to control < register
> setg 0 from ccntrol > 1 register
< bit 0 to contcl < -fll dder
> select from ccntrol > ri ght shift
(bit 0o6onticl < > h z port
> NqB firled rcm control > Irht shift<it 0 to control <p2 port
< t 0 to contrcl < fI l addgr

> seleat from ccntrol > ri li shiftbt th;2 reli~t er
> BB flledofrlcmctrol > ri ht hi ftobt 0 to control < 42 registerSsetg 0 from cctrol > a2 register
< bit 0 to control < full adder
> seIet f rom ccntrol > right shift

bit 0 to contil < hpi port
> BIB filled from control > right shift
b t 0 to control < ip3 port

< b t 0 to contrcl < full adder
> select from ccntrol > right shifthr s port
> SB filled frcs control > light shift

r es port

Figure 3.9 Data Path Architecture of Eultip8 Chip.

fabrication. Design multip8b (source file shown in figure

3.12) tests four bits of the multiplier on one chip, there-

fore, call two of these chips are needed to do a complete

multi;lication. Essentially this is just a doubled version

of aulti;8a. The SacEitts layout is 7130 x 6140 microns for

55

I--_

clock ain gnd bin gnd +5

7--7---0 7 --- 0 7-7-0
aln hin bin

Ipha po wer
phib multip8a ground
Iphic (bout/)-

aaut bout 'lout

7--0 7------0 7 ------ 0
ain bin bina JL(/1±)

______ib multipsa gon

(bouiit/)
aout bout lout

7-----. .. 7----- 0 7---0

16n bit proic

liguie 3.10 Blck Diagram of i Patiinig

th ico pion Thsi o agLofbiae euwith~~~~~~~~ th34mco ototeultpbci;asstsatr
dimenions 588* x C2miros

L7 -- 0 :1 -n-56

.~~ ~ ~* . . .

1 ; 1 stage of a 4-stage pipelined multiplier
2 ; product is a 16 bit unsigned integer
3 (program multipaa 8 a data path is 8 bits wide
4 (def 1 ground)
5 (def amn port input (2 3 4 5 6 7 8 9)) ;multiplicand input
6 (def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
7 a this port also receives the lower 8 bits of the partial product
8 (def hin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of
9 a partial product from preceding stage, zero if first stage.

10 (def aout port output (26 27 28 29 30 31 32 33)) ; multiplicand output
11 (def hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of
12 ; partial product output
13 (def lout port output (42 43 44 45 46 47 48 49)) ; lower 8 bits of
14 partial product output and shifted multiplier output . .
15 (def al register)
16 (def hrl register)
17 (def lrl register) " "
18 (def 50 phia)
19 (def 51 phib)
20 (de 52 phic)
21 (def 53 power)
22 ; end of definitions
23 (always
24 (cond ((bit 0 bin)
25 (setq hrl (>> (+ hin sin)))
26 (setq lrl (>> (bit 0 (+ hin sin)) bin)))
27 (t
28 (setq hrl (> hin))
29 (setq lrl (>> (bit 0 hin) bin))))
30 (cond ((bit 0 lrl)
31 (setq hout (>> (+ hrl sin)))
32 (setq lout (>> (bit 0 (+ hrl sin)) lrl)))
33 (t
34 (setq hout (>> hrl))
35 (setq lout (>> (bit 0 hrl) lrl))))
36 ;
37 (setq al sin)
38 (setq &out al)))

Figure 3.11 Hultip8a.mac Source File. U.

5. ! Partitioning: 2. Aits !L Stg Pipeline

By replacing every internal port with a register,

and providing two additional corresponding pipeline regis-

ters for the multiplicand, the delay per pipeline stage can

be reduced by a factor of approximately two because the

adders drive a register directly instead of through a pcrt ..
and another adder. Ibe clock rate can therefore be approxi-

matell dcubled. This modification has another attractive

feature in that it allows the output port to be driven

57

.,._-.- - - ... - Z--.-... .. " ..-. .- _-.. --- . .. ,

1 ; 2 stages of a 4-stage pipelined multiplier
2 ; product is a 16 bit unsigned integer
3 (program multip8b 8 ; data path is 8 bits wide
4 (det I ground)
5 (def ain port input (2 3 4 5 6 7 8 9)) ;multiplicand input
6 (def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
7 g this port also receives the lower 8 bits of the partial product
8 (def bin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of
9 ; partial product from preceding stage, zero if first stage.

10 (def aout port output (26 27 28 29 30 31 32 33)) ; multiplicand output
11 (def hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of
12 partial product output
13 (def lout port output (42 43 44 45 46 47 48 49)) ; lower 8 bits of
14 ; partial product output and shifted multiplier output
15 (def al register)
16 (def a2 register)
17 (def hrl register)
18 (def lrl register)
19 (def hpl port internal)
20 (deE lpl port internal)
21 (def hr2 register)
22 (dee lr2 register)
23 (deE 50 phia)
24 (def 51 phib)
25 (deE 52 phic) -,

26 (def 53 power)
27 ; end of definitions
28 (always
29 (cond ((bit 0 bin)
30 (setq hrl P> (+ hin ain)))
31 (setq lrl (>> (bit 0 (+ bin ain)) bin)))
32 (t
33 (setq hrl (> hin))
34 (etq lrl (>> (bit 0 hin) bin))))
35 (cond ((bit 0 lrl)
36 (setq hpl (>> (+ hrl amn)))
37 (setq lpl (>> (bit 0 (+ hrl ain)) lrl)))
38 (t
39 (setq hpl (>> hrl))
40 (setq lpl (>> (bit 0 hrl) lrl))]) W7-
41 (cond ((bit 0 lpI)
42 (setq hr2 (> (+ hpl al)))
43 (setq lr2 (>> (bit 0 (+ hpl al)) lpl)))
44 (t
45 (setq hr2 (>> hpl))
46 (setq lr2 (>> (bit 0 hpl) pi))}}
47 (cond ((bit 0 lr2)
48 (setq hout (>> (+ hr2 al)))
49 (setq lout P> (bit 0 (+ hr2 al)) lr2)))
50 (t 7
51 (setq hout (>> hr2))
52 (setq lout (>> (bit 0 hr2) 1r2))))
53 -
54 (setq al ain)
55 (setq a2 al)
56 (setq aout a2)))

Figure 3. 12 flultip8b.aac Source File.

58

Eli lii I . ..j~-.--. ". I ELEL

1 ; 2 stages of a 4-stage pipelined multiplier
2 product is a 16 bit unsigned integer
3 (program multip8c 8 ; data path is 8 bits wide
4 (def I ground)
5 (def ain port input (2 3 4 5 6 7 8 9)) ;multiplicand input
6 (def bin port input (10 11 12 13 14 15 16 17)) ; multiplier input
7 this port also receives the lower 8 bits of the partial product
8 (clef bin port input (18 19 20 21 22 23 24 25)) ;upper 8 bits of
9 1 partial product from preceding stage, zero if first stage.

10 (def sout port output (26 27 28 29 30 31 32 33)) ; multiplicand output
11 (def hout port output (34 35 36 37 38 39 40 41)) ; upper 8 bits of
12 ; partial product output
13 (def lout port output (42 43 44 45 46 47 48 49)) ; lower 8 bits of
14 ; partial product output and shifted multiplier output
15 (def al register)
16 (def a2 register)
17 (def a3 register)
18 (def a4 register)
19 (def hrl register)
20 (def lrl register) 5
21 (def hr2 register)
22 (def lr2 register)
23 (cef hr3 register) . ..
24 (def lr3 register)
25 (def hr4 register)
26 (def 1r4 register)
27 (def 50 phia)
28 (def 51 phib) P--
29 (def 52 phic)
30 (def 53 power)
31 ; end of definitions
32 (always '1
33 (cond ((bit 0 bin)
34 (setq hri (>> (+ bin ain)))
35 (setq lrl (>> (bit 0 (+ hin ain)) bin)))
36 (t
37 (saetq hrl (>> hin))
38 (setq Irl (>> (bit 0 bin) bin))))
39 (cond ((bit 0 lrl)
40 (setq hr2 [>> (+ hrl al)))
41 (setq lr2 (>> (bit 0 (+ hrl al)) lrl)))
42 (t
43 (setq hr2 (>> hrl)) 0---1
44 (setq lr2 (>> (bit 0 hrl) lrl)))) L
45 (cond ((bit 0 lr2)
46 (setq hr3 (>> (+ hr2 a2)))
47 (setq 1r3 (>> (bit 0 (+ hr2 a2)) lr2)))
48 (t
49 (setq hr3 (>> hr2))
50 (setq lr3 (>> (bit 0 hr2) lr2))))
51 (cond ((bit 0 lr3)
52 (setq hr4 (>> (+ hr3 a3)))
53 (setq lr4 (>> (bit 0 (+ hr3 a3)) lr3)))
54 (t
55 (setq hr4 (>> hr3))
56 (setq lr4 (>> (bit 0 hr3) lr3))))
57 -
58 (setq hout hr4)
59 (setq lout lr4)
60 (setq a sin)
61 (aetq a2 al)
62 (setq a3 a2)
63 (setq a4 a3)
64 (setq aout a4)))

Pigure 3.13 Eultip8c.nac Source File.

59

directly by a register rather than by an adder. Thus, the

output data is valid sooner after the completion of a. clock

cycle than it was in the case of multip8b.

Some room to spare on the ultip8b 4 micron layout

leaves hope that this four stage pipeline algorithm, figure

3.13. may te feasible. In fact, the macpitts layout for
oultil8c measures 8218 x 6140 microns in 5 micron tech-

nology. In 4 micrcn technology the chip measures 6766 x
6024 microns, which consumes almost 94 per cent of the

maximum allowable chi; area. This is a good indication that

the lisit jay in fact have been reached on obtaining any

more elatorate design variations for the multiplier which
can ke fabricated by the standard MOSIS facilities.

I summary of statistics produced by aacpitts for all
the multiplier designs explored in this chapter is given in

table I. Each line represents a different cif file, some of

which may ke derived from the same source file, with the
only difference being the invocation options. The roct of

each entry in the "DESIGN" column corresponds to the name of

a multiplication algorithm introduced previously in this

chapter. To clarify the notation of the "DESIGN" column,

note that the last digit gives the minimum feature size
selected, in microns. Where no digit is explicitly stated,

the minimum feature size is 5 microns.

I. DESIGN VILIDATION

Before proceeding with fabrication it is necessary

to validate the sultip8c4 design by functional simulaticn,

design rule checking and node extraction with subseguent

event simulation.

60

tmo

01-4
mom* 41

alpf14 %a Lfl 0ID %a T- Ln to LA 1
m~ H- Ni I fn~ n n 0

a WPM0 1

14 4JWu 9% 0% %a Q 0' 0' 14I

Mtnl in 9 0 (%4 0% 0% a AV W 0

Mm4 I- CV - q-C 4 4

a4 -E40 . .n 4n . .
*% %a in 0o 0 1) 0 e

.14 agU- toC4c
04 4J 4 . cl co a o I 4

OHU

*~ 0(a

o 14. 0n man 0n 0 0 q 0 '64
q mma4 0 (' I 0 0 0' 1 1 1 .4

H'- 0 ~ oft I C. Colo Ca ga 40 %0 %09

MUP4 1V 4 %0(- 4% r%%DvU) in%* Cso%%0%

64u 646 4 ".

40 0 4J 4 0 41 0 +0 .I.

*~~~O On ah J 1 .M .M J

W 14 *4 *14 1 *4 .4 1 * .,'

0

In any functional simulation the first issue to

address is, "How exhaustive shall the simulation be?" Iruly
exhaustive testing cf multip8c4 is a formidable task, at
best. 7he number of different electrically possible ccmli-
nations of bits for the three input ports--ain, bin and

hin--is
(20)3 224 16,777,216.

7hen, there are four internal pipeline stages.. Therefore,

ideally, every sequence of 4 of these 16,777,216 inputs

should be tested because there should be no restrictions on

the crdering of problems in the pipeline. This ccnsidera-

tion increases the number of possible states to

(16,777,216) 4 = 7.92x1026 states.

Each state transition requires five transitions of the raw

clock, as will be recalled from figure 2.4. It is reason-

able to assume a rau clock frequency of 10 MHz for an NUOS

circuit. For the master-slave flip flops used in MacPitts

this translates to a state transition rate of 2 MHz. From

this assumption the time to cover all states of this circuit

is calculated to be

7.92x1028 states / 2x10' states/sec = 3.96x1022 seconds

3.96xlC22 sec / 8.64x104 sec/day - 4.58x101? days
'.58xlC s , days / 3U5 days/year = 1.26x1013 years

Therefore testing every electrically possible state, even

once, is obviously impractical.

If only each 24 bit input combination were tested

once, withcut regard for the order in which these tests were

conducted, the time required is only

16,77,16 / 2x106 , 8.38 seconds.

It shculd be remembered that, in its intended applicaticn,

the number of expected input combinations to multip8c is

considerably smaller. There are only (255x127) .1 or 32386
possible 7x8 bit multiplication problems. Each of these

will have hin=O on the first chip. The second chip will

62

have cnly one unique set of inputs passed to it by the first

chip for each of these 32386 problems. Therefore, the total

number ol different input combinations of ain, bin and hin

that will ke encountered in actual operation is no greater

than 2x.12386 or 64172. The precise number is somewhat

smaller still because some problems, such as those which

have zero fcr the multiplier or multiplicand, will outFut a

"- zero frca hout in the first chip to him of the second chip

." thus duplicating the first chip set of inputs for scme cther

;roblem.

hen using tte acpitts interpreter to run a func-

tional simulation, at least fifteen seconds must be allowed

for ccputing the changes at each clock cycle. This fact

makes testing even all expected input combinations imprac-

tical. Instead one random problem is chosen: 104 x 22 =

2288. The product 2288 is represented as hout=OOCOlOOO=8,

decimal and lout=11110000240, decimal, since

(256xE)+240=2288. Pigures D.2 through D.6 in Appendix D
show interpreter output files for each of the 8 clock cycles

needed to produce tie result, and a ninth clock cycle to

demonstrate that the output is not subject to unccamanded

changes. Between clock cycles 4 and 5 the inputs were

changed to simulate two chips in cascade. The results are

correct, indicating proper behavior of the specification

algoriths.

A source listing for the program "values" appears in

figure 3.14, together with a sample run using the problem

given above. This program allows generation of the sultiESc
result given any costination of aim, bin and hin values

entered from the terminal keyboard.

2. Desig LWJ2 Qsci aq

The reality of the claim that EacPitts designs are

"correct by construction" can be tested. The aultip8c.cif

63

mainl) /* interactive simultation of multip8c chip 0/

unsigned tnt ain, bin, hin, hout, lout, result;
unsigned int testl, test2, c;
printf ('Type ^C anytime to quit.\n\n');

/* Loop until interupt is signaled from keyboard */
tops

/* Read input values froilkeyboard. */

printf ('Enter bin... ');
scanf ('d', &ain);
printf ('Enter bin...
printf (gEntr hin... =;'

scanf (OWd, fihin);

/* Compute the results: first initialize output registers. *I
lout - bin;
hout w hin;

/* Simulate multip8c algorithm. */
for (c-1; c<=4; c++)

testl - lout & 001;
if (testl -- 1)

hout - hout + ain;
lout - lout >> 1;
test2 bout & 001;
if (test2 -- 1)
lout - lout + 128;

hout - hout >> 1;

/* Put output reister values into concatenated decimal form. /..
result - 256*hout + lout;

/* Display all values on the screen. 0/ -'-

printf ('ainat-4d bin-1-4d hin-t-4d hout-t-4d lout-t-4d result-%-5d\n\n',
ain,bin,hin,hout,lout,result);

goto top;

0*0e0*0000000* SAMPLE RUN ****00ee00000000000

I values
Type ^C anytime to quit.

Enter ain... 104
Enter bin... 22
Enter bin... 0
ain-104 bin-22 hin-0 hout-39 lout-I result=998,

Enter ain... 104
Enter bin... 1
Enter hin... 39
aina104 binal hin-39 hout-8 lout-240 result-2288

Enter ain... ^C%

Piguze 3.14 Values: Program to Copute ultip8c Output.

64

file was checked for design rule errors by running it

through the Stanford "drc" program via "cll" [Ref. 1: pp.
147-151] to reformat the file. The command sequence is:

% cif multir8c.cif -qnq

% cU. multifec.co
S drc multiESc.sco

There are two problems, however, with using drc on this S
design. One is that the design rules used by MacPitt- are

not the standard Read Conway rules [Ref. 2: pp. 47-51], but
are a ccabination of these and the MOSIS design rules which
include burried contacts [ERef. 2: page 133]. Burried

contacts are not reccgnized by "drc." -The other problem is

that the "cif" program does not correctly read .cif files

which use the 200 centimicron lambda dimension--round-off

error is introduced. Therefore, the design rule check can

only te performed or multip8c5, not on aultip8c4 which is
the versicn to be fatricated.

The results of this drc run, thus caveated, produced

2 types cf stated errors, both of which are spurious. One
is a "pcly to diffusion contact separation" error in the

controller where naclitts abuts two contacts, one to poly
and cue to diffusion, but both through the same overlying
metal conductor. The intent of the design rule checker, in

this instance, is to forewarn of the possibility of a short
circuit; a short circuit is in fact the desired result of
this uncrthodox structure. The other stated error is an
"implant surround" error in the register clock. This struc-
ture is flagged because the burried contact to that layer
was ignored by drc. Eased on this non-ideal but only avail-
able ckeck of design rules, it was concluded that the

sulti;8c5.cif file does define processable mask layers. It
is assumed that the sultip8c4.cif file is also processable
because It differs only in scale from sultip8c5.cif, except
for the pads, whose design is supposedly from a standard
library supplied by CSIS.

65

--
' ' "_ " ' '+ " i.. _.'_=" - . -"' "- ..

3. Haag Ixrctc j& jyjj 4M&-LAt ulatigg

The mode extraction program "extractn which is part

of the Stanford VLSI design tools does not accurately inter-

pret .cif files with lambda equal to 200 centimicrons. 4
Fortunately, the "mextra" program, written at Berkeley,2 can
accommodate both 200 and 250 centimicron cif files.

To obtain an extraction and simulation of the
multip8c design in 14 micron size, the corresponding cif

file, sultipecl&.cif was converted to the ".ca" format used
by the Berkeley "caesar" layout editor. Then labels for all
the pads were added to the design using caesar so that
nextra wculd know which nodes are to be accessible fcr moni-

torizig. Before exiting caesar, a new cif file, uul8c.cif,

is written using the caesar command
cif -p zul8c.

The acde extraction is made by issuing the command
5 extra mul8c.

The result of the mextra run is a .sia file suitable for

input to the "esim" event simulator [Ref. 1: pp. 152-155],F
and also a .log file (figure 3. 15) in which is contained-

summary statistics of the extraction.

Window: 0 676600 0 602400
801 depletion

1612 enhancement
1398 nodes

Figure 3.15 lextra .log File for sul~c.cif..

2See Ippendix C.

66

-' -' / " ' - . " - - -"-" -. - : - : : 2 " . :" 7 7 ' ; .q .:.- . 7 -

The silulaticn, using extracts of lul8c.cif was set

up to perform the same tests used in the macpitts inter-

preter session of lultip8c. To do this, two macro files

were created. One defines the three phase clock sequence, 0

declares which nodes to watch, and sets the values of the

inputs to those which simulate the problem 104x22. The

second macro file, which was designed to be read in at the

sidpcint of the simulation, redefines the input values to

ake tke chip perform like the second multip8c unit in the

pipeline. These files are both listed in figure 3.16.

% cat mul8c.macro
K phia 11011 phib 10000 phic 10001
W an atn7 ain6 ain5 ain4 ain3 ain2 ainl ainO
w bin bin7 bin6 bin5 bin4 bin3 bin2 bin. binO
W hin hin7 hin6 hin5 hin4 hin4 hin2 hinl hinO
W hout hout7 hout6 hout5 hout4 hout3 hout2 houtl houtO
W lout lout7 lout6 lout5 lout4 lout3 lout2 louti loutO
W aout aout7 aout6 aout5 aout4 aout3 aout2 aoutl aout0
W clock phia phib phic
h ain6 ains ain3 bin4 bin2 binl
1 an7 ain4 ain2 ainl ainO bin7 bin6 binS bin3 binO
1 hin? hin6 hin5 hin4 hin3 hin2 hinl hinO

% cat aul8c.macro2
h hinS hin2 hinl hinO binO
1 bin7 bin6 binS bin4 bin3 bin2 binl

Figure 3.16 Two eacro Driver Files for Event Simulation. _

The record of a simulation run using these files is

contained in Appendix D. It shows the same correct results

obtained with the macpitts functional interpreter. Note .

however that when the "I" command is given to esim, all the

circuit nodes are initialized to some value over which the

user has no control. Therefore, the values of the output

ports are not meaningful until the fourth clock cycle, even

though they are defined during initialization.

67

0_

7he event simulation result is encouraging evidence

that aclitts can produce, in at least one instance, a mask-

level description that correctly reflects a circuit design

with algorithmic behavior specified by the designer.

Further validation evidence was obtained by performing an

extracticn and event simulation on ultip8c5.cif, the 5

micron version of the multiplier. This extraction could be

done using the Stanfcrd program; the result was the same as

for meztxa. The event simulation produced a correct result

for the same exercise. It was concluded, therefore, that

the design was ready for fabrication.

P. SUNBIR! OF ICTIVIIIES IN TBE IACPITTS DESIGN CYCLE

A reccmmended pattern of steps to follow in the HacPitts

design cycle can be summarized by presenting the sequence of

UNIX ccmmands issued by the designer for a typical case.

this sequence divides into two paths after the cif file is

created, depending cn whether 4 micron or 5 micror minimum

feature size is selected. For the 4 micron option the

caesar/2extra tools must be used. For the 5 micron option

it is more convenient to use extract, a program which reccg-

nizes node labels furnished by MacPitts with the cif user

extension 0.

As a starting pcint, it is assumed that the designer

already has formulated a precise idea of what behavior the

chip is to exhibit, and has translated the behavioral speci-

fication into EacPitts language.

The 5 micron path, using the multip8c.mac source file as

an example, is as follows:

vi multipec.mac

(Create the source file.)

% macpitts sultip8c int herald

68

(Run the interpreter to debug the source file and verify the

functional correctness of the specification. Save states as

desired using the "I" interpreter command, renaming files

from a second terminal keyboard to prevent overwriting.

Quit the interpreter.)

I script

(Start a recording session for the terminal screen.)

macpitts eultip8c 5u herald

(Generate 5 micron multip8.cif and complete design statis-

tics.) ,

my multip8c.cif eultip8c5.cif

(Rename cif file to Iroclaim that it is a 5 micron design.)

ctrl-D

(Sto; the recording session.)

Frint typescript

(Get bardcopy of compiler statistics and heralds.)

% cif multi;8c5.cif -gnq

I cll multi;e8c5.co

% drc lltip8c5.sco

.(Obtain design rules check.)

% extract lultip8c5

(Obtain a node extract.)

% vi multipec5.sym

(Change spelling of VDD and ground node labels to Vdd and

GND, res;ectively.)

I sin multi;8c5

69

.•, ., : . ,

(Obtala the multip8c5.sim file.)

% vi multipec.macrol

(Create one or more testing sequence files for the event

simulator. See the "esim" section of Appendix C for

details.)

S script 0

% esim eultir8c5.sim sultip8c.sacrol

(Perform event simulation of chip.)

S ctrl-D 0.,

p print typescript

% vi multipecS.cif

("Consent out" the user extension 0 lines at the beginning P

of this file by enclosing them all in one set of parentheses

followed by a semicolon. See the "cifplot" section of

Appendix C for details.) A-

% stipple multip8c5.cif (Obtain stipple plot on the

Versatec plotter.)

The 4 micron path, using the same example, contains

exactly the same steps through the interpreter run, then

continues as follows:

% script s

% macpitts oultip8c au herald

(Generate 4 micrcn multip8c.cif and complete statistics.)

% Mv multipec.cif sultipSc4.cif -

(Rename cif file to proclaim that it is a 4 micron design.) - -

% ctrl-D

p rint typescript I..

70

| -

cif2ca aultip8c4.cif

(Convert citf to caesar format. Benign warnings are issued

when user extension 0 lines are encountered.)

% ov project.ca aultipSc4.ca

(Give the top level caesar file a suitable name.)

% caesar multip8c4

(Use caesar to affix labels to each bonding pad, then output

a new cit file using : cif -p cmul8c4. See the "caesar"

secticn of Appendix C for details. Quit ceasar.)

% mextra caul8c4

(Obtain a node extraction.)

S vi aultip8c.macrol

(Testing sequence file (s) is/are identical to the 5 micron

case.)

S script
S esia cmulSc4.sim ultip8c.macrol

(Perform event simulation of chip.)

I ctrl-D
p print typescript

S stipple caul8c4.cif

(Obtain stipple plot on Versatec. There is no need to worry
about user extension 0 it the cif file was created by

caesar.)

71

A. LIICUT RRORS MU INEFFICIENCIES

Appendix E ccntains photographs of an AED 767 color

graphics terminal screen displaying the acPitts chip

layouts for each of the six multipliers discussed. The

presentations were generated by the caesar VLSI circuit

editor [Ref. 61. Examination of these layouts, aided by the

zoom-in feature of caesar, prompts several observations

about RacPitts' perfcrlance.

In any VLSI circuit layout a primary goal is to

cover the available silicon area as densely as possible with
circuitry. A variable, but generally small amount of the
siliccn area within the bounding box of MacPitts layouts is
covered vith circuitry. This is due in part to the rigidity

of the target architecture--requiring the layout of data
path organelles in a strictly linear fashion. The most
serious waste of space in the examples explored, however, is

caused by the inability of HacPitts to install bonding pads

on all four sides of the chip. The left side is never
available for this purpose due to certain algorithmic
simplifications made by the authors of HacPitts [Ref. 16:

p. 13]. A three-sided arrangement of pads stretches the

outline dimensions, ;articularly in designs which specify a
large number of external connections. All of the parti-

tioned multiplier algorithms presented in the previous

chapter--multip8a, sultip8b, and multip8c-are in this

category.

Cne may consider the possibility of filling the

large void above the useful circuitry in multip8c4, for

72

example, with another identical instantiation of the

multirec4 layout, sinus the pads, and thereby produce a

complete 8 tit multiplier on one chip. Eight pads for the

hin port could then also be eliminated. The cell movement

and yank/put commands of caesar would make this operation

possikle with a minimum of drudgery. But the interconnec-

tions ketween the 2 instantiations of the multip8c4 modules
S

would still require tedious manual layout, and would be very

subject to human erxcr. Such hand crafting, minus the

interconnection modifications, was, in fact, attempted.

Appendix E contains a photograph displaying the results of

this effort, named, multip8c4d to denote "double." It

clearly demonstrates that the synergistic use of RacPitts

with caesar is feasitle.

7o pursue the manual editing approach very far would -

be to akandon the basic concept of silicon compilation as

defined from the outset. Nevertheless, editing is required

if one is to obtain efficient use of silicon resources. The

appreciation of siliccn compilers like MacPitts still awaits
a future in which tc perform such manual editing is more

costly (in custom designs intended only for small volume
production) than the silicon area wasted in a suboptimal

layout. One can predict that that future will arrive, just
as it did when the cost of memory hardware dropped thus

solving an analogous Iroblem: whether to waste memory but
write cleaz programs, or conserve memory fully at the cost
of monumental programming effort.

A lack of compactness detracts from more than

economy of producticm, however. There are penalties in

circuit operating speed as well. A closer look at the

details of EacPitts layouts reveals inefficiencies which
directly affect circuit performance. In general, the length
of metal and polysilicon interconnections is much longer

than the minimum an experienced human layout artist would be

73

expected to produce, even when both are limited to using

right-angle (Manhattan) layout rules. For example, all of

the output data bits generated at the far right side of the

data path must be rcuted back to the left along the entire

length of the data path, then up (or down), over to the

right again for the entire length of the data path, and

finally down (or up) again to reach the bonding pads. In

the multip8c4 layout, HacPitts uses wire runs of up to 18 m n

to route data bits fros their sources to their bonding pads

which, in scme cases are less than 1 am direct distance from

the source. The protlem lies in the inability of Racfitts

to jump over the metal power/ground bus frame in making
connecticns from the data path to bonding pads. This

PI . .IGUD ainl -

DATA PATB aout3 PIN 30
o aout3

PIN 53 PIN 52 see
TED phic I

Figure 4.1 Data Path Ouput Routing.

problem is illustrated in figure 4.1. The experienced user
can belp equalize interconnection lengths somewhat by

74

-7 7:

assigning output ports only to the lowest and highest

numbered pins.
RacPitts, therefore, requires that the user provide

a functicnal specification which is enlightened by knowledge

of the' layout limitations if optimum performance is to be

obtained. This is an area for improvement in pursuit of the

silicon compiler ideal.

another layout problem is more difficult to deal .

with: the excessive length of wiring between the control

unit and the data path. This could be improved by centering

the control unit under the data path, which would require

changing the acpitts source code in some undetermined way.

As currently written, RacPitts always begins the control

unit at the left margin.

There are also many instances of dead-ended wires in

acPitts layouts. These "roads to nowhere" occur when

BacPitts extends runs beyond the last point of interconnec-

tion. They occur most frequently on the organelles, not all

of whose capabilities may be used by the behavioral specifi-

cation in a given instance. This appears to be a result of

an attempt to use the sane organelle for as many different

applications as possible, apparently to control the size of . -

the library. Untrimed wires of this variety certainly add

to inter-node capacitance, although not to the extent that

inefficient routing dces. Nevertheless, they surely reduce
the cperating speed of the circuit, and make operation

noisier and perhaps less reliable at high frequencies.

2.

In addition to the layout inefficiencies described,

there is another problem with Racpitts layouts. At least

one input file has been knon to produce a layout containing

a fatal error. Kelly ERef. 19J attempted to use RacPitts to

produce a butterfly switching element chip. His design

75

:: :::: : :- ------============--c- fl.-., :: :

(called kchip2) has a much simpler data path than the

- ulti;Sc pipeline multiplier, but it has a larger control
unit. It also includes some finite state machine sequencer

* units which serve tke independent processes he uses in the
" design. These are laid out to the right of the data path.
- The Bacitts designed layout of this circuit places a direct

short circuit across the 3 clock bus lines. A picture of
the portion of the chip where the error occurs is included
in Appendix E. The problem arises because the clock tus
contains "vias" where it must be extended from the data path

to horizontally adjacent elements in the design. These

"vias" allow the metal bus lines to cross vertical metal
frame power or ground lines via a brief transition to the
polysilicon layer, then back to the metal layer. MacPitts,
however, apparently does not check for the presence of any
intersecting vertical polysilicon runs to the control unit
which say be placed at the same horizontal coordinate as the
clock tus vias. None of the sultip8 series of designs has
any ccntzol lines entering the extreme right end of the data

• path. Therefore, the vias are safe, and the problem dces
, not occur. It is interesting to note, however, that

HacPitts still extends the clock bus well to the right
beyond the point of last use , and includes a dead-end set

• .of vias to jump over the data path frame, even though there
is no need for that extension in the sultip8 family of
designs. It may be concluded from these observations that
this problem is latent in all MacPitts designs, and one
would do well to examine the control unit wiring in the
vicinity of the clock bus at the right end of all frames.
Caesar can te used, it necessary, to adjust the local wiring
slightly to route the offending control line away from the
clock vias.

76

"" B. OUG4IRLRES VS. SIINDARD CELLS

This section briefly examines some comparative aspects
of the Stanford standard cell approach used by Newkirk and
lathews [Ref. 20] and the organelles used in EacPitts.

" . Bcth standard cells and organelles are laid out as tit

* sliceo. It was hoped that there would be a one-to-one func-

tional correspondence between at least some of the cata-

logued standard cells and the organelles which could form a

basis for comparison. Unfortunately, there is very little
functicnal correspondence, let alone structural correspon-
dence, ketween the two. The standard cells contain only
dynamic storage elements, and use a 2 phase clock. The
BacPitts organelles use a 3 phase clock, and the only memory
elements available are static master-slave flip-flop regis-
ters. The standard cells are designed for matched pitch.
That is, they can be directly abutted, in many cases, to
form full length words and arrays. Organelles, on the ctber
hand, generally require some margin around them for inter-
connections (called "river routing") which apparently must
be slecifically tailored for each instantiation of the
organelle.

It was hoped that at least the MacPitts adder organelle,
which is simply a standard asynchronous full adder made

entirely from NOR gates, could be compared with something
from the standard cell library. The most similar standard
cell in the catalogue is an adder/subtractor (Ref. 20:

p.10] which is based on the O2 arithmetic logic unit

Clef. 2: pp. 145-181]. This cell is much more flexible,
yet also more specialized, than the HacPitts adder. It is
capable of a full range of boolean operations, not just
addition, as determined by the values on two 4 bit control

port lines which are threaded through the cell. It also

differs from the organelle in that its operation is clocked.

77

I "1

Ilthcugh a comparison based on size hardly seems meaningful

for these two dissimilar units, it is noted that the crga-

nelle measures 250 x 40 lambda units using measurements

taken fzcm actual layout plots, The standard cell adder

measures 211 z 32 lastda units as specified in'[Ref. 20: p.
11]...:...

The HacPitts static register organelle has no functional

parallel in the standard cell library for the reasons

mentioned above. It measures 64 x 30 lambda units,

excluding the clcck tuffer unit which contains a load enable

line affecting all tke bits in the same register. The stan-

dard cell dynamic shift register bit measures 88 x 24 lambda
units, and contains a selector input line for each bit of

the register built fzcm these cells.

C. SCFTUIRE INCONPIEIBILIT IES

The authors of lacPitts have extended the CIF language

to make "0" at the beginning of a line indicate that the

rest cf the line contains the coordinates of a node, the
mask layer to which it applies, and a label name for that

node. This is a useful feature with the Stanford node
extracticn programs which recognize this label device and

use it automatically to make the node accessible to simula-

tion programs simply ty calling its name. This extension of

CIF is unknown to the Berkeley VLSI tools. The latter use

another CIP extension--9g4"--to flag node labels.

7I
78 .":..:

I_

0

1. SUIBJII."

This thesis has described silicon compilers, and demon-

strated how the NacPitts silicon compiler can be employed to B

design a digital pipelined multiplier using a partitioning

concert.

Shcrtcosings of this silicon compiler have been found

which make the results produced by it inferior in some ways

to those produced by practiced designers. These shortcom-

ings may be outweighed, for some applications, by the reduc-

tion in design time. The functional correctness of the

RacPitts multiplier design has been demonstrated to the .

extent allowed by available simulation tools. Otter

HacPitts designs may contain errors which can be edited out

with relative ease.

The user of MacPitts can affect the output of the compi-

laticn pzocess in two meaningful ways. First, it may be
possitle to write the behavioral specification algorithm to

allow partitioning of the design among more than one chip.

This pcssikility shculd be explored when layout size is a

problem. Second, proper assignment of pins can reduce the
worst-case length of Fin pad wiring.

Racpitts has been found compatible, except in a few

cases, with other VLSI design tools at NPS. The caesar VISI

editor has been particularly useful, along with the cifplot

stipple Ilctter, in gaining insight into the processes

empleyed by HacPitts in producing a layout.

Although the final multiplier design was submitted for

fabrication, unexpected delays in production schedules

precluded testing tke finished product as part of this

research.

79

S

B. RICOEEINDATIOIS

The following reccmmendations should be considered:

1. lest the multiplier chips, when they become available,

using the event simulation macros and as many other input

combinations as facilities allow. Single-cycle testing

should be dcne before dynamic testing is undertaken using a

direct memory access tester.

2. Dissect RacPitts designs with caesar, saving in separate

cif files useful symbols to add to the local VLSI library.

Symbols such as pad frames or entire data path units may be .

of interest.

3. nrite new organelles for the HacPitts library. A carry-

look-ahead adder would be a useful addition.

4. Enlarge the capabilities of MacPitts to produce designs

in a CHOS technology. This would involve not only writing

new data path organelles, but modifying the control unit

architecture, as well.

5. obtain a capability locally to handle file transfers

over the AEPANET/9ILU!T system.

s-
• -

80'"

INSTAZLITION OF NICPITTS O VAX-11/780 UNDER UNIX 4.1 IND

4.2

A. INSTLLITION UND21 UNIX 4.1 OPERATING SYSTEM

MacPitts is distributed as a collection of discrete

source code files written in the "C" programming language

and in Franz Lisp Opus 38. Also included in this distribu-
tion are two library files containing the bonding Fad a
layouts in CIF, and a library file containing the standard
organelles. The complete list of files is given in table II
These files are located in the directory /vlsi/sacpit under --

cwnershi; of vlsi.

All of the operations necessary to build macpitts are

sequenced by the "Makefile," a feature of the UNIX operating
system that directs the automatic compilation and assembly -

of source programs tc produce large software modules.

Building an executable version of the macpitts program

reguixes that each source file be first compiled by the
"liszt" lisp compiler or the "cc" compiler, as appropriate.

The pads.l file is a lisp source which is actully generated
by ancther lisp source. The latter source, padgen.l,

filters the bonding Fad CIF information contained in the

rinout and pads20 files, and produces pads.l, a list of
bonding pad information in the standard syntax of Franz

Lisp. Pads.l is then "liszt'ed" (compiled) to produce the

pads.o object file. The next step of the process fast-loads

all of the compiled object files, linking them together in a

single lisp "environzent." Finally, the default settings

for all the nacpitts options invoked at run time are over-
layed. It is this linked lisp environment, with the

81 -

TABLE II.

NacPitts Source Files

Makefile - a makefile used to build
the complete EacPitts system

15.1 - layout language used by macpitts
to generate CIF ct

- next 13 files are the lisp
source code for RacPitts

ccntxol .1
data-path.l - bas built-in organelles
defstructs. 1
eztract.1

ra .. layout of obj file starts here
front-page.l
gene al.l
interpret.l - interactive interpreter
ordero.
pads.1 - created during "make macpitts"
prepass.l - execution starts here

oadgen.l - makes jads. I from next 2 files
in ut - Stanfo d Cell Library pads
rad2Cb - MOSIS 2.0 micron pads
library - standard macro function, test,

- and oriqanelle library
organelles.l - c~spiled portioh of organell e library
linccln.1 - the lincoln Laboratory lisp environment
c-routines.c - interfaces to operating system
macpitts - dumped RacPitts environment

defaults set, which is finally dumped as the binary execu-
table module: macpitts. To repeat: this entire process is

performed automatically by the Makefile.

Because this duzped lisp environment embodies all the
built in functions of Franz Lisp, as well as the functicns
of macpitts, it contains a very large number of lisp func-

tions. To accommodate all these functions, the Franz Lisp
compiler jUst be done over with new values for the parame-
ters HAIPS and TRIATS which set the maximum number of

L

82

functions and functica table entries allowable. Also, the

;adgen.l file uses the "untyi" function of the Franz Lisp

OPUS 38 fast loader which permits insertion of a single

character in the input buffer string. The "untyi" is not a
part of the Franz lisp opus 36 source supplied with UNIX
4.1. Therefore, when Franz Lisp is remade with the new

UZFIS and IRENTS values, the Nuntyi"l function must te added
to the f ast loader source code. The steps to accomplish a

remake of Franz Lisp are as follows:

* In the file /usr/src/Cud/lisp/franz/sysat.c add the

foliwing line tc the group of BK declarations:

ON (funtyi I, Luntyi, lambda);

* Is the file /usr/src/cmd/lisp/franz/h/lfuncs.h add the

fcllowing line to the group of lispval declarations:

lispval Luntyifl

o in the file /usr/src/cad/lisp/franz/laa6.c

append the following code segment:
lisp val

Lunthi 0

lispval port,ch;

Fort - nil;

switch (np-lb ct)

case 2: port a lbot[1 J.val
case 1: oh -lktt[J0val;

break;

default:

argerr('untyi')

If (TYPE ch) I= IT J
errorh(Vernisc, "untyi: expects finum character"*

nil,False,),,ch)

83

ungetc((int) ch->i, okport (port,okport (Vpiport->a. clb,

stdin)));

return (ch);

e In the file /usrsrc/cad/llisp/franz/nfasl.c

change the value cf MAXPNS to 10000.

* In the file /usr/src/cd/lisp. franz/h/structs. b

change the value cf TRENTS to 1024.

* Do a "make all" from the directory./usr/src/cad/lisp.

Franz Lisp is now ready to compile AacPitts. The next step

*is to correct and modify the source code for Macpitts itself.

* In the file /vlsi/aacpit/c-routines.c add these

lines at the beginning:

#define VPRINT 0100

#define VPLOT 0200

#define VPRIITPIOT 0400

#define VGRTSTITE (('v'<<8)I0

#define VSETST17E ((''<<8) 11

* In the same file add the following lines after line 188:

static ant plotmd[- VELOTOO ; 0

static Ant prted[3 = PI NT, 0, ;

* In the same file change line 199 to:
ioctl (plotter, ISE7STATE, ;lotad);

* In the same file change line 207 to:

ioctl (plotterVSTSTAT,*prtmd);

e In the file /vlsi/aacpit/lakefile change line 5 to:

HacPitts * /vlsi/sacpit/bin/macpitts

e In the same file change line 83 to:

(lead 'interpret.l)\

84-

" In the same file change line 84 to:

(setg macpitts-directory '/vlsi/macpit)% -

" In the same file change line 87 to:

(setg option list '(opt-d opt-c stat obj cif nologo))\

" In the same file change line 94 to;

mv sacpitts S(BacPitts) .

" In the file /vlsi/macpit/interpret.1 change line 18 to

(setq library (get-litrary)

" In the file /vlsi/macpit/lincoln.l change line 1093 to

(cfasl 'I/vlsi/macpit/c-routines.o -icurses -ltermcap|

After making these changes, macpitts is ready to "ake.

Type "make macpitts." All the files will be compiled,

linked, loaded, and then dumped as a complete macritts lisp

environment. This takes about 45 minutes on a lightly

loaded system. Next type "make install." This command

simply moves the dumped executable module into the directory p...
/vlsi/macpit/bin. low type "make clean" to remove all the

lisp object files that are no longer needed. The size of

the macpitts executable module is 1384704 bytes. Finally,-

any user of macpitts should add the directory /vlsi/sacpit/

bin to the path list in the .login file in his home

directory.

B. IISTALIATION UNDER UNIX 4.2 OPERATING SYSTEN

The acpitts generated on a UNIX 4.1 system will not run
under UNIX 14.2. 7bis is because the system calls are

different. The version of Franz Lisp supplied with UNIX 4.2

is OPUS 38, which already includes the "untyi" function.

Therefore it is jS necessary to modify the sysat.c,

lfuncs.h, cr la6.c files. It is necessary, however, to

85

7- . -k.

S

increase the MAXPNS and TRENTS values just as in the case of

a UNIX 4.1 installation. For 4.2 these parameters are found

in the files /usr/src/ucb/lisp/franz/fasl.c and /usr/src/
ucb/lisp/franz/h/structs. h, respectively. After making
these two changes, change directories to /usr/src/ucb/lisp,

enter super-user, and issue the command "lispconf." This

starts up an.interactive program which allows you to specify .

the type of machine cr which Franz Lisp is being installed.
The answers to the questions posed by this script will be
obvious if you are tsing a VAX computer running UNIX 4.2.
Next issue "make fast- from the same directory and the lisp
system will be generated. This step takes about 2 hours on
a lightly loaded machine. After this is done, issue "make
install" to move the files into the standard system directo-
ries.

The 4.2 operating system also contains another bug that
will prevent the acpitts interpreter from running. In the
file /usr/src/usr.lit/libterm/tputs.c change OSPEED to
TOSP11D everywhere it occurs. Then recompile tputs.c This
is tc avoid multiple definition of OSPEED in this file and
in ancther file, /usr/src/usr. lib/libcurses/cr tty.c.

The sodifications to the RacPitts source code itself are
the same as those required for a UNIX 4.1 installation, with
the follcwing exception and addition:

.In the file /vlsi/macpit/iakefile it is not necessary
to change line 83. This line should remain: -

(fasl 'interpret)

Opus 38 of Franz Lisp, unlike Opus 36, complains if
parameters declared in a functional definition are
not used in the definition itself. The MacPitts
source code contains an instance of this malpractice.

Ibezefore, in the file /vlsi/macpit/frame.l
ch;,ige line 1338 to:

86

• -.-

,- :. .:.-

(l aabda (pad)

The process of "make macpitts" is done the sane as for

UNIX 4.1, but the results are somewhat different. Franz

lisp issues warnings during compilation whenever an expres-

sion is emccuntered ihich does not have the proper number of

parameters immediately available. These warnings cccur

frequently when maclitts is made under UNIX 4.2. This

happezs because the macpitts source code is contained in

many separate files, each of which may have external refer-

ences that remain unresolved until the object modules are

all lcaded and linked together. These warnings have no p
effect on the quality of macpitts produced, but their

delivery does consume cpu time. As a result, it takes

approximately 90 minutes to "make macpitts" under UNIX 4.1.

The final Iacpitts executable is 1567888 bytes long in Opus

38 on 4.2. Finally, remember to add the /vlsi/macpit/tin

directory to the path list in the ologin file in your hcme

directory.

87

INST1I1LTICN OP THE CIESIR VLSI EDITOR UNDER UNIX 4.1' ND
4.2

A. INSTAIIiTION UNDER UNIX 4. 1

The caesar VLSI circuit editor is one of many programs

contained in the distribution of 1983 VLSI C.A.D. tools from

U. C. Berkeley. The distribution tape is loaded, in its

entirety, in the directory /vlsi/berk83 under ownership of

vlsi. Before installing the tools, perform the following:

1. Have the system programmers create a new user,

"sleeper," with password "caesar," and home directory
/vlsi/berk83/bin. Create a ".login" file in /vlsi/ .

berk83/bin which consists of only the following two

lines:
sleeper

logout

This step allows the use of a graphics tablet to Fosi-

ticn the cursor in caesar, an important facility.

2. Have the system programmer create another new user,

"cad" with the password close-held, and home directory

/vlsi/berk83. This step resolves the many references

to ""cad" which are scatered throughout the distribu-

ticn tape.

3. In the file /vlsi/berk83/man/tmac.anc replace every

occurrence of the string -cad with the string /vlsi/

berk83.

4. Edit the file /vlsi/berk83/lib/displays tc contain

oaly the following one line:

/dev/tty22 /dev/tty20 std AED767

88

-.- . -,-..... .. . --- ---. , -- -""- 1

5. Edit the file /vlsi/berk83/src/caesar/config.c to

replace every occurrence of the string cad with the
string /vlsi/brk83..

6. in the file /vlsi/berk83/src/caesar/aain.c find the

single "return" statement in the procedure
OnaCcmuand.N Just before that statement, add a line

coataining the statesent "GrFlush (); ".

7. in the file /vlsi/berk83/src/aakevhatis.csh remove the

string "man'" from line 8.

Icw proceed with the installation by issuing the
following commands. Allow each command to-run to completion
before issuing the next. Completion is indicated by the
return of the system Erompt, M"

cd /vlsi/berk83/src/caesar
sake
my caesar /vlsi/berk8 3/bin/caesar
ra *.o

src/makewhatis .csh

This cmpletes the installation of caesar, mextra, cadsan,
and cif2ca. There are other programs on this distribution
for which the foregoing procedure should have also been
sufficient to achieve a satisfactory installation, but theise .

remain untested.
finally, any user of these tools should add the direc-

tory /vlsi/berk83/bin to the path list in the .login file of
his bce directory.

B.. INSTILLATION UNDIR 2HE 0111 4.2 OPERATING SYSTEM

The Unix 4.2 operating system uses timing and interrupt
calls which differ significantly from those used by Unix

89

4.1. Therefore, because caesar makes extensive use of these

calls* the tool as installed for 4.1 will not run under 4.2.

I different distribution tape has been written for the

Berkeley 1983 design tools under UNIX 4.2. Installation of

this distribution proceeds in the same way as the 4.1

distritution except that step 6 is unnecessary. The bug

that this step corrects has already been corrected on the

4.2 distribution tape.

It is also necessary to change a line which occurs in
five files in the directory /vlsi/berk83/src/caesar

frcm #include <time. h>
to #include <sys/time.h>

The five files affected are main.c, aed4.c, onega4.c,

ramtek4.c and vect4.c.

Now procied with the installation by issuing the

following ccaands: Z....
.cd /vlsi/berk 83/src/caesar

make

my caesar /vlsi/berk83/bin/caesar
ru **"

cd

src/makewhatis.csh

Finally, add the directory /vlsi/berk83/bin to the path

list in the .logiu file in your home directory.

90

* :iL':1

&uzim
AIPEND- .9

NANUAL PAGES FOR BERKELEY DESIGN TOOLS

An online operator's manual exists for all of the VLSI

design tools in the 1983 distribution from Berkeley.

Inf-orzation on the use of any of these can be made to arpear

on the terminal screen by issuing"

cadman <program>

vhere <program> can be cad man, caesar, cif2ca, ciftlot, .

esix, nextra, or any of the other programs in that distribu-

tion. Cnly those pages affecting tools used in this silicon

compiler research are reproduced in this appendix.

Note that the cadman program is contained in the direc- . -

tory

/vlsi/be rk 83/bin

Therefore either include this directory in the search path

of your ".loginH file or invoke cadman by the full rcoted

command:

/vlsi/berk83/bin/cadman <program>.

91
...............--------.

CADMAN(l) CAD Toolbox User's Manual CADMAN ()

NAM4E
cadman - run off section of UNIX manual

SYNOPS IS
cadman [-] [-t] [section] title

DESCRIPTION
Cadman is a program which prints sections of the cad manual.
Slection is an optional arabic section number, i.e. 3, which
-aybefollowed by a single letter classifier, i.. lm indi-

cating a maintenance type program in section 1. It may also
be "cad', "new'', "Junk', or "public''. If a section
specifier is given cadman looks in the that section of the
cad manual for the given titles. If section is omitted, cad-
man searches all sections of the cad manual, giving prefer-
ence to commands over subroutines in system libraries, and
printing the first section it finds, if any.

If the standard output is a teletype, or if the flag - is
given, then cadman pipes its output through ssp(l) to crush .
out useless blank lines, ul(l) to create proper underlines
for different terminals, a-d through more(l) to stop after
each page on the screen. Hit a carriage return to continue,
a control-O to scroll 12 more lines when the output stops.

The -t flag causes cadman to arrange for the specified sec-
tion to be troff'ed to the Versatec.

FILES
cad/doc/cadman/man?/*

SEE ALSO
Programmer's manual: more(l), ul(l), ssp(l), man(l), appro-
pos(l)

BUGS
The manual is supposed to te reproducible either on the pho-
totypesetter or on a typewriter. However, on a typewriter
some information is necessarily lost.

2-92 :- :

, -7 -- . . -7 7, -- ,-
.

. I- . . - . -.. - .- . • - . -- , I . -_ _. .: -.o 7 . -. 'I .. .q . ..q %

I.".

CAESAR(l) CAD Toolbox User's Manual CAESAR(l)

NAME
caesar -VLSI circuit editor

SYNOPSIS
caesar [-n -g graphics port -t tablet port -p path -m
monitor type -d display-type] [file T

DESCRIPTION
Caesar is an interactive system for editing VLSI circuits at
thelevel of mask geometries. It uses a variety of color
displays with a bit pad as well as a standard text terminal.
For a complete description and tutorial introduction, see
the user manual "Editing VLSI Circuits with Caesar* (an on- b..

line copy is in "cad/doc/caesar.tblms).

Command line switches are:

-n Execute in non-interactive mode.

-g The next argument is the name of the port to use for
communication with the graphics display. If not speci-
fied, Caesar makes an educated guess based on the ter-
minal from which it is being run.

- The next argument is the name of the port to use for
reading information from the graphics tablet. If not
specified, Caesar makes an educated guess (usually the
graphics port).

-p The next argument is a search path to be used when
opening files.

-m The next argument is the type of color monitor being
used, and is used to select the right color map for the
monitor's phosphors. "std* works well for most moni-
tors, Opalew is for monitors with especially pale blue
phosphor.

-d The next argument is the type of display controller
being used. Among the display types currently under-
stood are: AED512, UCB512 (the AED512 with special
Berkeley PROMs for stippling), AED767, AED640 (an
AED767 configured as 483x640 pixels), Omega440, R9400,
or Vectri.,

AWhen Caesar starts up it looks for a command file with the
name ".caesarl in the home directory and processes it if it
exists. Then Caesar looks for a .caesar file in the current
directory and reads it as a command file if it exists. The
.caesar file format is described under the long command
source.

93

CAESAR(l) CAD Toolbox User's Manual CAESAR(l)

You generally hAve to log in on the color terminal under the
name 'sleeper" (password "caesar"). This is necessary in
order for the tablet to be useable. Sleeper can be killed
by typing two control-backslashes in quick succession on the
color display keyboard (on the AED displays, control-
backslash is gotten by typing control-shift-L.)

The four buttons on the graphics tablet puck are used in the
following way:

left (white) (#2)
Move the box so that its fixed corner (normally lower-
left) coincides with the crosshair position.

right (green) (#4)
Move the box's variable corner (normally upper-right)
to coincide with the crosshair position. The fixed
corner is not moved.

top (yellow) (#1)
Find the cell containing the crosshair whose lower-left
corner is closest to the crosshair. Make that cell the
current cell. If the button is depressed again without
moving the crosshair, the parent of the current cell is

i made the current cell,

bottom (blue) (3)
Paint the area of the box with the mask layers under-
neath the crosshair. If there are no mask layers visi-
ble underneath the crosshair, erase the area of the
box.

SHORT COMMANDS
Short commands are invoked by typing a single lett.er on the
keyboard. Valid commands are:

a Yank the information underneath the box into the yank
buffer. Only yank the mask layers present under the
crosshair (if there are no mask layers underneath the
crosshair, yank all mask layers and labels).

c Unexpand current cell (display in bounding box form).

d Delete paint underneath the box in the mask layers
underneath the crosshair (if there are no mask layers
underneath the crosshair, the delete labels and all
mask layers).

e Move the box up 1 lambda.

94

- .. ----.

t

CAESAR (1) CAD Toolbox User's Manual CAESAR (1)

p

g Toggle grid on/off.

1 Redisplay the information on both text and graphics
screens.

q Move the box left 1 lambda. 57
r Move the box down 1 lambda.

s Put back (stuff) all the information in the yank buffer
at the current box location. Stuff only information in
mask layers that are present underneath the crosshair
(if there are no mask layers underneath the crosshair,
stuff all mask layers plus labels). ",

u Undo the last change to the layout.

w Move the box right one lambda.

x nexpand all cells that intersect the box but don't
contain it.

z Zoom in so that the area underneath the box fills the
screen.

C Expand current cell sn that its paint and children can
be seen.

K Expand all cells that intersect the box, recursively,
until there are no unexpanded cells intersecting the
box.

Z Zoom out so that everything on current screen fills the
area underneath the box.

5 Move the picture so that the fixed corner of the box is
in the center of the screen.

6 Move the picture so that the variable corner of the box.
is in the center of the screen. L

-L Redisplay the graphics and text displays.

Repeat the last long command.

LONG COMMANDS

Long commands are invoked by typing a colon character (":0).
The cursor will appear on the bottom line of the text termi-
nal. A line containing a command name and parameters should
be typed, terminated by return. Each line may consist of
multiple commands separated by semi-colons (to use a colon

95

-- '... -. ... -.. . : .:--• . .-- : ._ . - . -

RD-R146 328 APPLICATION OF A SILICON COMPILER TO VLSI (VERY LARGE 2/2
SCALE INTEGRATED CI..(U) NRVRL POSTGRADUATE SCHOOL
MONTEREY CR D J CARLSON JUN 84

UNCLASSIFIED F/G 912 NLEmmmhhhhmhhhlmomhEmhohI-EEi
*IIfl**IIIIIfl

11111 ~a 128

Hma

11111 111-7

MICROCOPY RESOLUTION TEST CHART

.'.:

CAESAR(l) CAD Toolbox User's Manual CAESAR(1)

as part of a long command, precede it with a backslash).
Short commands may be invoked in long command format by
preceding the short command letter with a single quote.
Unambiguous abbreviations for command names and parameters
are accepted. The commands are:

align <scale>
Change crosshair alignment to <scale>. Crosshair .posi-
tion will be rounded off to nearest multiple of
<scale>.

array <xsize> <ysize>
Make the current cell into an array with <xsize>
instances in the x-direction and.<ysize> instances in
the y-direction. The spacing between elements is
determined by the box x- and y-dimensions.

array <xbot> <ybot> <xtop> <ytop>
Make the current cell into an array, numbered from
<xbot> to <xtop> in the x-direction and from <ybot> to
<ytop> in the y-direction. The spacing between array
elements is determined by the box x- and y-dimensions.

box <keyword> <amount>
Change the box by <amount> lambda units, according to
<keyword>. If <keyword> is one of "left*, right,
"up", or "down', the whole box is moved the indicated
amount in the indicated direction. If <keyword> is one
of wxbot*, Oybot=, Oxtop", or "ytop*, then one of the
coordinates of the box is adjusted by the given amount.
<amount> may be either positive or negative.

button <number> <x> <y>
Simulate the pressing of button <number> at the screen
location given by <x> and <y> (in pixels). If <x> and
<y> are omitted, the current crosshair position is
used.

cif -sblpx <name> <scale>
Write out a CIF description of the layout into file
<name> (use edit cell name by default; a ".cif* exten-
sion is supplied by default). <scale> indicates how
many centimicrons to use per Caesar unit (200 by
default). The -s switch causes no silicon (paint) to
be output to the CIF file. The -b switch causes bound-
Ing boxes to be drawn for unexpanded cells. The -1
causes labels to be output. The -p switch causes a CIF
point to be generated for each label. The -x switch
causes Caesar not to automatically expand all cells
(they are expanded by default).

cload <file>

96

* ... "..

CAESAR(l) CAD Toolbox User's Manual CAESAR(i) J

Load the colormap from <file>. The monitor type is
used as default extension.

clockwise <degrees> [y]
Rotate the current cell by the largest multiple of 90
degrees less than or equal to <degrees>. <degrees>
defaults to 90. If the command is followed by a "y"
then the yank buffer is rotated instead of the current
cell.

colormap <layers>
Print out the red, green, and blue intensities associ-
ated with <layers>.

colormap <layers> <red> <green> <blue>
Set the intensities associated with <layers> to the
given values.

copycell
Make a copy of the current cell, and position it so
that its lower-left corner coincides with the lower-
left corner of the box.

csave <file>
Save the current colormap in <file> (the monitor type
is used as default extension).

deletecell
Delete the current cell.

editcell <file>
Edit the cell hierarchy rooted at <file>. A ".caw
extension is supplied by default. If information in
the current hierarchy has changed, you are given a
chance to write it out.

erasepaint <layers>
For the area enclosed by the box, erase all paint in
<layers>. If <layers> is omitted it defaults to 1*Il.

fill <direction> <layers>
<direction> is one of "leftO, *right", "up', or "down*.
The paint under one edge of the box (respectively, the
right, left, bottom, or top edge) is sampled; every-
where that the edge touches paint, the paint is
extended in the given direction to the opposite side of
the box. <layers> selects which layers to fill; if
omitted then a default of O*w is used.

1 us hc l1
Remove the definiticn of the current definition from
main memory and reload it from the disk version. Any

97

CAESAR(1) CAD Toolbox User's Manual CAESAR(1)

changes to the cell since it was last written are lost.

getcell <file>
This command makes an instance of the cell in <file> (a
.ca" extension is supplied by default) and positions

that instance at the current box location. The box
size is changed to equal the bounding box of the cell.

gridspacing
The grid is modified so that its spacings in x and y
equal the dimensions of the box. The grid is set so
that the box falls on grid points.

gripe
.The mail program is run so that comments can be sent to
the Caesar maintainer.

height <size>
The box's height is set to <size>. If <size> is pre-
ceded by a plus sign then the fixed corner is moved to
set the correct height; otherwise the variable corner
is moved. <size> defaults to 2.

identifycell <name>
The current cell is tagged with the instance name given
by <name>. This feature is not currently supported in
any useful fashion. <name> may not contain any white p
space.

label <name> <position>
A rectangular label is placed at the box location and
tagged with <name>. <name> may not contain any white
space. <position> is one of "centers, "left', *right",
"tops, or *bottom*; it specifies where the text is to
be displayed relative to the rectangle. If omitted,
<position> defaults to stop'.

lyra <ruleset>
The program "cad/bin/lyra is run, and is passed via
pipe all the mask features within 3L of the box. The
program returns labels identifying design rule viola- S
tions, and these are added to the edit cell. If
<ruleset> is specified, it is passed to Lyra with the
-r switch to indicate a specific ruleset. Otherwise,
the current technology is used as the ruleset.

macro <character> <command>
The given long command is associated with the given
character, such that whenever the character is typed as
a short command then the given command is executed.
This overrides any existing definition for the charac-
ter. To clear a macro definition, type ":macro

98

CAESAR(l) CAD Toolbox User's Manual CAESAR(l)

S

<character>, and to clear all macro definitions, type
* :macro"

mark <markl> <mark2>
The box is saved in the mark given by <marki>. <markl>
must be a lower-case letter. If <mark2> is specified, S
the box is changed to coincide with <mark2>.

movecell <keyword>
The current cell is moved in one of two ways, selected
by <keyword>. If <keyword> is sbyposition', then the
cell is moved so that its lower-left corner coincides
with the lower-left corner of the box. This also hap- P
pens if no keyword is specified. If <keyword> is
"bysize*, then the cell is displaced by the size of the
box (this means that what used to be at the fixed
corner of the box will now be at the variable corner).

paint <layers>
The area underneath the box is painted in <layers>.

path <path>
The string given by <path> becomes the search path used
during file lookups. <path> consists of directory
names separated by colons or spaces. Each name should
end in /. p

peek <layers>
Display all paint underneath the box belonging to
<layers>, even for unexpanded cells and their descen-
dants.

popbox <mark>
If <mark> is specified, then the box is replaced with
the given mark. Otherwise the box stack is popped and
the top stack element overwrites the box.

pushbox <mark>
The box is pushed onto the box stack. If <mark> is
specified then it is used to overwrite the box, other-
wise the box remains unchanged.

put <layers>
The yank buffer Information in <layers> is copied back
to the box location. If <layers> is omitted, it
defaults to **Sl.

quit If any cells have changed since they were last saved on
disk, the user is given a chance to write them out or
abort the command. Otherwise the program returns to
the shell.

99

I..

-7.

CAESAR(1) CAD Toolbox User's Manual CAESAR(1)

reset
The graphics display is reinitialized and the colormap
is reloaded.

return
The current subedit is left, and the containing edit is
resumed.

savecell <name>
If <name> is specified then the current cell is given
that name and written to disk under the name (a 0.ca"
extension is supplied by default). If <file> isn't
specified then the cell is written out to the disk file
from which it was read.

scroll <direction> <amount> <units>
The current view is moved in the indicated direction by
the indicated amount. <direction> must be one of
"left", "right", *up', or "down", <amount> is a
floating-point number, and <units> is one of wscreensu
or *lambda'. <units> defaults to *screens", and
<amount> defaults to 0.5.

search <regexp>
Search labels and bounding boxes underneath the box for
text matching <regexp>. See the manual entry for ed
for a description of <regexp>. Push an entry onto the
box stack for each match. Even unexpanded cells are
searched.

sideways [y]
Flip the current cell sideways (i.e. about a vertical
axis). If the command is followed by a 'y" then the
yank buffer is flipped instead of the current cell.

source <filename>
The given file is read, and each line is processed as
one long command (no colons are necessary). Any line
whose last character is backslash is joined to the fol-
lowing line.

subedit
Make the current cell the edit cell, and edit it in
context.

technology <file>
Load technology information from <file>. A O.techo
extension is supplied by default.

upsidedown ty]
Flip the current cell upside down. If the command is
followed by a *y* then the yank buffer is flipped

100

CAESAR(l) CAD Toolbox User's Manual CAESAR(l)

instead of the current cell.

usage <file>
Write out in <file> the names of all the files contain-
ing cell definitions used anywhere in the design
hierarchy.

view <mark>
If <mark> is specified, set view to it, otherwise,
change the view to encompass the entire edit cell.

visiblelayers <layers>
Set the visible layers to include just <layers>. Pre-
face <layers> with a plus or minus sign to add to or
remove from the currently visible ones.

width <size>
Set the box width to <size> (default is 2). Move vari-
able corner unless width is preceded by 0+0, else move
fixed corner.

writeall
Run through interactive script to write out all cells
that have been modified.

yank <layers>
Save In the yank buffer all information underneath the
box in <layers>. <layers> defaults to "*1 0.

ycell <name>
If <name> is specified, do the equivalent of ":getcell
<name>. Then expand current cell, yank It, delete the
cell, and put back everything that was yanked. This
flattens the hierarchy by one level.

ysave <name>
Save the yank buffer contents in a cell named <name>. A
".ca" extension is provided by default.

LAYERS
nI'OS mask layers are:

p or r
Polysilicon (red) layer.

d or g
Diffusion (green) layer.

m Metal (blue) layer.

ior y

10 1

CAESAR (l) CAD Toolbox User 's Manual CAESAR (1) ""i

Implant (yellow) layer. .i

c Contact cut layer. ::i

0 Overglass hole (gray) layer.

• Error layer: used by design rule checkers and other ;
programs.:-

CMOS P-well mask layers are (using technology cmos-pw): ,_

p or r
Polysilicon (red) layer.-.-

Diru-ffusion (green) layer.

* metal (blue) layer.

c Contact cut layer. :::

P + l implant (pale yellow) layer.

w P-well (brown stipple) layer. .

* Overglass hole (gray) layer. .

* Error layer% used by design rule checkers and other !.-'

programs. .'

Predefined system layers are: i -

• All mask layers.

1 Label layer.,. i

S Subcell layer.

C Cursor layer. -

G Grid layer.

B Background layer.

SYSTEM MARKS .!
C The bounding box of the current cell.

E The bounding box of the edit cell. i.

102 "

CAESAR(l) CAD Toolbox User's Manual CAESAR(l)

P The previous view.

R The bounding box of the coot cell.

V The current view.

PILES
-cad/new/caesar, -cad/doc/caesar.tblms

SEE ALSO
cif2ca(l)

103

CIF2CA(CAD) CAD Toolbox User's Manual CIF2CA(CAD)

NAM4E
cif2ca - convert CIF files to CAESAR files

SYNOPSIS
cif2ca (-1 lambda I [-t tech] 1 -o offset I ciffile

DESCRIPTION
cif2ca accepts as input a CIF file and produces a CAESAR
7TIT"or each defined symbol. Specifying the -1 lambda
option scales the output to lambda centi-microns perlambda.
The default scale is 200 centi-microns per lambda. The -t
tech option causes layers from the specified technology to
=acceptable. The default technology is nmos. For a list

of acceptable technologies, see caesar (1). The -o offset
option causes all CIF numbers to be incremented by o fs-et.
This is useful when the CIF numbers are used for Caesar file
names, and when several CIF files with overlapping numbers
are to be joined together in Caesar.

Each symbol defined in the CIF file creates a CAESAR file.
By default, the files are named "symbolm_.ca'', where m is
the CIF symbol number (as modified by the -o offset). -Sym-
bols can also be named with a user-extension '-'TrTcommand,
giving a name to the symbol definition which encloses it.
CIF commands which appear outside of symbol definitions are
gathered into a symbol called, by default, "project'', and
are output to the CAESAR file "project.ca''.

SEE ALSO
caesar (1)

DIAGNOSTICS
Diagnostics from cif2ca are supposed to be self-explanatory."-
Each diagnostic gTves the line number from the input file, I
an error class (informational, warning, fatal, or panic),
the error message, and the action taken by cif2ca, usually
to ignore the CIF command. Informational messages usually
refer to limitations of cif2ca. Warning messages usually
refer to inconsistencies t--n e CIF file, these will typi-
cally result in CAESAR files which do not accurately reflect
the input CIF file. Fatal messages refer to fatal incon-
sistencies or errors in the CIF file. A fatal error ter-
minates cif2ca processing. Panic messages refer to internal
problems with cif2ca. If any diagnostics are produced, a
summary of thedi-agnostics is produced.

BUGS
"Delete Definitions'' commands are not implemented. cif2ca
also has certain restrictions due to restrictions of CX1XW
e. . non-manhattan objects art not allowed.

104

CIF2CA(CAD) CAD Toolbox User's Manual CIF2CA(CAD)

Library cells are not automagically included.

Some care should be taken in naming symbols, since symbol
names are used for CAESAR file names. Names which are not
unique in the first 14 characters will attempt to create the
same CAESAR file, and only the last one wins. Similarly,
one should avoid trying to have two project.ca files in the
same directory.

10

. .'

--

r ,CIFPLOT(CAD1) CAD Toolbox User's Manual CIFPLOT(CADl)

NdAME
cifplot CIF interpreter and plotter

SYNOPSIS

cifplot I options] filel.cif [file2.cif] "

DESCRIPTION

Cifplot takes a description in Cal-Tech Intermediate Form
TCTF: nd produces a plot. CIF is a low-level graphics
language suitable for describing integrated circuit layouts.
Although CIF can be used for other graphics applications,
for ease of discussion it will be assumed that CIF is used
to describe integrated circuit designs. Cifplot interprets
any legal CIF 2.0 description including symbol re-aming and
Delete Definition commands. In addition, a number of local
extensions have been added to CIF, including text on plots
and include files. These are discussed later. Care has
been taken to avoid any arbitrary restrictions on the CIF
programs that can be plotted.

" To get a plot call cifplot with the name of the CIF file to
be plotted. If the CIF description is divided among several
files call cifplot with the names of all files to be used.
Cifp4ot reads thle CIF description from the files in the
order that they appear on the command line. Therefore the
CIP End command should be only in the last file since cif-
pLo t gnores everything after the End command. After read-
ing the CIF description but before plotting, cifplot will
print a estimate of the size of the plot and then ask if it

*should continue to produce a plot. Type y to proceed and n

to abort. A typical run might look as follows:

* % cifplot lib.cif sorter.cif
Window -5700 174000 -76500 168900
Scale: 1 micron is 0.004075 inches
The plot will be 0.610833 feet
Do you want a plot? y

After typing y cifplot will produce a plot on the Benson-
Varian (11 inch Versatec) plotter.

Cifplot recognizes several command line options. These can
be used to change the size and scale of the plot, change
default plot options, and to select the output device.

"" Several options may be selected. A dash(-) must precede
f each option specifier. The following is a list of options

that may be included on the command line:

-w xmin xmax Yin. ymax
d(w)n " The -w options specifies the window; by

K- . default the window is set to be large enough to contain
the entire plot. The windowing commands lets you plot

106

...• --.. - '_....... - .

CIFPLOT(CADl) CAD Toolbox User's Manual CIFPLOT(CADl)

just a small section of your chip, enabling you to see
it in better detail. Xmin, xmax, ymn, and ymax should/" be'specified in CIF coor-anat--e.

* -s float
7 scale) The -s option sets the scale of the plot. By
default the scale is set so that the window will fill
the whole page. Float is a floating point number
specifying the numbe-rof inches which represents "
micron. A recommended size is 0.02.

-1 layer list
(layer) Normally all layers are plotted. The -1 option
specifies which layers NOT to plot. The layer list
consists of the layer names separated by commas, no
spaces. There are some reserved names: allText, bbox,
outline, text, pointName, and symbolName. Including
the layer name allText in the list suppresses the plot-
ting of text; bbox suppresses the bounding box around
symbols. outline suppresses the thin outline that
borders each layer. The keywords text, pointName, and
symbolName suppress the plotting of certain text
created by local extension comm3nds. text eliminates
text created by user extension 2. pointName eliminates
text created by user extension 94. symbolName elim-
inates text created by user extension 9. allText,
pointName, and symbolName may be abbreviated by at, pn,
and sn repectively.

-c
(copies) Makes n copies of the plot. Works only for
the Varian and Versatec. Default is 1 copy.

-d n* --(depth) This option lets you limit the amount of detail
plotted in a hierarchically designed chip. It will
only instanciate the plot down n levels of calls.
Sometimes too much detail can hTde important features
in a circuit.

-g n
--(grid) Draw a grid over the plot with spacing every a
CIF units.

-h (half) Plot at half normal resolution. (Not yet imole-
mented.)

-e (extensions) Accept only standard CIF. User extensions
produce warnings.

-I (non-Interactive) Do not ask for confirmation. Always
plot.

107

lei

CIFPLOT(CADI) CAD Toolbox User's Manual CIFPLOT(CADI)

-L (List) Produce a listing of the CIF file on standard
output as it is parsed. Not recommended unless debug-
ging hand-coded CIF since CIF code can be rather long.

-a n
(approximate) Approximate a roundflash with an n-sided •
polygon. By default n equals 8. (I.e. roundflishes
are approximated by octagons.) If n equals 0 then out-
put circles for roundflashes. (It-is best not to use
full circles since they significantly slow down plot-
ting.) (Full circles not yet implemented.)

-b 'text"
(banner) Print the text at the top of the plot.

-C (Comments) Treat comments as though they were spaces.
Sometimes CIF files created at other universities will
have several errors due to syntactically incorrect com-
ments. (I.e. the comments may appear in the middle of p
a CIF command or the comment does not end with a semi-
colon.) Of course, CIF files should not have any errors
and these comment related errors must be fixed before
transmitting the file for fabrication. But many times
fixing these errors seems to be more trouble than it is
worth, especially if you just want to get a plot. This
option is useful in getting rid of many of these com- P.
ment related syntax errors.

-r (rotate) Rotate the plot 90 degrees.

-V (Varian) Send output to the varian. (This is the
default option.)

-W (Wide) Send output directly to the versatec. (Not
available at NPS.)

-S (Spool) Store the output in a temporary file then dump
the output quickly onto the Versatec. Makes nice crisp
plots; also takes up a lot of disk space.

-T (Terminal) Send output to the terminal. (Not yet fully
implemented.)

-Gh

-Ga (Graphics terminal) Send output to terminal using it's
graphics capablities. -Gh indicates that the terminal
is an HP2648. -Ga indicates that the terminal is an
AED 512.

-X basename
(eXtractor) From the CIF file create a circuit

108

I- .

CIFPLOT(CADl) CAD Toolbox User's Manual CIFPLOT(CAD)

description suitable for switch level simulation. It
creates two files: basename.sim wh,.r contains the cir-
cuit description, an-Basename.node which contains the
node numbers and their location used in the circuit
description.

When this option is invoked no plot is made. Therefore
it is advisable not to use any of the other options
that deal only with plotting. However, the window,
layer, and approximate options are still appropriate.
To get a plot of the circuit with the node numbers call
cifplot again, without the -X option, and include
basename.nodes in the list of CIF files to be plotted.
(This file must appear in the list of files before the
file with the CIF End command.)

-c n
(copies) The -c specifies the number of copies of the
plot you would like. This allows you to get many copies
of a plot with no extra computation.

-P pattern file
(Pattern) The -P option lets you specify your own
layers and stipple patterns. Pattern file may contain
an arbitrary number of layer descriptors. A layer
descriptor is the layer name in double quotas, followed
by 8 integers. Each integer specifies 32 bits where
ones are black and zeroes are white. Thus the S
integers specify a 32 by 8 bit stipple pattern. The
integers may be in decimal, octal, or hex. Hex numbers
start with 10x'; octal numbers start with '0'. The CIF
syntax requires that layer names be made up of only
uppercase letters and digits, and not longer than four
characters.' The following is example of a layer
description for poly-silicon:

'NP" OxO8O88O8 0x04040404 0x02020202 OxO1010101
0x80808080 0x40404040 0x20202020 OxlOlOlOlO

-F font file
(Font) The -F option indicates which font you want for
your text. The file must be in the directory
'/usr/lib/vfont'. The default font is Roman 6 point.
Obviously, this option is only useful if you have text
on your plot.

-O filename
(Output) After parsing the CIF files, store an
equivalent but easy to parse CIF description in the
specified file. This option removes the include and
array commands (see next section) and replaces them
with equivalent standard CIF statements. The resulting

109

CIFPLOT(CADI) CAD Toolbox User's Manual CIFPLOT(CADl)

file is suitable for transmission to other facilities
for fabrication.

In the definition of CIF provisions were made for local
extensions. All extension commands begin with a number.
Part of the purpose of these extensions is to test what
features would be suitable to include as part of the stan-
dard language. But it is important to realize that these
extensions are not standard CIF and that many programs
interpreting CIF do not recognize them. If you use these
extensions it is advisable to create another CIF file using
the -0 options described above before submitting your cir-
cuit for fabrication. The following is a list of extensions
recognized by cifplot.

01 filename;
(Include) Read from the specified file as though it
appeared in place of this command. Include files can
be nested up to 6 deep.

OA s m n dx d;
(Array) Repeat symbol s m times with dx spacing in the
x-direction and n times with AX spacinG in the y-
direction. s, i-n and n are unsigned integers. dx and

are signed integers in CIF units.

1 message;
(Print) Print out the message on standard output when
it is read.

2 text transform

2C text" transform
(Text on Plot) Text is placed on the plot at the posi-
tion specified by the transformation. The allowed
transformations are the same as the those allowed for
the Call command. The transformation affects only the
point at which the beginning of the text is to appear.
The text is always plotted horizontally, thus the mir-
ror and rotate transformations are not really of much
use. Normally text is placed above and to the right of
the reference point. The 2C command centers the text
about the reference point.

9 name;
(Name symbol) name is associated with the current sym-
bol.

94 name x y;

94 name x y layer;
(Name point) name is associated with the point (x, Z).

110

CIFPLOT(CAD) CAD Toolbox User's Manual CIFPLOT(CADl)

0

Any mask geometry crossing this point is also associ-
ated with name. If layer is present then just geometry
crossing the point on-- t layer is associated with
name. For plotting this command is similar to text on
plot. When doing circuit extraction this command is
used to give an explicit name to a node. Name must not .
have any spaces in it, and it should not be a number.

USE WITH MACPITTS CIF
The lines starting with user extension 0, which MacPitts
places at the beginning of every CIF file, must either be
removed or 'commented out* by enclosing them in an all-
encompassing set of parentheses, thus:.*(....

MacPitts CIF files are usually very long. It has been found
most convenient to run MacPitts cifplots in the background
with the non-Interactive mode selected. A convenient way to
do this is by using the Ostipplem command: -.

stipple filel.cif

FILES
"cad/.cadrc

-/.cadrc
cad/bin/vdump (only in 4.1 BSD UNIX)
cad/bin/stipple

/usr/lib/vfont/R.6 .
/usr/tmp/tcif*

ALSO SEE
mcp(cadl), vdump(cadl), cadrc(cad5)
A Guide to LSI Implementation by Hon and Sequin, Second Edi-
tion (Xerox PARC, 1980) for a description of CIF.

BUGS
The -r is somewhat kludgy and does not work well with the
other options. Space before semi-colons in local extensions
can cause syntax errors.

The -0 option produces simple cif with no scale factors in
the DS commands. Because of this you must supply a scale 5
factor to some programs, such as the -1 option to cif2ca.

• a

. S

111 .

* - ~ I I liii"*.ii".

ESIM(CADl) CAD Toolbox User's Manual ESIM(CAD1)

14AME
esim - event driven switch level simulator

SYNOPSISesim [filel [file2 ...]

DESCRIPTION
Esim is an event-driven switch level simulator for NMOS
transistor circuits. Esim accepts commands from the user,
executing each command"e'fore reading the next. Commands
come in two flavors: those which manipulate the electrical
network, and those to direct the simulation. Commands have
the following simple syntax:

c argl arg2 ... argn <newline>
where 'c' is a single letter specifying the command to be
performed and the argi are arguments to that command. The
arguments are separated by spaces (or tabs) and the command
is terminated by a <newline>.

To run esim type .
esim filel file2 ...

Esim will read and execute commands, first from filel, then
iT2, etc. If one of the file names is preceder'7a u-',

then that file becomes the new output file (the default out-
put is stdout). For example,

esim f.sim -f.out g.sim
This would cause esim to read commands from f.sim, sending
output to the default output. When f.sim wai ex-hausted,
f.out would become the new output fiTe"-and the commands in
j. sim executed.

After all the files have been processed, and if the "q" com-
mand has not terminated the simulation run, esim will accept
further commands from the user, prompting for each one like
so:

sim>
The user can type individual commands or direct esim to
another file using the "@" command:

sim> @ patchfile.sim
This command would cause esim to read commands from
'patchfile.siml, returning-to interactive input when the
file was exhausted.

It is common to have an initial network file prepared by a
node extractor with perhaps a patch file or two prepared by
hand. After reading these files into the simulator, the
user would then interactively direct esim. This could be
accomplished as follows:

esim file.sim patch.l patch.2
After reading the files, esim would prompt for the first
command. Or we could have typed:

% esim file.sim

112

I

ESIM(CADl) CAD Toolbox User's Manual ESIM(CAD1)

sim> @ patch.l
sim> @ patch.2 %

Network Manipulation Commands

The electrical network to be simulated is made up of .0
enhancement and depletion mode transistors interconnected by
nodes. Components can be added to the network with the fol-
lowing commands:

* gate source drain
• gate source drain length width key xpos ypos area

Adds enhancement mode transistor to network with
the specified gate, source, and drain nodes. The 5
longer form includes .size and location information
as provided by the node extractor - when making
patches the short form is usually used.

d gate source drain
d gate source drain length width key xpos ypos area

Like "eO except for depletion mode devices.
C nodel node2 cap

Increase the capictance between nodel and node2 by
lp. Esim ignores this unless either nodel or
no .2 is GND.

= node namel name2 name3
Allows the user to specify synonyms for a given
node. Used by the node extractor to relate user-
provided node names to the node's internal name
(usually just a number).

I comment...
Lines beginning with vertical bar are treated as
comments and ignored - useful for deleting pieces
of network in node extractor output files.

i node
Input record -- output by node extractor and not
used by esim.

Currently, there is no way to remove components from the
network once they have been added. You must go back the
input files and modify them (using the comment character) to
exclude those components you wished removed. "N' records
need not be included for new nodes the user wishes to patch -
into the network.

Simulator Commands

The user can specify which nodes are to have there values
displayed after each simulation step:

w nodel -node2 node3 ...
Watch nodel and node3, stop watching node2. At
the end of a simulation step, each watched node
will displayed like so:

nodel-O node3-X ...
To remove a node from the watched list, preface

113

-- i

ESIM(CAD1) CAD Toolbox User's Manual ESIM(CAD1)

its name with a '-' in a Ow" command.
W label nodel node2 ... noden

Watch bit vector. The values of nodes nodel, ... ,

noden will displayed as a bit vector:
label-010100 20

where the first 0 is the value of nodel, the first
1 the value of node2, etc. The number displayed
to right is the value of the bit vector inter-
preted as a binary number; this is omitted if the
vector contains an X value. There is no way to
unwatch a bit vector.

Before each simulation step the user can force nodes to be
either high (1) or low (0) inputs (an input's value cannot
be changed by the simulatorl):

h nodel node2 ..
Force each node on the argument list to be a high
input, overrides previous input commands if
necessary.

I nodel node2 ...
Like "h" except forces nodes to be a low input.

x nodel node2 ...
Removes nodes from whatever input list they happen
to be on. The next simulation step will determine
their correct value in the circuit. This is the
default state of most nodes. Note that this does
not force nodes to have an IX" value - it simply
removes them from the input lists.

The current value of a node can be determined in several
ways:

v
View. prints the values of all watched nodes and
nodes on the high and low input lists.

? nodel node2
Prints a synopsis of the named nodes including
their current values and the state of all transis-
tors that affect the value of these nodes. This
is the most common way of wondering through the
network in search of what went wrong...

nodel node2
For each node in the argument list, prints a list
of transistors controlled by that node.

*?a and 0!" allow the user to go both backwards and forwards
through the network in search of that piece causing all the
problems.

The simulator is invoked with the following commands:
s

Simulation step. Propogates new values for the
inputs through the network, returns when the net-
work has settled. If things don't settle, command
will never terminate -- try the Ow* and "D" com-

mands to narrow down the problem.

114

ESIM(CADl) CAD Toolbox User's Manual ESIM(CAD1)

c
Cycle once through the clock, as define by the K
command.

Initialize. Circuits with state are often hard to
initialize because the initial value of each node
is X. To cure this problem, the I command finds
each node whose value is charged-X and changes it
to charged-0, then runs a simulation step. If one
iterates the I command a couple times, this often
leads to a stable initialized condition (indicated
when an I command takes 0 events, i.e., the cir-
cuit is stable).

Try it - if circuit does not become stable in 3

or 4 tries, this command is probably of no use.

Miscellaneous Commands

D
toggle debug switch, useful for debugging simula-
tor and/or circuit. If debug switch is on, then
during simulation step each time a watched node is
encounted in some event, that fact is indicated to
the user along with some event info. If a node
keeps appearing in this prinout, chances are that
its value is oscillating. Vice versa, if your
circuit never settles (ie., it oscillates) , you
can use the OD" and "w* commands to find the
node(s) that are causing the problem.

filename
write current state of each node into specified
file. useful for make a break point in your simu- 1
lation run. Only stores values so isn't really
useful to "dumpw a run for later use - see 0<0

command.
< filename

read from specified file, reinitializing the value
of each node as directed. Note that network must
already exist and be identical to the network used P
to create the dump file with the ">1 command.
These state saving commands are really provided so
that complicated initializing sequences need only
be simulated once.

L
invokes network processor that finds all subnets
corresponding to simple logic gates and converts
them into form'that allows faster simulation.
Often it does the right thing, leading to a 25% to
50% reduction is the time for a single step. [We
know of one case where the transformation was not
transparent, so caveat simulee....

L-

115

ESIM(CAD1) CAD Toolbox User's Manual ESIM(CAD1)

X ...

call extension command -- provides for user exten-
sions to simulator.

q
exit to system.

Local Extensions •

V node vector
Define a vector of inputs for the node. The first
element is initially set as the input for node.
Set the next element of the vector as the input
after a cycle. p

R n
Run the simulator through n cycles. If n is not
present make the run as long as the longest vec-
tor. All watch nodes are reported back as vec-
tors.

N
Clear all previously defined input vectors.

K nodel vectorl node2 vector2 ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N
must run through their respective vectors.

SEE ALSO
mextra (CADl)

i _

116"

I-,

-. . -.

MEXTRA (CAD1) CAD Toolbox User's Manual MEXTRA (CAD1)

NAME
mextra - Manhattan Circuit Extractor

SYNOPSIS
mextra [-ghol [-u scale] basename

DESCRIPTION
Mextra reads an intergrated circuit layout description in
Ca-tech Intermediate Form (CIF) and creates a circuit
description. From this circuit description various electi-
cal checks can be done on your circuit. The circuit
description is directly compatible with esim, moserc, and
powest.

Names

Mextra uses the CIF label construct to implement node names
and attributes. The form of the CIF label command is as
follows:

94 name x y (layer];
This command attaches the label to the mask geometry on the
specified layer crossing the point (x, y). If no layer is
present then any geometry crossing the point is given the
label. Mextra does not recognize the CIF user extension w0.
which is us-ed by MIT and Lincoln Labs programs (eg. mac-
pitts) to indicate node labels.

Mextra interprets these labels as node names. These names
are used to describe the extracted circuit. When no name is
given to a node, a number is assigned to the node. A label
may contain any ASCII character except space, tab, newline,
double quote, comma, semi-colon, and parenthesis. To avoid
conflict with extractor generated names, names should not be
numbers or end in '#n' where n is a number.

A problem arises when two nodes are given the same name
although they are not connected electrically. Sometimes we
want these nodes to have the same names, other times we
don't. This frequently happens when a name is specified in
a cell which is repeated many times. For instance, if we
define a shift register cell with the input marked 'SR.in'
then when we create an 8 bit shift register we could have 8
nodes names 'SR.in'. If this happens it would appear as
though all 8 of the shift register cells were shorted
together. To resolve this the extractor recognizes three
different types of names: local, global, and unspecified.
Any time a local name appears on more than one node it Is
appended with a unique suffix of the form 'In' where n is a
number. The numbers are assigned in scanlini order a~d
starting at 0. In the shift register example, the names
would be 'SR.in,0' through 'SR.in#7'. Global names do not
have suffixes appended to them. Thus unconnected nodes with

117

• -p

71i

MEXTRA(CADI) CAD Toolbox User's Manual MEXTRA(CAD1)

0

global names will appear connected after extraction. (The
-g causes the extractor to append unique suffixes to uncon-
nected nodes with the same global name.) Names are made
local by ending them with a sharp sign, '#. Names are glo-
bal if they end with an exclamation mark, '!'. These ter-
minating characters are not considered part of the name,
however. Names which do not end with these characters are
considered unspecified. Unspecified names are treated simi-
lar to locals. Multiple occurrences are appended with
unique suffixes. By convention, unspecified names signify
the designer's intention that this name is a local name, but
is connected to only one node. It is illegal to have a name
that is declared two different types. The extractor will
complain if this is so and make the name local.

Optionally mextra will expand local and unspecified node
names with the path name of the symbol instances through
which they were called. By using the -h option mextra will
produce node names of the form:

/calll/call2/.../callN/node-name
where c-allN is-he nameof the sym-bol instance which con-
tains th -abel node-name, callN-l is the name of the
instance which contains callN, and so on. Named symbol
instances take the following form in CIF:

91 name; C number [a b];
Unnamed CIF calls are asslgned names of the form 'In', where p
n is a number.

It makes no difference to the extractor if the same name is
attached to the same node several times. However, if more
than one name is given to a node then the extractor must
choose which name it will use. Whenever two names are given
to the same node the extractor will assign the name with the .
highest type priority, global being the highest, unspecified
next, local lowest. If the names are the same type then the
extractor takes the one with the fewest slashes('/'); if the
number of slashes is equal, the shortest name is taken.
This causes the name highest up in the symbol hierarchy to
be taken when hierarchical names are expanded. At the end
of the log file the extractor lists nodes with more than one S
name attached. These lines start with an equal sign and are
readable by esim so that it will understand these aliases.

Attributes

In addtion to naming nodes mextra allows you to attach
attributes to nodes. There are two types of attributes,
node attributes, and transistor attributes. A node attri-
bute is attached to a node using the CIF 94 construct, just
the same way as a node name. The node attribute must end in
an at-sign, ''. More than one attribute may be attached to
a node. Mextra does not interpret these attributes other

l

118•

• o o _ .- . . • . - . . -

0

MEXTRA(CAD1) CAD Toolbox User's Manual MEXTRA(CAD1)

than to eliminate duplicates. For each attribute attached
to a node there appears a line in the .sim file in the fol-
lowing forms

A node attribute
Node is te-node name, and attribute is the attribute
attached to that node with the at-sign removed.

Transistor attributes can be attached to the gate, source,
or drain of a transistor. Transistor attributes must end in
a dollar sign, '$'. To attach an attribute to a transistor
gate the label must be placed inside the transistor gate
region. To attach an attribute to a source or drain of a
transistor the label must be placed on'the source or drain
edge of a transistor. Transistor attributes are recorded in
the transistor record in the .sim file. A transistor
description has the following form:

type ate source drain 1 v x Z g-attributes

Attributes is a comma-separated list of attributes. If no
attribute is present for the gate, source, or drain the g-,
s-, or d- fields may be omitted.

Capacitance

The .sim file also has information about capacitance in the
circuit. The lines containing capacitance information are
of the form:

C nodel node2 c.l-value
cap-valuir' the capacitance betweens the nodes in femto-
"arasssT Capacitance values below a certain threshold are
not reported. The default threshold is sa femto-farads. -

The extractor reports capacitance from two sources - capaci-
tance between node and substrate, and capacitance caused by
poly overlapping diffusion but not forming a transistor.
Transistor capacitances are not included since most of the
tools that work on the .sim file calculate the transistor
capacitance from the width and length information.

The capacitance for each layer is calculated separately.
The reported node capacitance is the total of the layer
capacitances of the node. The layer capacitance is calcu-
lated by taking the area of a node on that layer and multi-
plying it by a constant. This is added to the product of
the perimeter and a constant. The default constants are
given below. Area constants are in femto-farads per square
micron. Perimeter constants are femto-farads per micron.

layer area perimeter
metal 0.03 0.0
poly 0.05 0.0

119

M4EXTRA(CAD1) CAD Toolbox User's Manual NEXTRA(CAD1)

S

diff 0.1 0.1
poly/diff 0.4 0.0

Poly/diffusion capacitance is calculated similar to layer
capacitance. The area is multiplied by constant and this is
added to the perimeter multiplied by a constant. 8
Poly/diffusion capacitance is not threshold, however.

The -o option supresses the calculation of capacitance, and
instead, gives for each node in the circuit the area and
perimeter of that node on the diffusion, poly, :nd metal
layers. The lines containing this information look like
this:

N node diff-area diff-perim poly-area p9-perim
metal-area metal-permX

Node is the node name. Diff-area through metal-perin are
t--area and perimeter oT- e"3T1fusion, poTy, an -- etal
layers in user defined units. (In addtion the -o option
causes transistors with only one terminal to be recorded in
the .sim file as a transistor with source connected to
drain.)

Setting Options

By default, mextra reports locations in CIF units. A more
convenient form_T units may be specified either in the
".cadrc' file or on the command line. The form of the com-
mand line option is:

units scale

To set units on the command line use the -u option.

The parameters used to compute node capacitance may be
changed by including the following commands in your *.cadrc'
file.

areatocap layer value 1

perimtocap layer value

value is atto-farads per square micron for area, and atto-
-fr-ads per micron for perimeter layer may be "poly",
"diff", "metal", or "poly/diff. The threshold for report-
ing capacitance may set in the '.cadrc' file with the fol-
lowing line.

capthreshold value

A negative value sets the threshold to infinity.

120

MEXTRA(CAD1) CAD Toolbox User's Manual MEXTRA(CAD)

Mextra knows of two technologies, NMOS and CMOS p-well.
NMOS is assumed by default. To set the technology to CMOS
p-well, include the following line in your ".cadrc' file:

tech cmos-pw

FILES
cad/l ib/extname
cad/lib/log
cad/ .cadrc

"/.cadrc
/us r/tmp/#mex t*

ALSO SEE
caesar(cadl), kic(cadl), powest(cadl), cadrc(cad5)

BUGS
Accepts manhattan simple CIF only. The length/width ratio
for unusually shaped transistors may be inacurate. Attri-
butes for funny transistors are not recorded.

121 ..

URLMD 2
SIBULATION EISULTS FCR HULTIP8C BUITIPLXER

The first five figures shcv, in the order that they were

produced, .int files from a NacPitts interpreter session

using the scurce file, multip8c.mac.

The last three figures show the terminal output produced

ty the suitch level event simulation program, esim, oper-

ating cn the node extraction file of the MacPitts layout for

multip8c. The node extraction was performed by the mextra

Frogram.

mmultip8c"
MacPitts interpreter state after initial data entry.

((register al undefined-integer)
(register a2 undefined-integer)
(register a3 undefined-integer)
(register a4 undefined-integer)
(register hrl undefined-integer)
(register lrl undefined-integer)
(register hr2 undefined-integer)
(register lr2 undefined-integer)
(register hr3 undefined-integer)
(register lr3 undefined-integer)
(register hr4 undefined-integer)
(register r4 -undefined-integer)
(port ain 104 console)
(port bin 22 console)
(port hin 0 console)
(port aout undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))

Figure D. I Nacpitts Interpreter Results.

122

amultip8co
MacPitts interpreter state after I clock cycle.

((register a 104)
(register a2 undefined-integer)
(register a3 undefined-integer)
(register a4 undefined-integer)
(register hrl 0)
(register lrl 11)
(register hr2 undefined-integer)
(register lr2 undefined-integer)
(register hr3 undefined-integer)
(register 1r3 undefined-integer)
(register hr4 undefined-integer)
(register lr4 undefined-integer)
(port ain 104 console)
(part bin 22 console)
(port hin 0 console)
(port &out undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))

Imultip8c"
Macpitts interpreter state after 2 clock cycles.

((register al 104)
(register a2 104)
(register a3 undefined-integer)
(register a4 undefined-integer)
(register hrl 0)
(register lrl 11)
(register hr2 52)
(register lr2 5)
(register hr3 undefined-integer)
(register lr3 undefined-integer)
(register hr4 undefined-integer)
(register lr4 undefined-integer)
(port amn 104 console)
(port bin 22 console)
(port hin 0 console)
(port aout undefined-integer chip)
(port hout undefined-Lnteger chip)
(port lout undefined-integer chip))

Figure D.2 MacPittz Interpreter Resultsv (continued).

123

IP -

Onultipeco
Kacpiets Interpreter stito after 3 clock cycles.

((register &1 104)
(register &2 104)
(register &3 104)
(register a4 undefined-integer)
(register hri 0)
(register Inl 11)
(register hr2 52)
(register 1r2 5)
(register hr3 78)
(register 103 2)
(register hr4 undefined-integer)
(register 1r4 undefined-integer)
(port amn 104 console)
(port bin 22 console)
(port hin 0 console)
(port aout undefined-integer chip)
(port hout undefined-integer chip)
(port lout undefined-integer chip))-

amultip8c -

macpitts interpreter state after 4 clock cycles.

((register al 104)
(register a2 104)
(register &3 104)
(register a4 104)
(register hrl 0)
(register lrl 11)
(register hr2 52)
(register 1r2 5)
(register hr3 78)
(register lr3 2)
(register hr4 39)
(register 1r4 1)
(port ain 104 console)
(port bin 22 console)
(port hin 0 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

Figure D.3 macPitts Interpreter Results, (Continued).

124

"multip8c,
MacPitts interpreter state after 4 clock cycles and

resetting the input ports to the values of the output ports.
This simulates a second chip in cascade with the first.

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 0)
(register lrl 11)
(register hr2 52)
(register 1r2 5)
(register hr3 78)
(register 1r3 2)
(register hr4 39)
(register Ir4 I)
(port an 104 console)
(port bin 1 console)
(port hin 39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

"multipSc" -

Macpitts interpreter state after 5 clock cycles.

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register lrl 128)
(register hr2 52)
(register lr2 5)
(register hr3 78)
(register 1r3 2)
(register hr4 39)
(register lr4 1)
(port ain 104 console)
(port bin 1 console)
(port bin 39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

Figure D.4 VacPittz Interpreter Results, (Continued).

125

Omultip8c"
Macpitts interpreter state after 6 clock cycles.

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register Irl 128)
(register hr2 35)
(register lr2 192)
(register hr3 78) _

(register 13 2)
(register hr4 39)
(register lr4 1)
(port ain 104 console)
(port bin 1 console)
(port hin 39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

"multip8c' -
Macpitts interpreter state after 7 clock cycles.

((register al 104)
(register a2 104)

* (register a3 104)
(register a4 104)
(register hrl 71)
(register lrl 128)
(register hr2 35)
(register lr2 192)
(register hr3 17)
(register lr3 224)
(register hr4 39)
(register lr4 1)
(port ain 104 console)
(port bin I console)
(port hin 39 console)
(port aout 104 chip)
(port hout 39 chip)
(port lout 1 chip))

Figure D.5 MacPitts Interpreter Results, (Continued).

126

• . % • A.

*Multip~c"
Macpitts interpreter state after 8 clock cycles.

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register irl 128)
(register hr2 35)
(register lr2 192)
(register hr3 17)
(register 1r3 224)
(register hr4 8)
(register 2r4 240)
(port ain 104 console)
(port bin 1 console)
(port bin 39 console)
(port aout 104 chip)
(port hout 8 chip)
(port lout 240 chip)) P

"multip8c ,
MacPitte interpreter state after 9 clock cycles.

((register al 104)
(register a2 104)
(register a3 104)
(register a4 104)
(register hrl 71)
(register lrl 128)
(register hr2 35)
(register lr2 192)
(register hr3 17)
(register 1r3 224)
(register hr4 8)
(register 2r4 240)
(port ain 104 console)
(port bin 1 console)
(port bin 39 console)
(port aout 104 chip)
(port hout 8 chip)
(port lout 240 chip))

Figure D.6 11acPitts Interpreter Results* (Continued).

127

0 esm mul8c.sm mulec.macro
1612 transistors, 1398 nodes (801 pulled up)
1612 translstors, 1398 nodes (801 pulled up) 0
sim> S
step took 605 events
clock-XXX
aout-XXXXXXXX
Iout-XXXXXXXX
hout-XXXXXXXX
hln-O0000000 0
bLn-O0010110 22
ain01101000 104
Sim> I
initfalization took 2119 steps
sim> I
initialization took 0 steps
Sim> S
step took 0 events
clock-000 0
aoutW11111111 255
lout-11111 111 255
hout-1111111 255
hn-0000000 0
binnO0010110 22
aIn-01101000 104
Sim> c
clock-101 5
aoutl111111 255
1out=01111111 127
hout-01111111 127
hin-00000000 0
binOO010110 22
sin-01101000 104
cycle took 1433 events
Sim> C
clock'101 5
aoutlI11111 255
lout-00111111 63
hout-011111 63
hin-O0000000 0
binO0010110 22
aln-01101000 104
cycle took 1210 events S

Last line is rejeated at top of following ?age.

Tigure D.O Event Simulation Results.

128

cycle took 1210 events

clockal~l S
aout-11111111 255
loutOUO01111l 31
houtOO001l11l 31
hin=00000000 0
binOO00l0l1O 22
ain-011O1000 104
cycle took 1231 events
Simn> c
clock-10l 5
aoutu01l0100O 104
loutuOOOOOO0l 1
houtinO0lO0l1l 39
hin-00000000 0
bininOO0l0llO 22
ain-01101000 104
cycle took 1139 events
Sim> c
clockul01 5
aout-01101000 104
loutuOOOOOO0l 1
hout-000011 39
hIn-00000000 0
bin-00010110 22
ain-01101000 104
cycle took 1052 events

Sim> @ mul~c.macro2
SIM> S
step took 177 events
clockul01 5
aoutu0ll01OOO 104
lout=OOOOOO0l 1
houtuO0lO01ll 39
Iini00100111 39
bin*0OOOO0OI 1
ainin0ll0lOOO 104
Sim> c

Last line is repeated at top of following page.

7igure DAS lycut Siaulatioa Resultsp (Continued).

129

Sim> c
clockl101 5
aoutOII101OOO 104
loutOOOOOO00l 1
houtinO0lO0lll 39
hininO0lO0l1l 39
bir,00000001 1
ain-01101O0O 104
cycle took 1164 events
Sim> c
clockl101 5
aoutin0ll0lOOO 104
loutOOOOOO00l 1
houtO001O0l1l 39
hlinO00lO0lll 39

ainm0110l0OO 104
cycle took 1154 events
Sim> c
clockinl0l 5

a outin01101000 104
loutinOOOOOO0l 1
hoiituO0lO0lll 39
hlinO00lO0lll 39
binmOOOOOO0l 1
ain01101OOO 104
cycle took 1131 events
Sim> c
clock-101 5
aout-0l10lOOO 104
loutwllllOOOO 240
hootOOO0010OO 8
hinuO0lO0lll 39 --

binuOOOOOO0l 1
ainu0ll0lOOO 104
cycle took 1123 events
Sim> c
elockul0l 5
aoijtW0ll01OOO 104

-loutmllllOOOO 240
boutuOOOOIOOO 8
hinO00l0011l 39
bininOOOOOO0l 1
afin0lI0lOOO 104
cycle took 1052 events
Sim> q

riguzo D.9 Event Simulation Results, (Contiuned).

130

11105! PROTOGRAPHS

Exposure data:
Display: AID 767 Color Graphics Terhiral

estcr Light Value: 7.5 to 8.5
Camera: Pentax SLR, Tripod Mounted

Film: Tri-X, iSA 400
Lens-to-screen distance: 4 feet O

Lens: 85 m, fl.9
Lens Cpening: f16
Shutter Speed: 1 second

e

L't

,3, :0

9-?.-

...... ...

.

11gure BeI Baltic (top),r mltip (bat).

132

S

S

S

I

I

~4

t.

I

FIgure 1.2 aultipS (top) * multi p8a (bot).

133

I I - i

mx

P igure 3.3 *ultip8b (top) s ultip8c5 (hot).

134

S

0

S

S

3

p

3

S

r

Figure R.l *ult±p8c'4 (top), aultip8c#d (bot).

135

9

hi EUEEEE U Eli UIIE .~p. U U . -

~~0~~

S

0

S

p

Pigure 3.5 Layout Errors in kchip2.

p

p

S

5-

136

S

LIST 01 NRPNBZJCBS

1. Conxadi, J. R- and HauensteinBR ."

V r

Mai a CHIr~i~e 44 !ptf~ 1983.

2. Read, C. and Ccnvaj,.L., Introd3uj jp.I j~~ lkil texs,

3. Southard, 3. R., "MacPltts: An Approach to Silicon
Cjsglation9 " Scautjej, v. 16, pp. 74-82, December

4. Siskind, J. M. Southard, J. R. and Crouch, K. We,
"Generating Custom HghPerformance VLSI desigS from
Succinct Algcrithuig Descriptos 22 d

5. Nallich, P., "on the Horizon: Fast Chips Quickly,"
.UZ Sietr v. 21f pp. 28-34, March 1984.

6. Computer Science Division, Department of Electrical
En eering and Corn puter Sciences University of

~ byJ..ustek U

Ca lifcrnia, Berkele A B Irci 4 'With

Caesoar, by J. andeh uenti, P.- CA 2o2 198 37si -

7. Verner, J., "Tte Silicon Compiler: Panacea, Wishful
Thinking, or Old Hat?" j=tJokje,. , v. 3 , pp. 4E-!2,
Sete ber/Octoter 1982.

8. The Microelectronics Center of Northi Carolina
Technical Report 83-06 6. lg Co pier: A riia
Siskind, by a. R. Gross:, , Bay .a o.

9. Mexner, i., Progress Toward the 'Ideal" Silicon
Copilr, Pa, "I: the oyout Problem," L" uiy,"
To p.78-, Ot pp o 23br W

10. Johansen D., "Bristle Blocks: A Silicon Compiler,"
Iona * 9/aore f. " oceed..,

11. Bergiant N., "A Case Study of the P. I. R S. T.
Silicca Compiler," j dwa.igiew, =hi @&_ -.ff 1" A enoss,., pp. - .1 '.

12. lyres.ReF.5II: t ihe ga Complat-n and "ae

Voq, pp.p7. 81, October 19 30

137

13. Unv i of Califos mia at BerkeleiThjaZffZ. 112
anu . i -Jo eraro, K. L. Xlo YiKEY=

14. Lincoln laboratory,, Massachusetts Institute of
Technology Project Rejort RVLSI-5,. a Ugr jjji, by
K. V. Cruc p.D 19,# March 19811.

15. leinkerger, I. "large Scale Into~ration of NOS
Ccm lex Logiq: A Layout Method,"oGiut ve sc-2, pp on -Al'-ow si

16. Lin~coln Laboratory, Massachusetts Institute of
Technology Project Report RVLSI-3, rdVinj
ficits by J. R. Sobthard, 10 Febr ary-Y

17. Locais H. Jr. and Sinba, B., "High Speed Recursive
Digital Filter Realization," pro-print of a paer to
aprear in gjuis q~stem 1"lljg o 5

18. Rung, H. 7. and Leiserson, C. E., NSystoic Arrays
(for VLSI) !' Sre - 4-atr1 Pr~ eggin 17 8, So y-

IL oi.~~Industriai-andArylIIe sax mtic, =p. 256-282,

19. Kelly, G I., e kjg CRAPj~ I - "-r£
w~ime- t'v ~a Fe? ?e Pd 'WRPESev ill ntlE

AnAUa+L8st.LomaEr Coference on Circuits and Systems,
Pacific Grove, Calornia, I November 1983.

liumtz Addisca-Uesley, 1983.

138

BIB LIOGBZPHY

Bournes S. R., b U j Ssez, Addison-Wesley, 1983.

Peldnan . A. and Dealchemin, E. J., "A Cust4¥ IC for
Automatic Gain control in LPC vocoders," Poc.U Of
Ij~jI n, Boston, Bass, April 1983.

Po, 3. B. "The acPjtts Silicon Cop1ler: A Viev Prom the
Teleccmaunications Industry," 1"S Desjg, v- 4, May/June
1983.
H ng, C.,¢onUte Arithme14: Prniig, k_/chitectMre,

Rog e, . 8 .k ikecture o Pivelined Co. te,
Bealsphere, 1M8i.

Srini, T. P.., "Test Generations from MacPitts Designs."_Prineei,.. of the juTnteuations Qofe e 2n tu

allch P., "Technoloy ' 83: Automation
(Design/Hanufacturing)," IEEE S. 1 _, v. 20, January 1983.

Verner, .J, "Progress Tovard the 'Ideal' Silicon Comp'l
Part I: the Front End," V jSI Dsign, v. 4., September 198.

Winstcn, P. H. and Berthold, K. P. H., LIS, Addison-Wesley,
1981.

139

INITIAL DISTRIBUTION LIST

No. Copies

1. SUp erintendent 2
Itta: Library, Code 01142
Naval Eostraauate School
onterey, CA 93 43

2. Dr. Donald Kirk 5Code 62KI

Naval Postgraduate School
Monterey, CA 93943

3. Frvi. Robert Strum 1Code 62ST
Naval Postgraduate School
Monterey, CA 93943

4. Dr. H. H. Loomis 1
Code 62A
Naval Post graudate School
Ncnterey, C A 9.943

5. or kAert Vog1
coat on
Naval Postgraduate School
Monterey, CA 93943

6. Chairman, ECE Departuemt 1
Code 62
Naval Postgraduate School
onterey, A 93943

7. ICDB De~nis J. Caflson 1
F leet A r Rec9nna ssance Squadron Three
PPO San Francisco, CA 96601

8. 1T9oseph R Coaradi 1
5293 Ir~quois Avenue
Eva Beacg, 8I S6706

9. Defense Techical Information Center 2
camezonS tation
alexandria, Ta 22314

10. ;r. Gerry L. Kelly 1
Doe~artnht ot EC!University or Kams s
lavrence, Kansas 26045

11. Mr. 1. B. Hastings 1
Dept. 81- 60, 1ld. 157
lo kheed 3 so1e nd Space Company
P. C. Box 504
Sunnyvale, CA 94086

12. Mr. G. S. Ogden 1
Dept. 81-61,Bld. 157
Io khed H.lednd Space Company
E. C. Box
Sunnyvale, CA 94086

140

13. Er Antun. Domic, B-31471
alislbusttsInstitute of Technology

I nc n Laoratcry
Lexington* Sk 02173-0 073

*14. Hr. Peter Blakembi 1
54asac husetts Ins ttte of Technology
Iinccln Lboratcry

lexington., sk 02173-0073

it

141

10-84

DTI0

