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ABSTRACT

A frequently occurring problem is that of minimizinfg

convex function subject to a finite set of inequality con-

straints. Often what makes this problem difficult is the

sheer number of constraints. That is, we could solve this

problem for a smaller set of constraints. but solving for the

total set causes difficulty. Here we discuss an approach

which uses our ability to solve these partial problems to

lead to a total solution. We-will illustrate the method with

several examples in the last section of the paper.

approach will be somewhat heuristic in nature to promote uin-

derstanding.
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1. INTRODUCTION.

Let us consider the following convex programming problem:

Minimize the convex function f0 (x) (defined on some subset of

Rn) over the region C subject to the constraints f (x) 0,

•.,f (x) : 0 where the fi, i= l,...,m are finite convex

functions on C. We could of course define f0 (x) to be +-

for x 0 C, and hence assume that our functions are defined

over Rn. We shall call f 0(x) the objective function, and

refer to fi(x), i= l,...,m as the constraint functions.

We shall define X = (Xl,' ',m) E Rm to be a vector of

Kuhn-Tucker coefficients for our problem, or simply a Kuhn-

Tucker vector if I 0, = ,..-,m and if

inf f0 (x)+ Xlf 1 (x)+ ... + m f M(x)
xEC

is finite and equal to the optimal value of our original prob-

lem. The existence of Kuhn-Tucker (KT) vectors is guaranteed

under mild conditions. (See Rockafellar (1970) for a discus-

sion of this material.) Part of the importance of KT vectors

stems from the fact that they can convert a constrained prob-

lem into an unconstrained (or at least more simply constr%1ned)

problem.

Another important construct is the Lagrangian associated

with our problem. It is defined as the function L on

U
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Rrn x f given by

() +x (x) + • + xrrP(X), xEC, X i .0 1

L(X,x) = -<x E ( 3t

+ 0, x -- poin

A vector pair (AO,x ) is said to be a saddle-point of

0 0 k0

(1.1) L(%,x )) L(kx) : :,( ,x) Vx,.

Such saddle-points play a big role in the ollowinr- "un.2ment

theorem (Rockafellar, p. 281).

Pheorem 1.1. In order that X 0 be a K vector and xr be

an optimal solution, it is necessary and sufficient th;it

(x x") he a c>ddle- olnt of the Ta9rn,-ian .. V.' c:,\ .,

t h 0 )n,! C. t .on) I, qxt

'a) ] , (x0 ) : and X' e (x ) =0(1.2,) i
n Tn

The notation f,(x) indicates the set of' sublrra,]lentv

of' f at x O. Condition (b) implies that, x mirmJnos

fo(X) + )lfl(x) + + xf (x). Of course if the f. are al

differentiable, (1.2)(b) may be replaced by



(1.2) (b') vf 0 (x 0 ) + l1 Vfl(x 0 ) + . + mVfm(X) 0.

Given that one can solve a constrained minimization rprob-

lem, condition (l.2)(b') can often be used to find a KT vec-

tor for the problem. This fact shall prove useful later on.

2. THE METHOD.

The basic idea behind our approach is that one can reduce

the number of constraints being considered by modifying the

objective function through the use of estimated KT vectors.

At each stage, the modified problem is solved, and updated

estimates of KT vectors are found. Under fairly general

conditions, the solutions to the modified problems must con-

verge to a true global solution.

To be more specific, we assume that our constraint furic-

tions are grouped into vectors and given by

f1 (x) = (f1 1 (X),f 1 2(X),-.. I (x))

fk(x) = (fkl(X),fk2 (x),...,fkmk(x))

k
where m i = m.

1=1
We then define our Lagrangian as



f f +Xf 1 (X)+ + Xfkjx), x E C, k 0 Vii

L(X,x) = x E C, Xij < 0, ]i,j

x 0 C,

where X = (Xl,...,Xk and Xi  is an m i . 1 vector.

We shall use Li(X,x) to denote L(X,x) with X, s t

equal to zero, and Li(Xi,xlk) to denote L(X,x) considered

as a function of Xi  and x (Xl,--. ki lXi~l,'', aviv

regarded as fixed).

Initially, we set j = , j=l,"-k and

XlO)= (X' 1  , 9 . ,k ) )  Our algorithm is sequentiall

defined as follows (beginning with n = 1, i = 0):

a) Let x(ni+l) (x(n+l.l) if i = k) denote the

solution to

Minimize Li+((n 'i)

x:fi+l1,j(x) 0 Vi

(x:fj(X)g 0 Vj if i= k)

This is a convex programming problem which we assume we can

solve. We let X(n,i+l) (X(n+lll) if i = k) denote a E,0

i+l 1

vector for the problem. (Condition (1.2) may prove useful in

obtaining this KT vector.)

b) We now update our global KT estimate by Lettinr



n(n,l) . (ni+1) (n-l,i+ 2 ) ... 1 n-!,k)
1 ' '1+ '1+2 k)

(If 1 = k, we set

x(n+l,1) - (n+l,1), n 2) (n k )' )

We then replace (n,i) by (n,i+l) ((n+1,l) if i = k) and

return to step a).

]n many situations, the problems in step a) which must be

solved! are always of the same form, and hence lead , 1 i 'l~ y

written computer programs for performing these steps. We zAall

give some explicit examples in Section 4.

3. JUSTIFICATION FOR THE ALGORITHM.

'i'he crucial fact that justifies this procedure is thiat

the L!grangian can only increase at each step in the aL:,J-

rithm. This follows since (for i < k)

L(k(ni) ,x(ni) (n,i) x(n.,)i(ni))

L(X( x(ni+l)1X(n'l)) (by Thim. 1.1)

L1~~ ((n,i) )x (n,l+l)jX(ni+l))= il.i+ 1

:g Lil (ni+l) ,x(nui+l)X (n'i+l)) (by Thmi. 1.1)
L(+l()+1l

=L(X (n s + l ) , (n ' + l ) )



A similar argument holds if i = k for showing

LO( (n,k),'x(n k ) )  r L( (n+l,l).,x (n+1,1))

Moreover, we note that if y E C is any vector such that

f (y) : 0, Vi,j, then

(3.1) L(X(n'i),x(n i)) ( L(X(n'i) y) fo(y),

so that lim L(X(ni) ,x (n 'i)) exists finite independently

of i. Now, since x (n'i) minimizes a convex function,

under conditions which guarantee sufficient curvature of

L(x,k) (such as xHx k y11x4 2  for some y > 0 where H is

the Hessian of f0), we know that x(ni+l) must be close

to x(ni) for sufficiently large n. Now, if x (ni) must

contain a convergent subsequence (such as if C is a bounded

region) converging to x0 E C, then we only need continuity

properties of f0 and fi, i= l,-.,m to guarantee that

fi(x 0 ) s 0, i= l,..-,m and f0 (x
0 ) : f0 (y) for all y in

0
C which satisfy all constraints (by 3.1). Thus x must I'e

a solution to our problem, and since every convergent subse-

0quence converges to x , the algorithm must work correctly.



4. APPLICATIONS.

1. Let us first consider least squares problems o:nler

linear Inequality constraints. Thus, we wish to miniimi~z - the

objective function

n

f0 (x) = 1E(gi-xi2w

subject to the constraints

n

fi(x) - x'a1  - a x ;: 0, i= 1'. " ,' ,

where w > 0, g,al,. ,am  are given n X 1 vectors such that

there exists at least one vector x where a'x g 0 Vi.

Of course, the solution to our problem under a single

constraint aix g 0 can be easily found by the expression

n

if E aijg 1  0
(4.1) P (g) =J=

I n

t~gl ..19),if E a1 g > 0,j=l

where

n n 2 -l
g gJ- ( gAaiI)a iw- / Ea w

g = -1=1 Lti A.=l

The corresponding KT value can then be found from

(1.2)(b') as
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(4.2) X, = (g _ p(g) )w a-1

j j j,

where j is any index such that a1 j 9 0. Suppose now that

we modify our objective function (with g replaced by an

arbitrary h) by adding XIfi(x). However, the problem

n2

(4.3) Minimize 1 (h xj)2w + fi(x)
x.a r : 0 2xj=l wJ + j (

has the same solution as

n n 2
Minimize - E x.w [h + (P(g) xw

X ar 0 j=l J  i + )- + 2=l

which is equivalent to

n 2
(4.4) Minimize 1 E(hj+ (P (g) x w..

x'a r0 j= I j J*
r

Thus our adjustment still leaves the problem as the same

type of least squares problem, but with the value h modified

to now be h+ (Pi(g)-g).

We can now apply the method proposed in section 2, which

can be expressed as follows:

1) Set g = P1 (g), and Ill = g1 1 -g.

2) Set g1 2 = P2 (gll
), and I12 = g12-g11.

3) Continue, until glm= Pm(gl,m-i ) ' and

'lm =glm-gl,ml.

I



4) Now set g = P(glm-Il) ' and I21 g2 1-(glm-lll).

5) Contine. In general, set gnj = Pj(gn,j-1-In-l,.I) '

and In = gn-(gn -Iif j > 1, annj gn-(n,j-l- 1n.ij)

= Pl(gn-l,m- In ) and

I nl = gnl-(gnl,m- In-1,1).

This scheme is easy to program since the projections are

of such simple form, and there is no branching or searchinr

involved. Moreover, gn,j is guaranteed to converge to the

true solution. This is a special case of an algorithm ,iven

by Dykstra (1983).

2. Depending upon the nature of the linear constraints,

it may be possible to easily find the projection under several

simultaneous constraints. For example, if

fi(x) = Xi- Xi+l, i= l,.--,n-l,

the set of vectors which satisfy all n-l constraints are jzst

the nondecreasing vectors. Projections onto these type,- or

regions are quite tractable (see Barlow, Bartholomew, Bremncr

and Brunk (1972)). Another set of linear inequality corstraint:

which can be simultaneously handled are

i

fi(x) = l xjXi+l i= 1,..,n-l
J=l
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(Shaked (1979) and Dykstra and Robertson (1983)).

By being able to handle large constraint sets, we can

improve the efficiency of our method.

To elaborate, we consider the problem

~n

(45) Minimize n - 2W.

X'A 1.O, i=l, ",k 1

where Ai = (a l, a )im.  is an n x m. matrix of inderern-

dent columns. We assume that we can solve (4.5) for any paf-

ticular i and any g, and will denote the solution by

P1(g). It can be shown that the KT vector for this proble!':

is

m xl
= (AAJ[ A-A(g.w-Pi(g).w)

where x-y denotes coordinatewise multiplication.

Interestingly enough, we can repeat the argument used in

(4.3) and (4.4) to derive the same type of result. Thus t rol/cwc

that our earlier stated algorithm is still valid if P.U)

denotes the projection of g onto fx;x'A. Q].

This extension may prove very useful for situations whert

there are a great many constraints. For example, Dykstra and

Robertson (1982) were able to find least squares projections

of rectangular arrays under the constraints of nondecreasln-.

rows and nondecreasing columns for even large arrays.
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3. As a final example, we consider the problem of firiding

I-projections onto an intersection of linear inequality reiow .

We will not elaborate on the importance of I-rrojccticno,

only state that they occur in a myriad of places in many d'-

ferent settings. We refer the reader to Kullback (1959) c:

Csiszar (1975) for elaboration on their importance. Th,

problem we are dealing with is

n
(4.6) Minimize p P. ln(pi/r

a p c ii=l, .- ,m i l 
i

nZpi~l,Pi 0O

where r#O is a finite, nonnegative, vector arid the vct

of feasible points is not empty. We will define our ob'ectiw-,

function as

n n
{ilpi ln(p./r,), Pi 1t0 p

elsewhere.

Our constraint functions are

n
fi(p) = (ai-ci)'p = E (aij-ci)PP, 1= l,',m,J=l

where c is a vector of constants. We note that r caxi be

arbitrarily scaled without changing the problem.

The solution to the problem of minimizing f0(p) subjeet



to f (p) 0 Is given by

-xI(a ij-c) n -x1(aj -c
r . e / r e,

11 ~ j=l

where Xi is the solution to

n -X(a i .-c I)
E(alj -c i)r, e =(

providing it is nonnegative, and zero otherwise. It alsD turns

out that X is the KT value associated with the rroblem.

Now if we modify our objective function (with r retplaot.i

by an arbitrary nonnegative, nonzero h) by adding Xf X (x),

our problem becomes

n
Minimize f0 (p) + X (aj-c.)pi

(ar-c r)p j=l 1 '

or

n -i (a ij-i)
Minimize Lpj [in pj/h. - in e
(ar-cr 'pI0 J=l j

p.lO Vj P =1
3 ii

or equivalently,

n
(4.7) Minimize E Pj in p/hj(Pi/r.).

(ar-cr)' p<0 j=l
n

Pilo VJZ Pj=l

The key point is that our problem is precisely of thc



1~4

same form as before, except that we have modified our vector

h. Thus we may use our procedure of modifying our obiective

function using updated estimates of the KT vector, and )n!y

have to solve the one type of problem. Setting X, = 0 11

(4.7) is equivalent to setting ^i/r = 1. This scheme is

quite effective for finding I-projections under multiple

linear inequality constraints.

In summary, this procedure seems to work quite well for

situations where many constraints are involved, and partial

solutions (solutions under partial constraints) are easily

available.
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