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SUMMARY

We first solve the equation dX + aXdt = dN, where dN
represents a Poisson process, and then generalize to a Levy
process. Finally, we solve a linear partial differential equa-
tion DX = dL in strong distribution, meaning that the second
member dL is a distribution process, generalization of Levy
process on R. The results are then applied to wave propa-
gation in underwater acoustics, and spatial’ correlation is

determined.

i Aéwession l~‘.;x'r_w~

»
LI

|
1
i
A




INTRODUCTION

The theory of linear random fields is well developed; for example S.
Badrikian and S. Chevet {2] consider the cylindrical measures and the associ-
ated linear random field. Some applications to economy and industry are
presented in S. Ben Soussan {3]. We consider the linear random process X
which is the solution of a linear partial differential equation formally
written DX = dT, where dT is a random process; in the simplest case dT is
white noise. The equation Dp = 0 in the last chapter of this paper will be
the propagation equation of the pressure p in deep sea water. We consider
only linearized propagation equation from general ones (c¢f. Poirée [11]); our b
equation is thus an approximation in the sea medium. In D. de Brucq [4], the
second member of the equation is a Wiener measure or Gaussian measure, denoted
by dW, defined on S(R4) the space of indefinitely differentiable functions on
R4 decreasingly quickly. The second member describes the random approximation.

This equation is written

2
4 1 3ap,b 3 ..
Dp =8p - 7 —5*+ = 3cop=dW
¢ at d

where A is the Laplacian in R3 . The solution in the sense of strong distri-
bution meaning satisfies for any f of S(R4):
F.-f . . 4
p(f) = f F —| dw where F is the Fourier transform on R
A

and F its inverse and where A is the function defined by the equality F«D =

AF. In this particular case A(w,Xx) = lz(w){xz-[k(w)-iy(w)]z} where k is the

wave number, y is the absorption. By hypothesis, for any f and g of S(R4) , the

correlation of the noise dW is I'(f,g) = E(W(f)W(g)) = czf?gdx with 02 a normali-
zation constant and d} Lebesgue measure on R4 . The spatial correlation s at

a given frequency v = 5% of the pressure p is given (cf. Th III-3-7) by:




herc ¢ is the distance between the points where the pressure is measured; by

physical approximation 12 may be taken equal to 1.

For ¢ = 0, the experimental spectral density function of the random j
fluctuations of the pressure in deep sea satisfy to a good approximation the
relation
s(w,0) _ 1 1
NN
2

In the ocean, point processes and Poisson processes dN appear to be more
5. accurate than Gaussian processes to describe the random sources of the noise. .
We generalize as much as possible to intrcduce a Levy linear process dL as
K second member of the equation. The expression s(w,%) does not change with
that extension.
In the first section, we explain the method with the linear differential
equation
dX + aXdt =dN a > 0 (1) %
where dN is the centered Poisson process. We compute the characteristic func-
tion of the X process so that the Gaussian or the Poisson laws of the forcing
term can be separated. Not withstanding the correlation function T of X and
in the stationary situation the spectral density power function are given.
In the second section, we introduce a Levy process L with stationary incre-

ments and recall a decomposition theorem for this indefinitely divisible pro-

cess. Then we solve equation (1) using L as forcing term. We are now in the
situation to consider spatio-temporal problems. In the third section, we use
general theorems (A. Badrikian [1]) to construct a measure L on S(R4 ) general-
ization of the Levy processes. We solve in the sense of strong distribution

the equation DX = dL. The case where L is Gaussian measure is known (D. de
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Brucq and C. Olivier [5]). Poisson measure is well known. (J. Neveu [10]) but
DX = dL with L Poisson measure is new, a fortiori with L our generalization of

a Levy process.

Finally, we apply the results to the propagation equation and we obtain the
spatial correlation at a given frequency.
Some classical notations and results will be useful. We will write the

Fourier transform

F(£f)(z) 4 f e1<Z’Z>f(x) dz where the function f is integrable
n
R

and where <z,Z> is the scalar product in R". In the spatio-temporal appli-

cation of propagation, for physical reasons

F(f) (w,E,n,8) 8 f e('wt+EX+ny+Ez)f(t,x,y,z)dtdxdydz

R4

Fourier transformations are isomorphism of distribution spaces S(Rn) s S(R4).
The distributions space S(Rn) is nuclear and countably semi-normed;

these notions are for example defined in I.M. Gelfand and N. Yu. Vilenkin {6].

We denote by S this space and S' its topological dual, the tempered distri-

bution space. The topology of S is defined by the semi-norms:

Vi, N eN, s, () & sup | (1+] 2] X0 (2|

z Rn

!a[gN
we have the topological inclusion U ¢ S ¢ LP with D the space of indefinitely
derivable functions with compact support in R".

s . n - s
If T is a real or complex function on R , continuous in zero and of

positive definite type then the Bochner theorem asserts the existence of a

bounded positive measure p such as
vt e R" r(t) = e o)
The random processes of the first two paragraphs are defined on a probability

space (f,A,P). We denote by R" the tribe of the borelians of R" .
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[. SOLUTION OF THE EQUATION dX + aXdt = dN

We take a to be strictly positive real number and N to be a Poisson
process.

I.1 Poisson Processes

Consider a family of random variables N(TI,TZ) with TysT, € R <,
Each has Poisson law and represents the number of discontinuities of a random
phenomenon in the interval [11,12]. Let o(t) be a non-decreasing function

defined by the relation
T

2
E(N(ty,7,)) = [ do(0)
T
1

We suppose o continuous on Rso o is almost bounded. There exists a sequence

(Tn,neN) of intervals such as

a) Tn‘: Tn+1 and UnTn = R

b) [ do(z) <=
T
n
The Poisson process N of parameter o, is the family of random variables:
N(t) = N(0,T1) for 1 > 0  and

N(t) =-N(0,T) for t < 0 .

The centered Poisson process N is
Ve R N(t) = N(t) - o(r) and we write

dN = dN - do

The solution X of the equation
dX + a X dt = dN is

vte R X(t) =[5 et Dy

The integral is the almost sure limit of f: e-a(t-T)dN(r) when t, converges
0
to -» ,
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We suppose that ffwe'a(t'T)do(T) < = and also that ffwe'za(t'T)do(r) < o,

Since X is a sccond order process, straightforward computation gives

2
B () = [ e Vgg(r) + [ff e @t Dyg(q)

-0

and the variance is
ECC (e -[EX()]% = [5 e Dao(r). )

For the centered Poisson process N, the solution '

¥t € R X(t) = ffwe-a(t‘T)dN(T) is centered and

Ex()?) = [t e 2t gg(r)

if N has stationary increments then o is a Haar measure on Rand do = AOdT

0 constant. For AO =1, E(N(t)z)'= It[ and

E(X(t)z) = Ifme'za(t‘T)dr. If we change the Poisson process N to a Gaussian

with dt Lebesgue measure and A

process W such as E(W(t)) = 0 and E(W(t)z) = t then the solution is centered
and has the same variance.

The characteristic functions of N(t1) and of N(t) are:

e

Ny @ ™M) < explo(r) (exp iu-1)]

ne

E(eiuh('f))

¢N(r)(u) exp[o (1) (exp(iu)-1-iu)]

1.2 Probability Law of the Solution X

Lemma [.2.1: The complex function y defined by

vEe L2 (R ,R,do) b, (6) & 1 (M1 £(2))do(2) is continuous on L®(R,R,do)
R

Proof: For every f of L2 (R ,R,do), we have

v, ()] < 3£ (n)do(D).

Then if (fn) converges to zero in LZ(Rk,R,do) then wl(fn) converges to zero

in € . 0O
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Theorem 1.2.2: There exists a linear centered process

4
u

(Q)A,P’(N(f)) 2 !R)R)
L°(R ,R,do) j

with characteristic function ¥f ¢ LZ(R‘,R,do)

o 2EENE) =y ()

Proof: The application,

1 e L5(R,R,d7) > N(t,) - N(t,) € L2(0,A,P) %
[11,12] 2 1
is isometric and conserves the scalar product. The family 1 T,,T,¢ R
[Tl,TZ] 1°°2
is total. We note N the unique extension. So for every f in f 1

LZ(II,R,do), N(f) is a centered second order random variable. We have to

compute its characteristic function. For any expression

f 4 aj llTj,Tj+1] in Lz(ll,R,do), we have N(f) = Zaj[N(Tj+l)-N(rj)] and
ia,(N(t..,) - N(1.))
- ] j+1 j
Log ¢N(f) = glog E(e )
ia,
- %[e o S NI CICIRSELICH)
gt 2
= | {e LA A P a.l[_r (:) ]} da (1)
R RS AT
= [ et F 1l £(n) M)
R
By continuity, the expression is valid for any f of LZ(I{,R,dc). 0

Corollary I1.2.3: The characteristic function oy of the process X solution of

the equation

dX + aXdt = dN satisfies Vu, t € R.
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ne>

iuX(t))

¢X(t)(u) = E(e exp Wx(t)(u) with

wx(t)(u) = ffm[exp ju e 2t 14y e'a(t'T)]do(r)
Proof: The expression of X(t) is

x(t) = [* e (FDan(r) with 1 Q. e3(t*)

[ ]
. 2 —a(t-+)
in L"(R ,R,do) then uX(t) = N(ul (-) e

[-=,t]

)

Corollary I.2.4: The covariance function I' of the process X solution of the

equation

dX + aXdt = dN satisfies Vt € R

1%
t,~t -a(t,+t,-21)
M(t,,t,) = EKX()) = [ 2e 1 2" do(0)

_a(

Proof: As X(t) = N(1 (+) e t")) we have

)
[-=,t]

_a(tl_T) -a(tz-T)
F(tl,tz) = f 1 (1) e 1 (t) e do (1) 0

Corollary [.2.5: In the stationary case, the covariance function T is equal to

X —a]tl—t2|
F(tl,tz) =55 © , tl,t2 in R, and the power spectral density function
is 1

1 AO

y(v) =52 ;7:;7, ¥ ve R

XO -a[t1+t2-2(t1*t2)]
Proof: In that case do = Aodr and F(tl,tz) =57 € , the

Fourier transform of which is

A
1 p4o ivt 0 -alTI 21
[fwe e it =y




II. SOLUTION OF THE EQUATION dX + aXdt = dL

We generalize the forcing term to be a Levy process. We have to give

some essential properties of these processes (T. Hida {9]).

I1.1 Classical Properties of the Levy Processes

Definition I1.1.1: A process

L = (R,A,P, (L(t))R , R,R) is a levy process if L satisfies
the properties
(a) L has independent increments.
(b} L is continuous in probability.
(c) L has trajectories almost surely continuous to the right an. .ath limit

to the left.

We will show how to obtain the generality of such processes.

Proposition I1.1,2: Let N {NI;1=[a,b] c R} a family of processes. For

each interval I, the process NI is Poisson such that

(a) VYt e R E[Nl(t)] = t n(I) where n is a positive measure on R satisfying

L2
= 5 dn(z) < =
[2]>0 14z
(b)Y For 1.,1, disjoin (1 1. = @) then the Poisson processes N_ ,N_ are
1°°2 1 2 I1 I2

independent.

(c) For every partition (Ik;k ¢ N) of I=[a,b] then Vt ¢ ]lNI(t) = 2 N, (t)
keN ‘k
almost surely.

As T =+ Nl(t) is a measure with value in L°(Q,A,P), we use the notation

fIszz(t). The process

[z Ny, (8) - =5 dn(2)]

|>l 142
P

vt ¢ R L (1) Syim
pre p>z
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is then defined and is a Levy process with stationary increments. ‘The measure
n is the Levy measure of the process Ll' The convergence with p is almost

surely uniform in t.

Remark 11.1.3: Every Poisson process is a Levy process and the vector span of

such processes is composed also of Levy processes. We need only to be able to
pass through the limits. Let {Nk,ké N } a sequence of independent processes

with (Yte R) ) okl(t)] < w; is ) Zka a Levy process? If
k € N keN

o)
(¥t e R) kZ)}Zin(t) < = then kzpq Zka exists and is a Levy process.
€

Another construction is possible. Let N be a Poisson process and (nk,k Z)
a sequence of independent real random variables, independent of N. All the
discontinuities, the jumps of N, are equal to +1, we change the value +1 of the
th

k™ jump in Ny random in R and we obtain a Levy process (T. Hida [9]). We

recall the P. Levy's decomposition theorem:

Theorem II.1.4: Let L be a Levy-process with stationary increments. Then

there exist two constants a, 8 of R, a Wiener process W, and a Levy process L]
such that ¥Vt ¢ R L(t) = a + B W(t) + Ll(t)' The decompositicn is unique.
The forcing term of the equation dX + aXdt = dL will be a Levy process so

that we generalize the Gaussian and the Poisson case.

I1.2 Solution of the Equation DX + aXdt = dL

We assume the Levy process L with stationary increments and the Levy

measure n satisfying f zzdn(z) < =, We can suppose the process L centered.
R

Proposition II1.2.1: The process

(Yt € R)L (1) & tim | 2Ny (8) - tzda(2)]
P prlz]> S

where N is the Poisson process of Proposition II.1.2 and f zzdn(z) < o

dz R
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is a centered Levy process with stationary increments.

Proof: The limit [ (2dN_ exists (T. Hida [9], p. 39) and [ jzdniz) =

prlzl> p-lz]

D p

f:;:dn(z) + f?zdn(z) + j 1zdn(z) the first two terms converge noting for

NHR

example that [[’;zdn(z)[ s,f_;zzdn(z) s_f zzdn(z) < » , For every pe¢ R,
B h R

z dn(z) so passing through the limit }

b

E[f Ny (D] = ¢ /

p>|z] =
P

o

p>lz]s

E(. (D) . 3

]
<
s,

ra

Lemma 11.2.2: The complex function ¢2 define by Vf ¢ LZ(R ,R,d1)

wz(f) f { [exp 1 z f(1)-1-i z f(1)]dn(z)dr
72 1>0

R
is continuous on Lz(l(,R,dr).

Proof: For every f of LZ(IQ,R,dr), we have

v, (£)]< | %lzlzlf(ﬂlzdn(z)dr
2
R |z2]|>0

NRGIRT { 2] %an(z) q
R

z[>0

Theorem 11.2.3: If fzzdn(z) < «, there exists a linear centered process

L. = (2,A,P,(L_(f)) ,R,R)
¢ . L2(R ,R,d7)

with characteristic function Vf ¢ LZ(II,R,dr)

i Lc(f)
Ve £ ECe ) = exp ¥, (f)

Proof: We can suppose f zzdn(z) =1, For f =1 the characteristic

A [0,¢]”

function of
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L (6) = lim [ | Ny (0)-tzdn(2)] is (Yu e R)
¢ pr+e p>lz|>= “
P
f£00 lexp iuz 1 (1) - - iuz 1 (1) dn(z)dr .
[z|>0 10,t] [0,t]
As ffmf [iuzl (1) lzdn(z)dr < » , the random variable Lc(t) is second

lz]>0 [0,t]

The same is true for t < 0 and

i
[ad
.

order and E(Lc(t)z) =t { ) zzdn(z)
z1>0

f = l[t 01" The process Lc(t) is a Levy process; the map

l[rl,T,] L°(R ,R,dt) » L(t)-L (x)) e L (2,A,P)

is isometric and conserves the scalar product. The family 1 R

[TI,TZ]TI’T?.€
is total. We note LC the unique extension. So for every f in
LZ(I{,R,dT) Lc(t) is a centered second order random variable. To obtain the
characteristic function ¢f of Lc(t), we use a plain extension of the proof of
Theorem 1.2.2. 0

Proposition 11.2.4: Let ¥te¢ R L_(t) = lim [ Lz N

-tz dn(z) and
peprlzl> F

d

suppose f zzdn(z) < » then the process X solution of the equation
z|>0
dX + a Xdt = dLC with a > 0 is centered, second order, stationary with covariance
A e-altz-tll 2
th, tze R F(tl,tz) = E(X(tZ)X(tl)) = ~— Jl I z°dn(z)
z >0

Proof: The solution X satisfies
vee R(t) = [ e("VdL (1), But with a > 0 the function

() -a(t-+) . 2 . -a(t-+)
l[_m,t]e is element of L°(R ,R,dt) then X(t) = Lc(l[—w,t]e )

We need only the covariance function for Lc:




—u(tl-') ~a(t,-)
V(t,ty) = E(X(t)X(t,) = k[LC(ll_m’tlJC )Lc(ll—w,tzlc )]
] -a(t,-1) -a(t,-1)
= [ g (e (e 2y de
R ZI‘O l-"",tl] ["w,tz]
-d|t,-t | 5
- 2 I—J z%dn(z) 0
2a 1z]>0 :
/
Corollary I1.2.5: The power spectral density function of the solution X is i
¥v ¢ R
L1 2 |
YO) = 5 s [ z“dn(z) i

a%sy? |z]>0

The second order properties are the same for every Poisson, Gaussian, Levy

et

centered processes and for the processes, solutions of dX + aX dt = ch' It

may be uscful to have the law of probability of the solution X.

Corollary [I1.2.6: The characteristic function ¢x of the solution X is Vu,

t « R
by @ 2 EEM T cexpy
by = I II | Jowp i ¢ 2D an(2)ds
z|>
Proof: As uX(t) = N(u lff;3t]e-a(t—.)), we use Theorem I1.2.3. 0

In Proposition II.1.2, we had L, non-centered Levy process with stationary

1

increments, The hypothesis f dn(z) < » is equivalent to

|z|>0 142

f dn(z) < = and f zzdn(z) < », The process

2|21 <|z]<

+ A . tz . . .
L (t) = 1im f lz Ndz(t) - 3 dn(z)] is defined and the new hypothesis !

pr pz|z|21 l+z !

f zzdn(z) < = jimplies that f z dn(z) < = for the bounded measurc on ;
lz|21 [2]21 |

{z ¢ R;|z|z1}, then the decomposition
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Lty = 1im z N, (t)-tz dn(2)] + t | 2 dn(z)
) dz 2
pe px|z|>1 |z]>1 1+z
. + z
gives E(L (t)) =t f 3 dn(z)
2|21 14z
The process L (t) 4 lim f 1[z Ndz(t) - tzz dn(z)] is of any order and
p 13}z|>5- 1+z
- 2 /
E(L (t)) =t f z"dn(z) without any new assumption.
0<|z]<1
22 2
Theorem II1.2.6: 1If f 5 dn(z) < = and if f z7dn(z) < «, the solution
|z]>0 1+2 R

X of the equation dX + aX dt = dL with a > 0, is a process with characteristic

function ¢x satisfying Yu, t ¢ R

A i ]
¢X(t) = E(elu X(t)) = exp wx(t) (u) with
2.2 )
sy X.-lu § + : -a(t-1) _,  iuz -a(t-1)
wx(t)(u) u_ -5+ {mf|2l>0[exp iuze 1 ;:;7 e Jdn(z)dy

where vy and § are two constants.
Proof: By theorem I1.1.4 for every t of R

L(t) =y + §W(t) + L, (¢)

with the hypothesis f zzdn(z) < o _ the process L. is second order and Ll(t) =

1

Lc(t) + t { Z > dn(z). Then the solution X satisfies
z|>0

1+2z

X(t) = % + 6 ft e-a(t-T)dW(r) + fte'a(t'T)ch(T)

-0 =00

+ fte-a(t_T)dT / Z 5 dn(z)
oo |z|>0 14z

The four processes of the second member are independent. The characteristic

function of each one is known then
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+ftmf [exp iuze~a(t_r)] - iuze_a(t~r)]dn(z)d1
T z[>0
t . -a(t-1) 2z )
+ f f iue — dn(z)drt (]
el )Zl>0 1+2

A random variable Y has indefinitely divisible law if its characteristic

function satisfies V R
. u 2 i
log ¢(u) =ium- 50" + | (e

where m,0 are constants and where the nondecreasing function ) is such that

tim J(z) = 0, lim [(2) = 0, [%[z% [(2) < = and [} 2%d](z) < = (B.V. Gnedenko

Z-> =00 Z>40

and A.N. Kolmogorov [8]). For every t of R the random variables L(t) is

indefinitely divisible.

T11. SOLUTION OF THE EQUATION DX = dL IN STRONG DISTRIBUTION MEANING

The solution is known with forcing term L, a Gaussian measure (D. de
Brucq and C. Olivier [5]). It is not difficult to take for L a Poisson measure
defined in J. Neveu [9}. We generalize as much as possible introducing
I, -measure, we should say Levy-measure but the expression is used with other
acceptance (Proposition II.1.2).

We consider the space LZ(Rn ,Rn,dx) where \ is a positive measure on
(Rn ,Rn). The Lebesgue measure will be denoted d} = dt. Fourier transform
is used in the theory and the space LZ(Rn ,Rn,dk) is composed of functions

with complex values.

Definition III.1.1: Let n be a positive measure on (R ,R) with fzzdn(z)< o,

A IL -measure is a process

L = (,A,P_,(X(f)) ,€¢ ,0)
a 2..n _n
L°(R ,R",d))

such as
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(@) £ LA(RY,RM,dN) » 1L (f) < Lz(.\z,A,pa) is linear

) wiE) et B Oy . [.] lexp i z F(1)-1-i zF(z)]dn(z)dA (1)
R |z|>0

The characteristic function ¢H. of the process IL is given by b.

lemma II1.1.2: The complex function f LZ(RP ,Rn,dk) + Y(f) is continuous.

Proof: We have

o] < Jul?f |£(0) |2an(n) | |2]2dn(2)
R z|>0

Proposition III.1.3: The IL -measure is centered and the covariance T is the

function ¥f,g ¢ LZ(R™,R™,d\)

P(f,8) = E(IL (£) T(@)) = [ szn(Z)lf(T)g(T)dX(T)

z|>0
Proof: yY(u f) has derivatives at first and second order inu R and

b ) = -2 [ @) [ 0P ¢ owh)
' z{>0 R

Then E(LL (f)) = 0 and

E(L @5 =] @ [ lE0 P
|z|>0 R

with the linearity of IL , we obtain the covariance | .

II1.2 Equivalent IL -Measure on (S',S")

We use a theorem for cylindrical measure (A. Badrikian {1]). We restrict
the [l -process to the nuclear and countably semi-normed space S, dense
sub-space of Lz(lﬂ],Rn,dT), here we consider the Lebesgue-measure dX (1) = dt.
The characteristic function ¢H,= exp ¥ of the linear process IL is continuous
in t = 0. Then exists a probability P on (S',S') such as IL is equivalent
to the process

($'.8', P, (<0,f2)g . ¢, 9)

for cvery t of S the random variable is T € §' + <T,f> where <,> is the
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duality between S and S', its topological dual. As IL (f) and <-,f> have the
same probability law, Ep(<',f>) = 0 and Vf,ge S

E (030 ATt = [ ana) [ Fme(oer

z|>0 R

The application fe § » <+ f>¢ LZ(S',E',P) is lincar and continuous for the
topology of L2(181,Rn,dT). We denote f?dL the unique extension of this appli-
cation from the Hilbert space L2(Rn ,Rn,dT) to the Hilbert space LZ(S',§’,P).
For Borelian B of Rn, the application 1B € L2(Rn ,Rn,dT) -+ ledL € LZ(S‘,i',P)
is a vectorial measure.

We suppose now that the IL -measure is the process

L o= ($',8',P, ([fdl)g, € O).

Instead of a general probability space (Q,A,Pa) the continuity of ¢u‘on S and

the theorem on cylindrical measures, specify (Q,A,Pa) into (S',S',P).

ITI.3 Expression of the Solution X

The Fourier transform is defined in the introduction. We consider
equation DX = dT in distribution meaning V¢ € S <DX,¢> = <T,¢>

We limit D to be linear operators such as

(a) F-D = AF

(b) A has derivatives of any orders

(c) multiplication by A is a linear operator on $

(d) the closed set F = {71 ¢ R" ;A(1)=0} is Lebesgue almost surely null.

Let 0 = {1 ¢ ]ﬂ’;A(t) # 0} the complement of F and let T 4 F(D(0)) where D(0)
is the distribution space of the functions with derivatives of any order and
with compact supports in 0. We observe that T is dense in LZ(Rn ,Rn,dr).

We introduce the definition (D. De Brucq and C. Olivier [5]).

Definition III.3.1: A solution X of DX = dT in strong distribution meaning,

is a process
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X = (8',8', P, (X(f))T C,C) such as
vfe T DX(f) = <T,f> P - almost surely.

We obtain the very general theorem

Theorem II1.3.2: For any probability P on (§',S') the solution X in strong

distribution meaning of
DX = dT

with D satisfying properties a), b), c¢), d) is linear and given by

vEfe T X(f) = <T, FrTf] >

Proof: For f in T = F+(D(0)), the function F{%?} is also in T dense subspace

of S. Then VTe S*' < T, F {E%£]> is defined. Moreover we note D* the adjoint
of D, then
*
ox(£) & x(o*f) = <, F{f%—f] >
= <T,F Aif > = <T,TFf> = <T,f>

When the process

(S',i',P, (<-,f>)T,¢,C > is additive

we note <T,f> = f?dT. With [L -measure, the characteristic function of the

solution X is known:

Theorem I11.3.3: The characteristic function wx of the solution

X = (s',8",p, (JfdL)1,C,0)

of the equation DX = dL with the prior hypothesis on the linear operator D

and on the IL -measure, is given by

. f . f
log WX(f) = L“ f[z]>0[exp i zFF;J -1-iz FP%J]dn(z)dt .

Proof: The solution X is
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vfe T X(f) = ff{-%?]dL = L[F{%H

with F{Eg] in S and we apply property b of Definition III.1.1. g

Corollary I11.3.4: The covariance |' of the solution X is given by ¥f, g« T

zzdn(z)

re,g) = EUORE) - —— [ T f
(2m)" R ]A{ lz]>0

p— J — =
Proof: T(f,g) = E IFF_i dL. ﬁ[% dLi}
L LA A

Fﬁ)'? g% dt j zzdn(z) from Proposition II1.1.2
A

L]
w\ﬁ
=
|
|

T% f zzdn(z) from Parseval's theorem. ]
A

L3
£ A [z{>0

(27r)

The covariance ' gives the power spectral density function

flzl>ozzdn(z)

n
(Zﬂ) |A(T)[2

. . : . 4 .
An application in the spatio-temporal space R shows how to use this rcsult.
We define the spatial correlation at a given frequency v; in this space, the

power spectral density function takes the form
[ nlnem
1 [h|>0

en® |Aw,6,n,0]°

s(w,&,n,z) =

with the Fourier transform

F(£) (w,%,n,8) 4 f4 Ci(-wt+€X+ny*Cz)f(t,x,y,z)dtdxdydz .
R
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Definition I11.3.5: For the solution X of the spatio-temporal equation

DX = dL, the covariance function at a given frequency v = %%»is the function

i(xg+yn+zz)
s(w,x,y,z) = 1 3 f hzdn(h)fs E——————ngdndz;
2m* " |n|>0 R’ |A(w,&,n,8)]

2, .
f h“dn(h)
We note ¢ Q lhl>0

3 a normalization factor. We consider the linear
(2m)

partial derivative operator

D& § A% 2 ) withp € N and o ;€ C .
k=0 7 27 5¢d &

We obtained FD = AF with

p .
Y [(-1)7(E“+n“+g9) (-1)7w?]

k,.2. 2 2k Za
k=0 j

Properties a), b), c), d) for D are checked easily. We observe that A is

invariant by rotations of R3 , and is function of « 24 £2 2 Cz Then

A(w,x) = z (- 1)k 2k[2uk J.(—i)JwJ] is algebraic in « with 2p complex roots
k=0 i

|4
Ak(m), -\ (m), k=1,2,...,p and A(w,x) kgl(Kz-Xi) with

1 (m) (-nP ap 3¢ 13,7

In that case, it is possible to perform the integrations that appear in the

expression of the function s.

Theorem I11.3.7: In the spatio-temporal space R4 , the covariance function s

at a given frequency of the solution X of the equation DX = dL with

. e @

) P e N(xk j

P
) Ak(ia
k=0

k,j atJ

is equal to
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S{w, Q) =

where a) Qz = x2+y2+z2

_ . | 2_ 2P 2 2 222
b) A, = a-ib a > 0b >0 and 1A (w,x) | -]lp] kgl(h NI Catyhg)
P2 20.<2 (2. .
dk = jzl(Ak - Xj)(Xk - Aj) if p #1 and d1 = 1.
j#k

We have supposed the roots Ak in the complex plane with bk strictly positive;

it is the analog of a > 0 in Proposition I1.2.4.
Proof: The theorem is known for p=1 (D. de Brucq [4]). We have to compute

o H(xE+yn+zy)
s(w,x,y,2) = ¢C f s dfdndg

R [A(w,)]°
with lA(w,K)IZ = ]lp]2 ﬁ (KZ—Xk)(KZ-XiJ. We used spherical coordinates and
k=1
(I1.1. Gihman and A.V. Skorchod [7])
s(,x,y,z) = ¢ —i—l JH: ele' -———K———-—Z dx .
e |AGw, <) |
A 4 eiKQ A 4

let f(x) = and J = I_m f(x)dk

LN GRWEI Tt

k=1

we perform the integration using residual method. The p pdles are strictly

complex by hypothesis and Xk = ak+ibk, -Ak = -a,+ib, k=1,2,...,p are the

poles in the upper half plane. Then

P
s = 2il § [Res(f,X

+Res(f,-xk)]. We have
k=1

KW
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. iin
K° 1
Res(f,% ) = N
k p 2X
2 2, 52 2, 52 2 k
-3 - -
Ok T Oy A Gy - Y
L#k
eiXkR 1 2 2
= x as Xk - A = diab
p 02 - 130223 8iayby
o BT A Ay
=1
L#k
1XkQ
= 1 and also
dk 8akbk
-ikkl ,
Res(f, -1, )= ¢
dk -81akbk
Going back to the expression of s, we find
s(w,x,y,z) = ¢ 1 1 > J
L (|
P
iX, 2 -iA R
C . ’ 1 e k e k .
= 21T 2 - — !
flpr mig k=1 81akbk dk dk

For Gaussian measures, for Poisson mecasure, results of III.1 and II1.2 are
valid and we have equivalent processes on (S',S',P). These processes are
linear and for every f in L2(Rn ,Rn,dr) the characteristic functions are

given by

tog E(e™(Fy = -1 [ |£]%1 and 10g E(™(P)) - [ (exp if-1-1f)dv
R

P
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These centered processes and the Il -measures have the same correlation function,
Every torcing terms of these types, give solution X with the same sccond order
properties! Moments of greater order are necessary to make differences betwcen
the forcing terms. For p =1
c e % sin ki L.
where ), = k-iy is the complex wave

2y " 1

s(w,?) =

2]11

number. Direct verification in deep sea water of this formula is factible:

k(w) is the wave number at pulsation 1,

y(w) is the dumping term at pulsation w.

For two points at a distance #, the correlation of the filtered observations
at frequency v of the pressure p is the function s(w,%). The main assumption

to obtain the result is that p satisfies any equation

3 3
A a, . —. + )0, . o~ = dL

with L. Gaussian, Poisson, or any centered Levy-measure!
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