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-)A solution method for solving particle transport

problems has been developed. This solution approach

embodies a finite element projection technique and a

related equiyalent variational Raleigh-Ritz formalism.

Particle flux in the transport equation is expressed as

a linear and separable sum of odd and even components

in the direction variables. Then a classical variational

principle is obtained and shown to be equivalent to a

Bubnov-Galerkin projected solution. A dual finite element

basis of polynomial splines in space and spherical harmonics

in angle is used in the Bubnov-Galerkin-equations.

The general theoretical and numerical problem for-

malism is carried out in a 3-dimensional geometry with

anisotropic scattering and with a piecewise constant energy

dependence. This is a seven-dimensional problem with time

dependence, three spatial and two angular or directional

variables and with a multigroup treatment of the energy __2)'I

p(



52 dependence. The boundary conditions for most physical

problems of interest are dealt with explicitly and

rigorously by a classical minimization (variational) prin-

ciple.-

. The solution method is developed as a complementary

alternative to the standard solution techniques of Discrete

Ordinates, Monte Carlo and the Pn method. The Galerkin

projected operator and transport matrix are positive

definite, symmetric and self-adjoint. This insures

existence, uniqueness, and convergence of the solution.

This formalism does not have the inherent properties which

have produced the ray effect problem in discrete ordinates.

) The computational validation of the method was

obtained by a computer solution to the air-over-ground

problem. This problem is of significant interest in the

areas of nuclear weapons effects and radiation physics.

It is modeled in cylindrical (r,z) geometry with an

exponentially varying atmosphere, anisotropic scattering,

anisotropic first scatter sources, and with the air-ground

interface included.

Results for the air-over-ground problem are presented.

These results show that this solution approach mitigates

ray effects. They also show the potential of this

technique to serve as a viable alternative to Discrete

viii



Ordinates and Monte Carlo. However, further work in

extending the computer implementation of the method to

time and energy dependent problems, and to solving and

validating this technique on a larger class of particle

transport problems is required.

Transport Equation
Particle Transport
Variational Principle
Spherical Harmonics
Finite Element Projection
Raleigh-Ritz
Bubnov-Galerkin
Air-Over-Ground Problem
Anisotropic Scattering
Ray Effects
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CHAPTER I

INTRODUCTION

Particle transport occurs in many physical and

engineering systems. Therefore, the solution of particle

transport problems is of widespread engineering and

scientific interest in many diverse areas of research,

development and system applications. In the areas of

plasma physics, nuclear energy (fission and fusion);

radiation effects; space research and exploration, and

many others, the theory, physics and modeling of particle

transport processes play an important and vital role.

There are numerous solution techniques and approaches

for solving particle transport problems (Sanchez and

McCormick 1981). However, the most widely used solution

methods are based on a particle tracking and statistical

treatment of individual particle interactions and trans-

port or on the principles of particle conservation and

distribution functions. In the latter case particle

conservation is usually expressed in terms of an integro-

differential equation (the transport equation) and particle



number densities and distribution functions are obtained

from a solution to this equation.

In general numerical solutions to particle transport

problems are usually obtained by the Pn method, discrete or-

dinates (Sn), or Monte Carlo. The Pn and Sn techniques

provide solutions to the transport equation whereas Monte

Carlo is based on particle tracking and statistics. These

methods provide accurate solutions for a large number of

problems. However, for some problems they have severe

limitations.

The Monte Carlo method, usually requires the use of

many hours of expensive computer time, and for deep

penetration problems it is subject to errors due to statis-

tical inadequacies (Janni, 1979). Discrete ordinates may use

fewer computer resources than Monte Carlo, however it has

a computational difficulty called "ray effects" (Lathrop,

1968). Ray effects are a result of the angular discreti-

zation of the transport equation. In the Sn method this

discretization constrains particles to move in specific

directions. This, in turn, produces distortions in the

particle flux. For problems with strong absorbers,

localized sources, and high energy streaming particles,

these distortions produce solutions which are inaccurate.

2. . . . • . .. . . . . . . . . . ..



The P1 method or diffusion theory is the most often

used Pn method. However, unlike Monte Carlo and the Sn

method, it does not allow a detailed treatment of the

angular dependence of transport processes. This limita-

tion makes diffusion theory inadequate for problems which

are non-diffusive. However, higher order Pn approxima-

tions are computationally inefficient and expensive,

especially in two or three space dimensions (Kaplan, et al.,

1966).

The Problem and Scope

The problem is to rigorously develop a method for

solving general particle transport problems. This should

be a method that removes some of the limitations and

inherent difficulties of Monte Carlo, discrete ordinates

and the Pn method. Furthermore, this solution approach

should be able to serve as a complementary alternative to

the presently used techniques for solving particle trans-

port problems.

In order to accomplish this a detailed formalism for

solving the transport equation is required. Specificially,

a mathematical and numerical model to solve the general

transport equation with anisotropic sources and scattering

and general boundary conditions will be developed. This

31



model is an extension of current approximate numerical

techniques for solving particle transport and other

engineering problems. Also, it has stable mathematical

and numerical properties.

The Solution Approach

The solution approach is to first develop a mathema-

tical formalism (model) by drawing upon the present body

of knowledge and experience in solving engineering and

physical problems in general and particle transport problems

in particular. We begin by first examining current solution

methods for solving the transport equation and then proceed

by using insight and hopefully good judgment to further

develop, examine and rigorously explain our mathematical

and numerical models.

Our numerical model is based on the well-known

techniques of finite elements, projection operators and

a classical Raleigh-Ritz solution. The mathematical

model is derived from a variational principle and an

equivalent Bubnov-Galerkin solution of the second order

forms of the transport equation. These second order

equations were first introduced by Kaplan and Davis in

1967.

4



Our intent is to propose a solution strategy that is

similar to diffusion theory but has all the detailed angu-

lar or vector information of anisotropic scattering and

sources. We also develop a rigorous treatment of general

boundary conditions. This approach differs from discrete

ordinates and the Pn method in the general formalism,

solution strategy and properties and also in the treatment

of boundary conditions. To accomplish this we take the

view that a successful numerical solution strategy

should be developed in accordance with the properties of

a rigorous mathematical formulation. In fact the numeri-

cal and mathematical models to the problem should go hand

in hand. Ideally we would like to have a mathematical

model that complements and is compatible with the numerical

approach and vice versa. In such a situation the numerical

solution strategy when implemented will be best suited to

highlight and use the special mathematical properties of

the problem equations and thus provide a reasonable or

"best" approximate solution. We therefore approached the

problem by first seeking a mathematical formulation that

had desirable mathematical, computational and numerical

properties. These properties which are present in the P1

or diffusion equation are desirable in that they would

facilitate a numerical solution to the problem. In fact

5



they should allow a solution by similar and well established

techniques which are being used to solve diffusion problems.

Secondly, we chose our numerical model because of our

mathematical formalism and equations and the need to solve

general problems of physical and engineering interest. In

this numerical development we attempted to recognize and

use the properties of our mathematical model. Finally

we applied this solution technique to a real problem, to

examine, validate and compare the results.

In summary, our mathematical development is based upon

the parity and odd-even properties of spherical harmonics

coupled with a Bubnov-Galerkin and classical variational

approach. However, our numerical development evolves pri-

marily upon the use of finite elements and projection opera-

tors. This use of a finite element projection technique is

a logical extension of our mathematical formalism. Further-

more it provides the required flexibility needed in solving

general and difficult problems.

Projection Methods and Finite Elements

Over the last two decades there has been a successful

evolution of projection methods and finite elements in

solving engineering problems. The use of finite elements

and in particular projection methods began in the early

6



19th century. The finite element method is really a projec-

tion method although it is not usually recognized as such.

Furthermore, many approximate methods for solving integral

and differential equations are also projection methods. A

detailed discussion of projection methods can be found in

Atkinson (1976). Projection methods include such widely

used solution techniques as Galerkin, collocation, least

squares and the method of moments (Goldberg, 1978). A pre-

cise mathematical description of these methods is presented

in Chapter VI.

Early 19th century mathematicians began using projec-
r tion methods to solve ordinary and partial differential

equations, which could not be solved in closed form (Kantor-

ovich and Krylov, 1958). They developed techniques for

expanding the solution as an infinite series of known

functions with undetermined coefficients. Constraints or

conditions were then applied to the approximate equations

in order to "determine" the undetermined coefficients. The

use of different constraints in determining the coefficients

produced various projection methods whereas the use of

special functions to expand the solution resulted in the

finite element method.

Projection methods can be used to solve linear,

R non-linear and non-self-adjoint problems. These methods

1 7



are sometimes called the method of weighted residuals or

error-distribution principles by engineers and applied

mathematicians (Finlayson and Scriven, 1966). There are

many types and classifications of projection methods

depending not only upon the constraints by which the

coefficients are determined but also on how the boundary

conditions are treated. A somewhat unified treatment of

some of these methods was developed by Crandall in 1956

and Finlayson and Scriven in 1966. However, many of

these approximate solution techniques were introduced in

the 1920's and 1930's. Galerkin introduced his method as

P early as 1915 whereas the concept of finite elements was L
proposed in 1924 by C. B. Biezeno. He recommended the use

of special piecewise constant functions in solving stress

problems. He called this projection technique the subdomain

method.

However, it was in 1943 that the finite element

method was formally introduced by Courant. He proposed

the use of piecewise Lagrange polynomials on a triangular

mesh to solve two-dimensional vibration problems. Subse-

quently and with the advent of computers, the finite L

element method has been used to solve a wide range of

problems. One of the attractive features of finite

elements is the inherent capability to handle difficult

8



problems with complicated geometries. General particle

transport problems of engineering and physical interest

are usually in this category.

Review of the Literature

The first use of a finite element projection technique

to solve particle transport problems occurred in the early

1970's. In 1971 a number of researchers including Kaper,

et al., Semenza, et al., Kang and Hansen, and Ohnishi used

finite elements to solve the diffusion and steady state

transport equation. In 1972 a more detailed examination

of the use of finite elements to solve neutron diffusion

problems was provided by Kaper, Leaf and Lindeman. They

concluded that a finite element solution of the diffusion

equation had advantages in terms of accuracy and conver-

gence in comparison to the usual finite difference solution.

Other researchers including Miller, et al., Ukai, Hill,

Yaun and Lewis, Seed, et al., Finkelstein and Krumbein and

many others, have directly applied finite elements to solve

the first order form of the transport equation. In 1974,

Kaper, Leaf and Lindeman examined the application of a finite

element projection of Lagrange polynomials and surface har-

monics to a variational form of the second order transport

equation in x-y geometry. They concluded that this approach

9



was inefficient and had many disadvantages in comparison to

the standard solution techniques of discrete ordinates and

Monte Carlo. Subsequently, Miller, et al. applied finite

elements to this variational form of the transport equation

and demonstrated the mitigation of ray effects. Pitkaranta

and Silvennoinen also used a phase space projection of

finite elements to solve eigenvalue problems in spherical

geometry; whereas, Lillie and Robinson used a discrete

ordinate finite element technique and a reduced functional

to solve two-dimensional (x,y) transport problems.

Many other researchers have used projection methods to

solve particle transport problems although most of them

did not explicitly classify their approximate solution

techniques as projection methods. Some of those who did

were Miller and Reed (1975) who carried out a discrete

ordinate to spherical harmonic conversion to mitigate ray

effects and Reed (1972) who also developed a discrete

ordinate-spherical harmonic solution. Others include

Morel (1981) who used a collocation method with Lagrange

polynomials to solve the first order form of the transport

equation.

However the most widely used methods for solving parti-

cle transport problems are still the discrete ordinates (S.)

method along with Monte Carlo and the Pn method. These meth-

10



ods are well documented in the literature and have been

used extensively to solve general problems (Bell and

Glasstone, 1971). There are many Sn, Monte Carlo and

diffusion production codes available in the areas of

neutral and charge particle transport. Recently Fletcher

(1983) has numerically developed a high order Pn projection

method which uses finite elements to solve the first order

transport equation. Nonetheless and despite the success

and robustness of these solution techniques there is a

need for alternate and complementary solution methods for

solving particle transport problems. This is especially

true for those problems where discrete ordinates, Monte

Carlo and diffusion theory have disadvantages and limi-

tations.

Research Objective

The purpose of this research is to develop a method

for solving general particle transport problems. This meth-

od should serve as a complementary alternative to the

standard solution techniques of discrete ordinates, Monte

Carlo and the Pn method. The objectives of this study are

grouped into three main areas. These were to first provide

a theoretical and mathematical development, followed by a

numerical, and then a computational treatment.

11



In the first area a theoretical and mathematical formu-

lation of the problem is required. A mathematical formalism

based on a variational principle and the positive definite

self-adjoint second order forms of the transport equation

will be provided. The boundary conditions for most physical

problems of interest are dealt with by this classical minimi-

zation (variational) principle. This development which in-

cludes general boundary conditions, anisotropic sources and

scattering has properties which are amenable to, and would

facilitate standard numerical solution techniques.

The numerical development requires an approach which is

consistent with and takes advantage of the mathematical for-

mulation. A finite element projection technique based on

spherical harmonics, piecewise polynomials, and a piecewise

constant (multigroup) energy dependence, met this criteria.

The general numerical treatment includes a seven dimensional

time and energy dependent problem with three spatial and two

angular or direction variables. The treatment of boundary

conditions is based upon an equivalent classical Raleigh-

Ritz solution.

In order to demonstrate the potential of this solution

approach in solving particle transport problems a computer

implementation of this method is required. The application

to a problem which is of interest in the area of radiation

12 1
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physics was chosen. In this computational treatment a

validation of the method through a solution of the air-

over-ground problem is provided. Specifically, this problem

is modeled in cylindrical (r,z) geometry, with an exponen-

tially varying atmosphere, anisotropic scattering, first

scatter collision sources and with the air-ground interface

included. In this demonstration a steady-state one group

(monoenergetic) solution is achieved and examined. However,

a solution of the energy and time dependent problem can be

obtained from a straightforward extension of this steady-

state monoenergetic solution.

Sequence of Presentation

The organization of this report covers the three main

areas of research by presenting a theoretical, mathematical

and numerical formulation of the general problem and by a

specific computer implementation to the air-over-ground

problem. In Chapters II, III and IV the mathematical model

is presented and discussed along with an overview of finite

elements and the second order forms of the transport equa-

tion. In Chapter V variational principles, functionals

and boundary conditions are presented and discussed. We

discuss projection methods and weak forms and outline the

general numerical method and solution strategy in Chapters

13



VI and VII. An application to the air-over-ground problem

which includes a computer solution and results is given

in Chapter VIII. Finally, Chapter IX contains conclusions

and recommendations for future extensions of this work.

Here we also discuss applications to other problems of

engineering and physical interest.

L
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CHAPTER II

THE MATHEMATICAL MODEL

The usual mathematical description of particle transport

is given by the transport equation (Duderstadt and Martin,

1971). This equation is an expression in a seven dimen-

sional phase space of particle conservation in terms of

particle distribution functions (number densities). The

transport equation models general particle transport pro-

cesses. However, it can be modified and used to model

special neutral and charge particle transport problems.

These modificiations occur primarily in the collision terms

(Schmidt, 1979).

The transport equation along with the relevant

boundary and interface conditions is mathematically a

boundary value problem. This equation which is the starting

point of our solution strategy is outlined and examined in

the following sections. We also briefly mention the main

solution methods for solving particle transport problems.

Except for the Monte Carlo method these solution techniques

are based primarily upon the standard and usual solution

approaches for solving initial and boundary value problems.



The Transport Equation

A derivation of the general transport equation, by

imposing particle conservation and balance on an elemental

volume in phase space can be found in Duderstadt and Martin

(1979). This model which includes external macroscopic

forces and long-range collisions can be written as

(r,v,t) + v-Vn( ,vt) +--rt)'Vvnrvt) = rt v +q(',v't)

(1)

where

= the spatial position vector

v= the particle velocity vector

t = the time variable with respect to
some initial or starting time

n(r,v,t) = unnormalized particle phase space
density or probability distribution
function

V = spatial gradient operator

Vv = velocity gradient operator

(r,t) = -[E(r,t) + v x B(r,t)] = particle accelera-

tion

E(r,t) = electric field

(r,t) = magnetic field
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ani = rate of change of particle distribution
at Coll as a result of collisions. This term

is usually called the collision operator

q(r_, ,t) =external particle source and intrinsic
particle sources due to fissions, (n,2n)
reactions, etc.

Equation (1) can also be derived from the BBGKY heir-

archy of equations (Krall and Trivelpiece, 1973). The

BBGKY hierarchy is a system of equations whereby the distri-

bution function of a many body system is expressed in terms

of functionals of single particle density distributions.

A density expansion to first order when carried out produces

the transport equation.

If we consider a solution to Eq (1) at long times

and/or at large distances from sources or boundaries the

problem can be formulated as an initial value problem

(Duderstadt and Martin, 1979). In such instances details

of the initial and/or boundary conditions can be ignored

and the time relaxation or slowing down to an equilibrium

or quasi-equilibrium state is usually described and studied

as an initial value problem. However, if we are interested

in particle distributions in the vicinity of sources and

boundaries we must construct our solution in terms of a

boundary value problem. Here we seek and develop a solution

to Eq (1) as a boundary value problem.

17



To further develop the transport equation and the

precise model which will be used we seek simplifications

to Eq (1). First we limit the collisional processes to

those which are uncorrelated, and instantaneous or localized

in space. In a sense we are limited to collision events

which are well separated in terms of mean free paths, i.e.,

the particle mean free path must be larger than the range

of interaction forces. Then we can write the collision

operator as

(2)

where d8  is an elemental volume in velocity space and

at(r,v) = probability per unit distance travelled
that a particle at position r and with
velocity v will have an interaction, and

a (rv'-v) = probability per unit distance travelled
that at position r a particle with velocity
v' will undergo a collision and produce
a particle with velocity v; and

1jC = particle speed (a scalar)

At this point we can ignore all collective effects and

if electric and magnetic fields along with the initial and
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boundary conditions are given we can now attempt to solve

Eq (1) directly. However, this is still a formidable task

and we usually make further simplifications. If we cannot

ignore collective effects and make these simplifications, as

is the case in a dense plasma with a small debye length,

then we must attempt to solve Eq (1) and determine the

electric and magnetic fields self-consistently using Max-

well's equations.

To obtain the usual neutral particle (Boltzmann)

transport equation, we further ignore all macroscopic

Fforces and delete the force term i.vn(r,v,t). This is a

reasonable approximation if there is no external electro-

magnetic field or charge particles present, or if the

external magnetic field is weak and the particle distribu-

tion function is isotropic in velocity space. With these

assumptions we can now write the reduced transport equation

(Tran and Ligou, 1981) as

(n, + .7n(^,^,t) +1v1ut(£, )n( ,0,t)^,,( ^

f= V d'IV s(r,v -v)n(r,v',t) + q(r,v,t) (3)

The integral term in Eq (3) represents a source of scattered

particles from all other velocities into the velocity space

v. This term is usually called the scattering k--nel.
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We are now in a position to make a change of variables

which is required in the usual multigroup formalism, and also

to write Eq (3) in terms of the angular or phase space

flux. To do this we must first write the angular or phase

space flux as

r = l jn( , ,t) (4)

and the velocity vector as

v I= I (5)

where Q is the direction of particle travel and the parti-

cle speed Ivlj can be written in terms of its energy as

(mE (6)

Making the change of variable from v to E and Q we can now

write the transport equation in terms of the angular flux

S(r,E, ,t) as

Iv (r,E,Q,t) + .VQ-V4(r,E,Qt) + at(^,E)(^,E,2,t)

jdE'fdn' a (r^,E' , '-E, Q)6, E' !',t) + q(r,E, Qt)
(7)
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Eq (7) is the standard time dependent transport equation,

which, with associated initial and boundary conditions is

primarily a description of neutral particle transport.

However, depending upon the treatment of the scattering

kernel it can also be used to describe and solve certain

charged particle transport problems (Przbylski and Ligou,

1981).

It is important to note that Eq (7) is an integral-

differential equation with seven independent variables,

where we have rewritten the angular or phase space flux

from a function of (r,v,t) = (xyZVxVyVz t) to one

where (r,t) = (r,E,Lt) 2 (x,y,z,E,O,X,t) , and i is

in a rectangular spatial geometry. The source term

q( ,E,Q,t) contains sources due to fissions and other

absorption processes which depend on the angular flux.

Furthermore, and although this is not usually true, Eq (7)

could be non-linear if the scattering cross-section (aS )

is expressed as a function of the angular flux.

The Boundary, Continuity and Interface Conditions

In order to complete our description of the problem

and formulate a numerical solution we must first specify

initial and boundary conditions. The initial condition is

simply given by
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( , = 40( ,E,n) for all £, E and 2 (8)

where t. is some initial time.

The boundary conditions depend on the problem of

interest. In this study we will consider a set of the

most common boundary conditions. These are:

a. Vacuum boundary. This is a boundary condition

where particles are allowed to leave the surface but are

not allowed to reenter it. This imposes the condition

that all incoming flux is zero at the surface. In effect

this boundary condition says that the flux is zero for all

incoming directions and it is usually written as

AA A

(r sE,R,t) = 0 for all 0 such that S2. n < 0 (9)

where rs denotes the boundary and n^ is a unit outward

normal to the surface.

b. Incident source. In this case particles are

allowed to enter and leave the system. The entering

particles represent an incident source of particles on the

boundary. This boundary condition can be written as

O(rs5 E'09t) = qs ,E, ,t) for all QA such that
AAQ.n < 0 (10)

where qs is known.
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c. Dirichlet boundary condition. The angular flux

can be completely specified at the boundary as

4(rs ,E,2,t) = cs(isE,R,t) (11)

where s (r sE,Q,t) is given and could be a known seven

dimensional function specified at the boundary, or a con-

stant in some or all of the independent variables (r,E,P,t).

d. Albedo or reflecting boundary. For this boundary

condition we assume that some of the particles leaving the

system are reflected back into the system. This condition

can be represented as (Duderstadt and Hamilton, 1976)

*(r ,E,-P,t) = a(rs )(r s E,,t) (12)

where c(rs ) is the local albedo or fraction of particles5

which are reflected. If a(rs) = 1 , then this is the usual

condition of total reflection where all the particles are

reflected back across the surface. It is important to note

that the albedo could be a function of r ,S2,E and t (Chilton

et al., 1984). However, in order to simplify the notation

we have chosen to write it as a function of rs only.

The interface and continuity conditions are just ex-

pressions of continuity of the angular flux in space and
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time (Bell and Glasstone, 1970). They can be written

as

lir (r + sQQ,E,t + s/v) = lr 4( - &n,nE,t - s/v) (13)
S4O S-)0

where s represents a distance of particle travel along

and r could be any point within the problem domain to

include an interface. This condition requires the continuity

of particle flux in space and time for a given energy

and direction. Note that the flux can be discontinuous

in velocity (direction and energy), and it usually is

especially at vacuum boundaries and at interfaces (Bell and

Glasstone, 1970).

Summary

Now we have a complete and general mathematical de-

scription of neutral particle transport processes and conser-

vation, as it is represented by the first order form of the

time dependent transport equation. Further descriptions

and simplifications can be made with respect to the time,

energy, angular and space dependences, and also with

respect to scattering and sources. However, with or without

these additional simplifications, the main solution techni-

ques for solving the transport equation with associated
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boundary and continuity conditions are the Pn method or

diffusion theory, discrete ordinates, and Monte Carlo.

These methods are well documented and a complete and

detailed description of them can be found in the literature.

See Bell and Glasstone (1970), Greenspan, et al. (1968)

and Duderstadt and Hamilton (1976). These descriptions

will not be repeated here. Instead, we will now present

an alternate finite element method for solving the second

order forms of Eq (7) with the boundary and continuity

conditions of Eqs (9) through (13).
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CHAPTER III

THE FINITE ELEMENT METHOD

The finite element method is a projection method where

the problem solution is expanded in a finite sum of piece-

wise functions. The basic projection procedure is to divide

the problem space into a finite number of discrete sub-

domains called elements and to define the solution in terms

of locally defined functions with unknown coefficients.

This trial space of piecewise functions, which are locally

defined on individual elements of the problem space, forms a

local basis where the unknown and to be determined co-

efficients are usually called generalized coordinates (Desai

and Abel, 1972). Thus the fundamental concept of the

finite element method is that the solution can be approxi-

mated by a local basis and some projection or approximation

technique.

Widespread use of the finite element method began in

the 1950's, with its use in solving structural problems in

the design of aircraft. Since then the method has been

applied to problems in such diverse areas as solid and fluid

mechanics, heat transfer, and particle transport. Its

versatility and advantages in solving problems with
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differing material properties, complex and irregular

geometries, and with a variety of boundary conditions have

contributed to the success of this solution approach in

solving general problems of physical and engineering in-

terest. Its relation to a classical Raleigh-Ritz solution

and the method of projections, coupled with a theoretical

foundation in approximation theory, has assured convergence

for many problems (Whiteman, 1975). Also, the usual

practice of using a local basis of piecewise polynomials

and standard element types and shapes, facilitates the

numerical treatment and computer implementation of the

method. These factors coupled with the availability of

large computers have made the finite element method success-

ful. We will discuss some of these factors in the following

sections.

Discretization of the Problem Domain

When applying the finite element method the problem

space must be divided into subregions or elements (Hinton

and Owen, 1979). The numerical analyst or engineer must

decide as to the number, type and shape of elements to be

used. He must also decide upon the number of nodes (inter-

polation points) within each element, the type of nodal

variables, and the type of interpolation functions.
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Usually for one-dimensional problems with one independent

variable the element is a straight line with two nodes and

a linear Lagrange polynomial basis. However, if a local

basis of higher order Lagrange polynomials is used then

the number of nodes must correspond to the order of the

polynomials.

In two and three dimensions there is a wider choice of

elements available. The most common two-dimensional elements

are the triangle, rectangle, and general quadrilateral.

Again, the number and types of nodes and nodal variables

depend on the element type and the order of the interpola-

ting polynomials. For problems in three dimensions with

axial symmetry we can construct axisymmetric ring elements.

These elements which are defined by two independent

variables are usually useful in cylindrical geometry. They

are really based on two dimensional elements, which then

allow us to construct axisymmetric triangles, rectangles

or quadrilateral ring elements. Other three-dimensional

elements are the tetrahedron, parallelepiped or right

prism, and the general hexahedron (Tong and Rossettos,

1977).

In addition there are a large number and variety of

element types and shapes other than the most commonly used

ones. It is also possible to construct elements with curved
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sides. These elements are. very useful for modeling problems

with curved boundaries. They are usually constructed in a

local element coordinate system called natural coordinates.

In these coordinates they are straight-edged elements,

however, when they are transformed back into the problem

or global frame they produce elements with curved sides

(Whiteman, 1976). Figure I shows some two and three-dimen-

sional elements.

Polynomial Basis and Generalized Coordinates

The most widely used and accepted trial functions are

polynomials. These functions are used to represent the be-

havior of the solution within each element. They also de-

termine the number of nodes within each element and the type

of nodal variables. Depending on the approximating or shape

functions, we can have elements with interior and exterior

nodes (Oden and Reddy, 1976). Exterior nodes are those

nodes which are on the surface or boundaries of the element.

Interior nodes are located within the element boundaries.

Furthermore, interior nodes usually lead to a computational

procedure called condensation whereby the overall size of

the problem matrices and equations is reduced.

The unknown coefficients of the interpolating poly-

nomials are called generalized coordinates. They are not
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local coordinate global coordinate

a. 3-node triangle

local coordinate global coordinate - 4

b. 6-node triangle

local coordinate global coordinate

c. 8-node quadrilateral

local coordinate global coordinate

d. 10-node tetrahedron

Figure 1. Isoparametric Element Shapes
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associated with actual nodal values of the solution and

therefore they do not have any direct physical meaning.

However, the usual practice in the finite element procedure

is to express these element shape functions in terms of nodal

or point values of the solution. These are the unknown

coefficients which are to be determined from the approxi-

mating procedure of the finite element method. They now

represent the solution at specified points (nodes) within

the problem domain (Zienkiewicz, 1971). This expression

of the unknown polynomial coefficients in terms of nodal

values gives a direct physical interpretation to the solution

and also insures inter-element continuity.

The most common and widely used polynomial basis

is the Lagrange polynomial. However, Hermite and higher

order spline bases have also been used. We can derive the

Lagrange polynomials in terms of the solution values at

the nodes; whereas, Hermite polynomials allow this deri-

vation in terms of the solution and its first derivative.

In a Hermite or higher order spline basis the unknown co-

efficients usually represent not only solution values at

the nodes but also solution derivatives (Prenter, 1975).

The interpolating Lagrange polynomial can be written

as (Atkinson, 1978)
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Lk(x) = X_Xm , m = 0,1...k-lk+l...n (14)

where Lk(x) is a product of n terms and represents the kth

piecewise polynomial of degree n. At x = xk the polynomial

Lk(x) is equal to one and at x = Xm with m * k it is equal

to zero. Therefore each polynomial has n zeros.

For a one dimensional element with n points (nodes)

we can usually approximate our solution 4(x) by

n

4(x) =Z iLi(x) (15)

i=O

where 4i = 4(xi) and represents the solution values at the

nodes. Li(x) then represents our shape or trial functions.

An alternate shape function can be written for this

element in terms of a monomial basis and generalized coor-

dinates as follows

n

4(x) = aix (16)

where ai represents the generalized coordinates or unknown

coefficients. A direct procedure for deriving the Lagrange
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io

basis Eq (15) from Eq (16) can be found in Heubner, 1975.

Derivations and expressions of Hermite and general spline

bases can be found in the literature and will not be re-

peated here. Interpolation polynomials in two and three

dimensions and for various element types and shapes can

also be found in most books on the finite element method.

It is not our purpose to present them here. However, we

will now briefly discuss the concept of natural coordinates

and parametric elements.

Natural Coordinates

A local coordinate system which depends on the element

type and shape, and has values which range between one and

minus one is called a natural coordinate system. These

coordinates are defined with respect to element geometry

and with a linear variation between nodes. Each coordinate

in a n-dimensional system has unit value at one node and

zero value at all other nodes. Also, the coordinate func-

tions are usually normalized to one, so that a sum of these

functions at any point within the element equals one.

Natural coordinates provides the flexibility of

constructing elements of different types, shapes, nodes,

nodal variables and interpolation functions. They are very

useful in the development of close form integration formulas

for evaluating the integrals of the problem equations. Also
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they are essential to the construction of elements with

curved sides.

The development of natural coordinates for a large

number of elements can be readily found in the literature

(Tong and Rossettos, 1977). In one, two and three dimen-

sions this development and the concept of natural coordi-

nates is usually synonymous with length, area and volume

coordinates respectively. Furthermore, a simple and

straightforward prescription for defining a natural coordi-

nate system is based upon the use of Lagrange polynomials.

For a three dimensional element we can write the element

coordinates as
m

x = (c) (17)

m

y yiLi(n) (18)
i=l

m

z ziLi(8) (19)

where e, T and 8 range between one and minus one, and xi,

Yi' and zi represent nodal values of the element in the

global or problem coordinates; m is the number of element

nodes and Li represents the usual Lagrange interpolant of
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Eq (14). Then we can write the element approximation or

shape functions as

m

~(En,8) =3 diNi(e ,fl,8) (20)
i =1

where = i ( n 8 ) and represents the solution values

at the nodes. Also

Ni(eT,)= L.(c)Li(n)Li(a) (21)

There are many other ways of deriving a natural coor-

dinate representation of the element trial space. A similar

representation to Eq (21) for one and two dimensional ele-

ments can also be obtained using Lagrange polynomials.

However, in general, this approach is limited, especially

in the construction of high order cubic and quintic ele-

ments (Huebner, 1975). For these elements, other approaches

are used, which reduce the number of interior nodes. An

example of this is the family of high-order rectangular

elements developed by Ergatoudis, et al., (1968). These

elements have only exterior nodes, but they also allow

the parametric representation of natural coordinates.
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For problems with complex geometries and curved

boundaries an accurate physical description can be achieved

in the finite element representation by the use of para-

metric elements. These are curved-sided elements in the

global or problem coordinates. The idea is to map or trans-

form straight-sided elements in the natural coordinates to

curved-sided elements in global coordinates. Then, to

evaluate the problem equations and solve the problem in

this global problem space. Unlike a solution in the natural

coordinate space where we can use closed form integration

formulas we must now use numerical integration techniques.

Numerical integration is usually required because of the

complexity of the integrals in the global problem space

(Segerlind, 1976).

In transforming from the natural or local coordinates

to the global coordinates we usually assume that this trans-

formation (Jacobian) exists and is unique. However, there

are prescriptions and checks to ensure that this is indeed

the case (Aziz, 1972). Furthermore, in an isoparametric

representation which satisfies certain completeness

criteria, existence and uniqueness is guaranteed (Huebner,

1975).

There are three basic categories of parametric elements

depending upon the number of element nodes and the interpola-
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tion polynomial. The underlying concept is that the inter-

polating polynomial which determines and maps the element

shape can be different than those of the solution or trial

space. For an isoparametric representation (or element)

these polynomials are the same. However for a subpara-

metric element its shape is defined by a lower order poly-

nomial than those of the trial space whereas a superpara-

metric element is defined by higher order polynomials.

As an example, an isoparametric element could be represented

by Eqs (17) to (19) where the Li's are the same as those

of Eq (21).

Application to Transport Problems

The application of finite elements to transport pro-

blems began in the 1970's with a finite element solution of

the diffusion equation (Kaper, et al., 1972). For the one

speed diffusion equation the Galerkin projection approach
produces a self-adjoint system which is equivalent to a

classical Raleigh-Ritz solution (Strang and Fix, 1973). Be-

cause of this equivalence the finite element method gained

widespread acceptance as a viable approach to solving par-

ticle diffusion problems. Questions of existence, unique-

ness and convergence of the solution could be dealt with
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in the framework of a variational principle and the

minimization of a functional, or in terms of the related

energy methods of Miklin (1966).

The finite element method has also been applied to

the transport equation. Kaper, et al., (1974), Ohnishi

(1971), Ukai (1972), Reed (1973), Fletcher (1983) and others

have used finite elements to solve the first order forms of

the transport equation. Phase-space finite elements in both

the space and angle variables have been used. Also, appli-

cations of the discrete ordinate method in angle and the

finite element method in space have produced the Onetran

(Hill, 1975) and Trident (Seed et al., 1977) computer

codes. Other finite element applications based on the

second order forms of the transport equation, have also

been conducted (Sanchez and McCormick, 1982). Specific

examples of these applications will be --esented in the

next chapter.
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CHAPTER IV

FINITE ELEMENTS
AND SECOND ORDER FORMS

The finite element method is usually a mathematical

and numerical technique for obtaining an approximate solu-

tion to a large class of problems. Initially it was

developed and used to solve problems in stress analysis

(Heubner, 1975). Later, as the mathematical foundation

of the method was established it gained widespread accep-

tance and use in solving a larger class of problems.

Finite elements are based on projection procedures,

however, they can also be used in the Raleigh-Ritz technique

of first recasting the problem in an equivalent variational

form and then seeking a solution on the basis of an energy

minimization principle (Strang and Fix, 1973). Nonetheless,

the original Raleigh-Ritz procedure did not include this

finite element approach. Instead the solution was expanded

in the form of a linearly independent set of global trial

functions. Unlike the finite element method, these global

functions were neither piecewise polynomials nor were they

equal to zero on parts of the problem domain.



Using this expansion of global trial functions, the

Raleigh-Ritz procedure was to find an extremum (minimum

or maximum) of the variational principle (functional). If

this linear combination of globally defined functions did

not extremize the functional, then the class (or space) of

functions was expanded by the addition of more functions.

This expansion of the trial space continues until a linear

combination of functions which is an extremum of the

functional is obtained (Miklin, 1964).

In the finite element approach the problem domain is

divided into smaller regions or elements, and the trial

functions are piecewise polynomials which are zero on parts

of the solution domain (a local basis). Also, the trial

space (number of trial functions) is expanded by using

more elements and not by the addition of a new class of

functions. Because of these differences the finite element

method is more adaptable towards a numerical (computer)

solution than the original Raleigh-Ritz procedure.

For some problems the classical Raleigh-Ritz proce-

dure is really a Galerkin projection method. For these

problems it can be shown (Finlayson and Scriven, 1966) that

the Galerkin method is equivalent to Raleigh-Ritz. An

identical set of matrix equations and therefore the same

solution is achieved by either method. Therefore, for many
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problems the use of finite elements in a classical Raleigh-

Ritz solution can be considered to be a finite element

projection method. These concepts will be described in

some detail in Chapter VI of this report.

Projection methods however, do not usually include

the use of a variational principle or the calculus of vari-

ations. In some problems a variational principle has not

been developed or may not exist, and therefore, the j

Raleigh-Ritz approach cannot be used. Nonetheless, in such

cases, projection methods can be used to solve the problem.

Therefore projection methods can be extended to a wider

class of problems than Raleigh-Ritz.

The equivalence between Raleigh-Ritz and the Galerkin

method usually exists for problems which are self-adjoint.

This equivalence is useful when considering questions of ex-

istence, uniqueness, convergence, error bounds and the

treatment of boundary conditions (Miklin, 1964). Therefore,

a mathematical formalism which is self-adjoint and equi-

valent to a classical Raleigh-Ritz solution is desirable.

Unfortunately however, the first order form of the trans-

port equation is non-self-adjoint (Duderstadt and Martin,

1979). This is due to the scattering kernel, and streaming

operator or gradient term of Eq (7), which are non-self-

adjoint.
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In contrast, the diffusion equation (Duderstadt and

Hamilton, 1976) which is similar to a Sturm-Liouville pro-

blem is self-adjoint with an equivalent classical Raleigh-

Ritz solution (Hardin, 1977). However, the diffusion

equation does not have the detailed angular information

which is required in the solution of most problems of

general engineering and physical interest. For these

problems a mathematical model which is self-adjoint and

retains the detailed angular information of Eq (7) is

required. This model is the second order form of the

transport equation which in the limit of diffusion theory

reduces to the diffusion equation.

The Even and Odd Parity Equations

In order to obtain a mathematical model which is

self-adjoint and would permit a rigorous treatment of

general boundary conditions, the even and odd parity

forms of the transport equation will be developed.

The starting point of this development will be a simpli-

fied form of Eq (7) and the associated boundary conditions

of Chapter II. These simplifications will result in the

steady state and energy independent or one group transport

equation. We will begin our development with a brief

discussion of the usual numerical strategies for solving
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time and energy dependent problems. This is the general

problem, presented in Chapter II, which we would like to

solve. Therefore, our intent is to explain that the

following monoenergetic steady state treatment can be

easily extended to time and energy dependent problems. A

complete and general treatment of particle transport

requires this time and energy dependent solution.

The usual multigroup treatment of the energy depen-

dence in particle transport problems is well-established

(Bell and Glasstone, 1970). This multigroup formalism

involves approximating the energy variable by piecewise

constant functions on fixed energy intervals called energy

groups. This produces a discontinuous approximation in

energy and a set of coupled one group or monoenergetic

problems. The multigroup formalism is a straightforward

extension of the monoenergetic development to include

multigroup fluxes, scattering, sources and a set of coupled

one group problems. Therefore, a one group development

is directly applicable and can be easily extended to an

energy dependent treatment of particle transport.

In the time dependent case there are a number of

approaches available. These approaches include the well-

known point kinetics model of reactor physics, and an

exponential time dependence (Bell and Glasstone, 1970). For

43



diffusion theory, the assumption of an exponential time

dependence produces a non-linear problem and involves an

eigenvalue search for the largest time eigenvalue

(Wachpress, 1966). However, the usual discrete model is

to represent the time derivative of Eq (7) by an explicit

forward or weighted difference (Duderstadt and Martin,

1979). This finite difference approximation in contrast to

the multigroup energy formalism retains the basic steady

state treatment. It involves a set of implicitly coupled

steady state (time independent) problems whereas the

multigroup formalism produces a set of implicitly coupled

one group problems. Therefore, energy and time dependent

problems can be solved by a straightforward extension

of our steady state monoenergetic treatment.

To be precise, we can discretize the time and energy

dependence of Eq (7) and write it as

V b At + L 'b 9+(Q) = Qb (22)

and then rewrite it as

S+l(' ) = b +l (23)
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where the operator,

Lo = n-Vo + otbo -d'sbb(, ) (24)

and

I ~ I (25)-.
L = L + V(-2

and

+ =(26)

Also Atz. = t,+l-tt, where k and b represent the time and

energy indices respectively, and b' b 0 tb sb-b

x+I are the usual multigroup defined quantities (Bell and

Glasstone, 1970). Therefore, Eq (23) is a set of one

group, steady state equations with modified and redefined

sources, fluxes and cross-sections. In fact, these equa-
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tions represent the one group steady-state form of Eq (7)

with modified sources as in Eq (26) and with a modified

total cross-section 't defined as

t tb VbAtz (27)

The significance of Eq (23) is that we have reduced

the problem to a set of coupled algebraic equations in

time and energy. Starting with some initial condition we

can solve for the time dependence by a simple marching

scheme. At each step we must then solve implicitly a

set of coupled one group equations for the group angular

flux. This is the usual procedure for obtaining a complete

seven-dimensional solution to the transport equation

(Dupree, et al., 1971 and Hill, 1976). This fully implicit

scheme is unconditionally stable (Clark and Hansen, 1964).

Since we have reduced the problem to a series of

steady-state one group problems we will now drop the ex-

plicit time and energy dependence and proceed with our

development. However, it is important to bear in mind

this obvious extension to general time dependent and

multigroup problems. Following the derivation of Kaplan
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and Davis (1967), Wheaton (1978), and Wills (1981) we can

write the monoenergetic steady-state form of Eqs (7) or

(23) in terms of the -Q vector, where -Q represents the

direction opposite to 0. This gives

-Vr(,-0) +0 (r^)I(r,-P) r = r(2,- )

(28)

where in the case of Eq (23) the source Q and the total

cross-section ct(r) are defined in accordance with Eqs (26)

and (27), and we have dropped the explicit time and energy -

dependent notation.

The even and odd parity terms will now be defined

as

= (~s) + ~(~~}(29)

Tu = {,(i,) - , _)} (30)

Qg(r,? = Q(rg ) + (~-4(31)
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5U

Q--) kQ^ Q(r, ~ (32)

0g (rjF6') 2 + as(r,- S2)(33)

s(, '(') = a (r(r, ) - (34)

where

Tg(r,Q)= even parity flux

Tu(rn) = odd parity flux

Qg(rj) = even parity source

Q (rQ) = odd parity source
(r, even parity scattering cross-section

S

u '  = odd parity scattering cross-section
s

We can now proceed as in Wills (1981), to derive

the even and odd parity second order forms of the

transport equation which are

'U().V ,)+ A= Qg(gA) -g-KU()QU(,

(35)
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Ir

and

-. Vg( .)(.uP) + Gu(r)u(rSP) _ QU(rn) - P.VKg(^)qg(r.,f)

(36)

We can express the odd parity flux in terms of the

even parity flux as

Ig

(r,a) = K(r)qU(r,2) - (r,Q) (37)

and the odd parity flux as,

Tg(r^,a) fKg)Q(r^,n) - 0'VTu(r^',) (38)

and the operators Gg, Gu, Ku and K9 are defined as

(Wills, 1981),

L +t

r), J2:,1(n (39)

9=0 m=-X
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L• +Z
*q

=ur ar) r (rAY '.0 d'Y 6G') (40)U!

---1 L +9. _,

gt ( [-(r) g(

(41)

A Ui-K r) = (r)
L u

KU¢ ) = a( ) Y*

(42)

Here we have followed the usual practice of expanding the
scattering cross-section in spherical harmonics (YIm), and

the * superscript means the complex conjugate function.

Also, the even and odd parity scattering cross-section

coefficients are defined (Wills, 1981) as

Il(k) for - even

k r) 0 for Z- odd (43)
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U,(r) for t- odd

= (44)

0 for - even

where a (r) is the Legendre scattering cross-section ex-

pansion coefficients. These coefficients originate from

the usual expansion or fit of the cross-section data with

Legendre polynomials. This expansion can be written as

L

CY(Uo) = 2t+l p(U) (45)
s~~~~~ 0 -. "'P.(

where u0 is the angle of scatter (See Figure 2) and it is

normally assumed that scattering depends only on the angle

of scatter and not on the azimuthal angle or the incident

direction (Duderstadt and Hamilton, 1976). The cross-

section expansion of Eq (45) can now be transformed or

expressed in terms of the problem coordinates by use of the

addition theorem (Bell and Glasstone, 1970).

In order to complete our development of the second

order forms of the transport equation, we will now discuss

the associated boundary conditions. These boundary condi-

tions which were presented in Chapter II must now be re-
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written in terms of the even and odd parity flux. So as

to reduce the algebra we will now write them as

g1s,) r ufs, ) s's [r g(-'s,) - Tu( 'sOD

+bqS r ) for 0'n < 0 (46)

where the adjoint boundary condition is

~~~(S, Q~ r (AS,~ x~~ ~ , + Tu,u ̂

+bq (rsO) for Q' > 0 (47)

and o_<( ) _ 1 , and b is equal to zero or one.

For the,

1. Vacuum boundary

M(r s ) b = 0

and,

2. Incident source

a( r S 0 ; b 1
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and,

3. Albedo condition

o1<aI; b = 0

and,

4. Mixed condition

o < a(is) 1 ; b = I

also for the,

5. Dirichlet condition

Yg(r^ S ,) + T, ') =* (s Q ) (48)

and T and Tu can also be found from Eqs (29) and (30).

Finally, the interface and continuity conditions require

that the odd and even parity flux be continuous in space

and time for a given energy and direction.

We have now presented the second order forms of the

transport equation. In this derivation the angular flux

is expressed in terms of even and odd components on the

unit sphere. These components are the even and odd parity

fluxes which are just the sum and difference of the for-

ward and adjoint angular flux (Bell and Glasstone, 1970).
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It is imporatnt to note that unlike the first order trans-

port equation, this second order formalism is positive

definite and self-adjoint. This is because the operators

of Eqs (35) and (36) are positive definite and self-adjoint.

(Kaplan and Davis, 1967).

The Application of Finite Element Projections

to Second Order Forms

The application of a finite element projection method

to solve particle transport problems is not a new concept.

Kaplan, in 1961, proposed a projection technique for solving

three-dimensional reactor problems. This technique, which

he called flux synthesis, was based upon a variational

Calerkin type solution of the diffusion equation. Later,

Kaplan, et al., (1967) extended this idea to solve the

transport equation. They based their solution on a varia-

tional principle whose Euler-Lagrange equations are the

second order forms of the transport equation. They also

used special ellipsoid trial functions and a space-angle

synthesis approach to solve steady-state Milne problems

with isotropic scattering.

The concept of space-angle synthesis is really a pro-

jection technique for modeling the angular dependence of the 2

transport equation. The angular flux is represented by a
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linear combination of known functions and mixing coeffi-

cients, which are required to satisfy the problem equations

in an approximate sense (Natelson, 1968). In contrast

discrete ordinates or the Sn method restricts particles

to move in certain fixed directions and allows only a

finite number of degrees of freedom in angle.

In 1973, this space-angle synthesis projection

technique was used by Miller, et al. to solve a one dimen-

sional neutron transport problem. Later, in 1973, they

extended this solution method to two-dimensional problems

in x-y geometry with isotropic scattering and sources.

A four-dimensional tensor product of linear and bilinear

polynomials on a finite element grid, was used in the

minimization of a functional for the even parity transport

equation. Their approach involved the use of both rectan-

gular and triangular elements and the imposition of vacuum

and reflective boundary conditions. The vacuum boundary

conditions were treated as natural conditions whereas

reflection was an essential boundary condition to be im-

posed on the trial space. As a result of these calculations

they concluded that this finite element solution mitigated

the ray effect problem which is present in discrete

ordinates (Lathrop, 1968).
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Other researchers including Kaper, et al., (1974),

Briggs, et al. (1975), Ackroyd (1979), and Blomquist and

Lewis (1980), have used finite elements to solve the

second order transport equation. Kaper, et al. (1974),

applied finite elements based on a variational formulation

to the two-dimensional multigroup transport equation.

They used high order cubic finite elements, surface har-

monic tensors, and linear Lagrange polynomials over the

angular domain. This was coupled with a product of piece-

wise and global Lagrange polynomials in space. Their

conclusion was that high order finite elements were not

a viable alternative to discrete ordinates.

Subsequently, Briggs, et al., in 1975, applied finite

elements to the variational problem of the second order

one group two-dimensional neutron transport equation in

x-y geometry. They examined the potential of this solution

approach to mitigate ray effects and concluded that ray

effect mitigation was due to the elliptic operators of the

finite element formalism whereas the discrete ordinate

equation was hyperbolic. The elliptic nature of the

finite element equations allowed the coupling or averaging

of the particle streaming along different paths (directions).

They argued that this elliptic coupling which is also pre-

sent in the diffusion equation, but absent in the Sn

method, is essential for ray effect mitigation.
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CHAPTER V

VARIATIONAL PRINCIPLES

Variational methods have played an important role

in many areas of mathematical physics. Many physical

problems, especially in the areas of thermodynamics and

classical and quantum mechanics, are connected with the cal-

culus of variations. Variational calculus and in particular

Hamilton's principle, have played a vital role in des-

cribing the dynamics of particle motion (Lanczos, 1949).

Unlike Newton's laws of motion, which are based upon the

vector quantities of momentum and force, Hamilton's

(variational) principle provides an alternate mathematical

description in terms of energy, which is a scalar.

In this variational model the basic concept is that

the motion of a mechanical system can be described by

finding the minimum (or maximum) of a definite integral

(functional). This minimization or variational problem is

dealt with by the calculus of variations (Courant and

Hilbert, 1953). Using a variational calculus approach,

it is possible to show the equivalence between a varia-

tional problem and the usual description in terms of a



differential equation. In the case of Hamilton's principle,

which describes a mechanical system, the functional is de-

fined in terms of the kinetic and potential energy of the

system. However, upon taking the first variation of

this functional, we can derive the Euler-Lagrange equation;

which, for this problem is just Newton's equation of

motion.

This alternate and equivalent formulation of a pro-

blem, in terms of a differential equation; or as a varia-

tional problem, leads directly to classical approximation

techniques for solving a large number of problems. We

have already mentioned the classical Raleigh-Ritz solution

for diffusion problems, and its equivalence to the Galerkin

method. The energy methods of Miklin are also in this cate-

gory where there is a direct relation between projection

methods and Raleigh-Ritz. In fact, this relationship

can be easily established for problems which are self-

adjoint (Strang and Fix, 1973).

An important consideration in problem solving besides

the usual analytical questions of existence, uniqueness,

convergence and stability is the treatment of boundary

conditions. For problems where a variational approach

is available these issues can usually be dealt with in a

simple and straightforward manner. As an example of this,
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we can normally recast a linear self-adjoint problem in

terms of a variational principle and a quadratic func-

tional. We can then consider these issues within the

variational context.

In the following sections of this chapter we will

briefly discuss linear self-adjoint variational problems.

We will examine the treatment of boundary conditions, the

classical Raleigh-Ritz solution strategy and applications

to the parity equations. Our primary intent in this

development is to later establish an equivalence to the

Galerkin method. In doing so, we will then be able to

treat the analytical issues and boundary conditions within

this variational framework.

The Model Problem

It is well-known that some boundary value problems

can be written as a variational problem (functional); whose

minimum is a function which also satisfies the boundary

value problem. Therefore, instead of seeking a solution

to the boundary value problem directly, we can seek to

find the minimum of a functional. This is usually

accomplished by selecting linear combinations of functions

on some function space (admissible class of functions).

In practice, for linear problems with quadratic functionals,

this minimization procedure produces a set of coupled
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linear algebraic equations which are not difficult to solve.

However, for general non-linear problems this minimization

process can produce serious computational difficulties. -

A functional is basically the integral of a function,

whose arguments or independent variables are themselves

functions, and which assigns a real number to each indepen-

dent variable (function). Therefore, a functional is

an expression which converts a function into a scalar. As

an example of this, and to make these ideas more precise,

we will now present a linear problem and an associated

quadratic functional. Our goal is to discuss in a simple

setting a linear boundary value problem and the related

variational problem. Later, we will extend these concepts

to the transport problem.

We begin by writing the classical three-dimensional

Sturm-Liouville problem in operator notation as

Lu(A) f(i) (50)

where the self-adjoint operator (Miklin, 1964)
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La = -V.(p(A)Vo) + q()o (51)-

and V represents the usual gradient operator. The associa-

ted boundary condition can be written as

a( s)Vu(r s).fi + b(rs )u(r ) + c(rs ) =0 (52)

Eq (52) is the general mixed boundary condition. Setting

a, b or c equal to zero, we can obtain the Neumann and

Dirichlet homogenous and non-homogenous boundary conditions.

The quadratic functional corresponding to the above

problem, Eq (50), can be written as (Mitchell and Wait,

1977)

I(u) =j[p()Vu.Vu + q( ru - 2f(r^)u(r)] d^ ffb~ u

+ 2c(rs)U] d (53)
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where the first integral in Eq (53) is over the entire pro-

blem domain (volume) and the second is a surface integral

on the problem boundaries.

Eq (53) represents a variational problem which has

been studied extensively. It can be shown (Wouk, 1979) that

a linear problem of the form of Eq (50), has a solution

which is the minimum of the quadratic functional, Eq (53).

Furthermore the Euler-Lagrange equation of this functional

is the Sturm-Liouville equation. The usual mathematical

issues of existence, uniqueness and convergence are also

dealt with by Wouk and Miklin. They have shown that for

the classical Raleigh-Ritz minimization of Eq (53) exis-

tence, uniqueness and convergence are assured.

Therefore, a numerical solution to the Sturm-Liouville

problem can be obtained by solving the equivalent varia-

tional problem. This solution exists, and can be readily

obtained, because the Raleigh-Ritz minimization process

produces an operator which is positive definite symmetric.

Based on this positive definite operator, we can then

prove and answer the questions of existence, uniqueness and

convergence. Furthermore, and because of the self-adjoint

nature of Eq (50), we can show that a direct solution

by the Galerkin method also produces a positive definite

operator. By either the variational or Galerkin approach
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we end up with an identical algebraic problem (Miklin, 1964).

The algebraic problem is positive definite symmetric, which

insures that a numerical solution exists.

These concepts for the model Sturm-Liouville problem

are well-known. They have the usual mathematical defini-

tions and meanings; these will not be repeated here.

However, theorems, proofs, definitions and a detailed

analysis of the Galerkin method and variational problem

can be found in Wouk (1979). The Galerkin method is also
A

presented and discussed in Chapter VI. Presently

we will continue to introduce these concepts for the model

problem.

The Boundary Conditions. An important consideration

in the formulation of a variational problem is the treat-

ment of boundary conditions. It is the usual practice to

include in the functional representation of a problem some

or all of the boundary conditions. For most problems this

is a difficult undertaking. There are no standard or

straightforward procedures for converting a boundary value

problem into an equivalent variational problem. However,

for linear self-adjoint problems there are some guidelines.

These guidelines are based upon the relation between the

variational problem and a projected Galerkin solution.

(See the energy methods of Miklin, 1964). Nonetheless,
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the questions of boundary conditions is often a separate

and difficult issue.

The usual approach is to use experience, knowledge

and insight to define a functional which treats many of

the boundary conditions as "natural" conditions. Natural

boundary conditions are those conditions which are

automatically satisfied by a solution of the variational

problem. For a minimum problem the combination of

functions that minimizes the functional will also satisfy

L
the natural boundary conditions. These conditions are a

priori eliminated from consideration in the solution of

the variational problem. Instead, we must consider those

conditions which are not satisfied by the minimizing

function. These are usually called essential or principal

boundary conditions.

The essential boundary conditions are imposed by

requiring that the functions which minimize the functional

also explicitly satisfy these conditions. We are only al-

lowed to choose linear combinations of functions in the

minimizing sequence that satisfy all the essential boundary

conditions. However, we still must determine which condi-
L

tions are natural or essential. Although there are some

guidelines in this regard (Miklin, 1964), the usual

practice is to examine the minimum or stationary point of
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the functional. This involves the calculus of variations

and the concept of a variation which we will now introduce.

Let us suppose that u(r) is the function which gives

Eq (53) its smallest value, and u*(r) is another function

which is almost identical to u(r). On the problem domain,

we regard u*(£) to be infinitesimally different from u(r).

Then we define the first variation of u(r) to be

u= u*(r) - u() = 0(r) (54)

and the second variation to be

a 2u = a(u) (55)

where c tends to zero, and 4(e) is an arbitrary continuous

differentiable function. Therefore, the variation of u(r)

is a measure of a very small change in u(r) for a given

value of i. In taking the variation we consider the inde-

pendent variable r to be a constant whereby
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a= 0 (56)

We can also show (Huebner, 1975) that

V(au(A))= (Vu(r)) (57)

and

fU(A UA)dr rf()dr (58)-

where R represents some volume in phase space.

To find the stationary point of a functional 1(u),

we require that the first variation vanishes. If the second

variation is positive then the stationary point is a minimum:

if it is a negative then the stationary point is a maximum.

The second variational derivative therefore determines

whether we have a maximum or minimum variational problem.

In either case we need to take the first variation of the

functional in order to determine the conditions that u(i)

must satisfy so as to insure that l(u) has its extremum.
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These conditions are just the Euler-Lagrange equation and

the natural boundary conditions for the variational pro-

blem (Gelfand and Fomin, 1963). The Euler-Lagrange equa-

tion is the partial differential equation of the boundary

value problem. For the functional of Eq (53) the Euler-

Lagrange equation and natural boundary conditions are

Eqs (50) and (52).

In Appendix A we have derived general expressions for

the first and second variation of an arbitrary first order

functional. In Appendix B we use these expressions to show
that if a(r ) = P(rs) , Eqs (50) and (52) are indeed the

Euler-Lagrange equation and natural boundary condition of

Eq (53). Furthermore, it can be shown that the usual Neu-

mann boundary condition is also a natural boundary condi-

tion. However, the Dirichlet condition is essential and

must be satisfied by the trial space.

The Raleigh-Ritz Method. The usual numerical proce-

dure for finding the function u(i) which makes the func-

tional l(u) stationary is the classical Raleigh-Ritz method

(Miklin, 1964). For the model Sturm-Liouville problem this

stationary point is a minimum. Therefore, the solution

to this problem requires that we find the minimum of Eq (50).

This minimum is approximated by the Raleigh-Ritz method.

Because of the nature of the variational problem (Eq (53)),
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the Raleigh-Ritz method will provide us with an upper

bound to the minimum of I(u); or at best, we will compute

this minimum exactly. However, in practice, this is

never the case and our approximate solution bounds the

true minimum from above. For some problems (in elasti-

city theory) the minimum of the functional represents the

minimum potential energy of the system and therefore it

is physically meaningful. However, for most problems

a physically pleasing interpretation of 1(u) is not

available.

In the Raleigh-Ritz procedure we minimize 1(u)

with a linear combination of functions called a minimizing

sequence (Courant and Hilbert, 1953). These are really

trial functions with unknown coefficients and for the

finite element method, they can be expressed in the form of

Eq (20), i.e.

u(^) w E) (59)

i=0

Then we select the coefficients 0 so that I(u) is a mini-

mum by requiring that
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aI(u) = 0 o:iM (60)

Eq (60) produces a set of linear algebraic equations in

the unknown coefficients i" We can then solve this

linear system and thus determine the minimizing function

of 1(u).

For the model problem, Eqs (59) and (60) when

inserted into Eq (53) gives

2j{P(r)Vu.?Ni + [qr - f(i^)]Ni dr

+ 2f[b(£s)u + c(£s)]Nids 0 osi M (61)Js

where we can now solve for the 4i's. Furthermore, the

matrix problem of Eq (61) is positive definite symmetric

(Huebner, 1975) and therefore a numerical solution can

be obtained.
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The Parity Equation

The parity equations are similar to our model Sturm-

Liouville problem in that the operators are positive de-

finite and self-adjoint (Kaplan and Davis, 1967). Because

of this we would like to duplicate our variational treat-

ment of the previous section for the second order trans-

port problem. Specifically, we will provide a variational

formalism for the even parity transport equation to include

the general boundary conditions of Eqs (46) to (48). We

have chosen to use the even parity equation for reasons

to be discussed later. However, the odd parity develop-

ment, except for a change of notation, is similar to that

for the even parity equation.

Variational principles for the parity equations

already exist (Kaplan, et al., 1967). These principles

usually treat the vacuum boundary condition as a natural

condition. However, a treatment and discussion of

general boundary conditions have not been accomplished.

To date, these variational principles have been used to

primarily provide a theoretical basis for the Marshack

boundary conditions of the Pn method (Davis, 1966); and

to develop numerical schemes for eliminating ray effects

(Briggs, et al., 1975). The variational principle of

Vladimirov (1963) is also in this category. Furthermore the
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Roussopoulos principles of Cobb (1971) and Selegnut

(1959) are based on the non-self-adjoint first order trans-

port equation. These and other variational principles

have also been used to accurately compute integral or

average quantities such as reaction rates, cross-sections

and eigenvalues (Duderstadt and Martin, 1979).

We begin by using experience, insight, trial and

error, and finally good judgment to write a functional for

the even parity transport equation as follows

= [<v ,Ku V)> + <g,Ggg>

S 2<.gUQU -2<g,Qg>]d

+ Qn g(rs,n)>I di (62)

where <.,.> represents the usual inner product in angle

(4r steradians), and .' means the absolute value, and n
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is the outward unit normal to the problem boundaries. The

parity operators and sources have the usual meaning and

Qeb f a~g(rs,) - bqs(rs,) (63)

Therefore, Qeb is a function of Tg r, and P, and we let

a = (f +1 (64)

PP °

where o:5a(es )5 , and b and a depend on the boundary

condition. They are defined as

1. Vacuum boundary

t(£s) = ;0 b = 0 (64a)

2. Incident source

a(rs ) =0; b =2 (64b)
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3. Albedo condition

o < a(r s ) 1 1; b =0 (64c)

4. Mixed condition
2

o cs) s +; b S )  (64d)

and

5. Dirichlet condition

0< o(ks) < 1; b =oor 2 (64e)

where we require that g(,) be a constant

in some or all of the independent variables,

and also satisfy one of the above mentioned

conditions.

We now prove that our postulate is correct and that

the functional of Eq (62) is indeed the variational problem

corresponding to the second order (even parity) transport

problem. This proof which is an extension of that for the

model Sturm-Liouville problem, is carried out in Appendix

C. There we also show that the boundary conditions (1) to

(4) are natural conditions and that the Dirichlet condition

is an essential condition.

It is important to note that with vacuum boundary

conditions the functional of Eq (62) reduces to that of
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Kaplan and Davis (1967) with Marshack boundary conditions

(Davis, 1966). However, we have now included the albedo,

incident source, mixed and interface conditions as natural

boundary conditions. We have also rigorously shown that

this concept of natural and essential boundary conditions

is indeed valid. Furthermore, we have developed a quadra-

tic functional which can be used to provide a numerical

solution to general particle transport problems. This

functional has mathematical and numerical properties which

are similar to that of our model problem.

Therefore, we could seek a solution (minimum) based

on the usual Raleigh-Ritz procedure and expect that our

numerical problem would be positive definite and

symmetric (Wills, 1981). Applying the Raleigh-Ritz method

to Eq (62) we get with

Yg (rS2= iN i(rQ) (65)

i=O

[<Vi',(Q-VNi)> + <Tg,GgNi> - <P.VNi,KUQu> -<Ni,Qg>]d

+ fs [< S'nl [2a g - bqs],Ni(r s,)>]d = 0 (66)
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where we can solve for the 0.'s. The variational problem

has been reduced to a matrix problem which is positive

definite and symmetric.
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CHAPTER VI

PROJECTION METHODS AND WEAK FORMS

Projection methods can be used to provide approximate

solutions to a large number of problems. They have been

used extensively to solve boundary value and other problems

which are described by differential and integral equations.

These methods are important in that they facilitate the

recasting of general problems into a form more suitable

for a numerical solution. Most projection methods

involve the use of a contraction mapping (Stakgold, 1979).

The original problem is usual"-y projected unto a reduced

finite dimensional subspace and a solution is then sought

in this new and restricted space.

Projection methods include such techniques as

collocation, Galerkin, the method of moments and least

squares (Golberg, 1978). These methods are sometimes

called the method of weighted residuals (Finlayson and

Scriven, 1966). However, they all begin with the use of

a projection operator defined as (Atkinson, 1976)

Pn(x)x = x for all xcXn. (67)



where P. is a bounded projection operator from X unto X..

X is a Banach space and Xn a finite dimensional subspace

of X. Then

p2 = Pn(68)
n

and

reniI = lip 2 !I 1 tfpni i2  (69)

where 11'11 represents the usual definition of a norm and

Eq (69) implies that lIPn1 I>I (Atkinson, 1976).

Therefore, a projection operator maps every element

of a general space X into Xn, a subspace of X. It also

maps each element of Xnunto itself. This projected space

Xn is usually the n-dimensional space in which we seek to

find a solution.

If Pn 1s a projection operator then (I - Pn) is also

a projection operator where I represents the identity opera-

tor (Wouk, 1979). Furthermore, in a Hilbert space we can
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introduce the concept of orthogonal projections where the

projection operator involves the inner product of two

functions. An orthogonal projection operator Pn is

symmetric and orthogonal to (I - Pn) . Therefore,

<PnX,(I - )y> = o for x,ycX (70)

where (I - P is a projection operator unto the orthogonal

complement of Xn. Finally, for an orthogonal projection Pn

11x112 = IIPnX11 2 + 1(I - Pn)X11 2  (71)

and

=PnI = 1 (72)
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The projection method for solving a problem of the

form

Ly(x) = f(x) (73)

is to approximate y(x) on a finite dimensional space by

n
y (x) Yn (x) a aj~j(x) (74)

j =1

and define

R(x) = Lyn(x) - f(x) (75)

where R(x) would be identically equal to zero if y(x) -

Yn(x). However, since in general this is not true, we

try to choose yn(x) so that R(x) is small. We accomplish
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this by making the projection of R(x) unto Y(X) equal

to zero, i.e.,

PnLYn (X) - P nf(x) = PnR(x) = 0 (76)

where Yn e Yn and Yn is the finite dimensional subspace

of the Banach space Y. Therefore, the projection method

for solving Eq (73) is to pick Yn(x~cYn (x) in accordance

with Eq (76) such that the components in Yn(X) of Lyn(x)

agree with f(x).

Eq (76) represents a set of coupled algebraic equa-

tions. However, before we can seek a numerical solution

we must first choose a projection operator Pn" There are

a number of possibilities, but the usual selections lead

to the well-known methods of collocation, Galerkin, least

squares and the method of moments. In the collocation

method we require that the residual vanish at selected

node points. Thus we determine the cj's of Eq (74) by

requiring that

R(xi) = 0 liSN (77)
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or equivalently by

fR(x)wi(x)dx = 0 lirN (78)

where wi(x) = 6(x - xi). The Dirac delta function wi(x)

represents the test or weight function of the collocation

method (Finlayson and Scriven, 1966). Therefore, we have

defined or chosen our projection operator with respect to

the weight function wi (x) and in accordance with Eq (78) or

(77).

For the methods of Galerkin, least squares and the

method of moments we can also require, as in the case of

collocation, that the residual be orthogonal to some weight

function. This in turn leads to the algebraic problem

(Eq (78)), and with a proper choice of the subspace Yn'

to a solution for the a's of Eq (74). The weight functions

are selected as follows (Prenter, 1975).

a. Galerkin. The residual is required to be

orthogonal to the trial space. Here we take the weight

functions to be the same as the trial functions of Eq (74),

i.e.
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wi(x) - ci(x) (79)

b. Least Squares. We minimize the two-norm

of the residual by choosing our weight functions to be

wi(x) = aR(x) (80)

c. Method of Moments. The residual is made ortho-

gonal to the monomial basis Ixn}. We choose the weight

functions to be

wi(x) =x i  o~iN (81a)

Weak Forms

The most widely used projection methods are colloca-

tion and Galerkin. However, the Galerkin method is a
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generalization of the Raleigh-Ritz method for problems

which are positive definite and self-adjoint. For these

problems we can obtain a Raleigh-Ritz solution without

having to develop a variational formalism. Furthermore,

the Galerkin method is more general than this in that it

can be applied to problems which are not positive definite.

In applying the Galerkin method to two point boundary

value problems the normal procedure is to use integration

by parts to produce the Galerkin weak form (Strang and Fix,

1973). This procedure lowers the continuity restriction

of the trial space and allows for the inclusion of natural

boundary conditions. We can then establish a precise

equivalence with the Raleigh-Ritz variational problem.

This equivalence is important for reasons which we have

already mentioned.

For the Sturm-Liouville boundary value problem of

Eq (50) we can use the divergence theorem to derive the

weak form. Assuming a trial space in the form of Eq (59),

the Galerkin-projection can be written as

fv[I-V'p(k)V'u( + q(t) - fdf 0

for o.igM (81b)
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Then, applying the Gauss divergence theorem to the first

term of Eq (81b), we get

f {PeiVuwVNi + [q(i)u -f(r-)]Ni d& rs f5p[P(^ )Vu(A)f]Nd 0 1i

(82)

and using Eq (52) we can rewrite Eq (82) as

6~()Vu-VNi + [q(6)u - f~A]i&+ [( u^+ c(r )]Nida 0

l_<i<M (83)

Eq (83) is identical to Eq (61). We have therefore estab-

lished the equivalence of the Raleigh-Ritz solution and the

Galerkin weak form. The boundary conditions of Eq (52) can

now be treated as natural boundary conditions. Furthermore

all boundary conditions for a Galerkin weak form solution to

Eq (50) can be treated within the context of the variational

problem, as either natural or essential conditions.
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CHAPTER VII

THE FINITE ELEMENT PROJECTION METHOD

In Chapter V we presented a variational formulation

of the second order transport problem. However, we would

like to provide a numerical treatment that is straight-

forward and avoids the explicit use of a variational princi-

ple. The projection methods which we discussed in Chapter

VI can be used to provide this alternate numerical

treatment. Furthermore, for the Galerkin method we can

establish an equivalence to the variational problem. The

purpose of this Chapter is to establish this equivalence and

to outline a finite element Galerkin method for solving

general particle transport problems.

Our intent is to provide a numerical solution to the

even parity second order transport equation. In doing so

we will treat the boundary conditions within the context

of a classical Raleigh-Ritz solution, as essential or

natural conditions. This classical solution was presented

in Chapter V, where we discussed in detail the concept

of natural and essential boundary conditions.

We begin by referring to Chapter IV where the angular

flux was written in terms of odd and even components

as
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0(rA)= Tg6,f) + Tu(r , ) (84)

where the even and odd parity flux Tg and Tu can be obtained

by solving Eqs (35) and (36). Therefore, a solution to

these equations provide a solution for the particle angular

flux. Furthermore, because Tg and Tu are even and odd

on the unit sphere they represent the scalar or reaction

rate flux and the particle current respectively (Miller

et al., 1973). For most problems we are interested in an

accurate description of the scalar flux and thus a

solution to Eq (35) is all that is required. Because of

this, our solution will be presented in terms of the even

parity transport equation. Nonetheless the solution stra-

tegy can be applied to either problem.

The Galerkin Weak Form

Our solution is based on a finite element Galerkin

solution of the even parity transport equation. We have

chosen this approach because solutions to Eq (35) by use

of a variational principle or the Galerkin method are

equivalent (Wills, 1981). To show this, we can expand the

even parity flux as in Eq (65). Using the Galerkin

projection operator we can then write Eq (35) as
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"[<VKS1'VYg,Ni> + <Gg g,N > - <QgN >

+ <~'vKQU,N>]di = 0 (85)

We can now use the divergence theorem (Kaplan and Davis,

1967)

S<*V~~d ~rfQ V~d'+ f<(n.fi)f,g>ds^ (86)

to include the boundary terms of Eqs (46) and (47). This

then allows us to rewrite Eq (85) as

[ g . )> + < gG > - <'VNi,KUQU>

- <Ni,Qg>]df + f8<l-'n[2a g - bqs],Ni(£sA)>ds = 0 (87)

where a and b are defined by Eqs (64a) to Eq (64e).

Eq (87) is a set of coupled algebraic equations which

represent the Galerkin weak form of the even parity trans-

port equation. It is identical to the Raleigh-Ritz system
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of equations, Eq (66). Therefore, we have established the

equivalence of the Raleigh-Ritz solution and the Galerkin

weak form. Furthermore, we can now consider the boundary

conditions of Eqs (46) and (47) to be natural conditions

and the Dirichlet condition to be essential.

This treatment of the boundary conditions and a

numerical solution of Eq (87) is our finite element pro-

jection method. This zig-zag between a variational prin-

ciple and the Galerkin method allows us to rigorously

treat the boundary and interface conditions as natural or

essential. In effect, we need a variational principle

in order to explain our treatment of the boundary terms.

We also need a variational principle in order to determine

which boundary conditions are essential or natural.

Solution Strategy

At this point of the development we have reduced the

problem to a set of algebraic equations once we define the

trial basis, Eq (65). The problem as represented by Eq (87)

is therefore a matrix problem for the flux expansion co-

efficients 0i. Furthermore, for a general time dependent

multigroup treatment (see Chapter IV) we have to solve a

number of these matrix problems, which are then coupled

in time and energy. However, a solution to Eq (87) is

still a formidable task.
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Nonetheless, we can develop a solution strategy which

is based on the special properties of the problem matrix.

These properties together with the parity (odd, even)

characteristics of the even parity flux should ease some of

the computational difficulties. Also, by a judicious choice

of the trial functions we can effectively treat the spatial

and angular dependences.

Trial Functions. For the most general particle trans-

port problems the steady state one group problem of Eq (87)

is a five dimensional problem. The particle flux has

three independent spatial variables in r and two angular

variables in . A spatial solution is usually carried out

in rectangular, cylindrical or spherical geometries. The

gradient or streaming operator (n.V) for these orthogonal

geometries are well-known and can be found in Bell and

Glasstone (1970). Our intent is to discuss a general

solution strategy applicable to these geometries. Here we

will omit some of the specific algebraic details. However,

we will address some of them in cylindrical coordinates and

as they apply to the air-over-ground problem which is dis-

cussed in Chapter VIII.

In Chapter II we wrote the particle velocity or

vector dependence in terms of particle energy and the
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direction vector Q. This vector is related to the spatial

problem coordinates and is usually specified by two

independent angle variables v and X (Duderstadt and Martin,

1979). These angles are defined with respect to the

particular problem geometry. In rectangular geometry they

are defined as in Figure 3 where u = cose and e is the

angle formed by nA and the z-axis. X is the angle between

the x-z plane and the plane formed by the Q vector and the

z-axis.

By expressing the problem in an orthogonal spatial

coordinate as in Figure 3 we can easily derive expressions

for the streaming operator. We can also derive expressions

for the surface normal term n.fi (Wills, 1981). Furthermore,

we can easily demonstrate the odd-even properties of our

second order formulation. These properties are important

in determining the scalar flux and particle current. They

also show that this second order formulation is just a

separation of the odd and even components of the angular

flux. The even parity equation and flux carries the

even information which is important in determining the

scalar or reaction rate flux. However, the odd parity

equation and flux has the odd information which is impor-

tant in determining the net current.

In order to see that this is indeed the case the

reader can easily verify that in any orthogonal coordinate
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system the surface term 2-R is an odd function on the unit

sphere. It is an odd function in the direction or

equivalently in the angles p and X. Then, by writing the

angular flux as in Eq (84) and the parity flux as in Eqs

(29) and (30), he can show (Wills, 1981) that

f(r,)dr = 0 (88)

where

(r,)d= ¢(r,-n)dQ (89)

and the integration is carried out over all directions

(4n steradians). Therefore

=r ^)d^ f~g(r^,n)dQ (90)

Furthermore, since the term Q-fi is represented by

odd spherical harmonic functions (Wills, 1981) we can write

=n 0 (91)
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and the particle current as

, fn) Q(r,)dQ (92)

where we used the fact that T.n and VU(r ,) are odd, whereas

Ag(2 ,) is even on the unit sphere.

This odd-even property of the second order formulation

is also important in the choice of a finite element trial

basis. We propose to use a dual basis -- a piecewise poly-

nomial (spline) basis in the spatial variables and spherical

harmonics in angle. Our choice of spherical harmonics, or

an equivalent tensor product of surface harmonics (Sansone,

1977) in the angular variables is based on the following:

i. The odd-even properties of the second order flux

and equations.

ii. The usual practice of expanding the scattering

cross-sections in spherical harmonics (Bell

and Glasstone, 1970).

iii. The streaming and surface normal terms are

expanded by the use of Legendre functions.
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iv. The orthogonal and parity characteristic

of spherical and surface harmonics.

v. Spherical harmonic functions have been

successful in mitigating ray effects (Reed,

1972).

We also chose a spatial finite element basis in order

to ease the computational burden of the five-dimensional

problem. A finite element basis can easily model diffi-

cult and complicated geometries. Furthermore, a finite

element spline basis is easy to construct and their

piecewise nature facilitates the evaluation of the many

integrals in the Calerkin weak form. There is also a

wide selection of spline basis functions and element shapes

to choose from (Prenter, 1975). This provides the

flexibility which is required in solving general particle

transport problems.

Expanding our solution in this dual basis of poly-

nomial splines and spherical harmonics we can now write

the trial function expansion of Eq (65) and Eq (87) with

N Ykm(n)B (r) (93)

where -Zgm: +Z and the index i varies with X, m and J.
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This is a global basis of harmonic functions in angle and

a local finite element basis in the spatial variables which

represent r. Referring to Figure 3, these could be the

x, y, z variables in rectangular geometry where the angle

or direction variables are u and X. Furthermore, if there

is symmetry in the problem we could eliminate some of the

independent variables and thus reduce the dimension of the

trial space.

Spherical Harmonics and Surface Harmonic Tensors.

Spherical harmonics are complex functions in the direction

variables of . These variables are usually denoted by

the symbols V and X. In rectangular geometry they are de-

fined as in Figure 3. Their definition in other orthogonal

geometries can be found in Bell and Glasstone (1970). They

specify directions or points on a unit sphere where uc[-l, 1]

and xe[O, 27]. The normalized spherical harmonic functions

are defined as (Wills, 1981)

Y ,m(Q) = Cm P ,m(u)eim

=Qc + iQs (94)96 Q,m ,m
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where P m(u) are the associate Legendre functions

(MacRobert, 1967) and

C2,m2 (i+m). (95)

We have also defined Q m and Qm to be the even and odd

surface harmonic tensors

Q C r = CPm(u)Cos(m) (96)

and

Q m CmPm(U) sin(mX) (97)

The usual spherical harmonic expansion of a function

f(). is written as
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L +Z

f - I m ( )  (98)
=0 np=-i

where f are the expansion coefficients which areZ'm

determined by the inner product

f
f < f()Yn md> = ( )Ym( 0)dP^ (99)

and Ym is the complex conjugate. We can rewrite Eq (98)

without a loss of generality (Wills, 1981) as

L £

(~) = fI~mQZm + ifzmQzm (100)
9=0 M=O

where f e # fm and we have used the fact that
4= i mc mm

Y (-)mY* = (-I) mc + i(-l, Q m (101)
9,m 9)m ilzm
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Using a spherical harmonic expansion in Eqs (65)

and (87) produces a matrix problem which is complex if

there is no symmetry in the angle X (Blomquist and Lewis,

1980). The matrix of the Galerkin weak form is then a

Hermetian matrix and the computations must be carried out

in complex arithmetic. However, since we know that the

sources are all real and that the solution is real, we

could use an alternate and equivalent real trial space

(Fletcher, 1983). This trial space is just the surface

harmonic tensors of Eq (94) where the expansion of Eq

(100) is now written as

--0 ~ + £mQ~mI (102)

and the trial function of Eq (93) as

Ni(r 0) = [Qm + Qzm B() with 0Smsk (102a)

In order to see that the expansions of Eqs (98) and

(102) are equivalent, we need to separate the spherical

harmonic coefficients into their real and imaginary parts

(Courant and Hilbert, 1953) as
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fc if for m>0 -f~m=

1(fC + ifs )*(-I)m for m<O (103)

By substituting Eq (103) into Eq (98) we can derive the

real expansion, Eq (102). These harmonic functions are

complete and converge uniformly and in the mean (Churchill

and Brown, 1978). They are also orthogonal in that for

S2' and m # m'

<gYm(n)'Yk'm'(0)> =Q Q' '

- im z'm,

<S IQS 1

= 0 (104)

Another important property of these harmonic func-

tions is that they have special parity characteristics.

This is a very important property computationally and in

choosing the angular trial space. It allows us to construct

a basis which is best suited to accomodate the odd-

even (parity) properties of the even and odd parity

fluxes. In solving the even or odd parity equations we

100



need to use a trial space which is complete in either the

even or odd functions on the unit sphere. In effect, we

need to limit our trial space to either even or odd func-

tions. This restriction is implicit in our definition of

the parity flux (Eqs (29) and (30)). There we separated

the angular flux into a sum of components (the even and

odd parity fluxes) which are even and odd on the unit

sphere.

Therefore, in solving Eq (87), we need to use an an-

gular trial space of even functions. By our definition,

the odd components in this function space are all zero.

Using the parity characteristic of spherical harmonics

this trial space is just the expansion of Eqs (98) or (102)

where the index Z is restricted to be even (Davis, 1966).

For a solution to the odd parity problem we could construct

a similar reduced trial space where Z is odd. In either

case we have reduced our trial space to a subset of the

larger solution space which is required in the Pn method

(Greenspan et al., 1968). Furthermore, this smaller trial

space reduces the size of the matrix problem which must be

solved. This in turn reduces the computational effort

which is required.

In order to demonstrate that these harmonic functions

have parity we need to show that
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= (-1) YZm(Q) (105)

or equivalently that

Qkm (-R) = (-1)Qm ) (106)

and

-  (-1) m (107)

Here, -Q specifies the direction opposite to and can be

represented by -p and n + X (See Figure 3). The proof of

these relationships is straightforward. It includes the

fact (Hobson, 1965) that

P m(-u) = (-l)£-mpu) (108)
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eim(T + X) = (_l)meimX (109)

sinfm(7r + X)] = (-l)msin(mX) (ll0a)

and

cos[m(ff + X)] = (-l)mcos(mx) (l10b)

Finally, we can show that in the limit of diffusion

theory, the Galerkin second order equations reduce to the

diffusion equation and Fick's law. This equivalence is

important in that it shows the relationship between our

finite element projection method and the P1 method. It

also shows that our approach, in the limit of a linearly

anisotropic approximation, is consistent with these

established and proven techniques. This equivalence is

presented and discussed in Appendix D. Furthermore, we can

also expand the streaming operators and cross-sections of

the second order forms by using the well-known recursive

properties of spherical harmonics. These relationships

are included in Appendix E.
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The Muitigroup Solution. A complete solution of

general particle transport problems must include a

rigorous treatment of the time and energy dependences.

As shown in Chapter IV, the usual approach is simply to

extend the steady-state and time-independent solution to

energy and time dependent problems. For the second order

transport equations this includes the usual multigroup

approach in energy and a weighted difference or Crank-

Nicholson scheme in time (Duderstadt and Martin, 1979).

In order to keep the algebra and notation to a

minimum and at a manageable level we will not rewrite

the Galerkin weak form with an explicit time and energy

dependent notation (subscript). Instead, we will refer

the reader to Duderstadt and Martin (1979) and to

Chapter IV. However, we will discuss a time and energy

dependent solution within the context of Eq (87). Our

intent is to discuss the important aspects of a general

solution which includes the usual time and energy depen-

dent treatment.

The discrete time and energy dependent equations are

just the system of Eq (87) with redefined operators, cross-

sections and source terms (See Chapter IV). The even parity

flux is now defined with an explicit time and energy (multi-
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group) dependence. The source terms will include known

flux values from a previous time step and sources from

other energy groups. This problem will be implicit in time

with the solutions at a given time step being dependent on

those at previous times. Furthermore, the multigroup

equations are coupled by the source terms whereby the

sources in a given group are dependent on the flux in

other groups.

The general solution strategy is to begin with some

initial condition and to proceed by a marching scheme in

time. At each time step we then solve the multigroup

energy dependent problem by the usual iterative procedure.

This multigroup problem is a set of coupled one group

problems where the parity sources of Eq (87) are energy

and time dependent sources. These sources can be written

in a form similar to Eq (26) as

Q9 S + S9+ S9+ K (At,"Vg) (111)

and

QU = S + Su + Su + K(At,V ) (112)
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Here we have omitted the explicit time index and included

fissions and group scatter sources. K(Vt, T) and K(Vt,Tu)

represent terms which depend on the time discretization

that is used and b is the energy group index. I and Tbb b

are the even and odd parity fluxes from the previous time

step or initial conditions, and

S9 - even parity downscatter source.d

Sg - even parity upscatter source.u
g
Sf = even parity fission source.

f= odd parity downscatter source

Su = odd parity upscatter source.

S u Meodn parity inhomoen ou rce.u

S - even parity inhomogenous source.b

S= odd parity inhomogenous source.

These sources are similar to the usual multigroup

sources where, for example, the odd parity downscatter

source for energy group b can be written as

b-1

sb',b (r b,(rn')d' (113)
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where lbbG and group one has the most energetic particles.

The other sources can be similarly defined where the .

scattering cross-sections are defined by Eqs (33) and (34).

It is important to note that because fissions occur

isotropically they only contribute to the even parity

source term. Furthermore, with isotropic inhomogenous

sources and scattering the odd parity sources are all zero.

However, for problems with anisotropic scattering we must

include and compute the odd parity downscatter and up-

scatter sources. These and the K(Vt,pu) term of Eq (112)

are expressed in terms of the odd parity flux. Therefore we

must compute the odd parity group fluxes in order to

determine the source terms for anisotropic and time depen-

dent problems.

This is a disadvantage of our second order formula-

tion. If we are only interested in scalar flux values and

thus a solution to the even parity equation then for

anisotropic and time dependent problems, we must indirectly

compute the odd parity flux. This can be accomplished by

inserting Eq (37) into Eqs (112) and (113). However, this

increases the computational work, especially for problems

with upscatter sources. Nonetheless, we are not computing

TU explicitly, and a solution can be obtained without having

to solve the odd parity equations.
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Except for the extra effort which is required in

computing the multigroup and time dependent sources the

solution approach is similar to that which is normally used

to solve the first order transport equation (Sanchez and

McCormick, 1982). This involves an inner and outer itera-

tion strategy. At each time step we carry out a multigroup

solution where we solve the one group steady state matrix

problem for each energy group. This is the inner iteration

where we calculate the space and angle flux distribution

T9rA) for each energy group b. The usual practice for

solving the diffusion equation is to use an iterative

(indirect) solver to solve the matrix problem (Bell and

Glasstone, 1970). This practice, together with the itera-

tive procedure of the discrete ordinate method, has led to

the concept of an "inner iteration strategy."

An outer iteration provides a solution for the group

fluxes T(rn) for all of the energy groups. It involves

a sweep through all energy groups in order of decreasing

energy to provide an updated steady state solution. The

outer iteration is then repeated until some convergence

criteria is satisfied or a prescribed number of iterations

are performed. For problems which do not have fissions

or upscatter sources, only one outer iteration is required.

The group flux g(rA) converges in one outer iteration.
b

However, fissions and upscatter sources depend on the un-
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known and to be computed flux in lower energy groups.

Therefore, the usual practice is to begin with an initial

flux guess for all of the energy groups and to perform a

number of outer iterations before convergence is achieved.

At each outer iteration the fissions and upscatter sources

are computed by using the flux solutions of the previous

outer iteration.

The Matrix Problem. A numerical solution of the

second order transport problem requires that we solve a

matrix problem. This matrix problem is obtained by expan-

ding, evaluating and assembling the individual terms of

the Galerkin weak form, Eq (87). This involves the

evaluation of a number of integrals and the construction

of a problem matrix and source vector. Finally we must

solve this system for the flux expansion coefficients

These coefficients can then be substituted into Eq -

(65) to give the even parity flux.

The matrix problem can be written as

[A] [4~ S) (114)

where

A = positive definite symmetric problem

matrix
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= flux expansion coefficient vector

S = right hand side or source vector

To get from Eq (87) to (114) we will follow the usual

finite element practice (Huebner, 1975) of evaluating the

integrals by Gauss-Legendre quadrature. Numerical inte-

gration with Gauss quadrature can be written as (Atkinson,

1978)

a f()dx= w f(xj) (115)

where the wj's are the Gauss Legcndre weights and x.'s

are the zeros of the nth degree Legendre polynomial. The

quadrature formulae Eq (115) integrates all polynomials of

degree 52n-1 exactly.

In order to reduce the computational effort a complete

expansion of the Galerkin weak form and identification of

the distinct integrals is required (Wills, 1981). These

integrals are evaluated once and then used to assemble the

problem matrix and source vector. We can then use an

indirect solver (Hageman and Young, 1981), or Cholesky

decomposition (Stewart, 1973) to solve this positive de-
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finite symmetric system. Furthermore, the problem matrix

will have a large number of zeros due to the use of finite

elements. Therefore, we could use a sparse matrix storage

scheme (Jennings, 1977) to reduce the problem size. This,

coupled with the fact that the problem matrix is symmetric,

will decrease the computer storage requirements and costs.
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CHAPTER VIII

THE AIR-OVER-GROUND PROBLEM

We now apply our method to a real and difficult pro-

blem -- the air-over-ground problem. This problem involves

the deep penetration of particles in the atmosphere along

with reflection and propagation into the ground. These par-

ticles are neutrons, gamma rays and x-rays. They propagate

away from a point source in a two-dimensional air-over-

ground geometry. Solutions to this problem have a variety

of applications. These applications include the prediction

of collateral damage and radiation exposure in a nuclear

environment.

The air-over-ground problem increases in complexity

because it has point sources, forward peaked anisotropic

scattering, an exponentially varying atmosphere, and an air-

ground interface (Pace et al., 1975). Numerical solutions

to this problem already exist. The main solution techniques

are Monte Carlo and discrete ordinates. However, both

Monte Carlo and discrete ordinates have severe difficulties

and limitations (Loewe et al., 1983). A Monte Carlo solu-

tion has statistical errors. These are expected uncertain-



ties in the approximate solution. However, these uncertain-

ties become large as the problem dimensions increase.

Therefore, over large space regions the Monte Carlo solution

has poor statistics and unacceptable errors. It also re-

quires many hours of computer execution time. Discrete

ordinates is also limited by deficiencies in the difference

scheme, ray effects and long execution times.

Because of these difficulties many researchers have

investigated and developed alternate solution techniques

for solving the air-over-ground problem. Roberds and

Bridgman (1977) have used a projection of "specially

tailored" trial functions to solve this problem. Sbulstad

(1976), Eamon (1976) and Sacenti and Jacobsen (1975) have

used a mass integral scaling technique. In this approach

scale factors are used to correct infinite homogenous

air results. Souders (1981) has also applied projection

methods to the even parity transport equation. He attempted

a collocation and Galerkin solution and concluded that

these methods could not be successfully used to solve this

problem. In contrast to our use of spherical harmonics he

used Lagrange polynomials and special ellipsoid trial

functions to model the angular dependences. He did not

include the air-ground interface or a nonhomogenous

atmosphere.
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The most general solution of the air-over-ground pro-

blem can be obtained in a three dimensional spatial geome-

try. This is a time and energy dependent problem with two

angle variables (u,x). Therefore, the general air-over-

ground problem requires a detailed seven dimensional

solution. However, if in cylindrical geometry, we confine

the point sources to the z-axis, then the problem becomes

two dimensional in the spatial variables. It has azimu-

thal symmetry and can be solved as a six dimensional problem

in a cylindrical (r,z) geometry.

It is not our purpose to provide the most general

solution to the air-over-ground problem here. Instead, we

will reduce the problem further to a monoenergetic steady-

state problem in cylindrical geometry. The point sources

will be confined to the z-axis. However, we will include

first scatter sources, anisotropic scattering, an exponen-

tially varying atmosphere and the air-ground interface.

Furthermore, our solution can be easily extended to the

general time and energy dependent (multigroup) problem.

As was pointed out in Chapter VII, this is a straight-

forward extension which requires the solution of a number

of coupled steady-state, monoenergetic problems. Therefore,

our primary objective is to demonstr-te that the finite

element projection method can be used to solve the steady-

state one group air-over-ground problem.
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Problem Geometry and Boundary Conditions

This problem will be modeled in cylindrical (r,z)

geometry with vacuum boundary conditions. It is a steady-

state, monoenergetic (one group) four-dimensional problem

with two spatial (rz) and two angle (u,x) variables. The

coordinate system and directional angles of this geometry

and the air-over-ground problem are shown in Figure (4).

is the cosine of the angle formed by the z-axis and the

particle velocity vector P. X is the angle between the

planes formed by the i vector and z-axis and that of the

vector and z-axis.

For the air-over-ground problem the scattering cross-

sections will be highly peaked in the forward direction

(Bartine et al., 1977). This is due to the scattering pro-

perties of air and the high particle energies which exist

in this problem. Because of this the exterior boundary

condition for this problem will be approximated by a

vacuum boundary condition (Burgio, 1975). This boundary

condition is represented by Eq (9) and for the second order

transport equation by Eqs (46) and (47). In the Galerkin

weak form and the equivalent variational problem it is

defined by Eq (64a).

Furthermore, in two-dimensional cylindrical (r,z)

geometry there is symmetry in the angle x. This symmetry

115



e-cos-l-'

Air

IL z

C2 Ih
projection

i 9

* Interface

Ground
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can be written as

0(^, ) f *(r,n ) for 95 =2 - 2(.* )n^ (116)
2 p2 pi p1

or as

r(ipX) = (rj,-x) = 4(£,i,2i-x) (117)

The symmetry X is shown in Figure 5, where the vectors n

and p are perpendicular.

Note that because of the problem geometry and the

exponentially varying air density (in the z direction),

only azimuthal symmetry in the angle X is assured. There

is no symmetry in p(cosO) and therefore 4(r,Q) will not

be equal to 0(r,-O). The symmetry condition, Eqs (116)

and (117), implies that

c(r,p,X) = even functions in X (118)
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The problem geometry and coordinate system as shown

in Figure 4, together with the symmetry in X requires that

when P is equal to zero the solution is a constant in X.

This also implies that at p = 0 the angle X must be equal

to zero. Therefore, along the z-axis we have that

(r, = 0 for p = 0 (120)
ax

and X 0

At the air-ground interface the angular flux is

continuous in the spatial variable r. This interface

condition which is represented by Eq (13) is a natural

condition of the Galerkin weak form (See Appendix C).

However, this is a plane interface for which it can be

shown (Bell and Glasstone, 1970) that the angular flux is

discontinuous in the variable P. This discontinuity exists

at V = 0 and depends primarily upon the problem geometry,

sources and material properties. The most severe cases

are those of a vacuum boundary and interfaces where the

adjoining materials are very dissimilar in terms of

sources and cross-section data. The air-over-ground pro-

blem is in this later category.
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It is important to note that this discontinuity does

not present a difficulty in the Galerkin weak form. This

formulation treats the interface condition as a natural

condition and would provide an approximate solution to the

problem. However, our trial space must be complete and

in this case completeness includes the ability to approxi-

mate discontinuous functions. For problems where this

discontinuity is severe the choice of a reasonable and

"admissible" trial space is important.

Our trial space of harmonic functions is complete.

The associated Legendre polynomials are also complete.

They can approximate discontinuous functions in the mean by

an infinite series where the number of functions (N)tend to

(Bell and Glasstone, 1970). However, we can get a better

approximation with a smaller trial space (N), if we include

functions which are discontinuous at p = 0. This is the

basic idea of the Double Pn approximation (Duderstadt and

Martin, 1979). We simply separate the trial space in two

half ranges in V and use separate Legendre expansions on each

range, i.e., uE[-l,0) and p[0,1). With this approach we

can easily treat problems with severe interface discon-

tinuities. A very accurate solution of the air-over-ground

problem may require such a treatment.
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The Finite Element Basis and'Problem Equations

Applying the finite element projection method of

Chapter VII to the air-over-ground problem requires a nu-

merical (computer) solution of the Galerkin weak form Eq

(87). However, we must further define and choose our

trial space in accordance with the problem symmetries

and boundary conditions. In this solution we will follow

the usual practice of not using a Double P n approximation

in angle. This approximation may only be needed for those

problems where a very accurate solution at the air-ground

interface is desired.

The general solution strategy of Chapter VII employs

a dual basis of global harmonic functions in angle and

finite elements in the spatial variables. We could also

use four dimensional finite elements in both space and an-

gle (Miller et al., 1973). However, these four dimensional

phase-space finite elements will be very costly (computer

costs) and inefficient (Wheaton, 1978). This is due to

the added complexity of anisotropic scattering. Aniso-

tropic scattering increases the data management and

computational difficulties. A local basis in angle requires

that the scattering contribution to each element must be

computed on an element by element basis for all space and

angle elements within the problem domain. Therefore, a
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four-dimensional phase-space finite element formulation of

this problem is not a very attractive or realistic approach.

We will use a dual basis of spherical harmonics and

splines. The global nature of the spherical harmonic

functions would facilitate the treatment of anisotropic

scattering. This expansion which must also satisfy the

symmetry conditions of Eqs (117) and (120) can be written

as

IR L Z,Tg(zPpl,,x) = : 2 ' AiBiz(z)B ir(P)Qcm (121)

iz=l ir=-I £=0 i=O

where Ai are the expansion coefficients and B iz(z)Bir( )

form a tensor product of normalized B-splines on a rectan-

gular (P,z) grid (Deboor, 1978). Qc is a surface harmonic

function which is defined by Eq (96) with Z restricted to

be even.

The definition of a polynomial B-spline is

B(x) = (ti+k - ti)[ti ...... ti+k]Gk(xt) (122)
i,k,t
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where

(t-x)k-i for t z x
k-i

Gk(x,t) = (t - x)+ (123)
0 for t : x

and

k = 1,2....= order of the B-spline

i = index of the i-th normalized B-spline

ti and ti+k represent the node points and [ti ..... ti+k] de-

fines the usual k-th Newton divided difference. The graph

of an unnormalized cubic spline function with evenly

spaced nodes (knots) is shown in Figure 6. High order

splines (k z 2) are (k-2) times continuously differentiable.

These are very smooth functions, however, we can also

construct low order linear splines and splines (k = 1)

with jump discontinuities at the nodes (Schultz, 1973).

B-splines have been used extensively as interpolation

functions (Schumaker, 1981). Spline interpolation requires

the solution of a smaller system of equations than

interpolation with Hermite or Lagrange polynomials. The

usual practice is to use normalized B-splines in a N-
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Figure 6. Cubic Spline With
Evenly Spaced Nodes
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dimensional space whereby

B =1 for all x•= i k t (1 2 4 )

A tensor product of B-splines is being used here for

the following reasons:

1. They are piecewise continuous and form a local

basis such that the integral Bijx)Bj(x) dx is zero

if ji - jIZk where k is the order of the B-splines.

This reduces the number of integrals which must

be evaluated and also produces a sparse and banded

coefficient matrix.

2. A separation of the p and z integration variables

is possible.

3. For a given problem partition (mesh spacing) poly-

nomial splines will produce a coefficient (problem)

matrix that is smaller but less sparse than Hermites

or Lagrange polynomials.

In the Galerkin weak form of Eq (87) the test or weight

functions can now be defined as
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N.(ZpIX) =B z(Z)Bjr(P)Q! (125)

The spatial trial functions of B-splines are defined in

the global problem coordinates. In this solution a local

element coordinate system and a parametric reoresentation

will not be used. Instead we will use ring type axisymme-

tric rectangular elements which are defined in the problem

coordinates. These are four node two-dimensional elements

with axial symmetry. They will be constructed on a non-

uniform mesh in the (p,z) plane. Furthermore, in this

representation the expansion coefficients of Eq (121) do not

represent the solution values at the nodes except when

linear B-splines (k = 2) are used. In the terminology of

Chapter III and with this exception, these coefficients

are generalized coordinates.

By substituting Eqs (125), (121) and (64a) into Eq

(87) we get

IZ IR L k

+ <BjQ + fG>km n Qn BiQkmd d

f,&Q< V(BjQcn),KuQu> + <BjQCn,Q dr (126)
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Here 2 and k are even integers and for simplicity the p, z,

V, X dependences are omitted and

B. = B iz(z)Bir(p) (127)

B = B jz(z)Bjr(p) (128)

Eq (126) can be written as a matrix problem in the

form of Eq (114) where the Ai's are the flux expansion

coefficients. The elements of the problem matrix and

source vector are obtained by evaluating and summing the

individual expanded terms of Eq (126). Details of this ex-

pansion are carried out in Appendix F where the surface

normal and (streaming) gradient operators are defined in

cylindrical geometries.

The directional gradient operator in cylindrical

geometry is defined as (Bell and Glasstone, 1970)

V ~a 00) _ j 11 siy +i JpA
cos(X) p x ; (129)
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This is the conservative form of the directional derivative

in two dimensional (P,z) geometry with azimuthal symmetry.

The Ku and Gg operators have been defined in Eqs (42) and

(39). The scalar product of the velocity and normal vec-

tors can be written as

'nz for the horizontal outer surfaces (top or
bottom) of the problem cylinder, and as

0n=

Q n for the vertical surface (side) of the
- cylinder (130)

where

v H on the top surface, and
Z - on the bottom surface (131)

and

P.n = I-i2 cosX (132)

The normal unit vectors "p and nz are shown in Figure 7.

Expanding the expressions in Eq (126) produces an in-

tegral-differential equation which has twenty-eight terms

(See Appendix F). These terms, except for the source terms,

can easily be separated into a product of z, p, V and X
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Figure 7. Surface Normal and Particle
Velocity Direction Vectors.
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integrals. This is an integral separation of variables

which is a direct result of Eq (121); where it is assumed

that the solution can be expressed in a form where the

dependent variables are separable. This separation pro-

perty simplifies the individual integrals which have to

be evaluated. It allows for the evaluation of only single

integrals and not the more complicated double, triple or

quadruple integrals. By this separation of variables it

may be possible to integrate most of these single integrals

analytically and thus avoid a numerical integration process.

The term by term expansion of Eq (126) has produced

thirty-seven distinct single integrals. These integrals

can be found in Appendix G. The angle integrals are only

dependent on the degree of the spherical harmonic trial

function expansion which is used. They are not dependent

on the problem parameters and therefore they can be inde-

pendently evaluated. They can be evaluated once, and

thereafter, used as a part of the problem input data. The

source integrals are derived from an interpolation of the

first scatter air-over-ground source over the entire

spatial problem domain. This first scatter source is

derived in the next section.
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The Source Terms

A numerical solution of the second order transport

equation requires that the source terms (right hand side

of Eq (126) must be evaluated. These terms form the

individual elements of the problem source vector in Eq

(114). The even and odd parity sources Qg and QU are

comprised of the relevant terms of Eqs (111) and (112).

For this steady-state monoenergetic solution these are the

even and odd parity inhomogenous sources Sg and Su where

we have dropped the explicit multigroup index. These

sources will be defined as the first scatter or collision

even and odd parity sources. For the air-over-ground

problem the first scatter source S(rn) is the number den-

sity of particles which leave the source point and undergo

only one collision before being scattered into direction n

at position r. Streaming neutrons which leave the source

point and do not collide before reaching position (rQ) are

not included in the collision source.

The use of a first scatter source makes the air-over-

ground problem more isotropic. It removes the strongly ani-

sotropic streaming particles from being a part of the

problem. Therefore, the solution fluence of Eq (126)

will be the scattered even parity fluence T( ,Q) and

not the total even parity fluence Tg(f,n). Following
t
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the derivation of Wills (1981), the total even parity

fluence can be defined as

=t(fn) fs(r,R) + T d(rR) (133)

where

A

Td(r,Q) = streaming uncollided
particles at position

A precise mathematical definition of the Sg and S'

sources will now be developed. Also a source interpolation

procedure will be outlined. This source interpolation is

used in order to simplify the source integrals of Appendix

F.

The First Scatter Source. The even and odd parity

sources have been defined as

SUci, ) = ({siib) - s(i,-b)} (134)

S8(i^,n) = r~,s1 ) + S(,-O)) (135)
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If SU and S9 are first scatter source densities then

S(f,W) and S(i,-4) must also be defined as first scatter

source particles/unit volume. If a position (p,z) in the

problem domain is chosen then a unit vector from the

source point (O,zb)can be defined as

&'(p,z)= ~P + (z-zb)e (136)
p2 + (z-zb)2j%

Figure 8 shows the direction vectors of this first scatter

(collision) source. Q' is the direction that all streaming

(uncollided) particles have at point (p,z).

By definition only particles which are streaming

radially outward from the source point can be included in

the direction fluence. Therefore the direct fluence at

point (p,z) is in the n direction and can be written as

d = 4r-2 exp- at(z)ds) (137)

where

s = {p2 + (z-zb)2} (138)
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and jds means that the integration is carried out along

the path s (See Figure 8).

Y = Total number of source particles.

a(0Me-z/sh for z > 0
at(z) =

0 t (ground) for z < 0 (139)

sh = atmospheric scale height

The termfoSat(z)ds is the average number of collisions

which a particle undergoes in traveling from the source

point (o, zb) to point (p,z). From Figure 8 the distance

s can also be written as

s (z-zb)/Vd (140)

and therefore by changing variables

ds = dz/pd (141)

where Pd is a function of p and z (but constant along a

path length) and,
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ud(p,z) cos (w) = (z-zb)/s (z-zb)
+ (Z-zb)214  (142)

The integral term of Eq (137) can now be written for z > 0

as

fo =t 
( fz /h

• (Pz) =  s (z)ds = Jzb e -z sh dz (143)

and finally as

T(P,zO)= e Zb/sh - Z/sh *sh

{t(zb) - at(z)}.h (144)

From the above derivation it follows that

a t(zb) " t(z)}a s- for z > 0

T (p,z) =
0, }0 sh oz

la,(zb) " %(O) "- - for z < 0 (145)
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also

Y

Od(P,zf) Wf -- 2 exp(-t(pz)) (146)

Note that Od(p,znV) is only a function of p and z.

The first scatter source at (p,z) and with direction

pd are those particles which undergo their first collision

at (p,z) and are scattered from direction &V to n.

Therefore the first scatter source can now be defined as

S(P,z,n) = oS(z,Q' )4d(p,z, ) (147)

where os is not a function of n? but of the scattering angle

. (o) and z. From Figure 8 and Figure 4 " is defined

by vd and X = 0 i.e., PA = (p',X') where p' = pd and

×, = 0.

By use of the addition theorem it is shown in Appen-

dix H that Eq (147) can be written as

S~p~z, O 20~r~vzlnze- Phl 2:;()ipQ(id)cos(m~x)(18
9=0 m*=0

137



and that the even and odd parity first scatter sources are

=d d(PZ~ eZ 25h 2: a(O)CL
t=0 m*--0

+ (-l) Pm()Pm(vd)cos(mx) (149)

and

L

sUp ) = duz )e- z/h~ Z s( 2
X=0 m*=O £ m

- (-l) }P .m(i)P m(d)cos(mx) (150)

where m* means that all terms with an m = 0 subscript must

be divided by two.

Source Interpolation. Because of the complicated

nature of the source expressions, Eqs (149) and (150), and

the need to integrate the source terms of Appendix F, a

spatial source interpolation will be used. This interpola-

tion which simplifies the source integrals is necessary if

a very tedious (double or quadruple) integration is to be

avoided. By this interpolation process the source terms

of Appendix F can all be separated into a product of single

integrals.
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It is important to note that u~d which is given by

Eq (142) is a function of P and z. Furthermore, d(POZn')

of Eq (146) is a function of p and z. Beginning with

Eqs (149) and (150) they can be rewritten as

L Z
Sg(P'Z _ a (0)0 2 (1 +(-)AmpzP

9.-OM*-O z m ,-)}~PzP(UJ)cos(mX) (151)

and

L ,

k=0fl~U (152)

where

A ,(P,z) Y dP~z,15I)P~m(]jd)e z/sh (153)

A spatial (p,z) interpolation of the even and odd

parity sources, Eqs (151) and (152), is therefore an inter-
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polation of Akm(p,z ) . In this project these first scatter

second order sources will be interpolated by a combination

of piecewise bilinear Lagrange polynomial functions.

Specifically, Sg is approximated by a tensor product of

linear Lagrange polynomials as follows

NZ NR
sg(P'zP ) =EEsg(pj~ziO)Hj(p)Hi(z) (154)

i=l j=l J I

where

sg(pj,zi,R) = the even parity source, Eq (149)evaluated at the spatial nodes

(pj ,zi)

NZ = total number of z-nodes

NR = total number of R-nodes

H(p) = p-linear Lagrange polynomial

H(z) = z-linear Lagrange polynomial

These linear polynomials (See Figure 9) are defined as

xH_ 1 - x for xi 1l xx i

x i-i -xi

(i+l x for x ixx i+1  (155)
x i+1 -xi
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Figure 9. A Linear Lagrange Polynomial Function.
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The product Hj(p).Hi(z) of Eq (154) forms a tensor product

space on a rectangular grid, in the p, z plane (Prenter,

1975)

Substituting Eq (149) for sg(pj,zi,n1 in Eq (154)

gives

s z, -- m = ()C~m2l + (-l) 2jPm(V)cos(mX)*

A Am(j 'zi)Hj (P)Hi(z)] (156)

i=l j=1

Similarly the odd parity source can also be expressed as

(PZ2 =Y [a()k 1-( tPm(1I)cos(mX)*
Z-0 m*=0l

NZ NR 1

i=lj=l

Eqs (156) and (157) can now be substituted into the source

terms of Eq (126). This substitution and a separation of

the integration variables produced a number of source inter-

grals. These integrals are listed in Appendix G.
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Computer Solution and Results

A finite element projected solution of the air-over

ground problem can be obtained from a computer solution to

a system of coupled algebraic equations, which are in the

form of Eq (126). In order to validate, evaluate and

demonstrate the potential of our finite element formalism,

a computer program was developed to solve the steady-

state monoenergetic problem. This solution involves a

computer assemblage and solution of the matrix problem of

Eq (126).

Our solution is basically a computer implementation

of the problem equations and expansions of the previous

section. We developed a computer code to solve the even

parity Galerkin equation with vacuum boundary conditions,

first scatter sources, and an exponentially varying at-

mosphere. This is a solution to Eq (126) with the source

terms of Eqs (156) and (157), and in an air-ground cylin-

drical geometry where the point sources are confined to the

z-axis. A tensor product of cubic splines (k = 4) is

used to represent the spatial (p,z) variables.

This is a four-dimensional problem with two spatial

and two angular (p,X) variables. The ground is modeled as

a homogenous cylinder with constant material properties

(density and cross-sections). However, in keeping with
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the exponentially varying density of the atmosphere

(Messier, 1971) the cross-section of air is modeled

with an exponential dependence where

a(r) = a(O)ez /H (158)
air air

and

o(9) = cross-section of air at sea level
air

H = atmospheric scale height

z = height above sea level.

In order to compare and validate our solution with other

methods (codes) we also included an option (H o)

which models a homogenous atmosphere.

The Computer Program. This is a straightforward

computer implementation of the problem equations which

were developed in the previous section. These equations

are expanded in Appendix F. The integrals which must

be evaluated are in Appendix G.

This finite element transport (FET) code computes

the even parity flux and the scalar or total reaction rate

flux for the air-over-ground problem. It was developed
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specifically to solve this problem. The structure, format

and design of the FET program are based upon the special

features and difficulties of the air-over-ground problem.

Therefore, the FET code is designed for a specific

research application and not as a general particle transport

code.

The FET program consists of over 1800 lines and

twenty subprograms. We used a modular programming style

and separated the computational tasks into five main areas.

In each of these areas we developed function and

subroutine subprograms to carry out specific tasks. We

also used an eight point Gauss-Legendre adaptive quadrature

routine to numerically evaluate the integrals of Appendix

G. This integration program is a part of a system

library of mathematical subroutines and functions. It

belongs to the SLATEC (Sandia-Los Alamos-Air Force Weapons

Laboratory Technical Exchange Committee) common mathemati-

cal subprogram library (Allen and Funk, 1981).

The main computational tasks in the order in which

they were performed by FET are as follows:

1. Program Initialization and Input

The problem parameters and data are read from an

input file by the main program driver. This pro-

gram determines the problem size and computes the

problem mesh (elements).
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2. Evaluation of the Integrals

The integrals of Appendix C are evaluated for each

of the trial function expansion subscripts.

3. Computation of the Source Vector

The first collision source is computed and the

source vector (right hand side of Eq (126)) is

assembled. The individual elements of the source

vector are computed and stored as a singly sub-

scripted real array.

4. Compute the Problem Matrix

The individual terms of the left hand side of Eq

(126) are computed. These terms are then added and

subtracted to form the problem matrix. This is a

doubly subscripted N x N array. However, because

the problem matrix is positive definite symmetric

only those elements on or above the diagonal are

computed. Furthermore, a special sparse symmetric

storage scheme is used (Bathe, 1982), and

the problem matrix is stored as a singly subscripted

array.

5. Solution of the Matrix Problem

Having assembled the problem matrix and source vector

the FET code solves a matrix problem for the even

146



parity expansion coefficients (the Ai's) of Eq (121).

Because the problem matrix is positive definite

symmetric we could use an indirect (iterative) solver

(Hageman and Young, 1980). We can also use a

Gauss-Jordan elimination process or some other direct

method (Atkinson, 1978). FET uses Cholesky decom-

position which is a variant of Gauss-Jordan

elimination for positive definite symmetric matrices.

A subprogram which is based on the routine Colsol

of Bathe (1982) is used in the FET code. This

subprogram carries out a Cholesky decomposition of

the problem matrix and a back-substitution of the

source vector (Jennings, 1977).

Results and Comparisons. The evaluation and vali-

dation of our finite element projection technique was

accomplished by using the FET code to solve a number of

sample problems. These solutions show that our solution

technique is capable of solving difficult problems of

physical and engineering interest. They are not meant to

be a complete and exact solution of the air-over-ground

problem but, rather a demonstration of the potential of

our solution approach to solve general particle transport

problems. However, they do show that for the air-over-

ground problem our method can serve as a feasible and com-
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plementary alternative to Monte Carlo and discrete

ordinates.

The air-over-ground problem was chosen because of

its inherent difficulties and the limitations of presently

available solution techniques (Loewe, et al., 1983). In

order to validate our solution approach and the FET code

a number of P3 homogenous air calculations were performed.

These calculations afforded a comparison of our results

to those of other methods. We compared our results with

those of diffusion theory and discrete ordinates. We

also carried out homogenous and inhomogenous P3 air-

over-ground calculations. These calculations demonstrate

the potential of our method for providing detailed and

accurate solutions to the air-over-ground problem. We

will now present these results and comparisons.

One group neutron cross-sections from the DLC-31 cross-

section set of Oak Ridge National Laboratory (ORNL) were

used. These cross-sections are a part of the Radiation

Shielding Information Center (RSIC) data library. Two

sets of one-group cross-sections were used to perform

the calculations. These cross-sections were assembled

by ORNL from the Evaluated Nuclear Data File IV (ENDF-IV).

A uniform lI/E weighting function was used to average and

collapse the cross-sections to 37 groups.
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The cross-sections are approximated by a 4th order

(P3) Legendre polynomial expansion. The two sets of

one group cross-sections which we will label group one

and two reflects the anisotropic (forward peak) scattering

of air. These cross-sections are for homogenous air at an

air density of 1.11 mg/cc and with mean free paths of

0.16 km and 0.11 km for groups one and two respectively.

The group two scattering P3 cross-sections are more

anisotropic and forward peaked than those of group one.

In order to validate our method and debug the

computer code FET we compared our results to those of an

analytic diffusion theory solution. This analytic solu-

tion is based on a point source of one particle in a

finite homogenous sphere. It can be shown (Glasstone and

Edlund, 1952) that the diffusion solution of this problem

with vacuum boundary conditions is given by

_So[e-r/L_- e(r-2Ro)/I,]
S [r) / (159)

4wD(1- e-2Ro/L)r

where

r = distance from the point source (center of sphere)

Ro = radius of sphere
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L = diffusion length

D = diffusion coefficient

So = source strength

Diffusion theory is inappropriate to model this pro-

blem exactly, especially close to the boundaries and point

sources (Duderstadt and Hamilton, 1976). Furthermore be-

cause the FET code provides the solution to a point source

on the z-axis in a cylindrical geometry an exact comparison

cannot be made. However, we can compare these two results

in an approximate way.

Both the FET code and analytic diffusion results are

for a point source of one particle and the group one and two

homogenous air cross-sections. These results for a sphere

and cylinder with vacuum boundaries are shown in Figures

10 and 11. The diffusion calculations are performed in a

sphere with a radius of 2km and with the point sources at

the origin. The FET calculations are for a cylinder of

radius and height equal to 2km respectively. The source

is located at the center of the cylinder. For the group one

calculation the cylinder is subdivided into 256 rectangular

elements (cells). However, for the group two calculation

it is partitioned into 324 (rectangular) elements. These

(FET) results are presented for radial points at the source

altitude.
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To further examine and validate our results we also

made two comparisons with discrete ordinate solutions.

These solutions were independently obtained by using the

discrete ordinates (Sn) code ANISN (Burgio, 1975). Infinite

homogenous air calculations in spherical geometry were per-

formed with point sources at the origin and an $32

angular quadrature. These are published results for a

number of one group problems. We have presented, in

Figures 12 and 13, a comparison of these results for the

cross-sections of groups one and two. The FET results

are for a 2km x 2km homogenous cylinder with vacuum

boundary conditions. Here again the cylinder is parti-

tioned into 256 and 324 rectangular elements for the groups

one and two calculations respectively. The point source is

at the cylinder center and the flux values are for radial

points which are at the source altitude. Because of

the differences in the geometry of the FET and Sn cal-

culations an exact comparison cannot be made. However, we

are able to provide an approximate comparison and thus demon-

strate that our results are appropriate and valid.

We also performed a number of air-over-ground

calculations. The homogenous ground cross-sections for

group one and two are larger and less anisotropic than

for that of air. Furthermore, the ground cross-sections

for group two are more anisotropic than the group one
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ground cross-sections. The ground mean free paths for

group one and two are 1.05E-4 and 7.42E-5 kilometers. At

the air-ground interface the material properties and

cross-section data are rapidly varying. The air and

ground cross-sections vary by three orders of magnitude.

This presents special difficulties and a severe test for

most numerical solution techniques (Lowe, et al., 1983).

The difficulties in solving the air-over-ground

problem are also due to the presence of point sources and

an exponentially varying atmosphere. These difficulties

are further compounded by the need to properly treat the

air-ground interface condition. This is an important

consideration, especially when a solution is required at

the interface. For many applications a solution is required

at ground level or very close to the interface (Pace, et

al., 1975). Therefore, we are primarily interested in a

solution to the air-over-ground problem for radial points

(ground range) along this interface.

This interface condition is treated as a natural

condition in our finite element projected solution. There-

fore, our solution also demonstrates the ability of our

method to model the air-ground interface. Solutions for

the homogenous and exponentially varying problems are

presented in Figures 14 through 17. The group one and two

cross-sections were used to calculate scalar flux values
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at the air-ground interface. The problem domain is a

2km x 2km cylinder with vacuum boundary conditions. The

cylinder has 304 cells for the group one problem and 381

cells for group two. A scale height (H) of 7km is used

in the exponentially varying air-over-ground calculations.

In Figures 18 and 19 we show the variation of the group one

homogenous air-over-ground solution across the interface.

This (air-ground) interface is located at 4.5E-4 kilometers

from the bottom of the problem cylinder.

Finally, we examined contour plots for the homo-

genous air (only) problem and the convergence of the FET

solution. Figure 20 shows an example of this convergence.

These are results at points along the air-ground interface

for the group one homogenous air-over-ground problem. The

problem domain is a 1km x ikm cylinder which is partitioned

into a nonuniform mesh with an equal number of mesh points

along the z and p axes.

In Figure 21 we present a contour plot of the group

one FET homogenous air solution. This plot is intended

to show any deviation of the solution from the physical

symmetries of the problem. Such deviations or distor-

tions of the solution is usually an indication of ray

effect in the discrete ordinate solution (Loewe, et al.,

1983). Figure 21 shows that the FET solution does not suffer

from the anomalous ray effect problem of discrete ordinates.

161



PART] CLE FLUX

W

.=

- /

f"i c I 1 T SOLUTION

.H.EGHT(KM)

Figure 18. Group 1i--Homogenous Air-Over-Ground Solution
at Radius = .01m

162



PRRTICLE F'LUX

L)

W1
t-J

- /
~/

Li4~
RADIUS = 1.2KM

J SOURCE HT. = 0.30KM
-FET SOLUTION

i I 1 ' 1'' 1ii , i.

HEIHT (KM)

Figure 19. Group 1 -- Homogenous Air-Over-Ground Solution

at Radius = 1.2km

163



CONVERGENCE PLO7 .,. burst hoLght - .28km

A

I '-I .°

RADIUS = 0.KM

CC,

****.....RADIUS =0.5KM

4.0 .0 ai.0 I0.0 12..0 111.0 15.0 15.0
NUMBER OF MESH POINTS

Figure 20. FET Convergence

164



i43

p.,

n.~

0.0000 \\ 2 . '\

'' / / !,/

O. I US,M)

Figure 21. Contour Plot of FET Solution

165



These steady-state one group results show the poten-

tial of this solution technique to provide a complete

solution to the air-over-ground problem. However, an

energy dependent multigroup solution is required for most

applications. For others a complete time and energy

dependent solution will be needed. In either case, these

solutions can be obtained by solving a number of coupled

one group problems. Therefore, our steady-state one group

solution can be extended to the general air-over-ground

problem.

All of our computations were carried out on a Cray-

I computer. The FET code was written in Fortran 77 and it

is not optimized in terms of storage requirements or

efficiency. The calculations were all carried out in-

core (central memory). The computer storage requirements

were such that special auxillary or disc storage was not

needed. Furthermore, the maximum execution time which

was required was less than ten minutes. However, for

larger problems we expect the storage requirements and

execution times to increase.
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CHAPTER IX

CONCLUSION AND RECOMMENDATION

A method for solving general particle transport

problems has been developed. This method is based on a

mathematical formalism which includes a rigorous treatment

of general boundary conditions. These boundary conditions

are dealt with within the context of a classical energy
L

minimization (variational) principle and an equivalent

Bubnov-Galerkin solution. Using the second order forms

of the transport equation, this equivalence is established

and the resulting matrix problem is positive definite

symmetric.

The mathematical formalism also includes an explicit

forward or weighted difference in time and a piecewise

constant energy dependence. This is the usual multigroup

treatment of the energy dependence. With these approxi-

mations of the time and energy dependences, the transport

problem (equations) is reduced to a set of coupled steady-

state monoenergetic problems.

The numerical technique involves a finite element

projected solution of the transport equation. A finite

.. p . . . .. . . ..



element trial space of spherical harmonics and polynomial

splines is used. The particle flux is expressed as a

linear and separable sum of even and odd components on the

unit sphere. Then, a numerical solution using the parity

(odd, even) characteristics of spherical harmonics was

developed. In this development we included anisotropic

sources and scattering. Furthermore, we established that

in the diffusion limit our method reduces to the PI method

or diffusion theory.

A validation of the method has been obtained by a

computer solution to the air-over-ground problem. This

problem is modeled in cylindrical (r,z) geometry with an

exponentially varying atmosphere, anisotropic scattering

and anisotropic first scatter sources. The ground was

treated as a homogenous mixture and vacuum boundary

conditions were used. The computer code FET was developed

and used to solve the problem.

Comparisons of the FET solutions to those of dif-

fusion theory and discrete ordinates validated our solution

technique. These comparisons show the ability of our

method to solve general and difficult particle transport

problems. Furthermore, the potential of this solution

approach to serve as a complementary alternative to the

standard techniques of Monte Carlo, discrete ordinates and
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the Pn method was demonstrated. However, the use and

validation of this method by solving other particle trans-

port problems is required.

Further work is also required in the computer

implementation of this method. The applications of this

technique to general time and energy dependent problems is

required. A number of different finite element types and

shapes should be used and examined as to their potential

to model other problems of physical and engineering interest.

Because of the special properties of the problem

matrices the method should be examined in terms of

computational efficiency and costs. Furthermore, other

comparisons should be made. Comparisons for problems

where solutions by other methods are available and can

be easily obtained are required. For problems with angular

singularities, the issues of convergence and stability

of the solution should be examined.

In this regard, we feel that our method can be

easily applied to problems with difficult and complicated

geometries. Nuclear reactors and radiation shielding

problems are in this category. However, many of these

problems have singular points. These are points where the

solution has unbounded derivatives (Strang and Fix, 1973).

Furthermore, these angular singularities may reduce the
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accuracy and rate of convergence of our finite element

method.

The equivalence of this technique to diffusion theory

should be further examined. In the limit of diffusion the-

ory, this method, with a finite element basis of linear

splines, should produce the diffusion theory finite dif-

ference matrix. This is a Stieltjes matrix which guarantees

an all positive solution. Furthermore, a solution by other

projection methods such as collocation, least squares and

the method of moments should be examined. Collocation is

especially attractive in that there exists an equivalence

between the Galerkin and collocation methods (Prenter,

1975).

Finally, a Double Pn aproximation should be applied

to the air-over-ground problem. The effects of this

approximation on the solution accuracy, especially at the

air-ground interface, should be examined. This approxi-

mation would also be able to better model the vacuum

boundary conditions. However, the determination of a

local reflection coefficient and use of the albedo boundary

condition might be more appropriate. Furthermore, the

applicability of our solution technique to specific charge

particle transport problems should be investigated. This

would entail the inclusion of the Fokker-Planck collision

terms into the mathematical and numerical models.
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APPENDIX A

VARIATIONS OF A FIRST ORDER FUNCTIONAL

First order functionals provide the variational model

for many physical systems. These functionals which are

usually quadratic (as in Eq (53)), can be used to provide

solutions to a large number of problems. These solutions

are obtained by determining the stationary point or extre-

mum of the functional. The classical Raleigh-Ritz method

is usually used to numerically determine this extremum.

However, before obtaining a numerical solution we

are oftentimes interested in determining the analytic con-

ditions that would make the functional stationary. These

conditions are obtained by using the calculus of variations

to extremize the functional. We are required to take

variations (derivatives) of the functional which in turn

provide us with information about the problem and its solu-

tion.

Following the discussion of Chapter V we will begin

with a first order functional (Gelfand and Fomin, 1963).

l(u) f r rVu(i))dr (160)



where V is the usual gradient operator in some n-dimen-

sional phase space and we note that the variational problem

is independent (invariant) of the coordinate system (Cou-

rant and Hilbert, 1953).

Based on our earlier definition of a variation, we

can write the first variation of Eq (162) as

=I(u) F F(u(i),Vu (r)) dr' (161)

and

aF F(r,u*(i^),Vu*(r)) - F( ,u(r),Vu(P)) (162)

where

u*(^) = u(r) + e (i) (163)

and

3u(^)= CA(r) (164)
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Expanding IF in a Taylor series and keeping terms of

order c; or taking the variational derivative of F (Lancoz,

1949) we get

31(u) = f + , dr (165)

where we have dropped the explicit r dependence and

u' = Vu ; = V0.

For a stationary point we require that Eq (165) be

equal to zero. Then we can expand the individual terms of

the integral and discuss the conditions for an extremum to

exist. However, to decide on whether Eq (160) is a minimum

or maximum principle we must take the second variation.

This is

321(u) =3(a1(u)) =ef[c IF + I, F]d(16

= 32  F2 + (4 ?)2 idlF

2f ---F + F 2  (167)
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APPENDIX B

THE EULER-LAGRANGE EQUATION

The Sturm-Liouville variational problem of Chapter V

corresponds to a linear boundary value problem with mixed

boundary conditions. This is a natural boundary condition

of the variational or equivalent Galerkin problem. In

order to show the equivalence between the variational and

boundary value problems we will take the first variation of

Eq (53). This procedure will produce the Sturm-Liouville

equation and identify the natural boundary conditions.

In the terminology of variational calculus the partial dif-

ferential equation which extremizes the functional is

called its Euler-Lagrange equation. For the model problem

of Chapter V, this is (the Sturm-Liouville equation) Eq

(50).

We begin by taking the first variation of Eq (53) in

accordance with the derivation of Appendix A. This gives

DIM = f2jp(m)Vu(r)V + q(r)u(i) r

+ ef 2[b(r^,)u(r^s) + c(i s )] (i-s)ds- (168)



. . . . ..--."

and since ' = V4(£) we can use the product rule of

differentiation and the Gauss divergence theorem to get S

aI(u) = E42j-V(p(r)Vu(r-)) + q(i)u(r) - f r

+ fs2rp(rs)Vus(r )fi + b( )U()+ c(rs)](s)ds

(169)

where n is an outward unit normal to the problem boundaries.

For a minimum to exist we require that the first

variation should be zero or that the variational derivative

3I(u) = lim 31(u) (170)

be zero. In either case, since e is small and not

equal to zero and 4(r) is an arbitrary function, we must

have that 0(6) is equal to zero everywhere or that

-V(p(i)Vu(i)) + q(iA)u(^) - f() = 0 (171)
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and

P(rs)VU(6 ).ini + b(rs)u(is) + c( s) = 0 (172)

Eq (171) is the Sturm-Liouville problem of Eq (50).

It is also the Euler-Lagrange equation of Eq (53). Further-

more, Eq (172) represents the natural boundary conditions

which are satisfied automatically by the minimizing

sequence. A numerical solution of the Raleigh-Ritz system

of Eq (61) will provide a solution to Eqs (171) and (172).

This is guaranteed if the solution is also a minimum of

the functional of Eq (53). Therefore, we have shown the

equivalence between the variational and boundary value

problems of Eq (53), (50) and (51).

It is important to note that for the Dirichlet

boundary condition we set a(r ) to zero in Eq (51) and

then Eq (172) is satisfied if p(rs) is also equal to zero.

Since p(s ) must be nonzero in the Sturm-Liouville problem

then we must require that u( .) be a constant on the

boundary. This implies that

b(rs)u(rs) = -c(s) = C (173)
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and that

O( s ) 0 (174)

where c(rs) is a constant and there is no variation of

u(r ) on the boundary.
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APPENDIX C

Based on the self-adjoint nature of the second order

transport equation, we can formulate quadratic functionals

whose minimum will provide solutions to general particle

transport problems. Such a functional in the form of Eq

(62) has been proposed. An important aspect of this formu-

lation is the treatment of general boundary conditions

as natural conditions. In order to show that the conditions

whereby Eq (62) has a minimum are also a solution to the

even parity transport problem, we must take the first

variation of this functional. Following the arguments

of Appendices A and B, we begin by writing the first

variation of Eq (62) as

aI(u) = 3F(iniu,V u)dp
X .+ a 

= JC F + IF ]jd (175)



where we have dropped the explicit (OQ) dependence and

u Tg u' Vag fi 'v ; Oa' = n.VO and the integral

is to be carried out over the entire volume in phase space.

We note that the parity operators are positive definite

and self-adjoint, where for a self-adjoint operator L

2

<f,Lh> = <Lf,h> (176)

where f and h are continuous and differentiable functions.

Then, after some algebra and use of the divergence theorem

f <Q.Vf,h> = -jff,-Vh>dr^ + C -^fhd (177)

we get

- 2dr + 0 Vln (Qeb + aTg )),' >

] A
- 2<(fi'.f)Tu, )> da (178)
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where we have used the fact that

aQeb
au a (179)

and earlier defined T (r,O ) to be the odd parity flux.

That is

vU(rs,f) f U(r sj2) -6 . (180)

We can now rewrite the surface term of Eq (178) as

a -
neb + a g  

2,u  > OdS> A

<(A.^) + a' g + 2Tu ,>n.A<0 d (181)

and if * is nonzero we must require that

-- VKu(V- g ) + Gg g - Qg + Q VKUQu i 0 (182)
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and also that Eq (181) be equal to zero in order for a

minimum to exist. Therefore Eq (62) has a minimum if

Eq (178) is equal is zero. The conditions for this to occur

are that the Euler-Lagrange equation, Eq (182), and the

boundary term, Eq (181), should be zero. Eqs (182) and

(181) represent the even parity transport equation and

boundary conditions of Chapter IV.

We can easily recognize that the Euler-Lagrange

equation is just Eq (35). Furthermore, if 4 is nonzero

on the problem boundaries, then from Eq (181) we must re-

quire that

Qeb + a g(,s Q) - 21 u(£sJ- ) = 0 for 'i>0 (183)

and

g(s,) + 21 U(js,') = 0 for Q-i<0 (184)
Qeb + 5 r

With Qeb defined (See Chapter V) as

Qeb r ag(rs' ) - bqs (rs1 ) (185)
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where

I-a(iAr)
a = -) +1 (186)

S

and O_<a(rs)<l. We can now recognize that the natural

boundary conditions are

1. Vacuum boundary

a(r s ) = 0 ; b = 0

2. Incident source

a(£s) = 0 ; b = 2

3. Albedo condition

0 < a() < 1 ; b = 0

and

4. Mixed condition

0 < (s ) s 1 ; b 2 ( )

However, the Dirichlet condition with
2

0 a(r s ) 1 b 0 or - oL(6s

182



and the angular flux completely or partially specified on

the boundaries is an essential condition. This condition

must be imposed on the trial space in order to insure that

it will be included in a solution to the variational problem,

Eq (62). There is some flexibility in specifying the

Dirichlet condition. Nonetheless, they must be consistent

and reflect the physics of the problem.

It is important to note that the vacuum boundary

is really a special case of the Dirichlet boundary condi-

tion. Furthermore, if we use a global basis in angle

(spherical harmonics) we are unable to explicitly enforce

the boundary condition as essential. Nonetheless, we are

able to treat the vacuum boundary as natural with a = b = 0.

This approach which is an approximation to the true vacuum

boundary results in the usual Marshack boundary condition

(Davis, 1966).

We can also treat the usual interface conditions with-

in this variational context (Strang and Fix, 1973). Noting

that the variational problem is dependent upon material

properties (cross-sections), we divide the problem domain

into regions of constant or continuously varying cross-

section data. In each region we require that the variational

problem and the second order transport equations be satis-

fied. We then treat discontinuities of material properties

as a set of coupled boundary value problems.
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Except for those problems with interface singulari-

ties (Strang and Fix, 1973) we can proceed by imposing an

albedo boundary condition at the interface. At interfaces

we set a(rs) 1 1 and b = 0 in the functional of Eq (62).
s

We then write a separate functional for each region and

require that the first variation vanishes on the entire

problem domain. The boundary conditions are treated in

the usual manner as essential or natural conditions. How-

ever, upon taking the sum of the individual functionals we

require that the interface terms vanish.

The interface terms can be written as

+ ( "n_)Tu r P-9)_ ,>di (187)

where + means in the limit approaching the interface in a

given positive Q direction from the left and - means in the

opposite - direction from the right. Then with n being

the outward normal to the interface we have

n_ -n+ (188)

and

(2ni) - (-n ) (189)
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We can now rewrite Eq (187) as

<(n+) ( iq) + Yu(ri,-n) ,O>ds (190)

and require that for Eq (189) to hold for arbitrary 4.

.+(r I  ) =_u(r,
+|'

U(r I , )  (191)

where we have used the odd-even properties of the odd parity

flux.

Furthermore, upon recognizing that 4 represents the

even parity flux g which is an even function on the unit

sphere and Si-n is always odd, we can write Eq (190) as

<( n - ' r n) ,O>ds = 0 (192)

where
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V(r.) = Tu(i,) + Tg( 11 S) (193)

Then we get

T = (194) -

Eq (192) requires that the angular flux be continuous

at the interface. This is a continuity requirement in

r for a given direction Q which also implies continuity of

the particle current across the interface. The usual

interface condition is therefore satisfied as a natural

condition of the variational problem.
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APPENDIX D

THE DIFFUSION LIMIT

In Chapter VII we presented a finite element pro-

jection of splines and harmonic functions in a solution

strategy for solving the second order transport equation.

In this Galerkin solution of Eqs (35) and (36) it can be

shown that in the limit of diffusion theory our equations

reduce to, and are consistent with the diffusion approxi-

mation. The even parity Galerkin equation is just the

diffusion equation whereas the odd parity equation reduces

to Fick's law.

In the P1 (diffusion) approximation we assume that

all sources are isotropic (Duderstadt and Hamilton, 1976)

and that the flux and scattering are linearly anisotropic.

Then the even parity flux and the net current can be

written as

and

J(r) jT (2-n^)'U(rjQ)ds1 (196)



where, in rectangular coordinates (See Figure 3)

x a y + az
]

1 [Qm + Qsm] (197)

£=lm0O

The parity sources are

Qg(, S(i)

Q )= (198)

and

uQ U(r, = 0 (199)

Then by Eqs (39) and (42) and with the usual cross-

section expansion (Wills, 1981) we can carry out the alge-

bra to write the Galerkin projection in angle of Eq (35)

as
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-4T (^ S(r)(Q)Q,~ (200)

where

ax a XtR 5x ay aY tR ay

20)-a i a '<0I ( c )2 Ic \2

+ -( Qo - r (201)

OtR at 'l1 (202)

Cr =t -Co (203)

and a, and co are the Legendre cross-section expansion

coefficients.
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Upon evaluation of the integrals in Eq (200) we

get

-V-DVe(r) + Oro(r) = S(r) (204)

where

D = -
_- diffusion coefficient (205)3 tR

We can also rewrite the odd parity equation, Eq(36) as

(Wills, 1981)

U(r)TU(rA) = QU(j,) . (206)

and carry out the Galerkin projection on this equation to

get

J(i^) - -DVO(i) (207)
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Eq (204) is the diffusion equation and Eq (207) is Fick's

law. Therefore, for a linearly anisotropic approximation

in angle the Galerkin projection of the second order

transport equation is consistent with P1 or diffusion

theory.
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APPENDIX E

SURFACE HARMONIC TENSOR

The use of surface harmonic tensors in solving

particle transport problems is not a new concept. The

Pn method uses spherical harmonic functions to expand

and evaluate moments of the first order transport equation.

The scattering cross-sections, gradient and surface normal

operators are usually expanded in spherical harmonics.

Therefore, in a numerical solution of transport problems,

the properties and relationships of harmonic functions

play a vital role.

In our second order formulation of Chapter VII we

have found it necessary to develop and use these properties.

Some of the most useful ones will now be presented. The

harmonic functions are as defined earlier and in Chapter

VII. We begin by writing the usual scattering cross-

section and surface normal expansions as

L 1

2sE,. )= 2IQ() [ m(i')Qcm(f) + Q~m(n')Qsm ( )1

L=0 m*=C-
(208)

and in rectangular geometry



A A A A An ~.ex + e y + e]

= Z ~mIC + Q] (209)-- m[ C m S9m
Z=1 m=0O

where the . in m* means to divide by two when m = 0 and

we have used the addition theorem (Bell and Glasstone, 1970)

to derive Eq (208). Using Eq (208) we can then rewrite the

second order operators in terms of Qtm'S (Wills, 1981).

We can also write the streaming operators in terms

of surface harmonic tensors. An example of this is in

rectangular coordinates where we can write

fVf(r^,) - y + a . f( ,) (210)[Cl 1 y C10 -

Then in the Galerkin weak form we can use the following

relationships to expand and simplify the equations

____Q )  CI CF, C ( m c-- 1 I
= C (-m + +) (- 4 mm22T+1C 1+i,m l4 m - 'm

(211)
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1)0(n s + + +M) SR- QiS1,n

(212)

QC()Q(c rn+1 L~ m1 cM-T i. im

(- M+1)(x.+m +2) c kmM+5q
mr- Qt+1,rn-li c -

c 941(213)

Ql()k() T2~ ~ I +~~ Cim+iR~,+

(im.Il)Ii-n+2 QS~l - ciQ1,rni

(214)
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8 c d Cii C2M r 1 c 1 c
Q (n Q L ij4T X+l,rn+l - n-T 9.-1,rn+1

(t-rn+l) (i.,2) - (LZ+r-l) (Z+M)Qc

9C+ (215)

To compute the scalar flux and total current we can

use the following orthogonal properties, Let

g( ~ ~() [md) + Q~()j(216)

then

f g(Q)dp Vi (217)

g(PI)= 1.0 for m= 0 (218)

-~for m 0 (219)
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APPENDIX F

THE AIR-OVER-GROUND

PROBLEM EQUATIONS

In order to obtain a numerical solution to the air-

over-ground problem it is necessary to expand the Galerkin

weak form of the even parity transport equation. The

trial and weight functions of Chapter VII will be used in

this expansion. Because this is a very tedious and lengthy

derivation, the more obvious algebraic steps will be

omitted. The starting point of this formulation is Eq

(126) of Chapter VIII.

IZ IR L £

X12 Xijtmf '<-V(B Qkn)Ku'-(B~m)
iz_.lfr=O t_=1 rjO [JR~ Ik '~ iZ'

+ <B.Qn ,Gg(B.Q )> dr +~ I -niB QBiQtmdndsjkkm jkni~

f4 < V(BQkn),KuSu> + <B.jk'gldr (220)
[R



ic

where BiBi, and Q are defined by Eqs (127), (128) and

(96), and Z and k are restricted to be even integers.

The surface normal terms are defined by Eqs (130)

and (131) and we have rewritten the source terms Qg and QU

as Sg and Su. These are given by Eqs (156) and (157).

The second order operators Ku and Kg can also be written

as

K U f ( f ) = o ' [ f(1) - LT u o
-'2 ,u Tm( 0' )  *..

2,O=0 a ot  a k£ 477

f(Qfi)dn (221)

and

Ggf(^) = otf(n) -2 Fg -Og Ttm ( ')f( ^')d^' (222)

i=om*=0

and

C ,,C 5,, 5

T m(Q') = Qzm(p ,X )Q m(JX) + Qzm(l ,X )Qtm(i,x) (223)
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and Qjm is defined by Eq (97). Furthermore, we can rewrite

the directional derivative, Eq (126) as

c -(p) i _ + ' - (224)
.v = - ax

where

t = ct( ,X) =% - 2 cos X (225)

and

= 8(ix) = 1Tl _ sin X (226)

Using these relationships and noting that Ttm , aim'

Bi, Bi, etc. are all real functions we can expand Eq (220)

to get

IZ IR L 1 2 C a v2 Ckd A2

X E a (Aij.m f PBi 1 v)-2  Qc cdl (227)
iz-1ir-lZ-=0 m90
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t~ -P (B 0) p dvf '(QmQkndo2 (228)

+ f 1-, (B)-B dv~ocQ R (229)

B.

ao (p )a dfcx:QC )Qdo (233)

t i tD ~kn m

+f f-L.(B(B )' (f~ c Cd~ (234)

R t dv72BQd (235)..

-f -( )-Iv )d (238)

aIiP iX(iR 9



fo 1 4rB (pBi) d ak)QcTdil (239) -

£n Ph Q T c dQ (240)
+f!rB--Bjdvf2(Q ) irs

B.
fcu~j m (BLris dQ'ldP- (241)

.trpaz j f X (0 kn) k~m rs
R wCI

+ fOtr -- (B )2-(Bj )ldvfiQQ Trd}d (24

tra IBBdI Qz QC d Qc Pcj s 'd (245)
~RtJ47rnkn xT

Ofc )dv l(Pc ) d)T dQ Sdd (248)

tr afz~ T~)d f An (249)
R f$(Qn)sd

+ fu--(B )dLB~vf Q Q T d' d (250)
R T

+ fat B d Q c c d 2005



5

+ 22 : atr TP (pBJ)dvaQIfs T rsd dn (251)

a- f 4 dvf c I~)f SuT dhd l(252)
R P ~ 47t

B dvIjOc JfuT dn d9(23
ftr L(z . nJrsd 23

+ fI dvf Oc.Sgd (254)
,..R

where

au

Y -1 r (255)
tr t at -Yu

t r

and

f =dQ iddx (256)

Eqs (227) to (244) is an expansion of the first term of Eq

(220). Eqs (245) and (246) are expansions of the second

term. Eq (247) is an expansion of the third term. Eqs

(248) to (254) is an expansion of the right hand side of

Eq (220). a a and Or are functions of z and they must
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be included in the spatial or dv integrals. In cylindrical

geometry with azimuthal symmetry

dv = 2nrdrdz (257)

and ds means an integration over the surface of the problem

cylinder, Figure 7.

For the air-over-ground problem with an exponentially

varying air density

at(z) = at(o)eZ/sh (258)

=Y a (o)e z/sh (259)
tr tr

ag  = 0(o)e-z/sh (260)r r

where at(o), 09r(o) are cross-sections of air at sea-level.

z = the height above sea-level

sh = atmospheric scale height 7km
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In Eqs (227) to (254) the integrals are separated in

the space and angle variables. These are double integrals

in space and angle. However, they can be separated into

.single integrals of the v, X, p and z variables.

203



APPENDIX G

INTEGRALS FOR THE
AIR-OVER- GROUND PROBLEM

An expansion of the air-over-ground problem equation,

Eq (126), has produced twenty-eight integral terms

(Appendix F). By a further expansion and separation of the

integration variables thirty-seven distinct single integrals

are formed. These integrals, to include the source inte-

grals, were numerically integrated for each combination

of the expansion subscripts. They were then stored in

a matrix and selected products were used to assemble

the problem matrices and source vectors.

The thirty-seven angle and spatial integrals are

The Angle Integrals

]ocos(x)cos (m X)cos(nX)dx (261)

cos(x)-sin()cos(mx) cos(nX)dX (262)

f. CoS(X)CoS (MX)cos (nX)dX (263)



211 .sin(x)cos(MX)). 2-(sin(X)cos(flx)}dx (264)

fcos (mx).-2 ~jin(X)cos(nX) dX (265)]

fcos(mX)cos(nX)dX (266)

ffcos (X)cos (nX)sin(mX)dX (267)2
0

0 os (nX) s in (mX)dX (268)

o -'I{cos(nx)sin(x) sin(mX)dX(29

f7co(X)cos(X)cos(lX)dX (270)
0

f X2Cos (X) cos (mX) cos (nX) dX (271)

271

f os(X)cosmXcosnXdX (272)

flIPF i()Pkn (I)dJ 
(273)

0

Pf P.m()Pkn (pI) di (274)

,+i~2p nPPm (p~)dli (275)
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-1

V 2 UIi*P zm(.1)Pn( )d (277)

f l P( v P ()k~i) (278)

f 2 O WPm~n dv (279)

1

JPZM(J)Pk (I)dp (280)

P,(ji) and P kn (i) are the associated Legendre polynomials.

The Space Integrals

fR*-* P pBjr(p))~ -92-{(ir (p)dp(21

R Bir(p)
pBdp (282)

foi Bjr(P)Bir(p)dp (283)

j pBjr(p))}Bi,(p). dp (284)

J0 Bjr(p) Bir(p)dp (285)
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JB (p)-B (P)pdp (286)

~z/shB(z(27

0j zz) B (z)Sdz (290) :

Hf /h B )B~ (z) -(~z (291)

S(Bjz(z))}H- j(Pz)edP (2892)

B (z-B (~dz(293)

J*R BPH (p))jpdp (294)
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Bjz(Z)Hi(z) dz (295)

H -iBj z (zi (z) ez/ shdz (296)

4Bjz(Z) -H(z)dz (297)

where

BW- = cubic polynomial z-spline

B(P) = cubic polynomial P-spline

sh = atmospheric scale height

R = outer radius of the problem cylinder

H = problem cylinder height

H(z) and H(p) are the source interpolating functions (linear

Lagrange polynomials).
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APPENDIX H

AN EXPANSION OF THE FIRST SCATTER
SOURCE IN LEGENDRE POLYNOMIALS

In Chapter VIII the first scatter source was defined

as

S(p,zs) = aS(z,.'n)d(p,z, ) (298)

where

d(r,z,n') = direct fluence of Chapter VIII, Eq (146)

aos (z ,n. =')  scattering cross-section

The usual legendre polynomial cross-section expansion

will now be carried out. Also the even and odd parity

first scatter source expressions of Chapter VIII will be

derived. Expanding as in legendre polynomials and using

the addition theorem

as (z,n' ' ) 2 t(z)Pm(V1')P m(U)cos(m(x-X')) (299)

1=0 m*-0



where m* means that all terms with an m = 0 subscript must

be divided by two, and

S(Z)= a(O)e- z /sh (300)

From Figure 8 and Figure 4 it is apparent that

U= d and x' = 0, therefore

S(p,z,n) - 2 d(p,z,n ')e-z/sh *

L
Z s (0)C2 mP m(ud)P m(u)cos(mX) (301)

and using the relationships of Eqs (108) and (l10b) and a

little algebra, the even and odd parity first scatter

sources can be written as

SU(ptz, ) = k[S(Pz ) - S(pz,)] = Od(poz,')e-z/sh

L (0) m 2E :(0 ) z ,CIm2 l(.l) ]pzm(P)pzm (ud)cos(mX)__

Z-0 m'
(302)
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and

sgP, =n k)(p.,,) + S(Plz,-n)1 *d(Pfzfn')e- */

* 0 c~[+-1)]PimJPtmiudcosmX)

t-0 m -0
(303)
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