AD-A141 786

UNCLASSIFIED

PERFORMANCE EVALUATION TOOLS FOR A MULTI-BACKEND 11
DATABASE SYSTEM(U) NAVAL PDSTGRADUATE SCHOOL MONTEREY
CA J G KOVALCHIK DEC 83

F/G 9/2 NL

et PR P

o 2
o |
= e

= TERT

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 10634

it

AD-A141 786

VPN —

NAVAL POSTGRADUATE SCHooL

Monterey, California

DTIC

ELECTE
JUN4 w84

THESIS ¥ °

-

Thesis Advisor: David K. Hsiao

PERFORMANCE EVALUATION TOOLS FOR A
MULTI-BACKEND DATABASE SYSTEM

by
Joseph G. Kovalchik
December 1983

a3

Ly
oned Approved for public release; distribution unlimited
S

| i

E

g4 06 04 028

A

SECUNITY CLASSIPICATION OF "NiS PALE (When Deate Rntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

O g me GOVT ACCEBSION NO)
Ifm/ A1yl 796
& TITLE (and Subtitie)

Performance Evaluation Tools for a

$. TYPE OF REPORT & pt;uoo COVERED
Master's Thesis

December, 1983

Multi-backend Database System

6. PERFORMING ORG. REPORT NUMBER

VYN

Joseph G. Kovalchik

8. CONTRACT OR GRANT NUMBENR(s)

b, PERTORMING ONGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

+ PROGRAM ELEMENT, PROJECT, TASK
A NIT NUMBERS

11. COMTROLLING OFPICE NAME AND ADDARESS
Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

December, 1983

13. NUMBER OF PAGES

68
T RONITOMNG ATERCY NAME & AGDRESH(I] difiorant frem Contreliing Office) | 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
Wm
18- GisYRBUTIoN SYATERENT (of this Fepert)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetrast entered in BDleek 20, i different irem Report)

6. SUPPL EMENTANY NOTES

mnmunmulmoummm

MDBS.

Performance Evaluation, Backend Database Machine, Database,

: ADSTRACT (Coniinue an reverse alde if nessscary and Ideniify by blesk number)

known as MDBS.
base system (MDBS) is to develop an archi
the work of the database system among mul
a major aim of this system to allow capac
of additional disk drives and performance

00 , %% I3 eomom or 1 wov 68 is ossoLaTR
$/N 0102- LK 014- 440

In this thesis, we discuss the development of the necessary tools
for the performanpce evaluation of a multi-backend database system
NThe basic motivation of the multi-backend data-

e —

tecture which spreads

tiple backends. It is

ity growth by the use
improvement by the use

Tree— el N -y
1 SECURITY CLASBIFICATION OF THIS PAGE (Wihan Dare Bnteres)

PERIRENTY NN U

~ 6 m> ot
RPN

[SV I

SECUMTY CLASSIFICATION OF THIS PAGE (When Date Enteredd

ABSTRACT (Continued) *

[Adesign and implementation, it is necessary to test the capability
of MDBS in capacity growth and performance gain.

Three tools for the performance and capacity tests are investi-
gated. The first tool is the file generation package which
creates test files for any artificial database. The second tool
is the database load subsystem which loads the artificial data-
base into MDBS. The third tool is the request generation
package. This package creates test requests to query MDBS.

The following methodology is used to create an effective tool.
First, the properties of an ideal tool are described. Then
available existing programs are reviewed and evaluated to deter-
mine which program best meets the desired features. Lastly,

the programs are upgraded to ensure that they are compatible
with the current implementation, and meet the desired features.

The main goal is to develop the necessary tools to generate test
in measuring the extensibility of MDBS, i.e., how does MDBS
perform as more backends are added? P%rformance is expected to
improve (maintain) as the number (size) of the backends (data-
base) is increased. | »
l 3

|

F3 LA

g S OB S VS

. A Accesslon For
1 NTI5 CGRA&L

DTIC Tap O
Unannounced |
Juastifisation 1
By
| Distribution/]

Avail anifor
Speciai

?
_ ’ " :
A |

oot e s

$/M 0102- L& 0146601

SECURITY CLASSIFICATION OF THIS PAGE(When Dase Bntered)

' 10
i,
0

Approved for pullic release; distribution unlimited.

Perforamance Evaluation Tools for a Bulti-backend Database System
by

Josaph G. Kovalchik
Lieutenant, United States Navy
B.S. , United states Naval Academy, 1977

Submitted in partigl fulfillment of the
rtequirements for the degree o

MASTER OP SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

aathors ________) Qm -

Approved by: TACﬂMX K dé)\ﬂp -

“Z;i{z7 Thesis Advisor

Sacond Reader

HgosA . Tneg——

Chairman, Department of Computer Science

G M LA

A

Dean of Info d Policy Sciences

ABSTRACT

In this thesis, we discuss the development of the neces-
sary tools for the performance evaluation of a multi-backend
database system, kncwn as MDBS. The basic motivation o€ the
mutlti-backend database system (MDBS) is to develop an
‘ architecture which spreads the work of the dJdatabase system
| among multiple backends. It is 2 major aim of this systenm
to allow capacity growth by the use of additional disk
drives and performance improvesment by <the use of additional
backends. However, tc¢ verify the design and implementation,
it is necessary to test the capability of MDBS in capaci:y
growth and performance gain.

Three tools for +he performance and capacity tests are
investigated. The first tool is the file genezratiomn package
which creates test £ . les for . 2-tificial database. The
second tool is the database lcad subsystem which loads the
artificial database into MDBS. The <¢thir2 tool is the
roequest generation package. This package creates test
requests to query MDBS.

The folloving aethodology is used tc create an effective
tool. PFirst, the properties of an ideal tool are described.
Then available existing programs are reviewed and evaluated
to determine which program best meets the desired features.
Lastly, the programs are upgraded to ensure that they are
compatible with the current implementation, and meet the
desired features.

The wmain goal 4is to develop the necessary tools to
generate tests in measuring the extensibility of MDBS, i.e.,
how does MDBS perform as more backends are added?
Performance is expected to improve (maintain) as the number
{size) of the backends (database) is increased.

11,

III.

TABLE OF CONTENTS

AN INTRODUCTION =« o o o ¢ o o« o 2 o o o o

A, THE

B. REQUEST EXECUTION .« « ¢ o o o o o o o

1.
2.

MULTI-EACKEND DATABASE SYSTEM . .

Actiors for Insert Requests . . .
Acticns for Non-insert Regquests .

PEBPOBMANCE EVALUATION . &« o ¢ o o ¢ « o o«

A. TWO

B. CRITERIA POR PERFORMANCE EVALUATION AND

VIEWNS OF PERFORMANCE M EASUREMENT .

TOOL SEL!CTICN . ® ¢ e * o * e - - L] [) L] -

1.
2.

Macroscopic Viewpoint
Performance ISSUES « « « o o o o o

C. DESIRABLE PROPERTIES OF THE TEST PILE
GENmATIO“ PACKAGE L L] * L) L] L] - L] - L] L) L

D. DESIRABLE FROPERTIES OF THE DATABASE

SUBSYSTBH L] L] L L] - - - * L 4 L] - - - L4 L d L]
E. DESIRABLE PROPERTIES OF THE REQUEST
GENERATION PACKAGE ¢ o ¢ ¢« o ¢ ¢ o o o o« =«

THE TEST PILE GENERATION PACKAGE . « . .« .

A. THE

?URPOSB L] e o * e e . . L] - L] L]

B. DESIBRED FBOPERTIES ¢ « o« « + ¢ o o o
C. EXISTING PROGRAMS . « « ¢ ¢« « o « o

1.

2.

The Original Test FPile Generation
Package o« ¢ ¢ o ¢ o o « ¢ o s o o
The Shortened Test Pile Generation
Package . ¢ ¢ <« 2 o o o 0 o 6 o

D. SBELECTICHN OF THE TEST PILE GENERATION

PACKAGE

10
10
14
14
16

18
18

18

18

19

20

20

21
23
23
23
24
24

24

25

L P S S S

; E. THE UPGRADING PROCESS . « « « « o o o » o o o 25 o
P. PUTURE Iupnmzu“rs L * L] L] L L J . L d L L] - L L 25

Iv. THE DATAEASE LOAD SUBSYSTEM . ¢ « ¢ ¢ o« o o o o « 27
A, THE PURPOSE ¢ ¢ ¢« ¢ @ o o o o o o « o o o « o 27
B. DESIRED PROPERTIBS « o o ¢ « o ¢ ¢ o o s o o o 27 f o
Ce EXISTING PROGRAMS =« o« ¢ o« « o @ « « » o o« o o« 28

1. The oOoriginal Database Load Subsystem . . . 28
2. The Shortened Database Locad Subsystem . . 28

D. THE SELECTION OF THE DATABASE LOAD
SUBSYSTEM ¢ ¢ ¢ « ¢ o o o @« o o o s 3 o » o s o« « 29
E. THE UPGRADING PROCESS =« o« « o o o o o o o « o 29
1. Message Passing « ¢« ¢« ¢ ¢ o ¢ o o« ¢ ¢ o o 30
2. Message Passing Within a Backend . . . 30

b. Message Passing Within the
Controller . ¢ o ¢« ¢ « ¢ ¢ s o o o o « 30
_ c. Messag2 Passing Between Compu%ters . . 31
2. Directory TableS v o« « o ¢« ¢ ¢ o« o « « « « 31 !
3. Specific Upgrades o« « « « « « o« o = o « o 32
F. PFUTURE IMFROVEMENTS . ¢ ¢ o o o o o « o o « « 36

v. THE TEST REQUEST GENERATION PACKAGE . . « « o o « 37 !
A. THE PURPOSE &« ¢ « o ¢ o o o o o o o « o o« o o« 37

B. DESIRED ERCPERTIES ¢ o« ¢ ¢ « ¢ o ¢ o o o o o « 37

C. EXISTING PROGRANS e o« e s ® o o o « o o o o o 38

Te VOISiON A v o o o o ¢ o e « o « o o « « « 38 |

2, VersionN B < ¢ o o o o o e o o o ¢ o o o o 39
D. THE SELECTION OF THPR TEST REQUEST
GENERATION PACKAGE . ¢ ¢ « o o o o o e o« o o« o« o o 39
E. THE UPGRADING PROCESS . o o ¢ o » « o « o« o o« 39
F. PFUTURE IMPROVEMENTS . o ¢ « o ¢ o « o « o« o « 39
1. Program Generaticn of Requests . . . « « . U0
2. Siaulatisn »f Multiple Concurrent
USETE o o v ¢ o o s o o o o o o o o = o o U0

3. The Storage Information Package 40

VI. ANALYSIS OF EERPORMANCE EVALUATION TOOLS . « o « o« 42
A. BASIS OF ANALYSIS o o « o o ¢ o o « o« o « « « U2
B. ANALYSIS OF THE FILE GENERATION PACKAGE . . . 43 }
C. ANALYSIS OF THE DATABASE LOAD SUBSYSTEM . . . 43
D. ANALYSIS OF THE REQUEST GENERATION PACKAGE . . &4
E. PUTURE DEVELOPHMENTS . . ¢ o « ¢ ¢ ¢« « o o o o US

vII. CONCLUSICRS L] [) [] e o L] L] e o L] [] . L] . - - L] [“6

APPENDIX A: DESIGN SFECIFICATION OF THE TEST PILE
GENERATION PACKAGE « « « ¢ « « o« o « « « o « 48

APPENDIX B: DESIGN SPECIPICATION OF THE DATABASE
LOAD SUBSYSTEM « « ¢« ¢ « o ¢« « o« s« « o« = « o 55

APPENDIX C: DESIGN SPECIFICATICN OF THE TEST REQUEST
GENERATION PACKAGE . « . 2 ¢« ¢ ¢ « ¢« o« o« « « 58

LI ST OP REFBRENCES - - - - () . o o e [L] - - .] L] L] - L] 6 5
BIBLIOGR‘PHY L] - . e * e e o s © * e L] L3 L] L] . L] . - . - 67

INITIAL DISTRIBUTICN LIST o o ¢ ¢ ¢ « o o ¢« o« o« o« o« o« « o« 68

LIST OF PIGURES

;
% 1.1 HARDWARE CCNPIGURATION OF MDBS « « « o o o « « o 11
' 1.2 PROCESS STRUCTURE OP MDBS « « o « o « « o« « « o 13
. 1.3 SEQUENCE OF ACTIONS POR AN I NSERT REQUEST . . . 15
! 1.4 SEQUENCE OF ACTIONS FPOR A NON-INSERT REQUEST . . 17
. 4.1 COMMUNICATIONS: DIRECTORY TABLE
; , CONSTRUCTION « « o o o o o o « o o o o « « o o « 33
' 4.2 COMMUNICATIONS: RECOBD LOADING . « . « « - . . 35
i
—

T e

;4
i

¥

J
2.

AICKNOVLEDGEMENT

This work is supported by Contract N0QO14-75-C-0573 fronm
the Office of Naval BResearch to Dr. David K. Hsiao and
conducted in +the Laktoratory fcr Database Systems Research,
located at the Naval EFostgraduate School. Dr. Douglas S.
Kerr, Adjunct Professcr of Computer Science, is the present
Director ¢f the Lakcratory. The labcratory equipment is
suprorted by DEC, CNR and NPS.

I vould 1like tc thank all those who have supported the
MDBS project and who have contributed to the development of
this document. In particular, the design and analysis were
developed by Jai HNenon. Drs. Hsiao and Kerr have provided
nuch of the guidance needed in developing the project.
Their time and patience proved invaluable in the development
of the igplementation of +the performance tools. Farlier
work accomplished in the field of performance sevaluation of
database machines infuenced the develorment of the tools
cresentad here. This work was accomplished by Paula
Strawser, Michael Crocker, Curtis Ryder, Robert Bogdanowicz,
and Vincent Stone. Spacial thanks are also extended to Al
Wong, whc as a memkter of the Computer Science professional
staff provided many services to the laboratory. Lastly, I
would like to thank Ruth Olson, wvho had provided many edito-
rial comments concerning this document.

N\

PR

PP G UM O AP, SR, W,

~ -

N
e

I. AE INTEODUCTION

This chapter presents a brief review of <the nulti-
backend database system (MDBS). First, +he physical
arrangement of MDBS is presented. This is €ollowed by a
presentation of the process structure of MDBS. Lastly, the
actions taken in servicing requests, bothk insert and non-
insert requests, are reviewed. References are cited for the
interested reader in order to gain a more detailed under-
standing cf MDBS.

A. THE MULTI-BACKEND DATABASE SYSTEM

The multi-tackend database system (MDBS) uses one 11~
computsr as the master 5r controller, and a varying n- her
of winicomputers and their disks as slaves or back !-.
MDBS is designed to provide database growth and perforin .ce
enhancement by the addition <c¢f identical backends. No
special hardware is required. The backends are configqurad
in a parallel fashion. A new tackend may be added by simply
replicating the existing scftware on the new backend, <+hus
avoiding reprogramming 2fforts. A prototype MDBS has been
completed in order to carry out the design verification and
performance avaluation develored in [Ref. 1] and [Ref. 2].
The imp lementation efforts are described in [Ref. 3] through
{ Ref. 5].

The equipmert configuraticn of the system is shown in
Pigure 1.1. The host computer is connected t> MDBS through
+he controcller. The backends are connactad to the
centroller through a broadcast bus. When the controller
receives a request frcm the host, it delivers the request
to all backends simultaneously over the broadcast bus.

10

To the
host

Contrbller

fackend 1 disk
‘ ortves

Backend 2 disk
‘ orives

EIE

—

— — e . s

Broaacasting bu

~

gackend n disk
-—~(\frivos

-

e ol

A o et s s et e e i s s i, e OO i O ot Al S iy e e i A i, e e, o S bt ey S S . W R e 0 e e o i ot T Mo o DY S A e e . W . 4 . s i

Pigure 1.1

HARDWARE CCNPIGURATION OF BDBS.

11

Since “he data is distributed across all backends, all back-~

ends can execute 2 requast in parallal.

The division c¢f labor between the controller and the
backends is illustrated through the process structure of
Figqure 1.2. The MDBS controller handles three functions.
The p2guest preparation function prepares a request for
transmission to the tackends. The insert ipfo-matiop geper-
atior function prccesses the insert requests which require
additional information used by tha backeands. The post
processing functicn handles the work necessary when the
replies are returned to the controller from the backends but
before reaching tte host.

The backends in MDBS carry out three different func-
tionms. The directory papagement function per foras
descriptor search, cluster search, address geaeration, and
directory table maintenance. The ra2gerd procsssing function
performs record storage, record retrieval, record selection,
and attritute-value extraction of <the retrisved records.
The g¢oncurrency coptrsl function performs operations to
ensure that the concurrent and interleaved 2xcecution of the
user requests will keep the database consistent.

Before proceeding to describe the sequence of actions
required during a request servicing, some terminology is
presented as a review. The smallest unit of data is a
keyvord, which is an attribute-value pair. Information is
stored in terms of records, which are made up of keywords
and a record body. A predicate is of the form (attribate,
relational operator, value). A query is any Boolean expres-
sicn of predicates. Records are 1logically grouped dinto
clusters based on the attribute values and the attribute-
value ranges in the records. Internally, the values and
value ranges are called descriptors. Por “he user, these
attribute values are termed keyvords. Fach descriptor is
identified by a descriptor id to save computing time and

12

]
Controller
>
Post Request Insert 4
Processing Prepsration Information i
Generatfion i
¥
¢
! .
I ! |
. &
[
»
{
|
|
f Backeng
{
‘ Ofrectory Recorg 'Eoncurrency
Management Processing Control

S S e S, et . e T T s > S — — —— . s — T ———— — . — o t—

b o

Pigure 1.2 PROCESS STRUCTURE OF MDBS.

1
]
13 i

L AL

-

memory space. A prespecified set of requests is referred to
as a transaction.

B. REQUEST BXIBCUTICHN

This section describes the sequence of actions taken by
MDBS in carrying out a request. First, <the insert request
vill be discussed. Then the non-insert raquests wvill be
described. Non-insert requests are requests for deletion,
retrieval, or ugdate.

1. Agtions for Ipnsert Reguests

The sequence of actions for an insert request 1is
showvn in Figure 1.3. A request from the host machine enters
the Request Preparaticn process. Request Praparation broad-
casts the number of raquests in the transaction to Post
processing in crder +to determine when a transaction is
completed. Request Preparation may send an error to Post
Processing if there is a syntax error in the reques<. When
a transaction is ccmpleted Post Processing sends the resul:ts
to the hest machine. Request Preparation then broadcasts
the request to Directory Managemen%t. EFEach backend finds the
descriptor ids associated with the reguest. The backends
then exchange descriptor id information.

After receiving the descriptor ids from the other
backend s, Directory Management sends the cluster id to
Insert Informaticn Generation. Insert Information
Generation then Jetermines which backend is *o store the

record. The selected backend determines the address of “he
new record and stores it. The other backends discard the
record. Finally, Record Prccessing serds an action-
coanpleted message to Post Processing, which in turn inforams
the host.

Request
WPreDarltton

'

[}

]

]

]
<t
Vo
| 2 J
P_PCL

™

b

]

H

1
s 4.
IG_PCL'
l;:
'y
:

Controller

formationf=--=—-~--=~

Insert
Generation

Post
Processingp--~-=====-==-=~-

——— o = an o o o
o e -

r-i-———--—--_-_

Backend
Dlrectory
Management

i
|
I

e

jmm————==x1n

1
i

G_PCL

Concurrency
Control

- en dn wn e n an e o Py

Record
Processing

SEQUERCE OF ACTICNS FOFR AN INSERT REQUEST.

Pigure 1.3

15

2. Agtions for Nop-ipser: Requests

The sequence of actions for a non-insert request is
shewn in Pigure 1.4. The ac<ions fcr a retrisve will be
discussed only, since the other types cf regquests ara gquite
similar. A request from the host machine enters the Request
Preparation process. Reguest Preparation sends the rumber
of requests in the transactionr tc Post Processing in order
to determine when a ¢transacticn is cospleted. Request
Preparation may send an erro>r to Post Processing if there is
a syntax error in the request. ®hen a transaction |is
cospleted, Post Frocessing sends the results to the host
machine. Request Preparation tker broadcasts the request o
Directory managemert. Each backernd finds the descriptcr ids
associated with <the request. The backends then exchange
descriptor id information.

After receiving <+he descripter ids from <he other
backends, Directory Management determines the cluster ids.
Lastly, Directory Management determines the addresses of the
records of the identified clusters. Record Processing gets
the records fros secondary stcrage and extracts <+he neces-
sary information. If aggregate operators, for example, the
average, are specified in the retrieve request, they are
applied at this time. The partially aggregated values are
sent to Pcst Prccessing. Post Processing sends the rasults
to the host following any further aggregate operationmns.

This concludes the reviev of MDBS. Attention is now
turned tcward performance issues of this system in the
following chapter.

16

===

17

' |
]
' Controlier - i
| |
! 1
H '
3 ’
Post Request
Processingp-~=-==-=v--==== 1 Preparation
b i
t '
| ! '
!]
' Insert '
i Information '
! Generation K
G_PCL P_PCL
T ’ i
1]
]]
] : !
]
L L 2] - o e
1 i |
P_PCL Backend G_PCL
LI ‘# {
o 0 ! !
0o ' |
booTTEEEET 7IDirectory precomeocaaoa ! : :
' Management | _____________ ' i
: h g TR |
] t () 1
' t 1! |
- ! | N
RECOrDd fe! i1 | Concurrency
Processing === controi
. -
Pigure 1.4 SEQUENCE OF ACTIONS POR A NON-INSERT REQUEST.

- S

R W, W

e

adie

po

> Tl

II. PERPORNANCE EVALUATION

A. TWO VIENS OF PERPOBRNANCE MEASUREMENT

Now that the MCBS has been described, it is reasorable
to ask "how does one determine the performance of such a
system?® There are two viewpcints of pfperformance evalua-
tion. The first is the wmacroscopic vievpoint in which the
key performance mnmeasurement is the relative response tinme.
The second viewpoint is +the microscopic viewpoint. This
viewpoint is ccncerned with measuring the times needed to
perforn various sukbttasks which are carried out in servicing
a requast. In (Ref. 6], the motivation for the macroscopic
measursment is provided. This chapter is concerned with
describing the perfcrmance issues which arise when using the
macroscopic viewpoint. Thus in testing “Lhe MDBS, the macro-
scopic viewpoint will be used before proceeding to the
microscopic viewpoint.

B. CRITERIA FOR PERFORHNANCE EVALUATION AND TOOL SELECTION
1. Hacrosccpic Viewpoint

As stated above, vwith the macroscopic viewpoint the
key per forsance measureaent is the relative response tima.
That is, +the concern lies mainly with the affect of various
changes to the system cn the response tinme. These changes
and therefore their relative response times are prompted by
the variatles described in the following section.

18

4

2. PRserforsance Issyes

The macroscopic viewpoint is concerned with changiag
four categories of variables and cbserving their affect c¢n
the relative response time. These variables include systenm
configuration variables, cluster formation variables,
request constructicn variables, and storage variables.

The system configuratior variables deal with the
following gquesticns on how MDBS performs when: the number
of backends remains ccenstant but the database increases, the
database remains ccnstant and the number of backends
increases, the number of concurrent users increases, the
number of requests per transaction increases, and the pres-
ence of ccncurrency cecntrol is wmeasured against the absence
of concurrency control.

The cluster formation variables deal with <the
folloving questions orn how MDBS performs when: the number
of descriptors on any attribute incresases, <the average size
of clusters in the database ranges osver small, medium, and
large size, and the number of attributes and thus the size
of the attribute takle increases.

The request constructicn variables deal with ¢the
folloving questicns on hov MDBS performs when: the request
makeup is retrieve-intensive vs. update-intensive, the
complexity of the query increases, the relative aix of query
types is varied, the ratrieved information is either a
projection of the record or the whole record, “he query
predicates are peramuted, and the request uses either non-
directory keywords or directory keywords.

Lastly, the storage variables deal with the
following questions on how MDES performs when: the data
placement strategy of the database changes, the tuple width
increases, and the size of the retrieved information exceeds
that available in the main menmory.

19

Thus it can be seen that several variables influence
the perforsance of MDES. This is not an all-inclusive list.
However, the list will serve as a basis for developing the
desired properties of each performance tool. Each tool will
be discussed along with its desired properties in the
following secticns.

C. DESIRABLE PROPERTIES OF THRE TEST PFILE GENERATION PACKAGE

The purpose of the file gemneraticn package is *o create
an artificial datakase which will eventually be loaded into
MDBS. This is thke first tool <%c be used for the evaluation.
Several parameters are likely to be varied in *+he light of
the performance issues. Their desired properties are as
followus. The 4input parameters to such a package may
include: file size in number ¢f records per file,
attribute-value size in bytes of storage, record size in
number of attributes values, data types of attributz values,
and database size in number of files per database. In addi-
tion, parameters must indicate whether values of attributes
are taken from randcm functions, or from predestzarmined sets,
and whether uniquensess >f values is desired.

D. DESIRABLE PROPERTIES OF THE DATABASE LOAD SUBSYSTEM

The database 1load subsystem is responsible for taking
the files created by the file generation package and for
properly locading the files into MDBS. In the process of
loading the datakase, the database lcad subsys+tem must also
create the necessary tables used in directory management.

The database lcad subsystem must be designzd so that the
performance evaluation may utilize various cluster formation
variables and storage variables with minimum effort. The
cluster formation variables and storage variablas with which
+he perforsance asay be concerned include the following. The

20

performance may be expected to depend upon whether the
numbsr of dJdescrirtors (attributes) is 1large or small.
Certainly, vhen entering a 1large number of descriptors
(attributes), <the chance for arror in this menial task is
great. Therefora, the ease of spacifying the descriptors
(attributes) must be guaranteed. The variation of cluster
size may affect performance. The cluster size is a function
of the number of dascriptors, the size of the inpu+ files,
and the values used in the attribute fields. Therefore,
these three parameters should be entered independently. Thse
data placement strategy, i.e., how records are distributed
across the backends, also affects performance. while siau-
lation studiss described in [Ref. 1] and {(Ref. 2] shov that
the track-splitting-with-random-placaemen*t strazegy is <the
most desirable, the ability to change the placemen+ stratagy
will provide a means cf confirming these studies.

E. DESIRABLE PROPERTIES OF THE REQUEST GENERATION PACKAGE

| The request generation fpackage is concerned with

creating and axecuting test requests. The request formation
variables will ke altered by the perfcrmance evaluation teanm
in this performance evaluation tool. The request formation
variables will e changed in c¢rder to vary the following:
the percentage of the types of requests (retrieve, wupdate,
insert, c¢r delete), the percentage of aggregate operators
(ave, max, min, sus, and count) in retrieve requests, the
complexity of the request query (A simple query will consist
of one to two predicates, and a complex quary will consist
of ten to fifteen predicatss), the order of the predicates
appearing in the reguest, and +he number of attributes to be
prcijected in the retrieve request.

21

The -rcquost gqeneration package must also possess the
ability tc allow the following: vary ¢the length of the
transaction to determine its effect on systea performance,
tag requests vwith user identification in order to test
concurrency control, retrieval of a record defined over the
null descriptor, execute a retrieve request where the entirs
cluster is stored at one backend, and compare the above

) performance vith a retrieve <request where the cluster is
distributed across all backends.

It is now appropriate to prcceed to the details of each
of the above three tools. In the following chapter the test
file generation package is discussed. <Chaptar IV deals with
the details of the database load subsysten, and Chapter v
develops the test request generation package.

22

IITI. IHE IEST PILE GENERATJION PACKAGE

In this chapter, we discuss the test £il2 generation
package development. In the first two sections, we review
the purpose and desired properties of the package. In the
next two sections, wve discuss how the basic program vas
selected from existing file generation tools. Pinally, in
the last two sections we discuss <the upgrading of the
selected program and future enhancements which will further
aid the performance evaluation tean.

A. THE PURPOSE

The first set ¢f performance evaluation experiments will
use test data which is gererated by a program in the form as
specified by the experimenter. This process may be viewed
in three steps. The first step consists of defining “he
structure cf the files to be generated. The second step
determines where the values for the specified a%ttributes

vill be generated. lastly, ¢the files ars generated and
stcred for future use.

B. DESIRED PROPERTIES

The input parameters to such a package may include:

file size in nuaker of records per file, attribute size in
bytes of storage, record size in number of attribute values,
data types of attritutes, database size in number of files
per database, vwhetler values of attributes are taken from
randoa functions or are selected from predetermined sets,
and vhether uniqueness of values is desired.

C. EXISTING PROGRABS

Two programs were reviewed in order to determine which
possesses the largest number of desired propartias and s:ill
vould require the least effort to ensure system compa*ti-
bility with the current version of MDBS. The firs+t of the
tvc programs was originally designed in [Ref. 3]. The
second was a latter attempt to simplify the tes: file gener-
ation packagse.

1. Ihbe 0rjgina] Test Pile Gemeration Package

In ¢this program the test data is generated and
stored in files. Several characteristcs of the file are
specified by the experimenter. Bach file is given a name.
The data in the records is specified in a fixed number of
attribute-value pairs. The type of data in *the attributes
is integer, string, and floatiag-point numbers. These
values are generated in either predetermined files, called
sets, created by the experimenter, or are randomly generated
by separate functiomns. Only a uniform distribution of the
various data types is available. This program contains all
of the desired properties stated above, except the ability
to guarantee uniqueness of the records created.

2. Ihe sShorteped Test File Generation Package

This program was vwritten in order to reduce the
complexity of the original test file generation package.
Mapy of the features of the original program remain intact.
Two important differences exist. The shortensd version only
allows the use bf predeternined sets of values to be used,
therefore not allowing randomly generated values. The
second difference is the fact that the files generated must
be of length of less than or equal to 10,000 records. An
advantage of the shortened version is that it is combined

24

with the shortened database load program, which is discussed
in the following section.

D. SBELECTION OF THE TEST PILE GENERATION PACKAGE

The shortened version of the test file generation
package was selected initially as the file generation *ool.
MDES is currently undergoing a change in the version of the
compiler used. 1In an attempt to keep the coaversion of MDBS
simple, the shcrtened version was chosen. This version
alloved a rapid ccnversion. Hcwever, cnly user defined sets
of values are selected for the attribute values. This is
considered a disadvantage. Perhaps the overriding consider-
ation in the selection of the shortened version was the fact
that its associated database load subsystem was much
simplier. The discussion of this subsystem is provided in
detail in the following section.

E. THE UPGRADING PROCESS

The upgrading process for the shortened version of the
test file generaticn package was relatively simple. The C
compiler criginally used in the implementation was an oldsr
version. The nevw version is being used by 8DBS. Several
minor compiler differences with respect to acceptable syntax
vere rapidly fizxed.

P. PUTURE INPROVEBENTS

Because the shortened version possesses all but one o5f
the desired properies discussed in chapter II, only one
future change is anticipated.

Two approaches which provide the shortened version with
the capability of randomly generating values exist. The
first of these alternatives includes adding the functions to

25

..<4_ T, \\'&\v_

the program with the additiopnal user interface to select
these as cptions. The second alternative is <*o adap= %he
original test file generation fpackage +to be compatible with
the shortened database load. The task would be simplified
by choosing the first alterqative;

This concludes the aiscussion of the test f£file genesra-
tion tool. 1In the following chapter, we discuss the proper-
ties of the selected database load subsysten.

26

IV. IHE DATABASE LOAD SOUBSISIEN

In this chapter, we discuss the database 1load subsystaenm
developaent. In *he first +two sections, ve review the
purpose and desired properties of the subsysten. In the
next tvo sections, we discuss how tke basic program wvas
selected from existing database load tools. Finally, in the
last two sections, we discuss the upgrading of the selected
program and future enhancements which will further aid the
performance evaluation teasn.

A. THE PURPOSE

The database load subsystem is a software tool used to
designate an input source file and to create a database from
that source file. It also allows several related files to
be consolidated into one databsse if desired. The first
phase in the database load subsystem is to define the input
files and the database. The second phase consists of
constructing various directory msanagement tables. Lastly,
the records are distributed across the backends.

B. DESIRED PROPERTIBS

The database load sabsystem must be designed so that the
performance evaluation may utilize various clustsr formation
variables and storage variables with minimum effort. The
performance may be expected to depend upon wvwhether the
number of descriptors(attributes) is large or small. The
ease of gpecifying the descriptors (attributes) must be
guarant eed. The variation of cluster size may affect
performance. The cluster size is a function of the number
of descriptors, the size of the input files, and the values

27

) \ % me\

T — e
PUEVIFAPIE U, Y Wi SR - SEpou i

RN

used in the attritute fields. These three parameters shouid
be entered independently. The data placement strategy,
i.e., hovw records are distributed across the backends, also
affects performance. The ability to change the placamant
strategy will provide a means of confirming simulation
studies.

C. EXISTING PROGRANS

Tvo database 1lcad subsystems vere revizwved. In this
section the merits c¢f both of the axisting programs arce
discussed. The original datatase load subsystem is covered
first, then a shortened version of the database 1load
subsystea is evaluated.

1. The Original Database Load Subsystenm

The original database 1load subsystam was first
designed at the teginning of the iamplementation stage of
MDBS. The process is viewed as four logical phases. The
first phase is the database definition phase, in which the
user specifies various characteristics of sxisting source
files and the characteristics of the database to be created.
The second phase is the record preparation phase, in which
the data is read from the input files and prepared for
loading. The third phase is the record clustering phase, in
which the prepared records are sorted into clusters. The
last phase is the record and table distribution phase. This
phase distributes the records and the directory management
tables to the backends.

2. The Shortened Database Load Subsystem

As stated in Chapter II, the shortened database load

subsystem is nuch simpler than the original database load
subsystema. This isplementation can be viewed as tvwo phases.

W ;i

gt s e e Lqprrs o ar

The firs+t phase is the directcry table construction phas=,
in which specified database parameters ars read from
existing files and the directcry +ables are constructed.
The second phase is the record distribution phasa. In this
phase the records are distributed to the backends by using
insert requests. Thus this subsystem uses currantly
existing directory management functions to load ~-he database
records.

D. THE SELECTION OF THE DATABASE LOAD SUBSYSTEN

Several disadvantages to the original database 19a4d
program exist. Since it was created at the incep*ion of
MDES design, it pcssessed many system incompatibilities with
the current version of MDBS. Onca again the large size of
the program posed a significant ma2intenance problem with
respect to the conversion of the system to the new compiler.
Por these reasons this program was not selected.

The shortened version of the database load subsyst2n was
chosen as the basis for the database lcad *ocl. This was
due to the fact that it used existirg directory managemen+
code and +that it was much simpler to understand and *hus
maintain.

E. THE UPGRADING PROCESS

Ir *his section, we now discuss the upgrading of the
shortened versiocn of tha database load éubsystem. A discus-
sion of the ccmmunication ameng processes is presented.
Then <tha changes to the database load subsystem are
discussed.

29

PSR e .

1. Message Passing

In order to locad the current version of MDBS, it is
necessary to change <the database load subsystem so that it
could communicate with the btackend process of direcrory
sanagement. The database load subsystam is implemanted as a
separate process in the controller. A brief discussion of
message passing in MDBS is presented belov.

a. MNessage Passing Within a Backend

The backends are supported by PDP~11/44s running

under RSX-11M operating systea. The inter-process-
communication facility is the shared access to physical
REROry. Suppose process X wvants to send a message to

process Y. X will copy the message into the shared area.
Then X tells the operating system to send the address of the
message to process Y. When Y is ready to receive a message,
it gets +the address of the message from th2 operating
systea's queue of such addresses. Process Y then copies the
message into its own memory space.

b. Message Passing Within the Controller -

The MDES controller is a VAX-11/780 using the

VYMS operating systen. The 4inter-process communication
facility is the mailbox. The mailbox is a software input/
output device. If process X wishes to send process Y a

message, process X first issues a send command to process
Y's mailbox. When process Y issues the read command on its
mailbox it will be given the message sent by process X. The
mailbox can queue several messages.

30

r——

A eag b

R LT o Ty

C. Message Passing Between Computers

Coasunication between computers ia MDBS 1is
achieved by using a time-division-multiplexed bus called the
parallel communication link (PCIL). Two interface procasses
to the PCL are used in each computer. Tha first process,
called put_PCL, pets the message to be sent to the other
coaputers on the PCL. The seccnd process, called get_PCL,
receives the pmessage from the bus and then passes the
message tc the appropriate process. PClLs are prasen+ly us2d
to simulate the broadcast bus and will be replaced physi-
cally by a broadcasting bus later.

2. Digrectory Iables

Several directory tables exist in order +to process
requests. In this section the logical descriptions of such
tables are discussed. This will allov some insight into
vhat kind of messages must be sent during the loading of the
database.

The Attribute Table (AT) contains a3 list of the
directory attributes and a pointer to the descriptors
defined on these attributss, The AT 1is located at each
backend. The Descriptor-to-CDescriptor-Id (DDIT) Table
contains the descriptors and their corresponding descriptor
ids. Bach section of the DDIT is associated with a direc-
tory attribtute and contains the descriptors defined on that
attribute. The DDIT is located at each backend. Since
type-C subk-descriptors are created dynamically as new
records are inserted, the +ype-C attributes must be recorded
in a table called <+he Type~-C-Descriptor-Table (TCDT). The
TCDT is lccated in the controller. When an insert request
contains a record with a type-C attribute and +he value of
the attritute does not appear in a type-C descriptor, a new
type-C descriptor will be created by the Insert Information

31

e

Generation process. This process will then reccrdi the
descriptor in the TCDT. Thus all directory at«rinutss and
their corresponding descriptors are sent to the backend's
Directory Management rrocesses. All type-C attributes are
alsc sent to the Insert Informationm Generation precess in
the contrcller.

3. Specific Upgrades

The database load subsystem fprogram was changed by
allowing it to ccmmunicate with the backends in order to
l1oad the database to the backends. In order to distribu*e
the directory management tables to all backends, the data-
base load subsystem must be given its own mailbox and access
to the directory management physical areas located in the
backends. All of the functions which create the directory
management tables were moved tc the backends and appropri-
ately placed in the directory management procaesses. Data
necessary to construct these tables was passed to the back-
ends by using messages containing codes which indicate the

type of action toc be taken. Because the backends can
construct the tables in parallel, this did not significantly
burden the dataktase lcad process. In order to support the

message passing ability, send and receive routines specific
to +the database 1lcad process werza written. Pigure 4.1
illustrates the inter-process ccmmunication involved with
the directory table ccnstructicn phase.

In order to load *the records into the database,
coanmunication tLeétween the request preparation process
(located in the contrcller) and the database load subsystenm
was established. This allowed the database 1o0ad subsystenm
to send the insert requests directly to request preparation.
Thus the database load subsystem was given access to the
request preparation aailbox. It was also nacessary to send
the Insert Information Generation process all of the type-C

32

Controller
Post Request Insert
Processing Preparation Information
. Generation
(5)Type-C descriptors il Y
'y
——el da%abase o gl |
zr' aod 1 1
G_PCL r P_PCL
K] ' 1
| Directory tables!
:3 (7 (1)(2)(3)(4) :
H !
'y w l
P_PCL Backend G_PCL !
i ! '
[] O D D P D D D G > > T - - L] {
] [|
[] 'l ,
Directory Record Concurrency !
Management Processing Control
Figure 4.1 CONBMUNICATIONS: DIREBCTORY TABLE CONSTRUCTION.

33

S W LK

N
P P T Y

—r—— e

—

attributes for insertion into the TCDT. Plgure 4.2 shows
the inter-process coamunication of the record dis*ribution
phase.

The following is a summary of the <ypes of messages ;

which vere added to the database locad subsysten:

Message type:
Source:
Destinaticn:
Explanation:

Message type:
Source:
Destination:
Explanation:

Message type:
Source:
Destination:
Explanation:

Message type:
Source:
Destination:
BExplanation:

Message type:
Source:
Destination:
Explanation:

(1) Create AT

Database Load (LCEL)

Directcry Managenment

This message creates an AT for
the given database nzme.

(2) Ad4d Attribute to AT

Datakase Load (DBL)

Directory Management

This message adds an attribute

to the AT for the given database.

(3) Ad4 Descriptecr tc DDIT
Datatase Load (CBL)

Directory Management

This message adds a descriptor

to the DDIT for the given database.

(4) Add the end cf descrirptoer flag
Datatase Load (DBL)

Directory Management

This message adds the flag to signal
the end of the descriptor 1list.

(5) lcad type-C

Datakase Load (CBL)

Insert Information Generation

This message passes the type-C attribute
to IIG for entry into the TCDT.

34

Controller

Post Request Insert
Processing Preparation Information
— Generation
) (6)Inserts? .
$ \QJAITORY, L9 oo ecvaneaa
: : L Parsed
' ' database | Inserts |
! ‘5= laod
])
! ' &
G_PCL I P_PCL
! B L4
] [
(] t
i ks :
[]]
] |
] &
P_PCL Backend G_PCL
f 1
. r Ty P G WS W G G G Sl S S - J
¢ [}
) 4 L
Directory Recorg Concurrency
Management Processing Control
- ———— }_.
piqure 4.2 CCHMUNICATIONS: RECORD LOADING.
35

Message type:
Source:
Destinaticn:
Explanation:

Message type:
Source:

Destination:
Explanation:

Thus for each of the messages (1) through (6), a type (7)

message is sent +tc the Database lcad subsystenm. This ;
concludes the upgrading of the database load subsysten.

P. PUTURE IMPROVENENTS

The database lcad subsystem contains all c¢f the desired
properties discussed above with the exception of the ability
to change the data placement strategy. Due t> *he manner in
which the database is loaded, this would require a change in
the directory

required to

costleted.

investigate the ramifications of changing the
directory management process. This feature should be
delayed until the <system conversion to the new compiler is

(6) Insert record

Database Load (LEL)

Request Preparation

This message sends the record to be
loaded to RP,

.

(7) Responses

Directory Management and

Insert Information Generation

Datakase Load

This group of messages informs DBL cof
action that is actually carried out as
requested by the above messages from
DBL. They also include error messages.

e e e -
o

TN

management process. Further research is !

36

V. IHE IBST BEQUEST GENERAIION PACKAGE

In this chapter, we discuss the test request generation
package development. In the first two sections, we review
the purpose and desired properties of the package. Iz +he
next two sections, we discuss how the basic program wvas
selected from existing request generation tools. Finally,
in the last twec sections, we discuss the upgrading of the
selected progras and future enhancements which will furthar
aid the performance evaluation tean.

A. THE PURPOSE

The purpose of the test request generation package is to
provids an oeasy means of creating a list of test requests
vhich will be executed in order to test MDBS. The package
also aids the evaluation team in executing the lis+t of
requests. The 1list of requests are saved in a file for
future use, in <crder to avcid regenerating the list of
requests.

B. DESIRED PROPERTIES

Recall that the test request generation package permits
the regquest formaticn variables to be altered by the evalua-
tion tean. This allows the following to be varied: the
percentage of the types of 1requests (retrieve, update,
insert, or delete), the percentage of aggregate operators
(ave, max, min, sum, and count) in retrieve requests, the
complexity of the request query, the order of the predicates
appearing in the request, and the number of attributes to be
projected in the retrieve request,

37

N

T _\

Knati b

B

The .request generation package must also possess the
ability +tc allcw the following modifications: vary the
length of the transaction, tag requests with user identifi-
cation, retrieve a record defined over the null descriptor,
and sxecute a retrieve request in which the entire cluszer
is stored at one tackerd and ccmpare the performanc2 with a
request which retrieves records from a <clusier which is
stored across all tackends.

C. EXISTING PROGRBAAS

Two existing prcgrams were reviewed in orda:r to salect }g
the one which best fits the desired properties and is compa- :J
tibile with the current versicn of MDBS. Both programs ;

isplement the test request generation package in the f'
controller. The next section discusses version A of :he
test re quest generation package. Version A was criginally

designed at the commencement of the implementation of MDBS.
VYersion B was a later version.

1. YVersiopn A

Version A may be described as a package which aids
the user in develcping a list of requests. The user is
guided through the construction of one request at a time.
The program ensures that the syntax is correct. The intent
of this wmethod is <¢o generate a small number of reques*s
wvhich are thoughtfully devised in order to test specific
features cf MDBS. This program alsc assumes that one user
vill execute only one request at a time. The user is
alloved the following options when using this test request
generation package: generating a list of requests for later
use, retrieving a list of regquests to be executed in any
order, wmodifying an existirg 1list, or executing a list of
requests.

38

2. Yersion B

Version B is a follow-on package to Version A. It
therefore possesses all of the features contained in Version
A. It should be noted that Version B adds the ability to
use the concept of transactions. Recall that a transaction
is a group of one cr mcre requests. Thus the requirement of
executing only one request at a time is removed.

D. THE SELECTION OF THE TEST BEQUEST GENBRATION PACKAGE

Because Version B contains all the features of Version
A, Version B was selected as the test requast generation
package. Because this version arrived at tha current imple-
mentation site cf MDBS rather late in the review of parform-
ance evalvation tools, many of the desired features must be
left for future development. This does not detract from the
usefulness of the test request generation package as it
stands.

E. THE UPGRADING PROCESS

The majority of +the upgrading accomplished on the test
reguest generation package consisted of ensuring that the
syntax discrepancies due to compiler differences were
resoved. A reorganization of <the file location of MDBS
resulted in many changes tc the programs.

F. FUTURE INPROVENENZTS

Several enhancements to the request genzration package
may be desirable. Three major enhancements include the
following: program generation of requests, simulation of
mutltiple concurrent users, and development of a storage
informaticn package tc aid in request selection.

39

. Prograp Geperation of Eeguests

In order to test NDBS, the test request generation

f
package could be modified to «ccntain a routine which gener- r
ates randca requests, The input to such a routine would

include parameters such as the percentage of each type of
request to be generated and the the query complexity. Query

. coaplex ity involves ctanging tke number cf predicat2s in the
requasts. This akility would allcow the evaluatica tezam to
easily determine which type of reques+t 1is most 2fficient
under MDBS.

2. simulation of Multiple Concurrent Users

In order ¢0 evaluate the effect of concurrency
control, MDBS must be tested while several users are usinag

the systen. By providing a way to 1link a user to the
requests which are generated, the tes*t request g2aeration *
package would simulate wmutiple users. This would aveoid
processing several separate files of reguests. This would
also result in repeatable experiments, in that ¢the condi-

tions resulting frcm executing <the ccncurrent user requests
could bhe duplicated.

3. TIhe Stcrage Information Package !

The storage information package would allow the
experimenter to ask specific questions about <the database
storage informaticn so that intelligent queries can be
derived. The questions an experimenter might ask would
include: What descriptors are associated with a cerctain

'f attribute? What descriptor ids define a certain cluster
number? or Where is cluster one stored?

) This package «could e implemented by sending

messages to the Lackends. Each message would bhe associated

with a routine which walks <¢through the directory management

40

tables and finds the appropriate information and sends it
back to the contrcller. By evaluating the rasponses to the
messages, more meaningful requests can be constructed in
order to evaluate specific features of MDBS.

a1

VI. ANALYSIS OF PERPORMANCE EVALUATION TOOLS

In Chapter I, ve discussed the study phase of creating
the tools. In Chapter II, ve discussed the design phase.
The develcpment phase was outlined in Chapters III, IV, and
V. In this chapter, we discuss the operational phase. This
taxonony of phases is outlined in detail in (Ref. 8]. More
specifically, in this chapter, ve discuss the performance
evaluation tools with respect to several software engi-
neering principles.

A. BASIS OF ANALYSIS

In this section, w2 discuss <the standards by which %he
evaluation tools are to be analyzed. The two major catego-
ries of the analysis are the ability to meet the objectives
stated in the design phase and the ability to mee: software
goals. The standards ar: described in detaii in (Ref. 9]
and [Ref. 10].

The abkility to meet objectives means that the tool poss-
esses the capabilities outlined in the design phase. These
capabilities vere discussed in detail in Chapter 1II.

The performance evaluation tools will be evaluated also
by their ability to meet five software goals. The first
goal is that of wmocdifiability. Modifiability includes the
properties of extensibility, comsistency, wmaiatainability,
and modularization. The second goal is that of reliability.
Reliability includes +he properties of possessing 210 blatent
errors and of possessing error recoverability. The third
goal is simplicity. This includes ease of use and single-
ness of purposae. Rfficiency is the fourth goal. A tool
will possess this goal if it ccntains no gross inefficiency.

42

gy~

The last software gal is that of understandabilizy.
Understandability means that the tool utilizes abstractions,
modularity, and information hiding, and is supported with
reasonable documentation.

B. ANALYSIS OF TEE FILE GENERATION PACKAGE

The cbjectives of ¢the file generation package were
discussed in Chapter II. The cbjective that was not met by
this tool is the ability to indicate whether values of the
attributes are taken from randcm functicns or predz=termined
sets of values. The random functions must be added at a
future date.

The file generation package meets all goals with the
exception of efficiency. Modifiability is achiaved through
the extensive use of modularization with respect to grouping
like operations together. Reliability has bean observed in
that no errors have existed since <+he cperational phase.
Siaplicity is demcnstrated by using menu-driven operations
in the file generation package. lastly, understandability
is achieved by religious use of abstraction of data and
operation. The gross inefficiency in the package results
from the wuse of a large array which is used to store the
unique records which are generated. When a large number of
records are to be inserted at one time, <the time to compare
the nev record against all previously generated records is
great. This concludes the evaluation of ¢tha test file
generation package.

C. ANALYSIS OF THE DATABASE LOAD SUBSYSTEA

The obtjectives <cf the database 1load subsystem were
discussed in Chapter 1II. The objective that was not met by
this tool 4is the ability +tc¢ vary the Jata placement
strategy. This ability must be added at a future date.

43

The database 1load subsystem nmeets all goals with the
exception of efficiency. Modifiability is achisved through
the extensive use of modularization with respect to grouping

like operations together. For instance, all of the routines
to pass messages are grouped in send and receive aodules
vhich are kept in separate files, Reliability has been
observed in that no errors have existed since ¢the opera-
tional phase. Simplicity is demonstrated by using asnu-
driven operations. Llastly, understandability is achieved by
religious use of aktstraction bcth in the data and the opera-
tionms. The gross inefficiency in the packagz results frosm
the use of a large number of insert requests which are sent
one at 2 time to the backends. This inefficiency could be
reduced by grcuping several insert requests into a traans-
action and then sending the transaction to the backends. It
is also possible tc save all tyre-C descriptors in ¢he data-
base 1locad sulsystem and send 2ll o¢f them <to Inser+t
Informa ticn Generation at the end of <the directory table
loading. This concludes the evaluation of the database load
subsysten.

D. ABALYSIS OF THE REQURST GENERATION PACKAGE

The objectives of the test request generation package
vere discussed in Ctap*er II. The objectives that were not
aet by this tool are the following erhancemsnts: program
generation of requests, simulation of multiple concurrent
users, and development of a storage informaticn package to
2aid in reguest selection. These abilities must be added at
a future date. .

The test reguest generation package meets all gcals with
the exception of possessing consistency. Modifiability is
achieved through the extensive use of wmodularization with
respect to grouping like operations together. PFor instance,

44

B

all of the routines which are involved with creating a
request are divided into modules each of which handles 2
distinct aspect of the request. This goal is se2n
throughout MDBS. Reliability bas been observed ir that no
errors have axisted since the operational pha§e. Simplicity
is demonstrated by using menu-driven cperations. Lastly,
understandability is achieved bty religious use of abstrac-
tion both in the data and the operatiorms. Consistency may
be achieved by altering the test request ganeration to use
information stored in the files generated by both the tes+t
file generation package and +the database lcad subsytenm.
These files could be used for the extraction of necessary
information instead of prompting the user to re-enter data
supplied earlier. It is the weakest link in establishing a
tight perforaance evaluation environment. This is further
discussed in the next section. This concludes the evalua-
tion of the database load subsysten.

B. FUTURE DEVELCPHENTS

The most iamportant future development should be the
integraticn of tke performance evaluation tools 4diato a
performance evaluation environment. In this way, the prop-
erty of consistency of the tools will be attained. That is,
the output of one tool can be used as icput to the next tool
in the 1logical segquence of the rperformance evaluatior
effort. This has been achieved in the test file generation
package~database 1lcad subsyter interface. The next step
would be to develop consistency between the database load
subsyst ea-test request generaticn package intarfaca.

This concludes the discussion on the analysis of the
performance evaluation tools.

45

VII. CONGCLUSIONS

In this thesis, we have discussed the developaent ¢f the i
necessary tools for the performance evaluation of a multi-
’backend database system, known as MDBS. The basic motiva- P
tion of the mutlti-backend database system (MDBS) vas to 4
develop an architecture which srreads the work of the data-

base system among mul+iple backends. It was a major aim cf
this system to allcw capacity growth by the use of addi-
tional disk drives and pecformance improvement by <he use of
additional backends. However, ¢to verify the design and
implementation, it is necessary to test the <capability of
MDBS in capacity grew+th and performance gain.

Three tools feor the performance and capacitiy tests were
investigated. The first tccl was <the file gereration
package which creates test files for any ar+ificial data-
base. The second tcol was the database load subsystem which
loads the artificial database into MDBS. The third tool was
the request generation package. This package created test
requests to query MDBS.

The followving methodology was used to cr2ate an effec-
tive tool. Pirst, +the properties of an ideal tcol were
described. Then available existing programs were reviewed
and evaluated to determine which program best mecets the
desired features. The programs were upgraded to ensure :hat
they wvere compatible with tha current impismentaticn, and
met the desired features. Lastly, the tools were analyzed
vith respect ¢to meeting the desired propertiss and satis-
fying several softvare engineering goals.

T-e main goal was to develop the necessary tools to
generate tests in seasuring the extansibility of MDBS, i.e.,
how does MDBS perfora as more backends are added?

46

. Performance was expected to improve (maintain) as the number
(size) of the Lackends (database) vwvas increased. We feel
that the tools developed herein will allow an easy and effi-
cient means of measuring the extensibility of MDBS.

e

: ARPENDIX 3
' DESIGN SPECIFICATION OF THE TEST FILE GENERATION PACKAGE

This appendix contains the design c¢f the <test file :

generation package which is a subset of the shortened 3ata- "

f. base load subsystem. The design consists of C language code
. for the function headings and their correspording declara- '
tions. The body of the functions are given in English *ext.

JEERREERE LR DIRREEERERS)/ . ‘

VA TEST FILE */

/%* GENEEATION */

/% PACKAGE */]
DESIGN *

/% E r i
/EERRRERR KRR RER AR KKK A/ I

g:igﬁprogran()
dEenerate(); /*¥generate the records*/

ey

en

generate ()

/* This routine */

VAd - generates aoggcgrd teaplate */]
/% - generates/n fies sets of values for attributes %/

/% - generates descriptors *x/ ;
’* - generates records using the sets *)]
be |

g%ﬁile (TRUE) i_

sAsk the user for t of operation to be performed*
;*Take apgtoptiate agggon*/ P P /
/engggeiitg record template */
* gengraké descriptors */
gen desc () .
/* gggere-e/nodlfy sets */

M
3*°generite the records */

en’'rec() ;
3* cag(kﬂe records */
db_loa 3

*3 -
endvhile; /¢de ing /
end

48

P'—'—-—'———-—"——"""———'—"—‘”

gen tmgl{)
begin hi=s routine generates a record template #*/

char tfn (MFNLength ¢ 1); /% template~file name */
char ¢, dbid (DBIDLNTH+ 1], hold (MAX_PIELDS+1), +temtyp; :
int k, no_attr; i
FILE *fopén ()7 *tmpl_f£p; ‘

/* Get name ¢f tenfiate file */
/7% Open tenglate file =*

/% Get datalkase ID from the template filex/
/* Write database ID to template file */
Vid gggtnulber of attribuytes */

/* e nuzher of attributes to template fils %/
/* Get attributes and valus types %/
ggri(each attritute)

g

n

/* Enter the attribute name*/ L.

/* Enter the value type: (s=string, i=integer)*/
end /¥ end fer ;/
/* Close teamplate file #*/

end /% end gen_tmpl */

gen_desc()

f begin
, gcha: tfn (MFNLength + 1); /* template-file name */
: char dfr (MFNLength ¢ 1); /* descriptor-file name */
char attr name (ANLength),

' ansver (5), desc_type, val_type, ¢, hold(3);

|

|

]

int i, 4, nc_attr;
FPILE *fopen (), *tapl_fp, *desc_fp;

/¥ Get the tenglatg-file nage */
/* Open template file */ ,]
/* Get the name of the file for storing descriptors =/
/* Open descripter file t{
/* Read thru Databass ID to get */
/% to nuaber of attribuxtes */
/* Got number of attributes */)
/* Por each attribute gat its descriptors (if applicable)*/
ggrigeach attribute)
I /* Read attiibuta */
7% S TR Mo arerivate
€ or the attribute
/% Ask If attrzg:

is to ke a ggrectcry attribute*/
ig {nansver- yes)

b
g/* igite :ttribute name to descriptor file */
/* Get descriptor type for attribute */
{* Write descriptor type to descriptor file */

f (desc tIpo == 'CH desc_type == ¢c')
R en_C (Val_type,desc_¢£p);

ls
/* 3;212035 :Si:ﬁl¥§'§§§§afpké descriptor file */

en
*
AR

* % %

T ®
f_filo symbol to descriptor file =/

49

CIOse filas *
end;:gen desc*/ /

gen_C(val_type,desc_£p)
char vsl tyg

be
gchar 1overh(1VLeng+h). upperb(AVLength) , hold(3);

int fault,k

t t [Fod] ¢ =
. "hii: (CBBEE) bounds for type 'C' descriptors */

* Get upper bound *
/ (endpgf data) /
rteturn;
els

beg
rify u er bound entry a alnst *

/2 Gy HIEL RR0E boama enear agming; o
e an r boun

/ /% to descriptor flfpe

*/
end

end
end /* end gen_C */

gen_notC(val_+ype,desc_£p)

char val ¥pe'
PILE *4

begin

char lcwerb(AVLengtm ¢ Upperb(AVLength) , hold(3);

int fault, k3

Cziiet(lovgg ?nd upper bounds for descriptor */

* Get low bound =
/ i gngrof dg a)/
return.
lse

b
1ower bcund entry aga*nst */

egin
/% attri EZ value {
/* Write lower bound descripto: file x/

; end
§ Ve Get upper bound =/
| /% Verif per bound entry against */

* attri Eute value ¢t
7 rite 1 gcr oundygo descriptor r1{a */

end//* end wh
end/* end gen_notC */

set
::’ E éhis routine generates/modifiss sets of values. */
gchar tfn (MFNlength + 1) ; /* template~file name */

50

char attr_name (ANLeng*h ¢+ 1), answer, c, val_type
hcldTAvneégth +1); Ve v Co -tYPe,

ihar tlptgg;

at no_at o ko i3

FILE *fopen(), *tmpl_£fp;

/* get the tenmrlate-file nage */
/% Open template file #»/
/* Gat number of attributes %/
gggié each attritute)
/% Get attribute name */
/% Get value type &/ .
/* Choose the action to be taken on attribute
- gegerate a new set for it
- mo ifz an existlng set for i<
s -~ do nothing with i1
svitch (answer)
begin
case 'n':
/* generat2 new set %/
en_set(val_tyre);
reak;
case ".3 t(val t \
mod_set(val_type);
bredk:
case '%': K
reak;
end /% eng switch =/
end /* end for #»/

/¥ Close template file =»/
end /* end gm_set */

n
]
*/

gen_set (val_type)

* This routine generates a
;*o¥ ribu+

set *
values for a&n attribu x/ /

€.
ggar val_type;
strrct definition
begin
char elen Setsizei(AVLength + 1{;
/* array_for holding set elements */
int no_elen:
/* nunBer of elements in set */
end set;
cher LM 1)1 dncuercs)
int k, fa%ft, fggft: ’ - '
PILE *fopen(), *tspl_£fp:
* Get t £ *
/ e nalg Sflg‘t le */

beg

5: g :2 :.el ments for the set */
ggéi: (Psot Is not tufl)

Vid nntzi a value for the set#/
/7% Verify set entgz aga nst attribute type */
ad /® Check for set endnt duplication */

51

if (set is full)
. § sotlelsecnts to set file /.
7wl o it sa o

e symbol to set file */
/* clos§ set " file *
/% Ask if user uan*s to modify it »/
it (ngzgﬁ:a eg e);
end ,* ond gen_set e

nod set(val ty g
7% is Toutine modifies a set */
/* of values for an attribute. */

har val_type:
begin P

char ofn HPNIengt + 1), s* old-file name */
nfn HPNLengt + 1)e {* new-file name */
lnanm (MFNLength 1)

har ¢, answer (5 entry(Avlength + 1 index(5) ;
gnt 'k, ta 4'55 Y() | (5)
strnci

begin

int no_elem; /* number of elements in the set */

char res flagéSets-ze{ /* elepent removed flag */

char elefi(SetSize) (AVLength ¢ 1); /* elemen+ts %/

end set;
PILE *fopen(), *set_fp:
/* Get th§ rane cf the set tc be modified */

£
aa ven file into array for manipulation */
vhile

g/* lsk what dc you want %+c perform nexti?*/

P - grlnt the set elements and their indicss
a - dd some elepents to the set
T - remove sore elements from the set
(n) - nothing; done
if answer = 'p!)

n
g/‘ Print elements of fi le */
end/* end (ansvwer = 'p!) */
gésg if (answer = 'a'’)
n
g /* Add sone elements */
/* Check for set element duplication */
/* Ver i{ entry_against */
/% attritate valu@ tyre */
/* Add element to array if correct*x/
end /% end (answer = 'a') */
e%s; if (answer = "')
q/* Remove sona elements */
/% Hark set elements for_ remova i
/* Re-crder array to reflect deletions */
end /¢ end (answetf = 'r') =/
else
* Nothing; done %/
reak; i* exit while %/
end /* end while (TROER) =/

52

e 1S, . \

gen

/* Ask if user wvants to store the modified set back

into the original file */
/* #rite array tac¢k into fige designatedx/
/% Write end_0of_file symbol to set "file #*/
/% Close set™file *

end/* and mod_set #*/

rec
7% Téls routine generates records using ssts. */

begin

char c;
char hold(AVIength + 1%:
char attr_name(AVLength + 1);

char dbid (DBIDLNTH + 1E6RDS

gr records (MAX_RE)(uRLength + 1
char fn(MFNLength ¥ 1), /* templafe-fila name */
rfn (MFNLendgth ¢+ 1}, /#* record-file name */
v£n (MFNLength 4+ 1); /* temporary file name */
struct
begin

int no_elem (MAX FIELDS) ;
char_eIems (fAX_PIELDS) (5etSize) (AVLength + 1);
end values;

FILE *fopen (), *tmpl_£fp, *rec_fp, *stor_£fp;

int no_attr, k, i count no_rec, max
re®_cnt, picé: 2ﬁdex, ofadr-no-rtecy ’

/* Get the tenm latf-file name */
/¥ Oren template file */

/¥ Get file fcr record storage */

/* Open record file */

/* Read datakase ID */ .

/% Hrite database ID to storagg file */

/* Read number of attributes a record */
/* Read elements of f£iles ccrresponding to */
/* each attribute into an array */
for (each attribute)

* Read the ittrihute namge */ ,

/% Get thg file name for the given attributa */
/% Open file %

/* Read elements of set into array */

/% Close file */
end * end for *
/* Close_ template_ file ;g)
/* Calculate total ssible number of tnique r=
/* Get the nuaber of records to be generated =/
/* Determine feasibility of requestéd number */
/* Generate records by choosing (at random) */
/* a member from each of the given sets */
gggi(each record)

n
ggriéfor each attribute)
/g Get a value randomly from the set*/

en
/* Give some feedback tc user cf generation efforte/
/* Check generated record for posSible duplication ¢/

an

Write generated records to file *
;: Write gnd of file symbol to file 4/
/* Let user KnoW when Completed*/

53

4

B

e

N e e

FPAGPRUGEIPER P

Close file *
end;: eng ;an_rec 4/

int gr_isdigit (¢)]

det h i *
2 This routine dapmaizes yhengoR,Siign */

beg hay ¢
f (c is a digit :
, J.Seturn (TRUB?:) A
'| else r
: return (FALSE) ;]
end 4

gs_rand (num) ¥
/* This routine cenerates a randos number */ 3
jnt numg)

gin g

be
statjic long seed;
static int tenp;
seed = seed * 24298 + temfp + time(0);
seed = seedmod 199017
seed = (69069 % seed + 1);
temp = (seed >> 8) & 32767;

if nua == ()
return (tenp) ;
else
return (teap mod nuam) ;

AFRENDIX P
DESIGN SPECIFICATION OF THE DATABASE LOAD SUBSYSTEM

This appendix contains the design of the shortened data-
base load subsystes. The design consists of C languags code
for the functicn headings and their corresponding declara-
tions. The body of the functicns are given in Baglish text.

/###‘*"‘#*‘#*#t* */

/* Dataha e Load */
Desigu

;tﬂ*tt‘###“#*** ‘/

struct rtemp_definiticn template;

db 1o
gs rontine loads the directory tables and <he database *;

g iecor S.
egin
/* Initialize counters*/

/% load the directory tables %/

dbl_dir_tbl sé

/% Toad—the dalabase records */
ond dbl_records () ;

dbl_dir_tbls ()
7* This routine loads the directory tables. %/

char dbid (DBIDLRTH + 1),
attrname (ANlength + 1), .
¢ /: tenplate-file nams */

v /

tfn (MPNLength * 1
descriptor-file name */

dfn (4PNLength + 1
val Pe.,

ttrs&r(nxz AttrId +1),
esctype;

int at_id_no, desc_id_no;

struct desc_definition descriptor;

int i, k, ¢

FILE *fopen (), *fptr;

/* Initialize the database mailbox»/

/% Got the pname ¢f the ilo containing */
7 she i ’

template information *
/* 4 the datakbase id =/

55

s SR

- . e
PO VI

il
N

e R 2

/* Read number of =ntriei in the template, i.e
/7* numkber of attritutes in a record
/* Read the attribute ames and the value ¢ gpe
/% and place I n the template recor
ggrlé each attr tute to be put in teamplate)

J /* Read an attribute */

a /* Read the corresponding value type */
en

/* Create attritute table fcr the database in
BBL S$Crea‘e(d bid

/* Read the] recto attributes and eir
/* correspondin escr:.gtorc */
/7% Initiall ze * e attribute counter */
wvhile (not the end of data
begin
/* Read an attribute t/

/* Read corresponding descri ptor type A,
6 dd the a+ttri buti name to the aizribu
BL S$ltl insert a attrnane,&dasct pe

[N
Hh

descty e == Q¢
ygend the altrgbutepto IIG */
BL S$send t{peCédbld attrname, a;

/* Using ¢ e teng 2 £he value
7% type for t ttr Bute */

/* Read the c iesgonding descrip ors*/
/¥ for the ettr */

/% Inititialize the descriptor id */
g%é}g (More descriptors)

/* Get lower bound *»/

/* Get ugper bcund */

/¥ escriptor to DDIT */

DBL gsnes add(dbz gattrname Gdes
escr Evaltype, at_ id_no,d

/% Inc euent tﬂe descriptoT i3 co

ind /7% end wh *
£ { desctype '- c)

g/* Add the catchall descriptor to DDI
DBL SSCetchall(db d,attrname
sc§¥pe,at id_no,desc_ id _no);

end /* end
/% Increnent the attribute count */
326 * ond !h e+*r file *
e cT !)
end/ /= en& 8 bhl_ 3§ %f 4
dbl_records()
begl

gcgar dbid (DBIDLNTH + 1

ng éength).
rec g i
struct rtemp_definitioen *tngl ptc,

* tr();
int i, c; 2pLlpts();

FILE =*fopen (), *fptr;

/* Get the name of the ﬁe
! /* conta ning he recor s to loaded */
/% Read atatase id
/* Get the record tenplate for the database */

56

L] 4

s */

backends */

the name c% the file containlnghthe descriptors */

_id_no);

§elke id _no);
unt

T *x/

fn FNLength + 1 , / record-fila name */

vhile (more records exist)

begin
9 /* While tlere are more records */
/* Read the next one
% Construct a request to insert Tecord *
bl co struct_ins tnpl ptr, .record, re :
tQ equest-?repa:at on’ */

fBL SST:atUni‘?dbi&. req) i
end /* end dtl_records */

. dbl_construct_ins(tspl_ptr, reccrd, req)

struct rteap_definition *tppl_ptr;
char req(?, reccrd () ;

begin
9 int i, 3j, k, p, entry_nos

* th ti t of t *
¢nik2q 560 I BT ROt AT Y

begin
I /% Load the attribute fe */
/% Load the attribute ue */

end
end/‘ Load the end of request @/

ARRENDIX €
DESIGH SPECIFICATION OF THE TEST REQUEST GENERATION PACKAGE

The program specification for the test request genera-
tion and execution package is shcwn in this appendix. This
design is the result of the vwork of Dr. Kerr, who headed the
design of the original test request gemeration package.

Ihe Iop Leve] cf Test BReguest Gemeratiop Package

This program can be used tc test and dsmonstrate MDBS.
The execution o¢f this progras is called a session. Bach
session can be divided into any number of subsessions.
During a subsession the user can do one of the following:

(A) Execute a list of requests that was previously
stored in a file.

(B) Prompt the user for a 1list of requests to be
stored in a file for later use.

(C) Retrieve a list ¢f regquests that were previ-
ously stored in a file and then allow the user to
select requests frcm that 1list for execution.
This selection can be done in any order. The user
will also e able to enter a new Treguest ¢+o be
exacuted.

(D) Modify an existing list of requests that wvas
previcusly stored in a file.

In this version, requests are allowed to be grouped as
transactions. A reguest is sent toc MDBS. The program waits
for a response before sending the next request or will
continue to execute without response if the user so desires.

Output may be directed to the user's tarminal or to a
file or tc both.

Ezogtam Specifications

R \

N

ca B Tee s e e i e A o

e

S dmcha

e,

l i
. [U SR S

Vadad R 2Ll R L L2 R 1LY
3

b
;* Test Eiquast *5
/* Generat og */
/: Package Design :/

;ttttt#*tttt#t##tttt/
task MDES Test; .
scalar more-subsessions; /* flag: TRUE - continue,
FALSE - stop */

Print initial message to user;
more-sultsessions :="TRUE:
while more-subsessions do
erforn SUBSESSION;
Prompt for continue message;
Read continue message;)
if user dces not waant to continue

then
more-subsessions := PALSE;
end if
and while ;
end task

procedure SUBSESSION;

/% During a subsession the user is able */

* to generate a rcug of requests. (NEW__LIST) */

Vhd to modify an old list of rfequests. (MODIFY) */

Vi to select requests, one at a time from a lis* */

Vhd of requests. (§ELECT) */

/7* to run a group of requests. (OLD__LIST) */
scalar current-request-file; /* The na of the file *

/* Snitl i value shoﬁiS'bé NOLL. This name must be/ */

retained from one subsession to tha next. */

scalar t;ga-of-subsession' /* Possible values are NEW__LIST,
MODIFY, SELECT and OLD__LIST */

Prospt for next type-of-subsession;
Read next type-of=-subsession;
case {{ge-of-subsession va lue
NEW__ T: /* Enter a newv request-list */ .
perform NEW__LIST__S B‘ current-raquest-£ile) ;
MODIPY: /% uodif;oaﬁ 0ld IIst %/ .
perforn DIFY_ _SUB(current-reguest-lee) ;
SELECT: /% Se ec}nreguﬁgts one at a tide, froam an ¥/
/% exist eques{-list */
gerfor- SELECT SUB{ current-request-£file) ;
OLD__LIST: /* Execute 3N existing request-list =
perforn OLD__LIST__SUB(Curréent-request-file) ;
othervise : Print errcT message;
end case
end procedure ;

rocedure NEW__LIST SUB utput : cursgnt-request-file)
P scalar cu!!ent-f&queét-fgle? /% name of the ggle */ Y

* Asks user for requests - ¢ t ime. *
2: gg;gs lIst o§ re uastg in gefileawitﬁefile-nane given by :2

scalar rgqggit-list-file-nale;

/% 0 € tC use to store the regquests */
record tequest;
scalar next-sterp;

59

/* I(nsert), R(etrieve), U(pdate), D(elate) or P(inish) =/

Proapt for regnest-i t-file~-nane;
Rea rgguest- ist-f -ngnfz
Open £ eé reguest-l st-file-name) output;
Egrforn NTE AND §AVE iEQUESTS(request-list-file-name)
ose file(:egﬂeft=1.st-ft e-nampe)
urrent-request-file := request-~list-file-name;
en procedure

rocedure MODIFY__SUB input /cutput : current-request-file);
P scalar curEEnt-éequesg-file:p/* The name of the file */)

/% Ret;éevg an cld regquest-list and then allovw the user to %/
ify 1t b4

/7% mod . Requests are examined one at a time allowing #*/
/% changés to ke made to each request in turn. A change */
/¥ can be */
/7% add new request before this one. */
7* modify this request. */
/7* remové this request. */
/* sake no ckanges %o this request. v/
/% Note that we must have a way 1o "append new requests at x/
;: the end of the input request list. :;
7* The input file (called input-request-file) may be */
/* either the current-request-fils or a differant existiag #/
;: request file. :;
/7% Thae output file (called new-request-file) may_be */
/% e the; he nsxt version of the input-request-file or a s/
/7% nev file, */
scalar input-request-file; /* The list o egquests
P d / to be modff ag. x/

scalar nev-request~file; /* The new list of requests. */

scalar next-veérsicn; /* flag:TRUE-set new-requast-file t3 =/
/*ext version of input-request-file, FALSE-Jet new name¢/

record request; . . .

scalar mofe-requests-in-input-request-£file; /*continue flag*/

scalar mcre-reguests-to-enter; /* ccntinuation flag %/

scalar change-type; ,* ADD, MODIPY, REMOVE, or NOCHANGE */

scalar next-step; .
/* l{nsert), R(etrieve), U(pdate), D(elate) or P(inish) =/

/* Determine input-reguest-£file to be modified. */ .
per fornm DETERMINE _INPUT_.PILEé,current-raquest-flle,
Put-request-file);
open file(input-request-file) input;

Determine 1if user w s the pa of the new-r est-file

2: gg EenEEGngggt:;erg 5n o tﬁengnput-request-%gfe*/ - /
Prospt user to determine next-versicn;
Read next-version;

g::t-version
Sat nevw-request-file tc next version of
olse input-request-file;

Broapt for new-request-file name;
Read name of new-requast-£file;

end £
open file(new-request-file) output;
Read first rogzest from input-request-file:
sore-requests-in-{nput-request-file := TROUE;

60

while nore-rgguests-1n-in§et-regugft-file do

Proapt u=er r change-ty for S request;
Read chan
case Sa n —iype value

ADD: /* enter and save the next request */
perform GET__NEW__REQUEST (reguest)
HODIgglte request ifitc nsvW-request-fila
Proapt and get modified request fronm user;
Writ‘e nev réquest into new-request-file
Raaoggad next request from input- request-fiie.
%0 ngid next request from input-request-file;
te current request into new-request-file;
Bead next reques from input-raquest-£file;
otherwise : Print system erfror méssage; ;
end case /
end vhile ; .

/* Note that at this po in‘ all the ¢ld requests have been #*/
‘ grocessed. However is possible that th2 user wants :;

©0 append more requests.

Prompt user that input e has been ggocessed, but tha+t i

more reques;s B xbstz he appen v

per fora ESTS(new-r=quest-f‘1e). .
closa £ile 1nput-fe §§+-f1 :

close f£ile{ new-re uest-file); .
current-request-file := new-request-file;
end procedure

pfocedure SELECT__SUB(input/cutput : current-request-file)
scalar curren -request file; /* The name of the file */

/* Retrieve an old f reguests */
7* A]1ow user to se 2 on his Tist, xy
/* Also allow user *o enter new request. */
scalar input-request- file /* file ccntaining requests#*/
array reguests{ NAX MBER__CF Rnguzsrs)3
/% frcn‘In ut-reﬁue

scalai number-of-réquests; g* T he actual number in */
/* uRgut-:eguest-fi 2 nus£ e less than by

/
scalar 'fequest-nunﬁe /* or the request chosen */
record new-reques Ved Provided b{ user. */
record responsge; /i to the regques belng executed. */

scalar more-to-exe ute. /* flag to controel loop */
scalar next-operat on
*« Values can be Az UEST__NUMBER, DISPLAY,X/
/* MNEW__REQUEST or oP */

/# Deternine thz newv input-request-file to use for */ 1
/* this subsession |
perform DBTBE!IB INPUT__PILE(current-request-file, ‘
(It-cequest -5 ut;reguest- ile) |
Rggg gpstoreq nput-- uest -file into reguests checking that D
nulbe -of -requests I iess than MAX__ BER__OF__REQUESTS;
close nput-:eguest- le); =
perforn DISPLAY(requests);

sDeternine vhether response is to go to CRT, f£fil both *
/ per forn OO TNSFOERAY g0 *o ’ @ of /

61

more-to-execute := TRUE;

while more-to-execute do
Promp: user fcr next-operation /*should be e1ther*/
/* request-number, a request-to-display or a */
/* nev-request */
Read next-operation;
case next-operation va lue
REQUEST__ NUMBER:
CheTX that rzguest-number is lass than
-0 f-requests;
perforn ggggn;z(reqnests(reques t-numbery ,
/% Output t e resgonse to CRT, file or CRT_Efile,
ropiiate., */
perforn TMIEESPONSE(response) ;

DISPLAY: gerform DISPLAY(requests);
NEW__BEQUES
rerform GET__NEW__REQUEST (new-request) ;
erform EXECUTE (™ nev-request, response):
/* Output the responee t0 riafﬁle or CRT_&file,
e.
perform OUTHSEESBBNSB(response)

STOP: more-to-execute := FALSE;
otherwise : print error nessage.
end case
end vhile

er fornm OUTHMSFINISH;
cugrent-request-fz{e := input-request~-file;

end procedure

rocedare OLD__LIST__SUB cur'ent-re vest-file) ;
P scalar curfent- 'Equeét ile; ghe name of ‘he file */

/* Retrieve and execute an 014 list of requests. */

ggg&g sut-gequest-file /7* The file containing requests*/
tecord response- /* to a request that has been executed. */

/* Determine the new current-request-file to use for this*/
/* subsession. *é
perform DETERMINE_ INPUT PILE curfent-reqtest-file.

e nput-request- Eu "2q GSt
Rgad fitgt reqdest froa input~request file;

* D h T t th.
/ p°§§er-i::géggipéngE?ponse is to go to CRT, file or b>
perforna gzcurz(request, response) ;
/* Cutput ig:‘tegponse o cRf, file or cﬁT _&6file, as */
petfoch cuiusﬂnspousz(response) ;
Read next request from ingut-request-file;
end vhile “;
c18§§f°§n ntgntuarlgzigi :
current-rgqucst-tgg gn pit~request-file;
end procedure

62

*/

procedure 5 ENTEBR__ANTC__SAVE__REQUESTS
(nput ;. request-list-file~name);
scalar request -jistofile-names
/% of file tc use to stcre the raquests %/
record request;
scalar next-steg .
/* I(nsert), R(etrieve), U(pdate), D (elete) or P (inish) */

next-step :
vhi le next-steg o= P do
Prosrt for neit-step
case next-step value
I: /* entel and save the next insert regquest ¢/
perform . INSERT _SUE(request);
Write requéSt into request-list-fila~name ;
BR: /*en*er aLd save next retrisve request */
ger form RETRIEVE__SUB({ resquest)
Write request into rEﬁuest-list-flle-name :
U: /* enter and save the next update requﬂst L4
ger form DELETE__SUB{ regquest)
Write request into Fequest- 1st-fxie-name ;
D: /% enter and save the next dalete tequest «/
Eerﬁorn DEIETE__SUB(regues: :
Write request into'fequest ist-file~name ;
P: /% Pinish nteri ng gue=ts */
thervise ri error message;
end case ;

end while
end procedure ;

procedure DETERMINE__INPUT__FILE{ input
—current-~- :eguest-file
output nput-request-£filse);
scalar iurrent-re uest-file-
scalar nput-reguést-file;

* Determine the i e t¢b ed. It n e@ither *
4* theecgrre t—gqugst-giie or aedzgferent exggtie ithe /
/* request file. */

gcalar modif -cnrrent-lee-flag*
/x - select new input file */

if tgurrent-request-file is NOLL

Proapt fcr nale of 4inp ut—reguest—file;
Read nana f input-request-
else ,* Determine if uSeT wants to use the */
/* current-reguest-~file cr _a different old file. */
Pronpt user to detetl ne nodzfy-current~file-flag.
aeja. modi fI current- % g
ncd fy-current- 11e flag

PIOI t for %age of input-reguest file;
‘lgza nane of input-request-file;
1n£ntr:equest-file := current-reguest-file;
end £ 3

a it ;
end pggcoiurc H

rocedurs G!T HEW__RE T out t)
P ecltad !cqgo :(/* tg o obta‘ngg ?roL user */

63

.

Loadee . W m

Y

VA Prongts user for information necessary to enter a */
/* nevy request., Returns the request. */

scalar request-¢t gg
/* Y (nsert), R(etr ve), U(pdate) or D(elete) */

pt fecr xt request-type;
5223 requesge -t ype ques P

case Té uest-tyg alue
I: er fora NSERT _SUB request)
I'H erfora UPDATE__SUB(request };
D: perfora DELETE SUB request H
R: perfors RETRIEVE B(rCequest);

othervise : Print errar message;
end case
end procedure ;

rocedure DI PLAY input : reques
P fsp a} +he requests ggd

/* tereinal.

arra requests (MAX__NUMBER OP RB UBSTS)
Y q /*(to bE"displa¥ed.”™ Q)i

s),
heir nambers at the :;

end precedure

procedure EXECUTE(input request,
output : respoanse);
/% Ask MLBS tc execute this request. Return the response. */

recor guest- /7% to be exacuted */
recor Fcanse; /* to the execution of the request #*/

end procedure :

2.

LIST OF RRPERENCIES

Naval Postgtaduate Schocl Report NPS52-83-006, Th

e
ge S %; a M tl-backe 4 Database Systah
SRt R LD DR e
Nenon a §§an at, June, £§
Naval Post%raduate Schocl Report NPS52-83-007, The
ggg n;%gg na11§;§ Qge%eg%;t =ka ckggd g%tabase Sysfen
e] o ApLov 1, Func aliZy EX aLIon
382 T2b if%gﬁgowf $EEITE) , BYCHETSR - DATid Ko —ind
ReRoiotTeTEtas a‘:EJ§§§7°19855 ! ’ ’
Naval Postgraduate Schocl Report NPS52-83-008, The
ppl mg_tat cn of a Multi-backend Database Systen
i! ‘f I ; §of3v fE‘Eﬁ% neering SXrateqgies and
ff% ; Prototyre HDBS, by Kerr, Douglas S.,
qggaﬁi' S ZOTG=ZhI, ard Stravser, 'Paula, June,
Naval Pgeg raduate Schgc%t Rgpoit gPngth 008,S ggg
en e ulti-backen atabase sten
gggigr?' g: = g "?T“EQPEBEO Prototyps 8D _gé'ggg
;% enc Tgashida ingal
B ao%ng Vg Hglas .,g roo;i, Agi,
i Zong-zhi, and §t. Paila, June, 1982.

Naval Post raduate 5choc1 Report ¥Ps52-83-003, The

ene on of a ulti-backend Database § stenm

i tfo he essag§=0‘ien€§8'§§;s n§§i§§
- m -

i 5y Sﬁsgzgizznreﬁigg:_. =

21 n, as

gf&a ggﬁf,
Hsiao Davxd k., Kerr, Doug
S.s an o:ooji, ali, “March h, Y98 3.

Bogdanowicz, Robert, Crocker,Michael, Hsiao, David K.,
Ry er Curtis, Stone, Vincent, and Strawser, Paula,
-:g;g iz Benchnarki_% Rela Dgtabasg
!% as i { al = ra ate hSG1L,
Stone, Vincent C., Design of Relaticnal Database
hna g f.-. Thesis, RaviI PosTgraduate School,

&al fornia, June, 1983.

Gore, ,Marvin and Stube, John, %%emgg;_ of Systenm
Analysis, Wm. C. Brown Publishi ng, B3,

Ross, Douglas T. and others, "Software Engineering:

Processes Pr nc le and Goals", ut a e
PpoEZIl ey RS o Sopuser Hadaziac.

65

- . ; <4
10 gassmann; dneient T Tysgpd s SORHIBEY, B hsgRS

BIBLIOGEAPHY

Hancock, les and Krie er Morris, The C Primar McGraw-Hill
Book CO‘pany, N.Y., 8 : re===2 ’

Keranni an Brian and Ritchis Deanis N. The C Pzogrammin
L g . 'Prentice-Hall, 19378. v 298 5 2aQdRalmiag

%E%E1-gnfaaaé%g%atECl?ggéi%gégg igé.'oi;; gggt ial, Digi+al
BEd i AR PR nBRSERERl S, (BRECHRPES, s 12 008E, , Q)5H265ATC,
A
19

A-
7
VN te se 71ces Raferenca _Manual A-DO18B-TE
pA3CIEE e3EERREL 18, hRyRar 4, ~RASS,, 1980. ’

67

T e BRSO PEVIEL AL Syl e
o s . - :

i - e iy

i

1.

INITIAL DISTRIEBUTION LIST

Defense Technical Informaticn Center

Cameron ta 1
Alexandria, grginia 22314

Dudley Knox L brary cOd 0142
Naval post yate §c
Monterey, alifornia 939 43

Department Chairman, Code S2
Department cf ccmputer Sciernce
Naval Post raauate Schogl
Monterey, Califcrria 93943

L Jose h G, Kovalchik
113 Rco oys elt Street
Edwardsv lle, Pennsylvanla 18704

8g§écg 35 Research Administration
Naval Postgraduate School
Monterey, Califcrria 93943

gosputgr Technologies Curricular Office

Naval Postgraduate School
Monterey, galifcrnia 93943

68

No. Copies
2

