

# NAVAL POSTGRADUATE SCHOOL Monterey, California





# **THESIS**

AN ANALYSIS OF THREE APPROACHES TO THE HELICOPTER PRELIMINARY DESIGN PROBLEM

by

Allen C. Hansen

March 1984

Thesis Advisor:

D. M. Layton

UNC EILE COPY Approved for public release; distribution unlimited.

> 84 08 09 054

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enternd)

| REPORT DOCUMENTATION PAGE                                                    | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                       |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| T. REPORT HUHBER  AP - AT -                    | 3. RECIPIENT CATALOG HUMBUR                                                                    |
| An Analysis of Three Approaches to the Helicopter Preliminary Design Problem | S. TYPE OF REPORT & PERIOD COVERED  Master's Thesis  March 1984  PERFORMING ORG. REPORT NUMBER |
| 7. AUTHOR(4)                                                                 | 8. CONTRACT OR GRANT NUMBER(s)                                                                 |
| Allen C. Hansen                                                              |                                                                                                |
| Naval Postgraduate School Monterey, California 93943                         | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                      | 12. REPORT DATE                                                                                |
| Naval Postgraduate School<br>Monterey, California 93943                      | March 1984 13. NUMBER OF PAGES 116                                                             |
| 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)   | 15. SECURITY CLASS. (of this report)                                                           |
|                                                                              | Unclassified                                                                                   |
|                                                                              | 156. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                                                  |
| 18. METRIPUTION STATEMENT (of this Benerit)                                  |                                                                                                |

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Sensitivity Preliminary Helicopter Design Carpet Plots HESCOMP

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three methodologies from which to approach the problem of preliminary helicopter design are explored in this paper. first is a sensitivity analysis of the basic helicopter performance equations. The purpose here is to ascertain where reasonable simplifications can be made that do not seriously degrade the accuracy of the results. The second is a graphical parametric design method, known as Carpet Plots. In this method

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE 3/N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dela Entered)

HITY CLASSIFICATION OF THIS PAGE(When Data Entered)

a graphical solution is developed to meet the design criteria of the helicopter. In the third, an overview of Boeing Vertol's Helicopter Sizing and Performance Computer Program is given. The computer routines which enable a person to access HESCOMP on the Naval Postgraduate School main frame IBM system are also provided.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accession For                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTIS GRA&I  DTIC TAB  Unennounced  Justification |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ву                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distribution/                                    |
| 6516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Availability Codes                               |
| The state of the s | Avail end/or<br>Dist Special                     |
| the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-I                                              |

Approved for public release; distribution unlimited.

An Analysis of Three Approaches to the Helicopter Preliminary Design Problem

by

Allen C. Hansen Lieutenant, United States Navy B.A., University of Pennsylvania, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1984

| Author:      | all C. Han                          |
|--------------|-------------------------------------|
| Approved by: | Coned may to                        |
| ••           | Thesis Advisor                      |
|              | Chairman, Department of Aeronautics |
|              | Chairman, Department of Aeronautics |
|              | AM DHU                              |
|              | Dean of Science and Engineering     |

#### **ABSTRACT**

Three methodologies from which to approach the problem of preliminary helicopter design are explored in this paper. The first is a sensitivity analysis of the basic helicopter performance equations. The purpose here is to ascertain where reasonable simplifications can be made that do not seriously degrade the accuracy of the results. The second is a graphical parametric design method, known as Carpet Plots. In this method a graphical solution is developed to meet the design criteria of the helicopter. In the third, an overview of Boeing Vertol's Helicopter Sizing and Performance Computer Program is given. The computer routines which enable a person to access HESCOMP on the Naval Postgraduate School main frame IBM system are also provided.

## TABLE OF CONTENTS

| I.   | INT | reduction                                      | 10 |
|------|-----|------------------------------------------------|----|
|      | Α.  | GENERAL                                        | 10 |
|      | В.  | OBJECTIVE                                      | 11 |
| II.  |     | NSITIVITY ANALYSES OF BASIC LICOPTER EQUATIONS | 13 |
|      | Α.  | DESCRIPTION OF PROBLEM                         | 13 |
|      | В.  | SOLIDITY                                       | 13 |
|      | С.  | DISK LOADING                                   | 14 |
|      | D.  | POWER LOADING                                  | 14 |
|      | Ε.  | COEFFICIENT OF THRUST AND POWER                | 14 |
|      | F.  | HOVER POWER                                    | 16 |
|      | G.  | HELICOPTER SIZING                              | 18 |
|      | н.  | FIGURE OF MERIT                                | 19 |
|      | I.  | TAIL ROTOR SIZING                              | 23 |
|      | J.  | FORWARD FLIGHT POWER CONSIDERATIONS            | 23 |
|      | к.  | DENSITY EFFECTS ON TOTAL POWER                 | 30 |
| III. | CAR | PET PLOT DESIGN STUDY                          | 32 |
|      | Α.  | DESCRIPTION OF PROBLEM                         | 32 |
|      | В.  | ASSUMPTIONS                                    | 33 |
|      | C.  | METHODOLOGY                                    | 34 |
|      | D.  | HOVER EQUATIONS                                | 35 |
|      | E.  | WEIGHT EQUATIONS                               | 39 |
|      | F.  | GRAPHICAL ANALYSIS                             | 45 |

|   | IV.       | HESC      | OMP  | •    | •  | • •          | •    | •   | ٠   | ٠   | •   | •  | •  | •  | •   | ٠   | •  | • | ٠ | • | 54  |
|---|-----------|-----------|------|------|----|--------------|------|-----|-----|-----|-----|----|----|----|-----|-----|----|---|---|---|-----|
|   |           | Α.        | DES  | CRI  | PT | ION          | OF   | 7   | PRO | GF  | RAM | ĺ  | •  | •  | •   | •   | •  | • | • | • | 54  |
|   |           | В.        |      |      |    | MOD<br>TAT   |      |     | TTI |     |     |    |    | •  |     | •   | •  | • | • |   | 56  |
|   |           | С.        | PRO  | GRA  | M  | FLO          | N    | •   | •   | •   | •   | •  | •  | •  | •   | •   | •  | • | • | • | 57  |
|   |           | D.        | PRO  | GRA  | M  | INP          | UT   | •   | •   |     | •   | •  | •  | •  | •   | •   | •  | • | • | • | 59  |
|   |           | E.        | PRO  | GRA  | M  | OUT          | ΡIJΊ | •   | •   | •   | •   | •  | •  | •  | •   | ٠   | •  | • |   | • | 59  |
| ١ | v.        | CONC      | LUS  | I ON | S  | AND          | RE   | CC  | OMM | EN  | IDA | ΤI | ON | S  | •   | •   | •  | • | ٠ | • | 60  |
| İ | APPENDIX  | <b>A:</b> | NO   | MEN  | CL | AT UI        | RE   | •   | •   | •   | •   | •  | •  | •  | •   | •   | •  | • | • | • | 62  |
| 1 | APPENDIX  | В:        |      |      |    | PLOT         |      |     |     |     |     |    |    |    |     |     | •  | • | • |   | 64  |
| ł | APPENDIX  | C:        |      |      | _  | PLOT<br>ND I |      |     |     | -   |     |    | _  |    | • • | •   | •  | • | • | • | 73  |
| A | APPENDI X | D:        | PR   | OGR  | AM | s To         | ) A  | CC  | ES  | S   | HE  | SC | OM | P  |     | •   | •  | • | • | • | 87  |
| A | APPENDIX  | E:        | HES  | sco  | MP | IN           | PUI  | C A | AND | ) ( | UT  | PU | T  | EX | (AM | 1PI | ES | 3 | • |   | 92  |
| 1 | LIST OF   | REFE      | REN  | CES  |    |              | •    | •   | •   |     | •   | •  | •  |    | •   | •   |    |   | • | • | 115 |
| 1 | INTTTAL.  | DIST      | RTRI | TTI  | ON | LTS          | T:   |     | _   |     |     |    | _  | _  |     | _   | _  | _ |   |   | 116 |

### LIST OF TABLES

|     |                  |               |                | LIS            | T OF | TA  | BLES | S |   |   |   |     |       |
|-----|------------------|---------------|----------------|----------------|------|-----|------|---|---|---|---|-----|-------|
| 2.1 | HELICO           | PTER          | WEIGH          | T COM          | PARI | SON | •    |   | • | • | • | •   | <br>• |
| 2.2 | TAIL R           | ROTOR         | SIZIN          | G.             |      |     |      |   | • | • | • | •   |       |
| 4.1 | HELICO<br>STUDIE | PTER<br>D USI | CONFI<br>NG HE | GURAT<br>SCOMP |      | WH. |      |   |   |   |   | •   |       |
| 4.2 | PARTIT           | IONEI         | DATA           | SET            | •    |     |      |   | • |   |   | • • |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   | • |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |
|     |                  |               |                |                | 7    |     |      |   |   |   |   |     |       |
|     |                  |               |                |                | 1    |     |      |   |   |   |   |     |       |
|     |                  |               |                |                |      |     |      |   |   |   |   |     |       |

|          |     | LIST OF FIGURES                                             |
|----------|-----|-------------------------------------------------------------|
| •        | 2.1 | FM VERSUS BLADE LOADING CT/σ 21                             |
| <b>h</b> | 2.2 | POWER REQUIRED VERSUS FORWARD VELOCITY 25                   |
|          | 3.1 | WEIGHT EQUATION PLOT: CLR = 0.5 40                          |
|          | 3.2 | HELICOPTER CARPET PLOTS: C <sub>LR</sub> = 0.5 46           |
|          | 3.3 | HELICOPTER CARPET PLOTS FAMILY OF SOLUTIONS                 |
|          | 3.4 | HELICOPTER CARPET PLOTS ROTOR DIAMETER AND WEIGHT LIMITS 49 |
|          | 3.5 | ASPECT RATIO BOUNDARY PLOT                                  |
|          | 3.6 | HELICOPTER CARPET PLOTS FINAL SOLUTION                      |
| σ.       | 4.1 | HESCOMP PROGRAM FLOW                                        |
|          |     |                                                             |
|          |     |                                                             |

### **ACKNOWLEDGMENT**

I would like to acknowledge the invaluable assistance of Professor Donald M. Layton in this endeavor. His encouragement and support greatly contributed to making this both an interesting and worthwhile experience.

PRODUCESSE CERCECO DIFFEREN SPESSE STATE DIRECT SESSION SESSION SESSION SESSION SESSION SESSION SESSION ASSESS

#### I. INTRODUCTION

#### A. GENERAL

The helicopter design process, the subject of numerous articles and studies is an evolving discipline that borders on being an art. A successful design must balance the user's needs and desires against practical capabilities.

With the introduction of composite materials and new technologies, principally in rotor and engine performance, significant advances have been made in helicopter capabilities. In some instances, the performances of hybrid helicopter designs rivals that of a similarly sized conventional aircraft. For example, the YVX, a joint Boeing-Bell venture, will have the hover and low speed capabilities of a helicopter while being able to cruise at 300 knots.

Viable commercial and military helicopter designs are only thirty years old. The first major use of helicopters occurred during the Korean conflict. To put this in perspective, the first large scale use of conventional type aircraft was in World War I.

Helicopter design can proceed on a number of different levels, ranging from comprehensive computer design programs to preliminary analysis using simplifications of the basic performance equations. Each has its merit and place.

Computer-aided design provides a great deal of data.

Generally, these programs integrate aircraft configuration sizing, performance and weight calculations in an iterative process. An example of a computer design program for helicopters is the Helicopter Sizing and Performance Computer Program [HESCOMP], originally developed by Boeing-Vertol for NASA. This program is currently used as a wide number of institutions conducting studies in helicopter design.

On the opposite end of the spectrum would be sensitivity design studies using the performance equations. Surprisingly accurate simplications of these equations can be made. This provides the designer with an excellent method for doing first cut preliminary helicopter sizing at a low cost.

#### B. OBJECTIVE

ACCESSED ASSESSED TO SELECT TO SELECT TO SELECT TO SELECT TO SECURITY TO SELECT TO SEL

This report is an investigation of several of the methods employed in the preliminary design of a helicopter. Conceptually, the report can be divided into three parts. In the first section, a sensitivity analysis of the basic performance equations is performed. The purpose here is to ascertain where reasonable simplications can be made that do not seriously degrade the accuracy of the result.

In the second section a graphical method of doing parametric design studies, known as Carpet Plots, is developed. This method allows the user to formulate a graphical solution matrix to meet the design criteria specified for the helicopter. Carpet Plots are

particularly instructive since they give visual insight into the interplay of the various design parameters.

In the last section, an overview of HESCOMP is given.

Programs are developed which enable a person to access

HESCOMP on the Naval Postgraduate School Main Frame IBM system.

#### II. SENSITIVITY ANALYSES OF BASIC HELICOPTER EQUATIONS

#### A. DESCRIPTION OF PROBLEM

In preliminary helicopter design, there are a number of instances where a quick first cut analysis would be extremely helpful. This is especially true in determining the preliminary size of the helicopter required to meet the specifications.

Historically, there are a number of variables in the performance equations of helicopters which may be treated as constants. This may allow for significant simplifications and aid in the preliminary design process.

In this section, a sensitivity analysis of the performance equations is done. In a sensitivity analysis, each parameter [or variable] is varied in order to determine its effect on the equation. Variables which are shown to have little effect may be treated as constants and the equation simplified accordingly.

#### B. SOLIDITY

Solidity,  $\sigma$ , is the fraction of the disk area that is composed of blades. It is a function of b, the number of blades, of a constant cord, c, at a radius, R:

$$\sigma = \frac{bc}{\pi R} \tag{2.1}$$

#### C. DISK LOADING:

Disk loading is defined as the ratio of the weight to the total area of the rotor disk.

DL = 
$$\frac{\text{WEIGHT}}{\text{AREA}}$$

$$= \frac{\text{W}}{\text{A}} = \frac{\text{W}}{\pi R^2} [1b/\text{ft}^2]$$
(2.2)

#### D. POWER LOADING

Power loading is the ratio of weight to input power.

$$PL = \frac{W}{P_{in}} [1b/hp] \qquad (2.3)$$

In a hover, thrust equals weight; this allows us to rewrite the power loading for the hover condition as

$$PL = \frac{T}{P_{in}} = \frac{ROTOR\ THRUST}{ROTOR\ HORSEPOWER} [1b/hp]$$
 (2.4)

#### E. COEFFICIENT OF THRUST AND POWER

The coefficient of thrust,  $C_{\mathrm{T}}$ , is a non-dimensional coefficient which facilitates computations and comparisons:

$$C_{T} = \frac{T}{A\rho V_{T}^{2}} = \frac{T}{\pi R^{2} \rho (\Omega R)^{2}}$$
 (2.5)

Similarly, a coefficient of power,  $C_{\mathbf{p}}$ , has been established as:

$$C_p = \frac{P}{A\rho V_T^3} = \frac{P}{\pi R^2 \rho (\Omega R)^3}$$
 (2.6)

No significant simplifications can be made to either of these coefficients. However, it should be observed that the coefficient of thrust is inversely proportional to the square of the rotor tip velocity, while the coefficient of power is inversely proportional to the cube.

Assuming all other factors being equal, increasing the rotor tip velocity from 600 fps to 700 fps [an increase of 16.7 percent] will have the following result on these coefficients.

$$C_{T} = \frac{T}{A\rho V_{T}^{2}}$$

$$= \frac{T}{A\rho (1.167)^{2}}$$

$$= \frac{T}{A\rho (1.361)}$$
(2.5)

The coefficient of thrust is reduced by 26.9 percent. Similarly, for the coefficient of power:

$$C_{p} = \frac{P}{A\rho V_{T}^{3}}$$

$$= \frac{P}{A\rho (1.167)^{3}}$$

$$= \frac{P}{A\rho (1.589)}$$
(2.6)

The coefficient of power is reduced by 37.1 percent.

#### F. HOVER POWER

The total power in a hover is made up of two terms, profile power,  $P_{o}$ , and induced power,  $P_{i}$ .

Utilizing black element theory the profile power required to hover can be expressed as:

$$P_o = \frac{1}{8} \sigma_r \overline{C}_{do} \rho A(\Omega R)^3 \qquad (2.7)$$

The induced power predicted by momentum theory is:

$$P_{i} = V_{in} T$$

$$= \frac{T^{3/2}}{\sqrt{2\pi \rho R^{2}}}$$
(2.8)

The total power required to hover is:

$$P_{T} = P_{i} + P_{o} \tag{2.9}$$

$$P_{T} = \frac{T^{3/2}}{\sqrt{2\pi \rho R^{2}}} + \frac{1}{8} \sigma_{T} C_{do} \rho A(\Omega R)^{3}$$
 (2.10)

Donald M. Layton in <u>Helicopter Performance</u>, [Ref. 1], found that for the optimum hover power, the induced power is equal to twice the profile power. The analysis was performed in the following manner.

By assuming constant weight, density, solidity, and an average profile drag coefficient, as well as a fixed rotational velocity, equation (2.10) reduces to

$$P = \frac{C_1}{R} + C_2 R^2 \tag{2.11}$$

where  $C_1$  and  $C_2$  are constants.

As equation (2.12) shows, profile power increases as the square of the blade radius while the induced power decreases with increasing blade radius.

The optimum hover power with respect to rotor radius can be determined by taking the differential and setting it equal to zero.

$$\frac{dP}{dR} = 0 = -\frac{C_1}{R_2} + 2 C_2 R \qquad (2.12A)$$

or  $\frac{C_1}{R} = 2 C_2 R^2$  (2.12B)

which implies  $P_i = 2 P_o$  (2.12C)

#### G. HELICOPTER SIZING

A simplified relationship between the total power required, gross weight and rotor radius can be developed in the following manner.

The total power required to hover equation for the main rotor was developed in the preceding section and is repeated here for clarity.

$$P_{T} = P_{i} + P_{o} \tag{2.9}$$

$$P_{T} = \frac{T^{3/2}}{\sqrt{2\pi\rho}} \cdot \frac{1}{R} + \frac{1}{8} \sigma_{r} \overline{C}_{do} \rho \pi V_{tip}^{3} R^{2}$$
 (2.10)

In a hover, thrust equals weight. Solving equation (2.11) for weight one obtains:

$$W^{3/2} = [P_T - \frac{1}{8} \sigma C_{do} \rho \pi V_T^3 R^2] \sqrt{\rho A}$$
 (2.13)

This equation may be further simplified if it is assumed that the density, average profile drag coefficient and tip velocity are constants; these are reasonable assumptions. Historically, the average profile drag coefficient of a helicopter has been approximately 0.01. The operating environment of today's helicopters, especially military, is below 5,000 feet agl. This allows for the use of the standard sea level value for density with little error. Primarily, due to tip mach effects, the upper limit on the rotor tip velocity is in the range of 700 fps.

The resulting equation with these assumptions incorporated into a constant, K, is:

$$W = [47.527 P_T R - K_1 bc]^{2/3}$$
 (2.13)

Equation (2.13) can be further reduced when the order of magnitude of the two terms is considered.

$$47.527 P_T R >> K_1 bc$$

Thus,

$$W \approx [47.527 P_T R]^{2/3}$$
 (2.14)

To determine how accurate this simplification is, the equation is used to approximate the total weight of a number of helicopters for which the parameters are available. As Table 2.1 indicates, the weight approximation formula yields values within six percent of the actual total weight of these helicopters.

#### H. FIGURE OF MERIT

A figure of merit, FM, has been defined for the helicopter as the ratio of the ideal rotor induced power to the actual power required to hover, with non-uniform induced velocity, tip losses and profile drag power.

TABLE 2.1
HELICOPTER WEIGHT COMPARISON

| HELICOPTER | TOTAL GROSS<br>WEIGHT | CALCULATED GROSS WEIGHT | PERCENT OF<br>ACTUAL |
|------------|-----------------------|-------------------------|----------------------|
|            | (1000 lbs)            | (1000 lbs)              | GROSS WEIGHT         |
| AH-64      | 14.66                 | 14.69                   | 101%                 |
| UH-1N      | 14.20                 | 13.74                   | 97%                  |
| н- зн      | 21.00                 | 20.63                   | 98%                  |
| S 76       | 10.00                 | 9.90                    | 99%                  |
| UH-6DA     | 20.25                 | 19.33                   | 95%                  |
| H-54B      | 42.00                 | 42.00                   | 100%                 |
| H-53D      | 42.00                 | 41.00                   | 98%                  |
| H-53E      | 73.50                 | 69.00                   | 84%                  |

In a hover, the figure of merit may be written as:

$$FM = \frac{1}{\sqrt{2}} \cdot PL \cdot \frac{DL}{\sqrt{\rho}}$$

$$= \frac{CT^{1.5}}{\sqrt{2C_p}}$$
(2.15)

The figure of merit is customarilty plotted against the quantity  $CT/\sigma$ . According to Zalesch [Ref. 2],  $CT/\sigma$ , is proportional to the average blade angle of attack and can be used as a measure of rotor efficiency. The curve in Figure 2.1 is based on data from Reference 2 for a typical tail rotor helicopter.

#### Main Rotor Hover Performance



Figure 2.1. FM Versus Blade Loading  $CT/\sigma$ 

Previous studies have shown that a figure of merit between 0.70 and 0.80 is considered average. [Ref. 3]

If the induced power is between 70 and 80 percent of the total power, the figure of merit will be approximately 0.75.

With the figure of merit limited to values between 0.70 and 0.80, the following simplification can be made, assuming the hover condition of thrust equaling weight and standard sea level conditions:

$$FM = \frac{W^{3/2}}{67.214 P_T R}$$
 (2.16)

For Navy helicopter design, the rotor radius has been limited by flight deck spotting constraints to less than 30 feet; the exception to this is the H-3, R = 31 feet and the H-53, R = 36 to 38 feet [depending on the model]. However, these two helicopters work almost exclusively from large air dedicated ships such as the LPH, LHA and CV.

If the small deck operating assumption is made, equation (2.16) can be further simplified to [assuming R = 28 feet]:

$$P = \frac{W^{3/2}}{1881.98 \text{ FM}} \tag{2.17}$$

An FM of 0.80 will yield a P to W relationship of:

$$P_{T} = \frac{W^{3/2}}{1505.58} \tag{2.18}$$

while an M of 0.70 yields a relationship

$$P = \frac{W^{3/2}}{1317.39} \tag{2.19}$$

If equation (2.17) is solved utilizing the approximate weight relationship developed earlier of

$$W^{3/2} = 47.527 P_T R (2.14)$$

a value for the figure of merit of 0.707 is obtained. This is within the historical range of values.

#### I. TAIL ROTOR SIZING

A historical analysis of typical helicopters [Ref. 3), shows the following empirical relationship for the tail rotor radius

$$R_{\rm T} \simeq 1.3 \left[\frac{\rm GW}{1000}\right]^{1/2} [ft]$$
 (2.20)

when comparing the results of this equation with actual tail rotor radius data, it was found that if a multiplication factor of 1.2 is used vice 1.3 a better approximation is obtained. The results are tabulated in Table 2.2.

#### J. FORWARD FLIGHT POWER CONSIDERATIONS

The total power in forward flight consists of induced, profile and parasite power. If the helicopter is a single rotor vehicle, the tail rotor power should be taken into

TABLE 2.2
TAIL ROTOR SIZING

THE THE WASHEST COLUMN TO STATE TO STAT

| HELICOPTER | ACTUAL TAIL ROTOR RADIUS [FT] | APPROXIMA [2.20] | TION [FT]<br>[2.21] |
|------------|-------------------------------|------------------|---------------------|
| AH - 64    | 4.6                           | 4.98             | 4.59                |
| UH-1N      | 4.3                           | 4.90             | 4.52                |
| SH-3H      | 5.3                           | 5.95             | 5.5                 |
| S-76       | 4.0                           | 4.11             | 3.79                |
| UH-60A     | 5.5                           | 5.85             | 5.4                 |
| CH - 53D   | 8.0                           | 8.42             | 7.78                |
| CH - 53E   | 10.0                          | 11.15            | 10.29               |

account, as well as all mechanical losses [transmission, etc.] for accurate calculations. However, a reasonable approximation can be obtained by considering only the main rotor and increasing this power figure by several percent to account for these losses.

Figure 2.2 is a plot of the induced, profile, parasite and total power curves for typical tail rotor helicopter.



Figure 2.2. Power Required Versus Forward Velocity

The induced power drops off rapidly with increasing forward-velocity, whereas the parasite power increases rapidly.

Parasite power is the power required to overcome the drag forces created by the aircraft's geometry. These drag forces are due to pressure drag and skin friction.

Parasite drag is extremely sensitive to the helicopter's loading. It is generally a minimum for forward flight and increases for sideways flight. Helicopters are generally streamlined for forward flight and the flat plate area is a minimum in this direction. The equation for the parasite power is:

$$P_p = \frac{1}{2} \rho V_f^3 f_f$$
 (2.21)

The parasite power is a function of the cube of the forward velocity. As such, with the advent of high speed helicopters a great deal of consideration has been placed on streamlining the geometric shape in order to reduce this power requirement.

Blade element theory is commonly used to develop the profile power equation for forward flight. An excellent development of this equation is given in Reference 1.

The profile power equation in forward flight is:

$$P_{of} = \frac{1}{8} \sigma C_{do} \rho A V_T^3 [1 + 4.3 \mu^2]$$
 (2.22)

Equation (2.23) is a function primarily of the main rotor geometry. The variable with the most significance is the rotor tip velocity; increasing the tip velocity from 600 to 700 fps results in a 58.8 percent increase in profile power [assuming other factors are constant].

The induced power is a function of the induced velocity. In a hover, the total flow through the rotor system is induced. As the forward velocity increases, the mass flow rate through the rotor disc increases due to the forward translation of the helicopter. This reduces the induced velocity.

The equation for the induced power requirements at all forward velocities is:

$$P = T \cdot V_{it}$$
 (2.23)

where

$$V_{it} = \left\{ -\frac{V_f^2/V^2}{2} + \sqrt{\left[V_f^2/2V^2\right]^2 + 1} \right\}^{1/2} . V$$
 (2.23a)

At high forward velocities, the induced power required can be approximated as:

$$P_{i} = WV_{it} - \frac{W^{2}}{2\rho AV_{f}}$$
 (2.24)

The total power for forward flight is the sum of the induced, profile and parasite powers.

$$P_{T} = P_{i} + P_{o} + P_{p}$$
 (2.25)

$$P_{T} = T.V_{it} + \frac{1}{8} \sigma C_{do} \rho A V_{T}^{3} [1 + 4.3 \mu^{2}]$$

$$+ \frac{1}{2} \rho f_{f} V_{f}^{3}$$
(2.25a)

At high forward velocities, equation (2.23) can be substituted into equation (2.25), resulting in:

$$P_{T} = \frac{W^{2}}{2\rho AV_{f}} + \frac{1}{8} \sigma C_{do} \rho A V_{T}^{3} [1 + 4.3 \frac{V_{f}}{\Omega R}]$$

$$+ \frac{1}{2} \rho f_{f} V_{f}^{3}$$
(2.26)

If one makes the following assumptions:

$$W = const$$
  $C_{do} = const$ 

$$\rho = const$$
  $\sigma = const$ 

$$VT = const$$

Equation (2.26) reduces to

$$P_{T} = \frac{K_{1}}{R^{2}} + K^{2} R^{2} + P_{p}$$
 (2.27)

The derivative of equation (2.27) with respect to radius is:

$$\frac{dP_{T}}{dR} = -\frac{2K_{1}}{R^{3}} + 2K_{2}R \qquad (2.28)$$

Setting this equal to zero, one obtains:

$$-\frac{2K_1}{R^3} + 2 K_2 R = 0 (2.28a)$$

$$\frac{R}{2} * \left[ -\frac{2K_1}{R^3} + 2 K_2 R \right] = 0$$
 (2.28b)

$$\frac{K_1}{R^2} = K_2 R^2 \tag{2.28c}$$

$$P_{i} = P_{o} \qquad (2.28d)$$

This defines point of minimum total power required for VMAX range. This corroborates with the results obtained by Waldo Carmona [Ref. 4].

If the total power required is differentiated with respect to forward velocity and is set equal to zero, it can be seen that

$$P_i = 3 P_0$$
 (2.29)

or

CAMPACIAL CHANNESS CONTRACTOR CONTRACTOR ACCOUNTS CONTRACTOR CONTR

$$\frac{W^2}{2\rho AV_f} = \frac{3\rho f V_f^2}{2}$$
 (2.30)

Solving this equation for velocity results in:

$$V_{f} = \left[ \left( \frac{W}{A} \frac{A}{3f_{f}} \right)^{1/2} \right]^{1/2}$$
 ft/sec (2.31)

According to Carmona [Ref. 4], this corresponds to the best endurance velocity.

#### K. DENSITY EFFECTS ON TOTAL POWER

The effect of density on the total power required in forward flight is as follows:

The general operating altitudes of a helicopter are below 10,000 feet. The corresponding ICAO STANDARD ATMOSPHERE range for density is

$$\rho = 0.0023769 [1b sec^2/ft^4] SSL$$

$$\rho = 0.0017553$$
 [lb sec<sup>2</sup>/ft<sup>4</sup>] at 10,000 feet

 $\rho/\rho$ SSL varies from 1 to .7385.

The effect on the components of  $P_{\mathrm{T}}$  are as follows: Induced Power:

$$1/\rho/\rho SSL => 1 \text{ to } \frac{1}{.7385}$$

This translates to a 35 percent increase in the induced power.

Parasite and Profile Power:

Both parasite and profile powers are directly proportional to the density ratio. Therefore, as you go up in altitude both  $P_{\rm o}$  and  $P_{\rm p}$  are reduced.

#### III. CARPET PLOT DESIGN STUDY

#### A. DESCRIPTION OF PROBLEM

Preliminary helicopter design involves one with a wide range of choices. For any given payload and performance specifications, there a number of helicopter designs that satisfy the requirements. The problem in the preliminary design process is narrowing these possibilities and selecting the design which will provide the best helicopter for the mission.

Obviously, the operating environmental constraints help to define the basic configuration. These constraints are usually specified in the Request for Proposal [RFP], in the case of a military helicopter. For example, typical constraints placed on the design of a Navy helicopter are the size of the ship deck and hangar from which it will be operating, the requirement for a blade fold system, dual engine configuration and IFR capability.

Even with these design constraints, there is still a great deal of leeway. In order to insure that the best helicopter design is selected, an appropriate number of solutions satisfying the specifications should be investigated. Since each solution is generally characterized by a different combination of design parameters, the

selection, according to Greenfield [Ref. 5], can best be made through a parametric study which allows for the optimization of many design parameters.

One method of parametric analysis used is Carpet Plots. This method is based on the simultaneous graphical solution of the weight and hover performance equations. To this solution set is added to the environmental constraints to the helicopters size. This effectively brackets the area of acceptable design solutions.

This method assumes that minimum gross weight is the criterion by which the best [or optimum] design parameters are selected.

#### B. ASSUMPTIONS

- 1. Airfoil used is a derivative of the NACA 0012 with the following mean approximate values from Reference 5.
  - a = slope of airfoil section lift curve,  $dC_t/d\alpha$ , per rad.
  - a = 5.73
  - $\delta$  = blade section drag coefficient
  - $\delta_0 = .009$
  - $\delta_2 = .3$
- 2. a) The tail rotor radius is assumed to be .16 times the main rotor radius [Ref. 5].

- b) The distance between the rotors, or tail rotor moment arm,  $\ell_{TR}$  is 1.19R [Ref. 5]. These ratios reflect the values of maximum rotor diameter and overall length specified as size limitations.
  - 3. B = .97. Historical approximation [Ref. 7].

#### C. METHODOLOGY

In order to properly develop the weight and performance equations required for a carpet plot design study, the payload and performance specifications of the helicopter are needed. This data is used to tailor the equations for the design.

The equations will be developed here for a four-place light helicopter. The equation development procedure is applicable to other size helicopters; the development for a medium helicopter, 20,000 lb weight class, is to be found in Appendix B.

The following specification requirements which are similar to those in Reference 5 will apply to this design:

- 1. The rotor diameter should be less than 35.2 feet.
- 2. The overall length should be less than 41.4 feet.
- 3. The gross weight of the helicopter should not exceed 2,450 lbs.
- 4. The helicopter should be capable of hovering, out of ground effect at 6,000 feet with an ambient air temperature of  $95^{\circ}F$ .

- 5. The useful load at hover shall consist of, as a minimum, 200 lbs for the pilot, 400 lbs of payload and sufficient fuel to give the helicopter up to three hours endurance at sea level conditions.
- 6. Maximum speed of at least 110 knots using Normal Rated Power, at sea level.
- 7. Total Power Required at 6,000 feet and 95°F shall be not more than 206.

#### D. HOVER EQUATIONS

1. The main rotor power required to hover out of ground effect is

Total Main Rotor Power [Hover] = Rotor Profile Power + Rotor Induced Power

$$P_{T} = \frac{1.13W}{550B\sqrt{2\rho_{o}}} \sqrt{\frac{DL}{\rho/\rho_{o}}}$$

$$+ \frac{6WV_{T}}{4400} \frac{\rho/\rho_{o}}{C_{LRo}} \left[\delta_{0} + \delta_{2} \left[\frac{C_{LRo}}{\alpha\rho/\rho_{o}}\right]^{2}\right]$$
(3.1)

At an altitude of 6,000 feet and a temperature of  $95^{\circ}$ ,  $\rho/\rho_{\circ}$  = .749395. Therefore, equation (1) can be simplified to:

$$P_{T6000/95}^{\circ}_{f} = .035479W[DL]^{1/2} + \frac{.91971}{C_{LRo}} [10]^{-5} (1 + 1.80779 C_{LRo}^{2})W V_{T}$$
 (3.2)

The tail rotor thrust required to counterbalance the main rotor torque is:

$$T_{TR} = \frac{550 P_{T}R}{\ell_{TR} V_{T}} = \frac{550 P_{T}}{1.19 V_{T}}$$
 (3.3)

where  $\ell_{TR}$  has been defined as 1.19R. With  $R_{TR}$  defined as .16R, the tail rotor disk loading can be written, using equation (3) as:

$$DL_{TR} = \frac{T_{TR}}{A_{TR}} = \frac{550 P_{T}}{1.19 V_{T}} \frac{1}{\pi (.16R)^{2}}$$

$$= \frac{550 P_{T}}{1.19 (.0256) V_{T}} \frac{DL}{W}$$
(3.4)

Greenfield [Ref. 5], in his development, assumes that the tail rotor tip speed is equal to the main rotor tip speed and that  $\delta_{TR}$  = .02 and  $\beta_{TR}$  = .90. With these assumptions the equation for the tail rotor power required to hover can be written as:

$$P_{T_{TR}_{Hover}} = 2055.7 \left[ \frac{DL}{W \rho/\rho_{o}} \right]^{1/2} \left[ \frac{P_{T_{Hover}}}{V_{T}} \right]^{3/2} + \frac{.012605 P_{T_{Hover}}}{C_{LRTR}}$$

$$(3.5)$$

The equation for the tail rotor mean blade lift coefficient can be written as

$$C_{LRTR} = \frac{P_T}{562.5(\rho/\rho_0)}$$
 (3.6)

if it is assumed that the tail rotor is designed to counterbalance a sea level main rotor torque equivalent to 90 percent of the installed power.

Substituting equation (3.6) into equation (3.5) one obtains the following expression for hover tail rotor power:

$$P_{T_{TR6000/950}} = 2374.7 \left[ \frac{DL}{W} \right]^{1/2} \left[ \frac{P_{T_H}}{V_T} \right]^{3/2} + 5.3134$$
 (3.7)

It is assumed that the gear losses amount to 3 percent and that there is a 1 percent cooling power loss, the total brake horsepower required to hover becomes:

$$P_{T} = \frac{P_{Tm} + P_{TTR}}{96}$$
 (3.8)

Empirical studies have shown that the tail rotor power required to hover can be approximated by

$$P_{TAC} \sim$$
 .8 [total horsepower to hover]

This allows one to write the main rotor power required to hover as:

$$P_{Tm} = (.88)(P_{Tm})$$
 (3.9)

Following Greenfield's [Ref. 5] development further, if equations (3.2) and (3.7) are substituted in equation (3.8), one obtains

$$P_{T_{H6000/95}^{\circ}} = .036757 \text{ W } \sqrt{DL}$$

$$+ \frac{.95803}{C_{LRo}} (10)^{-5} [1 + 1.80779 C_{LRo}^{\circ}] \text{ W } V_{T} (3.10)$$

$$+ 2473.6 \sqrt{\frac{DL}{W}} \left[\frac{P_{Tm}}{V_{T}}\right]^{3/2} + 5.5348$$

Utilizing the approximation for tail rotor power, equation (3.9), equation (3.10) can be solved for W (gross weight) as a function of variables  $V_{T}$  (tip speed), DL (rotor disk loading),  $C_{LRO}$  (rotor mean lift coefficient) and  $P_{T_H}$  (total power to hover).

$$W = \frac{K_1 \left[ 1 - 411.51 \frac{DL^{3/4}}{V_T^{3/2}} \left( 1 + K_2 \frac{V_T}{\sqrt{DL}} \right)^{1/2} \right] - K_3}{V_T + K_4 \sqrt{DL}}$$
(3.11)

where:

$$K_1 = P_{T6000/90} \circ \frac{(10)^5}{K_5}$$
 (3.11a)

$$K_2 = \frac{.00025929}{C_{LRO}} (1 + 1.80779 C_{LRO}^2)$$
 (3.11b)

$$K_3 = \frac{553480}{K_5} \tag{3.11c}$$

$$K_4 = \frac{3695.7}{K_5} \tag{3.11d}$$

$$K_5 = \frac{.95803}{C_{LRo}} (1 + 1.80779 C_{LRo}^2)$$
 (3.11e)

Equation (3.11) has been programmed in Appendix B and solved for tip speeds from 600 to 700 cps and  $C_{\mbox{LR}}$  of .3 to .7.

Equation (3.11) is one of the two primary equations used to obtain the data required for a carpet plot design analysis. Generally, the variables  $V_{\rm T}$ , DL,  $C_{\rm LRo}$  and  $P_{\rm T}$ , that are required for solution have specific ranges of values, depending on the weight class of the helicopter being designed. The graphical results of equation (3.11) for tip speeds of 600 to 700 fps and mean lift coefficients between .3 and .7 are illustrated in Figure 3.1.

Both the Fortran and Disspla programs, as well as a decision making flow chart are provided in Appendix C to aid in using this method for a design solution.

#### E. WEIGHT EQUATIONS

Weight equations need to be developed that realistically reflect the sizing class of the helicopter being designed.

The evolution is greatly simplified if a specific engine

Weight Equation Plot: CLR=0.5 Weight Equation Plot: CLR=



Figure 3.1.

installation [# and horsepower] is assumed, since the weight of a number of components depend only on the installed power; this would include such terms as the engine controls and accessories. Another category would be those components whose weights depend on either the gross weight on two or more of the following in combination: rotor tip speed  $(V_T)$ , rotor diameter (R), rotor solidity  $(\sigma)$ .

The equations developed here are taken from the Hiller Aircraft Corporation Performance Data Report. [Ref. 5] In this report they assumed a specific engine installation, the Allison T-63 with a military power rating at sea level of 250 horsepower.

There is a possible problem of the validity of these weight relationships when applied to different helicopter design categories. However, assuming a specific engine determines a number of the component weights, and thus minimizes the inaccuracies. Using the weight estimation relationships developed in the Helicopter Design Manual [Ref. 2], the engine, control and accessory weight can be calculated and the weight formulas developed here applied to give a representative useful load and empty weight formula for preliminary design analysis. This is done in Appendix C, for a 20,000 pound class helicopter.

The following relations are used to reduce the component weight formulas for the specification helicopter:

$$W/DL = A = \pi R^2$$
 (3.12)

$$W/PL = MHP = 250$$
 (3.13)

(Military rating for Allison T-63 at sea level.) (PL = Power Loading.)

$$P = \sqrt{A/V_T}$$
 (3.14)

Using these equations the component weight for the specified helicopter empty weight may be reduced to the following:

Engine, Controls and Accessories = 617.5 lbs.

Engine Section Group 
$$.053[W/PL]^{1.07} = 19.5 \text{ lbs. } (3.15)$$

Main Trans-  
mission 
$$10.43 \frac{V^{1.295}}{(PL V_T)^{.863}} = 1221 p^{.803}$$
 (3.16)

Rotor Drive Shaft 5.56 
$$\frac{W^{1.05}}{(PL V_T)^{.7}(DL)^{.35}} = 266 p^{.7}$$
 (3.17)

Tail Rotor 32.22 
$$\frac{W^{1.14}}{(PL V_T)^{1.7}} = \frac{17449}{V_T^{1.14}}$$
 (3.18)

The engine, controls and accessories category includes such items as lubrication and oil cooling system, engines, communications, engine controls, engine accessories, instruments starting system, furnishing, flight controls, electrical system and stabilization. These are considered fixed weight items determined from specification of the engine and weight class of the helicopter.

Tail Rotor Gear Box 3.7 
$$\frac{W.75}{(PL V_T.5(DL).25} = 59.47 \sqrt{P}$$
 (3.19)

Tail Rotor  
Drive .124 
$$\frac{W^{1.355}}{(PL V_T)^{.57}(DL)^{.785}} = 2.886 P^{.57} \sqrt{A}$$
 (3.20)

Rotor Blade 35.15 
$$\frac{W^{1.185}_{\sigma}.33}{V_{T}(DL).185} = 35.15 \frac{W}{V_{T}} A.^{185}_{\sigma}.^{33}$$
 (3.21)

Rotor Blade Artic- 19.77 
$$\frac{W^{1.205}_{\sigma}.33}{V_{T}(DL).205} = 19.77 \frac{W}{V_{T}} A.^{205}_{\sigma}.33$$
 (3.22)

Rotor Hub  
Teetering .0088 
$$\frac{\text{W}^{1.21}}{\text{DL}^{.21}} = .0088 \text{ WA}^{.21}$$
 (3.23)

Rotor Hub  
Artic- .00975 
$$\frac{\text{W}^{1.21}}{\text{DL} \cdot 21} = 00975 \text{ WA} \cdot 21$$
 (3.24)

Fuel System .416 per gallon capacity = .0615  $W_F$  (3.25) where  $W_F$  = fuel weight.

The individual component weights may now be combined into a single expression for the helicopter empty weight.

$$W_{e} = 617.5 + .0617W_{F} = 1221P^{.863} + 266P^{.7} + \frac{17449}{V_{T}^{1.14}}$$

$$+ 58.47\sqrt{P} + 2.886P^{.57}\sqrt{A} + .191W^{.916} + .0294W^{.99}$$

+ appropriate rotor blade and hub weights.

As stated earlier, the design specifications called for a useful load consisting of a pilot (200 lbs), payload (400 lbs) and the required fuel weight ( $W_{\rm F}$ ). The fuel weight is calculated for the Allison T-63 in the following manner: endurance of three hours at 85 percent of normal rated powered for the T-63 is 180.2 HP and the specific fuel consumption at this power is .783 lbs fuel/BHP HR. Including an allowance for a three-minute warm-up at NRP and using a 5 percent correction factor on SFC, as specified in Reference 5, the fuel weight becomes:

$$W_F = 3(180.2)(.822) + \frac{3}{60}(212)(777)$$
 (3.27)

An allowance should also be made for oil plus trapped fuel. This is estimated at 20 lbs.

The total useful load is the sum of the useful load items.

$$W_{11} = 200 + 400 \div 452.6 + 20 = 1072.6 \text{ lbs}$$
 (3.28)

A new variable,  $W_{\rm BAR}$ , is defined as the sum of the emply weight plus useful load. It is the of equations (3.26) and (3.28).

$$W_{BAR} = 1717.9 + 1221P^{.863} = 266F^{.7} + \frac{17449}{V_{T}^{1.14}} + 58.47\sqrt{P}$$

$$+ 2.886P^{.57}\sqrt{A} + .191W^{.916} + .0294W^{.99}$$
(3.29)

+ appropriate rotor blade and hub weights.

Equation (3.11) together with equation (3.29) form the basis of a carpet plot design study. These equations are solved simultaneously for  $W_{\rm BAR}$ . This solution is best illustrated graphically, as in Figure 3.2. The graph in Figure 3.2 was generated for a specific value of  $C_{\rm LR}$  over a range of tip speeds [600 to 700].

#### F. GRAPHICAL ANALYSIS

Graphs similar to Figure 3.1 are generated for several value of  $\ensuremath{C_{LR}}$  , and are then cross plotted to form Figure 3.2.

The mean lift coefficient,  $C_{\mbox{LR}}$  , values are selected based on what is considered the historical average range of

Helicopter Carpet Plots: CLR=0.5



values. Figure 3.3 is basic plot for a carpet plot design study. Programs are provided in Appendix D which will generate the required data sets and plots of Figures 3.2 and 3.3.

The solution field depicted in Figure 3.3 is too large to be of great analytic value and as such must be reduced. Three parameters, maximum gross weight, rotor diameter (both specified in the Design Specification) and the aspect ratio can be used to narrow the field of solutions.

### 1. Rotor Diameter Boundary

A net to exceed value for the rotor diameter is generally given in the design specifications. This limiting value is based on the operating environment of the helicopter. With R max specified, there is a linear relationship between the disk loading and the gross weight.

$$DL = \frac{W}{A} = \frac{W}{\pi R^2}$$

The resulting bracketing of the solution field by applying both the maximum gross weight and maximum rotor diameter limits to the carpet plot are shown in Figure 3.4.

# 2. Respect Ratio Boundary

It is evident that a further restriction is still necessary to completely define the region of acceptable







Figure 3.4. Helicopter Carpet Plots Rotor Diameter and Weight Limits

design solutions. Studies have indicated that a main rotor aspect ratio of 21,  $^1$  is a representative upper limit. Thus

$$21 \ge \frac{R < mr}{C < mr} = \frac{b}{\pi \sigma} = \frac{b \circ_{O} C_{LR} V_{T}^{2}}{\sigma \pi DL}$$

or

$$DL \geq \frac{b \rho C_{LR} V_T^2}{126\pi}$$

For the case of a two bladed main rotor equation (3.30) reduces to:

DL 
$$\geq$$
 .000012  $C_{LR} V_T^2$ 

The detemination of this boundary graphically is as follows:

The hover solution plot of Figure 3.2 is replotted  $^2$  relative to the coordinates disk loading and design mean blade lift coefficient. The limiting curves for DL = .000012  $C_{LR} V_T^2$  are then plotted. The intersection with the appropriate constant tip speed lines of the hover solution represent the aspect ratio boundary; Figure 3.5.

<sup>&</sup>lt;sup>1</sup>For a helicopter rotor, the aspect ratio is defined as the radius divided by the chord.

<sup>&</sup>lt;sup>2</sup>For clarity lines of constant gross weight are omitted.



Application of the second of t



Figure 3.5. Aspect Ratio Boundary Plot

These intersection points are then cross plotted onto Figure 3.4. Figure 3.6 represents a graphical plot of the solution set satisfying the performance and structural design criteria of a small observation helicopter as specified in this study.

Michight Mercess secress serving markey

Helicopter Carpet Plots



#### IV. HESCOMP

#### A. DESCRIPTION OF PROGRAM

HESCOMP is a helicopter sizing and performance computer program developed by the Boeing Vertol Company. The program was originally formulated to provide for rapid configuration design studies.

A number of programming options are available to the user of HESCOMP. When the type and mission profile of the helicopter are known, HESCOMP may be used to size the aircraft. Alternately, it may be used for mission profile calculations when the sizing details [gross weight, payload, engine size, etc.] are specified. A combination of these two options is also available; the program may be used to first size a helicopter for a primary mission and then calculate the off-design performance for other missions. Finally, HESCOMP may be used solely for obtaining helicopter weight.

Sensitivity studies involving both design and performance tradeoffs can easily be done with HESCOMP. Incremental multiplicative and additive factors can be imbedded in the input data.

The various helicopter configurations that may be studied using HESCOMP are detailed in Table 4.1.

# TABLE 4.1

# HELICOPTER CONFIGURATIONS WHICH MAY BE STUDIED USING HESCOMP

| HELICOPTER CON                                                                        |        |                               | 1                      | 1                                        |       |      |
|---------------------------------------------------------------------------------------|--------|-------------------------------|------------------------|------------------------------------------|-------|------|
| Additional Lift/Propulation  System Components Which  Must be Added to  "Pure"        |        | Propolier<br>for<br>Nuxiliery | Auxiliary              | Type of Auxiliary<br>Independent Engines |       |      |
| Type (Both Single & Tandem Rotor) Conf.                                               |        | Propulsion                    | Independent<br>Engines | T/Sheft                                  | T/FAD | T/Jo |
| Pure Helicopter                                                                       |        |                               |                        |                                          |       |      |
| Winged Helicopter                                                                     | ×      |                               |                        |                                          |       |      |
| Compound Helicopter                                                                   |        | •                             |                        |                                          |       | 1    |
| <ol> <li>Coupled (prim. engines<br/>drive auxiliary propulsion<br/>systum)</li> </ol> | ×      | X                             |                        |                                          |       |      |
| (2) Auxiliary independent propulsion system                                           |        | •                             |                        |                                          |       |      |
| (a) T/Shaft engine<br>(b) T/Fan engine<br>(c) T/Jet engine                            | X<br>X | ж.                            | X<br>X<br>X            | . *                                      | ×     | ×    |
| Auxiliary Propulsion Helicopter                                                       |        |                               | ,                      |                                          |       |      |
| (1) Coupled (prim. engines<br>drive suxiliary propulsion<br>system)                   |        | X                             |                        |                                          |       |      |
| (2) Auxiliary Independent propulsion system                                           |        |                               |                        |                                          | e/**  |      |
| (a) T/Shaft engine<br>(b) T/Fan engine<br>(c) T/Jet engine                            |        | ×                             | X<br>X                 | X                                        | ×     |      |
| oamim1 Motor Helicopter                                                               |        |                               |                        | , ,                                      |       |      |
| (1) Coupled (prim. engines<br>drive suxiliary propulsion<br>system)                   |        | x                             |                        |                                          |       |      |
| (2) Auxiliery Independent propulation system                                          |        |                               |                        |                                          |       |      |
| (a) T/Shaft ongine<br>(b) T/Fan ongine                                                |        | 'π                            | x<br>x                 | ж.                                       | x     |      |
| (c) T/Jat engine                                                                      |        |                               | , x                    |                                          |       | x    |

#### B. PROGRAM MODIFICATIONS AND IMPLEMENTATION

The computer program received from Boeing Vertol required some modification and reformating in order to run properly on the Naval Postgraduate School IBM system.

These alterations did not, however, alter the program output or usability.

HESCOMP, as received from Boeing Vertol, was 17821 lines long and set-up as a sequential data set to be assemble on a 'G compiler'. The Batch processing system at the Naval Postgraduate School accepts only programs set to run on 'H compiler'. Normally, the differences between these two compilers are minor and programs that run on one will run on the other. However, this was not the case with HESCOMP.

In order to facilitate the program debugging process, HESCOMP was reformatted as a partitioned data set. What this effectively did was to break the program down into eight members of approximately 2000 lines. The program breakdown is illustrated in Table 4.2.

Each of these were compiled individually and then error codes analyzed. The member data set was then modified as required to properly compile.

Once all the members of the partitioned data set compiled properly, HESCOMP was again formated as a sequential data set and run utilizing input data for which there was a known output. This insured that the modifications made to the original program had not altered the logic, ie., gave faulty results.

The control language program to access HESCOMB on the Batch processing system and a sample input and out data set are shown in Appendix D. These are also available on the Aero disk for copying and use.

TABLE 4.2
PARTITIONED DATA SET

| MEMBER     | NAME LINE | N | UMBER | SIZE | FIRST | ROUTINE |
|------------|-----------|---|-------|------|-------|---------|
| S1         | 1         | - | 1681  | 1681 | AE    | RO      |
| S2         | 1682      | - | 4132  | 2451 | CL    | IMB     |
| S3         | 4133      | - | 6531  | 2399 | XI    | BIV     |
| S4         | 6532      | - | 8974  | 2443 | PO    | WAVL    |
| S <b>5</b> | 8975      | - | 10870 | 1896 | PR    | INT 1   |
| <b>S</b> 6 | 10871     | - | 13042 | 2172 | P.O   | T POW   |
| S7         | 13043     | - | 15383 | 2341 | CR    | US 3    |
| S8         | 15384     | - | 17821 | 2448 | TA    | XI      |

#### C. PROGRAM FLOW

The program is conceptually outlined in Figure 4.1, [Ref. 7]. The program flow is monitored by a general loop, which controls a series of peripheral programs. There are



A. 18.50

a total of 44 subroutines. Detailed program descriptions cam be found in Section 4 of the HESCOMP User's Manual.

#### D. PROGRAM INPUT

Program input can be loosely group into ten categories: general information, aircraft descriptive information, mission profile information, rotor tip speed schedule, incremental rotor performance, auxiliary propulsion input schedule, engine cycle information, rotor performance information, propeller performance information, and supplementary input information.

The actual amount of input data requires varies greatly with the program options selected. An example of a data set formatted to run on the IBM system is shown in Appendix E. A more detailed explantion is available in Section 5 of the HESCOMP User's Manual.

#### E. PROGRAM OUTPUT

An example of the program output is included in Appendix E. The printout consists of general data, input data, sizing data [program output] and mission performance data [for the size helicopter]. Detailed descriptions of these and diagnostic error statements are described in Section 6 of Reference 6.

#### V. CONCLUSIONS AND RECOMMENDATIONS

Three approaches to analyzing a preliminary helicopter design were explored in the course of this paper. It was found that a number of the performance equations could be greatly simplified with little degradation in the final results. A sensitivity analysis brought further insight into the inter-play of the parameters and how changes in them tended to effect the helicopter performance equations.

Carpet Plots provided the most interesting method of analysis. Development of a graphical solution matrix using this method provides a usual interpretation of what is occurring when key parameters are varied.

Two cases were explored; a light observation helicopter in the 3,000 pound weight class and a heavier utility helicopter in the 20,000 pound weight class. The Carpet Plot method provided reasonable solutions in both cases. In doing the analysis for the utility helicopter, the initial weight estimation equation had to be adjusted upward by approximately 2,000 pounds for the equations to intersect properly. This is not considered a limitation to this method of analysis, however, it does point up an area for further investigation. It may be possible to develop more accurate weighing factors for this equation when dealing with higher gross weight helicopters.

HESCOMP provides a plethora of information to the user. However, the price is the amount of inputed data required for even a simplified analysis. At a preliminary design level of analysis, the other methods explored provide a quicker first-cut look at the potential design.

# APPENDIX A: NOMENCLATURE

| TERM                | DEFINITION                                         | UNITS              |
|---------------------|----------------------------------------------------|--------------------|
| a                   | Slope of Airfoil Section<br>Lift Curve             | Radians            |
| A                   | Rotor Disk Area                                    | ft <sup>2</sup>    |
| AR                  | Aspect Ratio                                       | Dimensionless      |
| A <sub>TR</sub>     | Tail Rotor Disk Area                               | ft <sup>2</sup>    |
| b                   | Number of Rotor Baldes                             | Dimensionless      |
| В                   | Tip Loss Factor                                    | Dimensionless      |
| С                   | Main Rotor Cord                                    | ft                 |
| C <sub>do</sub>     | Profile Drag Coefficient at Zero Lift              | Dimensionless      |
| CLRo                | Design Mean Blade Lift<br>Coefficient at Sea Level | Dimensionless      |
| $^{C}\mathbf{_{T}}$ | Coefficient of Thrust                              | Dimensionless      |
| C <sub>p</sub>      | Coefficient of Power                               | Dimensionless      |
| δ                   | Blade Section Drag<br>Coefficient                  | Dimensionless      |
| DL                  | Disk Loading                                       | lb/ft <sup>2</sup> |
| FM                  | Figure of Merit                                    | Dimensionless      |
| НР                  | Horsepower                                         |                    |
| L <sub>TR</sub>     | Tail Rotor Moment Arm                              | ft                 |
| ρ                   | Air Density                                        | $1b \sec^2/ft^4$   |
| μ                   | Advance Ratio                                      | Dimensionless      |
| R                   | Rotor Radius                                       | ft                 |

| TERM               | DEFINITION                        | UNITS         |
|--------------------|-----------------------------------|---------------|
| $P_{\overline{T}}$ | Total Power                       | НР            |
| P <sub>TM</sub>    | Main Rotor Total Power            | НР            |
| P <sub>TTR</sub>   | Tail Rotor Total Power            | Нр            |
| Po                 | Profile Power                     | НР            |
| P <sub>i</sub>     | Induced Power                     | HP            |
| P <sub>p</sub>     | Parasite Power                    | HP            |
| PL                 | Power Loading                     | LB/HP         |
| R                  | Rotor Radius                      | ft            |
| T                  | Thrust                            | НР            |
| v <sub>I</sub> .   | Induced Velocity                  | .ft/sec       |
| $v_{\mathbf{F}}$   | Forward Velocity                  | ft/sec        |
| v                  | Aircraft Forward Speed            | ft/sec        |
| $v_T$              | Rotor Tip Speed                   | ft/sec        |
| W                  | Aircraft Gross Weight             | 1bs           |
| ₩c                 | Empty Weight                      | 1bs           |
| W <sub>F</sub>     | Fuel Weight                       | 1bs           |
| Wu                 | Useful Load                       | 1bs           |
| WBAR               | Empty Weight Plust<br>Useful Load | 1bs           |
| σ                  | Solidity                          | Dimensionless |

APPENDIX B: CARPET PLOT FORMULATION FOR 20,000 LB. CLASS HELICOPTER

B1 SPECIFICATIONS:

Maximum Gross Weight: 20,000 pounds Maximum Rotor Diameter: 30 feet

- B2 PRELIMINARY ENGINE SIZING:
  - B2.1 Utilize equation (2.14) to determine engine horsepower category.

 $W = [4.753P_TR]^{2/3}$ 

 $20,000 = [47.53P_T \ 30]^{2/3}$ 

 $P_T = 1983 HP$ 

- B2.2 Use the engine selection parameters tables B.1 to determine the number and type of power plant [table taken from Reference 3].
  - B2.2a Type and number selected: 2 type C.
  - B2.2b Specifications:

Dry Weight Per Engine: 423 pounds

Shaft Horsepower at Standard Sea Level:

Military 1561 HP

Normal 1318 HP

- B3 WEIGHT EQUATION FORMULATION
  - B3.1 To obtain the engine control and accessory weight use items 7, 9, 10, 11, 12 and 13 of the weight estimation relationships developed in Reference 3 for a utility helicopter:
    #7: 609 lbs; #9: 129 lbs; #10: 76 lbs;
    #11: 410 lbs; #12: 439 lbs; and #13: 302 lbs.

TABLE B.1

# ENGINE SELECTION PARAMETERS

The following turboshat power plant data are presented for one engine.

| Engines:                              | Α                      | В                    | C                    | D*                   | E                    | F                    |
|---------------------------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Dry Weight (1bs)                      | 158                    | 288                  | 423                  | 709                  | <b>58</b> 0          | 750                  |
| SHP (ssl) Militar<br>Normal<br>Cruise | y 420<br>370<br>278    | 708<br>639<br>494    | 1561<br>1318<br>1989 | 1800<br>1530<br>1148 | 2500<br>2200<br>1650 | 3400<br>3000<br>2250 |
| SFC (ss1) Militar<br>Normal<br>Cruise | y .650<br>.651<br>.709 | .573<br>.573<br>.599 | .460<br>.470<br>.510 | .595<br>.606<br>.661 | .615<br>.622<br>.678 | .543<br>.562<br>.610 |
| Initial Costs                         | \$93K                  | \$100K               | \$580K               | \$360K               | \$640K               | \$700K               |
| Operating Cost per hour/engine        | \$8                    | \$16                 | \$2J                 | \$35                 | \$40                 | \$60                 |
| Preventative Main per hour/engine     | t.<br>\$25             | \$50                 | \$100                | \$125                | \$160                | \$220                |
| MTBMA (hrs)                           | 3.5                    | 3.0                  | 2.0                  | 3.0                  | 4.0                  | 3.5                  |
| MDT (hrs)                             | 0.7                    | 0.6                  | 0.5                  | 1.3                  | 2.0                  | 2.6                  |
| MTBF (hrs)                            | 185                    | 210                  | 205                  | 285                  | 280                  | 320                  |
| MTBR (hrs)                            | 600                    | 750                  | 800                  | 800                  | 1000                 | 750                  |

B3.2 Simplifications

$$\frac{W}{DL} - A = \pi R^2$$
 ,  $\frac{W}{2pm} = MHP = 31,00$  ;  $P = \sqrt{\frac{A}{V_T}}$ 

B3.3 Engine Group

$$.053(5100)^{1.07} = 272 \text{ lbs}$$

B3.4 Main Transmission

10.43 
$$\frac{W^{1.295}}{(\text{lpm V}_{t})} = 10.43 \frac{W^{.863} A^{+.432}}{(\text{lpm})^{.863} V_{T}^{.863}}$$

$$= (10.43)(3100).863$$
<sub>p.863</sub>

B3.5 Rotor Drive Shaft

5.56 
$$\frac{W^{1.05}}{(\text{lpm V}_T)^{7}} = 5.56(3100)^{7}P^{7}$$

$$= 1545P.7$$

B3.6 Tail Rotor

32.22 
$$\frac{W^{1.14}}{(lpm V_T)^{1.14}} = \frac{307,600}{V_T^{1.14}}$$

B3.7 Tail Rotor Gear Box

3.7 
$$\frac{W^{.75}}{(\text{lpm V}_T)^{.5} [\frac{W}{A}]} = (3.7)(3100)^{.5} p^{.5}$$

- = 206P.5
- B3.8 Tail Rotor Drive Shaft

.124 
$$\frac{W^{1.355}}{(\text{lpm})} = (.124)(3100)^{.57} p^{.57} \sqrt{A}$$

- $= 12.12P.57 \sqrt{A}$
- B3.9 Landing Gear

AND THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART

$$= .191W^{.916} + .0294W^{.99}$$

B3.10 Rotor Blades Articulated

19.77 
$$\frac{W^{1.206}_{\sigma}.33}{V_{T}DL\cdot^{205}}$$

= 19.77 
$$\frac{W}{V_T}$$
 A .205<sub>\sigma</sub>.33

B3.11 Rotor Hub Articulated

.00975 
$$\frac{W^{1.21}}{DL^{.21}} = .00975WA^{.21}$$

Calculation of fuel weight three hours at cruise SHP

1664 1bs

## B3.13 Total Equation

WB = 12,987,\* + 107948P.863 + 1545P.7  
+ 
$$\frac{307600}{V_T^{1.14}}$$
 + 206P.5 + 12.12P.57  $\sqrt{A}$ 

$$+ .191W^{.916} + .0294W^{.99}$$

+ 19.77 
$$\frac{W}{V_T}$$
 A.205 s.33 + .00975WA.21

#### **B4** HOVER EQUATION

Following the formulation in Section of Chapter 3, the weight equation based on the design mean lift coefficient and power required is:

$$W = \frac{K_2 \left[ 1 - 411.51 \frac{DL^{3/4}}{V_T^{3/2}} \left( 1 + K_3 \frac{V_T}{\sqrt{DL}} \right)^{1/2} \right] - K_4}{V_T + K_5 \sqrt{DL}}$$

This number was increased from 8987 to 12987 to bring the curves together. This reflects a 4000 lb useful load.

where:

$$K_{1} = \frac{.9583}{C_{LRo}} (1 + 1.8078 C_{LRo}^{2})$$

$$K_{2} = \frac{P_{T6000/950} (10^{5})}{K_{1}}$$

$$K_{3} = \frac{0.00025929}{C_{LRo}} (1 + 1.8078C_{LRo}^{2})$$

$$K_{4} = \frac{553480.0}{K_{1}}$$

$$K_{5} = \frac{3695.7}{K_{1}}$$

#### **B.5 GRAPHICAL RESULTS**

Figure B.1 is an example of equation (3.13) plotted against equation (B.4) for a specific design mean lift coefficient.

Figure B.2 illustrates the family of curves obtained when the design mean lift coefficient is varied from  $0.3 \ \text{to} \ 0.7$  .

In Figure B.3 the solution matrix depicted in Figure B.2 is narrowed by the constraints placed on the gross weight, rotor diameter and aspect ratio.

Helicopter Carpet Plots: CLR=.70 Utility Class



Helicopter Carpet Plots: Utility Class

Figure B1.



Helicopter Carpet Plots Utility Class Figure B2.



Figure B3. Helicopter Carpet Plots Utility Class

APPENDIX C. CARPET PLOT METHODOLOGY FLOW CHART AND EXAMPLE PROGRAMS:

This section contains a flow chart to help organize a carpet analysis and example IBM computer programs to produce the data sets and disspla graphs.



TO TO TO THE TENNESTIME TO THE TENNESTIME TO THE TOTAL CONTROL TO THE TOTAL PROPERTY OF THE TRANSPORT OF THE

```
GRAPHICAL LILICCPTES DESIGN FFOGRAM
CAB FET PLCT NUMBER 1
                                                                  LESIGN HEAN LIPT COEFFICENT
TIP VELOCITY
LISK ICADING
LIGHT AS CALCULATED FFCM POWER EQUATION
USEFUL ICAD ILUS EMPTY WEIGHT
FCWER AVAILABLE IN HORSEPOWER
         PERL CIR, EL (150), W1 (150), W2 (150), W3 (150), W4 (150), W5 (150), W5 (150), W6 (15
              INTEGER I
-- DEFINE FILES -----
         CALL FRICHS ('FILEDEF ', '3
       CALL FRICHS ('FILECEF','4 ','DISK ','CRPT45',

BEAD DATA FROM FILE: CRPTX DATA A ------
              CC 10 I=1,99
CRFT1 DATA A
BEAD (3,70) DL (I), W1(I), W21(I), W2(I), W82(I)
CEPT2 DATA A
BEAD (4,71) W3(I), W23(I), W4(I), W84(I), W5(I), W85(I)
CONTINUE
                 CALL DISSFLA BCCTINES FOR PLOT -
```

```
THIS PROGRAM IS DESIGNED TO ILLUSTRATE THE FAMILY CF SCIUTIONS FOR HOVER AND USEFUL LOADER FAMILY BEQUIES HEATS OF A TESTERING SOTOR SISTEM WITHOUT ANY BOUNDARY COMPETIONS CASSERVATION CLASS
                                                                                                                                                                                                                                                                    NOMENCIATURE
                                                                                                                                                                                                                                                                                                                                CIT
DI
BE
BE
BE
                                                                                                                                                                                                                                                                                                                                                                                                              PESIGN MEAN LIPT CORPRICENT
TIP VILOCITY
CISK ICADING
ELIGHT AS CALCULATED FFCH POWER EQUATION
USEFUL LOAD FLUS EMPTY WEIGHT
FOURR AVAILABLE IN HORSEPOWER
                                                                                                                                                                                                                                                                                                  DLJ EQUALS THE DISK LOADING PCF CLR=.5

CL4 EQUALS THE DISK LOADING PCF CLR=.6

CL5 EQUALS THE LISK LOADING PCF CLR=.6

CL6 EQUALS THE LISK LOADING PCF CLR=.7

W3 EQUALS THE LISK LOADING FCF CLR=.7

W3 EQUALS THE BEIGHT FOR CLR=.3

W4 EQUALS THE BEIGHT FOR CLR=.7

W4 EQUALS THE BEIGHT FOR CLR=.7

W5 EQUALS THE BEIGHT FOR CLR=.7

W5 EQUALS THE BEIGHT FOR CLR=.7

W7 EQUALS THE BEIGHT FOR CLR=.7

W7 EQUALS THE BEIGHT FOR CLR=.7

W7 EQUALS HEIGHTS AT YT=6600

W7 EQUALS WEIGHTS AT YT=6675

W7 EQUALS WEIGHTS AT YT=6675

W7 EQUALS WEIGHTS AT YT=6675

EVT1 EQUALS WEIGHTS AT YT=6675

EVT1 EQUALS WEIGHTS AT YT=6675

EVT1 EQUALS THE CCRRESPOONDING LISK LCALLING AT YT=6675

EVT1 EQUALS THE CCRRESPOONDING LISK LCALDING AT YT=6675

EVT1 EQ
                                                                                                                                                                                                                                                                                                                        ę____
```

```
CALL DISSPLA RCUTIMES FOR PLOT

CALL BEDSET

CALL PARACLE

CALL PARACLE

CALL PARACLE

CALL PARACLE

CALL PARACLE

CALL PARACLE

CALL BASSATY

(100,000,000)

CALL BEDSET

(100,000,000)

CALL HIGH

CALL HIGH

CALL HIGH

CALL HIGH

CALL BEDSET

(100,000)

CALL HIGH

(100,000)

CALL BEDSET

(100,000)

CALL BEDSET

(100,000)

CALL HIGH

(100,000)

CALL BEDSET

(100,000)

CALL CURVE

(100,000)

CALL
                                                                                                                                                       CALL DISSPLA ECUTIVES FOR PLOT -----
   COCOCOCOCOCO
579
```

SALVEN SERVICE 
```
GHAFHICAL ERLICOPTER DESIGN PROGRAM
ASPECT RATIC BOUNDARY
LOCI OF HOVER AND USEFUL-LOAD SOLUTIONS
CARFET PLOT NUERER 3
                                                                                                              NOMENCLATURE
                                            LESIGN MEAN LIFT COEFFICENT
TIP VEIGCITY
DISK LCADING
ASPECT BATIC. HISTORICALLLY ASSUMED TO BE LESS THAN 21
     #EAL+4 CLF(5), El (10), C600 (10), C625 (10), C650 (10), +C675 (10), C700 (10), bv13 (5), Dv14 (5), Dv15 (5)
-- CALL DISSFLA RCUTINES FOR PLOT --
       CALL DISSELA REUTINES FOR PLOT

CALL TEK618
CALL MESET (3HALL)
CALL RESET (3HALL)
CALL PAGE (12-0, 9-5)
CALL PAGE (12-0, 9-5)
CALL PAGE (12-0, 9-5)
CALL PHYSOR (1-0, 1-2)
CALL PHYSOR (1-0, 6-5)
CALL HEADD (10-0, 6-5)
CALL SAUSSL
CALL BASALF (*I/CSTC*)
CALL HIXALF (*SIANC*)
CALL HIXALF (*SIANC*)
CALL HIXALF (*SIANC*)
CALL HEGHT (-16)
CALL XNAME (*CLICK (1) OACINGS*, 100)
CALL HEGHT (-200)
CALL HEGHT (-200)
CALL HEGSET (*CLICK (1) OACINGS*, 100)
```

```
1 CO. 3.22.7.55)

1 CO. 3.22.7
```

```
GRAFHICAL EELICUPTER DESIGN PROGRAM
FAMILY OF SOLUTIONS
CAEFET PLOT NUMBER 4
EY AL HANSEN
                                                                                                                                                             THIS PECGRAM IS DESIGNAL TO ILLUSTRATE THE FAMILY CF SCIUTIONS FOR HOVEF AND USEFUL LOAD REQUIREMENTS OF A TESTERING FOTOR SYSTEM WITH FCTCR CIAMETER AND MAX GROSS BOUNDRIES.

CESEBVATION CLASS HELICOPTER
NOMENCLATURE
                                                                             VARIABLES:
                                                                                                                                                                        LESIGE MEAN LIPT CGEFFTCENT
TIP VELOCITY
LISK ICADING
BEIGHT AS CALCULATED FFCE POWER EQUATION
USEFUL ICAD FLUS EMPTY WEIGHT
FCWER AVAILABLE IN HORSEPOWER
                                                                            CTE
PE
PE
PE
                                                                    PA FEGER AWAILABLE IN HEREPOURE

DL3 EQUALS THE DISK IOADING FEGE CLR -- 3

LL4 EQUALS THE DISK IOADING FEGE CLR -- 5

LL5 EQUALS THE DISK IOADING FEGE CLR -- 7

LL5 EQUALS THE DISK IOADING FEGE CLR -- 7

LL7 EQUALS THE BESSET FOR CLR -- 7

LL7 EQUALS THE BESSET FOR CLR -- 7

LL7 EQUALS THE BESSET FOR CLR -- 7

LL CALLING AT VT -- 600

LL CALLI
```

```
DATA D1/2.52.29/s

DATA D1/2.52.29/s

DATA D1/2.52.29/s

DATA D1/2.53.00...

DATA D1/2.53.00...

DATA D1/2.53.00...

DATA D1/2.53.00...

CALL DISSELA BCUTTMES FOR PLOT

CALL DISSELA BCUTTMES FOR PLOT

CALL DISSELA BCUTTMES FOR PLOT

CALL BASELA (1/2.00...

CALL CURRENT (1/2.00...
```

A DESCRIPTION OF THE PROPERTY 
Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio

```
Consequence

GRAPHICAL ERLICOPTER LESIUS REUGRAS

Consequence

Consequ
                                                                                                               THIS PROGRAM IS DESIGNED TO ILLUSTRATE THE PANILY OF SCIUTICENS FOR HOVEF AND ESEPTIAL TO THE PANILY REQUIREMENTS OF A TEREBRING ROTOR SYSTEM WITH SCIENT LIAMETER, EAX GROSS WEIGHT AND ASSECT RATIO ECUNDARIES.

CESESVATION CLASS WELICOFTER
```

```
CALL DISSELA SCUTINES POR PLOT
```

WHO SENTEN INVESTIGATION INVESTIGATION TO SENTENCE AND SE

```
THIS PROGRAM IS DESIGN TO GENERALE THE LATA FOR THE GRAPHICAL SCLUUTION OF ARE SELECTED USEFUL LCAD EQUATION. THIS IS MUT FAMILY AND THE USEFUL LCAD EQUATION. THIS IS MUT FAMILY IN A CABLET FLOT HELICOPTER DESIGN PARAMETRIC OPTIMIZATION
            ASSUMPTIONS: 1> ANGINESPECIPIED
            BEAL+4 CLE, PA, EI, K1, K2, K3, K4, K5, E, S, A, P, W(10), WB(10) INTEGER VI, D, I, CL
          CALL PRICES ('FILITEF','02
                                                                        . DISK
 Ç.
            CLB= DESIGN MEAN LIFT COEFFICIENT DC 90 CL=3.7 CLB=CL+(C.1) HEITE(2.10) CLB PA= POWER AVAILABLE HP PA=206 CL= DISK LOADING VI= TIP VELOCITY F1/SEC
 C
             CONSTANTS BASEC ON CIR
             R1=(0.9583)/CIR+(1+1.8078+CIR++2)

K2=PA+10++5/K1

K3=[0.00625929)/CIR+(1+1.8078+CIR++2)

K4=553486-0/K1

K5=5695-7/K1

DC 100 D=200,300

E1=D+(0.01)
              DO 110 VT=600,700,25
 Ç
                  WENT INCREMENTED
 ç
           ¥(I)=(K2+(1-(411.51+DL++.75)/(NT++1.5)+(1+K3+VT/DL++.5)=+.5)-K4)
1/(VT+K5+DL++.5)
            CALCULATION OF WE DATA
             A=6(I)/D1
B=(A/3,14)**-5
P#4**-5/Y3
S=(6.*DL)/(0.0023679*CLR*VT**2)
          ٤
110
   100
 C 10
```

```
CONSTANTS BASIC CA CIR

CONSTANTS CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANTATION

CONSTANT
```

WANTANDS STATE OF THE WASTERS FOR STATE OF THE PARTY OF

## APPENDIX D. PROGRAMS TO ACCESS HESCOMP

This section contains the control language programs needed to access HESCOMP on the IBM main-frame computer.

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                   | 956.<br>1800.<br>0.                                               |                                                  | 22.7                                      | プロトラウンション | - cocon                                | ·   | 950.<br>1890.                                               |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-----------|----------------------------------------|-----|-------------------------------------------------------------|-----------------------------------------|
| N INTERPRETATION NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/26/84             | 0.032<br>2600<br>1600<br>6.80<br>6.80                             | -41-40-40-60-60-60-60-60-60-60-60-60-60-60-60-60 | 100 100 100 100 100 100 100 100 100 100   | いっていい     |                                        | 3mm | 90.000<br>000.000<br>8.000.000                              |                                         |
| WI CAR IS CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0.                 | 10 2 4 4                                                          |                                                  | 25 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | - 400mana |                                        | 90- | 10#0                                                        |                                         |
| PROPERTY OF THE PROPERTY OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASE NO. 1 RUN<br>O. | 1401AU 1                                                          | もならののこと                                          | 20.00                                     | とうもくらっ ・・ | 00000000000000000000000000000000000000 | 505 |                                                             | 2 · 1 · 1 · · · · · · · · · · · · · · · |
| Company of the compan | 3150-<br>3150-      | 2000<br>6455<br>6455<br>6455<br>6456<br>6456<br>6456<br>6456<br>6 |                                                  |                                           |           | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |     | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | とうう もら ちゅうりゅう                           |

STATE OF STATE OF STATES STATES ASSESSED ASSESSED STATES

| 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6            | 6 0 0 00000000000000000000000000000000                 | 25.05.05.05.05.05.05.05.05.05.05.05.05.05                  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22   | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - |
|---------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|
| d Mu mar d su<br>d surramensus:<br>d surramensus: | <b>~こりこうごうごうきゅうしゃ</b>                                  | . 0 62<br>. 0 9<br>. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <br><br><br><br><br><br><br>          | 2 C C C C C C C C C C C C C C C C C C C | 14 14 1 14 1 14 1 1 1 1 1 1 1 1 1 1 1 1  |                                         |
| 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | -4000000<br>00044460000<br>000 00000000000000000000000 | 6 C C C C C C C C C C C C C C C C C C C                    | 3330<br>3330                          | 7                                       | *                                        | 2000<br>2000                            |
| 00                                                | 2.000000<br>0 8230000<br>0 823000                      | 2. 45<br>.00124<br>.009<br>.009<br>1.233                   | om/\de                                | 00 m                                    | 3.<br>360°.<br>1.0°.<br>696.             | # 06.0.<br># 95.0.                      |

APPENDIX E: HESCOMP INPUT AND OUTPUT EXAMPLES

This section contains samples of the IBM computer input and output.

|                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VALA  |                                                   | o.                           | 950.00 | 220                       | . 3 34 30 | 28510 | 0035                      | 2. 24 44<br>1600. 0         | 200   | 140.00                     | 12500                 | . 5 10 00<br>. 7 8 0 0 0              |                   | 400                                       | ~~~     | 1.0200<br>1.0200<br>1.0900            | •            |
|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------|------------------------------|--------|---------------------------|-----------|-------|---------------------------|-----------------------------|-------|----------------------------|-----------------------|---------------------------------------|-------------------|-------------------------------------------|---------|---------------------------------------|--------------|
|                     | IIS CASE           | (#&X. =5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VAL3  | TIOBS CAN BE CREATED                              | 2,3000                       | 70     | \$600.5<br>5.3080         | 23410     | 73    | 4.1                       | 9040-                       | 22.   | 12.800<br>20.800<br>20.800 | 24.                   |                                       | 28                | 3.30                                      | 3225    | 2000<br>2000<br>2000<br>2000<br>2000  | 77           |
| ı                   | RI STUGET 3        | BTINGC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V A   | HE CYCLLOCATION AND ENLE                          | c·                           | 3.C    | 263                       | 2         |       | namen<br>ng s (<br>ng s ( |                             | 95    |                            | 7.5                   | ng:                                   | 2955<br>          |                                           | r.      | i                                     | <br>         |
| MESCORPUTER PROGRAM | REPRODUCTION OF TH | GIVEN ON IMPUT SIEET STANDING TO LOC. +000 ESPONDING TO LOC. +000 ESPONDING TO LOC. +000 ESPONDING TO LOC. +000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #AL 1 | MES : AUXILIANY ENGINE<br>NY AMB-BEHIND A STANDAI | 0.                           | 1456.  | 2230.0<br>2230.0<br>40030 | . 1070U   | 55920 | 1.2380                    | 1.5934<br>870.00<br>2010.00 | 22002 | 0001                       | . J# 700<br>1 3 4 700 | 1. 14<br>2.00<br>2.00<br>2.00<br>2.00 | 27.00.            | 2,500<br>2,000<br>2,000<br>0,000<br>0,000 | 22000   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |
| SIZING & PEBPCAMA   | S A CASO BY CASE   | CCATICA MUNTER<br>BESSE OF SECUE<br>TARIBLE CONS<br>CONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tea   | MXIIIARY EMGI<br>66 CASD IN FRC                   | 000<br>31                    | 27.75  | 200                       | ⊃~"       | ~~~   |                           |                             | 9     | 11500                      | 400.00                | ഗം                                    | 3                 |                                           |         | 6<br>6                                | .00          |
| BELICCPTER S        | FCIICEI            | MARSECRES TO INC. NO. |       | PLACING A 660                                     | NJ errerr                    | unu    | 'WI EN                    | i wa      | nyw.  | WW H                      | war wat                     | ww    | d Harrie                   | 14/14 11              | Mina ay                               | ه ساسه د          | יארוויאר                                  | unununu | www                                   | NO+-         |
|                     | THE                | HOC. CON<br>WAL. STAN<br>WAL. ROD<br>WAL.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10C   | TOT                                               | 1501<br>1501<br>1501<br>1501 | 1001   | 132                       | 275       |       |                           |                             | 1329  | 600<br>700<br>700          |                       | 917E                                  | 244<br>244<br>204 | 12.25<br>10.00<br>1.40.14                 |         | <br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  | 2207<br>2208 |

```
11.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.15000 1.1.150
```

STATE SECTION SECTION

Sec. Care

THE CONTROL OF THE CONTROL OF THE PROPERTY OF

| 1. 3000<br>5. 3000 | .5000.                        | 3.0000 | 30001<br>00001<br>00001       | 72000                                                                            |                      | 0.000 A | * 3.200          | į      | . 97000   |          |                                                                     |        |                         | 00000   | .950 GOE-02  |         | 0,           | •    | 24. 100    |          | 250.00  | 200 | 1.0000 | 1.0000<br>1.0000<br>00000 | 200-      |
|--------------------|-------------------------------|--------|-------------------------------|----------------------------------------------------------------------------------|----------------------|---------|------------------|--------|-----------|----------|---------------------------------------------------------------------|--------|-------------------------|---------|--------------|---------|--------------|------|------------|----------|---------|-----|--------|---------------------------|-----------|
| 6.5000<br>.55000   | . 73000 E-03                  | 00000  | 75001E-01<br>165.00<br>1.3500 | 153332-31                                                                        |                      |         | 173.03           |        | 16-300001 |          | . 80 000<br>. 74 000                                                | 0000-1 |                         | . 60000 | . 80000 E-02 |         | 0.           | 30   | 2.0000     | 55       | 2000    |     | 0000   | 0000                      | 20000     |
| 7.0                | 3.7.                          | 3.5    |                               | ůsk.                                                                             |                      |         | er.              | 5      |           |          | 38                                                                  |        |                         | 3.      | or.          | 203     | ) • (        | 52.  | 7.<br>20.0 | ر.<br>د. |         | ,   | 33     | <br>                      | ,<br>,??? |
| . 53.00d           | . 15000<br>. 35000<br>2. 1000 | 1,3000 | 00000                         | 2222                                                                             | 2, 3000              | 53. 360 | 2.3336<br>.75336 | 0.000  | 50.506    | 00000    | 00007<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000 | 99666  | 6.2800                  | 23303   | , 62001E-02  | 207-75  | 0.00         | 2000 | 0.00       | 7500J    | 25. 200 | 100 | 2000   | 0000                      |           |
| 162C0E-01          | 186.000                       |        |                               | 5.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | 1. 7 + 10<br>2. (Cod | 1, (600 | 1.1650           |        |           | 7000     | , and                                                               | -0     | 1. 6200<br>1. 144468+07 |         | 3            |         |              |      | 0000       |          | 3.000   | _   | • •    | 999                       | 2000      |
| <i>(Munu</i> na    | www.                          | ·UV·   | ununun'                       | of and a                                                                         | han darrin l         | u vo    | W * •            | man UM | ,         | ، ۱۹۲۹هـ | *****                                                               | •      | Pro-1 1840              | יאיי    | RACY         | len) en | <b>474</b> / | #4   | 74 14      | rus      | יניטיי  | ~   | ww     | nunu                      | i wan w   |

|                                             | ىد         |
|---------------------------------------------|------------|
| Ω4                                          | PLOUBLE    |
| 23                                          | 86         |
| Э                                           | PUTE       |
| U                                           | 3          |
| 'n                                          | ä          |
| 41                                          |            |
| 20 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日 | FCSBJHCL   |
|                                             | FERFCS     |
|                                             | ٠.,        |
|                                             | 21 21 86   |
|                                             | HELICLFIER |

SINGLE BOTCB
CCPF6UHD ABLICOPTER
AUX. INDEPENDENT 1/SHAFT CRUIISION

SIZE DATA 1815 200 CCNVERGED IN BITERATIONS

GEOSS BEIGHT = 17043.

FUSELACE

| 50.1 Pt. 22.2 Pt. 12.2 Pt. 12. |        | 2.2.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                           | 155.74<br>155.74<br>155.74<br>1.360<br>1.360                                                                | **************************************                          | 2523<br>21.22<br>51.22<br>6.450<br>6.450<br>6.850<br>7.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| LEWGTH (EODT+TAILEOOD) LEWGTH (ALTE) LEWGTH (ALTE) LEWGTH (ALTE) LEWGTH (ALTEGAN) LEWGTH (A |        | ALPECT SATIO<br>APEA<br>SEAN CHOLD<br>FEAN CHOLD<br>FARRIER BATTON | ECT THICARESS/CHORD<br>TIP INTCAMESS/CHOMD<br>MING LOADING<br>ECTOR/AING GAP<br>FIAP CHCED/AEAM CHORD BATIO | ASPECT BATIO BERAL SEA GHERE TERE RATIC TERES RATIC TERES SATIS | ASPECT BATIO<br>ABEA<br>SEAN CHGGO<br>TATER WATIO<br>TAIL GOIGE (WEST.) LUCATION<br>TAIL GOIGE/WEST.<br>THICKNESS/CHOGO |
| 30 12 20 12 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e i se | CAN                            | 65/01<br>62/01<br>65/01<br>65/01<br>70                                                                      | HOR. TAIL ABHT SHT EMT CEASHT (1,000) 1,000 1,11                | VERT. TAIL<br>ABST<br>STOT<br>STOT<br>CEABUT<br>TIBECA VE<br>ZELAVI<br>AI/C) VI                                         |

-3 WESTOCKLES SIZING S FERECBURNCH TOWNSHIES BEINGLOWN & S C D S R

| en 15108                                                                                                           |                                   | 22222222222222222222222222222222222222                                                                                                                                           |      | 22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.120<br>0.120<br>155.20<br>158.4<br>1.30<br>1.30 | 14 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| gu<br>gu<br>uha<br>ang                                                                                             | <b>a</b>                          | •                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SINGLE ROTCR CCEECHUD AELICOPTER AUX. INDEPENDENT 1/SHAFF CRUIISIUM Z E D A T A 1815 RUM CCLVENGED IN 3 ITERATIONS | GAOSS WALGHT + 17645.<br>FOSELACE | LEWITH (EDDI-TALLOLM) LC LEWITH (EDDI-TALLOLM) LE LEWITH (EDDI-TALLOLM) LTE LEWITH (TALLOLM) | WING | DE DESCT SATIONS OF SERVING SARED CHORE SARED CHORE SARED CHORE SARED SA |                                                   | ENT STAND ST |  |
| SING!                                                                                                              |                                   |                                                                                                                                                                                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

|                  | 0.56<br>0.256<br>0.256<br>0.256<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0.266<br>0 | 5.d PT.<br>2. PT.<br>60.8 5C. PT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R.S. PT.<br>I. PT.<br>19. SG. FT.                    | CS CS                                          | 10.3 FI.<br>140.3<br>0.171<br>1.<br>900. FI./SEC                                    | 0,128 FT.<br>0,128 La/SG. FT.<br>C,110 La/SG. FT.<br>1,<br>1,<br>1,000 DEG.<br>0,250 FT./SEC.                                     | 10.3 FT.<br>01239 E. SQ. FT.<br>0.170 LE. SQ. FT.<br>-4.063 DEG.<br>0.300                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMETH BLANKIES TOLK ALL FOR ALL FACTOR ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MGTH MACELE AND MACELE TO A ALL ZEGINE MACELLE STRUT | SETTED AREA(TOTAL)<br>SEAN CHCND<br>PEAN CHCND | CIARLEF<br>ACTIVITY FACTOR PER BLADE<br>SCLIDITY<br>BC. OF ELALES/260P<br>11P SPEED | CIAMETER<br>SCLIDITY<br>FISC LOADING<br>THROST CUEFF./SOLIDITY<br>NC. UF BLAKES/ROTON<br>BLADE FUEST<br>FLADE CUTCUT/RADIUS RATIO | CIAMPTES<br>SCLEDIT<br>WET DISC LCABLEG<br>THEUST COEFF,/SOLIDITY<br>NC. 2F ELADES/SOTUR<br>FLADE CUTOIT/RADIUS RATIO<br>THE SPRED |
| BAIN FOTCE FYLON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Perite by Recording Pac (Prince Pac (Princ | 7 THE                                                | CSTS<br>ENS<br>CBS<br>CBS<br>CBS<br>CBS        | LAG<br>SECAE<br>SECAE<br>BEC. ELADES<br>VIE<br>SAIN FOICE                           |                                                                                                                                   | LTB<br>LIGHE<br>LICEGE<br>ELSE<br>BECT<br>ELDES<br>CTF<br>TTF                                                                      |

| MELICCOTES SIZING & PROPERS PROGRAM E- | PROFILE CAST LAG PACTOR  COST LAG PACTOR | STRUCTURES GROUP  A FEB | ENS. CONTROLS 350.  1 ENS. CONTROLS 240.  1 ENTROLS 240.  1 ENTROLS 30.  1 ENTROLS 24.  1 ENTROLS 75. CCNTFO 32.  1 ENTROLS 75. CCNTFO 32. |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       |                                                                                                                                            |

| 7.4    | INSULATION ATTAIN OF THE PROPERTY. | 70077        |
|--------|------------------------------------|--------------|
| 21 7   | WEIGHT EMPTY                       | 11433.       |
| HEGE   | FIXEL USEPUL LCAD                  | <b>.</b> 50. |
| 230    | CPESATING WEIGHT EMPTY             | 11683.       |
| npt.   | FATLCAD                            | 2000.        |
| (ar) A | FUEL                               | 3769.        |
|        |                                    | [4721        |

```
TOTAL SEPECTIVE PLATPLATE AREA SOFT TOTAL SEPECTIVE PLATPLATE AREA SOFT TOTAL SEPECTIVE PLATPLATE AREA SOFT TOTAL SEPECTIVE PLATPLATE AREA SOFT TO WE SOFT
```

FOTO B DATA

FOTO TAIL FCTOM SIZEE AT 1.650 FINES THE SOLIDITY
FEGURED TO SATISFY HOVERING TURN REQUIREMENTS AT 1.010 THP
THP THP TO SATISFY HOVERING TURN REQUIREMENTS AT 1.010 THE TOTAL THREE 
AT TC =170, K1, ENGINE SIZED FOR TAKEDER AT T/W = 1.06 95.0 EERCEKT MILITARY FOURE SETTING E = 4000. FT, TEMPERATURE = 95.04 DEG.F. 6.C ENGINES INDERATIVE, AND 0.0 FT/HIM YERTI OF CLIME. H.P. IMSM SIZED AT 100. EERCERT CF AUX. PROPULSION CRUISE PCURE HC = 3600. Ft, Tene 91.50 DEG.E. INSE SIZEC AT 100. EESCENT OF BAIM BOTON HOVEN POWES SEC. AT B = 400c. F1, TREE = 95.04 DEG.E., 100.0 PERCENT HOVE ABSM SIZEE AT 100. IEECEST UF TALL BOTCH HOVER FOWER AT B = 4600. Pl, TERE = 95.04 DEG. P., 100.0 FERCENT HOVE ADMILIABY INTEPENDENT PROPULSION DRIVE SYSTEM FA EAK. STABLARD S.L. STATIC H.P. EAK. STANDARD S.L. STATIC H.P. ENGINE SIZEC POS CENISE AT WC = 170, RWOTS, LCHRAL PONER, STYTHER STYTHER = 91.50 DEG.P., AND 0.0 ENGISES INCERESTIVE. BAIN AND TAIL SOTOR DRIVE SYSTEM RATING TAIL BOTOR ESITE SYSTEM MATING BAIN BOTOR CEIVE SYSTEM BATING 1.761 AUI, INCEFFUDENT PRCFULSION CYCLE NO. TUEBOSHAPT PAGINE FROPULSICK DATP PRIMASY PECPULSIUM CYCLE NG. TUBEOSHAFT FEGINE 2. ENGINES 1. ENGINES Ehpepi

H. P.

described to the second the second the second the second to the second t

| PROGRAM     |  |
|-------------|--|
| CCMPJTER    |  |
| PERFCRMANCE |  |
| SIZING &    |  |
| ELICCF TER  |  |

| TENP.                              | 59.0                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1/S16PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 202                                                                                                                                 | 3.073                                                                                                   | 0. J058                                                                                                                                                                                | 3.C13         | 3.C72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.C72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.C72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUG. ENG.<br>FUCL FLC.<br>(LES/HK) | 45°                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calina                                                                                                                              |                                                                                                         |                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pers.                              | 99                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ЭНВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CPPRC                                                                                                                               | 2889.                                                                                                   | 2681.                                                                                                                                                                                  | 0.00011       | 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2848.<br>0.60911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ENT<br>CODE:                       | jus jus                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ē                                                                                                                                   | 0.705                                                                                                   | 0.705                                                                                                                                                                                  | 0.705         | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ACA<br>TEXP.                       | 550.0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TERCST<br>10<br>NE 1641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DELDCA                                                                                                                              | 393.1.0                                                                                                 | 1.060                                                                                                                                                                                  | 093 - 0       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 090.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FCTAL<br>FUEL<br>FLCG<br>( LBS/HR) | 438.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL<br>FUEL<br>FLEB<br>(LES/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75 P<br>DEG.                                                                                                                        |                                                                                                         |                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ENG.                               | p=  ==                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FFIP.<br>CCCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RCTLL                                                                                                                               | ۵4                                                                                                      | <b>c.</b> ∢                                                                                                                                                                            | <b>₽</b> ◀    | ۵۹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۵.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۵۹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PRIM<br>TURB:<br>(RFP:             | 950.0                                                                                                                                     | 10 HR S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRICE<br>SERVICE<br>CANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                   |                                                                                                         |                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TAS<br>(KTS)                       | 000                                                                                                                                       | C FOR 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRIM. ENG<br>FUEL FLOM<br>(LBS./HR)                                                                                                 | 1432.                                                                                                   | 1,29.                                                                                                                                                                                  | 1427.         | 1424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 -Jr                              |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | なした                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VAC                                                                                                                                 | ÷÷                                                                                                      | jė                                                                                                                                                                                     | ز,ن           | نن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WE IGHT                            | 17643.                                                                                                                                    | NO AT 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HE IGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T.ROTCF<br>REP                                                                                                                      | 17628.                                                                                                  | 17598.                                                                                                                                                                                 | 17567.        | 17537.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17507.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17476.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17476.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Feet<br>Ceet<br>Feet<br>Feet       | 14.0                                                                                                                                      | IEF, CR LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.FC1CF<br>V11F<br>(FPS)                                                                                                            | 14.6                                                                                                    | 0.359                                                                                                                                                                                  | 75.6<br>690.0 | 106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 166.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RANGE<br>(N.P.)                    | 00                                                                                                                                        | KEOFF, FUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SANGE<br>[H.H.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. PC TCR<br>RHP                                                                                                                    | 2367.                                                                                                   | 23£C.                                                                                                                                                                                  | 2373.         | 2367.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2353.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TINE                               | 0.0<br>0.633                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F.FCTCF<br>VIIP                                                                                                                     | 0.633                                                                                                   | 725.0                                                                                                                                                                                  | 0.521         | 725.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 725.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 925.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | FUEL PRESS. TURB. FPLP. TCTAL ALX. AUX. AUX. ENG. ENG. FUEL TURB. ENG. FUEL FLC. FUEL TURB. ENG. FUEL FLC. FUEL TEMP. CODE PERF (LESSION) | RANGE LSEC WEIGHT ALT: TAS TURB. ENG. FUEL TURB. ENG. ENG. FUEL TURB. ENG. ENG. FUEL FLCA TURB. ENG. FUEL FLCA | RANGE LEE WEIGHT ALT: TAS TEPP: FUTAL ALX: AUX: AUX: ENG. ENG. ENG. FUEL TOPP: CODE FLE TEPP: FUEL | RANGE 15EC WEIGHT PRESS. PRIM. FPIP. 1714L ALX. AUX. AUX. ENG. FUEL 10EB. ENG. ENG. FUEL FLCA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | RANGE 15EC 16ES 16ES. HEIGHT ALTS 10AB 16ES FUCE FUCE 10AB 16ES FUCE FUCE FUCE FUCE FUCE FUCE FUCE FUCE | RANGE 15EC 16ES WEIGHT PRESS. 10AS 10AB ENG FUEL 10AR ENG FUEL 10AS FUEL 10AS 10AS 10AS 10AS 10AS 10AS 10AS 10AS | RANGE         | RANGE         FUEL         ALT         PRESS         PRIM         FNIM         FNIM <t< th=""><th>  RANGE   FLEE   /th><th>RANGE (RES)         FUEL (RES) (RES) (RES) (RES)         FUEL (RES) /th><th>  Color   Colo</th></t<> | RANGE   FLEE   FLEE | RANGE (RES)         FUEL (RES) (RES) (RES) (RES)         FUEL (RES) | Color   Colo |

| 5                            | CFLISE AT                                             | 17C.C KNO                  | -               | S TAS, LIMITEC E      | Y NCRMAL                          | ENGINE                               | RATING              |                                  |                      |                           |                         |                |                          |
|------------------------------|-------------------------------------------------------|----------------------------|-----------------|-----------------------|-----------------------------------|--------------------------------------|---------------------|----------------------------------|----------------------|---------------------------|-------------------------|----------------|--------------------------|
| T PE                         | RANGE<br>IN.N.)                                       |                            | WE 16HT         | PRES.                 | TAS<br>(KTS)                      | PALF.<br>TURB.<br>TEMP.              | PFI<br>CCCC<br>CCCC | EAS<br>(KIS)                     | 2                    | CT PRIME<br>OVER<br>SIGMA | ALPHA<br>0/L<br>(CEG)   | SPEC.          | g H g                    |
| N. #0108<br>7116<br>1 F S J  |                                                       | 1. FC1CF<br>VI IF<br>(FFS) | 1. FOTCF<br>RMP | PROF<br>VIIP<br>(FPS) | PRIY.ENG<br>FUEL FLUM<br>ILBS/HRI |                                      | FTAP                | UX. ENG.<br>LEL FLCA<br>(LBS/HR) | AUX<br>TUNE<br>TEMP. | ALX.<br>CCOE              | ACX.<br>ENG.<br>ENF     |                | EN. PEP<br>OR IMPUSI     |
| CPFNO                        | CP INC                                                | CPPAR                      | CPAUD           | CDO                   | CELCOS                            | BELCOM                               | CXB                 | 7                                | 3                    | כו                        | *10                     | <b>*</b> aɔ    | H                        |
| 0. 133<br>725.0<br>4. 0304.2 | 2216.<br>8 0. 000 (49.                                | 166.7<br>650.0<br>C.CCC265 | 17474.          | 0.01735               | 173.3<br>1239.<br>0.00012         | 1604.6                               | .0.003517           | 170.5                            | 0.356                | 9,00                      | -5.c<br>c.62c<br>c.500  | .10066         | 2545.<br>1119.<br>U. 682 |
| 126.2                        | 9262<br>126.0<br>266.0<br>0.000476 0.00CC48 C.CCC265  | 315.7<br>650.0<br>0.000265 | 17327.          | 0.31727               | 170.3<br>1295.<br>0.30013         | 1.602.8                              | C.000517            | 170.0                            | 3.396                | 0.046                     | 0.615<br>0.615<br>0.500 | 15001.         | 2534.<br>1119.<br>0.640  |
| 72 6.0                       | 36.00                                                 | 464.4<br>650.0<br>0.000269 | 17175.          | 0.01720               | 170.3<br>1281.<br>C.0CC39         | 1606.9                               | 3.0000              | 170.c<br>40c.                    | 3.396                | 0.045                     | -5.1<br>C.503           | .1011c         | 1119.                    |
| 0.258                        | 0.258 45.C0 412.1<br>0.000472 0.0000546 0.000026      | 412.7<br>450.0<br>0.000268 | 1703C. 0.       | 0.01713               | 170 °.1<br>1277 °.<br>0.30008     | 1599.1 p. 0.821<br>0.00515 0. CCC516 | 0.821               |                                  | 0.396                | 6.06.5                    | -5.1<br>3.61<br>0.500   | 17174          | 2512.<br>1119.           |
| 725.0                        | 725.0 765.0 765.0 0.00.0 0.00 0.00 0.00 0.00 0.00 0.0 |                            | 16832.          | 9.01 707              | 1273.                             | 0.00500                              | 0.000519            | 170°C                            | 1677.6               | 0.0                       | 0.617<br>0.500          | .101.<br>0.037 | 1119.0                   |

| 5                          | CRUISE AT SF                                                       | SPEEC FCR 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 PER CENT                       | BES 1                 | RANGE WITH                       | HEADH IND                                                    | CF C.0            |                                  |                     |                           |                       |                          |                              |
|----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|----------------------------------|--------------------------------------------------------------|-------------------|----------------------------------|---------------------|---------------------------|-----------------------|--------------------------|------------------------------|
| TERE                       | RANGE<br>IN.P.)                                                    | FOR<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semina<br>Semin | WE IGHT                          | PRE S.                | IAS<br>(KIS)                     | ENCE<br>ENCE<br>ENCE<br>ENCE<br>ENCE<br>ENCE<br>ENCE<br>ENCE | ENG.              | EA (                             | 2                   | CT PRIME<br>OVER<br>SIGMA | ALPHA<br>5/1<br>(DEG) | SPEL.<br>RAALC<br>LAMED) | g.H.B                        |
| M.PCICE<br>VIIP<br>(FPS)   | M. POTCR                                                           | TACTCE<br>VIIF<br>(FFS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T. FOT CF<br>RHP                 | PROP<br>VTIF<br>(FPS) | PRIMERG<br>FLEL FLOW<br>(LBS/HR) | 8HP<br>AUX                                                   | ETAP<br>FFCP      | LX. ENG.<br>UEL FLOW<br>ILBS/FRI | PUX<br>TURE<br>TEMP | Aux.<br>ENG.<br>CODE      | AUX.<br>ENG.<br>PEHF  |                          | AUX.<br>EAJ. BPP<br>GA TAFUS |
| CP FAC                     | CP INE                                                             | CFPIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CPAUD                            | 000                   | CELCOS                           | DEL COM                                                      |                   | 7                                | ŝ                   | 13                        | CLW                   | 473                      | ğ                            |
| 0.587<br>725.0<br>0.000412 | 0.587 61.55<br>0.000412 0.0000052                                  | 5 645<br>CCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 79 1.<br>0. cooces            | 5000.                 |                                  | 1517.6                                                       | C.826<br>0.000371 | 288.4                            | 0.347               | 0.059                     | 0.471<br>C.50C        | .11ac?                   | 1877.<br>569.                |
| 0.468<br>725.0<br>0.000410 | 42.55<br>1666.<br>0. cccc90                                        | \$34°1<br>\$50°0<br>0°00(162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16665.                           | 5000.                 |                                  | 1515.6                                                       | 0.826<br>0.000370 | 285.                             | 1537.1              | 6.055                     | 0.471<br>C.500        | .1176.0                  | 1467                         |
| 0.758<br>725.0<br>J.000408 | 0.788 97.95<br>725.6 1567<br>3.050408 3.006688                     | 1102.3<br>650.0<br>1 C.EOC152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,241<br>1,000<br>0,000<br>0,000 | 5000.                 | 1.641<br>1.647<br>0.100L.0       | 1513.6<br>0.03832                                            | 0.666370          | 38.4                             | 15:347              | 0.058                     | -2.3<br>C.47C         | .11734                   | 1856.<br>247.<br>J. 178      |
| 725.0                      | 125.0<br>125.0<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            | 1220.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1641 3.                          | 5000.                 |                                  | 0.00026                                                      | 0.826             | 38.4                             | 1536.8              | C. 658                    | C.47C                 | 111766                   | 1846.                        |
| 3.569<br>725.0<br>0.00405  | 127.93<br>1578.<br>0. cocc84                                       | 1357.¢<br>650.¢<br>0.300152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 162<br>10000<br>0.0000           | 5000.                 |                                  | 1509.7                                                       | 0.000369          | 284.                             | 1536.4              | C-057                     | 0.469                 | 0.00.0                   | 1636.<br>546.                |
| 12090<br>725.0             | 142.55<br>175.0<br>1569.<br>1569.                                  | 5 1464.6<br>650.0<br>1 C.CCC152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16158                            | 50CC.<br>0.01620      |                                  | 1507.7                                                       | C. £2¢            | 38.4                             | 1536.0              | C.05 &                    | 0.469<br>0.500        | .11432                   | 1826.<br>546.<br>0. 172      |
| 12 £ 20 4 C 2              | 260<br>260<br>260<br>260<br>260<br>260<br>260<br>260<br>260<br>260 | 1544.4<br>650.0<br>C. CCC1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16695.                           | 50CC.                 |                                  | 1506.8                                                       | C.824<br>0.000348 | 38.4                             | 1535.7              | 0.056                     | 0.468                 | 11841                    | 1822.                        |

SECONDARY CONTINUES CONTINUES (SECONDS)

|                                                      | 72                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1912.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 376.                                | 135.                          | <b>3C2.</b>                            | ÷                                                        | .52.                 | 786.                         | 147.                          | 707.                                  | ;                            |
|------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|----------------------------------------|----------------------------------------------------------|----------------------|------------------------------|-------------------------------|---------------------------------------|------------------------------|
|                                                      | 1                                      | Con in Account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7        | 1.949.<br>2.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1924.                               | 1362.                         |                                        | <u>.</u>                                                 | 1. 46.<br>. 96.      | 1625.                        | 100 co                        |                                       |                              |
|                                                      | 68446<br>(FFL)                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •        | 2.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                 | <b>6.4</b>                    | £.5<br>£.69                            | , <b>7.3</b>                                             | £.9<br>6.007         | 5.0                          | 5.3                           | 6.20                                  | 7 7                          |
|                                                      | 2 / S                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A CO     | 0-23<br>0-835<br>0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2<br>-0<br>-0<br>-30<br>-30<br>-30 |                               |                                        | 0.641                                                    |                      | -2.3<br>0.844<br>C.360       | 0.846                         |                                       |                              |
|                                                      | 200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                   | 200                           | 930                                    | 190                                                      | 0.00                 | 58-                          | 6.970                         | c.q71                                 | 5.072                        |
|                                                      | 7                                      | \$55<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-146                               | 3.190                         | 35.167                                 | 00183                                                    | 1816.                | 9.105                        | 1856.0                        | 356.0                                 | 0.187                        |
|                                                      | 2                                      | LE FEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •        | *:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.3<br>C.5.3                       | 3.3                           | 13:1                                   | 15.2                                                     | 451                  | 73.0                         | 74.5                          | 7.<br>20.                             | 74.3                         |
| ENGINE ROT                                           |                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        | c. &ce 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.2CC333                            | 0.0000                        | C. 22.C<br>0.000342                    | C.82C<br>0.000343                                        | 0.00034              | 0.00352<br>C.00352           | C.0CC353                      | 0.000361                              | <b>3</b>                     |
| Ž.                                                   | 2300                                   | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEL COM  | 1856.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.056.0                             | 0.0000.0                      | 1.00062                                | 1055.0                                                   | 1#56.0<br>0.00C71    | 1.000.0                      | 1854.0                        | 1856.0                                |                              |
|                                                      | IASs.                                  | FUEL 4. EN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DELCOS   | 76.<br>896.<br>0.33003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000                             | 16.100.00                     | 9.00000                                | 7. 2. 2. 2. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | 77.4<br>6.30001      | 78.4<br>832.<br>6.30001      | 821.0001.0                    | 79 1<br>61 1<br>6 30002               | 4.67                         |
|                                                      |                                        | 24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>24.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00 | 93       | 0.30630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500.                                | 1360.0                        | 1500.0                                 | 2000.                                                    | 2500.                | 3000.0                       | 35.00.                        | .0054                                 | .500.                        |
| The need Pental                                      | LE 16-1                                | F. FOTCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | grad)    | 14882.<br>9.000011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16975.<br>0.000011 0                | 16 fe f.<br>6.3005 ii a       | 1686g.<br>0. C300i2                    | 1685 ;-<br>0. COOCIE                                     | 1684 5.<br>0. C3061. | 1683£.<br>0. COOCI? 0        | 1682¢.                        | 16817.                                | 16657.                       |
| 15 55 CE 5 32 35 35 35 35 35 35 35 35 35 35 35 35 35 |                                        | 1.AC1C6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *****    | 140.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.8.0<br>\$40.0<br>0.000.0          | 135.5                         | ###################################### | 2:057                                                    | 355.5                | 450.0<br>450.0<br>1.000.0    | 1.015                         | # # # # # # # # # # # # # # # # # # # | # 10<br># 10<br># 10<br># 10 |
| 110000                                               | BANGE<br>IN. P.                        | × 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INC      | ٥. درازان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65.55<br>000.200                    | 11:30<br>06:333               | 366216                                 | 6147                                                     | 61157<br>000230      | 64.26<br>1143.<br>0.000233 C | 0.000240                      | 1155<br>0.306244 0.                   | 66.94                        |
| <u>ਵ</u><br>ਹ                                        | ### ### ### ### ###################### | 7. 40130 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £) 04443 | 25.4.00<br>C. 60.00<br>C. 6 | 0.444<br>725.3<br>C. CCC 153 0.     | 0.503<br>725.0<br>0.00015+ 0. | 92 12<br>92 000 130 0.                 | 32528<br>3.cco152 0.                                     | 9223<br>0.000157 v.  | 9,541<br>0.0001to o.         | 92351<br>0.000161<br>0.000161 | 92 £43<br>6. 600163 0.                | 9:574                        |

|                  |                                         |              | CI75 169A                                                                       | COC                                | J.C66                | 4.068    | 0.048<br>J. UCL? | 0.058<br>J.006£ | 0.068<br>6.0068 | 4.066<br>0.3068    | J. 0666           | 0.068<br>0.0063 | 0.068<br>J. 0068 | 0.0068  | 0.0064            | 0.067<br>6.066  |
|------------------|-----------------------------------------|--------------|---------------------------------------------------------------------------------|------------------------------------|----------------------|----------|------------------|-----------------|-----------------|--------------------|-------------------|-----------------|------------------|---------|-------------------|-----------------|
|                  |                                         |              | 5                                                                               | Called                             | 0 - 1056<br>0-11 C71 | C.1 058  | Itomico          | 0.00010         | 0.10147         | 0.0000.0           | L.CC87            | 0.0001          | 0.0068           | 9 . COS | 590770            | C. CO86         |
|                  |                                         | •            | Ē                                                                               | CPRC                               | 0.00011              | 0.00011  | :1633.c          | 0.65311         | 0.000 ii        | 3.6511:<br>3.65011 | 0.00011           | 2457            | 0.00011          | 0.03011 | 0.96311           | c. 66911        |
|                  |                                         |              | £                                                                               | E                                  | 0.139                | 0.799    | 0.703            | 0.709           | 0.709           | 0.733              | 0.709             | 0.709           | 0.709            | 0.709   | 0.709             | 0.709           |
|                  |                                         |              | TPUST<br>IC<br>WE IGHT                                                          | 06190                              | 1 . C60              | 0.5.0    | 0,000            | 3,0000          | 0.000           | 090 0.0            | 090.0             | 0,000           | 1.060            | 0.00    | 0.5°60            | 0.0             |
|                  |                                         |              | TOTAL<br>FUEL<br>FLCG<br>ILES/HR)                                               | 16.0<br>06.6.                      | 1350.                | 1387.    | 1385.<br>455.    | 55.4            | 1380.           | 1378.              | 1376.             | 1374.           | 1371.            | 1364.   | 1367              | 1367.<br>55.4   |
|                  |                                         |              | FRIT<br>GAG<br>CCOE                                                             | 1000<br>CCCE                       | ۵.                   | <b>4</b> | 44               | •4              | <b>6</b> <      | <b>u</b> <         | <b>u</b> <        | <b>a.</b> «     | •4               | 44      | u. <              | ٨.              |
|                  | •                                       | O HRS.       | Parit<br>Tean<br>Farit                                                          | AUX.ENG<br>FUEL FLOW<br>(LES/HR)   | 1633.1               | 1631.9   | 1630.6           | 1629.4          | 1628.2          | 1627.0             | 1625.8            | 1624.6          | 1623.4           | 1622.2  | 162830            | 1621.0          |
|                  | AFES.<br>5000.<br>1000.                 | C FCA 0.200  | TAS<br>(KTS)                                                                    | PRIN.ENG<br>FUEL FLUA<br>(1.05/HR) | 1296.3               | 1255.    | 1253.            | 1591            | 1288.           | 1286.              | 0.0<br>1284.      | 12 62.          | 12 79.           | 1299    | 1275.             | 1275.           |
| <b>-</b>         | MEIGHT<br>(185.)<br>16059.<br>16059.    | * 1.0¢C      | PRES.                                                                           | Sec.                               | 1000                 | .;<br>;; | 3<br>3<br>3<br>3 | 1300.           | 1300.           | .;<br>;;           | 1000.             | 300E            | 1000.            | .00C1   | .3 <sub>001</sub> | 1000            |
| 1000. F          | 100 M                                   | LANG AT 1/A  | WE IGHT                                                                         | T. PUTOR                           | 16099.               | 16071.   | 1 6043.          | 16015.          | 15986.          | 15965.             | 15933.            | 15905.          | 15976.           | 15856.  | 15823.            | 15823.<br>266.  |
| HEE IC           | 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. | HOVEF, CP LI | 10E<br>15E<br>10E<br>10E<br>10E<br>10E<br>10E<br>10E<br>10E<br>10E<br>10E<br>10 | 1.5CTG9<br>VIIIF<br>(FP.5)         | 1544.4               | 1572.1   | 1555.9           | 1627.6          | 655.3           | 1686.5<br>696.0    | 1716.4            | 1727.5<br>65C.0 | 1765.4           | 1756.6  | 1666.6            | 182C.2<br>65C.C |
| TRANSFER ALTITLE | 1.137 CA.                               | TAKEDFF, HOV | ALAGE<br>(4.F.)                                                                 | 4. ROTCK                           | 156.60               | 156,50   | 15666            | 150.GC<br>2064. | 150,50          | 150,00             | 1 50° CC<br>2027. | 150.CC<br>2062. | 1 50 co<br>20 co | 15051   | 1 20285           | 150.00          |
| 181              |                                         | 1.21         | 11 PE                                                                           | M.FCICA<br>VIIF                    | 1213                 | 121:3    | 124.73           | 124.0           | 1:31            | 125.7              | 125.0             | 125.0           | 125.0            | 123.0   | 123:7             | 125.0           |

CHANGE FALCAL, REPCVE 1000, LE.

THE FUEL WEIGHT ALTS.

[185] [186] [186] [195] [195]

JOHN TOWNS THE WASHING THE STATE STATE STATES AND STATES APPLIES.

|          | 417                                                                                          | AUX.<br>Eibs. BHP<br>GK IMRUST    | ž          | . 1893.<br>555.<br>0.962                        | 10.00°                          | 1087.<br>55.<br>0.942        | 106?<br>55.<br>0.942 | 1380.<br>55.<br>0.942   | 1077.                          | 1074.<br>55.<br>0.941       | 1070.<br>541              | 1068.<br>53.<br>0.942     | 1065.<br>53.<br>0.942 | 1061.<br>53.  |
|----------|----------------------------------------------------------------------------------------------|-----------------------------------|------------|-------------------------------------------------|---------------------------------|------------------------------|----------------------|-------------------------|--------------------------------|-----------------------------|---------------------------|---------------------------|-----------------------|---------------|
|          | 101 A.<br>FLEL -10.                                                                          |                                   | 7 <u>0</u> | 361.                                            | 36¢.                            | 965.<br>0.067                | 4ec.0                | 96.0.<br>0.0r7          | 962.                           | 961.                        | 966.                      | 955.                      | 958.                  | 951.<br>0.Jt7 |
|          | ALPHA<br>D/L<br>(CEG)                                                                        | ACX<br>FRG.<br>PEHF.              | ž          | 1.04.n                                          | 0.044<br>0.044<br>0.444         | 0.043                        | 0.443                | 0.04.<br>0.04.<br>0.04. | 0.043                          | 0.043                       | 0.043<br>0.043            | 0.04.2<br>C.400           | 0.42                  | 0.04.2        |
|          | CT PRIME<br>OVER<br>SIGNA                                                                    | ALX.<br>CCOE                      | 10         | 0.056                                           | 0.056                           | 950-0                        | 0.056                | 0.055                   | 0.05                           | 0.055                       | 0.055                     | 0.055                     | 0.055                 | 0.054<br>P    |
|          | 7                                                                                            | TUX<br>TURE:                      | 5          | 1207.7                                          | 3:17£                           | 1297.6                       | 1207.6               | 1267.5                  | 1207.5                         | 120174                      | 120174                    | 1206.2                    | 3,174                 | 1266.2        |
|          | ESS                                                                                          | LX. ENG.<br>LEL FLOM<br>(LBS/HR)  | <b>"</b> ) | 155.                                            | 15.3                            | 155.                         | 74.5                 | 15:5                    | 155.                           | 156.5                       | 74.5                      | 134.5                     | 13.5                  | 134.5         |
|          | ENG.                                                                                         | FIAP                              | CXA        | C. 635                                          | C.835<br>0.000183               | C.835<br>C.000183            | 0.000163             | 0.835                   | C.0CC183                       | C. £35<br>0. CC0 1 £2       | C.835<br>0.000182         | 0.00179                   | 0.835°.               | 0.635         |
|          | ADE<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND<br>AND                    | BHP                               | DELCOM     | 1375.0                                          | 1374.4                          | 1373.8                       | 1372.2<br>0.0003A    | 1372.6                  | 1372.0                         | 0.00037                     | 137C.8<br>0.00037         | 1370.5                    | 1365.9                | 1369.3        |
|          | IAS<br>(KIS)                                                                                 | PRIA-ENS<br>FUEL FLUA<br>(LBS/HR) | DELCDS     | 75.6<br>813.                                    | 75.6<br>812.                    | 9.52                         | 75.6<br>810.         | 75.4<br>809.            | 75.6<br>808.<br>0.0            | 75.6<br>0.0                 | 75.6<br>806.              | 945.0                     | 74.6<br>804.          | 803.          |
|          | PRES.                                                                                        | 980P<br>917V<br>617Y              | 99         | 1000.                                           | 1000.                           | 10C0.                        | 1000.                | 1000.                   | 1000.0                         | 1000.0                      | 1000.0                    | 1000.0                    | 1000.                 | 1000.0        |
| ۶.       | LE IGHT                                                                                      | 1. POTOR                          | CPNUD      | 14 E2 3 . 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 14774.<br>573<br>0. COCCCS      | 14 724.<br>575<br>0. cooccs  | 1467£.<br>0. cooces  | 14636.                  | 14581.                         | 14533.                      | 14485.<br>0. cooccs       | 14437.                    | 14385.                | 14341.        |
| C.SCC PR | 12E<br>13E<br>185                                                                            | 1.PCTCR<br>VIIP<br>(FFS)          | CFF AR     | 1820.2<br>650.0<br>C.5CC33                      | 1666.6<br>650.0<br>C.CCC033     | 1516.5<br>650.0<br>0.000033  | 1565.2               | 2013.4                  | 2041. ¢<br>\$50.00<br>0.000033 | 2169.7<br>650.0<br>C.coco32 | 650333.3<br>0.00033       | 2265.7                    | 2253.7                | 2301.6        |
| ITER FOR | RANGE<br>(N. W.                                                                              | A. POTCR                          | CP INC     | 15c.co<br>3c6.                                  | 15C.00<br>5C3.<br>0. 00C160     | 15C.30<br>\$£00.<br>0.00C159 | 156.00               | 156.00                  | 156.36                         | 15C+00<br>ERE<br>0.00C155   | 15C.03<br>8E5<br>0.0CC154 | 15C 00<br>6E3<br>0.00C155 | 156,00                | 150.00        |
| נט       | 11<br>11<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | M.RCTCR<br>VIIP<br>(FPS)          | CPFAC      | 12 3 47<br>6. 0001 59                           | 12 257<br>72 250<br>0. CCC 1 50 | 125.0                        | 12457<br>C. CC0150   | 125.0                   | 125.0<br>6.000150              | 125.0                       | 12657                     | 125.0                     | 12 250<br>0.000149    | 125.0         |

|                                                                                            | EFPRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                 |          | 1469,                  | 1429                   | .6861                                        | 1348                        | 1 364                                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|------------------------|------------------------|----------------------------------------------|-----------------------------|----------------------------------------|
|                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AUX.<br>cki. BiP<br>Ck ingus!     | æ        | 1505. 1469.<br>J. 543  | 124.<br>0.546.         | 1864.<br>U.945                               | 1947<br>1.946.2             | 1827.                                  |
|                                                                                            | CEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                               | <b>.</b> | 132                    | 0.11                   | 1C.6                                         | 16.3                        | 10.0                                   |
|                                                                                            | ALPHA<br>O/L<br>(CEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLE.                              | 2        | -2.6<br>0.838<br>C.400 | -2.6<br>C.840<br>G.400 | -2.6<br>0.841<br>0.490                       | -2.6<br>0.843<br>C.400      | 0-2.5                                  |
|                                                                                            | CVER<br>CVER<br>SIGNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COC.                              | 5        | 0.055                  | 0.055                  | 0.056                                        | 6.657                       | 6.95                                   |
|                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCA .                             | 3        | 2.165<br>1856. C       | 1956.6                 | 3-171                                        | 3.171                       | 1856.0                                 |
|                                                                                            | FAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ux. ens.<br>uel fich<br>iles/ha)  | ,        | 70.5                   | 65.3                   | 73.4                                         | 66.6                        | 69.6                                   |
| THE BAT                                                                                    | CCOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FFCF                              | CXR      | C.82C                  | 0.820                  | T<br>C.82C<br>0.0C0326                       | 1<br>C.0c0327               | C. C. C. 2.26                          |
| THE FLE                                                                                    | TRIA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AUX                               | CEL COS  | 1856.0 T C. 82C        | 1856.0                 | 1856.0                                       | 1856.0                      | 1856.0                                 |
| NITH PAXIMUP RIC AT NEMBL ENGINE DATE FOR PAIL THE HORIZONIAL CEMPONENT OF THE FLIGHT PATH | IAS<br>(KTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRIN.ENG<br>FLEL FLCM<br>(LOS/HR) | GELCOS   | 374.5                  | 365.0                  | 12.5<br>852.<br>G.J                          | 72.5<br>842.                | 72.5<br>631.                           |
| XIHUP RI                                                                                   | PRES.<br>ALT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROF<br>VIIP<br>(FP 5.)           | 8        | 1000.                  | 1500.                  | 20C0.                                        | 25 60.                      | 3000.                                  |
|                                                                                            | HE ICHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A 1. 601 0 F                      | C PNUD   | 14341.<br>c. coocci    | 14336.                 | 14331. 2000.<br>51. cooocs c.00 £20          | 14326.                      | 14 32 1.                               |
| CCC. Fl.                                                                                   | PERE CONTRACT CONTRAC | 1.5CTC<br>5115<br>(FFS)           | CFPAR    | 23C1 • £               | 7,5000.0               | 2311.6<br>650.0<br>0.000066                  | 2:14.7<br>650.0<br>0.000657 | 2321.5                                 |
| CLEM TC 3CCC. FT.                                                                          | RANGE<br>(N. P.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *. ROTCR<br>RHP                   | CP INC   | 156.03                 | 150.41                 | 156.83                                       | 151.28                      | 1.671 151.73 2321.5<br>725.0 947 656.0 |
| 10                                                                                         | 1 1 2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M. RCICR<br>VIIP<br>(EFS)         | CPFRC    | 12847<br>0.350         | 125.3<br>C.000147      | 125.6<br>125.6<br>0.330149 0.306166 C.CGCG56 | 125.0<br>0.00145            | 725.0                                  |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |          |                        |                        |                                              |                             |                                        |

|                     | 411                      | AUX.<br>ENG. BPP<br>UX HRCSI      | 3      | 1613.<br>672.<br>0.723        | 1605.<br>072.<br>0.721       | 1557.<br>071.<br>0.718          | 1590.<br>679.                                      | 1582.<br>670.<br>0.713      | 1575.<br>669.<br>0.711      | 1568.<br>568.<br>5. 709    | 1561.<br>% 7                | 1553.<br>u67:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1546.<br>606.<br>0.700       | 1549.<br>905.<br>3.647      |
|---------------------|--------------------------|-----------------------------------|--------|-------------------------------|------------------------------|---------------------------------|----------------------------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
|                     | SPEC.<br>RANGE<br>(ARPP) |                                   | 400    | 11017                         | .118.2                       | 11.867                          | 0.007                                              | 11411.                      | 11541.                      | .11566                     | 05511.                      | .12015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12238                        | .12060                      |
|                     | ALPHA<br>071<br>(066)    | AUX.<br>FEFF                      | 43     | 6.541<br>0.500                | C.5.4.                       | -2.e<br>C.546<br>C.506          | 2 5<br>0 546<br>0 500                              | C.514.9                     | 0.544                       | -3.0<br>5.544              | 0.30                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.500<br>1.400               | -3.1<br>0.542<br>C.500      |
|                     | T PRIME<br>CVER<br>SIGPA | CCC.                              | 5      | 5.044                         | 200                          | 0.043                           | 0.0                                                | 6.042                       | 200                         | 8-                         | 96                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.039                        | 0.039                       |
|                     | )<br>1                   | ALX.<br>TURE.<br>TEMF.            | 5      | 1509.1                        | 1608.7                       | 0.345                           | 1607.7                                             | 1667.2                      | 1606.8                      | 1666.3                     | 1,349                       | 3,349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.349                        | 1604.5                      |
|                     | EAS<br>(KIS)             | LX. ENG.<br>LEL FLEW<br>(LBS/HR)  | 7      | 335.                          | 143.6                        | 143.6                           | 143.6                                              | 143.6                       | 143.6                       | 143.6                      | 143.6                       | 163.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3326                         | 332.                        |
| OF C.C              | PRIK<br>ENG.<br>CCDE     | FILE                              | CXB    | 0.82¢<br>0.0¢¢2333            | C.826                        | 0.000273                        | 0.3C0272                                           | 0.826                       | 0.826<br>C.CCC212           | 0.00021                    | 6.E251<br>C.CCC211          | 0.000211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000271                     | 0.826                       |
|                     | PRICE<br>TENES<br>(R)    | AUX                               | DELCOM | 1,60.1                        | 1458.7                       | 0.00643                         | 1455.9                                             | 1454.6                      | 0.00630                     | 1451.9                     | 1450.6                      | 1445.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00613                      | 3.00610                     |
| RANGE WITH HEADWING | IAS<br>(KTS)             | PRIM-ENG<br>FUEL FLOW<br>ILBS/HRI | BELCUS | 150.1                         | 150.1<br>934.<br>0.30331     | 150.1<br>932.<br>0.30031        | 150.1<br>929.<br>0.0000.3                          | 150.1<br>927.<br>0.00000    | 150 1<br>925.<br>0.00000    | 150.1<br>522.0000.0        | 150.1<br>929.<br>0.00000    | 1.50.1<br>91.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.50.1<br>916:<br>0.00000    | 150.1<br>914.<br>C. 30003   |
| BES 1               | PRES.<br>ALT:<br>(FT)    | PROF<br>VIIP<br>FPS1              | 89     | 3000.                         | 33 60.<br>0.31 43H           | 3000.                           | 3060.                                              | 3000.                       | 3000.                       | 3000.                      | 3000.                       | 3000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3000.                        | 3000.                       |
| PER CENT            | WE IGHT                  | I. FOTCF                          | CPNUO  | 14321.<br>106.<br>0. cocc41   | 14194.                       | 14067.<br>0. cooc4c             | 13941.                                             | 1341 5.                     | 13685.<br>55.<br>0.000038   | 13562.                     | 13436.                      | 13313.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131 ge.<br>9 e.<br>0. cooc36 | 130 JE.                     |
| EEC FCR 99          |                          | T.FCTCP<br>VIIP<br>FPCJ           | CPFAR  | 2321.5<br>656.0<br>C.c.c.c.14 | 2448.5                       | 2575.5                          | 21002.5                                            | 2828.1<br>650.0<br>0.000113 | 2553.5<br>656.6<br>6.000113 | 3675.6                     | 3264.5<br>650.0<br>C.000113 | \$ 055<br>\$ 055 | 3454.5<br>550.0<br>0.000113  | 3565.1<br>650.0<br>0.000112 |
| HSE AT SP           | RANGE<br>(N.F.)          | r. rcick                          | CP INC | 151.73<br>1267<br>0.066650    | 156.73<br>1360.<br>0. cccc49 | 16]; 73<br>1 3 53.<br>0. cccc46 | 194.73                                             | 21 13.73                    | 22453<br>1132<br>0. COCC44  | 241,13                     | 256.73                      | 271.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286.73<br>1305.<br>0. CCCC40 | 30c,00<br>1259<br>0.00cc39  |
| CFU151              | 11.<br>11.<br>12.<br>13. | 7<br>~ .<br>Func<br>Sup<br>Sup    | CP P90 | 124.0                         | 12571<br>C. CCC36C           | 2.071<br>725.5<br>0.000355      | 2. 1. 1. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | 2: £71<br>0: 000356         | 22378<br>6.660355           | 2:471<br>725:0<br>3.600354 | 2.571<br>725.0<br>0.000353  | 2.6.70<br>5.000.55<br>6.000.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.770<br>725.C<br>0.000351   | 725.0<br>0.cc635c           |

| FUEL      |  |
|-----------|--|
| FESERVE F |  |
| FOR       |  |
| FRS.      |  |
| C.250     |  |
| FOR       |  |
| LCITER    |  |

| *                         | AUX.<br>E.AG. BEP<br>Un Thrust    | ē        | .1022.<br>J. 943                                   | 1019.<br>0.942                  | 1017.<br>0. 542                              | 1014.<br>0.942                         | 1011.<br>0.942                               | 1.108.<br>0.943                                               |
|---------------------------|-----------------------------------|----------|----------------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------------------------|
| FLEL FLU.                 | Ψ.3                               | <b>3</b> | 435.                                               | 835.<br>0.cc?                   | 434.<br>0. uC?                               | 833.<br>0.0C7                          | 632.                                         | 831.<br>0.00?                                                 |
| ALPHA<br>D/L<br>(CEG)     | PEKG.                             | מי       | 2-7-3                                              | 3-7-3                           | 0-5.3                                        | 0-5.3                                  | 0-5-3                                        | -2.2<br>0.0<br>6.400                                          |
| T PRIME<br>CVER<br>SIGNA  | ACX.<br>CCDE.                     | 5        | C.C53                                              | 0.052                           | 0.052                                        | 0.052                                  | 6.052                                        | C.052                                                         |
| 2                         | ACK<br>ACK<br>ACK                 | 5        | 0.17C<br>852.1                                     | 0.170                           | 0.17C<br>352.1                               | 9:27                                   | 852.1                                        | 0.16E<br>852.1                                                |
| EAS<br>KIS                | JX. ENG.<br>LEL FLCW<br>(LBS/HR)  | 7        | 78.                                                | 16.3                            | 69.9                                         | 69.5<br>7E.                            | 76.9                                         | 69.0<br>7e.                                                   |
| PFIF<br>CCCE              | ETAP C                            | CXB      | C. ECC264                                          | C. £35<br>0.000264              | 0.000263                                     | C.835                                  | 0.835<br>c.0c0263                            | 0.835<br>c.cc0258                                             |
| TERES.                    | PHP                               | DELCOM   |                                                    |                                 |                                              |                                        | 1359.2                                       |                                                               |
| IAS                       | PRIG.ENS<br>FUEL FLOW<br>(LBS/HR) | DELCDS   | 73-1<br>754.                                       | 73.1<br>0.0                     | 73.1                                         | 73.1                                   | 73.1<br>755.                                 | 754.                                                          |
| PRES.                     | PROF<br>VILP<br>(FPS)             | 993      | 3000.                                              | 3000.                           | 3000.                                        | 3000.                                  | 30C0.                                        | 3000.                                                         |
| WE IGHT                   | _:«                               | CPNUO    |                                                    |                                 | 12994.<br>0. COOCCE                          | 12953.<br>0.00000E                     | 1291].<br>53.<br>0. COOCCE                   | 12865.<br>9.000čči                                            |
| FUEL<br>FEEL<br>FEEL<br>S | 1.2CTCP<br>VIIP<br>(FFS)          | CPPAR    | 2565.1<br>666.0<br>5 0.00066.0                     | 3 3456.5<br>450.0<br>5 C.CCC045 | 3648.6                                       | 2650.3<br>5.02.5<br>6.03.5<br>C.CCCC4! | 3731.5                                       | 3773.5<br>£56.0<br>C.CCC644                                   |
| RANGE                     | A.ROTCR<br>RHP                    | CP INC   | 30c.30<br>641.<br>c. 00c145                        | 25.0 300.00<br>.25.0 63%        | 125.0<br>125.0<br>1.000148 0.000144 0.000045 | 30C 00<br>E33.                         | 325.0<br>725.0<br>5.000148 0.000142 (.00045) | 22.0 306.30 3733.5<br>628. E50.0<br>.300147 0.000144 C.CCC044 |
| T I'VE                    | M. RCTOR<br>VIED                  | CPFFO    | 2. £55 30C,30<br>725.0 E41.<br>G. CCC14E C. 30C146 | 2.505<br>725.0<br>C. C0014E     | 225.3<br>226.00148                           | 3, 639<br>725, 0<br>0, 000 149         | 3.555<br>725.0<br>3.000148                   | 3.169<br>724.0<br>0.000147                                    |

ISSICN FLEL RECLIPEC = 3545.08 ESERVE FUEL RECLIREC = 206.46 OTAL FLEL RECLIREC = 3773.53

## LIST OF REFERENCES

- Layton, Donald M., <u>Helicopter Performance</u>, Naval Postgraduate School, Monterey, California, 1980
- 2. Zalesch, Steven E., Preliminary Design Methods Applied to Advanced Rotary Wing Concepts, University of Maryland, May 1973.
- 3. Layton, Donald M., <u>Helicopter Design Manual</u>, Naval Postgraduate School, Monterey, California, July 1983.
- 4. Carmona, W. F., Computer Programs for Helicopter High Speed Flight Analysis, Master's Thesis, Naval Postgraduate School, Monterey, California, 1983.
- 5. Hiller Aircraft Corporation Report 60-92, Proposal for the Light Observation Helicopter Performance Data Report, 1960.
- 6. <u>Class Notes</u>, Helicopter Performance Course, Naval Postgraduate School, Monterey, California, 1963

## INITIAL DISTRIBUTION LIST

|    |                                                                                                             | No. | Copies |
|----|-------------------------------------------------------------------------------------------------------------|-----|--------|
| 1. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22314                       |     | 2      |
| 2. | Library, Code 0142<br>Naval Postgraduate School<br>Monterey, California 93943                               |     | 2      |
| 3. | Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943 |     | 1      |
| 4. | LT Allen C. Hansen, USN Air Department USS Enterprise (CVN-65) FPO San Francisco 96601                      |     | 5      |
| 5. | Professor Donald M. Layton<br>Code 67Ln<br>Department of Aeronautics                                        |     | 5      |
|    | Naval Postgraduate School<br>Monterey, California 93943                                                     |     | •      |
| 6. | Aviation Safety Programs Code 034 Zg Naval Postgraduate School Monterey California 93943                    |     | 2      |