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Effect of the CYBER 205 on Methods for computing
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Center for Pare and Applied Mathematics
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ABSTRACT

-WV' consideughe generalized cigenvalue problem, (A - W MX-, where A
and M are large, sparse, symmetric matrices. For large problems ding only a
few eigenpairs involves a major computational task. n a typic example from
structural dynamic analysis with matrices of order 8000, 0(1 operations wre
required to compute 50 eigenpairs. It is therefore interesting to examine the
advantage that vector computers such as CYBER 206 can offer. 'Ill, r'--Y
-4r "We adopted our best versions of the Subspace Iteoi shdad the
simple Lanctos Method in order to take advantage of the ;ml vector processor
of the CYBER 206. Both techniques Led themal to vectorsation. Our
extensive comparison support the following gene statements. Both methods
require the triangular factorization of the same a X n matrix. This factori-
zation dominates the total computation as a -. provided that the number of
wanted eigenpuars, p, remains fxed (independent of ns). However, simple Lancuos
is at leas an order of magnitude more effcient (in CPU-time) for the remainder
of the computation. For 1-40, a-OG the factorization time is not important
and the full order of magnitude difference is seen in the total CPU-time. When
p-40, n-800 simple Lanczos in only 4 times faster than Subspace Iteration on
the CYBER 206. This confirms experience on serial computers. i-----

For problems that cannot At into primary storage, input/output becomes
increasingly important. We found that the cost of input/output dominated over
the CPU-cost for a problem that required twice the available primary storage on
our CYBER 205. However, this will depend on the billing algorithm of the com-
puter center. We conclude that problenm which have a substantial overhead in
reading and writing the matrices, should not he solved by the simple Lanczas
Method, but by a Block Lane=c Method.

March 13, 1964 NTIS - GRA&I

$JRV OI PMBIC RKMAN DTIC TAB D~
&WIBUTION LW-1-IMITO Uvannouticed

tWeft mae peuwbh by a gas el ce~aw bw ns, CDC ("aa w#C21l. Pahhia sappms by &M. U&
Of=. of Naval Rusnh eadar ueWn laOMl4.C440 b Vradely adkaeuisdgd. -

rnd/or
t7 s')gial

1984

Ao



Effect of the CYBER 205 on Methods for computing

Natural Frequencies of Structurest

. Nstvg$, B. Nesr-Oaud, end B.N. Psrleft

Center for Pure and Applied Mathematics

University of California, Berkeley, CA 94720, USA

1. Iatroduedtl.

The pre. of this project was to examine the performace of two different methods for

the solution of the eigenvalue problem

(A - X M) z an0(1

when implemented on a CYBR 206 vector computer. We investigated the Subspace Iteration

Mlethod 1131, 111 (called SUBIT hemtter), which In widely used on traditional Seral computers for

medium sized and larg egS mebI eas and the LaseaWs Method 181, 1101 (called LANC

hereafter), which remedy hus be e how tbe = orde of agnitude faster than SUB!'!' 19. It

was of interes to we how the meiheds eampmr em a vector computer.

Standad ineo,, verson of dh o m batsi were modiged to take advantage at the ape-

cial featues of the CYDE = 14. The aoigurkhm were not redesiged, but wherever possible, a

CYBER 206 vector funcio wo substitte for the origina FORTRAN code,

The testI prolems were deroe bee the dynai analsi of idealised 3dlmsasional struc-

turss, ws modelled by the bite eemn prepam FEAP 116, Ch. 2MI. For various problem sizes

the two methods were timed extensiel, both betfr and afte the explicit vectorization took

tWeub m& peubh by a put of esaputeOm Urns Ii. (gums EUC5UII P.1W uupoo by the U.S.
Offiw.1 NOW rd w 3 uus n $"cea NIMM4?S.014 is u'd* adhnwbiesi
tSn 1o. fas lqabd Rqosam 0WIw. N.4U OUaa. NrWay.



2. The nature of the elgenvalue problem.

We are interested in the solution of eq. (1) when A and Md are large, sparse, n xIn, sym-

metric matrices. In many applications the matrices have a banded form, i.e. sj - 0 for anl

li-jI > b., where s,, is the (i,.).element of A and b. is the half bandwidth. For typical prob-.

lems in structural dynamics b., is (5.-10)% of n, cfr. Section 5. Md must be positive semi-definite.

In some cases Md (or A) may be diagonal, which leads to a significant savings in the computa-

tional effort with either method.

"Large" today means a > 108 but 10 years ago 10' was considered large. In these large

problems all eigenpairs (Xi, x,) in a given interval may be sought; these are usually quite few,

perhaps between 10 to 50. The interval may be as either end of the eigenspectrum and may con-

tain the origin. For best convergence properties it is best to perform a shift of origin to this inter-

val before the actual eigen computation takes place. For more details, see Sections 4, 4.1, and 4.2

as well as (101.

3. Specil features on CYBgR m0.

The CYBR 206 is capable of attaining a rawe of several hundred million floating point

operations (add or multiply) per wecoe, depending on the actual machine configuration and aSoM

on the precision of the arithmetic. We have used a 206 with 2 pipes in ordinar single precision

(64 bits), and an asymptotic rate of 100 megallops 14,171. One niegallop (mflop) is a rate of 1 mil-

lion floating point operations per second.

M.. Vectorlsatlon.

The top performance can only be obtsimed by those, pts of a proeeam that operate o vec-

tons, where a "vectoe" is a et of eessetive ameer eb ad vsented bn the same way.

In tde following simple esample there wre thre vetmrsuac corresponding to the a lIt

elements ofarraysB, A, andD. The veor Is BistheSchew prodect of he vectorsin Aand D.

There we essentlly two ways to achieve vector performace for this DO-loop on the

CYD~t 206. The FORMRAN code in Flg. 1 may be left unchanged ua them be couped with



.13
DO 100 I-1,N

B(1)-A(1)*D(I)

100 CONTINUE

Mqg. 1. DO-loop operating on vectors (Schur product)

special vector optimizers ("automatic vectorization"), or we may replace the DO-loop by a direct

reference to the vector multiply instruction, see Fig. 2.

B(I;N)-A(I;N*D(I;N)

7Ug. 2. Vector multiply instruction corresponding to Fig. 1

In either ce the vector instruction is composed of a stat-up phase during which the operands

are led up and made ready, and the actual execution phase with two operations (because of two

pipes) per CPU-cycle (one CPU-cycle was equal to 20 nanoseconds on the CYBER 205) Becase

the unproductive start-up phe ha to be amortized over all operations, the longer the vector

length, the higher the performance rate. (However, there is a maximum allowed vector length of

66 elements.) We have timed the vector multiply instruction (Fig. 2) for various vector

lengths, and we have found good agreement with the performance data iven by CDC 71; e.g. a

rate of 50 mlops, or half the asymptotic rate, is achieved with vector lengths about 100, and 80

miops is reached when the vector lengths are about 400. The results of our direct performance

measurements are presented in Appendix A.

Consider next the example in Fig. 3, where there are two input vectors and one input scalar

that are to be combined through an addition and a multiplication. We refer to this as a SAXPY

(#ingle precision a X plus y), and on the CYBER 205 it may be realised as one vector opers.

tion, Le. after start-up two output elements (because of two pipes) are computed per CPU-cyle.

As is customary in numerical analysis we shall count the produetion of one output element as one

looting point opmaton. CDC s diferent terminology and cals a SAXPY a linked tid, ad

also counts each pm within a SAXPY as two oesting poin operatiom (matilienton and addi-

tioe With vector lengs 100, we found n efective rate ot about 37 mAoW,; 60 mloup is

*~--*-*
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reached for vector lengths about 160, 80 mlope for vector lengths about 650, and the asymptotic

value is still 100 mdops (cfr. Appendix A).

DO 200 1-1,M
Y(I)-Y(I)+ A*X(I)

2W0 CONTINUE

Fig. 3. DO-loop for the SAXU'Y

Again, the vector operation will be invoked if automatic vectorization is specified during

compilation, or if explicit vector code is substituted in the program, see Fig. 4.

Y(1;M)-Y(1;M)+ ASX(1;M)

Fig. 4. Vector code corresponding to Fig. 3

Th. dot product of two vectors may be coded as in Fig. 5

DOT-0.
DO 100 1-1,N

DOT-DOT+i R(I)*U(I)
100 CONTINUE

Mg. L. DO-loop for the dot product

The dot product function on the CYBER 206, QSSDOT, in not a vector function, but a simula-

tion of one, see Fig.6. It has been implemented with sealer instructions in a very eficient way.

DOTmQSSDOT(R(1;N),U(1;N))

7ig. L. "Vector" dot product equivalent to Fig. 5

Q&SDOT has a relatively slow start-up phase, and then performs one partial product and

accumulation per cycle. This operation in unrelated to the pipeline feature. On a CYDER 206

with two piles, a was the cms in the prsent investigation, the dot product will therefore

only reach half the speed of thes SAXO'Y fW long vectoe. We hdM count one partial product and

accuinulalen as a on at point operation (&bu FISL G and 6 each contains atingf point



operations). In our direct measurements of the vector dot product (Fig. 6) we found an elfective

rate of about 20 m.1bps with vector length& 100, ad about 43 mdcp. with vector engths 1000

(tfr. Appendix A). For all vector lengths it is to be seen from Appendix A that the SAXPY is

almost twice as fast, and the Schur product more than twice s fast, as the dot product.

The ratios of mlop rates in Appendix A suggest strongly that program for the CYBER 205

should be written using linenr combinations of vectors (5AXPY's) rather than dot products. For

example, if Vis n Xm and P is mXmn then the product Z -VP anbe computed either as nm

dot products of length m (requires V held by rows) or as m' SAXPY's, each of length as. The

second form (see Fig. 7) is clearly preferable when ns > m.

DO 200 -imlM
Z(1,J;N)-P(1,J)eV(1,1;N)
DO 200 1-2,M

Z(,J;N)-Z(i,J3N)+ P(I,J)"V(1,%N)
200 CONTINUE

Mig. 7. SAXPY's used for matrix multiplication, as>mf

When ns < m, the first form (using dot products) my be faster than Fig. 7, because the vector

lengths are longer. Hlowever, it in more eficiest, to compete the rows ot Z as linear combinations

of the rows of P (using SAXPY's), although them P ad Z should be held by rews.

U.. MSEMor 445020021t.

The CYBER 205 has virtual memory (theoretical upper bound 2X 102 words per user). The

real ommry on the machine we used was 2 million words, and there, was a X65 Mbit/s flak to a

toal of 46OX 10V word on disk. A program, with instrctinsu and data will be organised on

pages, for which there are two choices, either smsall peg@ (equal to 512 words) or large pagw

(equal to 6663 words). The pagin systems will seek to keep the mst recently used pages in the

primary storage. Whem the programn references data (or instructions) tha do not aM that moment

reside in the primsary stonge, a "pag fault" occm. CYBER 205 will halt the execution of the

program until the page thtcontain the requste daa has been transferred from them mseaay



storage, usually at the expense of another page being put out to the secondary storage. While

this swapping takes place, the CYBER 205 may execute other propsam that are allowed to

occupy part of central memory. There is a small overhead in CPU-time when a vector crosses a

page boundary, and also during a page fault. When a program references data in an "orderly"

fashion, as when consecutive columns of a matrix are used consecutively and not at random, it is

more efficient to use large pages. Ths i indeed the cam with both our eigenvalue methods.

The accounting system assesses a cost penalty for a large page fault of .188 SBU (System

Billing Units), equivalent to .156 CPU-seonds 1121. For large problems that cannot be fitted into

primary storage, this penalty might actually be larger than the CPU time for the whole computa-

tion.

4. Description of the two elgeavalue methods.

We are interested in some of the eigenvalues closest to a speoite value, a. In each method

we shall perform the same initial calculations:

- shift the Amatrix byr.X -A - aM

Here L is a lower triangular matrix with diagonal elements equal to one, A is a diagonal matrix,

and Lr is the transpose of L. Icidentall the number of negative elements in A equals the

number of eigenvalues that are smaller than a.

We wsed a standard active column piolle solver (caled PROFIL). The upper triangular

part of X is stored and gradlually overwritten with V'. Consider the computation of a typical

colum of Lr of ,belght", h (above the diagonal). Each element will require a dot product and

the lengths of the vectors involved will vary from I to A-1. Altogether sib dot products are

needed for Lr and the average length Is 1/2, where b is the average half bandwidth of X

Of corse PROML could be mcoraised to compute L by columns sad so replace dot pro-

ducts by SAXPY's. This helps, but not much. The signilcanit fact is that 1/2 is small compared

to as in most structural problem and the factorisatiom of narrow bandled matrices, cannot exploit



the full vector milop rate of the CYBER 205 sduce it is manipulating vectors of (average) length

1 /2 rather than as.

.As we shall see the factorization process dominates both methods to a greater extent on the

CYBER 205 than in serial machines.

The remaining part of either method, SUBIT or LANC, is formulated in such a way as to

solve the following transformed eigenvalue problem

((LALTM(2)

The largest a's correspond to the eigenvalues X closest to o,(these are the smallest X's when oMO)

according to

i . Xi1 (3)

The eigenvectors, x, in Eq. (2) are the same as in Eq. (1). See 151 for more on this transformation

of the problem.

The following sections, 4.1 and 4.2, will describe in detail the two methods. At each stage

we emphasize the vector operations.

4.1. Subspace Iteation (SUBlT).

The method works with m iteration vectors at a time. We say that the subepace dimension

isrn. At stopk &he currnt set of vectorsheld as the columns of the n X m matrix BWOP is

replaced by another set, held as the column of 80h). The column of 80b) are kept mutually

orthogonal.

Duuing each major step k, (k-1,2, - - ), the following tasks are performed.I

(a) Compute

60- 500(4)

This Involves a total of (26A, + 1).. operation, where &M is thaerage half

___ ___ ___ ___ ___ ___ ___ __ ___ ___ __ ___ ___ ___ __JO;
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bandwidth of K. For a gneral M we would have an average vector length qual to

bm. But when M in diagonal, J-O and only m vector Schur products of lenth s

are performed.

(b) Compute the upper triangular part of the symmetric m x m projection matrix

I& - g(k-L)r a (6)

Here m2/2 vector dot products of length a are performed.

4.1.2. A-proJ.ction.

(a) Solve Mh)-R(k) for 18(). Th is done in three phases:

(al) Solve for C

L C - RM (8)

am dot products with average vector length b.

(a2) Compute

7 - 'C (7)

m vector Schur products of length a.

(23) Solve for 11k)

Lr gI(). (8)

nm SAXPY's with average vector length b.

With care C, F, and 5 ) can share the same storage area.

(b) Compute the upper triangular part of the symmetric m X m projection matrix

AM - V), a() (9)

m2/2 vector dot products with vectors of length n.

4.1.3. SmdE uslmpoblem.

Solve the projected m by a eigenvalue problem

(A() - O(N)) (10)

. . Il 4W



for all = eigeavalues 00) and (orthogonal) eigeavectmr GOb).

Here we transformed the problem to a special eigenvalue problem 1O0, ch 161, which

was solved by the EISPACK subroutine EISQL 161. The transformations involve an

m x m factorization and forward reduction and backward substitution; a total of

4/3m$ operations. And it is our experience on scalar computers that EISQL contains

twice as many operations, i.e. S/3ms. The full eigensolution thus represents some 4rn'

operations. For larg typical eigenproblems this is negligible compared to the number

of operations that are required in other parts ot the program. Nevertheless, we

replaced dot products and SAXPY's in the transformation subroutines with equivalent

vector expressions. The EISQL subroutine cannot be vectorized.

4.1.4. Formatlon of now bask.

Comp te 
S ) - 9 )G )( 

1

This can be written as M2 SAXPY's of length as, cfr. Fig. 7.

Typically, both b and m are << n, and the number of necessary iterations, 1,.i about 20.

E.g., when n-2000, b-100, then to Bad 40 eigeavalues we mnight mse m-60, 00, 70, or 80, and

expect convergence is 1-16 to 30 iterations.

Under these circumstances the dominant parts of the algorithm, when the M matrix is ding-

Onal (as in our test cases, cfr. Section 3), are

* Factorization

nb'/2 operations

* Linear operator (4.1.2 (&1), (a3))

1(2#nm) operations

- Ne*w bobi (4.1.4)

. ~ ~ u' ... erati.ns
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The break-even between the factorization and the linear operator is reached after i-b/(2m)

iterations as far as the number of operations is concerned, but because of the short vector length

during factorization we shall expect to need more iterations than this on the CYBER 205 before

the linear operator takes as much CPU-time as the factorization.

The computation of the new basis will usually be far les expensive than the ist two. m is

usually small compared to 2b, and the vector length is equal to the problem size n in this compu-

tation.

There is a potential for reduction of the number of operations in the fact that the first

eigenvalues/eigenvectors will converge rather quickly. These eigenvectors may then be locked,

and not participate e.g. in the time-consuming linear operator (Section 4.1.2(a)).

4.4. Laneson' Method (LANC).

We used a simple Lanczos' algorithm. A single random starting vector, ro, is iterated

according to the scheme presented in [91. Initializations include setting q9=0, and computing

po-Mro and 01-VT/o

In each step j, ( j-1,2, • - • ), the following tasks are done:

(a) Orthosonalization

r,-, will be orthogonalized against the previous Lancsoe vectors when needed [151.

(This is called selective orthogonalization.)

A maximum of (j-2) SAXPY's and dot products with vector length a.
P7 -1

(b) Compute -, - and ,I---

This is two vector operations, vector length n.

(c) Solve XL'-, , for r,.

(This is equivalent to Section 4.1.2(a), now with rm1.)

"solve (A)", i.e. (2b+ 1)n operatios, a dot products and a SAXPY's with

maene vector lensh equal to b, and one vector Schur multiply with vector

! '.-~- I



length n.

(d) Compter, -v,-q,..p,.

Single SAXPY, vector length a.

(e) compute aJP~j1

Single dot product, vector length ns.

Mf Compute vp,v,-qj *I.

Single SAXPY, vector length ns.

(g) Compute p,-Mr. and jl=IJJ

- molt (M)", i.e. a vector operation (Scher product) of length as (when M is diag-

onal)

- a dot product, vector length ns

Uf 01+1 is small compared to I a, and Pj, (e), (f), and (g) will be repeated once. This is

found to take place in fewer than 1/4 of the step.

(h) Analysis of the symmOric tni-diagonal matrix T, which has the a's as diagonal ele-

meats and the T's as bidingonal elements.

fts0i scalar operations 1111.

(i) For converged eigenvalues compote eigeavectors of T, and then compute eigeavectors

X.

j SAXPY's with vector length as per computed x.

Typically, the Anut eigesvalue will coaverge in 5 -10 iterations, and 20 eigenvalues will con-

verge in 40 -50 iterations, For longer runs it is a good assumption that 1/2 eigeavalues will have

converged in I iterations.
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The operations count for a LANC run, when the M matrix is diagonal, efr. Section 5,

includes

(1) Factorization

n0h/2 operations; dot products, average vector length b/2

(2) Orthogonalization, total for I steps

For selective orthogonalization we have found that :ant/5 operations are required;

equally divided between SAXPY's and dot products, each of vector length n.

For a full reortbogonalizatio n(&'-) operations are required; equally divided between

SAXPY's and dot products, each of vector length n

(3) 1 Lanczso' steps

(3a) (2b+ l)n operations; dominated by SAXPY's and dot products, average vector

length b (solve (X))

(3b) 5/4 .1 operations, vector length a (malt (1))

(3c) 6On operations; equally divided between dot products ad a"lar vector products,

vector length n

(4) Analysis of tri-diagonal matrix, T, total for I steps

ft4012 operations; non-vectorizable

(5) Computation of 1/2 eigenvectors

f3/8 a 2 operations; estimated for the case that one eigenvalue./ezgenvector con-

verges in each of the 1/2 last steps. This is an overestimate, more typical would be

1/8 at' to 1/4 a' operatioms. These operations are SAXPY's with vector length n.

A comparison of operation counts shows that a LANC run with fewer than /4 steps does

not permit the initial cost of factorisation, (1) above, to be amortiueL For ogw rns (1>6/4)

the Luccs' steps (3) win require more operation than th factorzation, ad them (seletive)

orthogons ization (2) and the analysi of T (4) bePAme sugulleant parts of a LANC sp. Because

of the poor vector ngth during factoriatiom as Cmpud with the ohw er", we sall expeet

A __________--______________-__________,__________

m mmmm ,,,Z, .m .msmw s m I~I IIIII .IMMl I
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to need even more steps than §/4 to amortize the tactorization on the CYBER 205.

The operation count break-even between parts (4) and (5) above is for n f 100, but because

(5) is vectorized, the two modules will have equal CPU-time on the CYBER 206 for a much

higher value of n. Note also that (5) will always be less than half the cost of (2).

S. Test example.

We used test examples that typically occur in structural dynamics. A version of the finite

element program FEAP 116, Ch. 241 was converted to run on CYBER 206; this program was then

used to generate stiffness matrices, A, and mass matrices, M, for the test examples. The eiSen-

values, X,, are the squares of the frequencies of free vibration of the structures, Wi, i.e. ,-,=4.

We generated a total of 4 sets of matrices, with the order of the matrices ranging from 150

to 7206 (i.e. n - 150 to 7296). In all 4 examples we chose to have a diagonal M. There is so

loss of generality with this assumption. Our intention was only to keep the total computationl

cost down, and yet be able to examine large problems.

Example (I)
n - 150, b - 17
This is a simple truss structure.

Example (1)
1 - 468, 1 - 60
This is a structure, Arst presented in 121, which we have ued xIeuly duuing pevious
testing 181.

Examples (iii) and (iv) wer generated with a 34nmeas al b m element. The mod i an

idealization of a multitory structure, see Fig. & Each stary had the mine geometry, with

(N,-I)N, + (N,-I)N elements parallel to the x- and pe-ms, sad a* NNj, elmms pernid to

the x-eis (conectin the stor to the next lower tory Of the total number of ods, N, NN,,

aM ats belonged to the bottom story wee held Axi Each nde had 6 variables.

S.-.--.. -. .=.- ...... -
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z 1
X p

2 ... Nil R4

FIg. . Model used in examples (iii) and (iv)

Example (us)
With N, - N, = 4, N, = 20 we get a - 1824, 4 - 96.

Example (IV)
With N, - N, - 8, N, - 20 we get a - 7296, 4 - 370.

The model was so constructed that whenever N, - N, due to symmetry there was a set of

double eigenvalues corresponding to the transverse vibration o( the structure. Both Example (iii)

and Example (iv), therefore, contain double eigenvnlues.

dI
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IL Test runs.

While we ran our 4 test examples on both SUBIT and LANC, the CPU-time consumed by

all major parts of the programs was measured by the CDC FORTRAN function SECOND 13,

and we kept track of the step at which eigenvalues were accepted. In SUBIT we also varied the

number of iteration vectors, m. Is all cases a number of the smallest eigenvalues/eigenvectors

were computed, i.e. those cloest to the shift o0.

T. Rsult and comparbon.

7.1. Bffects of vectorlsation.

7.1.1 Performance improvment through veetusa .

As pointed out in Section 3.1 vectorisation may be achieved through an optimization option

for the FORTRAN compiler or through the replacement at instructions by explicit vector instruc-

tions. Typically, the automatic vectorization will only duct quite obviously vectorizable code,

e.g. "clean" DO-loops, as in Figs. 1, 3, and 6 More complicated sequences of instutions will not

be vectorized through the compiler option, although they might well be vectorizable. We wanted

to see how much various subroutines improved from the original scalar version to the explicit vec-

torized version, and made test runs under the following 4 regimes:

Condition (A)s The code was as before vectorization, compiled with no optimization

options.

Condition (B)o The code w as before vectorization, and it was compiled with the scalar

optimization option.

Condition (C)s The code was as before vectorization, sad it was compiled with scalar and

vector optimisation options.

CoudItio (D) The code was explicitly vectorlsed as outlined in Section 3, and it was

compiled with scalar and vetoCr optimizatlio option.

.11 V . I
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First we show the CPU-times and mflop rates for the important factorisation subroutine

(PROFIL) as a function of the problem size, we Table 1.

Table 1. Performance of vectorised factouization subroutine PROFIL

Average Opersos CPU-time Miop
Example vector fmillioas] Isecondal rate

(i) 9 .022 .0148 1.49
(i) 30 .84 .1689 5.0
(iii) 48 8.23 1.091 7.6
(iv) 186 499 24.5 20

Note that that these rates ae well below the rates that we have presented in Appendix A.

The reason is that PROFIL coetains various conditional statements and al some sealr aith.

metic (e.g. on indices) in addition to the vector operations, that will slow down the code accord-

ingly. Thi is also te cae for odter subroutines.

The values in Table 1 are for condition D, i.e. explicitly vectorised code. Table 2 will show

bow much was gained in this subroutine by the valios compiler ptioMs

Table 2. Performance of factorizatiom subroutine PROFIL
under various optimization options

Example Coed A Coed B Coed C Coed D

(i) .53 .63 1.03 1.49
(ii) 1.04 1.64 3.5 5.0
(iii) .04 1 1.70 4.4 7.6

In the following three tables we shall see better perfmoace, due to longer vector lengths.

The M-operation, Section l.1(a) and (b was coded as oe subroutine, MPROJ. For ding-

oual M the efort is dominated by do$ products of length s. Table 3 show. that the autoea

vectoristine worked almost as well as our explieit vsetolsatas for tis sbroutie. NOW alo

that, based oe the vector lesn given in Table 3, the perfecmmee rats for the vectodued do$

i . .u

1) l__- i - i .- I I.
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products alone are about 27, 38, 46, and 49.5 maop, so obtained from Appendix A.

Table 3. MPROJ performance (diagonal M)

Example Vector - MIop rate

length Cond A Coed C Coed D

) 10 1.3 16 2
(ii) 468 1.4 29 32
(i) 1824 1.4 38 3
(iv) 7= 1 47

Note that we could reformulate MPROJ to use SAXPY's instead of the dot products, but

these SAXPY's would use much shorter vector lngth, Le. m, and therefore would lead to poorer

performance. From Appendix A we may infer that with nm43 the mlop rate for the veetorized

MPROJ with SAXPY's would be lem than 20 in all 4 examples (the SAXPY'a alone would per-

form at about 22 alop., but the additional work would be at scaler speed It i the vast

difference in vector lngths that makes the dot products superior to the SAXPY's in thin subrou-

time.

The formation of the new basis in SUBIT, Section 4.1.4, was coded a a subroutine,

WORM. Table 4 shows that pure SAXPY expressios with long vectors re indeed very

ecient If WORM were coded using dot products instead of SAXPY's, then the mfop rate

would be sbout half (and the CPU-time about twice) the values given in Table 4.

Table 4. WORM performance, Example (lv)

A.al of irt step m-2 and m-6

a Vector Opfaio CPU-dr kMopn.,,Oh i,,,'u lt od ,! ,e e

23 7298 &86 .0402 g6
1 28.96 1 .3016 1 0

n LANC the orbopmdiatlou tak, Seeton 4.2(). Oy be eOde a a full 0mm-lSchdt

outqonlu n ,-a In n subrouine CSORT, or isa se r l inalon, a- in our



subroutine PRORT. We shall commenit oatho choice of method in Sectios 7.3, and at this point

include performance data for GSORT, se Table 5.

Table 5. Orthogonalization performance GSORT

Example Vector - -i rate

le__ ngth Cond A Coed B Cond C Cond D

0i) 150 1.9 2.1 13
Pii) 468 2.0 2.2 &.1 29
(iii) 1824 2.0 5.3 42

0) 7295 1___ -1___ 50

GSORT contains equal amounts of SAXPY's and dot products, all with vecto length n; we

should therefore expect improved performance compared with MPROJ in Table 3. It is surprising

that we did not lad thsto bethe cein Ex- e(i) and(ii). Table alo illustrates that the

automatic vectorizatios did not veetorine perfectly vectorizable code (low performance for condi.

tion Cy, this is because the original GSORT contained an external reference to a Sagel purpose

dot product function, which wa coded in a way the automatic vectorizer did not recognize.

7.1.2. The Imapoytane or Tedo, hmgth.

So far we have sees that the performance of a given subroutine improves dramatically with

longer vectors. However, this improvement is not s big s the direct measurements of pure vector

codes indicate. For subroutines; like MPROJ, WFORK~ and GSORT, that condist almost com-iv

pletel of vector instructions, we have observed a markedly lower performance than that

presented in Appendix A. Typically, a subroutine - or a whole program for that matter - will

include slow parts that will degrade the overall performance even further. Scalar operations, dot

products, and/or operations with short vector lengths are examples of such slow parts. In order

for the slow parts to have say sigailceant inlusce On the overall performance, however, they

ast represent a signilcant fraction of the total work. Below we shal giv a detailed discussion

of tWe Important subroutines that have erlapieratiesm o bt vtste and othe operations

as Is"g teeer The overa perferomee wil ho i ee wha would have bens expected for



the short vector length alone aud for the long vector length alone.

Within SUBIT the A-projection, Section 4.1.2(al), (a2), (&3), and (b), was coded as oue sub.

routine, APR03. The vector lengths in APR03 are both b (on average), during 4.1.2(a1) and

(a3), and as, during 4.1.2(&2) and (b), so that for every 2nm vector operation with length # there

at (=2/2 + n) vector operatious with length ns. Most of the long vector operations are dot pro-

ducts (m2/2 as opposed to ms SAXPY's). From Appendix A we may see that for large examples

(i.e. large ns) the mdop rate over the long vectors will be about 40 to 50, but never significantly

over 50. Half of the short vector operations we eflicient SAXPY's. When the short vector length

* is greater than about 120, these SAXPY's will also execute at mdop rates of about 40 or more.

The other half of the short vector operations we dot products which we significantly slower than

tee SAXPY's; e.g. with vector length 120 the dot product miop rate is about 22.

To further illustrate the performance of APR03 we include some detailed timings of one

iteration step of our largest example, see Table 6.

Table 6. Analysis of APR03 vector performance, Example (iv)

Breakdown of Irst iteration step, subsace se - 23

Task Average Operations CPU-tame Miop
______vector length 1!illL... Isecoadel rate

4.1.2(al) 370 62.1 1.M5 34
4.1.2(&2) 7296 .1678 .=071 98
4.1.2(a3) 370 62.1 1.06? 58
4..2b 7296 1.93 .0414 4

OV EALL __ _ _ _1 2.3 2.IN 6 47

Ignoring for a moment the slow-down effect of nou-voctoriued parts of APR03 we may

extrapolate from Appendix A that the overall miop rate for this subroutine cannot exceed 67,

sad the short vector length (b) has to be larger than 500 for the overal ml., rate to be better

than 50.

The subspace alse, am, will so& greatly influsee the performae rae, but of coumse the



CPU-time for tasks 4.1.2(au), (a2), and (a3) will increase linearly with m, and the CPU-time for

task 4.1.2(b) will increase quadratically with ms. Table 7 contains a summary of overall perfor-

mance rates for APROJ for all out examples.

Table 7. APROJ performance, vectorized code

Example Vector Snbspace Mop
_ _ _ lengths size rate

Mi 17/160 23 6.1
Mi 17/150 43 7.2
00i 60/468 23 15.4
00i 60/468 43 16.2
00i 60/468 63 16.9
(iii) 96/1824 23 21.2
(iii) 95/1824 43 21.9
(ini) 95/1824 63 22.4
(iV) 370/7296 23 42.4
(ji) 370/7296 43 42.6
DOj 370/7296 163 142.0

Within LANC, see Section 4.2, the tasb (b) - (g) were coded as one subroutine, LANSIM.

During task (c) there awe vectors of average length b, but in the other tasks the vecto legth is

equal to a . Is as average s"e there are about 9 vector operation of ength ns (6.5 (fast) vector

multiply's or SAXPY's, ad 2.6 (slow) dot products) as opposed to 2n vector operations (as

SAX~rs and us dot products) with average vector length 6. Thus the shorter vector length

occurs much more often than the looser vector length in typical examples, e.g. 100 times more

often in Example (ii), ad nearly 400 times more often in Example (iii). As a result the overall

miop rate for LANSIM will be determined by the shorter vector length, ad we have in fact a

situation that is quite similar to what we have described above for the APROJ subroutine in

SUBIT. Again based on data in Appendix A the problem must be very large, with short vector

ength > 500 (if we ignore the effect of non-vecterized! parts), to give an overall M~op rate in

LANSDV( that is higher than 50. Table 8 shows the performance that we measured for LANSIM

for oar more typical examples.
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Table S. Lancios' step performance LANSIM

Example Vector length No of Operations CPLUme hoop
short Long te. [milions! Isseoudal rat

____ b aI

Mi 17 150 s0 .5077 .1183 4.3
Pii) 60 M6 100 6.00 .407 12
(iii) 95 1824 100 36.3 2.06 17

Uiv) 370 17296 100 544 1 13.6 1 40

7.1.3. Modules that were not vectorlned

The solution of the smll eigenproblemi in SUBIT, Section 4.1.3, was written as one subrou-

tine, GEIG, that called the set of transformation subroutines ad also EISQL. The transformao-

tion modules, representing about 1/3 of the operations, were vectorized with vector lengths vary-

ing from 1 to mn (m/3 on average). According to Appendix A dot products and SAXU'Ys perform

equally well on CYBER 205 for the vector lengths that we used in these transformation modules

in our test run (with in-23, 43, and 63). As a result of vectorizatios of the .transformation

modules, EISQL's f1raction of the total time in GEIG was found to increase from 64% (scalar) to

74% (subspace size m-23), 80% (im-43), and 84% (m-nE). The performance rate of GElO

cam out between 1.9 mlbps (=nm23) and 2.90 mops, (in-63).

Within LANC there in also an unvectorized subroutine, ANALZT, that perform the

analysis of the tuidiagonal matrices, Section 4.2(h). The operations count for ANALZT that we

have given there, is quite approximate. Taken literally it indicates a performance rate of about .9

- 1.5 mlops. We recorded a improvement of about 10% for this subroutine throegli the scalar

Optimimation option for the compiler.

7j2. Ovwafil SUDZT Pa f*,maee

Because the performance rate is dilfereut for the dilerent modules of SUBIT it is of interet

to look at the *onal performance of the method.
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As explained in previous sections the SUBIT step consists mainly of 4 subroutine: MPROJ

(Section 4.1.1), APROJ (Section 4.1.2), GEIG (Section, 4.1.3). and WFORM (Section 4.1.4). With

subepace size m - 23 the slowest of these modules, GEIG, represents from 14.7% (in Example

(i)) to .04% (in Example (iv)) of the numb' of opesatloma in each SUBIT step, but this

amounts to from 45.9% (Example (i)) to .8% (Example (iv)) of the CYBER 205 CPU-tMme in

each SUBIT step, as shown in Table 9.

Table 9. Floating point operations and CPU-times
for modules in a SUBIT step
[Given as percentages of whole step]

Example so MPROJ APR03 GEIG W__ VORM

_ _ - ops tme ova time _ _ tire op tim

(i)
n-1l0 23 13.0 3.3 48.3 46.8 14.7 45.9 23.9 4.2
bm17 143 113.1 1 3. 33.0 125.5 28.8 66.0 25.1 4.3

00i 23 7.3 3.0 76.8 731 26 20.7 1. .
n-468 43 10.1 3. 63.7 53.1 7.1 389 10.2 4.3
b-60 63 11.5 3.9 54.1 139.6 12.0 52.0 22.3 4.5

05i) 23 5.2 2.6 84.3 8.1 .5 5.7 9.6 2.5
a-1824 43 8.0 4.1 75.3 79.0 1.4 12.9 15.3 4.1
b-95 163 9.9 5 .0 68.1 60.3 2.7 20.6 19.3 5.

(iv) 23 1.6 1.4 95.5 06.4 .04 A8 2.9 1.3
n-7296 43 2.7 2.5 92.0 26.2 .12 2.0 5.2 2.3
b-370 63 3.7 3.3 188.8 698.9 .25 13.6 7.2 13.2

Table 9 clearly shows how dominating APR03.i, and increasingly so with increasing prob-

lem size ns, both in terms of number of operations and CPU-tinm.. (Should M not be diagonal,

but have a banded form similar to A, then MPROJ should be expected to take jut as many

operation and as rauch CPU-time s APR03.)

The maxim that GEIG represents a negligible effort for medium size and hIg problems

no longer true on vector computers. From a coarse interpolaition between the values of Table 9

we bave found that while QEIG has tern than 10% of tbe number of operations in a SUDFrste

J _ _ _ _ _Ago"



for problem size a larger than about 200 (m -23) to 500 (mm-63), its fraction of the step's CPU-

time in still over 10% for much larger problems, until a is about 1000 (m=-23) to 4000 (m=63).

Table 10. Floating point operations and CPU-times

Initial PROFIL vs. one SUBIT step

Example m PROFIL SUBIT step

ops CPU-time op. CPU-time
fmilAions] Isecondel Imillion i

(0)
u-150 23 .022 .0148 .331 .0662
b-17 43 1.104 .1914

(ii) 23 .842 .1689 1.8 .1283
a-468 43 4.504 .3327
b-60 63 8.311 .6729

(ii) 23 &231 1.091 10.033 .4493
am1824 43 22.12 .9647
b-95 63 37.54 1.645

(iv) 23 499.4 24.59 132.3 3.067
a=7296 43 280.1 6.027
b-370 63 400.0 9.411

In small problems the initial factorization (done by PROFIL) will be neligible compared to

a SUBIT step in terms of number of operations as well as CPU-time. It is only in our largest

example, Example (iv), that we And PROFIL to represent a signiicant portion of a typical ran's

number of operations and CPU-time, as is clearly seen from Table 10. Considering the fact that

we usually will perform more than 10 steps of SUBIT, we therefore d this method relatively

insensitive to bow efficiently the factorization is done, unless the problem is very large sad few

eigeonvalues are sought.

Our SUBIT program "accepts" an eigeavalue (in the sense that it will be counted as a con-

verged eignvalue) when the present approxiton to the eigenvalue is closer to the previous

approximation (i.e. from previous step) than 10'. The lat few eigevales that re accepted

might therefore not be very aratet, but they will continue to improve in the next Iterations.

0

A . ee mmm ~ mm a m
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When the program finishes it is generally the e that more than 80% of the accepted eigen-

values have been found within I0 -' of the last previous approximation. If we are looking for a

fixed number (p) of eigenvalues, the number of iteratios that are required seems to be indepen-

dent of problem size (n), but it is quite dependent on the number of iteration vectors (m). The

following Table 11 summarizes our convergence experience for the 4 test examples using different

subepace sizes. Both in Example (iii) and in Example (iv) to find 30 eigenvalues it takes 20 iter-

tions with m-43, but 15 iterations with rm-63.

Table 11. Number of converged eigenvalues in SUBIT

Subspace No. of n-S0 n-468 n=1824 n-7298
size steps .

m-23 5 2 1 3 3
10 9 12 7 11
15 13 15 12 14

m-43 5 3 7 3 3
10 13 25 20 14
15 16 32 25 21
20 25 31 30
25 30 31 31
30 30

10 32 25 is

15 42 31 32
20 44 38 42
25 47 47 42
30 47 47 50

Our result indicate that the formula mmmis(2p,2p+ 8), that in often used to determine

the number of iteration vectors, leeds to a subepace size that is smaller than the optimum size, at

least when p> 15.

73. Overal LANC ptormame.

A LANC run conists main* of the following subrouines: PROFL and STPONE (Section

4.2, i llazatios), perfanned once; mad GSORT (Section 4.2(a)), LANSID (Sect" 4.2(b)-(S)),

ANALUT (Section 4.2(h)), and VECT (Section 4.2(1)) perfomed repatedly. GSORT, LANSIM,

_____ ____ ____
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and ANALZT awe performed in each step; VECT only in those steps when an cigenvalue has con-

verged ad its eigenvector is to be computed.

Our intention was to run LANC with our latest version of selective orthogonalimatiosa. How

ever, our selective code, PRORT, which worked perfectly on oar serial computer, began to mis-

behave on the CYBER 206 on the large example (Example (iv)). For this rean we switched to

full reorthogonalization, GSORT, for all our tests. Separately we compared the two techniqe

on Examples (i), (ii), ad (iii) ad found that PRORT required about 1/3 the CPU-time of

GSORT. As we shall see (eg. Table 12) this is not a significant advantage for PRORT sine

OSORT vectorizes so well ad is a minor part of the LANC loop. This is in strong contrast to

the situation with serial computers in which full orthogonalization comes to dominate unless the

LANC rums are kept short.

Because all of GSORT, ANALZT, ad VECT gradually involve more operations as the

iteration progresses, whereas LANSIM has the same number of operations in every step, the rela-

tive importance of GSORT, ANALZT, and VECT will increase with the number of iterations.

Table 12 gives cumulative CPU-tim for the subroutines within the LANC loop after $Cline

typical number of steps, 1. The aumber of eigenvalues, c, that have converged to machine preci-

sion (1.42108X 101) is also given. The VECT column contains estimates as the CPUtime for

the eigeavector computation, Section 4.2(4 The estimates are taken to be 1/2 of the CPU-time

measured for GSORT; this is most certainly an ovier-estimation. The column for ANALZT in the

largest example also contains estimates, taken to be the time for 4012 operations at 1 mlops. The

results are presented separately for Examples (i), (ii), (iii), and (iv).j

In smoall problems the uvectorized ANALZT will take a significant portics of the CPU-time

in the LANC loop. Even in Example (01) ANALZT takes about as much time as the orthogiisall-

sntie subroutine, GSORT, while there are about 45 times as my operation in OSORT. After

44 LANC steps (Example (1U)) ANALZT has consumed about 7% of the LANC loop time; its

share rime to about 15% altr 100 steps, and it will eventually take more tim than LANSIDA

(alter sme 400 stegie) IN a SUAW computer we an seldheve I SUPs for Al operaions, we n



-26-

Table 12. Cumulative CPU-times for subroutines in the LANG loop
All times awe in second$

Example I c GSORT LANSIM ANALZT VECT

0i) 10 3 .0020 .0135 .0070 (.0010)
a- 150 20 5 .0052 .0287 .0177 (.0031)
b=17 40 17 .0282 .0613 .0623 (.0141)

80 40 .0771 .1183 .2575 .36

(ui) 10 1 .0013 .0453 .0060 (.0007)
a -468 20 5 .0068 .09M .0182 (.0029)
b-60 40 1s .024 .196 .054 (.012)

80 17 .099 .396 .188 (.050)
100 54 .156 .497 .271 (.078)
150 169 .352 1 .748 .545 (.176)

(Mi) 10 2 .0034 .1906 .0074 (.0017)
= 1824 20 6 .0153 .4053 .0197 (.0077)

b-95 44 20 .081 .987 .082 (.040)
100 46 .418 2.080 .362 .209)

(iV) 10 2 .0115 1.241 (.0040) (.0058)
a -7206 20 3 .053 2.621 (.016) (.027)
b-370 40 17 .26 5.382 (-054) (.113)

60 26 .620 8.142 (.144) (.260)
so 59 .934 10.902 (-256) (.467)

______100 72 1.489 13.664 (~.400) . (.735)

expect ANALZT to catch up with LANSIM at a rat that is about 17 times slower than this, eft.

Table 8& GSORT would have been slowed down by a factor of 42, and would have taken about

half of the time taken by LANSIMA after 100 LANG steps with Example (Wi) on this fictitious

computer.

The full LANC run also includes initiuasations, most of which is the factorlzation dome by

PROF IL. Table 13 shows that the mnititialization cast ay be quite substantial compared to the

cost of the LANG loop; e.g. in Example (il) hIst after some 60 steps does the LANG loop take

morm MPdme than the initialization, and in Example (Iv) this does not hap pe1n 1100 steps.

For this method e well the numbsr of converged eigeaves seem to be independent of

problem site (as). For all examples about 30 step were neessay for the Ams 10 se lves to

converge. Table 14 shows the exact step when each of the 10 AMs eigsvalues converged to

machine preision. However, the elgenvalues wil not neesail be found in s*Ickl increasing



-27-

Tabse 1M. Initialization vs. cumulative LANC steps
Floating point operations and CPU-time

Example No. Initializatiom LANC steps
of ops CPU-time ops CPU-time

$ s Imi!ions] Luscado]a fni

(i) 10 .027 .0211 .ogo .0285
- 150 20 .233 .0557

b-17 40 .78 .16
80 2.20 .492

(ii) 10 .90 .193 .675 .0533
a - 468 20 1.50 .159
b=-60 40 3.59 .286

80 9.55 .733
100 13.42 1.00
180 25.7 1.82

() 10 8.58 1.50 3.90 .204
n- 1824 20 8.34 .448
b-95 44 21.3 .19

100 03.9 2.44

(iv) 10 805 26.6 55.7 1.20
a-7296 20 114 2.72

b-370 40 236 5.79
0 367 9.07
80 07 12.56

1 100 11 1- 655 16.3

Table 14. Initial convergence in LANC

Eigenvalue Iteration no. when sieonvalue co ve51el

no. Example Example Example Example
(i) () (i} W iv)

1 6 9 6 5
2 8 16 9 10
3 9 17 11 12
4 15 18 12 21
& 18 20 18 21
6 21 22 21 22
7 21 28 26 22
8 24 24 27 24
9 25 27 27 25

10 20 2 1 20 I

: !ti _..i-- .-
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order. This is particularly the came when there are double eigenvalues, aa in Example (iii) and

Example (iv). E.g. in Example (iii), whoa 30 eigenvaluee have converged, they are in fact found

to be all of Xi to Xss, then X= through Xma, and Xs4 The "missing" eigenvalue, )hg, is equal to

Xm n twsfudi e oeses(ln ihXuXX.adX) In practice it isreas-.

suing to do one extra factorization simply to check that there are so missing eigenvalues among

the cues which have been computed. This represents an added cost of nb2/2 operations; that has

not been included in our tables or figres.

7.4. Compaisons.

Examples (i), (ii), and (iii) could be solved within the available CYBER 205 primary

storage, and a comparison of the two methods may then justly consider onl the CPU-time that

was needed for the computation. Fig. 9, 10, and 11 show a graph of the total CPU-i.. vs. the

number of converged eigeavalues for these examples.

6
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number of iteration vectors (mn) is sufficient. LANC is definitely superWo also is these cas,

although not by an order of magnitude.

Note also that we mre comparing the computation of the same fixed number of eigsnpairs,

uap to about 50, irrespective of problem size a. But it may be more common to look for more

eigeavalues. a larger example than in a sMan one. From the tendencies that we have observed,

e.g. in Figs. 9 - 11, we may argue that when we are looking for a number of eigenpairs that is the

sae fixed fraction of the problem size, SUBIT is no longer seen to gain relative to LANC with

Pnressing problem se. However, we do no want to stretch this argument too far, because the

best way to compute a large number of eigenpairs (with either method) will ordinarily include the

use of repeated shifts and factorizations, which isnot being discussed in the present report.

Our largest example, Example (Wv), required almost 3 million words to storm the A (or L)

matrix. Because a typical step both in SUBIT and is LANC involves 2 passes through the L

matrix and there are less than 2 million words of primary storage, it is evident that extensive

swapping did take place during the course of the program. Although it is possible to insert com-

manuds in the program that may advise the paging system ahout pages that can be removed from

the primary storage and pages tha are needed in the primary storage, we relied solely on the

standard scheduling.

Fig. 12 shows the comparison of SUBIT and LANC as far an CPU-time is concerned for

Example (iv). To compute 30 eigenpairs is this can required about 4 times as much CPU-time in

SUBIT as in LANC.

Table 15 summarizes some typical runs of Example (iv) ad compare the cost of

input/output to the cost of computation. I Is the number of iteration steps, min s the subspace

size (in SUBIT LPF is the number of larg page fsulf "Penalty' is the SWU cosreepa-ding to

the larg page fault, and "Comp.time" is the *d1 CPU-ti for the computation. The load

module for both program was about 61 large pagps.

When we we smng for quite few elgevalues, SUBUT may be run with a sinaisbpc

(us) and get my with fewe pae faule per ktedest suep. In LANC It Is see that the numbs,
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CPU-time

iOOU

S . SUN?. m-=2LK

0 to 20 30 Lo 1

Fig. 12 SUBIT vs. LANC, Example (lv), n=?295

Table 1L. Page fault penaties, Examople (iv)

Method I a LPF LPF/l Peasky Cm~p.tim

SUBIT 19 23 1I= 55 161.6 83.3
30 43 2010 67 313.6 206

1____ 30 63 12251 75 351.2 13061

LANC 20 35 45 13L.1 29.5
40 1710 43 266.8 32.4
do 2624 44 409.3 35.5
so 3629 45 506.1 A37

I 1___ 100 1 14714 147 173M. 1 41.9

of pae faults ie sgtl la*isthe lsawteogp at a kntera. Mh is due to the fact that

mawe verCs Wil take put in 0 the artoea is a la terop. Decam the a step of

LANC ely iaolvu a few weree, whoeen b SUIT all weses pweeteat ba each IeratIon,

LAt4C reqous few pqp fau them SUSf?.

fansllly is Is she 2 pm..s threeg L 9Mh be I*n t w thdmot Ill ni pp faubte k each

stp of SU~rf and the ahut 4 kWp pep faults Is each sep of LANC. The penalty far these
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page faults is larer than the CPU-tme for the computation. (And when M is not diagonal, we

shall expect a subetantial increase in the member of pag faults, because we h also need to

make a pam through M.) Because SUBIT works on several vectors at the -me time and con-

verges to a required number of eignvalues and eigenvectors in fewer steps than does our simple

LANC, SUBrr may perform better than (simple) LANC in cases like Example (iv), where the

problem is too big for the primary storge and extensive paging takes place.

It is possible to work with more than one vector in eacb step of the Lacsoe method, using

Block Lanczos j14 (called BLANC hereafter) When the block size in * (Le. * vectors), each

BLANC step will involve about * times me many operations and # times as much CPU-tim. " a

step of LANC. At the same time the number of steps required for a certain number of eigenpair

to converge in BLANC will be only a fraction (rougl 1/*) of that in LANC, at Iea for fairly

long runs. The net eflect is that the computation's total CPU-time will remain about the same.

However, the overall number of page faults with BLANC will be great reduced (by a factor of

#) compared to LANC. This is becase still only two pases through L are needed in each step of

the algorithm. For the example in Table 15 it is see that already with #-2 BLANC would have

had page fault penalties comparable with SUBIT, and a larger block size (e) would have reduced

the number of page faults even further.

When BLANC is used for lnding very few eilenpairs and/or with a large block size, the

number of steps is reduced by a factor that is less than e, and the total CPU-time will increase

compared with simple LANC. Further, the saving in the number of page faults wig be smaller

because of the increase in the number of steps.

We conclude that for problems that re too big for the primary storage, BLANC would be

more efficint than LANC because of the smaller penalties for pep fahlts. Both LANC and

BLANC have smaller CPU.tm than SUBrr. The number of page falts occurig in LANC is

greater than that for SUBIT. With a proper choice of block s BLANC will rma at the same

low level for th CPU-time a simple LANC, and at he sme timo bae fewer pqp fuel tha

SUBIT.
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At present we are experimesting with dilerent ways of adap~ting ANALZT to block tridiag-

onal matrices.
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Appendix A-2

The megaSop rates that have been plotted in the diagram in Appendix A-i, were obtained
by the following program. Note that for each a 500 vector operations (dot product, Schur pro-

duct, and SAXPY) were measured by the SECOND function.

PROGRAM LOOP (TAPES-OUTPUT)
DIMENSION X(32768), Y(32768), Z(32768), T(3), P(3), TT(4)

X(1;32768) - 1.

Y(1;32768) - 2.
N - 32768

C

100 T(1 6) - 0.

Tr(1) - SECOND0
DO 3001 - 1,500

A an QSSDOT (X(1;N),Y(1;N))

300 CONTINUE

TT(2) - SECOND 0

DO 400 1- 1,500
Z(I;N) - X(I;N) * Y(I;N)

400 CONTINUE

TT(3) - SECOND)

DO 500 1 - 1,500
Z(I;N) - A*X(1;N) + Y(1;N)

500 CONTINUE

TT(4) - SECOND0
DOSW0J- 1, 3

T(J) = TT(J+ 1) -TT(J)

600 CONTINUE

P(1;3) - 5..-4 * N / T(1;3)
WRITE (6,1000) N,T,P

1000 FORMAT (IX,2HN-,15,3FI0.6,3F6.2)

N - N/2

I (N.GT.1) GOTO 100

C

STOP

END

-U _ .. ... .-
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