
7 A-47 86 PERFORMANCE EVAL UATION TOOLS FOR A MULTI-BACKEND
/

DATABASE SYSTEM(U) NAVAL POSTGRADUATE SCHOOL MONTEREY N
CA J G KOVALCHIK DEC 83

UNCLLAF17E FV/2 N

EElIEEEEEEEEEE
EIEEEIIEIIIEEE
EIIEEEEEIhIIEE
mIIIIIIIEEEEEE

L 1,6

1.1- ULE II

W1 25 -Jj 4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARD, !%, A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTICS ELECTE
JUN 4 W94

THESIS (B

PERFORMANCE EVALUATION TOOLS FOR A

MULTI-BACKEND DATABASE SYSTEM

by

Joseph G. Kovalchik

December 1983

Shesis Advisor: David K. Hsiao

4Approved for public release; distribution unlimited

84 06 04 028

SEcu"W?, CLAUSPICATIM OP,*M NB A.U (11144 D4041 Eunvre _____________

EWOR D~cMENT~iONPAGEREAD DISTRUCTIONS

1. WPVT MMMWVsa ACCESIMO 3. CIP14"FS CATALOG NUMBER

14. fTILC (A 81100e.) r D llyS. TYPE OF REPORT & PERIOD COVER110

Perfrmace Ealutio Toos fr aMaster's Thesis
Performacke Evlatioas Toosform December, 1983

Mult - bcken Daabas Sysem . PERFORING ORG. REPORT NUMBER

Joseph G. Kovaichik .CTRCORGATNMI0

S4

9. PIRWO001NG ORGAVIZATION NAME AND ODR 102141. PROGRAM ffL9MENTJ PROJECT. T-SK

Naval Postgraduate School AE OKUI UBR

Monterey, California 93943

I I. CONIROLL11NO OPPICE1 MNZ ASND ADDRESS IS. REPORT DATE

Naval Postgraduate School December, 1983
Monterey, California 93943 13. NUMBER OF PAGES

I& MONITORNG AGECY NAME & AOORESS(II AlliM40 600 C80*.IIMI GM6.) I11. SECURI1TY CLASS. (of this repo")J

UNCLASSIFIED

IS& SSIICATION/ DOWNGRADING

W0 maTRIUUTISTATRMT (at 1 easpim)

Approved for public release; distribution unlimited

17. DISYSSBUTION STATEMEN11T (of Me sbo aest md to Nook 20, it off.ibIn hem Repose)

IS. SUP9LEMNA." NOTUS

0.KEY WMAN (OwCeie se nuwee alds ameeen m- od..& by Nme umber)

In this thesis, we discuss the development of the necessary tools
for the performance evaluation of a multi-backend database system
known as MDBS. "4hte b-7sic motivation of the multi-backend data-
base system (MDBS) is to develop an architecture which spreads
the work of the database system among multiple backends. It is
a major aim of this system to allow capacity growth by the use
of additional disk drives and performance improvement by the use
of Rsiditina atkn, Hnwpupr- to vui'ifv thei (Continued)

S/N 0102- LF. 014401 1SECURITY CLASSIFICATION OF TmIS PAGE (ibal 32e.e ONi

LCUmTV CLASIFICATO OF T1Il PAI (Ue Do& Am.ee

ABSTRACT (Continued)

design and implementation, it is necessary to test the capability
of MDBS in capacity growth and performance gain.

Three tools for the performance and capacity tests are investi-
gated. The first tool is the file generation package which
creates test files for any artificial database. The second tool
is the database load subsystem which loads the artificial data-
base into MDBS. The third tool is the request generation
package. This package creates test requests to query MDBS.

The following methodology is used to create an effective tool.
First, the properties of an ideal tool are described. Then
available existing programs are reviewed and evaluated to deter-
mine which program best meets the desired features. Lastly,
the programs are upgraded to ensure that they are compatible
with the current implementation, and meet the desired features.

The main goal is to develop the necessary tools to generate tests
in measuring the extensibility of MDBS i.e., how does MDBS
perform as more backends are added? Rrformance is expected to
improve (maintain) as the number (size) of the backends (data-
base) is increased.

Accession For

PTIS CPA&I
DTIV TAF E3
U!,announced El

Jt i t,,,, nt i on-

Distrtbutiou/

Availability Codes
Aval and/or

Dist 1Special

2

SN 0102- L. ,014. 6601

SECURITY CLASIFICATION OP THIS PA1ElmI barneft I)

Approved for puklic release; distribution unlimited.

Performance Evaluation Tools for a Bulti-backend Database System

by

Joseph G. Kovalch k
Lieutenant, United States Navy

B.S. United States Naval Academy, 1977

Submitted. in partilql f ulfillment. of therequirements for the degree ot

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

A uthor:

Approved by:---
Thesis Advisor

Second Reader

Chairman, Department of Computer Science

Dean of Info d Policy Sciences

3

ABSTRACT

In this thesis, we discuss the development of the neces-

sary tools for the performance evaluation of a multi-backend

database system, kncwn as KDBS. The basic motivation of the

mutiti-backend database system (RDBS) is to develop an

architecture which spreads the work of the database system

among multiple backends. It is a major aim of this system

to allow capacity growth by the use of additional disk
drives and performance improvement by the use of additional
backends. However, to verify the design and implementdtion,

it is necessary to test the capability of MDBS in capacity

growth and performance gain.

Three tools for the performance and capacity tests are

investigated. The first tool is the file generation package
which creates test t. les for , -tificial database. The

second tool is the database load subsystem which loads the
artificial database into MDBS. The third tool is the

request generation package. This package creates test

requests to query RDBS.
The following methodology is used to create an effective

tool. First, the properties of an ideal tool are described.

Then available existing programs are reviewed and evaluated
to determine which program best eats the desired features.
Lastly, the programs are upgraded to ensure that they are

compatible with the current implementation, and meet the

desired features.

The main goal is to develop the necessary tools to
generate tests in measuring the extensibility of MDBS, i.e.,

how does MDBS perform as more backends are added?
Performance is expected to improve (maintain) as the number
(size) of the backends (database) is increased.

'4

TIBLE OF CONTENTS

I. AN INTRODUCTION 10

A. THE MULTI-EACKEND DATABASE SYSTEM 10

B. REQUEST EXECUTION 14

1. Actions for Insert Requests 14

2. Acticns for Non-insert Requests 16

II. PERFORMANCE EVALUATION 18

A. TiO VIEVS OF PERFORMANCE MEASUREMENT 18

B. CRITERIA FOR PERFORMANCE EVALUATION AND

TOOL SELECTICH 18

1. macroscopic Viewpoint 18

2. Perforaance Issues 19

C. DESIRABLE PROPERTIES OF THE TEST FILE

GENERATION; PACKAGE 20

D. DESIRABLE PROPERTIES OF THE DATABASE LOAD

SUBSYSTEM 20

E. DESIRABLE PROPERTIES OF THE REQUEST

GENERATION PACKAGE 21

III. THE TEST FILE GENERATION PACKAGE 23

A. THE PURPOSE 23

B. DESIRED PROPERTIES 23

C. EXISTING PROGRAMS 24

1. The Original Test File Generation

Package . . . 24

2. The Shortened Test File Generation

Package 24
D. SELECTICA OF THE TEST FILE GENERATION

PACKAGE 25

5

E. THE UPGRADING PROCESS 25

F. FUTURE IMPROVEMENTS 25

IV. THE DATABASE LOAD SUBSYSTEM 27

A. THE PURPOSE 27

B. DESIRED PROPERTIES 27

C. EXISTING PROGRAMS 28

1. The Original Database Load Subsystem . . . 28

2. The Shortened Database Lead Subsystem . . 28

D. THE SELECTION OF THE DATABASE LOAD

SUBSYSTEM i 29
E. THE UPGRADING PROCESS 29

1. Message Passing 30

a. Message Passing ithin a Backend . . . 30

b. Message Passing within the

Controller 30
c. essage Passing Between Computers . . 31

2. Directory Tables31

3. Specific Upgrades 32

F. FUTURE IMPROVEMENTS o 36

V. THE TEST REQUEST GENERATION PACKAGE 37

A. THE PURPOSE 37

B. DESIRED PROPERTIES 37

C. EXISTING PROGRAMS38
1. Version A 38

2. Version B 39

D. THE SELECTION OF THE TEST REQUEST

GENERATION PACKAGE 39

E. THE UPGRADING PROCESS 39

F. FUTURE IMPROVEMENTS39

1. Program Generation of Requests 40

2. Simulation of Multiple Concurrent

Users .. 0

3. The Storige Information Package 40

VI. ANALYSIS OF PERFORMANCE EVALUATION TOOLS 42

A. BASIS OF ANALYSIS 42
B. ANALYSIS OF THE FILE GENERATION PACKAGE . . . 43

C. ANALYSIS OF THE DATABASE LOAD SUBSYSTEM . . . 43

D. ANALYSIS OF THE REQUEST GENERATION PACKAGE . . 44

E. FUTURE DEVELOPMENTS 45

VII. CONCLUSICNS 46

APPENDIX A: DESIGN SPECIFICATION OF THE TEST FILE

GENERATION PACKAGE 48

APPENDIX B: DESIGN SPECIFICATION OF THE DATABASE

LOAD SUBSYSTEM 55

APPENDIX C: DESIGN SPECIFICATION OF THE TEST REQUEST

GENERATION PACKAGE. 58

LIST OF REFERENCES 65

BIBLIOGRAPHY . LI................ 67

INI:TIAL DISTRIBUTICN LIST68

. . .m . . N a, -i ll. . . l i - f t i

LIST Or FIGURES

1.1 HARDWARE CCNFIGURATION OF MDBS 11

1.2 PROCESS STRUCTURE OF MDBS 13

1.3 SEQUENCE OF ACTIONS FOR AN INSERT REQUEST . . . 15

1.4 SEQUENCE OF ACTIONS FOR A NON-INSERT REQUEST . . 17

4.1 COMHUNICATIONS: DIRECTORY TABLE

CONSTRUCTION 33

4.2 CORHUNICATIONS: RECORD LOADING 35

81

AIKEOLEDGMENT

This work is supported by Contract N00014-75-C-0573 from
the Office of Naval Research to Dr. David i. Hsiao and

conducted in the Laboratory fcr Database Systems Research,

located at the laval Pstgraduate School. Dr. Douglas S.
Kerr, Adjunct Professcr of Computer Science, is the present

Director of the Latcratory. The labcratory equipment is

supported by DEC, CHR and NPS.
I would like tc thank all those who have supported the

MDBS project and who have contributed to the development of
this document. In particular, the design and analysis were

developed by Jai senon. Drs. Hsiao and Kerr have provided

much of the guidance needed in developing the project.

Their time and patience proved invaluable in the development

of the itplementation of the performance tools. Earlier

work accomplished in the field of performance evaluation of

database machines infuenced the development of the tools

presented here. This work was accomplished by Paula

Strawser, Hichael Cracker, Curtis Ryder, Robert Bogdanowicz,
and Vincent Stone. Special thanks are also extended to Al
Wong, who as a meater of the Computer Science professional

staff provided many services to the laboratory. Lastly, I
would like to thank Ruth Olson, who had provided many edito-

rial comments concerning this document.

9

. 1r " .. .

I. 1] IZO1D. 2IOI

This chapter presents a brief review of the multi-

backend database system (RDBS). First, the physical

arrangement of MDBS is presented. This is followed by a
presentation of the process structure of MDBS. Lastly, the A

actions taken in servicing requests, both insert and non-

insert requests, are reviewed. References are cited for the
interested reader in order to gain a more detailed under-

standing of IDBS.

&. THE BOLTI-BACIERD DATABASE SYSTEN

The multi-tackend database system (MDBS) uses one Ii-

computer as the master 3r controller, and a varying n tier
of minicomputers and their disks as slaves or back j-,
MDBS is designed to provide database growth and perforL -,e

enhancement by the addition cf identical backends. No

special hardware is required. The backends are configured

in a parallel fashion. A new tackend may be added by simply

replicating the existing software on the new backend, thus

avoiding reprogramming efforts. A prototype MDBS has been

completed in order to carry out the design verification and

performance evaluation developed in [Ref. 1] and [Ref. 2].
The implementation efforts are described in [Ref. 3] through

(Ref. 5].

The equipment configuration of the system is shown in
Figure 1.1. The host computer is connected t:) MDBS through
the controller. The backends are connected to the
controller through a broadcast bus. When the controller

receives a request frcm the host, it delivers the request
to all backends simultaneously over the boadcast bus.

10

bakn I Il

Ir I je

Backend 2 dfsk

ti 1 I

Con le

Bracetn bulIr

Fiur 1.1 HRWR OFIUAINOID

I Al

Since the data is distributed across all backends, all hick-

ends can execute a request in parallel.

The division cf labor between the controller and the

backends is illustrated through the process structure of

Figure 1.2. The BDBS controller handles three functions.

The QUjth g fucion prepares a request for
transmission to the backends. The in2se. iafrA~ ioj gea&_--
altOn 1uncton processes the insert requests which require

additional information used by the backends. The 2ost

Rrocesiag f 1 ction handles the work necessary when the
replies are returned to the controller from the backends but
before reaching tte host.

The backends in MDBS carry out three different func-

tions. The direcorZ jnagemell functon performs
descriptor search, cluster search, address generation, and

directory table maintenance. The r r ocessin furdc
performs record storage, record retrieval, record selection,

and attritute-value extraction of the retrieved records.
The gocu cy rogj fLction performs operations to
ensure that the concurrent and interleaved execution of the

user requests will keep the database consistent.
Before proceeding to describe the sequence of actions

required during a request servicing, some terminology is

presented as a review. The smallest unit of data is a

keyword, which is an attribute-value pair. Information is
stored in terms of records, which are made up of keywords
and a record body. A predicate is of the form (attribute,

relational operator, value). A query is any Boolean expres-
sion of predicates. Records are logically grouped into
clusters based on the attribute values and the attribute-

value ranges in the records. Internally, the values and
value ranges are called descriptors. For the user, these

attribute values are termed keywords. Each descriptor is
identified by a descriptor id to save computing time and

12

Controller

I Pst I I R ,. Insert I
ProcessIng I Preprrat Ion

IGeneration

I I

Backend

Directory RecordCncrey
Management Processing Control

II

* I

Fiqure 1.2 PROCESS STRUCTURE OF NDBS.

13
10

memory space. A prespecified set of requests is referred to

as a transaction.

B. REQ QUST EXECUTION

This section describes the sequence of actions taken by

HDBS in carrying out a request. First, the insert request

will be discussed. Then the non-insert requests will be

described. Non-insert requests are requests for deletion,
retrieval, or update.

1. =2 ._ _ - _ u s

The sequence of actions for an insert request is
shown in Figure 1.3. A request from the host machine enters

the Request Preparation process. Request Preparation broad-
casts the number of requests in the transaction to Post

processing in order to determine when a transaction is

completed. Request Preparation may send an error to Post
Processing if there is a syntax error in the request. When
a transaction is completed Post Processing sends the results
to the host machine. Request Preparation then broadcasts
the request to Directory Management. Each backend finds the
descriptor ids associated with the request. The backends
then exchange descriptor id information.

After receiving the descriptor ids from the other
backends, Directory fanagement sends the cluster id to

Insert Information Generation. Insert Information

Generation then determines which backend is to store the
record. The selected backend determines the address of the
new record and stores it. The other backends discard the
record. Finally, Record Prccessing sends an action-
completed message to Post Processing, which in turn informs

the host.

II 1

I I

Controller I a

I a
I I

S I ~Post RU~

---stn--- ----------on--------etto

I I
I II
I ,,,

, Insert

,' Inf ormation a
othero, the

[CL

------------------------------Gnato

Recordn conurrnc
Prcesi g Conro

I I I
l I ,L-I

--------------- ,

- . I

- a I

t t I

I I

II 1
! I

° ° -__ ______-,,,___

Figure 1.3 SEQUENCE OF ACTICNS FOP AN INSERT REQUEST.

15

The sequence of actions for a non-insert request is

shcn in Figure 1.4. The actions for a retrieve vill be
discussed only, since the other types cf requests are quite

similar. a request from the host machine enters the Request

Preparation process. Request Pieparation sends the number

of requests in the transaction tc Post Processing in order

to determine when a transacticn is completed. Request

Preparation may send an error to Post Processing if there is

a syntax error in the request. When a transaction is

completed, Post Processing sends the results to the host

machine. Request Preparation then broadcasts the request to

Directory management. Each backend finds the descriptor ids

associated with the request. The backends then exchange

descriptor id information.

After receiving the descriptor ids from the other
backends, Directory Management determines the cluster ids.

Lastly, Directory Hanagement determines the addresses of the

records of the identified clusters. Record Processing gets

the records from secondary stcrage and extracts the neces-

sary information. If aggregate operators, for example, the

average, are specified in the retrieve request, they are

applied at this time. The partially aggregated values are

sent to Pcst Processing. Post Processing sends the results

to the host following any further aggregate operations.

This concludes the reviev of MDBS. Attention is now

turned toward performance issues of this system in the
folloving chapter.

16

a,

.4

I
I

4 S I

Controller
I BI i I I
I I

I I

4 IPost Reaust
Processtng - Prepsst tonj+

IIner I
I I I rI

Snor t!oGenerati!on i

E I
I I
II

I WV

Backend [_PCL

Reor ii Cocre

I : : I II

P ci I I

B I II

II I

SProcess ng Control

II
II

I
II

I1

Figure 1.4 SEQUENCE OF ACTIONS FOR A MON-INSERT REQUEST.

17

iI. 1R.9IIo~A..,L vB.IA~,. o.LL,1,1.

k. TWO VIEWS 0? PERFORfANCE RIASUREHRIT

Now that the MCBS has been described, it is reasonable

to ask "how does one determine the performance of such a

system?" There are two viewpcints of performance evalua-

tion. The first is the macroscopic viewpoint in which the

key performance measurement is the relative response time.

The second viewpoint is the microscopic viewpoint. This

viewpoint is ccncerned with measuring the times needed to

perform various subtasks which are carried out in servicing

a request. In (Ref. 6]. the motivation for the macroscopic

measurement is provided. This chapter is concerned with

describing the perfcrnance issues which arise when using the

macroscopic viewpoint. Thus in testing the MDBS, the macro-

scopic viewpoint will be use1 before proceeding to the

microscopic viewpoint.

B. CRITERIA FOR PERFORKANCE EVALUATION AND TOOL SELECTION

As stated above, with the macroscopic viewpoint the

key performance measurement is the relative response tims.

That is, the concern lies mainly with the affect of various

changes to the system cn the response time. These changes

and therefore their relative response times are prompted by

the variables described in the following section.

: 18

2. gum.jla

The macroscopic viewpo±nt is concerned with changing

four categories of variables and observing their affect on
the relative response time. These variables include system

configuration variables, clust er formation variables,

request ccnstructicn variables, and storage variables.

The system configuration variables deal with the
following guesticns on how MDBS performs when: the number
of backends remains constant but the database increases, the
database remains constant and the number of backends

increases, the number of concurrent users increases, the
number of requests per transaction increases, and the pres-
ence of ccncurrency ccntrol is measured against the absence
of concurrency control.

The cluster formation variables deal with the

following questions or. how NDBS performs when: the number

of descriptors on any attribute increases, the average size

of clusters in the database ranges over small, medium, and

large size, and the number of attributes and thus the size

of the attribute table increases.

The request constructicn variables deal with the
following questicns on how RDBS performs when: the request

makeup is retrieve-intensive vs. update-intensive, the

complexity of the query increases, the relative mix of query
types is varied, the retrieved information is either a

projection of the record or the whole record, the query

predicates are pernuted, and the request uses either non-
directory keywords or directory keywords.

Lastly, the storage variables deal with the

following questions on how ADES performs when: the data

placement strategy of the database changes, the tuple width
increases, and the size of the retrieved information exceeds

that available in the main meory.

19

Thus it can be seen that several variables influence
the performance of IDES. This is not an all-inclusive list.

However, the list will serve as a basis for developing the

desired properties of each performance tool. Each tool will
be discussed along with its desired properties in the

following sections.

C. DESIRABLE PROPERTIES OF THE TEST FILE GENERATION PACKAGE

The purpose of the file generaticn package is to create
an artificial database which will eventually be loaded into

MDES. This is the first tool tc be used for the evaluation.

Several parameters are likely to be varied in the light of
the performance issues. Their desired properties are as

follows. The input parameters to such a package may

include: file size in number cf records per file,

attribute-value size in bytes of storage, record size in

number of attributes values, daza types of attributz values,

and database size in number of files per database. In addi-

tion, parameters must indicate whether values of attributes
are taken from randcm functions, or from predstermined sets,
and whether uniqueness 5f values is desired.

D. DESIRABLE PROPERTIES OF THE DATABASE LOAD SUBSYSTER

The database load subsystem is responsible for taking

the files created by the file generation package and for

properly loading the files into MDBS. In the process of

loading the database, the database load subsystem must also
create the necessary tables used in directory management.

The database lead subsystem must be designed so that the
performance evaluation may utilize various cluster formation

variables and storage variables with minimum effort. The

cluster formation variables and storage variables with which

the performance may be concerned include the following. The

20

performance may be expected to depend upon whether the

number of descriptors (attributes) is large or small.

Certainly, when entering a large number of descriptors

(attributes), the chance for error in this menial task is

great. Therefore, the ease of specifying the descriptors
(attributes) must be guaranteed. The variation of cluster

size may affect performance. The cluster size is a function
of the number of descriptors, the size of the input files,

and the values used in the attribute fields. Therefore,

these three parameters should be entered independently. The

data placement strategy, i.e., how records are distributed

across the backends, also affects performance. While simu-
lation studies described in [Ref. 1] and [Ref. 2] show that

the track-splitting-wit h-random-placSent stra-egy is the

most desirable, the ability to change the placement strategy

will provide a means cf confirming these studies.

E. DESIRABLE PBOPITIM OF TRE REQUEST GENERATION PACKAGE

The request generation package is concerned with

creating and executing test requests. The request formation

variables will be altered by the perfcrmance evaluation team

in this performance evaluation tool. The request formation

variables will be changed in crder to vary the following:

the percentage of the types of requests (retrieve, update,

insert, Cr delete), the percentage of aggregate operators

(ave, max, mi, sum, and count) in retrieve requests, the

complexity of the request query (A simple query will consist
of one to two predicates, and a complex query will consist

of ten to fifteen predicates), the order of the predicates

appearing in the request, and the number of attributes to be

projected in the retrieve request.

21

"F

The request generation package must also possess the

ability to allow the following: vary the length of the

transaction to determine its effect on system performance,

tag requests with user identification in order to test

concurrency control, retrieval of a record defined over the

null descriptor, execute a retrieve request where the entire

cluster is stored at one backend, and compare the above

performance with a retrieve request where the cluster is

distributed across all backends.

It is now appropriate to proceed to the details of each

of the above three tools. In the following chapter the test

file generation package is discussed. Chapter IV deals with

the details of the database load subsystem, and Chapter V

develops the test request generation package.

Ii

U!z. SJJ X . Zn_ iIf.l Z I.. j~r.jA

In this chapter, we discuss the test file generation

package development. In the first two sections, we review

the purpose and desired properties of the package. In the
next two sections, we discuss how the basic program was

selected from existing file generation tools. Finally, in

the last two sections we discuss the upgrading of the

selected program and future enhancements which will further

aid the performance evaluation team.

A. THE PURPOSE

The first set cf performance evaluation experiments will

use test data which is generated by a program in the form as

specified by the experimenter. This process may be viewed
in three steps. The first step consists of defining the

structure cf the files to be generated. The second step
determines where the values for the specified attributes

will be generated. Lastly, the files are generated and

stcred for future use.

B. DESIRED PROPERTIES

The input parameters to such a package may include:

file size in nuuber of records per file, attribute size in

bytes of storage, recorl size in number of attribute values,

data types of attritutes, database size in number of files

per database, vhetker values of attributes are taken from

random functions or are selected from predetermined sets,

and whether uniqueness of values is desired.

23

I I I I i

C. M STING PROGRAUS

Two programs were reviewed in order to determine which
possesses the largest number of desired properties and s-ill
would require the least effort to ensure system compati-

bility with the current version of HDBS. The first of the
twc programs was originally designed in (Ref. 3]. rhe
second was a latter attempt to simplify the test file gener-S

ation package.

1. Ihe gQrg j .TesI Fie Gentration Package

In this program the test data is generated ard

stored in files. Several characteristcs of the file are
specified by the experimenter. Each file is given a name.
The data in the records is specified in a fixed number of
attribute-value pairs. The type of data in the attributes
is integer, string, and floating-point numbers. These
values are generated in either predetermined files, called

sets, created by the experimenter, or are randomly generated

by separate functions. Only a uniform distribution of the

various data types is available. This program contains all
of the desired properties stated above, except the ability
to guarantee uniqueness of the records created.

This program was written in order to reduce the
complexity of the original test file generation package.

Many of the features of the original program remain intact.
Two important differences exist. The shortened version only
allows the use of predetermined sets of values to be used,
therefore not allowing randomly generated values. The

second difference is the fact that the files generated must
be of length of less than or equal to 10,000 records. An

advantage of the shortened version is that it is combined

24

with the shortened database load program, which is discussed

in the following section.

D. SELECTION OP TBE TEST FILE GENERATION PACKAGE

The shortened version of the test file generatioz

package was selected initially as the file generation tool.
MDES is currently undergoing a change in the version of the
compiler used. In an attempt to keep the conversion of 8DBS

simple, the shcrtened version was chosen. This version
allowed a rapid ccnversion. Hcwever, only user defined sets
of values are selected for the attribute values. This is
considered a disadvantage. Perhaps the overriding consider-

ation in the selection of the shortened version was the fact
that its associated database load subsystem was much

simplier. The discussion of this subsystem is provided in

detail in the following section.

H. THE UPGRADING PROCESS

The upgrading process for the shortened version of the

test file generation package was relatively simple. The C
compiler originally used in the implementation was an older
version. The new version is being used by MDBS. Several
minor compiler differences with respect to acceptable syntax
were rapidly fixed.

P. FUTURE I8PROVENENTS

Because the shortened version possesses all but one of

the desired properies discussed in chapter II, only one

future change is anticipated.

Two approaches which provide the shortened version with
the capability of randomly generating values exist. The

first of these alternatives includes adding the functions to

25

the program with the additional user interface to select

these as cptions. The second alternative Js to adapt the

original test file generation Fackage to be compatible with
the shortened database load. The task would be simplified

by choosing the first alternative.

This concludes the discussion of the test file genera-
tion tool. In the following chapter, we discuss the proper-
ties of the selected database load subsystem.

26

IV. 2B DA1AZBI MAD IiUsTIU

In this chapter, we discuss the database load subsystem

development. In the first two sections, we review the

purpose and desired properties of the subsystem. In the

next two sections, we discuss how the basic program was

selected from existing database load tools. Finally, in the

last two sections, we discuss the upgrading of the selected
program and future enhancements which will further aid the
performance evaluation team.

A. THE PURPOSE

The database load subsystem is a software tool used to
designate an input source file and to create a database from
that source file. It also allows several related files to

be consolidated into one database if desired. The first

phase in the database load subsystem is to define the input

files and the database. The second phase consists of

constructing various directory management tables. Lastly,
the records are distributed across the backends.

B. DESIRED PROPERTIES

The database load subsystem must be designed so that the

performance evaluation may utilize various cluster formation
variables and storage variables with minimum effort. The

performance may be expected to depend upon whether the

number of descriptors(attributes) is large or small. The

ease of specifying the descriptors (attributes) must be
guaranteed. The variation of cluster size nay affect
performance. The cluster size is a function of the number
of descriptors, the size of the input files, and the values

27

used in the attribute fields. These three parameters should

be entered independently. The data placement strategy,

i.e., how records are distributed across the backends, also

affects performance. The ability to change the placement

strategy will provide a means of confirming simulation

studies.

C. EXISTING PROGRAES

Two database Icad subsystems were reviewed. In this

section the merits of both of the existing programs are

discussed. The original database load subsystem is covered

first, then a shortened version of the database load

subsystem is evaluated.

1 " 2ra Qgjinal LatjAs Load §.qbsystem

The original database load subsystem was first

designed at the beginning of the implementation stage of

MDBS. The process is viewed as four logical phases. The

first phase is the database definition phase, in which the

user specifies various characteristics of existing source

files and the characteristics of the database to be created.

The second phase is the record preparation phase, in which

the data is read from the input files and prepared for

loading. The third phase is the record clustering phase, in

which the prepared records are sorted into clusters. The

last phase is the record and table distribution phase. This

phase distributes the records and the directory management
tables to the backends.

2. Z" §jo lj4_ Dat jj b4 Sdbsystem

As stated in Chapter II, the shortened database load

subsystem is much simpler than the original database load
subsystem. This implementation can be viewed as two phases.

28

The first phase is the directcry table construction phase%,

in which specified database parameters are read from

existing files and the directcry tables are constructed.

The second phase is the record distribution phase. In this

phase the records are distributed to the backends by using

insert requests. Thus this subsystem uses currently
existing directory management functions to load -he database
records.

D. THE SELECTION OF THE DATABISE LOAD SUBSYSTER

Several disadvantages to the original database load

program exist. Since it was created at the inception of

NDES design, it pcssessed many system incompatibilities with

the current version of MDBS. Once again the large size of

the program posed a significant maintenance problem with

respect to the conversion of the system to the new compiler.
For these reasons this program was not selected.

The shortened version of the database load subsystem was

chosen as the basis for the database load tool. This was

due to the fact that it used existirg directory management

code and that it was much simpler to understand and thus

maintain.

E. THE UPGRADING PROCESS

In this section, we now discuss the upgrading of the

shortened version of the database load subsystem. A discus-

sion of the ccmmunication among processes is presented.

Then the changes to the database load subsystem are

discussed.

29

In order to load the current version of dDBS, it is

necessary to change the database load subsystem so that it
could communicate with the backend process of directory

management. The database load subsystem is iapla.ented as a

separate process in the controller. A brief discussion of

message passing in RDBS is presented below.

a. Message Passing Within a Backend

The backends are supported by PDP-11/4s running

under RSX-115 operating system. The inter-process-

communication facility is the shared access to physical

memory. Suppose process X wants to send a message to

process Y. X will copy the message into the shared area.

Then X tells the operating system to send the address of the

message to process T. When Y is ready to receive a message,

it gets the address of the message from the operating

system's queue of such addresses. Process Y then copies the

message into its own memory space.

b. Message Passing Within the Controller

The HDIS controller is a VAX-11/780 using the

VMS operating system. The inter-process communication
facility is the mailbox. The mailbox is a software input/

output device. If process X wishes to send process Y a

message, process X first issues a send command to process
Y's mailbox. Then process T issues the read command on its

mailbox it will be given the message sent by process X. The

mailbox can queue several messages.

30

c. Message Passing Between Computers

Communication betueen computers iz MDBS is

achieved by using a time-division-multiplexed bus called the

parallel communication link (PCI). Two interface processes
to the PCL are used in each computer. The first process,

called putPCL, pets the message to be sent to the other

computers on the PCI. The second process, called getPCL,

receives the message from the bus and then passes the

message to the appropriate process. PCLs are presently used
to simulate the broadcast bus and will be replaced physi-

cally by a broadcasting bus later.

Several directory tables exist in order to process

requests. In this section the logical descriptions of such

tables are discussed. This will allow some insight into

what kind of messages must be sent during the loading of the

database.

The Attribute Table (AT) contains a list of the

directory attributes and a pointer to the descriptors

defined on these attributes. The AT is located at each

backend. The Descriptor-to -Des cri ptor-Id (DD IT) Table

contains the descriFtors and their corresponding descriptor

ids. Each section of the DDIT is associated with a direc-

tory attribute and contains the descriptors defined on that

attribute. The DDIT is located at each backend. Since

type-C sub-descriptors are created dynamically as new

records are inserted, the type-C attributes must be recorded

in a table called the Type-C-Descriptor-Table (TCDT). The

TCDT is located in the controller. When an insert request

contains a record with a type-C attribute and the value of
the attribute does not appear in a type-C descriptor, a new

r type-C descriptor will be created by the Insert Information

31

Generation process. This process will then reccrd the

descriptor in the TCDT. Thus all directory attri.'utas and
their corresponding descriptors are sent to the backend's

Directory Hanagement processes. All type-C attributes are
alsc sent to the Insert Information Generation process in
the contrcller.

3. .1ecific RgradeA

The database load subsystem program was changed by

allowing it to ccmmunicate with the backends in order to
load the database to the backends. In order to distribute
the directory management tables to all backends, the data-
base load subsystem must be given its own mailbox and access
to the directory management physical areas located in the
backends. All of the functions which create the directory

management tables were moved te the backends and appropri-
ately placed in the directory management processes. Data

necessary to construct these tables was passed to the back-
ends by using messages containing codes which indicate the
type of action to be taken. Because the backends can

construct the tables in parallel, this did not significantly
burden the database lead process. In order to support the

message passing ability, send and receive routines specific
to the database lead process were written. Figure 4.1

illustrates the inter-process communication involved with
the directory table ccnstructicn phase.

In order to load the records into the database,

communication tetween the request preparation process
(located in the controller) and the database load subsystem
was established. This allowed the database load subsystem

to send the insert requests directly to request preparation.

Thus the database load subsystem was given access to the

request preparation mailbox. It was also necessary to send

the Insert Information Generation process all of the type-C

32

II

I Controller
I

IE p, t 1 I l mmF 1 I
I + Preparation In.foration

(S)Type-C descrDtor U ,

'1 I -+ ! i-m- d - , - - , _Sdatabas

1 7 Directory tabes,
(,(1)(2)(3)(4)

l-C BackendlG.C

I I

Directory Record Concurrency' i' r + ' °':"iI I i i
t ocsg Control

I I

Figure 4. 1 COEMOICATLONS: DIRECTORY TABLE CONSTRUCTION.

33

II
attributes for insertion into the TCDT. Figure 4.2 shows

the inter-process communication of the record distribution

phase.

The following is a summary of the types of messages
which were added to the database load subsystem:

Message type: (1) Create AT
Source: Database Load (EEL)

Destinaticn: Directcry Management
Explanation: This message creates an AT for

the given database name.

message type: (2) Add Attribute to AT

Source: Database Load (DBL)

Destination: Directory Management

Explanation: This message adds an attribute
to the AT for the given database.

message type: (3) Add Descriptcr to DDIT

Source: Database Load (EBL)

Destination: Directory Management
Explanation: This message adds a descriptor

to the DDIT for the given database.

Message type: (4) Add the end cf descriptor flag
Source: Database Load (DBL)

Destination: Directory Management
Explanation: This message adds the flag to signal

the end of the descriptor list.

Message type: (5) load type-C

Source: Database Load (EBL)

Destination: Insert Information GOe eration

Explanation: This message passes the type-C attribute
to IIG for entry into the TCDT.

34

- -- -- , i II III I I_ __, ,_,_..

I - -- - - - --

Controller

* IPost .Request. Inwet.
Processtng Prepsrat ton Informatfon

, I I,, tIonI
w --- -,

l | i Parsed

27
I j..PCLI Bakn IP~

r! ---------------

m ,

Drectory I ReI Concurrency
jOenegement~ Processtngl Control

!LJi
I

&I
I r

Cl I

I I

Figure 4.2 CCIRUNICATIONS: RECORD LOADING.

35

- ' __ _ _

Message type: (6) Insert record

Source: Database Load (EEL)

Destination: Request Preparation

Explanation: This message sends the record to be

loaded to RP.

message type: (7) Responses

Source: Directory Management and

Insert Information Generation

Destination: Datatase Load
Explanation: This group of messages informs DBL of

action that is actually carried out as

requested by the above messages from
DEL. They also include error messages.

Thus for each of the messages (1) through (6), a type (7)
message is sent tc the Database load subsystem. This
concludes the upgrading of the database load subsystem.

F. FUTURE INPROVEDEITS

The database load subsystem contains all of the desired

properties discussed above with the exception of the ability
to change the data placement strategy. Due to the manner in
which the database is loaded, this would require a change in
the directory management process. Further research is
required to investigate the ramifications of changing the
directory management process. This feature should be
delayed until the system conversion to the new compiler is
completed.

36

In this chapter, we discuss the test request generation

package development. In the first two sections, we review
the purpose and desired properties of the package. In the
next two sections, we discuss how the basic program was
selected from existing request generation tools. Finally,
in the last two sections, we discuss the upgrading of the

selected program and future enhancements which will further

aid the performance evaluation team.

A. ThE PURPOSE

The purpose of the test request generation package is to

provide an easy means of creating a list of test requests
which will be executed in order to test MDBS. The package

also aids the evaluation team in executing the list of

requests. The list of requests are saved in a file for
future use, in crder to avcid regenerating the list of

requests.

B. DESIRED PROPERTIES

Recall that the test request generation package permits

the request formation variables to be altered by the evalua-

tion teas. This allows the following to be varied: the

percentage of the types of requests (retrieve, update,
insert, or delete), the percentage of aggregate operators
(ave. max, min, sun, and count) in retrieve requests, the

complexity of the request query, the order of the predicates

appearing in the request, and the number of attributes to be

projected in the retrieve request,

37

The request generation package must also possess the

ability tc allcw the following modifications: vary the

length of the transaction, tag requests with user identifi-

cation, retrieve a record defined over the null descriptor,
and execute a retrieve request in which the entire clust.er
is stored at one tackend and ccmpare the performa-ce with a

request which retrieves records from a cluster which is
stored across all kackends.

C. EXISTING PROGRBS

Two existing programs were reviewed in ord-ar to select
the one which best fits the desired properties and is compa-
tibile with the current version of MDBS. Both programs

implement the test request generation package in the
controller. The next section discusses version A of the
test request generation package. Version A was originally
designed at the commencement of the implementation of MDBS.
Version B was a later version.

1. Vj sion A

Version A may be described as a package which aids

the user in developing a list of requests. The user is

guided through the construction of one request at a time.

The program ensures that the syntax is correct. The intent
of this method is to generate a small number of requests
which are thoughtfully devised in order to test specific

features of MDBS. This program also assumes that one user
will execute only one request at a time. The user is

allowed the following options when using this test request
generation package: generating a list of requests for later
use, retrieving a list of requests to be executed in any
order, modifying an existing list, or executing a list of

requests.

38

2. V! .i,.n B

Version B is a follow-on package to Version A. It
therefore possesses all of the features contained in Version

A. It should be noted that Version B adds the ability to

use the concept of transactions. Recall that a transaction
is a group of one cr more requests. Thus the requirement of

executing only one request at a time is removed.

3. THE SELECTION OF THE TEST BEQUEST GENERATION PACKAGE

Because Version B contains all the features of Version
k, Version B was selected as the test request generation
package. Because this version arrived at the current imple-
mentation site cf MDBS rather late in the review of pqrform-
ance evaluation tools, many of the desired features must be
left for future development. This does not detract from the
usefulness of the test request generation package as it

stands.

E. THE UPGRADING PROCESS

The majority of the upgrading accomplished on the test
request generation package consisted of ensuring that the
syntax discrepancies due to compiler differences were

removed. A reorganization of the file location of MDBS
resulted in many changes to the programs.

F. FUTURE IMPROVERENTS

Several enhancements to the request generation package

may be desirable. Three major enhancements include the
following: program generation of requests, simulation of
mutltiple concurrent users, and development of a storage

informatien package to aid in request selection.

39

f. £gra e JUto 2 Seaues_.s

In order to test HDBS, the test request generation

package could be modified to ccntain a routine which gener-

ates randcm requests. The input to such a routine would

include parameters such as the percentage of each type of

request to be generated and the the query complexity. Query

complexity involves ckanging tke number cf predicates in the

requests. This ability would allow the evaluatica team to
easily determine which type of request is most afficient

under MDBS.

2. E io of Hu11j conMuen

In order to evaluate the effect of concurrency

control, MDBS must be tested while several users are using
the system. By providing a way to link a user to the

requests which are generated, the test request generation

package would simulate mutiple users. This would avoid

processing several separate files of requests. This would

also result in repeatable experiments, in that the condi-

tions resulting from executing the ccncurrent user requests

could be duplicated.
3. le Itcae Infol!A. e

The storage information package would allow the

experimenter to ask specific questions about the database
storage information so that intelligent queries can be
derived. The questions an experimenter might ask would

include: What descriptors are associated with a ceztain
attribute? What descriptor ids define a certain cluster

number? or Where is cluster one stored?

This package could he implemented by sending

messages to the tackends. Each message would be associated
with a routine which walks through the directory management

40

tables and finds the appropriate information and sends it

back to the contrcller. By evaluating the responses to the

messages, more meaningful requests can be constructed in
order to evaluate specific features of MDBS.

41i

T1. UNIUMx 91 121 1111C€. AM_. 191 TOOLE

In Chapter I, we discussed the study phase of creating

the tools. In Chapter II, we discussed the design phase.

The development phase was outlined in Chapters III, IV, and

V. In this chapter, we discuss the operational phase. This

taxonomy of phases is outlined in detail in (Ref. 8]. More

specifically, in this chapter, we discuss the performance

evaluation tools with respect to several software engi-
neering principles.

A. BASIS OF ANALYSIS

In this section, we discuss the standards by which the

evaluation tools are to be analyzed. The two major catego-

ries of the analysis are the ability to meet the objectives

stated in the design phase and the ability to mee- software
goals. The standards ara described in detail in (Ref. 9]

and [Ref. 10].

The ability to meet objectives means that the tool poss-

esses the capabilities outlined in the design phase. These

capabilities were discussed in detail in Chapter II.

The performance evaluation tools will be evaluated also
by their ability to meet five software goals. The first

goal is that of modifiability. modifiability includes the

properties of extensibility, consistency, maintainability,

and modularization. The second goal is that of reliability.

Reliability includes the properties of possessing no blatent

errors and of possessing error recoverability. The third

goal is simplicity. This includes ease of use and single-

ness of purpose. Efficiency is the fourth goal. A tool
will possess this goal if it ccntains no gross inefficiency.

42

The last software goal is that of understandability.

Understandability means that the tool utilizes abstractions,

modularity, and information hiding, and is supported with

reasonable documentation.

B. &AN<IS OF THE FILE GEIERATION PACKAGE

The objectives of the file generation package were
discussed in Chapter II. The cbjective that was not met by

this tool is the ability to indicate whether values of the
attributes are taken from randc functions or predetermined

sets of values.. The random functions must be added at a

future date.

The file generation package meets all goals with the

exception of efficiency. Modifiability is achieved through
the extensive use of modularization with respect to grouping

like operations together. Reliability has been observed in

that no errors have existed since the operational phase.

Simplicity is demcnstrated by using menu-driven operations
in the file generation package. Lastly, understandability
is achieved by religious use of abstraction of data and
operation. The gross inefficiency in the package results

from the use of a large array which is used to store the

unique records which are generated. When a large nuwber of

records are to be inserted at one time, the time to compare
the new record against all previously generated records is

great. This concludes the evaluation of the test file
generation package.

C. ANALYSIS OF THE DATIBASE LOAD SUBSYSTER

The objectives cf the database load subsystem wee

discussed in Chapter II. The objective that was not met by
this tool is the ability to vary the data placement

strategy. This ability must be added at a future date.

43

The database load subsystem meets all goals with the

exception of efficiency. Modifiability is achieved through

the extensive use of modularization with respect to grouping

like operations together. For instance, all of the routines

to pass messages are grouped in send and _eceive modules

which are kept in separate files. Reliability has been

observed in that no errors have existed since the opera-

tional phase. Simplicity is demonstrated by using menu-

driven operations. Lastly, understandability is achieved by

religious use of abstraction both in the data and the opera-
tions. The gross inefficiency in the package results from
the use of a large number of insert requests which are sent

one at a time to the backends. This inefficiency could be
reduced by grouping several insert requests into a trans-
action and then sending the transaction to the backends. It

is also possible to save all type-C descriptors in the data-

base load subsystem and send ill of then to Insert

Information Generation at the end of the directory table

loading. This concludes the evaluation of the database load

subsystem.

D. AIALYSIS OF THE RE1EST GENERATION PACKAGE

The objectives of the test request generation package

were discussed in Chapter II. The objectives that were not

met by this tool are the following enhancements: program

generation of requests, simulation of multiple concurrent

users, and development of a storage information package to

aid in request selection. These abilities must be added at

a future date.
The test request generation package meets all goals with

the exception of possessing consistency. Modifiability is

achieved through the extensive use of modularization with

respect to grouping like operations together. For instance,

"L4

all of the routines which are involved with creating a

request are divided into modules each of which handles a

distinct aspect of the request. This goal is seen
throughout MDBS. Reliability has been observed in that no

errors have existed since the operational phase. Simplicity

is demonstrated by using menu-driven operations. Lastly,

understandability is achieved by religious use of abstrac-
tion both in the data and the operations. Consistency may
be achieved by altering the test request generation to use

information stored in the files generated by both the test
file generation package and the database load subsytem.
These files could be used for the extraction of necessary
information instead of prompting the user to re-enter data

supplied earlier. It is the weakest link in establishing a
tight performance evaluation environment. this is further

discussed in the next section. This concludes the evalua-
tion of the database load subsystem.

t. FUTURE DEVELOPBIRTS

The most important future development should be the

integration of the performance evaluation tools into a
performance evaluation environment. In this way, the prop-

erty of consistency of the tools will be attained. That is,
the output of one tool can be used as input to the next tool
in the logical sequence of the performance evaluation

effort. This has been achieved in the test file generation

package-database lcad subsytem interface. The next step
would be to develop consistency between the database load
subsystem-test request generaticn package interface.

This concludes the discussion on the analysis of the

performance evaluation tools.

4S

In this thesis, we have discussed the development of the

necessary tools for the performance evaluation of a multi-
backend database system, known as MDBS. The basic motiva-
tion of the mutlti-backend database system (MDBS) was to

develop an architecture which spreads the work of the data-

base system among multiple backends. It was a major aim of

this system to allcw capacity growth by the use of addi-
tional disk drives and performance improvement by the use of
additional backenis. However, to verify the design and
implementation, it is necessary to test the capability of

MDBS in capacity grcwth and performance gain.
Three tools for the performance and capacity tests were

investigated. The first tccl was the file generation

package which creates test files for any artificial data-
base. The second tool was the database load subsystem which
loads the artificial database into MDBS. The third tool was
the request generation package. This package created test

requests to query HDBS.
The following methodology was used to create an effec-

tive tool. First, the properties of an ideal tcol were

described. Then available existing programs were reviewed
and evaluated to determine which program best meets the

desired features. The programs were upgraded to ensure that
they were compatible with the current implementation, and

met the desired features. Lastly, the tools were analyzed
with respect to meeting the desired properties and satis-

fying several software engineering goals.

TVhe main goal was to develop the necessary tools to
generate tests in measuring the extensibility of MDBS, i.e.,
how does RDBS perform as more backends are added?

46

Performance was expected to improve (maintain) as the number

(size) of the kackends (database) was increased. We feel
that the tools developed herein will allow an easy and effi-

cient means of measuring the extensibility of HDBS.

47

hn352g 1
DESIGN SPECIFICATION OF THE TEST FILE GENERATION PACKAGE

This appendix contains the design ef the test file

generation package which is a subset of the shortened data-
* base load subsystem. The design consists of C language code

for the function headings and their corresponding declara-

tions. The body of the functions are given in English t ext.

/* TEST FILE *
GENE EATI ON

1* PACKAGEr

main program()

endgenrato ;/*generate the records*/

generate C
/* This routine *

-generates a jcjrd template
-gonerates/n e os sets of values for attribute5 *
-generates descriptors *

- generates records using the sets

w~ie (TRUE)
begin

/*Ask the user for tp of operation to be performed*/
/*Take a c~orit on*/

/wgenlt record template *

gen, desc(t; .
/*g1enerate thedrecords *
/* geneat te records

Ib oad 4j g*

edend while;
*0n

'48

gent W1 routine generates a record template *
beg nn

char tn~flp~engt 4 1) /* temnp late-file name *
char c, dbid (DBIDLNTH+1j, ld(A]_ILS+1 teatyp;mnt ± ke no attr;
FILE *fopenO *tmplfp;

/* Get name of ten late file V1
/* Open ternplate fle*
/* Get datAbase ID from the template file*/
/* Write database ID to template file *
/* Get, number of attrib yltes *
/* Write number of attributes to template file V/
/* Get attributes and value types *
'for (each attribute)

begi Enter the attribute name*/.
/* Enter the value type: (ssrni=intUeger)*/
en /* and fcr*

/* Close template fXle
end /* end gentmpl *

gendesc (

begin
char tfn (M1FLength *11); /* template-file name *
char dfr (MFlLenqtb + 1) /* descriptor-file name *
char attr name(AklLength) f

ansver(s) , desctype, val~type, c, hold(3)

int 1. J, ncattr;
FILE *fopeno, *tmplfp, *desc-fp;
/* Get the temp latcF-file naze *
/* Open template file */
/* Get the name of the file for storing descriptors *
/* open descriptor file *1
/* Read thru Database ID to get *

/* to number of N tributes *
/* Get number of attributes */
/* For each attribute get its descriptors (if applicable)*/
for (each attribute)
beginA

1* Read atT ibute *
/* Got attribt U me* fie*
/* Get Taluetj lo - attribute V/
/* Ask if attr

* Write descriptor yre to descriptor file *
f(dose tIpe Clfdsctype - at*)

tod descriptor file *

end /* end icr
/* Write en d-of-file symbol to descriptor file *

'49

/* Close files */
end/*gen-desc*/

gen_C(v altype, descfp)

char vjl type;
FILE * edc rp,

begln
char lowerb(AVLength), upperb(AvLength) , hold(3) ;
int faultwk;
/. Get upper bounds for type 'C' descriptors *1
.hwi4e (TRUE
begin

f* Get upper bound */
if (end of data)

elsreturn;

e* Verify upper bound entry against */
/* attribute va ue type
/* Write NOBOVD and 9;per bound *//* to descriptor fle
end

end
end /* end gen-C *

gen notC (valtypedesc_f p)
char val type;
FILE *desac p;

begin
char loverb(AVLengtb) , upperb(AVLength) , hold(3) ;
int fault, k;
/* Get lower and upper bounds for descriptor */w.h e (TRUE)

/* et lover bound
If (end of data)

return;
elsebegin in/ Vrilf lower bcund entry against C//* attribute value ype

end/ Write lower bound o descriptor file */
/* Get upper bound */
/* Verifj upper bound entry against */
/* attr! ute value tye */* Write upper bound'o descriptor fil /f

end /* end vhile Cf
end/* end gen-notC C/

_is routine generates/modifies sets of values. Cf
begin

char tfn(SFILength + 1); /* template-file name */

50

char attr nae(&ULength + 1), answer, c, val type,

har oldAVLngth +1)
nt noatZ , k, i;

FILE *fopeno, *taplfp;

/* got the templae-file nae */*open tablate file */
* Got numb r of attributes V1
for (each attribute)
begin

/* Get attribute name */
/* Get value type */
/* Choose the action to be taken on attribute

n) - generate a new set for It
s 0 icn eig stinp set for itswlth(sse) do nofthingexvith i *

swich(answer)
begin

case Int.
/* generata new set */
gen set(valtype);

cas. e |.c od set(valtype);
brelk;

case 5tt:
break;

end /* end switch *
end /* end for */
/* Close template file /

end /* end gm-set */

g en_set (v alt y p e)
/o his rout ne eneratts a set */

values lor n attribute. */

qhar val-type;

stru ct definition
bgnchar elem Set.Size| (AVLongth ;

/* array lot holng set elemenlts *
int no ales:
/* number of elements in set */end set;

char filna UFlli~ength +e ntryK VLr ht1 + 1),IatswrS

FILE *fopen(), *tul_fp;

/* Get nano ot file */
S/*pen gt fle

Acept ellmets the set *hile (got as not fu)
/* EnteV a value for the set*/
/* Verityset entry aa nst attribute type */

end Check for s e len t duplication ,/

51

if (set is full)
7/ Tell user*/

/* Write set elemeits to set file *1
,/* write end of file symbol to set file *//* Closq set-fi'le */ 4f it

* Sk if user wants to mod-fy it */
(4nswer- yes)

mod set(val type);
end /* en gen seT */

mod set (val tye .) .
7* This Youie modifies .a set /
/* of values for an attribute. /

char val_tY pe;
ofn (IFYIength 1) , /* old-file name */

nrn(lFNLenth * 1) 1* new-file nMae */

har c, answer(5), entry(AVLength + 1), in dex(5);
tInt is k, fault*,J;

structbe gin
mt no elem; /5 number of elements in the set */
char rel flaq(SetSize) ; /* element removed flaq */
char eleE(SetSize) (AVLength + 1) ; /* elements 5/

end set;

FILE *fopeno, *set fp;
/* Get the r.ame of the set tc be modified 5/*Oen fil 1*L5SRad 'iven file into array for manipulation 5/
while (TRUE)
begin

/* Ask what do you want tc perform next?*/
p - ritthe set elements and their indices

msoe elements to the set
r remove some elements from the set

(n) - nothing; done
if I answer a 'p')
begin

/* Print elements of file */
end/* end (answer a 'p') */
else if (answer = a'-)
begin

/e Add some elements */
/* CheIk for set el? uent duplication //* Very entry against /
/5 attrilute value type */
/* Add element to array /f correct*/

end /* end (answer * a') 5/
else if (answer a Or'
begin

/* Remove some elements 5/
* ark set elements for removal */

/* Re-crdez array to reflect deletions 5/
end /* end (answer a 'r') /
else

* Nothing, dowe VeCealt; 4 exit vhile* V
end /* end vhile (TRUE)

52

/* Ask if user wants to store the modified set back
into the oriiinal file */

/* Wr 4.e array baok into fie Aes gn;ted*/
/* Write end of file symbol to set file */
/* Close set-fi~e */

end/* end mod-set */

gen rec (beg 7rT Is routine generates records using sets. */begin
char c;
char hold(AVlenqth + 11;
char attrname(AVLength + 1);

char dbid(DBIDLNTH + 1)qreccris (MAX RECORDS) [HRLen~th + 11
char rf Ef(MNLength T 1), /* template-file name */

rfn(MFNLength + 1), /* record-file name */
vfn (KHLength + 1); / temporary file name */

str,;ct
beginint no elem (MAX FIELDS) ;

char eIems (MAX_?IELDS) (SetSize) (AVLength + 1);
end values;

FILE *fopen(), *tmpl fp, *rec-fp, *stor fp;
int no attr, k, , count orec, max,

reZcnt, prom, index, old; r- c

/* et the tmplat_-file nave *//* Gen tmpate fle *//* Get file f cr record storage V
/* Open record file *s
/* Read database ID */
/* Wr te database ID to storaqe file */
/* Read number of attributes in a record */
/* Read elemnts of files corresponding to */
/* each attribute into an array */
.for (each attribute)

/* Read the attribute name *//* Get the file name for the given attribute */
/* Open f le */
/* Read elements of set into array */
/* Close file */

end /* end for */
/* Close template file */
/* Calculate total possible number of unique records */
/* Get th number or records to be generated */
/* Determine feasibility of ;equested number */
/* Generate records by choosing (at random) /
/* a member from each of the given sets
.for (each record)
begin

for (for each attribute)begizi/0 Got a value randomly from the set*/

end
/* Give some feedback tc user cf generation effort*/
/* Check generated record for possible duplication */end

/* Write generated records to file */
Write end of file symbol to file
Let user KnoU when completed*/

53

j

$t

C1Qso f ile 5
end/* end qenrec

int gr..isdigit (c)
/* This routine determines ifhethqf I given *

1*claracter 2s gia t/

beg~&f : cis a digit)
return (TRUE);

else
ed return (FALSE);

gsrand (non)
/* This routine cenerates a random number *

4.nt nun;
b eglstti l.ong setd;

sta c nttemR
seed a seed * 24298 + temp + time(O);
seed - seedaodl99Ol7;
seed - (69069 * seed + 1)-
upn = (seed >> 8) & 3276');

if (nun -a0
return (temp);

else
return (temp mod num);

end

54

DESIGN SPECIFICATIOE OF THE DATABISE LOAD SUBSYSTEM

This appendix contains the design of the shortened dat3,-

base load subsystem. The design consists of C language code
for the function headings and their corresponding declara-
tions. The body of the functions are given in Engli.sh text.

/*Databafe Load *
Des igL1

struct rtempdefinition template;j
db lo()
/*-h sroutine loads the directory tables and the database *

:giecords.

/* cad the directory tabls*
dbl dir tblsf
/* Ioad-thesd aabase records *

end dbl..recordsO;

dbl dir tbls(
7* TT~±s routine loads the directory tables. *

begin
char dbid(DBIDLNTE + 1)

attruame(AULength*1)
tfn (NFNLength + 1), /* 'tern late-file namne V/
dfn (fFNLength + 1) , * des griptor-file name V/
valt ipe,
str(y

int atjidno , descidno;

struct desc-deflnition descriptor;

int it k, C;

PILE *fopen 0, *fptr;

/* initialize the database mailbox*/
/* Get the au f the f#le containing *
/* the templae, Informa tion V/
/* Read the data tase id V/

55

I/ Read number of entries in the template, i.e.,*//
number of attributes in a record

/* Read the attribute ases and the value types */
/* and place the data in the template record */
for. (each attribute to be put in templae)
bein/* Read an attribute */

end /* Read the corresponding value type */

/* Create attritute table fcr the database in backends */
DBL S$Create (dbid);
/* get the name cf the file containinq the descriptors */
/* Read the directory 4ttributes and their */
/* correspond ng descrigtors
/* Initialize the attribute counter ,/
while (not the end of data)
begin Read an attribute */

/ Read corresponding descriptor type A,B, or C *f
/ Add the attribute name to the attribute table */
BL Sktm insert dbid,attrname,&descty) ;

if Idesctipe =a co Idesctype = 'C'"
/*S end the attribute to IIG */
ReadD SsendtypeCdbid,attrnae,aid no;/* using t'Ee teepee%9, find the value */--

/* type for thettribute
/ Read. the corTesponding descriptors*/
/* for the attr ibute */
/* Inititialize the descriptor id /
while (More descriptors)
begin /* Get lower bound *f

/* Get upper bcund */
/* Add the descriptor to DDIT * .
DBLSSDesq add (dbid a ttrname &desctype,

descr15tor Svalty pe, at iM no, des c Id no);
/* Increment tde descriptoT i3 count V/

end /* end while */
f (desctype != C)

begin
/* Add the catchall descriptor to DDIT */
DEL S$Cetchall (dbid,attrnamen

Idesclipe~at
end /* end a/ ...id.nodesci
/* Increment the attribute count */

end /* end while */_ ,/ Clse fescriptor file *
end/* end dbl_ ir_tn s

dbl records()
begar dbid(DBIDINTH + I

=fn (MFNLength + 11: /* record-file name */
req (REQtength) ,
recordl80;

struct rtemp_efnition *tmvl ptr,
int i, c; e Tnlpr

PILE *fopen(), *fptr;

/* Get the name of the 9ie * l
Sontaininq the recordsto e loaded V
Read the cdataase id */
Got the record template for the database *f

56

whl e (more records exist)
bg n /* ihi e tkere are more records *

/* Rea h next one
* *Co nstruct a requ est to insert record *

dblconstruct ins (tupi ptr , record, req

end end end dtl-records *

dbl construct ins (tmplptr, record, req)

stract rtem pdefinition *tuplptr;
char req), record o;

beg#n
int i, J, k, p, entry~to;

oad the ipitia 1p art of reugst *hi e (not the en f thererd

/* Load the attr ibuite value *1
end
/* Load the end of request *

end

57

DESIGN SPECIPICATION OF THE TEST REQUEST GENERATIOI PACKAGE

The program specification for the test request genera-
tion and execution package is shcwn in this appendix. This

design is the result of the work of Dr. Kerr, who headed the

design of the original test request generation package.

Top jU~e Sf I~ezet gj9_q~eg Generation Packsj
This program can be used to test and demonstrate MDBS.

The execution of this program is called a session. Each

session can be divided into any number of subsessions.
During a subsession the user can do one of the following:

(A) Execute a list of requests that was previously
stored in a file.

(B) Prompt the user for a list of requests to be
stored in a file for later use.

(C) Retrieve a list of requests that were previ-

ously stored in a file and then allow the user to
select requests from that list for execution.

This selection can be done in any order. The user

will also be able to enter a new request to be
executed.

(D) Modify an existing list of requests that was
previously stored in a file.

In this version, requests are allowed to be grouped as
transactions. A request is sent to MDBS. The program waits
for a response before sending the next request or will
continue to execute without response if the user so desires.

* Output may be directed to the user's tarminal or to a

file or to both.

58

-

• A

/* Test p~quest *
/* Generatia;

/* Package Des ign *

task MDES Test*/
scalar more-subsessioas; /* flag: TRUE - continue,

FALSE - stop *

Print initial message to user;
more-sutsess ionsu:* TR UE;

while more-s bs ssionxs dogerform SUB SESSION;
Pr upt for cont inue message;
Read continue message;

if user dces not want to continue
then
en fmore-subsessions := FALSE;

end while ;
end task ;

procedure SUBSESSION;

/* During a subsession the user iq able /
to generate a group of requests. (NEW LIST)
to modify an old list of requests. (MODIFYI j
to select requests one at a time from a lis'

of requests. (tELECT) C
to run a group of requests. (OLDLIST) C

scalar curen1-reiuest-file; /* The napq of the file *1* ~t~l alueshou2 be NULL. Th~is name must b
/* retained from one subsession to the next. C

scalar type-of -subsess ion -/* Possible values are NEW_LtST,
MODIFY, SELECT and 0L6 LIST C

Prolpt for next type-of-subsession;
cas e t e-of-subsession; value
NEV__d T: /* Enter a new re quest-list *

performa NE W ,LIS7,,SUB(currn-rqetfie
MODIFY: /* flodif ;0 a old lit * r eus ie

perform DFY SUB(current-ripqu est-file.)SELECT: /* Select requIlts one at a tide, from an1
/* existing requ es-list */

perform SELECT SUB f current-request-file);
OLD__LIST: /* Execute IN existing request-list Cf

perform OID LIST SUB(current-request-filel
otherwise :Pr nT errcllmessage;

edend case ;

procedure NEV LIST SUB(Tutput :current-reqvest-file);
sca lar cuf!ent-Mluest-f le; /* name of the fle C

/* Asks usgr fo;g requests - ene ttawtime. C
/* Saves list or requests in a fil wth file-name given by */* user.

orz0 ia ec use to store the requests C
record %equest;
scalar next-step;

59

/* I (nsert) , R (etrieve) p U (pdate) , D (slate) or F (ini3 h) *
Prolp t fo r?2jj t -fi ic-name;
Open file(request-lst-ffe! ;name) output;
Irform, ENTER AND,,AVE ! !QUESTS(request-list-file-name)

oefIse(re I!eft -t f! enal t;
gurrent-reques~-f Ie :- request-i is t-file-naae;

end procedure;

procedure MODIFY SUB (intut/cutput :current-request-file AO
scalar curnint-reques t-file; /* The name of the file *

/* Re ty ev an cid request-list 4nd then allow the user o *
/* modii.yit Request~s are examined one at a time allowing *
/* ChanGs to be made to each request in turn. A change
/* can cc *

/0 add now request before this one. 0
/0 modify this request. 0

remove thtjs request.,0
/0 make no c banges to this request.

/* Note that we must have a way to append new requests at 0
/* the end of the input request list. 0

/* The input file (called input-request-fl may be 0
/* either the current-request-file or a diffleran t existiag 0
/* request file. 0

/* The output file (called new-request-fl ! ay be *
/0 either the next vers ion of the input-requetflori /

/* ne W f Je.18.
scalar input-reguest-file; /* The list of regue sts

to be modif ad. 0/
scalar new-request-file; /0 The new list of requests./scalar next-yersicn; /0 flag:IRUE-set new-request-file to 0

/*next version of input-request-file, FALSE-get new name*/
record request;
scalar more-requests-in -in gut-request- file /0 continue fla g*/
scalar acre- requests-to- en ter- /* ccntinua ion flag/
scalar change-type; /0 ADD, M64DIFY, REMOVE, or NONHAGE 0

scalar next-step;
/* I(nsert) , R(etrieve), U(pdate), D(elats) or P(inish) 0/

/* Determine in put- request -file to be modified. */
perform DET E HNE INPUT__FILE (.current-request-ie

iffut-re45uest-f ile)
open file(input-request-file) input;

/*Detc mine if user wan~ts thetgame of the new-req est-file*/
/* to bethe next vers±3n ot te inpa t-request- fie*/
/* or a new nano.*/

Prompt user to determine next-versicn;
Read next-version;

if next-version
then

Set new-request-file tc next version of

else input-request-f ile;
Prompt for new-request-file name;

Rd name of nov-request-file;
end i

open file(new-reuest-file) output;

Read first request from in put-request-file*
more- request s-in- input -reque st-f Hle -TR Uk;

60

whi le more-requests-in-ia ;ut-re queft-file do
Prompt user fr change-type for this request;
Reca ne-tygel
e ch ~ang, type value
ADD: /* enter and save the next request *

perform GET NEW REQUEST(request)
Write request ifftc nOi-request-fi Is;

MO DI FY:
Prqapt and goet modified request from user;
Vri4te new re quest into new- request-file
lead next request-from input-request-file;

REMO VE:
Read next request from input-request-file;

NO CHIYlGE:
Win.te current request into new-request-7file;
Read next requiest from input-resquest-file;

otherwise :Print system error message;
end case;

end while ;

/* Note that at this point. all the cid repuests havewbeen *
/* rocessed. However it is possible tha~ the user wants *
/* ?o append more requests. *
Prompt user that in utfle bas bee n processed, but that

more requests muty stil be appended'
per f o; ?NTER ALD SAV? RENQESTS (ne -request-file);

close f ;le (inp utfequgit-fT 3.7;
close file (new-request- fle)

end procedure;

procedure SELECT SUB(input/cutplut :current-re uest--file);
scalar curreint-request-file; f* The name of Rhe file *

/* a trieve an oldefs 9f rusts
/* Ailo user to s ec from! t ilist. *

/*Aso allow user to enter new request.

scalar input-request-filei,1* file ccntaining requests*/
array requests (MAX NUNAER CF REQUESTS)

/* frcs--n ut-ri~ueAT-file */
Scalbar number-o f-rq estsi /* The actual number in *1

/ *inut-req ues t-f iie mus be less than
/ AX NUNB ER CF BEQUESTS

scalar -?equest--lum~ir; /* of the request chosen *
record new-requesti /* Pro vided by usgr. *1
record response; / to the request being executed. *

sca lar more-to-execute; /* flag to control loop *
Sca lar next-operat OnZETNMEDS'Y/* Values can be QST UBEDSL!*

/* NEVREQUEST or STOP

/* Determine thq new input-eusfi tuefo
/* this subs ession. * -euetflto seor*

perform DITER1IUR INPUT- FL(crent-request-file,

'Ro a str nu-eus-i- into reuests checking that
nun be -of -requests tf less than MAX_N _B_OFREQUES TS;

close (Input reqUst-file); -

perform DISPLAI(requests)
/*Determine wh Qthir response is to go to CRT, file or both*/

perflorm 0 UTit 510 Di;

61

nor-to -execute :~TRUE;
while more-to-execute do

Prompt user icr next-operation /'*should be either*/
/5request-number, a request -to -display or a *
/5 ew-request 5

Read next-operation;
case next-o eration value

REQUEST ID fBER:
CheZ2 that request-number is lass than

num b e-of-requests;
perform EXECUTE (requests (raquest-numberl

/* output the response to CRT, file or CRT-&file,

perform MTH ESPONSE(response);

DISPLAY: per f orm DISPLAY(requests);
UEVBEQUES T:

perform GET NEW REQUEST(new-request;
prform EXCUTEC-fe-request, response.);

/* Output the response to CRT file or CRT6f.lca,
perform OUTfi$ES5 S response);

STOP: o-to-execute := FALSE;
en aeotherwise :print error message;

end while ;

jerform OUTMES NISH;crent -request-f te := input-request-file;

end procedure ;

procedure OLD LIST SUB(current-request-file);I scalar cunernt-YrIquest-f±Jle; /* The name of the file *
/* Retrieve and execute an old list of requests. 5

scala inut-;e quest-file /* The file containing requests*/
record re ues t
record respons4; /* to a request that has been executed. 5

/* Determine the new current -request-f ile to use for this*/
/* subsession./

perfrm DTER INE INPUT FILE (curre nt-request-file,peror HE tmrtOes t-file)
Ha Cfirst re~etfrom ihput request-fil~e;

/* Determine whetber response is to go to CRT, file or both. 5
ra 0 UTEI7PU ET;

while 2ore-requess do
perform EXEC UTZ(request, response)

/* Cut p ut.he req on se to CRT, file or HiT &file, as 5

pefform CUTSESOS(response)
Read next request from inpt-request-lile;

end while ;

perfo:;. OUTHSPINIS
cloe (input- re quql~t -r 9current-request-il a :Uinpt-request-file;

end procedure ;

62

procedure INTER_ N _SAVE _BZQUESTS
(input :.request-list-file-name) ;

scalar request-lst-file-name;
/* of file tc use to store the requests */

record request;
scalar next-step;

/* I (nsert), R (etr iev), U(pdate), D (elete) or F (inish) *f

next-step :: I;
while next-step On F do

ProuFt for nelt-step;
case next-step value

I: /* enter and save the next insert request e/
perform INSERT SUE(request) ;

write requg3t into request-list-file-name "
R: /*enter and save next retrieve request */

perform RETRIEVE SUB(request);
Write request into rejuest-list-file-name

U: /* enter and save the next update request
perform DELETE SUB(rejuest I *

Write request intoTequest- ist-frle-name
D: /* enter and save the next delete request *,

perform DELETE SUB(reues ;Wrlte request into-Tequest-ist-file-name
F: /* Finish gnterin re uests */

otherwise : Pn error message;
end case ;

end while ;
end procedure ;

procedure DETER MINE__INPUT FILE(input
current-re quest-file,
output lInput-request-file);

scalar current-request- file;
scalar input-request-fi le;

/* Determine the inFut ±$le tc b e led. Itjujt e either*/
/* the carrelt-requ st- fi e or a differen1t exi tng
/* request f e.

scalar modify- curr ent-file -flag;
/* TRUE - select new input file */

if current-request-file is NULL
then

Prompt fer name of input-request-file;
Bead nam.L of input -request-file*

else /* Determine if user want to use the ,'/* cuorrent-request-fle or a diff erent old file. */
Prompt user to determine modify-current-file-flag;
RONd nodify-crrent- filk-fla!;f mcd fycurrent- ile-f ag

then
Prompt for 4aie of input-re uest-file;
e ead name of input-request-ile;else
infut-request-file :- current-request-file;end]f;

end proce ure ;

procedure GET VIII., REQUEST(output :pjelt); *
rec5!d Tequest; * to In

63

/* Prompts user for information necessary to enter a */- new tequest. Returns the request.

scalar request-t t oe;
/* I(nsert), Nletrve), U(pdate) or D(elete)

;rolpt fcr next request-type;
ea request-t ype;

case request-type value
I: per form INSERT SUB(request)
U: perform UPDATE-SUB(request) ;
D: perform DELETESUB(request)
R: perform R ETRIEV SUB(request);

otherwise : Pr nt error message;
end case

end procedure ;

procedure DIIPLAY(input : requests 1
/* Display the requests and their numbers at the/* term nal.

array requests(MAX NUHBER OP REQUESTS);
/* to b--displayld.-v/

end procedure

procedure EXECUTE(input : request,
output : response);

/* Ask RUBS to execute this request. Return the response. */

record request; /* to be. executed */
record re Fcnss; /* to the execution of the request */

end procedure ;

64

LIST OP REPIRINCIS

1. Naq otgaut School Report NPS52-83-006, The
e Ina s 4 i-baced Database S ysfql

2. Naval Post graduate School Report NPS52-83-OO7, The
Desian a~ Anajvssf a MUlti-backend Databases Fiem

3. Naval Postgraduate School Report NPS52-83-OQ8, The
U wp1rn taticn f .a !lt 4 -backend Database SysUIi
BH 'd T s P r g ins byKerr, oUgTIsI 37,

~~f~~lo o17i H~ZE IMf~.trawser, Paula, June,
1983.

4I. Naval Postgraduate School Report NPS52-82-O 08, The

mplem tio.n of aq Mlti-blckend Database SvsfZi

S., an Fr i Iarh 93

6. og aoic, TRobertS Crokr cal 1sa , ai .,
Ryder Zortzi Soe cn, andStravser, Paula, na19.

5. Nava j P in Btae SchooaReprt onP5-3 , Thbae

7. Ston Vtinen Co, a eig ofYltinlD tb
B~~. lti-huakend Da S.s Thss Wavil

8. Goe Iarv. an Stu i, ohn Davi err, Ds ~ t
Lni.. 6m C.o i Brown Publshing 1983.

6. Rossouglas Roet, andothersMce, Softa Dagieering
PydroCses, rinpe, Vnceal, and traser Piaula,

pp. 54-6 ayh n June19 3

65

10*

BIBLIOGRAPHY

Hancock, Les and Kri er orris, T~he C grimar, [McGraw-Hill

Kernnigan, Briap and Ritchie Dennis M-, The C ___,.

'ULan 9jq, Prentice-Hall, 1976.-
PMI~n Paa- 3.njajX igjn Digita 1

35=1F~-FUS Executive ,Reference Maul AA-H265A-TC,
ITMnt~p~r _3mP f"-f~~d ES 1979.

vgv§ 374ter Seryi.cs Raference flanual, AA-D018B-TE,

67

- --- - ----

INITIAL DISTRie5TroN LIST

No. Copies
1. Defense Techical Informaticn Center 2

Cameroni ta t3.o
Alexandrila, Virginia 223114

2. Dudley Knox LibraryjCodj042
Naval Post grad uat e~ choo.0~Monterey, California 939143

3. Department Chairman, Code 521
Department cf Ccmputer science
Naval Postgraduate School
Monterey, Califcrnia 939143

4. L~jsp G ovalchik 2
113 RacOtOye It Street
Edwardsvlle, Pennsylvania 187014

5. office of Research Administration1
Code 012A
Naval Post graduate school
Monterey, C aifcrria 939J43

6. Computer Technologies Curricular office1
Code 37
Naval Postgraduate school
Monterey, Califcrria 939143

68

