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THE DERIVATION OF THE MAPPING EQUATIONS AND DISTORTION

FORMULAE FOR THE SATELLITE TRACKING MAP PROJECTIONS

by

Gregory Cote Arnold

(ABSTRACT)

Rigorous derivations of the Satellite Tracking conic and cylindrical
projections are presented. The first fundamental quantities of the
projection surface parameters as functions of spherical earth para-
meters are developed. Using these quantities, newly derived in this
paper, general equations for the distortion in length, area, and
azimuth are developed. Examples of the graticule and distortion

values are given for the Landsat orbit.
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1. INTRODUCTION

The growing use of remotely sensed earth imagery has prompted

interest in a new type of map projection, one in which some relation-
ship between satellite position and the earth is preserved during the
transformation, rather than the preservation of some feature or prop-
erty of the earth itself. A good example is the Space Oblique
Mercator described by Snyder (1978) on which conformality is preserved

along a satellite groundtrack.

The Satellite Tracking projections have the property of portraying
all groundtracks of a particular satellite as straight lines. The
advantage of this is that, once the graticule is constructed, knowing
the location on the sphere of any subpoint allows the entire revolu-

tion to be drawn.

1.1 Background
In his article "Map Projections for Satellite Tracking", Snyder (1981)
introduces the cylindrical and conic Satellite Tracking projections.

The article briefly discusses the concept of satellite apparent

longitude from which the relationships between the revolving satellite r
and the rotating earth are derived, and includes the development of
the mapping equations and examples of the graticules of both projec-

tions.




Although the mapping equations are developed, the complete relation-
ship between coordinates on the sphere and coordinates on the projection
surface is not. To define this relationship, and subsequently derive
general formulae for expreséing various types of distortion on the
projection surface, the fundamental quantities of each projection must

be known. These are not determined by Snyder.

1.2 Objective

The objective of this thesis is the derivation of general distortion
formulae for the Satellite Tracking map projections. This is accom—
plished by first deriving the fundamental quantities of the projections
which relate the change in ¢,A on the sphere t~ the change in the pro-
jection parameters on the plane. From quantities, general equa-
tions for length, area, and angular distortion are derived. The equa-
tions used in the computation of the fundamental quantities and distor-

tion formulae are given in Pearson (1977).

1.3 Scope

After a brief explanation of terms and concepts as given in Richardus
and Adler (1972), a complete rederivation of the two projectiods is
presented. The derivations are included here for two reasons: first,
each step is completely explained, which should make them easier to
follow than the original; and second, the resulting mapping equatiomns
are the basis for the determination of the distortion formulae.

In the chapter on distortion analysis, the fundamental quantities and

-
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distortion equations are derived. Finally, numerical. examples using
the Landsat orbit are given.

Changes in the definition of some variables will affect the appearance
of several equations. Specifically, motion of the satellite along its
orbit will be calculated from the ascending node, the customary point
of reference, rather than the descending node. Also, Snyder refers to
a non-rotating earth which he later allows to rotate to complete his
description of satellite motion. Here, the non-rotating earth concept
is replaced by referencing the satellite to an astronomical coordinate

system.

Three conditions are assumed in the derivation of the mapping equations
1. The earth is spherical and of uniform mass,
2, the orbit is circular, i.e., satellite velocity is constant,
3. the rotation axes of the selected astronomical and earth-fixed

coordinate systems are coincident.

Plotting the groundtrack is equivalent to orbit determination where
the above conditions serve as the math model of the orbit. Recogni-
zing the limitations of such a crude model, extrapolation on any
groundtrack should be restricted to the revolution containing the

known satellite subpoint.

1.4 Satellite Apparent Longitude
Two types of longitude are used in the derivation of the mapping
equations: first, earth-fixed, or geodetic, longitude ()), and second,

satellite apparent longitude (1”), defined in section 3.1.3. The

'
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meridians on the projection represent geodetic longitude. However, in
order to compute the parallel spacing necessary to allow straight line
groundtracks, the motion of the satellite must be taken into consider-
ati:on. Therefore, the derivation of the mapping equations for ¢ will

be based on A" imstead of A.
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2. MAP PROJECTION CONCEPTS

2.1 The Projections

The transformations are applied to positions on a spherical earth of
radius R, defined in the latitude, longitude (¢,)) coordinate system.
The two projection surfaces, the cylinder and the cone, are oriented
relative to the sphere in the normal aspect, i.e., their axes coincide
with the polar axis of the earth. The plane coordinate systems are
chosen such that the parametric lines of that system correspond with
the projection of the parametric lines of the sphere. On the cylinder,
where the graticule is composed of perpendicular straight lines, the
Cartesian (x,y) system is used. On the cone, where meridians are
straight lines converging at its apex, and parallels are arcs of concen-
tric circles, the (p,8) system is used. The line of contact between
the projection surface and the sphere is a parallel of latitude along
which scale is true. A secant cone or cylinder will have two standard

parallels, and a tangent surface will have one.

2.2 Distortion On Map Projections

Regardless of the type of transformation, all of the relationships
existing on the sphere cannot be duplicated on the plane. Any pro-
jection will contain distortions in distance, direction, size or
shape. The Satellite Tracking projections sacrifice some desirable
properties in order that satellite groundtracks are preserved as

straight lines.

.\
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2.2.1 Length distortion

Length, or scale, distortion is a measure of the difference in ler
of a line on the projection surface compared with the length of tt
same line on a sphere which has been reduced to map scale. It is
usually expressed as a scale factor, the ratio of the two distance

Scale factor = distance on the plane
distance on the sphere

The scale factor along a standard parallel or meridian, where scal
true, is 1. A scale factor greater than 1 indicates an increase i
length on the projection; a value less than 1 indicates a decrease

in length.

On most projections, the scale factor is dependent on the azimuth
line. Formulae to be developed here are for distortion along the

meridians (Mm) and along the parallels (Mp).

Conformality is the property which maintains the shapes of differe

tially small areas on a projection. This means that, although the

magnitude of the scale distortion changes across the map, at any [
Mm = Mp.

This condition will be used in the derivation of the mapping equat

2.2.2 Area distortion

Area distortion (Da), also expressed as a ratio, compares an area
the map with the same area on the earth at map scale.

Da = area on the plane
area on the sphere




'

Because the parametric curves of the two plane coordinate systems are
orthogonal, the area bounded by two differentially close pairs of
curves is the product of the lengths of the lines separating them.

Da = Mm Mp

2.2.3 Angular distortion

Angular distortion is measured by comparing an azimuth on the sphere to
its projected azimuth on the plane. For the Satellite Tracking pro-
jections, it is a function of azimuth and latitude. Angular distortion
will be zero, i.e., sphere azimuth equals plane azimuth, wherever the
condition of conformality is satisfied; otherwise, some distortion will

be present.

At each point on the sphere there exists a pair of perpendicular lines
that will remain perpendicular during the transformation; along these

lines, angular distortion is zero.
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3. THE DEVELOPMENT OF THE MAPPING EQUATIONS

3.1 Elements Of The Satellite Orbit

Unlike projections which deal only with parameters of the earth-fixed
coordinate system, the Satellite Tracking projections must take into

account the motions of satellite revolution and earth rotation. This

is because, under the above assumptions, the satellite orbital plane is

stationary with respect to the stars, with its earth orientation con-
stantly changing due to earth rotation. Because the transformation
between these two systems is a rotation about the volar axis, only

longitude is affected.

To develop the projections, satellite motion along its orbit must be
defined in terms of earth-fixed coordinates (¢,A). This is done by
first defining the orbit in astronomical coordinates (¢,A), and then

applying the transformation to (4,A). The elements of the orbit are

shown in Figure 1.

3.1.1 Distance along the satellite track as a function of ¢

Applying the sine law to triangle ACD in Figure 1 gives the relation-
ship between the angular distance traveled by the satellite (a) as a
function of ¢ and the inclination of the orbital plane (1).
sine = gin¢ (1)
sim

Under the conditions imposed for the derivation, astronomical latitude

equals geodetic latitude. Therefore, ¢ = ¢, and equation (1) mav be

-—

—— ———r—
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Figure 1,

Ascending
node

Elements of the satellite orbit.
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rewritten as

sina = sing (2)

sin:

3.1.2 Distance along the satellite track as a function of A

Applying the sine law to triangle ABC, and the cosine law to triangle
il ACD in Figure 1 provide the following relationships. In both cases, A

is measured from the ascending node.

sina = cos¢ sinA (3
b cos 1t
4
1 cosa = cos¢ cosA (4)

Dividing equation (3) by (4) eliminates ¢ and expresses a as a

function of A only.

tana = tanh (5)
cos1

3.1.3 Satellite apparent longitude

The geodetic longitude of a point beneath the satellite orbit is
equal to the astronomical longitude plus the combined effects of sat-

ellite and earth motion on earth-fixed longitude (Al)).

AT = A+ AA (6)
where the primed A indicates longitude of the satellite, known as
satellite apparent longitude. The angular distance along the orbit
covered over time t is

a = 21t @)
p

.
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where p is the satellite period of revolution. During the same

interval, the earth-fixed longitude of the satellite subpoint changes by

AX = =27t (8)
P

where P is the earth period of rotation. A)M is negative because the
earth rotates in the positive X direction, therefore, the longitude of

the point is always decreasing. Equate (7) and (8) to obtain
AA= -pa (9
P

Substitute equation (9) into (6) to obtain the final form of

satellite apparent longitude

A =A-pa (10)

3.1.4 The relationship between )~ and ¢

Groundtracks on these projections will be constrained as straight lines
by spacing the parallels as a linear function of the satellite apparent
longitude as computed in equation (10). To do this, dA“/d¢ is required.

Differentiating equations (10), (2), and (5)

dr* =dA-pda (11)
d¢ deo P d¢
da = cos (12)
dé sini1 cosa
dA = sec?q cosy da (13)

¢ sec?) d¢

®!
-

> <
"
"
"
P«
» «
»
b«
S




Substituting (12)

Reducing terms in

cosZa (1 + tan?p)

sin1 cosa

12

and (13) into (11)

sec?q cost - P cos
sec“\ P /sini cosa

cos1 -p cos
cos®a (1 + tan‘A) P/ sini cosa
the last equation:

24 + cos?a tan?A

cos

COSZG + COSZG tanza C0821

= 1 - sinZa sin2:

1 - sinZQ sin?,

sin“t

cosz¢

- - 2.\%
sims(1 - o)

(sin21y - cosz‘t);i

(cos2¢ - coszt)Li

Continuing the derivation:

=
dé

dr* =
d¢

cost - cos¢
cosZy P (cosZé - cosZi)®

cost - (p/P) cos?¢
cos¢ (cos<¢d - coszl)%

from (5)

from (2)

from (2)

(14)

Given d)A” and d¢ on the sphere, the azimuth (A) of a great circle at

latitude ¢ is computed as:

tanA = d)A” cos ¢

d¢

(15)

il

w

-
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Substituting the expression for dA°/d¢ from (14) gives the equation
expressing groundtrack azimuth on the sphere as a function of the orbit
parameters.

tanA = cosi - (p/P)cos?p (16)
(cos4$p - cos?1)*

3.2 The Mapping Equations For The Cylindrical Projection

Formulae for length distortion on the projection surface along the

meridians (Mm) and along the parallels (Mp) are defined as:

Mm = 1 dy (17a)
R d¢

Mp = 1 dax (17b)
R cos¢ dA

3.2.1 The mapping equation for x

To derive the mapping equation for x, define the scale to be true in

the x direction at ¢y, the conformal latitude.

Mp =1
dx = R cos¢, dA [} ’
Integrating with the constraint that x=0 when A=0 gives the mapping

equation for x.
x = R\cos¢, (18)

3.2.2 The mapping equation for v

To derive the parallel spacing, impose the condition of conformalityv
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at ¢,-

Mm = Mp
dy = dx (19)
cos¢%§_k_)
de/ oy
Integrate equation (19) and substitute from (18) replacing X with )~
to make y a linear function of the satellite apparent longitude.

dr”/dé¢ is a constant since it is evaluated at $1.

y = RA“cos¢) (20)
cos¢; Q_X)
dé /o,

Because conformality is defined at $,, the groundtrack azimuth at 6y
on the map (dx/dy) should equal the azimuth on the globe (A).

Rearranging equation (19), again using )~ in place of )\ yields

dx =(ﬂj cosé,
dy \dé /¢,

This agrees with the value of tanA in (15), therefore

(gﬁ) = tand,
dé¢/¢; cosé¢;

Substituting into equation (20) gives the mapping equation for y.

y = RA\"cos¢; (21)
tana,

3.3 The Mapping Equations For The Conic Projection

3.3.1 The mapping equation for 8

Figure 2 shows the elements of the projection to the plane in the (p,8)

.




-er

Circle of ground-
track tangency

15

Figure 2. Elements of the conic projection to the plane.
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coordinate system. As with conventional conics in the normal aspect, -

the mapping equation for 6 is

8 = ni (22a)
In the derivation of p, the satellite apparent longitude is substituted
for earth-fixed longitude.
8 = n)x” (22b) B
where
n is the constant of the cone, and

8 is the angular separation of the meridians on the projection

surface.

3.3.2 The mapping equation for p

From the geometry of the plane triangle in Figure 2

angle C = 180° - (9 + S)
where S is the azimuth of the groundtrack at the equator on the pro- ;
jection surface. Applying the sine law gives a relationship between p B “J,
and Py the radius from the apex of the cone to the equator.
p = posinS (23) . o
sin(8 + §)

To obtain the mapping equation for p, evaluate the length p, at a

conformal latitude and substitute into equation (23). _ L |

Formulae for length distortion in the (p,8) system are

K I

Mm = -1 dp (24a)

.. e
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Mp=_op dé (24b)
Rcos¢ dA

The minus sign in Mm indicates that p decreases as ¢ increases.

Differentiating equation (22b) with respect to p and A” yields

dé =n (25)
dx”

46 = n dA°

dé d¢

Substituting the value of d\”/d¢ from equation (15)

de = n_tanA (26)
d¢ cos¢

’
Imposing conformality at ¢, produces an expression for the length Pye

Mm = Mp

)
de /\d¢jo1

Substituting o from equation (23) and d)"/de from (25) yields

©
[

Py = -cosé, 1ld Po _sinS
n d¢ \sin(8 + S) 1
py = cos¢] po sinS cos(f;, +S) d (8 + S)¢1

n sin“(8; + S) do

Substituting d6/d¢ from equation (26)

Py = pg sinS tanAj
sin(6, + S) tan(8; + S)

Comparing this with equation (23)

tanA; = tan(8, + S)




"
'

et N
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A1 = 61 + S 27

‘Substituting equation (27) into (23) evaluated at N

Py = pg sinS (28)
sini,

Imposing true scale at ¢1 produces a second expression for Pye

Mp =1
Py = Rcos¢1.gi‘
dg
p; = Rcos¢, (29)

n
Substitute equation (29) into (28) to eliminate p, and obtain the

equation for p,.

Po = Rcos¢y sinAj (30)

n sinS

Substitute equation (30) into (23) to eliminate p, and get the

mapping equation for p.

p = Rcos¢j sinA, (31)
n sin(8 + S)

3.3.3 The constant of the cone for a projection with two confor-

mal latitudes

Equation (27) gives the value of 9 at the conformal latitudes 6y and

$2-

OlaAl-S

@

_ .
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B8y = A - §
Substituting into equation (22b)

81 = nAj = A} - S
92=n)\§=A2—S

Subtracting:

nd; - nA] = (A, - §) - (A1 -3

n = A - A (32)
x5 = Af

3.3.4 The constant of the cone for a projection with one conformal

latitude

As ¢, approaches ¢,, equation (32) becomes

n=da = (da)(de
a- \de/\dr ¢,

Differentiating equation (16) gives the expression for dA/d¢.

sec?A dA = {(cos?¢ - COSZI)% (2(p/P)sin¢ cos¢)
d¢
+ (cos1 - (p/P)(cos?4) (}s(cos2¢ ~ cos21)'%(-231n¢ cos¢) }

+ (cos?¢ - cos?t)

dA = sin¢ cos¢ {(p/P)(cos?¢ - 2cos?:) + cos}
dé (cos?¢ - cos®1) 372 (1 + tan?A)

Substituting this and the value of d¢/dA” from (15) into the equation

for n evaluated at ¢, yields

n = sing, cosé; {(p/P) cos?¢p; ~ 2cos?1) + cosi1} coséy
(cos?$y - cos?1)3/% (1 + tan?A,) tanAj

9!

‘.
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n = sind; cos?¢; {(p/P) cos?4; ~ 2cos?1) + costi}
(cos?¢; - cos?1) /2 (tanA; + tan°A;)

Expanding the denominator using the expression for tanA in (16)

(cosz(b1 - c0s21)3/2 [ cos1 - (p/P) cos?py + (cosi - (p/P) cos2¢;)?d
(cos“$y - cos?q)? (cos®¢, - c0521)3/2/

Thus

n = sin¢j cos®dy {(p/P) (cos?d, - 2cos?1) + cosi}
(coszh1 ~ cos?1)(cost - (p/P)cos?¢1)+(cosr - (p/P)cos?4;) 3

The equation for n appearing in Snyder (1981) contains additional
expansions of the denominator. See Appendix A for a continuation

of the derivation.

3.3.5 The constant of the cone when the conformal latitude is the

tracking limit

The tracking limit, the highest latitude reached by the satellite
equal to the inclination of the orbit. To determine the value of
replace ¢, with 1 in equation (33).

n = sini cos?i (cosi - (p/P) cos?1)
(cos1 - (p/P) cos®1)?

n = siny (
(1 = (p/P) cos1)?

3.3.6 The circle of groundtrack tangency

If the projection is to be constructed manually, the plotting of
groundtracks is made easier by computing the circle of tangency.

is a circle of radius Ps to which all groundtracks are tangent.
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From the geometry of the plane triangle in Figure 2
Pg = Pyo sinS
Substituting the value of p, from equation (30)
Py = Rcos¢) sinA; (35)
n
The direction of the groundtracks is obtained from the sign of either
pg in equation (35) or S in equation (27). A negative sign indicates

a west azimuth when the satellite is travelling northward, or east

azimuth when it's going southward.

Equation (35) is needed to compute pg because equation (31) breaks
down when ¢ equals the tracking limit. Because parallel spacing was
derived based on the satellite groundtrack, radii poleward of the
tracking limit are undefined, i.e., the sine of o computed in

equation (2) is greater than unity.




4, DISTORTION ANALYSIS

The Satellite Tracking projections were developed by defining the
relationship between parameters on the projection surface and para-
meters on the sphere at specific locations, i.e., conformality and
true scale at one or two latitudes. Now that the mapping equations
have been developed, general equations describing the distortion
properties of the projections can be computed from fundamental quan-

tities developed using the following transformation matrix.

- a4 -

E [ qu? 2 du dv av? E-
d¢? dé do d¢?

F - dudu  dudv+dudv  dvdv F

d¢ da d¢ dx  dx dé dx d¢

G du? 2 du dv_ dv? G’
dx? dx da da?

e - - _J L -

where
u,v are the parametric quantities on the projection surface,
either (x,y) or (p,8),
¢, are the parameters on the sphere,
E°, F*, G are the fundamental quantities of u,v with
respect to the projection surface,
E, F, G are the fundamental quantities of u,v with respect

to the sphere.

Also used in the distortion analysis are e, f, and g, the fundamental

quantities of ¢,)A with respect to the sphere.
22
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The following fundamental quantities for the sphere and plane (pro-

jection surface) are known through the equations defining differen-

tial length

$,A on the sphere: ds? = R2(d¢)2 + R2cos?y (dnr)?

e = R?2 £f=0 g = R2cos?¢

h X,y on the plane: ds? = (dx)2 + (dy)?

E° =1 F"=0 G =1

(dp)2 + p2(de)?2

R. p,8 on the plane: ds2

E- =1 F =0 G° = p2

4.1 Cylindrical Projection Distortion Equations

4.1.1 The first fundamental quantities

Recalling equations (15), (18), and (21), and evaluating their partials

dA” = tanA (15)

d¢ cosé

x = Ricos¢, (18)

y = RA%cos¢) 21)
tanA1

dx = 0

d¢

9_}_{_ = RCOS¢1

dx

dy = Rcos¢) di” = Rcos¢d] tanA

d¢ tanA, d¢ ~ tanA, cos$

dy = 0
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Substitute the known values into the transformation matrix.

E 0 0 chosle tan’A
tan?A; cos®¢

F = 0 R2cos?¢j tanA 0
tanAj] cos¢
G R%cos?¢, 0 0
. J L 4L

E = choszpl tan?A
tanzAl cosz¢

F=20

G

chosz¢1

(36a)

(36b)

(36¢)

These are the fundamental quantities of the cylindrical projection.

4.1.2 Scale distortion in the meridians and parallels

Mm = [E\*
e
R%cos?¢, tan?A\s
= tan¢Ay cos<é

R? J

Mm = cos¢] tanA
tand,; cos¢

Mpa g;i
g
= [R2cos82¢1)\ %
R“cos<é

Mp = cos¢)

cos¢

(37)

(38)

A2

-
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4.1.3 Area distortion
Da = [ EG - F2\%
eg - £2

R4cos™¢, tan2AVs
={ tan‘A, cos?y
Rucoézb //

Da = cos?¢) tanA (39)
tanA] cos<¢

4.1.4 Angular distortion

A derivation of the w to Q equation is given in Appendix B.

cosQ = /E-coschotm
(E cosZp cotly + G)k

Rcos¢) tanA cosé cotw
= tandA) cos¢

R%cos<¢] tan®A cos?$ cot‘w + Récos?e)| %
tan?A) cos?¢

cosq = tanA cotw (40)
(tan‘A cot‘w + tanZAI);i

4.2 Conic Projection Distortion Equations

4.2.1 The first fundamental quantities

Recalling equations (15), (22a), (22b), and (31) and evaluating

their partials:

di” = tanA (15)
d¢ cos¢

8 = n) (22a)
8 = n)” (22b)

-

-
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p = Rcos¢) sinA;
n sin(9 + S)

do =0

dé

do =n

di

dp = Rcos¢) sinAj d 1

d¢ n d¢\sin(8 + S)

-Rcos¢] sinA; cos(6 + S) d (6 + S)
n sin4(8 + §) d¢

Because the mapping equation for p was developed using satellite

(31)

apparent longitude, the value for 6 in dp/d¢ is gotten from equation

(22b). Substituting from (22b) and (15) yields

d (6+8)=d (nx") +dS = n dA” = n tanA
d¢ dé d¢ d¢ cos¢

dp = -Rcos¢d) sinAj tanA
¢ cos¢ sin(B8 + S) tan(e + S)

=0

ele

Substituting the partials into the transformation matrix
-~ — -

E chosz¢1 sin?A, tan2A 0
cos?¢ sin“(6 + S) tan<(8 + S)

-n Rcos¢; sinA; tanA

Fl= 0 cos¢ sin(8 + S) tan(e + S)
G 0 0
N I

E = R2c032¢1,sin2A1 tan?A

cos?¢ sin4(9 + S) tan<(6 + S)

da

@

N
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F=0 (41b)

G = n2p2 (41c)
Since p is known as a function of ¢, substitute equation (31) into
(41c) to obtain the equation for G.

G = R2cos2¢; sin?A; (41d)
sin¢(e + S)

These are the fundamental quantities of the conic projection.

4.,2.2 Scale distortion in the meridians and parallels

Mm = gﬁ%
e
R2cos2¢; sin2A; tan?A L
= {cos?y sin?(9 + S) tan<(g + §)
RS
Mm = cosé) sinA; tanA (42)

cosé sin(® + S) tan(8 + S)

Mp = Q)%
g
R2cos?¢, sin2A1\ %
= sin¢(g + §)
Rcos<¢
Mp = cosdy sind, (43)

cos¢ sin(8 + S)

4.2.3 Area distortion

Da = [EG - F2\k
eg - £2

L J
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R“cos“@l sin“Al tan?A
= cos‘d sin*(8 + S) tan(8 + S)
R*cos?¢

Da = cosle,sinzAl tanA
cos®d sin¢(8 + S) tan(® + S)

4.2.4 Angular distortion

cosl = VE cos¢ cotw
(E cos?¢ cotw + G)*%

Rcos¢y sinA; tanA cos¢ cotw
= cos¢ sin(8 + S) tan(® + S)
(choszQ1 sin®A, tan‘A cos?é cotw + R%cosZé) sinzAL)%

cos<¢ sin?(6 + S) tanZ(0 + S) sin4(p + S)

cosl tanA cotw

(tan“A cotw + tan<(p + S))%

(44)

(45)




5. RESULTS AND ANALYSIS

Inspecting the distortion equations for both projections reveals
that they do satisfy the conditions of true scale and conformality

imposed during the derivation of the mapping equations.

Mmgy = Mp¢1
Mmy = Mpy
Mm¢1 =1
Mpy = 1
Q¢1 = m¢1
Q¢2 = w¢2

As a further check, Da = Mm Mp.

The following analysis is illustrated with plots of the various distor-
tions for the Landsat orbit. Tables containing the numerical distor-
tion values appear in Appendix C.

The parameters used in the calculations are

satellite revolution period = 103.267 minutes,

earth rotation period 1440.0 minutes,

satellite inclination

99°2092.

5.1 The Cylindrical Projection

The meridian scale distortion, Figure 3, is a function of the secant of

the latitude. However, because the spacing of the parallels is based on

29
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the satellite orbit, the effect of the orbit appears in the tanA term.
Since the azimuth of the groundtrack on the sphere increases with
latitude, the large range of Mm reflects the increased parallel spacing

required to introduce sufficient angular distortion to keep the projected -

azimuth straight.
The ¢, subscripted terms in all of the distortion equations allow the

scale factor to equal unity at the standard parallel.

The parallel scale distortion, Figure 4, is a function only of the secant
of the latitude. This indicates that latitude length is independent
of its projected distance from the equator because the meridians are
cast as equidistant vertical lines. Area distortion, the product of

Mm and Mp, is shown in Figure 5.

Figures 6, 7, and 8 show the effect of angular distortion at standard

parallels of 20°, 45°, and 70°. Conformality insures that the azimuth

on the map equals the azimuth on the sphere at the standard parallel. '
Because azimuth is a constant on the projection, but increases with

latitude on the sphere, constraining the groundtracks as straight lines

causes map azimuth to be greater than sphere azimuth below the standard '
parallel and less than sphere azimuth above it. This effect can also

be seen in the scale distortions: Mm is less than Mp below ¢; and

greater than Mp above ¢1 due to the relative sizes of A and A; in )

equation (37).
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CYLINDRICAL PROJECTION RZIMUTH DISTORTI

S8

LANDSRT ORBIT STANDRRD PARALLEL =
80
40° — — :
6@° — — 7
8@° -— //
Latitude // /' |

Figure 6.

| 1 | ! 1B | ] | | |
@° 108°28°308°40°358°60Q°78°80°33°
SPHERE RZIMUTH

Cylindrical projection azimuth distorticn.
Standard parallel = 20 degrees.
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CYLINDRICAL PROJECTION RZIMUTH DISTORTION
LANDSAT ORBIT STANDARD PARRALLEL = 45°

9@ a°
49° — — -
8@ 68° — — 7 |
8@° _— //’ . |
78°] Latitude / /
= 5@°
2
-~ 58
T
48
T
T 382 |
|
29°
18
@o —

T 1 T 1 T T T 1 !
@° 18°20°32°40°502°63° 7Q0° 8@° 9@°
SPHERE RZIMUTH

Figure 7. Cylindrical projection azimuth distortion.
Standard parallel = 45 degrees.
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CYLINDRICAL PROJECTION AZIMUTH DISTORTION
LANDSAT ORBIT STANDRRD PARALLEL = 7@°

ggel  @°
. 4pc— — -
884 60° — —
80° ——-— . /
’@- | Latitude // /I

1 1 1 T | | l
@° 18°2@°38°40°58°68° 70° 8@° 9@°
SPHERE RZIMUTH

Figure 8. Cylindrical projection azimuth distortion.
Standard parallel = 70 degrees.




5.2 The Conic Projection
The equations for scale distortion are similar to those for the
cylindrical projection; but here, the azimuth of the groundtrack

changes on the projection as well as on the sphere. This is reflected

in the addition of the sinAI/sin(B + S) term in both equations, which
relates the azimuth at the standard parallel, A, to its general value
of (8 + S). Plots of the meridian and parallel scale distortions for
the tangent conic projection are shown in Figures 9 and 10; area dis-

tortion is shown in Figure 11.

Inspecting the tables of the scale distortion values in Appendix C
reveals that, for the tangent cone, Mm is greater than Mp everywhere
except at the standard parallel where they are equal. For this to be
true, comparing equations (42) and (43), the azimuth on the sphere, A,
must always be greater than or equal to the azimuth on the plane,

(8 + S). This is confirmed in the angular distortion plots in Figures

12, 13, and 1l4.
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CONIC PROJECTION RZIMUTH DISTORTION
LANDSRT ORBIT STANDARD PRARALLEL = 2@°

3@° @°
40° — —
8ge] 68° — —
88° —-—
7 0°% Latitude |
]
gszt /
= 582 /
E ]
o /
T
= 38°
2°]
19 //
2° 4 —
! T

T
g° 1@°2@° 3@° 48‘ 58" SB° ?@" 82° 98°
SPHERE AZIMUTH

Figure 12, Conic projection azimuth distortion.
Standard parallel = 20 degrees.
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CONIC PROJECTION RZIMUTH DISTORTION
LANDSART ORBIT STANDRRD PRRALLEL = 45°

S9°- g°
49° — —
80°% 60° — —
8@° -— ’
78 Latitude / /
= 502
£
—~ S@°]
N
T
40°-
o
T
= 38°]
28
18°
g° 4

T l T T 1 T T 1
g° 18°28°38°408°508°608° 70°8Q°3Q°
SPHERE RZIMUTH

Figure 13, Conic projection azimuth distortion.
Standard parallel = 45 degrees.
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CONIC PROJECTION RZIMUTH DISTORTION
LANDSAT ORBIT STRANDARD PARALLEL =

S8y @°

49° — —
82| 68° — — v
8@° /
?0° Latitude , /

- —— ’

T T 1 T 1 l 1
@° 1@°208°308°408°5@°68° 790° 8@° 9@°
SPHERE ARZIMUTH

Figure l4. Conic projection azimuth distortionm.
Standard parallel = 70 degrees.
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6. CONCLUSIONS

The purpose of this thesis is to derive general distortion formulae

for the Satellite Tracking map projections. The following conclu-

sions can be drawn:

1.

Equations for length, area, and azimuth distortion for the
Satellite Tracking projections were derived.

Limitations in the use of these projections are now quanti-
tatively defined, e.g., the size, shape, and orientation of a
Landsat scene.

The cylindrical projection is preferred when the entire earth
is to be shown because it allows true scale to be defined both
above and below the equator.

The conic projection is preferred for depicting small areas
because conformality can be defined at any two parallels

within the area of interest.

Recommendations for further study:

These projections are valid only under the assumption of a spherical

earth and circular satellite orbit.

1.

What errors in the plotted groundtrack are introduced as a
result of these assumptions.
Can the projections be modified to accept a non-circular orbit.

Can the transformation be made from an ellipsoidal earth.

44
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Appendix A. A continuation of the derivation of the constant of the
cone for a projection with one conformal latitude.

Recalling equation (33):

n = sing) cos?¢; {(p/P)(cos2¢; — 2cos21) + cosi}
(c5§2¢1 - cos?1) (cos1 - (p/P)cos?¢y) + (cosy ~ (p/P)cos?¢y)3

Expanding the denominator:
{cos?¢; - cos?1)(cos1 - (p/P)cos?sy) +

(cos31 - 3(p/P)cos?¢; cos?1 + 3(p/P)2 cos“s) cosy1 - (p/P)3 cos®,)

= -2(p/P)cos?¢; cos2y + 3(p/P)2cos“¢l cosy -

(p/P)3 cos®¢; + cos?¢; cosi - (p/P)cos“s,

= cos2¢1{-2(p/P)cos21 + 3(p/P)2 cos2¢; cosy -

(p/P)3 cos*¢, + cost - (p/P)cos?¢,}

= cos?¢; (-(p/P)cos?¢; {(p/P)2 cos?¢, - 2(p/P)cost + 1} +

costv {(p/P)? cos2¢; - 2(p/P)cos1 + 1})
= coszq;1 ((cost - (p/P)cosZ¢1){(p/P)2 cosz¢1 - 2(p/P)cos1 + 1})

= cos2¢1 ((cos1 - (p/P)cos?¢;){(p/P) ((p/P)cosZ¢l - 2cost) + 1})

Substituting this back into equation (33) yields the final form of n.

n = sing; {(p/P) (cos?¢; - 2cos?y) + cosi}
(cosy - (p/P)coszm)[(p/P)((p/P)cosz¢1 - 2cosy1) + 1}

This form is useful to test the condition where ¢; = 90° and the
projection becomes azimuthal. This could not be done using equation

(33) because of the cosz¢;l term in the numerator.

46
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Appendix B. The Derivation of the Angular Distortion Equation

2 3 ¥
2 =\,
R cos¢ di
Projection surface Spherical earth
On t%e projection surface:
cos = /Eﬂ
ds
= VE dg
VE (d¢)Z + G (dn)?2
cosQ = VE d¢
VE 9:‘1)2*‘ G di
dx
On the sphere:
ds cosw = R d¢
ds sinw = R cos¢ dA
d¢ = R cos¢ cosw
dA R sinw
d¢ = cosé cotw
dAa
Substituting:
cosQ = /E cogg coty
YE cos<9 cot<w + G
47
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Appendix C. Distortion Tables.

Table

Table

Table

Table

Cylindrical projection length and area distortion for th
Landsat orbit.

Conic projection length and area distortion for the
Landsat orbit.

Cylindrical projection azimuth distortion for the Landsa
orbit.

Conic projection azimuth distortion for the Landsat orbi

48
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Table 1. Cylindrical projection length and area distortion for the
Landsat orbit.

Standard o o o o
Parallel 0 40 60 80

¢ Meridian Length Distortion

0° 1.0 .66762 .31363 .01816
10 1.02179 .68217 . 32047 .01855
20 1.09298 . 72969 .34279 .01985
30 1.23456 . 82421 .38720 .02242
40 1.49787 1.0 .46978 .02720
50 2.01389 1.34451 .63162 .03657
60 3.18846 2.12866 1.0 .05790
70 6.89443 4.60283 2.16231 .12519
80 55.07144 36.76658 17.27213 1.0
80.908 = d ® ®

Parallel Length Distortion
0 1.0 . 76604 .5 .17365
10 1.01543 .77786 .50771 .17633
20 1.06418 . 81521 .53209 . 18479
30 1.15470 . 88455 .57735 .20051
40 1.30541 1.0 .65270 .22668
50 1.55572 1.19175 .77786 .27015
60 2.0 1.53209 1.0 .34730
70 2.92380 2.23976 1.46190 .50771
80 5.75877 4.41147 2.87939 1.0
80.908 6.32830 4.84776 3.16415 1.09890
Area Distortion

0 1.0 .51142 . 15682 .00315
10 1.03756 .53063 .16270 .00327
20 1.16312 .59485 . 18240 .00367
30 1.42555 . 72906 .22355 .00449
40 1.95533 1.0 . 30663 .00617
50 3.13306 1.60232 .49131 .00988
60 6.37691 3.26130 1.0 .02011
70 20.15798 10.30926 3.16109 .06356
80 317.14380 162.19480 49.73312 1.0
80.908 o o o =

- . 4
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Table 2. Conic projection length and area distortion for the
Landsat orbit.
Standard
Parallel 10° 30° 50° 70°

$ Meridian Length Distortion

0° 1.00313 1.07991 1.71646 23.26322
10 1.0 1.00398 1.35754 6.92079
20 1.04275 .97729 1.14552 3.37126
30 1.14572 1.0 1.02572 2.06490
40 1.34649 1.08700 .97692 1.46129
50 1.73949 1.28047 1.0 1.15710
60 2.60194 1.69556 1.12369 1.01679
70 5.08699 2.73190 1.44871 1.0

80 29.00155 9.41190 3.09745 1.22864
80.908 © o oa ®

Parallel Length Distortion
0 . 99671 .99621 1.17680 4.05740
10 1.0 . 96599 1.05324 2.22532
20 1.03510 .96693 .98251 1.57647
30 1.10816 1.0 .95174 1.26294
40 1.23355 1.07194 .95670 1.09489
50 1.44188 1.19859 1.0 1.00824
60 1.80333 1.41446 1.09269 .97861
70 2.51103 1.79895 1.25919 1.0
80 4.20804 2.42253 1.47016 1.06676
80.908 4.23325 2.24930 1.35775 1.04704
Area Distortion

0 .99983 1.07582 2.01993 94.38810
10 1.0 . 96984 1.42982 15.40095
20 1.07935 . 94497 1.12548 5.31469
30 1.26964 1.0 .97622 2.60784
40 1.66097 1.16520 . 93462 1.59995
50 2.50814 1.53477 1.0 1.16663
60 4.69216 2.39830 1.22784 . 99504
70 12.77360 4.91455 1.82420 1.0
80 122.03977 2.80060 4.55374 1.31066
80.908 @ ® ® =
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Table 3. Cylindrical projection azimuth distortion for the Landsat
orbit.

Latitude 0° 40° 60° 80°
Sphere Map Azimuth

Azimuth Standard Parallel = 20°

0° 00 00 00 070

10 10.26495 8.96897 6.48077 1.08436
20 20.49676 18.04498 13.19640 2.23744
30 30. 66688 27.32916 20.40258 3.54643
40 40.75502 36.90925 28.39457 5.14695
50 50.75153 46.84937 37.51585 7.29022
60 60.65803 57.17734 48.13385 10.53262
70 70. 48670 67.87198 60.53498 16.43235
80 80.25838 78.85585 74.69298 31.33252
90 90.0 90.0 90.0 90.0

Standard Parallel = 45°

0 0.0 Q0.0 0.0 0.0

10 12.03481 10.52545 7.61675 1.27646
20 23.75263 20.98287 15.43133 2.63343
30 34.91723 31.31478 23.64675 4.17284
40 45.41324 41.48222 32.47151 6.05278
50 55.23919 51.46883 42.10802 8.56439
60 64.47477 61.28085 52.71885 12.34601
70 73. 24646 70.94427 64.36273 19.14672
80 81.70266 80.50024 76.91131 35.62808
90 90.0 90.0 90.0 90.0

Standard Parallel = 70°

0 0.0 0.0 0.0 0.0

10 22.57733 19.91899 14.61773 2.48838
20 40.63871 36.79633 28.29625 5.12597
30 53.70224 49,87562 40.49658 8.09850
40 63.18850 59.89055 51.14122 11.68437
50 70.41251 67.78976 60.43412 16.36862
60 76.24248 74.30808 68.67779 23.11683
70 81.22568 79.95673 76.17587 34.10376
80 85.72366 85.09605 83.20187 54.41874
90 90.0 90.0 90.0 90.0
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Table 4. Conic projection azimuth distortion for the Landsat orbit.

Latitude 0° 40° 60° 80°
Map Azimuth

Sphere

Azimuth Standard Parallel = 20°

0° 020 0°%0 020 0%0

10 9.71601 9.55806 7.64103 1.95248
20 19. 46493 19.16619 15.47873 4.02519
30 - 29.27632 28.86987 23.71462 6.36914
40 39.17314 38.70529 32.55515 9.21472
50 49.16891 48.69490 42.19983 12.97502
60 59.26561 58.84354 52.80775 18.51405
70 69.45275 69.13623 64.43463 27.97665
80 79.70805 79.53849 76.95195 47.63448
90 90.0 90.0 90.0 90.0

Standard Parallel = 45°

0 0.0 0.0 0.0 0.0

10 7.70744 9.95383 9.44635 4.08611
20 15.60828 19.91319 18.95443 8.38833
30 23.89994 29.88297 28.58072 13.16523
40 32.78316 39.86682 38.37095 18.77562
50 42.44963 49.86671 48.35445 25.77252
60 53.04910 59.88269 58.53894 35.05824
70 64.62944 69.91288 68.90689 48.06408
80 77.06188 79.95362 79.41530 66.48014
90 90.0 90.0 90.0 90.0

Standard Parallel = 70°

0 0.0 0.0 0.0 0.0

10 ' 1.76150 7.52606 9.63174 8.70415
20 3.63232 15.25417 19. 30566 17.53739
30 5.75013 23.39270 29.05984 26.62384
40 8.32610 32.15784 38.92427 36.07508
50 11.74211 41.76285 48.91710 45.97808
60 16.80910 52.38369 59.04168 56.37768
70 25.60347 64.09087 69.28501 67.25653
80 44.68725 76.75732 79.61826 78.52028
90 90.0 90.0 90.0 90.0
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Appendix D. FORTRAN program and sample output.

This program computes values for constructing the graticules of the
Satellite Tracking projections. The type of the projection is deter-
mined by the values in the assignment statements in the "initialize
variables" section. For example, if PHIl equals zero, or PHIl equals
-PHI2, a cylindrical projection is produced; otherwise the result is a

conic.

Output is included for cylindrical and tangent conic projections with a
standard parallel of 30°. Plots of the graticules are shown in Figures

15 and 16.
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CYLINDRICAL PROJECTION

STANDARD PARALLEL =30.00

LATITUDE

«00
10.00
20,00
30,00
+3400
50.00
60,00
70.00
80,040
30491

LONGITUDE

«00
10.00
20,00
30,00
40,00
90,00
60,00
70,00
30,00
90,00

Y
«6J000
» 14239
29121
04547¢
e 64591

_«58979
1.24489
1.89918
4.33417
S5.860398

X
«00000
«15118
«30230
+ 453485
«6046(0
« 75578
e 90690

1.25805
1270920
1.3603%
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CONSTANT QF THE CONE = <2479
RANDIUS OF CIRCLE OF GROUNDTRACK TANGENCY = =.84314

EQUATOR GROUNDTRACK AZIMUTH ON THE MAP = =12.11332

STANDARD PARALLEL 1 = 30.00

STANOGARD PARALLEL 2 = 3u.00
LATITUDE =] [e]
«00 401791
10.00 3.83683
29.00 366461
30,00 J.49284
40,00 3.31185
50,00 316733
60,00 285239
70,00 24481582
30400 1.69663
30,91 1443346
LONGITUDE THETA
«00 « 31300
10.00 2047943
20,09 4.95886
30,00 T.43829
40,00 991772
50,00 12.39715
50,00 1437687
70,00 17.38600
50,400 19.33543

90,00 22.31486

e MAA-—I:‘.“

- N

L e,

PR



61

-18@° -38° @e sS@° 18@°

1%

68°

4Q°
2a°
20

CYLINDRICARL PROJECTION
STANDARD PARRALLEL = 38°

Figure 15, Cylindrical projection graticule.
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