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ABSTRACT

A rational methodology has been developed whereby three-dimensional

sources and sinks may be placed along the major axis of a class of ovary

ellipsoids so as to minimize normal velocity and to calculate as exactly

as possible the tangential velocity, pressure distribution, and the

body shape. For this purpose the strength and position of the singular-

ities and the position and number of the control points were optimized

through the use of the method of least squares and the Automated Design

Synthesis optimization technique. The results have shown that the

previous methods are far from satisfactory and the use of two types of

optimization in the determination of the strength and position of the

singularities yields the desired body shape and flow characteristics

with excellent accuracy. A comprehensive computer code has been

developed to enable one to calculate most of the practically

significant body shapes.
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TASEL CF AiCBEVL'I CNOS S~D SYNSOLS

a One half of the length of the major axis of an ellipsoid

a/b Slenderness ratio

b One half of the length of the minor axis of an ellipsoid

Cp Pressure-coefficient

c A constant; c cosh 

E2  Sum of the squares of the errors

J Jacobian of the transformation

K A constant [see Eq. 13]

i i 47r

Nc  Number of control points

Ncc Number of control points after a given iteration

Neck Number of extra control points apportioned to the

k-th interval

N Number of singularitiess

p Local pressure

p" Ambient pressure

Qi Strength of the i-th singularity

qr Normal velocity component in elliptic coordinates

q_ Tangential velocity component in elliptic coordinates

Rj Error at the j-th control point

U Free stream velocity (assumed to be U=I)

u Velocity component in the x-direction
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V Velocity component normal on the body surfacen

Vt Velocity component tangential on the body surface

v Velocity component in the ..-direction

x Linear distance along the major axis of the body

z Complex variable

Complex variable in elliptic coordinates

7 Imaginary part of c, = + i n

9 An angle (see Fig. 2)

Real part of

Density of fluid

- Total sum of the absolute values of the normal velocities

along the length of the body

Stokes' stream function

Radial distance from the major axis to the body surface
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1. INTRODUCTION

The development of reliable methods for the calculation of three-

dimensional viscous flows on shapes of hydrodynamic interest requires

the analysis of (a) the inviscid flow, (b) three-dimensional laminar

and turbulent boundary layers, (c) flow separation, (d) post-separation

flow and wake, and (e) the interaction between the viscous and inviscid

flow regions.

A critical survey of the present state of the art indicates that

many aspects of the problem remain tentative or unresolved even though

considerable progress has been made in recent years in improving the

calculation methods for inviscid flow and boundary layers about three-

dimensional bodies. Further progress in each of these areas is hampered

largely by the lack of pertinent data from carefully conceived and

executed experiments. To be sure, such experiments are difficult and

very expensive. The availability of high-speed computers, on the other

hand, has led to the development of novel calculation procedures which

claim a level of generality that has far surpassed the reliability of

the underlying assumptions and techniques. In the present study,

attention is focused on the inviscid flow about axisymmetric bodies

and its calculation through the use of exact and approximate methods

0 of optimization to the desired degree of accuracy.

The potential flow about an arbitrary body of revolution was first

treated by von Karman [1]. He determined the potential flow around

* bodies of revolution at zero angle of attack by superposing a uniform

13
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stream on a system of line sources distributed along the axis of the body.

An equal number of coordinates (control points) were chosen on the body

and the strengths of the sources were determined so that the zero stream-

line passed through the chos.n coordinates.

Since the pioneering work of von Karman, very little original work

has appeared in the literature. While most fluid dynamicists are familiar

with the method of representation of a body with distributed sources (sinks)

and surface panels, they generally do not recognize the limitations of the

methods and provide no guidance as to how one can systematically approach

the ideal solution. Often, broad statements and vague suggestions are

made regarding the slenderness of the body, the number of the singularities

(i.e., sources and sinks), and the magnitude of the differences between

the calculated and exact solutions.

Another approach to solving the inviscid flow problem for bodies of

revolution is the surface singularity or surface panel method. This

approach is equivalent to the solution of an integral equation (Fredholm

integral of the second kind). However, the computational effort in the

axial-singularity-distribution method of von Karman is a fraction of that

of the surface singularity methods. Furthermore, the surface singularity

methods are not necessarily more accurate than the methods of discrete

or continuous singularities along the axis.

It is, therefore, necessary to define more precisely the number of

singularities, their strengths and positions, the number of control points,

the differences between the calculated and given body shape, the deviation

of the normal velocity from zero on the body surface, the discontinuities

or artificial oscillations in the tangential velocity and in the pressure

14



distribution on the body surface, and as to how one can assess the degree

of accuracy of the calculation procedures and improve systematically the

accuracy of the quantities calculated. This investigation deals with

these questions and significantly improves the calculation of the incom-

pressible potential flow about bodies of revolution at zero angle of

attack.
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!I. PREVIOUS STUDIES

Von Karman [1] in 1927 used a method involving line sources clustered

in the bow and line sinks clustered in the stern of an airship. The

method of solution separated the bow computations from the stern computa-

tions since the influence of one on the other was considered small. In

this method a good comparison of airship pressures with experiment was

obtained. However, for shapes more complex than airships one would have

to consider sources and sinks along the whole axis of the body and one

would not isolate discrete parts of the body for separate computations.

In doing so, however, one discovers that the method . instable or may

fail unexpectedly.

Hess [2] and Oberkampf and Watson [3] have critically examined the

generalizations of von Karman's method. They have shown that the method

produces a system of linear equations which is, in general, ill-conditiuned,

and requires very high computational accuracy in the construction of the

coefficient matrix and in solving the equations. Oberkampf and Watson

concluded that the method does not always produce reliable solutions for

the flow around a specified body and that the conditions that the body

should meet in order to be represented by a system of axial line sources

are not clear. Karamcheti [4] states that the body should be slender

and should not have any discontinuities in the slope of the meridian

line. Numerical experiments by Oberkampf and Watson showed that such

conditions are not sufficient. For example, the method gave a slight

rippling in the velocity distribution as well as in the meridian

16



streamline of very slender Rankine ovals. Oberkampf and Watson attributed

the rippling in velocity to the increased local effects of each curce 0

element. Another result of their study is that the method is sensitive

not only to the shape of the body contour but also to the number of elements

used to generate the body. Oberkampf and Watson attempted to calculate the

potential flow about a sphere using an odd number of sources vice an even

number. The results for an odd number of sources were very peculiar.

While the zero streamline did pass through all of the specified coordinates

of the sphere, the body generated had "holes" in its surface. That is,

between the specified coordinates the zero streamline plunged into the nega-

tive strength line sources on the axis and then reappeared so that it passed 0

through the next specified coordinate. This behavior produced highly un-

realistic normal and tangential velocities. It is.hypothesized that this

erratic behavior was caused by the fact that with an odd number of line

sources one of the sources must overlap the center of the sphere to preserve

symmetry and, consequently, prohibits any antisymmetric solution. Therefore,

odd numbers of sources must be avoided for bodies that are symmetric about

a plane normal to their major axis at the midpoint of their length.

It is evident from the foregoing that von Karman's method does not

always produce reliable solutions for the potential flow around a speci-

fied body. The alternative is to use surface singularities or panels

[2, 4]. The panel methods could calculate all the required viscous and

inviscid flow properties without further interaction on the part of the

user once the geometry of the body and the flow conditions are specified.

However, such methods require far more computation time than any other

inviscid flow method. Accordingly, many investigators have concentrated

17



on representation of the inviscid flow through the use of discrete

singularities (three-dimensional point sources and sinks) placed on

the axis of the body. Once the surface velocity and pressure are cal-

culated, the potential flow and the boundary layer are "patched together"

to represent the real flow. It is important to note that in all of

these calculations, regardless of the method of representation of the

inviscid flow, it is assumed that the flow is essentially unseparated and

the effects of viscosity are appreciable only in a very thin layer adja-

cent to the body surface and in a thin wake downstream of the body.

The ultimate goal of the use of discrete singularities along the

axis of the body is to determine a flow which is, in some sense, a good

approximation to the exact flow about the given body. If this approach

is adopted, it is essential to know, however, the degree of approximation.

This can be checked in a number of ways after one solves for the strength

and/or the position of the singularities. One laborious way of checking

the accuracy would be to increase the number of singularities, solve

again for the strengths, positions, and velocities, and compare the two

solutions for convergence. This process has three essential drawbacks.

First, it can lead to inefficient use of the computer facilities. The

computer time required for the solution increases rapidly with the number

of singularities. Thus, the cost for solution depends very strongly on

the number of the singularities used. If-the number of singularities

is increased until little change in the local velocities on the body is

observed, then certainly the final and by far the most expensive computa-

tion (i.e., the last one) is redundant. Second, as discussed in the

foregoing, such a process may not converge when distributed singularities

18



are used. Third, and perhaps most important, there is nothino in this

process which yields an insight into how one might improve the strength

and position of the singularities. In other words, it is difficult to

determine if a more efficient computation would result if one region of

the axis had more singularities and control points per unit length.

An alternative method of checking the accuracy of the solution is to

evaluate the normal velocities on the exact surface of the body (i.e.,

on the shape specified rather than on the one represented by the zero

streamline) at points other than the control points. If the body is

nonporous, as assumed here, then these normal velocities should be

identically zero. It is easily shown that the magnitude of the normal

velocities on the exact body is, in fact, a proper measure of the in-

accuracies in the whole flow field. Thus, the remnant normal velocity

distribution at the end of a particular step may be used to improve the

calculations and hence the calculated flow field.

In view of the simplicity of the use of discrete sources and sinks

along the axis of the body as compared to the distributed axial singular-

ities or surface singularity distributions, and the tremendous saving in

the amount of memory storage and numerical calculation, it was considered

justifiable to undertake an extensive study of the body representation

by discrete singularities. In this study, improvement is realized by

allowing the strength and position of the singularities and the number

and positions of the control points, respectively, to achieve their

optimum values.

19



III. MATHEMATICAL DESCRIPTION

In this section, the basic equations for a discrete axial distribu-

tion of three dimensional sources and sinks combined with uniform flow

are derived. In addition, the exact tangential velocity for an ovary

ellipsoid is obtained for comparison with that obtained numerically.

Stokes' stream function for an ambient flow of unit velocity past an

axisymmetric body with N sources (sinks) of strength Qi along its axis

is given by [5]

1 2 N Qi x - xi: = ;. E 4 - r ( I )
-i - 4Tr ri =1

where r2  2 + (x - X) 2 at the point (x,,) in the flow field. Evidently,

0 corresponds to the enclosed body (see Fig. 1).

The velocity components u and v are given by

N x - xi- + z m. (2)i :1l r 3

1 6' N
v mi  _m (3)

x i1 r

where mi  Qi/47r.

The body is assumed to be defined either by a function w f(x) or

by a discrete set of points. In either case, there is sufficient infor-

mation to calculate the normal and tangential components of the velocity

along the body. In fact, from Fig. 2 one has

20



Vn  v cosg - u sing 14)

Vt = v sing + u cosg (5)

where Q is defined by

tang = df/dx (6)

It is evident from the foregoing that the accurate specification of the

stream function determines the accuracy of the tangential velocity and

the existence of non-zero normal velocities along a non-porous wall

indicates the error between the calculated and ideal solution.

The numerical experiments have been carried out with ellipsoids of

various a/b ratios (see Fig. 1). Thus, it was necessary to derive the

exact expression for the tangential velocity so that the accuracy of

the numerical method may be properly assessed.

The transformation

z = x + iw = c cosh (7)

yields

x = c cosh7 cosr (8)

and

= c sinh sin- (9)

Thus, E = i denotes an ellipse, in the meridian plane, as

2 2
X 2I+2 = 1 (10)

(c cosh .) (c sinh,:2

whose semi-axes are

a = c coshE. , b = c sinhE I,)'

Note that b/a = tanh5 determines

21



It is relatively easy to show that the stream function is given by

sinh . sin~ I - b-2  (cosh + sinh 2  Ln tanh ) sin 2 (12)
2 2K 2

in which

K = a + Ln a + b -c (13)
c c a+b+c

The velocity components are given by [6]

_ 1 - q 1 j (14)

Jw 6r' Jw

where

+ in (15)

and

J= f2 () f () (16)

and

f(L) : c coshc and f(;) c sinh (17)

Equations (16) and (17) yield

J c (cosh 2Z - cos 2-)" (18)

Thus, the velocity components on the body (i.e., for = ) are

2cosr' b 2

q - [sinh- - b- (ctnh + sinh£ • Ln tanh (19)

cosh 2" -cos2n Kc2  2

22



and

2r sinn,[osob
q sinrsh b(I + cosh .Ln tanh 'o)]

Ycosh 2& -cos2,i Kc2  2 (20)

It can be shown that Eq. (19) is identically zero since it represents

the normal velocity on the body. The tangential velocity is calculated

from Eq. (20) for representative values of a/b and is shown in Figs. 3a

and 3b as a function of the normalized distance from the forward stagna-

tion point.
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IV. NUMERICAL ANALYSIS AND RESULTS

A. USE OF EQUAL NUMBER OF SINGULARITIES AND CONTROL POINTS

As noted in connection with the discussion of previous investigations,

the use of the singularity methods requires the selection of the position

of the singularities along the axis and of the control points on the

body. A convenient but arbitrary selection of boundary points and

singularity locations in this procedure is to position the singularities

directly below the boundary points in one-to-one correspondence [6].

Evidently, no special criteria is provided for the spacing or number of

the singularities. In any case, this procedure results in a set of linear

equations which can be solved through the use of standard matrix reduction

techniques.

The first example chosen tc illustrate the technique and the problems

associated with it is an ovary ellipsoid (also called a prolate spheroid,

generated by rotation of an ellipse about its major axis). The ellipsoid

had a slenderness ratio of a/b = 6.0. An even number of singularities

(Ns) was chosen and they were equally spaced along the major axis of

length 2a. An equal number of control points (N c) was placed directly

above the singularities on the ellipse as shown in Fig. 4.

Figures Sa through 5f show the results obtained with four singularities

and four control points. Figure 5a shows the normal component of the

velocity (Vn) calculated along the upper half of the ellipse. The con-

dition of = 0 is exactly satisfied at the control points. However,

large non-zero normal velocities between the control points show clearly
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the inadequacy of the body representation by four equally spaced sincrllar-

ities and control points. Figure 5b shows the tangential velocity ('t)

along the body. Theoretically, one would expect a smoothly increas>,

tangential velocity profile. Thus, the large oscillations in V t are a

further indication of the failure of only four singularities and control

points, as presently positioned, to adequately represent the body. Figure

5c shows a comparison of the theoretical and calculated Vt as a function

of the normalized distance from the forward stagnation point while Fig.

5d depicts the difference between theoretical and calculated tangential

velocity along the first half of the body. Apparently, the calculated

Vt oscillates about the exact velocity profile. In Fig. 5e the pressure-

coefficient Cp, [Cp = (p - p,)/(0.5 U2 )], and in Fig. 5f the body shape

resulting from the 4/4 case 1 are presented. It is evident from the fore-

going that an ellipsoid of a/b = 6.0 cannot be successfully represented

by a small number of equally spaced singularities and control points.

Thus, it is necessary to explore first the effect of increasing the

number of singularities in the representation of the body and flow

characteristics prior to embarking on a more ambitious investigation of

the effect of using nonuniform singularity distributions.

In anticipation of improvement of ,-he flow characteristics with an

increased number of singularities and control points the cases of 10/10

and 20/20 were investigated. Figures 6a through 6f and Figs. 7a through

7f show the results for the cases 10/10 and 20/20, respectively.

IFor convenience, the designation N /NC, e.g., 4/4, will be used
hereafter to refer to the number of sinyuldrities and control points
used in a particular example.
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Evidently, the difference between the theoretical and calculated tangen-

tial velocity, as well as, all other errors in the calculated flow char-

acteristics have been reduced by increasing the number of singularities

and control points. Nevertheless, the representation of the flow char-

acteristics is far from satisfactory and one cannot use the resulting

stream function to predict the boundary layer characteristics over the

body. It is, therefore, necessary to explore other methods which will

minimize the number of the singularities as well as the error between

the predicted and calculated flow characteristics.

B. THE METHOD OF LEAST SQUARES

The use of an equal number of singularities and control points resulted

in a deterministic set of linear equations and in making - exactly equal to

zero at each and every control point. However, one could use a larger

number of control points than singularities. This will obviously result

in an over-determined set of linear equations if one attempted to render

= 0 at all control points. Recognizing the impossibility of doing so,

one can, instead, minimize y at all control points through the use of a

suitable minimization technique. Thus, one can make the error in 1 nearly

zero at a larger number of control points in lieu of making it exactly

zero at a fewer number of control points.

Let us consider Ns singularities and Nc control points. The stream

function at the control point j due to the contributions of all singular-

ities is given by (see Eq. (1)),

N s x. x.
1 2 i  

J  - 1
j2 i=l r 

(
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If y were not exactly zero at the point j, then the error in would be,

Ns x. x.R N Z mi ( j - xi 1 2
il r 2 J

Then the sum of the square of the errors at all control points becomes,

N

NZ 2 (23)
j=l

in which E2 is a function of the strengths of Ns number of singularities

only. The total error may be minimized through the use of Gauss' method

[7] by writing the partial derivative of E2 with respect to each mi

equal to zero, i.e.,

3E2  (24)
= 0

;mi

Performing the said analysis, one has

ATA m = ATb (25)

which represents a matrix of Ns x Ns linear equations where

X. X.
[A] = [ _ - '] (26)

r

[b] = [' )j (27)

and

T = m. (28)

In the foregoing, i varies from 1 to N and j, from 1 to Nc -
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The least squares method described above was applied to the ellipsoid

with a/b = 6.0 for the cases 4/il, 10/21, and 20/41. As before the

singularities were equally spaced along the major axis. The control

points were likewise located on the body with equal spacing. The results

are shown in Figs. 8a through 8f for the case of 4/11, in Figs. 9a

through 9f for the case of 10/21, and in Figs. 10a through lOf for tne

case of 20/41. The comparison of these figures with those cited earlier

(i.e., with those having identical letter designations such as 5a and 8a,

etc.) shows that the increase in the number of control points does in

fact improve the calculated tangential velocity and reduce normal velocity.

One can also observe some improvement in the body representation as

evidenced by a comparison of Figs. 5f and 8f or of Figs. 7f and lOf.

It is also clear that an ellipsoid of slenderness ratio of a/b = 6.0

cannot be adequately repre'sented with four singularities even with a

larger number of control points. Furthermore, even with a significantly

larger number of singularities and control points (as in the case of

20/41) the method of least squares does not yield a satisfactory repre-

sentation of the flow characteristics. This leads one to the conclusion

that optimizing the strengths of the singularities alone is not sufficient

to adequately model the flow about the body.

The realization of this fact leads to the hypothesis that the locations

of the singularities and the control points may be less than optimum. To

test this hypothesis, one could judiciously position both the singularities

and the control points in the areas of the body where the error is large

(i.e., large normal velocities) and then compare the calculated flow

characteristics with those obtained in the case of evenly spaced
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singularities and control points. Previous calculations have shcwn that

the error in all flow characteristics is largest where the radius of

curvature of the body is relatively small (i.e., regions near the fore

and aft stagnation points). With this in mind, the two singularities

closest to the center of the body in the case of 20/41 were moved to

the new positions of x/b = 5.71429 while the remainder of the singu-

larities were kept in their original evenly spaced positions (see Fig. 1).

The four control points closest to the center of the body were moved to

new positions directly above x/b = 5.90476 and x/b : 5.80952 while

the remainder of the control points were kept in their original positions.

Figures Ila through llf show the results obtained in this manner. A

comparison of these Figures with Figs. lOa through lOf shows that Vn

has been significantly reduced and there is greater agreement between

the theoretical and calculated tangential velocities as a result of the

repositioning of the singularities and the control points. Thus, one

must devise a rational method with which the singularities and the control

points can move to their optimum positions as the singularities continue

to adjust their strengths, as in the previous cases, through the use of

the method of least squares.

C. DUAL OPTIMIZATION METHODOLOGY

In the following, a method is described whereby the position and

strength of the singularities and the number and position of the control

points are progressively optimized so as to minimize the error in the

prediction of the flow characteristics about a given body. For this

purpose the following steps have been developed:
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I. Decide on the appropriate number of singularities, Ns fr tne

body of given slenderness ratio (two singularities per unit length are

recommended on the basis of the experience gained with the least squares

method).

2. Position the singularities with equal spacing alorg the major

axis of the body.

3. Select twice as many control points, Nc, as singularities and

place them on the body contour with equal horizontal spacing.

4. Determine the strength of the singularities through the use of

the method of least squares, as described previously.

5. Calculate the sum of the absolute values of the normal velocities

between singularities Ni and Ni+l for i from 1 to Ns , as well as, in the

regions between the forward stagnation point and the first singularity

and between the last singularity and the rear stagnation point. This

yields (N s+2) sums corresponding to the (N s+2) intervals. In addition,

calculate the total sum of the absolute values of the normal velocities

along the full length of the body (hereafter referred to as .

6. Initially, place one control point per interval on the body

contour. This requires (Ns + 2) control points. The remaining

[N c - (Ns + 2)] control points are apportioned among the intervals

using the relative magnitude of the sum of the absolute values of the

normal velocities in each interval as a weighing factor. Specifically,

the extra control points are assigned in accordance with

x)
Neck [Ncc s 2)] (29)

:nxMa)
-l3

I-
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where Ncc represents the number of control points at the end of a 3i1e

iteration and k varies from 1 to (N,+2). As progressive iterations of

this process reduce the normal velocities along the body, less than the

original number of control points may be necessary to adequately represent

the body and the flow characteristics. Equation (29) allows for this and

will reduce the total number of control points as needed. However, the

number of control points will never be less than (N s+2).

7. Place in each interval the apportioned number of control points

with equal horizontal spacing.

8. Determine the improved positions for the N singularities through

the use of the Automated Design Synthesis optimization program [8].

9. Repeat steps 4 through 8 until no further reduction is realized

in Z

The complete computer program based on the steps described above is

presented in Appendix A.

Several representative calculations have been performed to demonstrate

the effectiveness of the dual optimization methodology. The first case

concerns the ellipsoid with the slenderness ratio of a/b = 6.0. Twenty

singularities and 40 control points were chosen in accordance with the

suggestions made in Steps # I and 3. At the end of the first iteration

(i.e., Steps #1 through 9) the total number of the control points needed

was reduced to 36. Figures 12a through 12f show the results in graphical

form. Clearly, the normal velocities are fairly large and the difference

between the theoretical and calculated tangential velocity is not yet

satisfactory. The computer program carried out a total number of 28

iterations at the conclusion of which Z was reduced to its minimum value.
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After the final iteration, the total number of the control points vas

reduced to 22. The control points and singularities became unevenly

spaced and moved towards the fore and aft regions of the body. Figures

13a and 13b show, respectively, the initial and final positions of the

singularities and control points. Figures 14a through 14f show that the

difference between the theoretical and calculated tangential velocity is

reduced to about O.lOxU very near the stagnation points and to less than

about O.04xU along the remainder of the body. Furthermore, the calculated

velocities over the central half of the body are almost identical with

those predicted theoretically.

It was noted earlier that the dual optimization program should begin

with two singularities per unit length. To validate the significance of

this suggestion and to provide another test case for the computer code,

the case of 10/20 was considered for the ellipsoid of slenderness ratio

of a/b = 6.0. The dual optimization program performed as expected and

at the end of 22 iterations achieved the minimum Z In the course of

the optimization, the number of the control points was reduced to 12.

The final results are shown in Figs. 15a through 15f. A comparison

of these figures with Figs. 14a through 14f shows that the use of less

than two singularities per unit length does not produce flow character-

istics as good as those calculated in the case of 20/22. Thus, the

use of about two singularities per unit length is considered optimum.

Obviously, it is always possible to use a larger number of singularities.

However, the additional computing expense is not commensurate with the

minimal improvement achieved in the flow characteristics.
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To evaluate the ability of the computer code to deal with ellipsoids

of other slenderness ratios, a test case with a/b = 2.0 was run.

Initially, 8 singularities and 16 control points were equally spaced

along the body. Only three iterations were required to achieve the

minimum value of Z. The results, presented in Fig. 16a through 16f,

show that the difference between the calculated and theoretical velocities

has been reduced to about O.O4xU along the entire body. Note also that

the number control points required was reduced to 10 during the dual

optimization process.

To further establish the generality of the dual optimization method-

ology, axisymmetric bodies without fore and aft symmetry have been con-

sidered. For bodies of this type there is no simple boundary function

in the form of w = f(x). The body shape is in general provided by the

naval architect in accordance with the needs of the user. In the present

study such a body has been generated through the use of one source and

four sinks. The strengths and the positions of the sources and sinks

were such that the resulting body did not have fore and aft symmetry.

The Stokes stream function is given by

1 2 5 (x-xi)
- Wi - E m. (30)

i=l 2 2 1/2
2 [(x-xi) + Wi]

where

mI = 0.24 x1 = 0.48891

M2 = -0.06 x2 = 5.98891

m 3 = -0.06 x3 = 7.48891

m4 = -0.06 x4 = 8.98891

m5 = -0.06 x5 =10.48891
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The resulting body shape is shown in Fig. 17. The exact tangential

velocity calculated through the use of Eq. (30) is shown in Fig. 19.

It will be compared later with that obtained numerically.

The optimization process followed the steps outlined previously.

Thus, in accordance with the recommendation that about two singularities

per unit length be chosen, 20 singularities and 41 control points were

selected and distributed appropriately along the body. In only two

iterations the number of control points reduced to 32 and Z acquired its

minimum value.

Figures 19a through 19f show the results after the final iteration.

Clearly, the calculated and the exact body shapes are nearly identical

and the normal velocity has been reduced to almost zero along the full

length of the body. Also, the calculated and theoretical tangential

velocities compare exceedingly well. It should be noted that the un-

dulations in the tangential velocity at the aft end of the body are due

to the geometry of the body (as defined by Eq. (30)) and are not attri-

butable to any theoretical or numerical instability. In fact, the

occurrence of such undulations in the exact tangential velocity profile

provided greater challenge for the dual optimization process. The

computer program for the case under consideration is presented in

Appendix B.

It is evident from the foregoing that the dual optimization method-

ology can be used with great confidence in the prediction of the flow

characteristics about axisymmetric bodies with or without fore and aft

symmetry.
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V. CONCLUSIONS

The investigation described herein warranted the following conclusions:

1. The existing methods for the representation of axisymmetric bodies

and the flow about them require excessively large computer time and a

great deal of foresight for the selection of the number and position of

the singularities and control points so as to achieve satisfactory results.

Furthermore, they provide no insight as to how the errors (e.g., normal

velocity) may be progressively reduced.

2. Through the use of the method of least squares and the Automated

Design Synthesis optimization, together with a sufficient number of dis-

crete singularities and control points, one can represent an axisymmetric

body and the flow about it with excellent accuracy. The bodies are not

required to have fore and aft symmetry.

3. Extensive calculations with various types of axisymmetric bodies

have shown that the use of two singularities per unit length is quite

adequate to model the flow about the body.

4. Numerous examples have been given and the results have been

compared with those obtained theoretically.
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VI. RECOMMENDATIOI1S

The following recommendations are made for the purpose of increasing

the power of prediction of the dual optimization methodology.

1. The existing computer program should be converted to an inter-

active mode so as to simplify its use.

2. The code should be enhanced to enable the user to minimize not

only the strength and location of the singularities but also their

number. For example, such a procedure could be incorporated into the

code by deleting from the calculations the singularities whose strengths

fall below a prescribed percentage of the sum of the absolute values of

the strengths of all singularities.

3. The improved code should be tested with other axisymmetric body

shapes.
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Figure 1. Ovary Ellipsoid
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Figure 2. Velocity Componentsq
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Figure 4. Placement of Singularities and Control Points
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