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ABSTRACT __

1/

‘Acquistion cost and reliable equipment performance are two
primary considerations in procurement decisions for ships and ship
systems. An important question in this decision process is, how
does the variation in equipment failure rate (performance quality)
effect the satisfactory operation of the total system. Until
recently the effect of equipment performance gquality has been
difficult to predict. !

\

A new method of analysis has been)\developed which models
variation in equipment failure raﬁ?‘ TBF))with the gamma
distribution, calculates the system’s response to this MTBF
variation, and replicates the performance of the parent
distribution with the cumulative beta distribution. Once
determined, the cumulative beta distribution enables the engineer
or naval architect toc easily calculate the upper and lower limits
of performance for the parent reliability distribution.

y

The distribution of MTBFs for 115 "identical” commercial
computers is shown as an illustration of squipment performance
quality variation discussed. Example cases using the gamma and
beta distributions are shown to demonstrate ease of “::A
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I. Iptroduction

Increasingly sophisticated computer simulations have been
developed by NAVSEA O5SMR to predict the reliability,
maintainability, and availability (RMA) of total ships based on
the failure and repair characteristics of the hundreds of
essential equipment which make up the ship.

The most sophisticated of these simulations, TIGER,
(Refarences 1,2) has been used to analyze each Navy ship class
constructed during the past decade as exemplified in Figures 1 and
2. This computer program can be used to analyze the sensitivity of
total ships and systems to variations in equipment performance
quality. The distribution of mean time between failures (MTBFs)
of 115 "identical" commercial computers (Reference 3) is shown as
an illustration of the “"quality” variation discussed.

II. Reliabilitv Impact of Spares Quality

Consider the complexity associated with supplying Navy
combatant ships with spare parts for hull mechanical and
electrical (HM&E) machinery. For example, failure of the main
propulsion system would seriously degrade a ship’s ability to
perxform a primary warfare mission. Spares are carried at sea for
routine maintenance. The supply system allocates spares for each
maintenance level. The three levels of maintenance are:

o0 orgapnizational (ships orews)

© intermediate (tender or Navy
specialized activity)

o depot (Navy or commercial shipyard
or industrial activity)

In this paper we will concentrate on parts support for the
organizational level of maintenance.
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HM&E equipment is designed integral to the ships hull and is
intended to have a life equal to the service life of the ship. It
is not cyclic; it does not become obsolete esvery ten years, but it .
does require substantial maintenance and overhaul and in many )
cases survives longer than its original manufacturer. B
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v&: Essentially, preventive maintenance tasks consist of cleaning, t
o purification, lubrication, packing and sealing, and condition -
N monitoring. Navy ships because of their global commitments may Rk

R take on a variety of contaminated substances. The most critical I}

o to the ship’s performance and equipment life is main propulsion -

YONN fuel o0il where the contaminants include sulphur, dissolved metals, .

$$g sludge, seawater, etc., If the preventive maintenance tasks are

¥ not completed properly on a rigorous schedule, failures are -

Pl induced prematurely and wear-out begins. Overhaul or replacement -
N is required taking the combatant ocut-of-service. What happens then

”- to a fifteen year o0ld main propulsion diesel engine, overhauled

e twice, showing an increased failure rate, and a decreased time

A between overhauls. Where do the spare parts come from? Who makes

;,: them? How reliable are the repair parts/components, etc.

ff If the Navy owns the manufacturing drawings, competitive )

'7& procurement is required by law and the lowest biddexr "qualified” e
'?\ receives the award. Does the drawing contain sufficient :

N information to enadble replication of the original part? Most -
) often the answer is no. Proprietary manufacturing processes, -
?}‘ tolerances and material-treating vary considerably among -

suppliers. The resulting parts are look-alikes, but will their :

e MTBFs live up to the original parts. For example, an attached K
SN lube o0il pump manufactured by other than the original equipment -

{3 suppliers does not have a preproduction unit tested by mounting on

72 the engine and subjected to the environmental stresses of the <
; original pump. How long it will last is not determined until "

)

2, °
o

placed in service. There is not sufficient incentive for the

; manufacturer to produce more reliable, better quality part and the

3 Navy does not normally test part reliability and quality prior to
4% Fleat use. The results can be catastrophic to ship availability
0 and performance - an unacceptable operational limitation. We K
Wi must be able to predict parts criticality; predetermine the cost
- penalties for poor reliability and quality, and standardize high L.
3 reliability and quality into the parts procurement process. Figure 5
éf 3 shows the drastically increased maintenance burden incurred when ~%
;: the MTBF of replacement parts does not meet the value to which the R
c? system was designed. .
o IIT. Distxibution of Speres MTBFs

v
*35 There is considerable scatter in the failure data used to
P obtain the "point estimate” of MTBF. Each unit is unique and
253 construction or use can produce variation in the distribution of
o~ MTBFs. Good quality control in manufacturing and rigorous 4
% operating philosophies can reduce the variance and result in a
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sharply peaked probability density function (pdf) with a sample
population concentrated around the mean of the distribution. More
scattered MTBF distributions have been observed in actual
practice. Reference 3 presented a histogram of MTBF’s of 115
“identical" computers in which the range of MTBF’s extended from
200 to 7200 hours, mean 1740 hours, standard deviation 1450 hours.
This histogram data has been reduced and fit with the gamma
distribution which is defined for MTBFs ranging from zero to
infinity. (References 4, 5, & 6, see Appendix A). The cumulative
distribution function (CDF) of this data is plotted in Figure 4.
Figure S5 depicts a case in which there is considerable scatter in
the MTBF values, with the majority of the MTBFs falling below 2000
hours and a few beyond 4000 hours. In a distribution, like this,
skewed to the right, (Figure 5) the median and mode both occur at
values less than the distribution mean.

The mean and unbiased standard deviation of the histogram
data were used to determine whether or not the two parameter,
integer gamma distribution fits the observed MTBF distribution.
Figure 4 shows that the gamma distribution with an integer shape
factor of b=2.0 fits the general distribution of the data guite
well. (See Appendix A and Reference 7 for analysis used.)

If there is very little deviation in MTBF and the distribution
approximates a spike, the point estimate yields a very good
prediction of operation in the field, but the variation shown in
Figure 4 significantly effects the reliability of the system. As
pointed out previously, an MTBF distribution skewed to the right
(gamma) has significantly more than half of its MTBF values below
the mean. Therefore system reliability predictions from the point
estimate will be higher than actually observed in the field more
than half the time.

IVv. Modeli <] itivity with the
Cumul v eta Distx tion

Overall, the gamma distribution closely represents "real
world® variation in these MTBF values and allows direct use in
conjunction with existing total ship reliability simulations
through the use of a compact subroutine developed in References 8
and 9 for high speed computer generation of gamma distributed
variates. The inputs for this subroutine are the mean and
standard deviation of the underlying distribution.

Test cases have been prepared to illustrate the methodology
required to determine total system sensitivity to variation in
equipment MTBF. System 1 of Figure 6 consists of two different
types of equipment (X and Y) each of which exhibit exponentially
(References 10 & 11) distributed failure probabilities with MTBFs
of 130 and 200 hours respectively.

Exanple cases are calculated using two reliability block
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diagrams (RBDs) of Figure 6 for equipment X and Y; a simple series
system (System 1) and a series system in which each block has a

NN standby to be operated upon failure of the first (System 2).

L; Table 1 shows significant variation in reliability at 25 and
SR 100 hours (mission time) for this system when its MTBFs follow a
" gamma distribution as might happen when spares are procurred at
KR different times from various manufacturers (Figure 7). By

S Equation 1,0of Appendix A, equipment X has a point estimate

- reliability of 0.85 at 25 hours and equipment Y yields 0.88. The
reliability of System 1 is the product of these two reliabilities
or 0.75, but not many of the units have met the reliability
predicted from the point estimate.

' For the 100 hour example, less than 50% of the samples have a
N reliability of 0.2 or better. Table 1 illustrates the

\ distribution of 25 and 100 hour reliabilities obtained with the
gamma distributed MTBFs presented earlier. To determine the
distribution of System 1 reliabilities, the data was analyzed and
fit with the beta distribution which is ideally defined for the
zexo to one range of the reliability parameter. (References 4, 5,
& 6, see appendix A).
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;\j By calculating the mean and unbiased estimates for the

I, standard deviation and variance of the reliability data, the two
‘jq parameters of the beta distribution can be obtained. (Reference
o 12). Figure 8 shows the probability density functions obtained

. for the time data in Table 1 using the beta distribution. Figure
{ 9 shows the cumulative beta distribution (incomplete beta

Lo function) for 25 and 100 hour System 1 reliability data. The

:ﬁ distribution (s0lid line) passes through the actual data points

:Q taken from Table 1, median ranked as in Reference 13 to determine

o esach point’s representative portion of the total population CDF.

The cumulative beta distribution accurately estimates the

s system’s reliability distribution and provides for calculation of

. the percentile of this reliability distribution. As shown in

N Figure 9, 90% of the population (10th percentile) has a

:ﬁ reliability of 0.50 or greater after running 25 hours.

"D

i; These examples indicate that the cumulative beta distribution

. estimates the percentiles for a system reliability distribution.

:{ The procedure for determipning the reliability distribution is

- straight-forward and computationally efficient. Only ten
A pradictions of system reliability were required for the test case

0 shown.
L‘,

ot Figure 10 shows the enhanced reliability increase performance
R of the System and quantifies the increasaead reliability gained by
AL installing a standby unit as a back up. The reliability increase ‘
W obtained by adding a standby unit is evident from the shift in 25 .
N and 100 hour reliabilities to higher levels than those achieved J
> 1
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with the simple series system in Figure 9. Note that the
cumulative beta distribution is capable of fitting the reliability
performance distributions of high and low reliability systems.
This is a feature of the right and left hand symmetry
(coefficients A and B in Equation 4 References 5 and 10; see
Appendix A) that exists with the beta distribution.

V. i Th
i \' [ ) ms

v

Simple hand calculations are not sufficient to predict the
reliability of these complex systems References 14 and 15.
Simulations such as NAVSEA‘S TIGER computer program (Reference
1) calculate the failure and repair characteristics of systems
containing several hundred to several thousand different types of
equipment (see Figures 2 & 13). Note that in these systems,
complex operating rules are required to efficisntly perform the
analysis of the time dependent reliability. The range of TIGER
analyses covers the transistor level, ship level, and multi-ship
task force R&M assessnents.

VI. Conclusions

The quality of ship board spares and their MTBF variation does
make a difference in the distribution of total system reliability
pexformance. Significantly different MTBFs can be obtained with
“look-alikes®” from different vendors. This investigation showed
that the real world data is skewed and that the MTBFs of some
highly complex aquipment were gamma distributed. Reliability
calculations based on the mean of the MTBF distribution can be
significantly higher than those determined with an MTBF
distribution skewed to the right as with the gamma. This points
out a problem; since spares may not live up to the MTBFs of the
original equipment, the in service reliability may be
significantly lower than predicted unless the variance of the
MTBFs is symmetrically distributed.

The NAVSEA TIGER R&M computer program used with gamma
distributed MTBFs and the cumulative beta distribution enables the
engineer and architect to rapidly determine the upper and lower
limits of total system reliability performance.

Very faw calculations were required for the sxample cases
shown here. The only data reagquired to calculate the beta
distribution parameters were the mean and unbiased estimate of the
. standard deviation of the system’s reliability values as obtained
. from the standarxd NAVSEA TIGER R&M computer runs. The two
parameter cumulative beta distribution fits the reliability datas
well and provides an easy method of calculating the percentiles of
the parent distribution for various forms of distributed equipment
data.
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RELIABILITY CHARACTERISTICS:
For the exponental case, the reliability of any single _i
equipment is (References 10 & 11)#: =

(- \t)
R= ¢ (1) bR

How long an indiviaual equipment performs depends on its mean
time between failures (MTBF) for repairable units and means time
to failure (MTTF) for nonrepairable cases (1). MTBF is defined
as:

MTBF = I ¢t/number of failures (2)

The MTBF calculation is often history dependent and exhibits
an increasing hazard rate since the success paths in most simple
systems having redundancy decrease with time (10). In the case of
the exponental equipment, the hazard rate is constant and thus
MTBF equals MTTF where:

MTTF = I ¢t/number of units tested (3)

System performance can be enhanced by increasing the MTBF or
MTTF of the individual units through better design, less severe
operating environments, and by adding standby units to take over
upon failure. Figure A-1 shows that standby redundancy is
effective, but at substantial cost; e.g., another unit,
installation cost, supporting structure, and maintenance burden.

(-2t) (~t)
R=ae 4+ \te (4)

The added reliability obtained by adding a standby unit is evident
in Equation (4).

* Referencaes for appendix are the same as shown in the body of
the paper.
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GAMMA DISTRIBUTED MTBFs:

The "real world"” differs from Equation (Z) in that there is
considerable scatter in the life data used to obtain the “point
estimate” of MTBF. This fact was graphically presented in a
histogram of MTBFs for 115 “identical"” computers in Reference 3.

The data from this histogram has been extracted and presented in
Table A-1.

The case in which there is considerable scatter in the MTBF
values, with the majority of the failures taking place quite early
and a few units lasting much longer. 1In a distribution skewed
this way (right), the median and mode both occur at values less
than the distribution point estimate (the mean, Equation (2)).

This type of MTBF distribution has been observed in actual
practice. The mean and unbiased standard deviation of the data
are used to determine the two parameter, integar gamma
distribution fit to the observed MTBF distribution. The gamma
distribution (References 4, 5, and 6) equals:

" oy a b ¢ (b=-1) . (-at)
c:a,b)= 5
r ) (3)
where; 0 £ bt
a>0 and
b220.

Some of the deviation from the actual data can be accounted
for by the use of an integer shape factor b=2.0 versus the 1.4
calculated from the mean and standard deviation of the data set.
Additvional divergence appears to be caused by the complex
(bimodal) distribution of the data set itself which is evident as
two distinct, straight lines when plotted on Weibull paper as
shown in Reference 7.

The bimodal attributes of the computer MTBF data is
characterized by two distinct straight lines. Note that the right
hand curve (1000 to 10000 hour MTBF) has a Weibull shape slightly
greater than 1.0 indicating an exponential distribution whereas
the left curve is definitely non-exponental with a shape of 2.0.
(Figure A-2)
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if Reliability values obtained from the parent distribution are
fit with the beta distribution (References 4, 5, 6);

- where the beta distribution is defined as:

- I (A+B) (A-1) (8-1)

= f(y:A,B) = (y (1-y) ) (6)

- r (A) T (B)

X wheare;

™

- y is the variable of interest and I (A) is the gama gunction with

"y A as its argument.
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To provide a replicate of the parent. The mean of the beta
distribution is:

A -
A+ B (7)

»

Cs

and the variance is:

SRR
Ay 8, Ryl Ay

AB 2

D= -
2
[(A+B) (A+B+1)]

(8)

w)>

8olving these Equations (7 and 8) for the two unknowns (A and B)
as a reference (12):
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deviation and variance of the reliability data, the parameters A
and B of the beta distribution can be obtained.

The cumulative beta distribution accurately quantifies the
systenm’s reliability distribution and provides for the calculation
of the lower confidence limits of system performance.

The cumulative beta distribution is:

-R
F(R;A,B) f// f(y;A,B)dy
0

O, and B * 0.

The replicate distribution of the parent distribution is a
specimen of the parent. The replicate distribution will have Q
number of samples with esach sample consisting of one observation
(sample size N=1). For a continuous parent distribution sampling
may be with or without replacement. The replicate asymptotically
aproaches the parent as the number of samples ,Q, increases.

The beta fit method, for prediction, is used in lieu of the
coverage calculations, for demonstration, using order statistics
Ref. 4. The beta percentile is used as the estimator for the
fractile of the parent distribution.
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Figure 5. Typical Shape of the Gamma Prcobability
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Table A-1 MTBF Samples From 115 “Identical” Computers

For One Year’s Operation -

\ @
B Cumulative
., MTBF Frequency Distribution R
: Class Mark*x of occurence Function e
N (Hours) (£1) if4 o
n ]

X ¥

P 50 0 0.0 °

X 150 2 0.02

. 250 3 0.04 L
350 7 0.10 il b
450 5 0.15 Y
‘ 550 7 0.21 el
b 650 S 0.25 R
P'e 750 9 0.33 N
b 850 2 0.35 Y
. 950 2 0.37 o
a¥ 1050 6 0.42 o
5 1150 S 0.46 RO
R 1250 8 0.53 S
ey 1350 4 0.57 L
. 1450 2 0.38 A
. 1550 3 0.61 o
o 1750 1 0.62 T
" 1850 ) 0.66 T
‘S 1950 1 0.67
] 2050 4 0.70 A
, 2150 6 0.76

2250 2 0.77 ~

Y 2450 1 0.78 Aj::-_.
2550 3 0.81

2650 1 0.82 A

3150 S 0.86 R

3350 1 0.87

3550 1 0.88 o

- 3650 1 0.89 R
? 3750 1 0.90 Tl
\ 4050 2 0.91 g
- 4450 2 0.93 Sl
N 4350 3 0.96 o
A 4650 1 0.97 @
' 5450 1 0.97 AR
e 5850 1 0.98 P,
! 7050 1 0.99 o
: 7180 1 1.0 e
- A% 100 Hour Class Interval Reference 3. @
s .
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