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—%eomide:fhe generalized eigenvalue problem, (A ~ xu)x -
and M are large, sparse, symmetric matrices. For large problems fifiding only a
few eigenpairs involves a major computational task. In a typical example from
structural dynamic analysis with matrices of order 8000, O(10%) operations are
required to compute 50 eigenpairs. It is therefore interesting to examine the
advantage that vector computers such as CYBER 205 can offer. 1o fin ity

thod and the
simple Lanczos Method in order to take advantage of the 1al vector processor
of the CYBER 205. Both techniques lend themselves to vectorization. Our
extensive comparisons support the following genera)statements. Both methods
require the triangular factorisation of the same n X n matrix. This factori-
zation dominates the total computation as n — ob provided that the number of
wanted eigenpairs, p, remains fixed (independent of n). However, simple Lanczos
is at least an order of magnitude more efficient (in CPU-time) for the remaiader
of the computation. For pm=40, n==500 the factorization time is not important
and the full order of magnitude difference is seen in the total CPU-time. When
p=40, n=8000 simple L anczos is only 4 times faster than Subspace Iteration oa
the CYBER 205. This confirms experience on serial computers. ¢-

For problems that cannot it into primary storage, input/output becomes
increasingly important. We found that the cost of input/output dominated over
the CPU-cost for 2 problem that required twice the available primary storage on
our CYBER 205. However, this will depend on the billing algorithm of the com-
puter center. We conclude that problems which have a substantial overhead in
reading and writing the matrices, should not be solved by the simple Lancios
Method, but by 3 Block Lanczos Method.

Accesslon For.

[NTIS GRARI
' FOR PUBLIC RELEASY DTIC TAB 0
IBUTION UKTLIXITED Unannounced 0

~ 1 Distrivation/

Justifi . ation.

Work made possible by & graat of computer time from CDC (grast #82CSU23). Pastial suppert by the US.
Office of Naval Research under contract NOOO14-76-C-0013 is gratefally ackaowiedged. o
$O0n leave from Rogaland Regienal College, N-4000 Siavaager, Nerway.

Avatl- Y lity Codes




. p—————— -

Effect of the CYBER 206 on Methods for computing

Natural Frequencies of Structurest

J. Natvigt, B. Nour-Omid, and B.N. Parlett

Center for Pure and Applied Mathematics

University of California, Berkeley, CA 94720, USA

1. Introduction.

The purpose of this project was to examine the performance of two differeat methods for
the solutioa of the eigenvalue problem
A-2M)zx=0 @
when implemeated on 3 CYBER 208 vector computer. We iavestigated the Subspace Iteration
Method [13], (1] (called SUBIT hereafter), which is widely used on traditional serial computers for
medium sised and large cigenproblems, aad the Lancscs’ Method (8], [10] (called LANC
hereafter), which recently has beom showa (o be an ovder of magnitude faster than SUBIT (9. It
was of interest to see how the metheds compare o a vector computer.

Staadard in-core versions of the twe algorithms were modified to take advaatage of the spe-
cial features of the CYBER 208 [4|. The algorithms were not redesigned, but wherever possidle, a
CYBER 208 vector fuaction was substituted for the original FORTRAN code.

The test problems were derived from the dynamic analysis of idealized 3-dimensional struc-
tures, a8 modelled by the finite clement program FEAP (16, Ch. 24]. For various problem sizes
the two methods were timed extemsively, both before and after the explicit vectorization took

place.

{Wetk made powidie by 2 grast of computer time from CDC (grant #82CSU232). Partial support by the US.
Office of Naval Ressarch sader contract NOOBI4-78-C-0018 is gratefully acknowiedged.
$On leave from Rogaland Regional College, N-4000 Stavanger, Nerway.
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3. The nature of the eigenvalue problem.

We are interested in the solution of eq. (1) when A and M are large, sparse, n X n, sym-
metric matrices. In many applications the matrices have a banded form, ie. o, = 0 for all
|i-j| > ba, where q,, is the (5,5 )-element of A and b, is the half bandwidth. For typical prob-
lems in structural dynamics b, is (5-10)% of n, cfr. Section 5. M must be positive semi-definite.
In some cases M (or A) may be diagonal, which leads to a significant savings in the computa-

tional effort with either method.

“Large” today means n > 10%, but 10 years ago 10° was considered large. In these large
problems all eigenpairs (), x,) in a given interval may be sought; these are usually quite few,
perhaps between 10 to 50. The interval may be at either end of the eigenspectrum and may con-
tain the origin. For best convergence properties it is best to perform a shift of origin to this inter-
val before the actual eigen computation takes place. For more details, see Sections 4, 4.1, and 4.2

as well as [10].

3. Special features on CYBER 208.

The CYBER 205 is capable of attaining a rate of several hundred millioa floating point
operations (add or multiply) per second, depeading on the actual machine configuration and also
oa the precision of the arithmetic,. We have wsed 2 205 with 2 pipes in ordinary single precision

(64 bits), and an asymptotic rate of 100 megafiops [4],(7]. One megaiop (mfop) is & rate of 1 mil-

lion floating point operations per secoad.

3.1. Vactorisation.

The top performance caa oaly be obtained by those parts of a program that operate om vec-
tors, where a ‘‘vector’ is a set of consecutive memory cells all treated in the same way.

In the following simple example there are three vectors, each correspoading to the n first
elements of arrays B, A, aad D. The vector ia B is the Schur product of the vectors in A aad D.

There are ementially two ways to achieve vector performance for this DO-loop oa the
CYBER 208. The FORTRAN code in Fig. 1 may be left uachanged sad thea be compiled with
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DO 100 I=1,N

B()=A(1)+D(I)
100 CONTINUE

Flig. 1. DO-loop operating on vectors (Schur product)

special vector optimizers (‘“automatic vectorization”), or we may replace the DO-loop by a direct

reference to the vector multiply instruction, see Fig. 2.

B(1;N)==A(1;N)*D(1;N)

Fig. 3. Vector multiply instruction corresponding to Fig. 1

In either case the vector instruction is composed of a start-up phase during which the operands
are lined up and made ready, and the actual execution phase with two operations (because of two
pipes) per CPU-cycle (one CPU-cycle was equal to 20 nanoseconds on the CYBER 205). Because
the unproductive start-up phase has to be amortized over all operations, the longer the vector
length, the higher the performance rate. (However, there is 2 maximum allowed vector leagth of
65535 elements.) We bave timed the vector multiply instruction (Fig. 2) for various vector
lengths, and we have found good agreement with the performance data given by CDC [7]; eg. a
rate of 50 mflops, or half the asymptotic rate, is achieved with vector lengths about 100, aad 80
mflope is reached when the vector lengths are about 400. The results of our direct performaace

measurements are presented in Appendix A.

Consider next the example in Fig. 3, where there are two input vectors aad one input scalar
that are to be combined through aa addition aad a multiplication. We refer to this as a2 SAXPY
(eingle precision ¢ Xx plus y), and on the CYBER 205 it may be realised as one vector opers-
tion, i.e. after start-up two output elements (because of two pipes) are computed per CPU-cycle.
As is customary in numerical aaalysis we shall count the production of oae output element as one

floating point operstion. CDC wses a differeat terminology sad calls s SAXPY s linked triad, aad

also counts each pass within & SAXPY as two floatiag point operations (multiplication sad addi-
tion). With vector lengths 100, we found an effoctive rate of sbout 37 mfiops; 50 mflops is
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reached for vector lengths about 160, 80 mflops for vector lengths about 650, and the asymptotic

value is still 100 mflops {(cfr. Appendix A).

DO 200 [==1,M
Y(Iy=Y(I}+ AsX(1)
200 CONTINUE

Fig. 3. DO-loop for the SAXPY

Again, the vector operation will be invoked if automatic vectorization is specified during

compilation, or if explicit vector code is substituted in the program, see Fig. 4.

Y(1;M)=Y(1;MH A*X(1;M)

Fig. 4. Vector code corresponding to Fig. 3

The dot product of two vectors may be coded as in Fig. 5.

DOTe=0.
DO 100 l=1,N
DOT=DOT+ R(I)+U(l)
100 CONTINUE

Fig. 5. DO-loop for the dot product

The dot product function on the CYBER 205, Q8SDOT, is not a vector functioa, but a simuls-

tion of ome, see Fig.6. It has been implemented with scalar instructions in a very eflicient way.

DOT=Q8SDOT(R(1;N),U(1;N))

Fig. 8. ‘“Vector'’ dot product equivaleat to Fig. §

QSSDOT bhas a relatively slow start-up phase, and thea performs oae partial product aad
accumulation per cycle. This operation is unrelsted to the pipeline feature. Oa s CYBER 205
with two pipelines, as was the case in the present investigation, the dot product will therefors
only reach half the speed of the SAXPY for loag vectors. We shall count one partial product and
sccumulstion s one Soating point operation (thus Figs. § aad 6 each contains n Soating point
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operations). In our direct measurements of the vector dot product (Fig. 6) we found aa effective
rate of about 20 mflops with vector lengths 100, and about 43 mflops with vector lengths 1000
{cfr. Appendix A). For all vector lengths it is to be seen from Appendix A that the SAXPY is

almost twice as fast, and the Schur product more than twice as fast, as the dot product.
The ratios of mflop rates in Appendix A suggest strongly that programs for the CYBER 205
should be written using linear combinations of vectors (SAXPY's) rather than dot products. For
example, if Vis n Xm and P is m X m then the product Z = VP can be computed either as nm
dot products of length m (requires V held by rows) or as m? SAXPY's, each of length n. The
second form (see Fig. 7) is clearly preferable whea n > m. |
DO 200 Jm=1M
Z(1,3;N)=P(1,J)*V(1,1;N)
DO 200 I=2M

Z(1,J;N)=Z(1,5:N)+ P(1,J)*V(1,EN)
200 CONTINUE

Fig. 7. SAXPY's used for matrix multiplication, n>m

When n < m, the first form (using dot products) may be faster thaa Fig. 7, because the vector
lengths are longer. However, it is more efficient to compute the rows of Z as linear combinations

of the rows of P (using SAXPY's), although thea P aad 3 should be heild by rews.

3.3. Memory management.

The CYBER 205 has virtual memory (theoretical upper bound 2x 10’2 words per user). The

SRCIE AT SWH T E O R

real memory oa the machine we used was 2 million words, and there was 2 36.5 Mbit/s link to a
total of 450X 10° words on disk. A program, with instructions aad data, will be organised on
pages, for which there are two choices, either small pages (equal to 512 words) or large pages

DGR+ i

(equal to 65836 words). The paging system will seek to keep the most recently wesed pages ia the
primary storage. Whes the program refereaces data (or instructions) that do not at that moment
reside in the primary storage, s “page fauit” occurs. CYBER 205 will halt the execution of the
program until the page that contains the requested data has been transferred from the secoadary




storage, usually at the expense of another page being put out to the secondary storage. While
this swapping takes place, the CYBER 205 may execute other programs that are allowed to
occupy part of central memory. There is » small overhead in CPU-time when a vector crosses a
page boundary, and aleo during a page fault. Whea a program references dats in an “‘orderly”
fashion, as whes consecutive columns of a matrix are used consecutively and not at random, it is

more eflicient to use large pages. This is indeed the case with both our eigenvalue methods.

The accounting system assesses a cost penalty for a large page fauit of .156 SBU (System
Billing Units), equivalent to .156 CPU-seconds [12]. For large problems that caanot be fitted into
primary storage, this penalty might actually be larger than the CPU time for the whole computs-

tioa.

4. Description of the two eigenvalue methods.

We are interested in some of the cigenvalues closest to a specified value, 0. In each method

we shall perform the same initial calculations:

- shift the A matrix by o: A = A - oM

- factorAistoL ALT
Here L is a lower triangular matrix with c__iiuoulckmelhequl to one, A is s diagonal matrix,
and L7 is the transpose of L. Incideatally the number of megative elements in A equals the
number of eigenvalues that are smaller thaa 0.

We used a standard active column profile solver (called PROFIL). The upper triangular
part of A is stored aad gradually overwritten with LT. Counsider the computation of a typical
columa of LT of “height” A (above the diagonal). Each element will require a dot product and
the leagths of the vectors iavolved will vary from 1 to A-1. Altogether nb dot products are
needed for LT and the average length is § /2, where b is the average half bandwidth of A.

Of course PROFIL could be reorganised to compute L by columns aad 90 replace dot pro-
ducts by SAXPY's. This helps, but not much. The significant fact is that § /2 is small compared
to n ia most strectural problems aad the factorisation of narrow banded matrices casnot exploit
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the full vector mflop rate of the CYBER 208 since it is manipulating vectors of (average) length

/2 rather than n.

As we shall see the factorization process dominates both methods to a greater extent on the

CYBER 205 than in serial machines.

The remaining part of either method, SUBIT or LANC, is formulated in such a3 way as to

solve the following transformed eigenvalue problem

(LaLTy'm @
The largest a’s correspond to the eigenvalues )\ closest to o (these are the smallest \'s when o==0)
according to

*= x.-l-a @)
The eigenvectors, x, in Eq. (2) are the same as in Eq. (1). See [5] for more on this transformation
of the problem.

The following sections, 4.1 and 4.2, will describe in detail the two methods. At each stage

we emphasize the vector operations.

4.1. Subspace Hersilon (SUBIT).

The method works with m iteration vectors at » time. We say that the subspace dimension
is m. At step k the current set of vectors, held as the columas of the n X m matrix 8¢, is
replaced by another set, held as the columas of 8(¥). The columas of 8(*) are kept mutually

orthogomal.

During each major step &, (k==1,2, - - - ), the following tasks are performed.

4.1.1. M-OMII.
(s) Compute

R®) o M8t (4)
This iavolves 3 total of (20 + 1)nm operations, where by is the average half

[ .



bandwidth of M. For a general M we would bave an average vector leagth equal to
by. But whea M is diagoaal, byy=0 and only m vector Schur products of leagth n

are performed.
(b) Compute the upper triaagular part of the symmetric m X m projection matrix
M®) = gE-UT g )
Here m3/2 vector dot products of leagth n are performed.
4.1.2. A-projection.
(a) Solve AB®=R™® for 8). This is dome in three phases:
. (a1} Solve for C

L C=R® ()
nm dot products with average vector length $.

(a2) Compute

F=AlC {7)
m vector Schur products of leagth n.

' (a3) Solve for 5

LT mp ®)
nm SAXPY's with average vector length b.

With care C, I, aad §;) can share the same storage area.
(b) Compute the upper trisngular part of the symmetric m X m projection matrix
A®) = O g )
m?2/2 vector dot products with vectors of leagth n.
4.1.3, Small eigenproblem.

Solve the projected m by m eigenvalue problem

(A® - apv) (10)
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for all m eigenvalues & and (orthogonal) eigenvectors G1*),

Here we transformed the problem to a special eigenvalue problem (16, ch 15|, which
was solved by the EISPACK subroutine EISQL [6]. The transformations involve an
mXm factorisation and forward reduction and backward substitutions; s total of
4/3m3 operations. And it is our experience on scalar computers that EISQL contains
twice as masy operations, i.e. 8/3m®. The full eigensolution thus represents some 4m*
operations. For large typical eigenproblems this is negligible compared to the number
of operations that are required in other parts of the program. Nevertheless, we
replaced dot products aad SAXPY's in the transformation subroutines with equivalent

. vector expressions. The EISQL subroutine cannot be vectorized.

4.1.4. Formation of new basis.
) Compate

S®) = O g (1)
This can be written as m2 SAXPY’s of length n, cfr. Fig. 7.

Typically, both » and m are << n, and the number of necessary iterations, /, is about 20.

E.g., when n=2000, }==100, then to find 40 cigenvalues we might use m=50, 60, 70, or 80, and

expect coavergence ia /=15 to 30 iterations.
' Under these circumstaaces the dominaat parts of the algorithm, when the M matrix is diag-
onal (as in our test cases, cfr. Sectioa 5), are
- Factorization
nb?/2 operations
«  Linear operator (4.1.2 (31), (a3))
1{20nm) operations
J - New basis (4.1.4)
| {(nm?) operations
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The break-even between the factorization and the linear operator is reached after (==} /(2m)
iterations as far as the number of operations is concerned, but because of the short vector length
during factorization we shall expect to need more iterations than this on the CYBER 205 before

the linear operator takes as much CPU-time as the factorization.

The computation of the new basis will usually be far less expensive than the first two. m is
usually small compared to 2b, and the vector length is equal to the problem size n in this compu-

tation.
There is a potential for reduction of the number of operations in the fact that the first

cigenvalues/eigenvectors will converge rather quickly. These cigenvectors may then be locked,

and not participate e.g. in the time-consuming linear operator (Section 4.1.2(a)).

4.2. Lancsos’ Method (LANC).

We used a simple Lanczos’ algorithm. A single random starting vector, r,, is iterated
according to the scheme presented in [9]. Initializations include setting qu=0, and computing
Po=Mr, and fy2=/ry'py-

In each step j, ( j=1,2, - - - ), the following tasks are done:

(a) Orthogonalization
v, will be orthogonalized against the previous Lanczos vectors when needed [15].
(This is called selective orthogonalization.)

A maximum of (j-2) SAXPY's and dot products with vector length n.

(b) Compute q,—-"—'l- and 5,_,—25’;'- .

J J

This is two vector operations, vector length n.
(c) Solve Ar,m=p, , fore,.
(This is equivalent to Section 4.1.2(a), now with mm=].)

- “solve (A)", i.e. (20+1)n operations, n dot products aad n SAXPY’s with

average vector leagth equal to J, and onme vector Schur multiply with vector

it - 3 v
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length n.
(d) Compute r,=r,—q,,5,.
Single SAXPY, vector length n.
(¢) Compute a;=¢P, ;.
Single dot product, vector length n.
(f) Compaute r,=r,-q,a,.
Single SAXPY, vector length n.
(g) Compute p,=Mr, and ﬂ,,,,‘-\/;fp_,.
- “mult (M)", i.e. a vector operation (Schur product) of length n (when M is diag-
’ | onal)
- a dot product, vector length n
It 8,,, is small compared to |a,| and 5, (e), (f), and (g) will be repeated once. This is
found to take place in fewer than 1/4 of the steps.
‘ (b) Analysis of the symmc ‘ric tri-diagonal matrix T, which bas the a's as diagonal ele-
ments and the §'s as bidiagonal elements.
#=80;j scalar operations [11].

(i) For converged eigenvalues compute eigenvectors of T, and then compute eigenvectors
x.

J SAXPY's with vector length n per computed x.

Typically, the first cigeavalue will converge in 5 - 10 iterations, and 20 eigeavalues will con-
verge in 40 - 50 iterations. For loager runs it is 3 good assumption that //2 eigenvalues will have

coanverged in [ iterations.

PET ke e ey < P . an
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s. The operations count for a LANC run, when the M matrix is diagonal, cfr. Section 5,
| includes
(1) Factorization
nb?/2 operations; dot products, average vector length 5 /2
(2) Orthogonalization, total for ! steps
For selective orthogonalization we have found that =sni3/5 operations are required;
equally divided between SAXPY’s and dot products, each of vector length n.
For a full reorthogonalization n(/*-!) operations are required; equally divided between
SAXPY's and dot products, each of vector length n
) (3) ! Lanczoe’ steps
(3a) (26+ 1)nl operations; dominated by SAXPY's and dot products, average vector
length b (solve (A))
(3b) 5/4 nl operations, vector length n (mult (M))
(3c) 6nl operations; equally divided between dot products and scalar vector products,
vector length n
‘ (4) Analysis of tri-diagonal matrix, T, total for { steps
2340/2 operations; non-vectorisable
(5) Computation of //2 eigenvectors
2<3/8 ni? operations; estimated for the case that ome eigenvalue-/eigenvector con-
verges in each of the //2 last steps. This is an overestimate, more typical would be
1/8 ni® to 1/4 ni® operations. These operations are SAXPY’s with vector leagth n.

A comparison of operation counts shows that 3 LANC rua with fewer thaa § /4 steps does
not permit the izitial cost of factorisation, (1) above, to be amortized. For loager ruas (/> /4)
the Lancsos’ steps (3) will require more operations than the factorization, and thea (selective)
orthogonalization (2) aad the anslysis of T (4) become significant parts of s LANC step. Because
of the poor vector length during factorisation ss compared with the other parts, we shall expect
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to need even more steps than b /4 to amortize the factorization on the CYBER 205.

The operation count break-even between parts (4) and (5) above is for n=5100, but because
(5) is vectorized, the two modules will have equal CPU-time on the CYBER 205 for a much

higher value of n. Note also that (5) will always be less than half the cost of (2).

5. Test examples.

We used test examples that typically occur in structural dynamics. A version of the finite
element program FEAP [16, Ch. 24] was converted to run on CYBER 205; this program was then
used to generate stifiness matrices, A, and mass matrices, M, for the test examples. The eigen.

values, x,, are the squares of the frequencies of free vibration of the strietnm, W, i.e. \,mmw3

We generated a total of 4 sets of matrices, with the order of the matrices raaging from 150
to 7296 (i.e. n == 150 to 7296). In all 4 examples we chose to have a diagonal M. There is no
loss of generality with this assumption. Our intention was only to keep the total computational

cost down, and yet be able to examine large problems.

Example (1)
n = 150, b = 17
This is » simple truss structure.

Example (it)

n == 468, b = 60

This is a structure, first presented in [2], which we have wsed extensively during previows
testing [8).

Examples (iii) aad (iv) were geserated with a 3-dimeasional beam element. The model is an
idealization of a maultistory structure, see Fig. 8. Each story had the same geometry, with
(Ne=1)N, + (N,-1)N, clements parallel to the 3- and y-axes, aad slso N, N, clements parallel to
the z-axis (commecting the story to the mext lower story). Of the total aumber of sodes, N, N, N,,

all that belonged to the bottom story were held ixed. Each node had 6 varisbles.

-
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Fig. 8. Model used in examples (iii) and (iv)

Example (1i1)
With N; == N, == 4, N, == 20 we get n == 1824, § = 08.

Example (lv)
With N; == N, = 8, N, = 20 we get n = 7296, b = 370.

The model was so constructed that whenever N; == N, due to symmetry there was a set of
double eigenvalues corresponding to the transverse vibration of the structure. Both Example (iii)

sad Example (iv), therefore, contain double eigenvalues.

- - ——
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| 0. Test runs.

While we ran our 4 test examples on both SUBIT and LANC, the CPU-time consumed by

all major parts of the programs was measured by the CDC FORTRAN fuaction SECOND (3],

1‘ and we kept track of the step at which cigenvalues were accepted. In SUBIT we also varied the
number of iteration vectors, m. In all cases a pumber of the smallest cigeavalues/eigeavectors

were computed, i.e. those closest to the shift om0,
7. Results and comparisons.
7.1. Effects of vectorisation.

7.1.1 Performance improvements through vectorization.

As pointed out in Section 3.1 vectorization may be achieved through aa optimization option
L for the FORTRAN compiler or through the replacement of instructions by explicit vector imstruc-
tions. Typically, the automatic vectorization will only affect quite obviously vectorizable code,
e.g. “clean” DO-loops, as in Figs. 1, 3, and 5. More complicated sequences of instructions will not
‘ be vectorized through the compiler option, although they might well be vectorizable. We waated
to see how much various subroutines improved from the original scalar version to the explicit vec-

torized version, and made test runs under the tMg 4 regimes:
Condlition (A): The code was as before vectorization, compiled with no optimisation

optioas.

Condition (B)s The code was as before vectorization, aand it was compiled with the scalar

:
3
3
A
4

optimization option.

" Condition (C)s The code was as before vectorization, and it was compiled with scalar aad
vector optimisation options.
Coundition (D)t The code was explicitly vectorized 2s outlined in Section 3, sad it wes
compiled with scalar and vector optimization options.
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First we show the CPU-times and mflop rates for the importaat factorization subroutine

(PROFIL) as a function of the problem size, see Table 1.

Table 1. Performance of vectorized factorization subroutine PROFLL

Average || Operations | CPU-time | Mflop
Example | vector || [millions] | [seconds] | rate
length
(i) 9 022 0148 | 149
| (ii) 30 84 1689 | 50
| (i) 3 8.23 1.001 76
(iv) 185 499 24.59 20

Note that that these rates are well below the rates that we have presented in Appendix A.
The reason is that PROFIL contains various conditional statements and also some scalar arith-
metic (e.g. on indices) in addition to the vector operations, that will slow down the code accord-
ingly. This is also the case for other subroutines.

The values in Table 1 are for condition D, i.e. explicitly vectorized code. Table 2 will show
how much was gained in this subroutine by the various compiler options.

‘ Table 3. Performance of factorization subroutine PROFIL
uader various optimisation options

Milop rates

Cond C | Cond D

103 1.49
a5 5.0
4.4 7.0

In the following three tables we shall see bettor performance, due to loager vector leagths.

The M-operation, Section 4.1.1(a) and (b), was coded 28 one subroutine, MPROJ. For diag-
onal M the effort is dominsted by dot products of leagth s. Table 3 shows that the antomatic
vectorisation worked almost as well 28 our explicit vectorisation for this subroutine. Note also
that, based on the vector leagths givea in Table 3, the performance rates for the vectorised dot

1)
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products alone are about 27, 38, 46, and 49.5 mflops, 3s obtained from Appendix A.

Table 3. MPROJ performaace (diagonal M)
Example | Vector Mflop rate

leagth || Coad A | Cond C | Cond D

) 150 1.3 16 20
(ii) 468 14 29 32
(i) 1824 14 38 39
(iv) 7296 47

Note that we could reformulate MPROJ to use SAXPY’s instead of the dot products, but
these SAXPY'’s would use much shorter vector length, i.e. m, and therefore would lead to poorer
performance. From Appeadix A we may infer that with m==43 the mflop rate for the vectorized
MPROJ with SAXPY's would be less thaa 20 in all 4 examples (the SAXPY's aloae would per-
form st sbout 22 mflops, but the additional work would be at scalar speed). It is the vast
difference in vector leagths that makes the dot products superior to the SAXPY's in this subrow-

tine.

The formation of the mew basis in SUBIT, Section 4.1.4, was coded as a subroutine,
VFORM. Table 4 shows that pure SAXPY expressions with long vectors are indeed very
eflicient. If VFORM were coded using dot products instead of SAXPY's, then the mflop rate
would be sbout half (snd the CPU-time about twice) the values givea in Table 4.

Table 4. VFORM performance, Example (iv)
Analysis of first step, mm=23 and m==63

m Vector || Operations | CPU-lime | Mfiop
leagth |millions] [seconds] rate
06
90

23 | 7200 3.80 0402
03 | 7298 23.90 3016

In LANC the orthogonalisstion task, Section 4.2(a), may be coded as a full Gram-Schmidt
orthogonalisation, as in our subrostine GSORT, or ss a selective orthogonalisation, as ia owr
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subroutine PRORT. We shall commest o the choice of method in Section 7.3, and st this point

include performance data for GSORT, see Table 5.

Table §. Orthogonalization performance GSORT

Example | Vector rate
len, Cond A | Cond B | Cond C | Coad D
) 150 1.9 2.1 13
(id) 468 2.0 2.2 5.1 2
(iid) 1824 20 5.3 42
(iv) 7296 50

GSORT contains equal amounts of SAXPY's and dot products, all with vector length n; we
should therefore expect improved performance compared with MPROJ in Table 3. It is surprising
that we did not fiad this to be the case in Examples (i) and (ii). Table 5 aleo illustrates that the
automatic vectorization did not vectorize perfectly vectorisable code (low performaace for condi-
tioa C); this is because the original GSORT coatained an external reference to a general purpose

dot product function, which was coded in a way the automatic vectorizer did not recognize.

7.1.3. The importance of vector length.

So far we have seen that the performance of a givea subroutine improves dramatically with
longer vectors. However, this improvemest is not as big as the direct measurements of pure vector
codes indicate. For subroutines like MPROJ, VFORM, aad GSORT, that coasist almost com-
pletely of vector imstructions, we have observed s markedly lower performance than that
presented in Appeadix A. Typically, a subroutine - or a3 whole program for that matter - will
include slow parts that will degrade the overall performance even further. Scalar operations, dot
prodects, sad /or operations with short vector leagths are examples of such slow parts. In order
for the slow parts to have aay significant influence on the overall performence, bowever, they
must represeat » significaat fraction of the total work. Below we shall give & detailed discussion
of two important subroutines that have certain operstions on short vectors aad other operations
os loag vectors. The overall performance will be inbetwesa what would have beea expected for
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the short vector length alome and for the long vector leagth alone.

Withia SUBIT the A-projection, Section 4.1.2(al), (a2), (a3), and (b), was coded as ome sub-
rostine, APROJ. The vector lengths in APROJ are both b (on average), during 4.1.2(sl) aad
(a3), aad n, during 4.1.2(a2) and (b), so that for every 2nm vector operations with length J there
are (m?/2 + m) vector operations with length n. Most of the long vector operations are dot pro-
ducts (m?2/2 28 opposed to m SAXPY’s). From Appendix A we may see that for large examples
(i.e. large n) the mflop rate over the long vectors will be about 40 to 50, but never significantly
over 50. Half of the short vector operations are eflicient SAXPY's. When the short vector length
b is greater than about 120, these SAXPY’s will also execute at mflop rates of about 40 or more,
The other half of the short vector operations are dot products which are significantly slower than

tae SAXPY's; e.g. with vector length 120 the dot product mflop rate is about 22.

To further illustrate the performance of APROJ we include some detailed timings of one

iteration step of our largest example, see Table 6.

Table 6. Analysis of APROJ vector performance, Example (iv)

Breakdown of first iteration step, subspace size = 23
Task Average Operations CPU-time | Mflop
vector length [millions] [seconds] rate
4.1.2(a1) 370 62.1 1.850 k7
4.1.2(a2) 7208 .1678 00171 98
4.1.2(a3) 370 62.1 1.067 88
4.1.2(b) 7290 1.93 0414 47
OVERALL 126.3 2.96 43

Ignoring for s momeat the slow-down effect of noa-vectorizsed parts of APROJ we may
extrapolate from Appeadix A that the overall mflop rate for this subroutine cannot exceed 67,
and the short vector leagth (J) has to be larger thaa 500 for the overall mfiop rate to be better
thaa 50.

The subspace sise, m, will not greatly influence the performance rate, but of course the
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CPU-time for tasks 4.1.2(al), (a2), and (a3) will increase linearly with m, and the CPU-time for

task 4.1.2(b) will increase quadratically with m. Table 7 contains 2 summary of overall perfor-

mance rates for APROJ for all our examples.

Table 7. APROJ performance, vectorized code

Example Vector Subspace | Mflop
lengths size rate

¥ 17/150 23 6.1
(i) 17/150 43 72
(ii) 60/468 23 15.4
(ii) 60/468 43 16.2
(ii) 60/468 63 169
(iif) 95/1824 23 21.2
(iid) 95/1824 43 219
(ii) 95/1824 63 224
(iv) 370/7206 23 424
(iv) 370/7206 43 426
(iv) 370/7206 63 420

Within LANC, see Section 4.2, the tasks (b) - (g) were coded as oae subroutine, LANSIM.

During task (c) there are vectors of average length b, but in the other tasks the vector length is

equal to n. In as average step there are about 9 vector operations of leagth n (6.5 (fast) vector

multiply’s or SAXPY's, aad 2.5 (slow) dot products) as opposed to 2n vector operations (n

SAXPY's and n dot products) with average vector leagth 4. Thus the shorter vector leagth

occurs much more often than the lomger vector length in typical examples, e.g. 100 times more

often in Example (ii), and nearly 400 times more oftea in Example (iii). As a resuit the overall

milop rate for LANSIM will be determined by the shorter vector length, and we have in fact a

situation that is quite similar to what we have described above for the APROJ subroutine in

SUBIT. Again based on dats in Appeadix A the problem must be very large, with short vector

. lengtk > 500 (if we ignore the eflect of non-vectorized parts), to give an overall mflop rate ia

LANSIM that is higher thaa 50. Table 8 shows the performance that we measured for LANSIM

for our more typical examples.
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Table 8. Lancios’ step performance LANSIM

Example Vector length No of Operations CPU-time Milop
. Short Long steps |millions] [seconds] rate
1

b n
(i) 17 150 80 507 .1183 43
(ii) 60 408 100 6.00 407 12
(iii) 95 1824 100 36.3 2.08 17
(iv) 370 7296 100 546 13.68 40

7.1.3. Modules that were not vectorised.

The solution of the small eigenproblem ia SUBIT, Section 4.1.3, was written as one subrou-
tine, GEIG, that called the set of transformation subroutines and also EISQL. The traasforma-
tion modules, representing about 1/3 of the operations, were vectorised with vector lengths vary-
ing from 1 to m (m /3 on average). According to Appendix A dot products and SAXPY’s perform
equally well on CYBER 205 for the vector lengths that we used in these transformation modules
in our test runs (with m == 23, 43, and 63). As a result of vectorization of the transformation
modules, EISQL’s fraction of the total time in GEIG was found to increase from 64% (scalar) to
74% (subspace size m=23), 80% (mm43), and 84% (m==63). The performance rate of GEIG
came out between 1.9 mflops (m=23) and 2.9 mfiops (m=63).

Within LANC there is also an unvectorized subroutine, ANALZT, that performs the
analysis of the tridiagonal matrices, Section 4.2(h). The operations count for ANALZT that we
have given there, is quite approximate. Taken literally it indicates a performance rate of about .9
- 1.5 mflops. We recorded an improvement of about 10% for this subroutine through the scalar

optimization option for the compiler.

7.3. Overall SUBIT performance.

Because the performance rate is different for the diflerent modules of SUBIT it is of interest
to look at the oversll performaace of the method.
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As explained in previous sections the SUBIT step consists mainly of 4 subroutines: MPROJ
(Section 4.1.1), APROJ (Section 4.1.2), GEIG (Section 4.1.3), and VFORM (Section 4.1.4). With
subspace size m == 23 the slowest of these modules, GEIG, represents from 14.7% (in Example
(i)) to .04% (in Example (iv)} of the number of operations in each SUBIT step, but this
amounts to from 45.9% (Example (i)) to .8% (Example (iv)) of the CYBER 205 CPU-time in
each SUBIT step, as shown in Table 9.

Table 0. Floating point operations and CPU-times

for modules in a SUBIT step
|Given as percentages of whole step]
Example | m || MPROJ APROJ GEIG VFORM
ops time | ops time ops time ops time
(i)
a=150 23 | 13.0 33 483 466 14.7 45.9 239 4.2
bm==17 43 |} 13.1 3.2 330 28.5 28.8 66.0 25.1 43
(ii) 23 73 3.0 768 73.1 26 20.7 13.3 3.2
n=408 43 || 10.1 3.7 637 | 831 71 389 19.2 43
b=60 63 11.5 3.9 54.1 306 12.0 52.0 22.3 4.5
(i) 23 || 52 | 26 |83 | 1 5 8.7 968 | 25
n=1824 | 43 80 4.1 753 | ™0 1.4 129 18.3 4.1
bm=9§ 63 9.9 5.0 68.1 | 03 2.7 20.6 19.3 5.1
(iv) 23 1.6 1.4 95.5 98.4 .04 3 29 13
am=7208 | 43 2.7 25 920 | 982 12 20 5.2 23
bm=370 63 3.7 33 88.8 9.9 .25 36 7.2 3.2

Table 9 cleatly shows how dominating APROJ is, aad incressingly so with increasing prob-
lem size n, both in terms of number of operations aad CPU-time. (Shouid M not be diagonal,
but have a baaded form similar to A, then MPROJ should be expected to take just as many

operations aad a8 much CPU-time as APROJ.)

The maxim that GEIG represents » negligible eflort for medium size aad large problems is
8o longer true on vector computers. From a coarse interpolation betweea the values of Table 9
we have found that while GEIG has less thas 10% of the number of operations in a SUBIT step
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for problem size n larger than about 200 (m==23} to 500 (m==83), its fraction of the step's CPU-

time is still over 10% for much larger problems, until n is about 1000 (m=23) to 4000 (m =63).

Table 10. Floating point operations and CPU-times
Initial PROFIL vs. one SUBIT step

Example | m PROFIL SUBIT step
ops CPU-time ops CPU-time
[millions] [seconds) [millions} [seconds]
()
=150 23 022 0148 331 0562
ba=17 43 1.104 1014
(i) 23 842 1089 1.859 1263
n=468 43 4.504 3327
b==60 63 8311 6729
(i) 23 || 823 1.091 10.033 4403
a=182¢4 | 43 22.12 9047
p b=05 63 37.54 1.645
(iv) 23 || 409.4 24.50 132.3 3.087
n=7296 | 43 260.1 6.027
b==370 63 400.0 9.411

In small problems the initisl factorisation (done by PROFIL) will be negligible compared to

s SUBIT step in terms of number of operations as well as CPU-time. It is only in our largest
example, Example (iv), that we Sad PROFIL to represeat a significant portion of a typical run's
number of operations and CPU-time, as is clearly seen from Table 10. Coasidering the fact that
we usually will perform more thaa 10 steps of SUBIT, we therefore fad this method relatively
insensitive to how effliciently the factorizsation is done, unless the problem is very large and few
eigenvalues are sought.

Our SUBIT program “accepts’ aa cigeavalue (in the sense that it will be counted as a con-
verged cigeavalue) when the present approximstion to the cigeavalue is closer to the previous
approximstion (i.c. from previous step) than 107. The last few eigenvalues that are accepted

might therefore not be very accurate, but they will coatinue to improve in the aext iterations.
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Whea the program fnishes it is generally the case that more than 80% of the accepted eigen-
values have been found within 1072 of the last previous approximation. If we are looking for 3
fixed number (p) of eigenvalues, the number of iteraticas that are required seems to be indepen-
dent of problem size (n), but it is quite dependent on the number of iteration vectors (m). The
following Table 11 summarizes our convergence experience for the 4 test examples using different
subspace sizes. Both in Example (iii) and in Example (iv) to ind 30 eigenvalues it takes 20 itera~

tions with m==43, but 15 iterations with m =63,

Table 11. Number of converged ei;envalueu in SUBIT

Subspace No. of a=150 | n==468 | n==1824 | n==7296

size steps

ma=23 5 2 1 3 3
10 9 12 7 11
15 13 15 12 14

mw=43 5 3 7 3 3
10 13 25 20 14
15 16 32 2 21
20 25 31 30
25 30 31 31
30 30

m==03 5 8 13 3
10 32 20 18
15 42 31 32
20 4“4 38 42
25 47 47 42
30 47 47 50

Our results indicate that the formuls ms=min(2p,2p + 8), that is often used to determine
the number of iteration vectors, leeds to s subspace size that is smaller thaz the optimum size, at

least when p > 15.

7.3. Overall LANC performance.

A LANC rus consists mainly of the followiag subroutines: PROFIL sad STPONE (Section
4.2, initialisations), performed once; and GSORT (Section 4.2(s)), LANSIM (Section 4.2(b)-(g)),
ANALZT (Section 4.2(h)), sad VECT (Section 4.2(i)), performed repestedly. GSORT, LANSIM,
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and ANALZT are performed in each step; VECT only in those steps when an eigenvalue has con-

verged and its eigenvector is to be computed.

' Our inteation was to ran LANC with our latest version of selective orthogonalization. How-
’ ever, our selective code, PRORT, which worked perfectly oa our serial computer, begaa to mis-
behave on the CYBER 205 on the large example (Example (iv)). For this reason we switched to
full reorthogonalization, GSORT, for all our tests. Separately we compared the two techmiques
on Examples (i), (ii), and (iii) and found that PRORT required about 1/3 the CPU-time of
GSORT. As we shall see (e.g. Table 12) this is not a significant advantage for PRORT since
GSORT vectorises 5o well and is a minor part of the LANC loop. This is in strong contrast to
the situation with serial computers in which full orthogonalization comes to dominate unless the

LANC ruas are kept short.

Because all of GSORT, ANALZT, and VECT gradually inavolve more operations as the
L iteration progresses, whereas LANSIM has the same aumber of operations in every step, the rels-
tive importaace of GSORT, ANALZT, and VECT will increase with the number of iterations.

Table 12 gives cumulative CPU-times for the subroutines withia the LANC loop after scae
' typical number of steps, /. The number of cigenvalues, ¢, that have coaverged to machine preci-
sion (1.42108X107'%) is also given. The VECT column contains estimates on the CPU-time for
the eigenvector computation, Section 4.2(5). The estimates are taken to be 1/2 of the CPU-time
measured for GSORT; this is most certainly aa over-estimation. The columa for ANALZT ia the
largest example also coatains estimates, takea to be the time for 40{2 operations at 1 mflops. The
results are presented separately for Examples (i), (ii), (iii), sad (iv).

o AR g e ibrm g 03

In small problems the anvectorised ANALZT will take a sigaificant portion of the CPU-time
in the LANC loop. Eves is Example (ili) ANALZT takes about 28 much time 2s the orthogonali-
sation subroutine, GSORT, while there are about 45 times 23 maay operaticas in GSORT. After
44 LANC steps (Example (iii)) ANALZT has consumed about 7% of the LANC loop time; its
share rises to about 15% after 100 steps, sad it will eveatually take more time thaa LANSIM
(after some 400 steps). If on » scalar computer we can achisve 1 mfiops for all operations, we caa
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Table 13, Cumulative CPU-times for subroutines in the LANC loop
All times are in seconds

Example 1 ¢ |[[GsORT | LANSIM [ ANALZT | VECT
(i) 10 3 .0020 0135 | .0070 (:0010)
= 150 20 5 .0062 o7 | o177 (.0031)
b=17 40 17 0282 0613 | 062 (o141)
80 |40 om 1183 | 2575 (.0386)
(ii) 10 1 .0013 0453 | .0000 (-:0007)
n = 468 20 5 .0058 0063 | 0182 (.0029)
ba==60 40 15 024 196 054 (012)
80 47 .009 396 188 (:050)
100 |54 156 497 21 (.078)
150 | 69 352 748 545 (.176)
- (i) 10 2 .0034 1908 | .0074 (.0017)
n=182¢4 | 20 5 0153 4083 | o107 (.0077)
b=95 “ |2 .081 987 082 (.040)
100 |46 418 2.080 362 (.200)
(iv) 10 2 0115 1.241 (.0040) (.0058)
am720 | 20 3 053 2.621 (.016) (027)
bee370 0 |17 226 5.382 (.084) (.113)
6 |2 520 8.142 (:144) (.260)
80 |50 934 10.902 (-256) (467)
100 |72 1.400 13.664 (.400) (.735)

expect ANALZT to catch up with LANSIM at a rate that is about 17 times slower than this, cfr.
Table 8. GSORT would have been slowed dowa by a factor of 42, and would have taken about
hailf of the time taken by LANSIM after 100 LANC steps with Example (iii) on this fictitious

computer.

The full LANC ran also includes initialisations, most of which is the factorisation dome by
PROFIL. Table 13 shows that the inititialization cost may be quite substantial compared to the
cost of the LANC loop; e.g. in Example (iii) first after some 00 steps does the LANC loop take
more CPU-time than the initialisation, and in Example (iv) this does not happen in 100 steps.

For this method as well the number of converged eigeavalues seems to be independent of
problem size (n). For all examples about 30 steps were necessary for the first 10 eigenvalues to
converge. Table 14 shows the exact step whem each of the 10 first eigenvalues comverged to
machine precision. However, the eigenvalues will not necessarily be found ia strictly incressing




Table 18. Inpitialization vs. cumulative LANC steps
Floating point operations and CPU-time

Example No. Initialization LANC steps
of ops CPU-time ops CPU-time
steps || [millions) [seconds] | [millions
(i) 10 o7 0211 000 0235
n = 150 20 23 0557
b=17 40 078 .166
80 2.20 492
(ii) 10 900 193 075 .0533
n = 468 2 1.50 150
b=60 40 3.59 .286
80 9.55 133
100 13.42 1.00
150 25.7 1.82
(iii) 10 8.58 1.50 3.90 .204
n == 1824 20 8.34 448
ba=05 “ 213 1.19
100 63.9 2.44
(iv) 10 505 26.6 85.7 1.26
o = 7296 2 114 2.72
b=370 40 236 5.79
60 367 0.07
' 80 507 12.58
100 656 16.3

Table 14. Initial convergeace in LANC

Eigenvalue Iteration 80. whes eigenvalue converges
Ro. Example | Example | Example | Example
(i) (ii) _{iii) (iv)
1 6 9 6 5
2 8 16 9 10
3 9 17 1 12 ‘
4 15 18 12 21 ’
5 18 20 18 21 ,
6 P 22 21 2 ;
7 2 23 26 22 }
8 U 4 7 1] |
9 P n n %
10 p..) 29 29 20
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order. This is particularly the case when there are double eigenvalues, as in Example (iii) and
Example (iv). E.g. in Example (iii), when 30 eigenvalues have converged, they are in fact found
to be all of \; to Mgy, then Mgy through Ay, and Ay The “missing” eigenvalue, Mgz, is equal to
Ass, and it was found in 3 few more steps (along with )\g;, \ss, Mgy, 30d \g). In practice it is reas-
suring to do ome extra factorization simply to check that there are no missing eigenvalues among
the cnes which have beea computed. This represents an added cost of nb?/2 operations; that has

not been included in our tables or figures.

7.4. Comparisons.

Examples (i), (ii), and (iii) could be solved within the available CYBER 205 primary
storage, .lld a comparison of the two methods may then justly consider only the CPU-time that
was needed for the computation. Fig. 9, 10, and 11 show a graph of the total CPU-time vs. the

number of converged cigenvalues for these examples.
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Fig- 8. SUBIT vs. LANC, Example (i), =150

Note that the CPU-times for LANC have been maultiplied by 10 in Figs. 9, 10, aad 11. We

feel it fair to say that LANC is aa order of magnitude faster than SUBIT oa these examples, but




—

20 i
CPU-time SURIT, memt3!
[soconds] ’

;
’I
‘_l
!
H
/ g
. 4 e
10 .4 .
f'/ o
o= " "LANC tioes 10
",...';:ﬂ"'.
_‘_..;'..’5’: 555
g2 Fe )
e pat
e S e TSUBIT, memd3
o’ —"‘-‘
L e
- I
emeemersem = SUBIT, ma33
0
0 10 20 E 40 S0
Ne. of svaverged
sigenvaless

Fig. 10. SUBIT vs. LANC, Example (ii), n=468

sot 1
CPU-time SUMT, ment3 ;
o
40} e
el
LANG times 10 .-~ %
e
. o o :.;-' -~
,,--/. ’ " SUBIT, manq3
20 X /" »/; ,.‘ ’
pis '._‘o' o
e
/-.."..o"' -V'A"
1] " en ———
R il
< T SUNT, memts
-
0 - A .
10 20 E ] ] $0
Ne. of converged

Pig. 11. SUBIT vs. LANC, Example (iii), n==1824

the trend is for SUBIT (o gaia relstive to LANC as the problem sise n increases. This is of
course due to the fact that the cost of the imitial factorisation is more dominant ia LANC. It is

slso to be seen that SUBIT is at its Dest when very few cigeapairs are sought; thea a small
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‘ number of iteration vectors (m) is sufficient. LANC is definitely superior also in these cazes,

‘ although not by an order of magnitade.

Note also that we are comparing the computation of the same fixed number of ecigenpairs,
up to about 50, irrespective of problem size n. But it may be more commoa to look for more
5 eigenvalues in a larger example than in » small one. From the tendencies that we have observed,

e.g. in Figs. 9 - 11, we may argue that when we are looking for a number of eigenpairs that is the
’ same fixed fraction of the problem size, SUBIT is 2o longer seen to gain relative to LANC with
increasing problem size. However, we do not waat to stretch this argument too far, becanse the
best way to compute a large number of eigenpairs (with either method) will ordinarily include the
use of repeated shifts and factorizations, which is aot being discussed in the present report.
Our largest example, Example (iv), required almost 3 million words to store the A (or L)
matrix. Because a typical step both in SUBIT and in LANC involves 2 passes through the L
) matrix and there are less than 2 million words of primary storage, it is evident that extensive
swapping did take place during the course of the programs. Although it is possible to insert com-
mands in the program that may advise the paging system about pages that caa be removed from
‘ the primary storage and pages that are nceded in the primary storage, we relied solely oa the
standard scheduling.

Fig. 12 shows the comparison of SUBIT and LANC as far as CPU-time is concerned for
Example (iv). To compute 30 eigenpairs in this case required about 4 times as much CPU-time ia
SUBIT as in LANC.

Table 15 summarizes some typical rums of Example (iv) aad compares the cost of
input/output to the cost of computation. [ is the number of iteration steps, m is the subspace
sise (in SUBIT), LPF is the aumber of large page fauits, “Penalty” is the SBU corresponding to
the large page fauits, 3ad “Comp.time” is the sotal CPU-time for the compatation. The load .
module for both programs was sbout 61 large pages.

i 7 Whea we are searching for quite few eigenvalues, SUBIT may be run with s small sabspace
- (m) s8d get sway with fewer page faults per iteration step. In LANC it is seen that the sumber
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Fig. 13 SUBIT vs. LANC, Example (iv), n==7206

Table 18. Page fault peaalties, Example (iv)

Method 1 m [[LPF | LPFQl | Peaalty | Comp.time
{SBU1 {CPU-eec]
SUBIT 19 | 23 || 1038 8 161.6 83.3
0 |4 ({2010 | o7 3136 206.6 i
% | 63 {l 2251 75 351.2 308.1
LANC 2 888 45 138.1 20.5
"] 1710 s 206.8 324
60 2624 “ 400.3 38.5
80 3629 45 866.1 38.7 ;
100 4714 47 735.4 41.9 3

of page faults increases slightly in the later steps of aa iterstion. This is dee to the fact that
more vectors will take part in the orthogonalisation in o Iater step. Because the first steps of
LANC ocaly invoives s few vectors, whereas in SUBIT all veciors participste in each iteration,
LANC requires fewes page faults thaa SUBIT.

Essestially it b the 2 passes through L that lead to the sbout 70 large page faults in each
mammma«zaupnmummamc. The pesalty for these
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page faults is larger than the CPU-time for the compatation. (And whes M is not diagonal, we
shall expect a substantial increase in the number of page faults, becanse we shall also need to
make a pass through M.) Because SUBIT works on several vectors at the same time aad con-
verges to a required number of eigenvalues and cigeavectors in fewer steps than does our simple
LANC, SUBIT may perform better thaa (simple) LANC in cases like Example (iv), where the
problem is too big for the primary storge and exteasive paging takes place.

It is possible to work with more than ome vector in each step of the Laacsos method, using
Block Lanczos {14] (called BLANC hereafter). Whea the block sise is ¢ (i.e. # vectors), each
BLANC step will involve about ¢ times as many operations and ¢ times a3 much CPU-time 28 2
step of LANC. At the same time the number of steps required for a certain number of eigenpairs
to coaverge in BLANC will be oaly a fraction (roughly 1/s) of that in LANC, at least for fairly
long runs. The net eflect is that the computation’s total CPU-time will remsin about the same.
However, the overall number of page faults with BLANC will be greatly reduced (by a factor of
#2) compared to LANC. This is because still only two passes through L are seeded in each step of
the algorithm. For the example in Table 15 it is seen that already with ¢s==2 BLANC would have
had page fault penalties comparable with SUBIT, and s larger block size (#) would have reduced

the aumber of page fauits even further.

Whea BLANC is used for finding very few eigeapairs and/or with a large block size, the
number of steps is reduced by a factor that is less thaa o, and the total CPU-time will increase
compared with simple LANC. Further, the saviag in the number of page fauits will be smaller
because of the increase ia the number of steps.

We coaclude that for problems that are too big for the primary storage, BLANC would be
more efficient thaa LANC because of the smaller penalties for page faults. Both LANC asand
BLANC have smaller CPU-time thaa SUBIT. The aumber of page fauits occuring in LANC is
greater thaa that for SUBIT. With a proper choice of block sizse BLANC will remsin at the same
low level for the CPU-time 38 simple LANC, and at the same time bave fewer page fauits than
SUBIT.
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At present we are experimenting with different ways of adapting ANALZT to bloek tridiag-

oual matrices.
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Appendix A-3

The megafiop rates that have been plotted in the diagram in Appondix A-1, were obtained
by the following program. Note that for each n 500 vector operations (dot product, Schur pro-
duct, and SAXPY) were measured by the SECOND functioa.

PROGRAM LOOP (TAPES=OUTPUT)
DIMENSION X(32768), Y(32768), Z(32768), T(3), P(3), TT(4)
X(1;32768) == 1.
i Y(1;32768) = 2.
N == 32768

100  T(1;6) == 0.
TT(1) = SECOND()
DO 300 | = 1, 500
A = Q8SDOT (X(1;N),Y(1;N))
300 CONTINUE
TT(2) = SECOND()
DO 400 I = 1, 500
Z(1;N) = X(1;N) * Y(1;;N)
' 400 CONTINUE
TT(3) = SECOND()
DO 500 I = 1, 500
Z(1;N) = AsX(1;N) + Y(I;N)
' 500 CONTINUE
TT(4) = SECONIX) \
DOGOJ=1,3
T(J) = TT(J+1)- TT(J)
600 CONTINUE
P(1;3) = 5.E-4 * N / T(1;3)
| WRITE (6,1000) N,T,P i
’ 1000 FORMAT (1X,2HN=,15,3F10.6,3F6.2) 1
N = N/2 '
IF (N.GT.1) GOTO 100

STOP
END
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