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ABSTRACT
"~ The concept of weighted distributions can be traced to the study of the
effects of methods of ascertaimment upon the estimation of frequencies by
Fisher in 1934, and it was formulated in general terms by the author in a
paper presented at the First International Symposium on Classical and
Contagious Distributions held in Montreal in 1963. Since then, a number of

papers have appeared on the subject. This pape.r reviews some previous work,

points out, through appropriate examples, some situations where weighted
distributions arise and discusses the associated methods of statistical

analysis.

The importance of specification of the class of underlying probability
distributions (or stochastic model) in data analysis based on a detailed
knowledge of how data are obtained is emphasized. Failure to take into

account the conditions of ascertaimment of data can lead to wrong conclusions.

Keywords and Phrases: Damage models, nonresponse, probability sampling,

quadrat sampling, size biased sampling, truncation, weighted distributions.
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1. IMPORTANCE OF SPECIFICATION

For drawing valid inferences from observed data through statistical
methodology it is necessary to identify the proper sample space (all possible

outcomes) and specify the class of probability distributions (the model) to

which the true distribution of the observations belongs. More precisely, the
observed data set x has to be considered as the result of a random experiment,
i.e., as a realization of a random variable (ry) X taking val\.:es in a space
X and subject to a probability distribution P belonging to a specified class
P. Such a knowledge enables us to write down the probabiity (or probability
density) of x for given P, which we write as £(P|x). The function & ‘|x)
defined over P for given x, called the likelihood, together with any apriori
information we may have on P forms the basis of statistical inference. The
specification of P, or the model as it is sometimes called, is thus a datum of
the problem of inference. However, not much attention is given to this
problem in statistical theory or practice despite the emphasis given to it by
the pioneers in statistics like Karl Pearson and R. A. Fisher. Wrong

specification may lead to invalid inference, which is sometimes referred to as

B B S ecdhofociodiuid

a third kind of error, the first two being the familiar ones associated with

the Neyman-Pearson theory of testing of hypotheses. l

It is almost axiomatic to say, although it may need some effort to

demonstrate, that inference based on specification P1 is possibly more precise
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e
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than that on P2 ir P1 < P2 provided P1 includes the true distribution., It is

1@,

therefore of considerable value to specify the smallest possible set. (See

.n ’If

Althum, 1984; Bishop, Fienberg and Holland, 1975, p. 313). Perhaps past

experience can be of help in the choice of such a set. But it should also be
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possible to start with a wider set and narrow it down by using the observed
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data themselves, although the appropriate methodology for this purpose is not
fully developed. On the other hand, statisticians seem to be content with
studies on robustness, i.e., in determining the widest class P for which a

glven statistical procedure is valid.

The problem of specification is not a simple one. A detailed knowledge of
the procedure actually employed in acquiring data is an essential ingredient
in arriving at a proper specification. The situation is more complicated with
field observations and nonexperimental data where nature produces events
according to a certain model, which are observed and recorded by
investigators. There does not always exist a suitable sampling frame
necessary for the application of the classical sampling theory. One needs to
work with visibility arnalysis instead. 1In practice, it is not always possible
to observe and record events as they occur. For instance, certain events may
not be observable by the method we employ and therefore missed in the record
(truncated, censored, and incomplete samples). Or an event may be observable
only with a certain probability depending on the nature of the event such as
its conspicuousness and the procedure employed to observe it (unequal
probability sampling). Or an event may change in a random way by the time or
during the process of observation so that what comes on record is a modified
event (damage models). Sometimes, events produced under two or more different
mechanisms with unspecified relative frequencies get mixed up and brought into
the same record (outliers, contaminated samples). In all these cases, the
specified class P for the original events (as they occur) may not be
appropriate for the events as they are recorded (observed data) unless it is

sui tably modified.
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In a classical paper, Fisher (1934) demonstrated the need for such
adjustment in specification depending on the way the data are ascertained. 1In
extending the basic ideas of Fisher, the author (Rao, 1965) introduced the

concept of a weighted distribution as a method of adjustment applicable to

PR TR

many situations. In the present paper we discuss, through suitable examples,
some procedures for making adjustments in specification based on methods of

ascertaining data. 3

Although I have mentioned only field observations which are collected

v 9 g a &

without the help of a suitable sampling frame, I must emphasize that similar
problems of specification arise with data collected in large scale sample
surveys and also with data acquired through field and laboratory experiments.
Survey practioners are faced with problems of incomplete frame which raise
questions of representativeness of a sample for a given population (see
Kruskal and Mosteller, 1980 and references therein), nonresponse which raises
questions of repeated visits to sampled units, substitution of nonresponding

units by others with possibly similar characteristics, and imputation of

values (Fienberg and Tanur, 1983; Fienberg and Stasny, 1983; Rubin, 1976,
1980), and nonsampling errors which raise questions about their recognition,

detection, measurement and making adjustments in expressing precision of

;

estimates (Mahalanobis 1944; Mosteller, 1978). Similarly in design of
experiments, difficulties in random allocation of treatments and choice of

controls in field trials, pooling of evidence from different experiments

Bt Bl b P ul b

conducted over space and time and missing values (drop outs) introduce
additional uncertainties in statistical inference and interpretation of

results for practical use or policy purposes (for typical problems and

ia_ g 8 1. 8 % 58 A}

references see Fienberg, Singer and Tanur, 1984; Neyman, 1977).
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¥ Some events, although they occur, may be unascertainable so that the a'j.
) K
2 observed distribution would be truncated to a certain region of the sample '::
P "
A space. An example is the frequency of families with both parents heterozygous 2
N for albinism but having no albino children. There is no evidence that the

: parents are heterozygous unless they have an albino child, and the families

2 with such parents and having no albino children get confounded with normal

- families. The actual frequency of the event 'zero albino children' is, thus,

not ascertainable. Adjustment to the probability distribution applicable to

o observable events in such a case is simple.

4

In general, if p(x,8) is the pdf (probability density function), where

8 denotes unknown parameters, and the pry X is truncated to a specified region

! c A, en e e uncated random variable s

¢ T& X, then the pdf of the truncated rand ble X* 1

AN

..‘_ p"(xge) s U(x.T)P(Xye) <+ u(Tye) (2.1)

‘.

> where w(x,T) = 1 if x ¢ T and = 0 if x ¢ T and u(T,0) = E[w(X,T)]. 1If

I XyyeeeyX, are independent observations subject to truncation, then the

N likelihood is

M

- In some cases we may have independent observations XqyeeerXp arising from a

:'_- truncated distribution in addition to a number m (and not the actual values)

q

" of observations falling outside T. Then the likelihood is

- (n + m)! o

.q: —__m-!_ p(x"'e) X p(xnie)[1 - u(T’e)] . (2'3)

"

e A more complicated case is the following.
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Suppose that we have a measuring device which records the time at which a
bulb fails. If we are experimenting with n bulbs in a life testing problem
using a measuring device which may itself fail at a random time, then the

observations would be of the type

X1,.c-,xn1, D2, n3 . (2.!’)
where x1,...,xn1 are the life times of nq bulbs recorded before an unknown
time point T at which the measuring device failed, n, is the number of bulbs

that failed between T and T,, the known time at which the experiment was

terminated, and ng is the number of bulbs still burning after To. Let
w1('l',9) = P(x,S, T), Hz(T.e) = P(T < xS To)' H3(T,6) = 1-“1(1‘,9)-"2(1.,9).
Then the likelihood based on the data (2.4) is

nl nz n3
W p(x1,6) coe P(xn1,6)[w2(T,e)] [W3(T’9)] (2.5)

where T is unknown besides the basic parameters 8. Inference on T and © based
on (2.5) does not seem to have been fully worked out but could be developed on

standard lines.

The expressions (2.2), (2.3), and (2.5) are simple examples of weighted

distributions, whose general definition is given in Section 3.

3. WEIGHTED DISTRIBUTIONS

In Section 2, we have considered situations where certain events are
unobservable. But a more general case is where an event that occurs has a
certain probability of being recorded (or included in the sample). Let X be a
ry with p(x,3) as the pdf, and suppose that when X = x occurs, the probability

of recording it is w(x,a) depending on the observed value x and possibly also

T R R AN L e e ¥
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on an unknown parameter a. Then the pdf of the resulting ry XV is

p¥(x,6,0) = w(x,a)p(x,8) + E[w(X,a)]. (3.1)

Although in deriving (3.1), we chose w(x,®) such that 0 < w(x,a) £ 1, we can
define (3.1) for any arbitrary non-negative weight function w(x,a) for which
E{w(X,a)] exists. The distribution (3.1) obtained by using any non-negative
weight function w(x,2) is called (see Rao, 1965) a weighted version of p(x,6).

In particular, the weighted distribution
p¥(x,0) = |x|p(x,0) + E[|x]] (3.2)

where |x| is the norm or some measure of size of x is called the size biased

distribution. When x is univariate and non-negative, the weighted distribution
p¥(x,8) = x p(x,6) < E(X) (3.3)

is called length (size) biased distribution. For example, if X has the

logarithmic series distribution

r
a

g1 =a) * =12 «0o (3.4)

then the distribution of the size biased variable is

FN1-0a), r=1, 2, ... (3.5)

which shows that X¥ - 1 has a geometric distribution. A truncated geometric
distribution is sometimes found to provide a good fit to an observed
distribution of family size (Feller, 1966). But, if the information on family
size has been ascertained from school children, then the observations would
have a size biased distribution. In such a case a good fit of the geommetric
distribution to the observed family sizes would indicate that the underlying

distribution of family size is, in fact, a logarithmic series.
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Table 1 gives a list of some basic distributions and their size biased

forms. it is seen that the size biased form belongs to the same family as the

&
)
F 9

Y

original distribution in all cases except the logarithmic series (see Rao,

.
A b

NN Y YN

1965; Patil and Ord, 1975; Janardhan and Rao, 1983 for characterizations and

examples of size biased distributions).
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Table 1.

.......

Certain Basic Distributions and their Size-Biased Forms

Random Variable(pry)

L (pdf)

Size-biased py

Binomial,B(n,p)

NB(k, p)

Poisson, Po(})

L(a)

Hypergeometric,
H(n, M, N)

Bimonial beta,
BB(n,q ,'Y)

Negative binomial
beta, NBB(k,a,Y)
Gamma, G(o,k)

Beta first kind,
31 ( § Y )

Beta second kind,
32(69‘{)

Pearson type V,
Pe(k)

Pareto, Pa(z,y)

Lognornmal,
LN(u ’Gt‘g)

Negative Binomial, (k + X =1

Logarithmic series,

pX(1 - p)BX

b 4

) q*pk
e~} % /xl

{~1log(1 - & )1~ 1a%/x

MX(N - M)P=X/pNB

(:)B(a + X, v +0=x)/8(ay)

k+x-=-1

Bla + x, v+ k)/B(a,y)

o Kxk=1e=2% /1 ()
=101 = x) =178 ,v)
101« )85, y = 8)

x‘k'1exx>(-x'1)/r(k)

yax'(“'”,x 2 a

1 + B(n - 1,P)

1 + NB(k + 1,p)

1 + Po(})

1 + NB(1,a)

1+ Hn~-1,M=1,N=1)

-

+ BB(n - 1'0-"Y)

-

+ NBB(k + 1,q,¥)
Gla,k + 1)

By(5 + 1,y)
Bo(s+1,y=6=1)
Pe(k - 1)

Pa(a, vy = 1)

LN(u + 62. *)
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An example of weighted distributions arises in sample surveys when unequal

probability sampling or pps (probability proportional to size) sampling is
employed. A general version of the sampling scheme involves two pry's X and Y
with pdf, p(x,y,9) and a weight function w(y) which is a function of y only

giving the weighted pdf

p¥(x,y,8) = w(y)p(x,y,8) + E[w(Y)]. (3.6)

In sample surveys we obtain observations on (x¥,Y¥) from the pdf (3.6) and

draw inference on the unknown parameter 6.

It is of interest to note that the marginal pdf of X¥ is
pP¥(x,8) = w(x,0)p(x,8) + E[w(X,8)] (3.7
which is a weighted version of p(x,6) with the weight function
w(x, 6 = [ply|xuty)ay (3.8)

which may involve the unknown parameter 6.

There is an extensive literature on weighted distributions since the concept
was formalized in Rao (1965), which is reviewed with a large number of
references in a paper by Patil (1984) with special reference to ecological
work. Reference may also be made to two earlier contributions by Patil and
Rao (1977, 1978) and Patil and Ord (1975) which contain reviews of previous

work and details of some new results.,

In the next sections, we consider several examples where weighted

distributions are used in the analysis of data.
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h, DIFFERENTIAL PRESERVATION OF SKULLS

The following problem arose in the analysis of cranial measurements. A

sample of skulls dug out from ancient graves in Jebel Mova, Africa, consisted

of some well-preserved skulls and the rest in a broken condition (see
Mukherji, Trevor and Rao, 1955). On each well-preserved skull it was possible
to take four measurements, C (capacity), L (length), B (breadth), and H
(height), while on a broken skull only a subset of L, B, and H and not C could
be measured. The observed data, thus, consisted of samples from a four
variate population with several observations missing. There were some sets
with all the four measurements C, L, B, H, and some with 1 or 2 or 3 of the
measurements L, B, and H only. The problem was to estimate the mean values of

C, L, B, and H in the gopriginal population of skulls from the recovered

fragmentary samples. In a number of papers which appeared in the early issues
of Biometrika, it was the practice to estimate the unknown population mean
value of any characteristic, say C, by taking the mean of all the available
measurements on C. An alternative to this, which is often recommeﬁded, is to
compute maximum likelihood estimates of the unknown mean values, variances,
and covariances by writing down the likelihood function based on all the
available data assuming a four variate normal distribution for C, L, B and H
and using the derived marginal distribution for an 4incomplete set of
measurements. This is based on the assumption that each skull admitting all
the four measurements or any subset of the four can be considered as a random

sample from the original population of skulls. Is this assumption valid?

It is a common knowledge that a certain proportion of the original skulls
gets broken depending on the length of time and depth at which they lay

buried. Let w(c) be the probability that a skull of capacity ¢ is not broken

........................
-------------------
.
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and p(c,0) be the pdf of C in the original population. Then the pdf of C 1

measured on well-preserved skulls is

w(e)p(e,8) + E[w(C)]. (4.1)

If w(c) depends on ¢, then the gbserved measurements on C cannot be considered

A A naT

as a random sample of C from the griginal population. Further, if w(c) is a
decreasing function of ¢, then there will be a larger representation of small
skulls’ among the unbroken skulls, and therefore the mean of the available ;
measurements on C will be an underestimate of the mean capacity of the

original population.

Py

Is there any evidence that w(c) depends on ¢? To answer this question, the
regression of Con L, B, and H (in terms of logarithms) was estimated from the
data sets where all the four measurements were available and used to predict
the mean capacity of broken skulls by substituting the observed averages L, B,
and H of broken skulls in the regression equation. At least in two series of \
cranial measurements, (see Rao and Shaw, 1948; Rao, 1973, p. 280) it was
found that the average measured capacity of unbroken skulls was smaller than
the estimated average capacity of broken skulls. This provided some evidence
about the differential preservation of skulls with smaller skulls having a

higher chance of remaining unbroken.

This finding invalidates the assumption that skulls providing all the four

measurements is a random sample from the original population of skulls., The

pdf associated with these measurements is more appropriately (4.1) which is a
: weighted version of the original pdf with an unknown weight function,
&::: Presumably, the pdf associated with observations on any subset of L, B, and H

will again be a weighted pdf with a weight function depending on the degree of
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damage to a skull., The expression for the correct likelihood will then depend

on the original pdf and the probabilities of different degrees of damage as
assessed by subsets of measurements that can be taken on a skull, which are
likely to be unknown. Is there a reasonable solution to the problem of

estimation of mean values in a situation like the above?

There are several possibilities of which the following procedure for
estimating the mean of C appears to be a natural one., We use the complete
sets of measurements, C, L, B and H, on unbroken skulls to compute the
regressions of C on different subsets of L, B and H. Using the appropriate
regression function, we estimate (predict) the missing value of C for each
broken skull, Then an average is taken of all the measured and estimated
values of C. Such an average is likely to be a valid estimate of the mean of
C. The estimation is based on the assumption that the complete sets of
measurements (C, L, B, H) can provide valid estimates of relationships like
the regression functions of C on L, B, H and its subsets, although they are
biased samples from the original population. Similar methods can be used to

estimate the mean values of L, B and H.

Paleontologists compare the characteristics of fossils of long bones and
cranial material discovered in different parts of the world to trace the
evolutionary history of hominids. Such studies based on physical measurements
may be misleading as the discovered fossils may not be representative samples
from the original populations due to differential preservation of skeletal
material. It is gratifying to note that attempts are being made to compare
the fossils in terms of some basic chemical measurements which are not likely

to be subject to the phenomenon of differential preservation.
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5. ENQUIRY THROUGH AN OFFSPRING

In genetic and socio-psychological studies it is the common practice to
locate an abnormal individual and through him or her collect information on
the status of brothers and sisters, parents, uncles, and aunts. From such
data estimates are made of the incidence of abnormality in families by sex and
parity of birth. A family is the basic unit whose characteristics may have a
specified distribution. But our method of ascertaimment gives unequal
probabilities to families depending on the mechanism inherent in the selection
of an abnormal family member. Thus, the distribution applicable to observed
data on families is a weighted version of the distribution specified for the
families. We consider some examples, discuss the nature of the problems

involved in each case, and suggest possible solutions.

5.1 TOO MANY MALES?

During the last few years, while lecturing to students and teachers in
different parts of the world, I collected data on the numbers of brothers and
sisters in the family of each individual in the audience. The results are
sumarized in Tables 2, 3, and 4. The data from the male respondents given in
Tables 2 and 4 show that the ratio of B, the total number of brothers,
including the respondents, to B + S, the total number of brothers and sisters

is much larger than half in each case indicating a preponderence of male

children in the families of male members of the audience.
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Rao (1977) showed that the appropriate model for the distribution of

brothers and sisters of male respondents is size biased binomial so that the

probability of r brothers and (n - r) sisters in a family of size n is

- 1
r (: 7 (1 - m™T 2 E(p) = (n

)w“N1-ﬁ*’ (5.1.1)
re-1

where 7 is the probability of a male child. Under this hypothesis we find

that

E =7 (5.1.2)

where k is the number of male respondents, so that (B - k)/(B + S - k) is an

estimate of n, and

[B-k-(B+ S-k)n)
B+ 3-k)n(] = m) (5.1.3)

has an asymptotic chi-square distribution on 1 degree of freedom. Similar
results hold for the data from female respondents in Table 3. It is seen from
the chi-square values in Tables 2 and 3 that the data collected from the
students are consistent with the hypothesis of size biased binomial with v =

1/2.

The situation 1s somewhat different in Table 4 relating to data from the
professors., The estimated v is more than half in each case and the chi-square
values are high. This implies that the weight function appropriate for these
data 1is of a higher order than r, the number of brothers. A possible
sociological explanation for this is that a person coming from a family with a

larger number of brothers tends to acquire better academic qualifications to

......
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The following example on observed sex ratio is illuminating. In a survey of
fertility and mortality, Dandekar and Dandekar (1953) gave the distribution of
brothers (excluding the informant) and sisters, and sons and daughters as
reported by 1115 'male heads,' contacted through households chosen with equal
probability for each household. It may be observed that in a survey of this
type, a family with r brothers gets a chance nearly proportional to r, and the
conditions for a weighted binomial with w(r) = r holds for the number of
brothers in a family. Yet we find from Table 5 that the total number of
brothers 1325 (excluding the informants) is far in excess of the number of

sisters, 1014 giving

N
i' 2 (1325 - 1014)2
X* = 3B ToIn. = 4135
which 1is very high on 1 degree of freedom. Is the theory of size biased
binomial wrong?
But it is clear from Table 5 that the disproportionate sex ratio is confined

'-', to the age groups above 15-19 years and the same phenomenon seems to occur in
M
.? the case of sons and daughters. There is perhaps an underreporting of sisters
. and daughters who are married off due to a superstitious custom of not
_:'_ including them as members of the household. Underreporting of female members
. is a persistent feature of data on fertility and mortality collected in
P developing countries.
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Table 2. Data on male respondents (students)

(k = number of students, B
respondent, S

total number of brothers including the
total number of sisters).

Place and year k B S ﬁ-s 'ngl; x2

Bangalore (India, 75) 55 180 127 .586 1496 .02
Delhi (India, 75) 29 92 66 582 .490 07
Calcutta (India, 63) 104 y1y 312 570 498 .04
Waltair (India, 69) 39 123 88 .583 491 .09
Ahmedabad (India, 75) 29 84 49 .632 .523 .35
Tirupati (India, 75) 592 1902 1274 .599 484 .50
Poona (India, 75) Y § 125 65 .658 545 1.18
Hyderabad (India, 74) 25 72 53 576 470 .36
Tehran (Iran, 75) 21 65 4o 619 .500 .19
Isphahan (Iran, T75) 1" 45 32 584 515 .06
Tokyo (Japan, T75) 50 90 34 725 .540 49
Lima (Peru, 82) 38 132 87 .603 519 .27
Shanghai (China, 82) 74 193 132 594 ATY .67
Columbus (USA, 75) 29 65 52 556 409 2.9
College St. (USA, 76) 63 152 90 .628 A97 .01
Total 1206 3734 2501 .600 .503 0.14

#Estimate of v under size blased binomial distribution
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o Table 3. Data on female respondents (students)
SN
x
EE-.::;‘ Place and year k B S 3-53 5%?_‘; X2
Lima (Peru, 82) 16 37 48 565 464 .36
Los Banos (Philippines, 83) 4y 101 139 579 .u485 .18
Manila (Philippines, 83) 84 197 281 .588 .500 .00
Bilbao (Spain, 83) 13 19 35 .576 .525 .10
Total 158 354 503 587 .493 .11
Table 4. Data on male respondents (professors)
Place and year k B S 553 -55}_‘; )(2
State College (USA, 75) 28 80 37 .690 .584 2.53
) Warsaw (Poland, 75) 18 31 21 .660 .525 2.52
.'_:J
2o Poznan (Poland, 75) 2y 50 17 JTH6  .567 1.88
o Pittsburgh (USA, 81) 69 169 77 687 .565  2.99
A
~;{;‘ Tirupati (India, 76) 50 172 132 .566 .480 .39
>
;E.{ Maracaibo (Venezuela, 82) 24 95 56 .629 .559 1.77
Y
.-‘- Richmond (USA, 81) 26 57 29 663 .517 .03
A
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Table 5. Distribution by age of brothers, sisters, sons and daughters
Dandekar and Dandekar (1953)

age-group brothers sisters sons daughters
0- 4 5 10 357 348
5- 9 27 31 330 354
10-14 63 62 305 226
15-19 87 85 208 190

00000 000000000000 000800000 S0DPSIETIRIRNIITEROOOCCRITSEECEEICIUINIOGRICEOEEESEOEDROECEOECEOEPSTIOPPDROIROIOEIRITITETITES

20-24 155 100 167 130
25=29 181 130 85 63
30-34 156 130 29 33
35-40 179 123 18 16
L4o=44 146 105 13 5

rest 336 228 21 10

total 1325 1014 1533 1375

5.2 ALBINISM

We introduce a general model which would be useful in genetic studies.

Let ™ and Ty be the probabilities that a male child and a female child
being an albino respectively. Then the probability that a family of n

children has ry males of whom t1 are albinos and ry females of whom "2 are
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albinos is
r
P(l‘1, t1s Foy ta) -( )%) ( ) t«] l‘1-t1 t2 ";24);2-1:2 (5.2.1)
2

where ¢4 = 1 - T4 and ¢ = 1 = Ty, and the probability of a child being a male

or a female is taken as half.

There are a number of ways in which we can introduce probabilities of
selection of affected families. We consider some models which are extensions

of those suggested by Fisher (1934) and Haldane (1938).

Introducing o and B = 1 - o as relative probabilities of observing a male

or a female albino, we may consider a mixture of two size biased

distributions.
p"(l\,, t1; I'z, tz) s -"ﬁ‘q?" +“n—1?2' p(t‘1, t1; Pa, tz) (5.2.2)

as the appropriate distribution of the observed vector (r.,, tyy T ty). If we
have data on (r1, ty, o t2) from N ascertained families, we can write down
the likelihood using the expression (5.2.2) and estimate the parameters a, LE)
and m,. Alternatively, we can use the method of moments, using the statistics

fty, Ity, and Iry to estimate the unknown parameters.

If 7y = T, = T, the expression (5.2.2) reduces to

g g
INDAD - SRR T

’ﬁ%(ah + Btz)P(Pp t1; Poy tz) (5.2.3)

%Y

)
L 2N )

and the estimates of « and ™ can be obtained from the equations
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%
%

a+-gEz(ni-1)
8 + 3 z(ng - 1)

where k is the number of families, n; is the number of children in the i-th

(5.2.4)

family and T, and , are average numbers of male and female albino children in

a family.

Another model is as follows. Let 04 and o, be the probabilities of
observing a male and a female albino respectively. Then the probability that
a family with n children having t, male albinos and ry - t1 normal males, and
t, female albinos and r, - t, normal females,is investigated s, times by

observing a male albino and 35 times by observing a female albino is

t

11 s ties, |%2 -

s 911(1 - 91) L s 0;2(1 - pz)tz 329(1'1’ t13 T oy tz)- (5.2.5)
1 2

Since a family 4is not investigated unless at least one of t; and t, 1is

different from 2zero, the effective distribution for the observed data is
(5.2.5) normalized by the dividing factor [1 - (1 = 0)P7] where
p = (pqmy + pom5)/2. The method of estimation of p,, 0, my and 7, when we
have the additional information on the number of times each family 1is

investigated is discussed in detail in Rao (1965).

In case a family is investigated only once although more than one abnormal

child in the family is observed the appropriate distribution is

t t2 n
(1=-(1- 01) (1 -02) ]P(!‘11 ty3 ro ty) + [1 - (1-5)"] (5.2.6)

where o = (TT1D1 + ﬂzpz)/Z. If oy = pp =p and 7y = 7, = 7, then the

R AL G Y N -

AN

od




*-- '*v:;-'Tv)TT‘ "‘.'-':"F"‘w"t—vr -;'-v".v'y'-“‘m '} -, -vv - -:. v.‘-;-v_w—:-v:rv.‘-?-vv-—'—-——-—-—_v—-_-v_v ~ U, V’_ r_ ,—. ,_. ,..f; e W ._1

22

expression (5.2.6) reduces to

ty+t
-0 o e (gt
1-(1-rp)0 Tl = t)ltlry = t5)1 ea ( . (5.2.7)

If sex is ignored then (5.2.7) becomes

1-(1 -0t al t oot
(- TES BT T (5.2.8)

where t = t, + t,, which is the expression used by Haldane (1938).

We have considered three different models (5.2.2), (5.2.5) and (5.2.6) for
the probability of selection of a family. In the case where we have
information only on the number r of abnormal children in a family of size n

without any sex distinction we may consider a weighted binomial distribution

w(r) : aTeMF & Elw(r)] (5.2.9)

with three possible alternatives for w(r)

wir) = r (5.2.10)
= r% (o unknown) (5.2.11)
=1=(1=0)2 (0 unknown), (5.2.12)

The maximum likelihood method of estimating o« and 7™ under the model (5.2.9,

oS
)

r s o »

5.2.11) is discussed in Rao (1965), and of ¢ and T under the model (5.2.9,

5.2.12) in Haldane (1938). To demonstrate the relevance of the weight

|
B

.:.'j- function (5.2.11), we compare in Table 6 the observed data on frequencies of
X

£o?s

\" albino children in families of different sizes with the expected values under
e the two different weight functions w(r) = r and w(r) = r1/2 choosing 7 = 1/4.
- It is seen that the weight function w(r) = r'/2 provides a better fit.
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Table 6. Observed and expected frequencies of albino children for
each family size (n)
(expected (1) for w, = r and expected (2) for W, = r1/2)
no. of n=z 2 n=3 n=4 n=5
albinos e:eza expected egE:a expected egg:; expected egs:a expected
(1) (2 (1 (2 (n (2 (1) (2
1 31 30.00 32.37 37 30.93 35.81 22 21.10 26.07 25 19.00 24.93
2 9 10.00 7.63 15 20.63 16.88 21 21.09 18.43 23 25.31 23.50
3 3 3.3 2.30 7 7.03 5.02 10 12.65 9.59
4 0 0.78 0.48 1 2.81 1.85
5 1 0.23 0.13
no. of nz 6 n=17 total
albinos 93335 expected §§$:; expected ‘:ega expected
(1 (2) (1) (2) (1) (2)
1 18 12.58 17.46 16 8.21 11.98 149 121.82 148.62
2 13 20.96 20.58 10 16.37 16.94 9 114.36 103.98
3 18 13.98 11.20 15 13.64 11.53 47 50.74 39.64
4 3 4.66 3.23 5 6.06 4.43 9 14.31 10.00
5 0 0.77 0.48 1 1.51 0.99 1 2.51 1.61
6 1 0.05 0.03 0 0.20 0.12 1 0.25 0.15
0 0.01 0.01 0 0.01 0.01
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For a general discussion of the type of problems discussed in this section,
and a few other models for selection probabilities, the reader is referred to
Stene (1981) and other references mentioned in that paper. For estimation of

a and v in the model (5.2.9, 5.2.11), reference may be made to Rao (1965).

5.3 ALCOHOLISM, FAMILY SIZE AND BIRTH ORDER

Smart (1963, 1969) and Sprott (1969) examined a number of hypotheses on the
incidence of alcoholism in Canadian families using the data on family size and
birth order of 242 alcocholics admitted to three alcoholism cliniecs in Ontario.

The method of sampling is thus of the type discussed in Sections 5.1 and 5.2.

One of the hypotheses tested was that "larger families contain larger number
of alcoholics than expected.™ The null hypothesis was interpreted to imply
that the observations on family size as ascertained arise from the weigh‘ed

distribution

np(n) + E(n), ns= 1' 2’ see (5.3'1)

where p(n), n =1, 2, ... is the distribution of family size in the general
population, including families with no alcoholics. It may be noted that the
distribution (5.3.1) would be applicable if we had observed an individual
(alcoholic or not) at random from the general population and ascertained the
size of the family to which he or she belonged. It needs some argument to
show that the same distributior holds for family size ascertained by observing
the alcoholic individuals only. The following justification of (5.3.1) makes

use of an interpretation of the null hypothesis that is being tested.

S > .\‘ L 'r\__\;;.;.\“-.‘ ERTRIN

LRSI NN L]

‘‘‘‘ Y . AT o A ol ".'\' i _‘.'.'.".“'}-"‘l"‘ AT Rt Bl Ttk R il R S A
L% - . . . - . - -

PSR ST SP Ryt §

abedh - Lt e e

| SN Y )

"

Fo U 3N DS 0 300 B JN S SPAY aru wa Ty )

RV R ARy}

)

fe




25

Let 7 be the probability of an individual becoming an alcoholic and suppose
that the probability that a member of a family becomes an alcoholic is
independent of whether another member is alcoholic or not. Further let p(n),
n=1, 2,..., be the probability distribution of family size (whether a family
has an aleoholic or not) in the general population. Then the probability that

a family is of size n and has r alcoholics is

p(n) (:)n“¢""', P=0,eee)l3 D=1, 2, euu . (5.3.2)

From (5.3.2), it follows that the distribution of family size in the general

population given that a family has at least one alcoholic is

(1 - ¢n)P(n) <+ 1 - E(¢n)’ ns= 1’ 2’ ese o (5.3.3)

If we had chosen households at random and recorded the family sizes in
households containing at least one alcoholic, then the null hypothesis on the
excess of alcoholies in larger families could be tested by comparing the
observed frequencies with the expected frequencies under the model (5.3.3).

However, under the sampling scheme adopted, the weighted distribution of (n,r)

P¥(n,r) = pp(a) |"|*Te™F + E(n) (5.3.4)
r

is more appropriate. If we had information both on the family size (n) as
well as on the number of alcoholies (r) in the family, we could have compared
the observed joint frequencies of (n,r) with those expected under the model

(5.3.4).
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-
RS From (5.3.4), the marginal distribution of n alone is
r
s

np(n) + E(n), n=1, 2, ... (5.3.5)

which is used by Smart and Sprott as a model for the observed frequencies of
family sizes. It is shown in (5.3.3) that in the general population, the

distribution of family size in families with at least one alcoholic is

(1 - ¢Mp(n) =+ 1 - E(4D)

which reduces to (5.3.5) if ¢ is close to unity. Or in other words, if the
probability of an individual becoming an alcoholic is small, then the
distribution of family size as ascertained is close to the distribution of
family size in families with at least one alcoholic in the general population.

This is not true if ¢ is not close to unity.

Smart and Sprott found that the distribution (5.3.5) did not fit the
observed frequencies, which had heavier tails supporting the hypothesis under

test.

PV An alternative to (5.3.4) is obtained by assuming that each alcoholic has a
chance © of being admitted to a clinic independently of other alcoholic family
members. In such a case, the probability that a family of size n has r

.. alcoholies and a member has been admitted to a clinic is
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p(n) : PP T - (1 - 8)T). (5.3.6)

e

The marginal distribution of n with the normalizing factor is then
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p(o)(1 - (1 =78)%) + E(1 - (1 = 6)B) (5.3.7) |

n=1, 2, see o

The distribution (5.3.7) involves one unknown parameter 78 which needs to be
estimated in fitting to the observed frequencies of family sizes. Some
examples of distributions of the type (5.3.7) have been considered by Barrai,
Mi, Morton and Yasuda (1965). The distribution (5.3.7) is close to (5.3.5) if

70 is small.

We may also consider a more complicated model by assuming different
probabilities T4 and To for males and females becoming alcoholic and also
different probabilities 91 and 9, for male and female alcoholics being
referred to a clinic. In such a case, the probability of inclusion of a
family of size n with ry males and 84 male alcoholics, rp females and S,

female alcoholics is

- ry -
p(n) (r) %) myleg 1701 . n5252 2(1 - (1= 8071 = )70 (5.3.8)

which gives the marginal distribution of n as

P(R)(1 = 2772 =m0, =7 ,05)0) + E(1 - 2772 -7 8, - 7m,0,)") (5.3.9)

which again involves one unknown parameter (1r161 + vzez)/z. The marginal

distribution of r; and r, obtained frem (5.3.8) is

p(n)

r
% n(1 - (1 - ﬂ191)r1(1 - "262) 2) - E(’ - 2'“(2 - 71’191 - szez)n)

F1
. / (5.3.10)

where n = (r1 + "2)' Ir Tr.,e1 and m,9, are small, then (5.3.10) becomes
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p(n) (r1 (a}) (PqT 48y + FpTy8)) 4 ———s5——— E(n) (5.3.11) ]

If we had the joint frequencies of males and females in the observed families \

4

of alcoholics, we could have fitted distributions of the type (5.3.10) and g

(5.3.11) to test the null hypothesis of larger number of alcoholics in larger 1

families. N

It is seen from (5.3.10) and (5.3.11) that the distribution of (r,, "2) will _'-;4

not be symmetric unless Ty 61 = nzez. This may result in excess of males or

females in observed families. Such an effect (with an excess of males) can be

seen in similar data studied by Freire-Mala and Chakraborty (1975) and Rao,
N Mazumdar, Waller and Li (1973); these authors have not, however, commented on

it.

Another hypothesis considered by Smart was that the later born children have
a greater tendency to become alcoholic than the earlier born. The method used
by Smart may be somewhat confusing to statisticians. Some comments were made
: by Sprott criticizing Smart's approach. We shall review Smart's analysis in
i: the light of the model (5.3.4), If we assume that birth order has no
relationship on becoming an alcoholie, and the probability of an alcoholic
being referred to a clinic is independent of the birth order, then the
probability that an observed alcoholic belongs to a family with n children, r

alcoholics and has given birth order s { n is, using the model (5.3.%),

L p(n) Ul arenr o E(n) (5.3.12)

r
8 = 1..oo'n; r = 1)...,‘1; n= 1, 2, ese o
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2 Summing up over r, the marginal distribution of (n,s), the family size and

‘ birth order, applicable to the observed distribution, is 3

’ p(n) + E(n) (5.3.13) ‘]

:' 8=1..-..n; n=1' 2' soe :

:4- 1

where it may be recalled that p(n), n = 1, 2,..., is the distributien of :

py * J
family size in the general population. Smart gave the observed bivariate ;

:_Q;I frequencies of (n,s), and since p(n) was known, the expected values could have X

j:j. been computed and compared with the observed. He did something else. .

B :

o

- From (5.3.13), the marginal distribution of birth rank is

-

-

-.\ P

¢ Pp() 4+ Em), r=1,2, ... . (5.3.18)

izr

e

f:j Smart's (1963) analysis in his Table 2 is an attempt to compare the observed

» distribution of birth ranks with the expected under the model (5.3.14) with

o p(i) itself estimated from data using the model (5.3.1).

" A better method is as follows: from (5.3.13) it is seen that for given

|4 family size, the expected birth order frequencies are equal as computed by

:;l Smart (1963) in Table 1, in which case individual chi squares comparing the

A

' expected and observed frequencies for each family size would provide all the

. ° information about the hypothesis under test. Such a procedure would be

l"_:: independent of any knowledge of p(n). But it 4is not clear whether a

‘.'I:; hypothesis of the type posed by Smart can be tested on the basis of the

.. available data without further information on the other alcoholics in the

:;:E family, such as their ages, sexes, etc.

~°
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_’,.-li'_- Let us consider a portion of Table 1 in Smart (1963) relating to families up
t to size 4 and birth ranks up to i.
Table 7. Distribution of birth rank(s) and family size (n)
Smart (1963, Table 1)

: birth family size

. rank 1 2 ‘ 3 i

- ) E ) E 0 E ) E

' 1 21 21 22 16 17 13.3 11 11.75

N 2 10 16 14 13.3 10 11.75

\"'\

,,

:.'.21 4 13 11.75

'.1';-'. 0 = observed, E = Expected
o

~ It is seen that for family sizes 2 and 3, the observed frequenccies seem to
'.-‘_-_'.' contradict the hypothesis, and for family sizes above 3 (see Smart's Table 1),
\ birth rank does not have any effect. It is interesting to compare the above
" data with a similar type of data collected by the author on birth rank and
:-::: family size of the staff members in two departments at the University of
l‘..‘

o Pittsburgh.

%':*-

S Table 8. Distribution of birth rank and family size (up to 4)

_‘,_, smong staff members

.-:'.1

<3

" birth family size

::.::' rank 1 2 3 L}

. 1 7 18 9 3

e 2 6 4 2

S

= 3 2 0

> 4 0

©

'-:'
¥ ‘-...

.:‘_E;

'-;:.n._,'l-:.:
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AN It appears that there are too many earlier borns among the staff members
' indicating that becoming a professor is an affliction of the earlier born! It
::'.::;Z is clear that the observed data by themselves do not enable any inference to
B be drawn on the relationship between birth rank of a child and any attribute
K under consideration.

2

6. QUADRAT SAMPLING WITH VISIBILITY BIAS

- For estimating wildlife population density, quadrat sampling has been found
'::jij\- generally preferable. Quadrat sampling is carried out by first selecting at
>

- random a number of quadrats of fixed size from the region under study and
“‘ ascertaining the number of animals in each. The following assumptions are
S made :

;‘»Z; - Aj: Animals are found in groups within each quadrat and the number

::'-:'{ of animals X in a group follows a specified distribution. 1
W

A

:-'_:', - Ay The number of groups N within a quadrat has a specified

n'.:l}

o distribution.

)

e

- A3: The number of groups within a quadrat and the numbers of

o animals within groups are independent.

‘ Let the method of sampling be such that the probability of sighting (or
S recording) a group of x animals is w(x). If X" and N¥ represent the ry's of

the number of animals in a group and number of groups within a quadrat as

ascertained, then we have the following results,
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(1) P(N" = m|N = n) = ( )w‘“u - y)yro (6.1)

where

P

1,8

r"-"/ P

ataf2 e
-{-.-'.'I

-]

W= § w(x)P(X = x) (6.2)

“ %S e
o4

is the visibility factor (or the probability of recording a group).

(14) P(W = m) =

s

(:) wB(1 - w)™Bp(N = n) (6.3)

:'.:' (iii) p(NH H] ll, x? s X1,ooc,x: = !m)

' = wBP(NY = m) T w(x,)P 6.4
= P(N" = m)j:ﬂw x4)P(X xy) (6.3)
g (iv) Let s¥ = X‘.l' +...+X;. Then

yim) (6.5)

P(S¥=y) = lll_21!'01‘" = m)P(s¥

e W
P P(S" = ylm) s zx12=y'!_zll » e e 'w(—:n)_P(X1 = 11) e e o P(x s Xn)- (6.6)

Sl The formulae listed above are useful in many practical situations. Usually

A the sighting probability is of the form

wix) s 1= (1~ )%, (6.7)

o For some applications, the reader is referred to papers by Cook and Martin

. @
s’ i

(1974), and Patil and Rao (1977, 1978).
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7. WAITING TIME PARADOX |

v

L
o,

M) e e s e
l‘{ﬂ"- .-."‘l

Patil (1984) reported a study conducted in 1966 by the "Institut National de

S
‘f‘.:: la Statistique et de 1l'Economie Appliquée" in Morocco to estimate the mean
;i‘. sojourn time of tourists. Two types of surveys were conducted one by

d contacting tourists residing in hotels and another by contacting tourists at l
:'_, frontier stations while leaving the country. The mean sojourn time as {
\: reported by 3,000 tourists in hotels was 17.8 days and by 12,321 tourists at |
E‘" frontier stations was 9.0. Suspected by the officials in the department of
t?:’ planning, the estimate from the hotels was discarded.
SIS

It is clear that the observations collected from tourists while leaving the

LA
(]

country correspond to the true distribution of sojourn time, so that the

observed average 9.0 is a valid estimate of the mean sojourn time. It can be

R RS T T
’ la
t l.l"l) 41

shown that in a steady state of flow of tourists, the sojourn time as reported
by those contacted at hotels has a size bilased distribution so that the \
observed average will be an overestimate of the mean sojourn time. If ™ is a \

size biased random variable, then

E(x%)~? = ! (7.1)

where 1 is the expected value of X, the original variable., The formula (7.1)

shows that the harmonic mean of the size biased observations is a valid

estimate of u, Thus the harmonic mean of the observations from the tourists
in hotels would have provided an estimate comparable with the arithmetic mean

of the observations from the tourists at the frontier stations.

It is interesting to note that the estimate from hotel residents is nearly

. -~
> - v & Caf e m® o’ o0 R S R I P T I R B R g T G
NG S OO ENRRL LIS YA NOI S PAT S 0¥ I AT RO AR L0 AR CR TN b
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Y

twice the other, a factor which occurs in the waiting time paradox (see
“\ Feller, 1968; Patil and Rao, 1977) associated with the exponential
: distribution. This suggests, but does not confirm, that the sojourn time
E. distribution may be exponential.

‘::‘:: Suppose that the tourists at hotels were asked how long they had been
-‘ staying in the country up to the time of emquiry. In such a case, under the
:’:ﬁ assumption that the pdf of the pry Y, the time a tourist has been in a country
up to the time of enquiry, is the same as that of the product X*R where X" is
the size biased version of X, the sojourn time, and R is an independent pry
with a uniform distribution on [0,1]. If F(x) is the distribution function of

T X, then the pdf of Y is

:

n w01 - Ry L. (7.2)
_:. h The parameter u can be estimated on the basis of observations on Y, provided
:E'_'_::_: the functional form of F(y), the distribution function of the sojourn time, is
LD known.

%

-. It is interesting to note that the pdf (7.2) is the same as that obtained by
.":. Cox (1962) in studying the distribution of failure-time of a component used in
V, different machines from observations on the ages of the components in use at
:‘.-' the time of investigation.

o

...-
3 8. DAMAGE MODELS

-;f Let N be a ry with probability distribution, Ppr 0 = 1, 2, «oc. , and R be a
:tj'—ifj Iy such that

L
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P(R= r|N = n) = s(r,n). (8.1)

Then the marginal distribution of R truncated at zero is

ph=(1=-p" ) pste,m), r=1, 2, ... (8.2)
n=r

where

p= % pys(o,1). (8.3)
The observation r represents the number surviving when the original
observation n is subject to a destructive process which reduces n to r with
probability s(r,n). Such a situation arises when we consider observations on
family size counting only the surviving children (R). The problem 1is to
determine the distribution of N, the original family size, knowing the

distribution of R and assuming a sujitable survival distribution.

Suppose that N ~ P()), i.e., distributed as Poisson with parameter » and let

R~ B(-,m), i.e., binomial with paremeter ©. Then

A r
PL = e””’-(-—:}—-.t (1 - e'“), Prz=1,2, oo o (8.4)

It is seen that the parameters X and m get confounded so that knowing the
distribution of R, we cannot find the distribution of N. Similar confounding
occurs when N followsa binomial, negative binomial or logarithm series
distribution. When the survival distribution is binomial, Sprott (1965) gives

a general class of distributions which has this property. What additional

o LA ..-.'o
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._-".-".; information is needed to recover the original distribution? For instance, if

A

AN we know which of the observations in the sample did not suffer damage, then it
el is possible to estimate the original distribution as well as the binomial

: parameter .

It is interesting to note that observations which do not suffer any damage

N have the distribution

S Pp = P (8.5)
',TZ: which is a weighted distribution. If the original distribution is Poisson,

b then

S g AT )

Pz A (1 - &) (8.6)

e which is same as (8.4). It is shown in Rao and Rubin (1964) that the equality

..-. pﬁ = p;, characterizes the Poisson distribution.

o )

f:‘.-:‘:: The damage models of the type described above were introduced in Rao (1965).

IE::Z:_f For theoretical developments on damage models and characterization of

Kre

;—’ probability distributions arising out of their study, the reader is referred

to Alzaid, Rao and Shanbhag (1984).

9. NONRESPONSE: THE STORY OF AN EXTINCT RIVER

Sample survey practitioners define nonresponse as a missing observation or

nonavailability of measurements on a unit included in a sample. It is clear

i
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that if the missing values can be considered as a random sample from the
population under survey then the observed values constitute a representative
sample of the whole population (Rubin, 1976). Usually this is not the case
and special techniques are developed in sample surveys to cope with such

situations.

In general, nonresponse poses serious issues such as the problem of broken
skulls not providing direct measurements on capacity (see Section 4§ of this

paper). More complex cases are as follows.

For instance, we may try to estimate the underground resources in a given
region by making borings at a randomly chosen set of points and taking some
measurements. But it may so happen that borings cannot be made at some chosen
points due to some reasons such as the presence of rocks. The measurements at
such points may be of a different type from the rest in which case the

observed sample will not be a representative sample from the whole region.

Such a problem arose in an investigation by geoclogists at the Indian
Statistical Institute to estimate the mean direction of flow of an extinct
river of gealogical times in a certain region (see Sengupta, 1966;

J. S. Rao and Sengupta, 1966). The geologists collected a series of
observations on direction cosines of flow (two dimensional vector data), which
seemed ideal for an application of Fisher's (1953) distribution and the
associated theory for estimation of the mean direction of flow. Then the

question arose as to what the hypothetical population was from which the

P SO TSy

observations could be considered as a random sample. It appeared that the

.
‘...K y
L .

a e

measurements on direction cosines could not be made at any ghosen poinmt, but

only at gertain points where there was rock formation with some markings known ]

P

'."':"‘- %

@,

PR ] JCIRC IR . LI et T SR S T W Y

T T T et L e (e




DA 4
o elatal 00 el

j CA
¢ LS .;.;.";."-j'{" o

282
l"..l

'4' :' .

’

[Sal';
". l.‘l.
[ N

fa,e
; ."r"n
MPRN

A
¥
P

-~

r;v “ ‘.‘l ’-'(f “‘ P
RAA '."'f‘."'. 'l'. 4

a .-."-. !

00 4 Y
¢ 1 I. l‘ 1]
statate'e

LRt ]
'

A

L)
Ut

[}
ot

as "outcrops." The geologists walked along the region under exploration and

made measurements wherever they came across outcrops. If the outcrops had
been uniformly distributed over space, then it might have been possible to
define a population of which the observations made by the geologists could be
a representative sample. The locations at which observations were made when
plotted on a topographical map of the region showed an unequal distribution of
outcrops in different areas of the region indicating the nonrandom nature of
the occurence of outcrops. In such a case the estimate of mean direction
assuming that each observation is an independent sample with a common
expectation will be biased. In order to minimize the bias in estimation, the
following method of estimation was adopted. A square lattice was imposed on
the topographical map and the measurements in each grid were replaced by their
average. Then a simple average of these averages was taken as an estimate of
the mean direction of flow. This estimate differed somewhat from the average

of all the measurements and was considered to have less bias.

This study points out the need for a re-examination of data on directions of
rock magnetism collected by geologists and analysed by Fisher (1953) who
developed a special theory for that purpose. If the outcrops at which
measurements of direction are possible are not uniformly distributed over
space, then there will be some difficulty in interpreting the observed mean

direction as an estimate of some specific parameter,

10. CONCLUSIONS

Some of the broad conclusions that emerge from the discussion of the live

examples in the paper are as follows:
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E::\ Specification or the choice of a model is of great value in data analysis.
An appropriate specification for given data can be arrived at on the basis of
past experience, information on the stochastic nature of events, a detailed
knowledge of how observations are ascertained and recorded, and an exploratory
analysis of current data itself using graphical displays, preliminary tests

and cross validation studies.

Inaccuracies in specification can lead to wrong inference. It is therefore
worthwhile to review the data under different possible specifications (models)

to determine how variant the conclusions could be.

What population does an observed sample represent? What is the widest
possible universe to which the conclusions drawn from a sample apply? The
answers depend on how the observations are ascertained and what the
deficiencies in data are in terms of nonresponse, measurement errors, and

contamination.

Every data set has its own unique features which may be revealed in initial
scrutiny of data and/or during statistical analysis, which may have to be
taken into account in interpreting data. Routine data analysis based on text

book methods or software packages may be misleading.

Generally in scientific investigations, a specific question cannot be

answered without knowing the answers to several other questions. It often

l.l
s
a1

pays to analyse the data to throw light on a broader set of relevant and

A

related questions.
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What data should be collected to answer specific questions? Lack of
information on certain aspects may create undue complications in applying
statistical methods and/or restrict the nature of conclusions drawn from
avallable data., Attempts should be made to collect information on concomitant

variables to the extent possible, whose use can enhance the precision of

estimators of unknown parameters, and provide broader validity to statistical

inference.
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