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ABSTRACT

A frequently occurring problem is that of minimizing 4
convex function subject to a finite set of inequality con-
straints. Often what makes this problem difficult is the
sheer number of constraints. That is, we could soclve this
problem for a smaller set of constraintsilbut solving for the
total set causes difficulty. Here ﬁé éiséﬁéé an approach
which uses our ability to solve these partial problems to
lead to a total soclution. We;will‘illustrate the method with
several examples In the last section of the paper. GﬁT’Y:'\

approach will be somewhat heuristic in nature fo promote un-

derstanding.

Key Words and Phrases: Optimization, Kuhn-Tucker vectors,
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1. TINTRODUCTION.

Let us consider the following convex programming problem:
Minimize the convex function fo(x) (defineé on some subset of
R") over the region C subject to the constraints fl(x) < 0,

"re,f (x) £ 0 where the f i=1,-+-,m are finite convex

12
functions on C. We could of course define fo(x) to be 4w
for x £ C, and hence assume that our functions are defined
over R™. We shall call fo(x) the objective function, and
refer to fi(x), i=1l,-.-.,m as the constraint functions.

We shall define \ = (xl,---,xm) € R to be a vector of

Kuhn-Tucker coefficients for our problem, or simply a Kuhn-

Tucker vector 1if Ai 20, i=1l,++-,m and if

inf fo(x)i-xlfl(x)+ ---+-xmfm(x)

x€C
is finite and equal to the optimal value of our original prob-
lem. The existence of Kuhn-Tucker (KT) vectors 1s guaranteed

under m1ld conditions. (See Rockafellar (1970) for a discus-

sion of this material.) Part of the importance of KT vectors

stems from the fact that they can convert a constrained prcb-
lem into an unconstrained (or at least more simply constrgined)
problem.

Another important construct is the Lagrangian associated

with our problem. It is defined as the function L on




R x K" given by

fo(x)+_llf1(X) + e + xmfn(x), x€C, xiz O, 1= 1,-+-,~

TL(A,x) =€ -, x € 7, A, <0 (31)

o, x £ 7,

0

Y

A vector pair (Xo,x ) 1s said to be a saddle-point o“ 1. i°

0

(1.1) Lix,x) s L(A%,2Y) < (A, x) V.

Sucl saddle-points play a big role in the followiny “unlaments.

theorem (Rockafellar, p. 281).

O
Theorem 1.1. 1In order that ko be a XT vector and x  be

an optimal solution, 1t is necessary and sufficient that

o o : . . - .
(A,x7) be a cuddle-point of the larran;~ian L. [or-covor,
0 )

thir condition rolic 1y x° and A cntizy

n 0 0 n i
(a) Aoz, f‘i(x ) £ 0 and xiri(x ) = 0, 1=, n

0 . : Uy -
(b) G € [afo(x ) + Xlafl(x Y4 e+ lmafm(x V.

o

The notation 3f{x”) 1indlcates the set of subrralientc

of f at x Condition (b) implies that U mintmizes

0
Fo(x)#+ Ay fy () # -ev # A £ (x). Of course if the . are all

differentiable, (1.2)(b) may be replaced by




(1.2) ) wrgx®y eawe O+ e vr () = 0.

Given that one can solve a constrained minimization prob-
lem, condition (1.2)(b’) can often be used to find a XT vec-

tor for the problem. This fact shall prove useful later on.

2. THE METHOD.

The basic idea behind our approach is that one can reduce
the number of constraints belng considered by modifying the
objective function through the use of estimated KT vectors.
At each stage, the modified problem 1s solved, and updated
estimates of KT vectors are found. Under fairly general
conditions, the solutions to the modified problems must con-
verge to a true global solution.

To be more specific, we assume that our constraint func-

tions are grouped into vectors and glven by

fl(x) (fll(x),flg(x),~~-,flml(x))

fk(x) = (fkl(x),fkg(x),--‘,fkmk(x))

k
where L m, = m.
i=1

We then deflne our Lagrangian as
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! cew [ N
fo(x)+-xlfl(x)+ AL (x), x €0, My = 0, Vij

L(k,x) = { ==, X €C, Ay < 0, 91,J

+o, x £ C,

where A = (Ay,--+,A,) and Ay is an m,; X 1 vector.
We shall use Li(x,x) to denote L(A,x) with A, cet
equal to zero, and Li(xi,x]x) to denote L(A,x) considered

as a function of A; and X COPRERFES A

shyLT0 ‘A

are

141° "M%

regarded as fixed).

Initially, we set ‘0290 =0, j=1,---,k and

(1,00 = (0,1)

(A .,xéo’k)). Our algorithm 1s sequentlially

defined as follows (beginning with n =1, i = 0):

< (n,1+1) (x(n+1,1)

a) Let 1f 1 = k) denote the

solution to

(n,1)

Minimize Ii+fx X)

x:fi+1’J(x)s Al

(x:flj(x)s o0 Vj if 1=k)

This is a convex programming problem which we assume we can

(n,1+1) (n+l,1) - o
1+i (Xl ’ if 1 = k) denote a K-

vector for the problem. (Condition (1.2) may prove useful in

solve. We let A

obtaining this KT vector.)

b) We now update our global KT estlimate by sett ing




N

A, 141) _ ((n,1) W(n,141) 5 (n-1,142)  (n-1,k)y

(A sttty shiio Y

(If 1 = k, we set

(n+1,1) _ (n+1,1) ,(n,2) (n,k)
A = 1 ,XZ lk .)

(A

3 3

We then replace (n,1) by (n,i+l) ((n+l,1) if i = k) and

return to step a).

In many situations, the problems in step a) which must be
solved are always of the same form, and hence lead '3 encily
written computer programs for performing these stepns. We shall

rive some explicit examples in Section 4.

3. JUSTIFICATION FOR THE ALGORITHM.

The crucial fact that justifies this procedure is that
the Logranglan can only increase at each step in the al:io-

rithm. This follows since (for 1 < k)

L (1) L (n1)y Li(x§n,i),x(n,i)lk(n,i))

< Li(x§“’i),x(“’i*l)ix(“’i)) (by Thm. 1.1)

- (n,1) _(n,1+1)},(n,1+1)

= Ly (] 7ex lx )

= L1+1(*§$i1+1),x(n’1+1) SLERASOPRNCHVE (RS

(n,1+1) x(n,i+l)).

= L(A




A similar argument holds if 1 = k for showling

L(l(n,k)’x(n,k)) < L(x(“+1’l),x<“+l’l)).

Moreover, we note that if y € C 1is any vector such tlat

fij(y) < 0, Vi,j, then
(3.1) L()‘(n,i),x(n,i)) < L()‘(n,i),y) < fo(y)s

(n,i),x(n,i)) exists finite independently

so that 1im L(A

n,i s s s
of 1. Now, since x( »1) minimizes a convex function,

under conditions which guarantee suffilcient curvature of

L(x,\X) (such as =xHx =2 Y“Xu2 for some y > 0 where H is

x(n’1+l) must be close

L(n,1)

the Hessian of fo), we know that

x(n’i) must

to for sufficiently large n. Now, if

contain a convergent subsequence (such as if C 1is a bounded
reglion) converging to xO € C, then we only need continuity
properties of fo and fi’ i=1,--+,m to guarantee that
fi(xo) <0, i1=1,-+-,m and fo(xo) < fO(y) for all y iu
C which satisfy all constraints (by 3.1). Thus xO must be
a solution to our problem, and since every convergent subse-

quence converges to xo, the algorithm must work correctly.
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4. APPLICATIONS.

1. Let us first consider least squares problems urler

linear 1lnequality constraints. Thus, we wish to minimiz:s the

objective function

subject to the constraints

+

n
- ! - = .« oo
£,(x) = x ay 121a13X5 <0, 1=1, ,m,

where w > 0, 8,87, ",a ~ are given n x 1 vectors such that

there exists at least one vector x where a{x < 0 Vi.

Of course, the solution to our problem under a single

constraint a;x < 0 can be easily found by the expression

n
” g , if ngaiJgJ <0
.1) Pi(g) = ' : 0
(gi,...,gn), if .§ aijgj > 0,
j=1
where
n n
’ -1 2 -1
gt =g, -(L g,a,da,.w,"/ L al,w, .
J J PSR 2 ¥ 20 G Rk goq 1474

The corresponding KT value can then be found from

(1.2)(b’) as




' _ -1

where j 1s any index such that aij # 0. Suppose now that
we modify our objective function (with g replaced by an

arbitrary h) by adding xifi(x). However, the problem

n
(4.3) Minimize % z (h"xj)%”'+xifi(x)
x'a <0 j=1 J
has the same solution as
E 1 B oo
Minimize -~ x.w,[h, + (P, (g),-g. )]+ 5 X x;w,
x'a s0 =197 1 =1 11

which is equivalent to

n| =

(4.4) Minimize

n

’

x" a_=<0 J=
r

2
(hj4'(P1(g)j—gJ)-xj) W..

1 J

Thus our adjustment still leaves the problem as the same
type of least squares problem, but with the value h modified
to now be h+ (P,(g)-g).

We can now apply the method proposed in section 2, which

can be expressed as follows:

1) Set P,(g), and 1,7 = 8118~

f11
2) Set gy, = Py(gyy), and I,, = gy,-8¢y.

3) Continue, until 8y = Pm(g1 m—l)’ and
b

I

im - 81m™&1 ,m-1"




4) Now set g,y = Py(gy -I,,), and T,y = gy -(oy-11,).

= P - 3
5) Contine. In general, set €3 ‘j(gn,j-l In-l,j/’
and Inj = gnj—(gn,j—l-ln—l,j) if 5 > 1, and
8n1 = P1l8y 1, mIno1,1) and

Tn = gnl-(gn—l,m_ln—l,l)‘

This scheme is easy to program since the projections are
of such simple form, and there is no branching or searching

involved. Moreover, g is guaranteed to converge to the

n,J
true solution. This is a special case of an algorithm gilven

by Dykstra (1983).

2. Depending upon the nature of the linear constraints,
it may be possible to easily find the projection under sever:il

simultaneous constraints, For example, 1°f
fi(x) = Xy = X549, 1=1,:00,n-1,

the set of vectors which satisfy all n-1 constraints are just
the nondecreasing vectors. Projections ontoc these typec of
regions are quite tractable (see Barlow, Bartholomew, Bremncr
and Brunk (1972)). Another set of linear inequality constraints
which can be simultaneously handled are

i

f‘i(x) =11y &
J=1

j"xi+l’ i=1,+++,n=1
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(Shaked (1979) and Dykstra and Robertson (1983)).
By being able to handle large constraint sets, we can
improve the efficiency of our method.

To elaborate, we consider the problem

n
(4.5) Minimize %z(g;—x;)gw,
x*A;=0,3=1,00 6 1 0 Y

where Ai = (ail,---,aimi) is an n X mi matrix of inderen-

dent columns. We assume that we can solve (4.5) for any par-
ticular 1 and any g, and will denote the solution by
Pi(g). It can be shown that the KT vector for this problenm
is

m,x1
i

{ = (A;AfrlAi(g-w—Pi(g)-w)

A
where «.y denotes coordinatewise multiplication.

Interestingly enough, we can repeat the argument used in
(4.3) and (4.4) to derive the same type of result. Thue 1t rellcwe
that our earlier stated algorithm is still valid if Pi(:)
denotes the projection of gz onto {x;x’Ais 01.

This extenslion may prove very useful for situationc wher.
there are a great many constraints. For example, Dykstra and
Robertson (1982) were able to find least squares projections
of rectangular arrays under the constraints of nondecreasing

rows and nondecreasing columns for even large arrays.
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3. As a final example, we consider the problem of findin:

I-projections onto an intersection of linear inequality regionc.

We will not elaborate on the importance of I-projections,
only state that they occur in a myriad of places 1n many 4I7-
ferent settings. We refer the reader to Kullback (1959) or
Csiszar (1975) for elaboration on theilr importance. The
problem we are dealing with is
n
(4,6) Minimize Z p. ln(p./ri)

g =] 0]
ipi' ,piz

where r#0 is a finite, nonnegative, vector and thre ret
of feasible points is not empty. We will define our objective
function as

n
1§lpi 1n(pi/ri), P;

fo(g) =

© , elsewhere.
Our constraint functions are

n
= - 4 = - = ¢ 0.
£,(p) = (a;-c;)'p El(aij ci)pj, {1=1,++,m,

J
where ¢y is a vector of constants. We note that r can bte
arbitrarily scaled without changing the problem.

The solution to the problem of minimizing fo(p) subject




to Fi(p) £ 0 1s given by

-A, (a,.-c,) n A (a, ,-c.)
5ij - 1’; e i 1[] i / Z r, e bl ij 1
o j:l <
where Xi is the solution to
n -Az(a, .~c,)
iy 717 _ .
.Z (aij-ci)r‘je =

J=1

providing it is nonnegative, and zero otherwise. It als2> turng
cut that xi is the KT value associated with the vroblem.

Now 1f we modify our objective function (with r replaccd
by an arbitrary nonnegative, nonzero h) by adding Xjfi(x),
our problem becomes

n
Minimize fo(p)+xi E (aii—C.)p:,

’ . S S |
(ar—cr) ps0 j=1
or
n -hy (ay-e )
Minimize Zp.llnp./h, - 1n e d 1
(a,-c_ )'ps0 j=1 J 3
.20 V B =
Py 3’1 Py 1
or equlvalently,
v L
.7 Minimize 1n h,(p,./r.).
( L pj/ J(le/ J)

(ar—cr)'pso J=1

n
pjzo VJ ,f pJ""'l

The key point 1i1s that our problem is precisely of thec
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same form as before, except that we have modified our vector
h. Thus we may use our procedure of modifying our objective
function using updated estimates of the KT vector, and only
have to solve the one type of problem. Setting xi = 0 in
(4.7) is equivalent to setting ﬁi/r = 1. This scheme is
quite effective for finding I-projections under multiple
linear inequality constraints.

In summary, this procedure seems to work quite well for
situations where many constraints are 1involved, and partial
solutions (solutions under partial constraints) are easily

avallable.
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