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ABSTRACT

M In the first of three papers in this report, we describe a parallel model designed to
solve a class of relatively simple problems from elementary physics, and discuss the
implications for models of problem solving in general. We show how one of the
N é most salient features of problem solving, sequentiality, can emerge naturally within a
s;& parallel model that has no explicit knowledge of how to sequence analysis. This
A model exploits a new type of parallel distributed processing that employs stochastic
‘ processors and is based on a formal mapping between parallel computation and ther-
RN, mal physics. The mathematical theory of this type of processing—harmony theory—
K is discussed in the second and third papers.
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HARMONY THEORY:
PROBLEM SOLVING, PARALLEL COGNITIVE MODELS, AND THERMAL PHYSICS

Csutents

A Parllel Model of (Sequential) Problem Solving
Mary S. Riley and Paul Smolensky

The Mathematical Role of Self-Consistency in Parallel Computation
P Smolensky

Harmony Theory: Thermal Parallel Models in a Computational Context
Paul Smolensky
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In the first psper, we describesa panalict designed to solve s class of relatively simple
problems from szpf physics, and the implications for models of problem
solving in general. (93 show how one of the most salient festures of problem solving,
sequeatiality, can emerge amwrally within a parallel model that has no explicit knowledge of
how to sequeace anslysis. This model exploits a new type of paraflel distributed procesming
that employs stochastic processors and is based on a formal mapping between parallel
computation and thermal physics. The mathematical theory of this type of processing—

- harmony theory-—is discussed in the second and third papers.
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A PARALLEL MODEL OF (SEQUENTIAL) PROBLEM SOLVING

Mary S. Riley and Pasl Smolensky

Institwe for Cognitive Science
University of California, San Diego
La Jolla, Calif ornia 92093

April, 1984

Abetract

We contrast the production sytem and perallel distributed processing approaches to
modelling simple electric circuit problem-solving. We show how sequentiality can emerge
osturally within a parallel model thet hes no explicit knowledge of how to sequence
snalysis.

To appear in the
Proceedings of the Sixth Anmual Mesting of the Cognitive Science Soclety.
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Riley & Smolensky 1 Parallel Model of Problem Solving

A PARALLEL MODEL OF (SEQUENTIAL) PROBLEM SOLVING

Nature of Rules and Their Interaction

This paper is concerned with the nature of the rules involved in solving problems and the
interaction among those rules. We describe a parallel model designed to solve a class of relatively
simple problems from clementary physics and discuss its implications for models of problem solving in
general. We show how one of the most salient features of prodlem solving, sequentiality, can emerge
natwally within a parallel model that has no explicit knowledge of how to sequence analysis.

Consider the problem shown in Figure 1. The task is to determine the qualitative effects of
increasing the resistance of R; on other circuit values, assuming the applied voltage and resistance of R,

remain unchanged.

A common spproach to modelling the process of solving problems like these is to assume that
knowledge is organized as a production system, similar to that shown in Table 1 (see Riley, 1984, for a
review). Here the model’s rules for making inferences are in the form of condition-action pairs, or
productions. The condition specifies the particular elements and relstions that must be present in the
data base in order for the conditioa to be true. Whea the production system is solving a problem, the
conditions of the various productions are tested in order until one of them is true; the action of that
production is then performed. The action geaerlly makes some change in the data base which in turn
means the condition of a differcat production will be true, causing another action to be pesformed.

Since production mm' are universal computers, they can be progmmmed to displsy say
behavior (Newell, 1981). However certsin kinds of bebavior can be achieved with other styles of
computstion in more economical, elegant, extendible and natural ways. Features that are intrinsic to,

or asturally incorporated within, a pure production system approach are:

1) Seguentiality: cach sction taken utilizes the knowledge contained in precisely one rule.

2) Directionality: the knowledge eacoded in esch rule has a distinct directionality from input
(condition) to output (action).

3) Exact matching: cach rule acts only when a perfect match to its condition occurs.

4) Determinism: performance will be identical on all solutions of a given problem.

Within the production system approach it is difficult to naturally avoid certain difficulties:

1) Lack of robustness under degradasion of rules (cither removal of correct rules or addition of
incorrect ones).

2 Leack of robummess under illformed problems that contsin inconsistent or insufficient given
information.

3) Leck of veriabilisy in routes to correct answers or in correctness of answers; a problem for
modelling human bebavior.

4) Need for explicis conflict resolmion rules that determine which rule will apply when several
have true conditions.

The parsllel distributed processing approach represeated by our model naturally avoids these

R L T nE WM AT AN, R N N S NN WL b L AN T e )




Riley & Smolcasky 2 Paraliel Model of Problem Solving
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Figure 1. A series circuit with two resistors, R, and R,. What are the effects of sa increase in the
resistance of R,, ssuming that V., and the resistance of R, remain the same?




- \ i R . ) - «¥ A A . e 24 SN RaEEAE M LIRS N L RN AN\ !
z Riley & Smoleasky 3 Parallel Model of Problem Solving
o Table 1
A Simple Production System for Solving the Problem in Figure 1.
5
.
% Predactions
" Condition Action
,ﬁ\ -
i M. <V, same, R, 9> <Idown>
"}, n <l\'.R’m> <Ry >
3
NS ?3. <V, down, V., same> <V,A'>
P4 <R, same, I down> <V, down>
Preblem Selutien
ﬁ Preblem Represcataticn Matched Productisn
Y
)
> Cycle Coadition Action
1. Ryup, R same, V,  , same ) P2. <R, wp. R, same> <Ripu #>
.‘ 2 Rywp. R same, V., same. R, ., PL <V gmme. R, 9> <Idowm>
i
* 3 Rywp.Risaome, V., some, R 9L, dows M. <R, sane, I down> <V, down>
4L R R same, V,, , some. R w1, dows V, down P. <V, dowm,V _ , seme> <V,up>
i 5. Rywp, R, same, V,,, same, Ry 9. Loy down, V, dows, V, wp
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Riley & Smoleasky 4 Parallel Model of Problem Solvieg

difficultics, but has its own problems, as we shall see.

et

e S T
R T

The Medel

Our model has beean constructed within the framework of harmony theory (Smolensky, 1963,
1984). Rules are represented as a collection of nodes in a network, as shown in Figure 2. A typical
rule is </ down, V1 down, R; same > ; this rule states that the combination of changes “voltage across
Ry goes down, current goes down, R, stays the same” is & consistent set (Ohm’s Law). In fact, the rulcs
consist precisely of all allowed combinations of qualitative changes in circuit variables that are
consistent with each circuit law. There are 65 such instances. !

F PP I

Unlike condition-action rules, there is no directionslity amociated with the variables in the
harmonium rules.

i

In » particular problem, only some of the instances represented by harmonium rules are relevant.
A To represent this, each rule node has an activarion value that can be ecither 1 (active) or 0 (inactive).

In addition to rule nodes, the harmonium model contsins nodes for representing the problem in
terms of qualitative changes in circuit varisbles. Some nodes have values given by the problem
Ry w0, Ry same , Vy same). The model’s answer is represcnted by values assigned to the remaining
nodes.

o gy - R
B i

Vot

As shown in Figure 2, there is 2 connection between an individual circuit variable node and each
rule involving it; this connection is labelled by the appropriate value for that variable according to that
rule.

R A

” The goal of processing is to find a set of rule nodes to activate and a set of values for circuit
4 varisbles that are consistent with those rules. Search toward this goal is guided by a measure of the
] consistency between a set of activated rules and a set of circuit varisbles: this measure is called the
¥ harmony function. The state of highest harmony should be the correct answer to the problem.

Processing is probabilistic and coastructed 90 that st any moment, the higher the harmony of @
sase, the more probable it is. The spread in this probability distribution is determined by a system
i parameter called the compwstional temperatwe T. Initially, all rules are inactive, the circuit variables
givea by the problem are assigned their values, and the remaining circuit variables are assigned random
values. The tempersture is set to a high value, and the stochastic search begins. Rules are activated
- sand deactivated, circuit varisble values are changed (except the givea ones), and states are visited in

accordance with their harmony. As the search continues, this tempersture is lowered, snd the system
b dispisys less and less randomness, focusing in on the states of highest harmony. After a while, the
: tempenature becomes very low, and the search is effectively stopped: an saswer has been selected.

Sequentiality of deduction seems to be completely lacking from the harmonium model, although
- it is s very salient feature of human problem solving. Just the same, in cresting this model we expected
- it to display an emergent seriality. If a single circuit wvarisble is monitored during the search, it will
fluctuate randomly at first, and eventually “lock in® to & value that is very resistant to change. The
tempersture at which this occurs is thi: “freesing temperature” for that varisble. We expected that
differeat varisbles would have different f ezing temperstures, depending on the problem situation; the

x.‘n.u.)uﬁht Kirchoff's Law, .. ~ iation Rypey = R; + R3, a0d thres vensioss of Obm's Law (one sach for Ry, K5,
Ty
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2L Riley & Smoleasky 6 Parallel Model of Problem Solving
: ‘~§
_ one with highest freezing temperature would settle first, which would in turn determine the value
selected for the variable with the next highest freezing temperature, and so on.
In addition to T, harmonium models have a second global parameter, «; it is the sole parameter
- in the definition of the harmony function. When « is near one, only rules that match the current
‘\ guesses for circuit values exactly can become active without lowering the harmony of the state; for low .
, ) values of x, approximate matches are sufficient. Initially, x is small, spproximate matching is
1A\ eacouraged, and many rules become activated; as the computation proceeds, x approaches one and the
set of active rules shrinks toward the five that exactly match the answer.

= As the node for each circuit variable freezes into a value, it does so under the influence of all the
oy active rule nodes connected to it. Uanlike a production system, matching for rules need not be exact,
2L and several rules can act at the same time.
. The harmony function we used, as well as the schedule for loweting T and raising x, are shown in
o) Figure 3. A trial consisted of 400 iterations of 100 node updates cach; since there are 79 nodes in the
, ﬁ model, this corresponds to slightly over 500 updates of each node.

22

t\ The stochasticity of the model produces varisbility in the behavior. In a run of 30 trials, the
Rt correct answer was produced 28 times. When the 30 values the system assigned to the circuit variables
.f“‘ for each of the 400 iterations are averaged, Figure 4 results. In this graph, up is represented by 1 and
? : dows by —1. Initially, the values for all varisbles fluctuate around zero; eveatually, each goes towards
A the correct value. The time at which the four decisions are made are indicated in the last portion of
v this igure, in which the region between .5 and -5 has been removed. The sequence of amignments is
‘.'f Resas Drsoats V1, V3 the sequence of "inferences” tha emerges natwrally from the parallel processing is

exactly the same as the sequence produced in a production system model.
o, The harmonium model displays both types of robustness that are difficult to achicve naturally
N with production systems. Since individual inferences are made under the simultancous influence of
k'.'.’ several rules, they are less vuinerable to degradation of a single rule. When inconsistent information is
o given in a problem, the harmonium model finds the most consistent (highest harmony) answer possible.
. Whea insufficient information is given, the system finds one of the correct answers, and finds different

7 answers on different trisis. Such a robust tendency to form coherent interpretations of inputs is
__: important both for modelling human cognition and for building intelligeat machines.

W

e While the parallel distributed processing approach has certain advantages over the production
o system spprosch, it also has grave disadvantages. The most serious is the difficulty of performing
‘ ., symbol manipulation. Without variable binding mechanisms, types and tokens, it is difficult to
X imagine how to develop a general model capable of analyzing a variety of circuits; our model is
N specialized to a single circuit, and even so we must replicate the rules encoding valid instances of
o\ Ohm's Law three times (once for each relevant piece of the circuit).

s

,..‘,:‘ It may be psychologically plausible to postulate a small collection of networks like our
s harmonium model (or perhaps one integrated, larger network) incorporating knowledge about similarly
K simple circuits (e.g., a circuit with two resistors wired in parallel). These could conccivably serve as
prototypes that would be invoked to deal with pieces of, or schematic versions of, larger circuits.

However some powerful mechanism would still have to coordinate the parallel analyses of circuit

fragmeants.
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9 Sehedule K Sehaduls

- [

. L
.
Sioma
[ ...Rysame, 1 down | [ - Rysan 1 down je—— 4, [value: 1(active) or Q(inactive)]
some down value: +1,-1, 0r 0]

fvalue: +1(true) or-1(false)]

I: wp | dom]| some
le: +1 +1 -1 {7 changed]
lu: +1 -1 =1  ['7 went up”)

Harmony function:

# = ZAS [rut - drl)

Figure 3. Schedules for T and x, represontation of sp, down, same, and harmony function used in the har-
monium model.
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S Figure 4. Emergent sequentiality: the decisions about the direction of change of the circuit variables
o - *frecze in® in the order R = Ry, I = Iy, V1, V3 (R and /7 sre quite close).
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Riley & Smoleasky 9 Parallel Model of Problem Solving

It is tempting to use a production system for this coordination, combining the strengths of the
two approaches. Such a hybrid model might well be able to analyze complex circuits, but would
display the production system weaknesses (lack of robustness, and so forth) in those aspects of the
analysis that were relegated to the production system.

One interpretation of such a hybrid model is that the production system component is actually
just a complex parallel processing network viewed @ a higher level of descripsion; the hybrid is of
descriptive levels—there are not two independent processes. It is a major goal of ours to see if parallel
models are capable of exhibiting emergent production-like behavior; the emergent seriality of the
present harmonium model is an example of just such behavior.

Discussion

The harmonium model has implicit knowledge of circuit laws that enable it to model naturally the
nonsymbolic, intuitive component of problem solving that is difficult to model naturally with
production systems and is particularly salient in expertise. At the same time it lacks the explicis
knowledge of symbolic laws that most experts possess. Thus to model expert problem solving in
general, it seems necessary to imbed the harmonium model within a hybrid paralleUproduction system
model. We are, however, investigating whether the symbolic component of experts’ processing can be
preempted with conditions of very short response times, making such experimental conditions
sppropriste for testing the pure harmonium model. We are also planning to study unschooled
clectronics experts to see to what extent they are free of conscious rule application in their solution of
simple circuit problems.

Much work remains to be done in analyzing the variation in the model’s performance, and
s.sessing the dependence of performance on the schedules for T and x and the representation of the
circuit. Indeed it is the development of more powerful representations within the parallel distributed
processing paradigm that is the primary goal of harmony theory; by trying to enrich the knowledge of
our harmonium model to incorporate more “symbol-like” explicit knowledge of circuit laws, we hope
to gain more insight into how symbol manipuiation might emerge from parallel distributed processing.
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b Abstract

By viewing the rules goveming a computation as the regularities of an environment,
i computstional states can be mssigned walues of scif-comsistency with respect to that
& cavironment. The function that measures seif-cousistency can play the same role in
o4 probabilistic computation as eanergy does in statistical physics.
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b IN PARALLEL COMPUTATION

Aualysis of Emergent Properties of Neural Systems

‘:; One spprosch to the mind/body problem is to view the description of mind as a higher level

% description of brain—to vicw psychological principles a8 emergent properties of ncural systems.

30 Certainly before such a view can be scientifically tested, a better understanding of both brain and mind

b must be cstablished. However, cnough is slready known sbout cach to make feasibility studics
possible.

»

o1 What methodology is capable of analyzing the emergent properties of large complex systems of
:4 interacting clemeats? One discipline where this analysis needs to be done is statistical physics, where
O large-scale properties of matter are derived mathematically from the principles believed to govern the
Rl interactions of molecular and sub-molecular constituents.

Is it possible to apply similar kinds of mathematical analysis to deduce emergent propertics of
Y scural systems? Although the principles governing ncuronal intersction are by no means as well

o2 understood as those governing particles, models that abstract some of the characteristics of neural

'»3 ’ networks have been studied for some time. Hopfield (1982) has shown that with certain modifications,
. standard ncural models can be analyzed with mathematics much like that of statistical physics, and that
K emergent properties be analyzed.

fe One of the central concepts in statistical physics is remperarre. The utility of this concept in

performing difficult computations has been shown by Kirkpatrick et al. (1963). However the most

important concept in statistical physics, as in all branches of physics, is that of energy. The meaning of
"energy” in the computational context is mot obvious; rather than a computational interpretation,

R Hopfield offered a general formula for the “energy” of a neural net, while Kirkpatrick et al. hand

;‘; ' crafted “cnergy” formulae for their particular computations.

<3N

RR The application of statistical physics concepts to computation is now a rather active field of study
o (Hinton & Sejnowski, 1983; Hofstadter, 1963; Geman & Geman, 1983). To provide a solid foundation
- for this snalysis, what is required in my opinion is as imerpretation of “energy’ tha essablishes a deep

RS connection between the formalism of natistical physics and the centrdl problems of cognition.

"

o In this paper I will present the interpretation of “cacrgy’ that lies at the heart of a general

,',tk computsational approach I bave been developing independently of the work of those interested in

- - ncural nets or in particular difficult computations. In this interpretation, "energy” ir a measwe of the

me self consimency of a compwational ssme. In place of the term “energy,” which emphasizes the physical

359 malogy, or the more technical term "Hamiltonian,” which serves only to recall history and account for

2y the physicist’s notation H, I choose to foreground the messurement of self-consistency by using the

e term Armowy function, deaoted . The geaeral framework, Awrmony theory, is described in Smolensky

5 (1984); an analysis of learning using this theory is begun in Smolensky (1963), and an spplication of the
o theory to modelling qualitative analysis of a simple electric circuit (with a discussion of the model’s
o] emergent properties) is described in Riley and Smoleasky (1984). In this paper I will focus on the
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Smolensky 2 Self-Consistency in Parallel Computation

computsational meaning of harmony, passing quickly over other aspects of the theory. The treatment
will be very informal; for more formal presentations the reader is referred to the previously cited

papers.
The Rele of Harmeny in Computation

Before considering how the harmony function is defined, we start with a discussion of how the
harmony function is used during computation. The basic idea can be framed at a very general level.
During computation, search for an answer is guided by a measure of “goodness” of possible answers:
the harmony function H is that measure. The search is stochastic; the computation is a Monte Carlo
random walk through the solution space under the guidance of H. The random walk is designed so
that cventually, the probability at any moment of visiting a point p in the solution space is given by
the canonical distribusion:

prob(p) = NeZ®)7

N is the constant nceded to normalize the probabilities so that they sum to one. T is a global
parameter that determines the spread in the probability distribution.

The canonical distribution is the only continuous relationship between H and probability that
correctly treats the independence of components of a computation. The canonical distribution also
happeas to be the distribution on which most of statistical physics is based. (This is no coincidence,
a8 the notion of independent subsystem in physics maps onto that of independent subcomputations.)
There is an isomorphism that maps the harmony function into minus the Hamiltonian (energy)
function, and T into temperature. This suggests calling T the compatational temperanwe of the system.

In physics, the Hamiltonian determines what states are most probable: the states with lowest
caergy are most probable at all temperatures, and states of high energy have negligible probability
except at high temperatures. In harmony theory, the harmony fuaction determines what states are
most probable: the states with highest harmony are most probable at all computational temperatures,
and states of low harmony have negligible probability except at high temperatures. T can be thought
of as setting the scale for what constitutes significant differences in harmoay values. In fact, the ratio
of probabilitics of two states is ¢A"/7, where AH is the difference in harmony between the states. If
this difference is small compared to 7, the ratio of probabilities will be close to one; if AH is large
compared to T, the state with higher harmoay will be many times more probable.

The goal of the computation is to find the state of highest harmony. This means, in particular,
that the state of next highest harmony should be much less likely. This requires that T be small
compared to the harmony difference between the two highest levels of harmony.

We could simply set T to be such a low value and be done with it. However, this is not a
practical search procedure. The Monte Cario procedure will, if let run long enough, visit poiats with
the probabdilities givea by the canonical distribution. However, the time required to reach this
“thermal equilibrium® grows extremely rapidly as T is lowered. A more practical way of zeroing in on
the state of highest harmony is to start with a high temperature and gradually lower it. Early in the
search, only large harmony differences are significant, and the system quickly makes a crude cut at the
problem, avoiding states of extremely low harmony. As the system cools down, smaller harmony
differences become significant, and more and more states are svoided as the search focuses on states
with harmonies close to the maximal value. If the cooling is done geatly, the state of maximal
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23 harmony should be found in much less time than by giving T a constant low value.
1 The Relation of Harmeny te the Environment
NS
f . We have discussed a stochastic search techaique that will find states of high harmony. But how
NI do we design the function H so that the states with high A values give the correct solutions to
4 problems? Now we must discuss the sense in which # measures self-consistency.
y The “correct” answer to problems are often those that satisfy a set of rules. In the circuit analysis
t’ problem considered by Riley and Smolensky (1984), for example, the rules are the physical laws of
‘ simple circuits. Any system that can correctly solve problems such as this must in some sense have a
: '.‘\f representation of the rules. In harmony theory, the rules are encoded in the harmony function. The
Ty question is, how are these rules encoded, and how can a system develop an appropriate harmony
function through experience?
IR
e 7
l{" ' Of course most cognitive tasks are not as strictly governed by rules as is formal problem solving.
B L Yet all cognition hinges on the exploitarion of regularities in the environmem, even if those regularities
39= are less formal than Ohm’s Law. Cognition enables organisms to do the completion sask: take some
Al limited information about the current state of their environment and make reasonable guesses about
i what else is likely to occur in the environment. That is, given some of the features that specify the
A cavironmental state, the organism can make reasonable guesses about missing features.
0
‘-3 In harmony theory, the “rules” applied during the completion task are simply statements thas
s certain feasures can co-occur in the emvironmens. In the circuit application, for example, in place of a
symbolic version of Ohm'’s Law, V = IR, there are many “rules’ that each record a single combination
o of qualitative changes in V,/, and R that are consistent with the law. These “rules’ can in fact be
N thought of as memory traces that might be left behind by individual experiences in the eaviroameat in
Kin which the regularities hold.
5".«" Here is the general idea of how to set up a harmony function for performing the completion task
N in a given cavironment. Imagine the system experiencing many eacounters with the eavironment; each
--ﬂ leaves many traces that each record some of the features that co-occurred. When partial information
X :‘; sbout the current state of the eanvironment is given in a completion problem, the harmony of s
": possible completion of that information is the overall consistency between that completion and the set of
4 all traces. To spell this out, we consider first how the traces are determined and thea how the "ovenall
= consistency” is computed.
‘ :: The traces can be produced sutomatically by simulating exposure to an environment, or they can
i 2f be produced manually by the modeller. The latter technique was used in the circuit probiem: each
R trace was chosen to be an allowed combination of qualitstive changes in the circuit quantities
S ! appesring in s single circuit law. The automatic generation of traces is yet to be explored; the idea is
- that traces would be produced in a random fashion (guided by the degree to which potential traces
o would enhance system harmony); the saristical properties of the resulting set of traces would then
asd .
vl }“ govern the emergent behavior of the system.
P
','.:‘ How is “the overall consistency between a completion and the set of all traces” computed? The
. idea here is that for each trace, a decision needs to be made sbout whether the instance it recorded is
‘ relevant to the current situation. Borrowing the usage of schema theory, a match between part of a
.f;‘; , trace and a completed set of environmental features can cause the trace to become active. The “overull
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Smoleasky 4 Self-Consistency in Parailel Computation

cousisteacy’—the harmony—of a completion is the sum over all active traces of a measure & of the
degrec of match between the trace and the completion. A simple definition of & is the number of
festures in the completion that match the trace, minus the number that do not match. (A slightly
more complicated definition of A was used in the circuit analysis model.)

There are now two kinds of varisbles used in the computation: features of the ecavironmental
state, and activation values for traces. The processing has two components: computing the harmony
walues of possible completions, and making corresponding random decisions sbout which completions
to visit. Computation of the harmony value requires deciding which traces to activate, and this
requires computing the quality of match A betweea traces and the completion. Just as the Monte
Carlo search is used to decide what completions to visit, it can be used to decide what traces to
sctivate. So using the traces to define the harmony of completions leads naturally to extending the
search space to include both environmental festure variables and trace activation values.

The Netwerk Interpretation: A Computer Implementation

It is useful to represcat the computation by a network; s portion of the network for the circuit
model is shown in Figure 1. The activation variables are represented by nodes in the upper layer; each
corresponds to a trace. The environmental festure variables are represeated by nodes in the lower
layer. There are connections between & trace variable and all the ecavironmental features it
incorporates. For simplicity, all variables (nodes) are takea to have binary values: trace activation
nodes have values acrive and inactive; environmental feature nodes have values presenr and absews.

The Monte Carlo sesrch in this network representation proceeds as follows. Initially a high
tempersture T is chosen, all the traces are set inactive, the eanvironmental festures are permaneatly
msigned their given walues, and the remaining cavironmental festure varisbles are msigned random
initisl values. Then proceming begins. A node is sclected at random (but not one of the given
festures). Next the difference AH between the overall actwork harmonies that would result from the
two possible walues for the node is computed. Is principle, this computation could be performed in
the node itself, for the only quantities needed are those to which the node is connected. Finally, the
node rsndomly selects & new value, using as the matio of probabilitics for the two valucs ¢A* 7. The
process of selecting & node and selecting s value for that node is iterasted while the temperature T is
gradually lowered according to some schedule.

The repeated selection of nodes and sssignment of new values can be viewed (following Hopfield)
as the ssynchronous processing of processors located at the nodes and running in parsilel. The relation
between this parallel processing network and those considered by Hopfield and Hinton snd Sejnowski
is that the harmony model has a special architecture: there are two classes of nodes, and connections
betweea but not within the two cimsses. The formula for harmony turns out to be minus that for
Hopfleld’s network “cnergy,” taking into account the special architecture and the numerical assignments
active = 1, inactive = 0; presem = 1, absemt =~1.

Cemments ex Neural Implementation

Since harmony theory is computationally-inspired, rather than ncurally-inspired, the relation
between the harmony network and neural networks has not been developed. However the close
resemblance of the harmony network to Hopfield’s neural network might suggest that harmony nodes
correspond to neurons, 50 3 brief comment is appropriate. While it does not seem unressonable in
principle to identify environmeatal feature nodes with neurons, it is s reasonable to identify trace
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Trace Nodes

Eavironmental
Feature Nodes

Figure 1. A portion of the network representation of the circuit analysis model (from Riley and
Smolensky, 1984). [The values up, down, same for cuvironmental features (circuit variable changes) are
actually represented by using two binary nodes for cach variable.]
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Smoleasky 6 Seclf-Consistency in Parallel Computation

nodes with neurons. Indeed, I imagine that each trace is distributed over the synapses of the neurons
corresponding to the environmental features involved in that trace. “Activation” of the trace might
correspond to s feedback-mediated rapid cahancement of the strengths of these synapses, as in von der
Malsberg (1961). In this sense, even the activation of traces, s primitive operation in the theory as
presently formulated, may be an emergeat property of synaptic dynamics.

Even without a precise specification of the relation between harmony nctworks and neurons,
harmony theory offers 8 mathematical framework within which to explore the emergence of mind from
brain-like processing. The isomorphism between computation and statistical physics which it
represents rests on the identification of self-consistency—harmony—as playing a central role
isomorphic to that played by energy in physics.
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R Abstract

3 This paper discusses a particular class of parallel distributed processing models of cognition:

thermal models. These models employ stochastic processors and rely on a formal mapping
e between paralle! computation snd statistical physics. A special subclass of thermal models
A is defined as the implementation—-level description of a general mathematical framework for
28 q . studying cognition: harmony theory. Harmony theory is preseated at the computational and
algorithmic levels as well as the implemeatation level.
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Smoleasky 1 Harmony Theory

HARMONY THEORY:
THERMAL PARALLEL MODELS IN A COMPUTATIONAL CONTEXT

Intreduction

In recent years considerable effort has been directed at exploring computational architectures
using a large number of fairly simple processors ruaning in paralle! and communicating with each other
across a network of links. This style of computation, which I shall refer to as parallel distribued
processing, has variously been called “massively parallel,” "connectionistic,” and ‘ncurally~inspired.”
Theee names suggest the variety of disciplines that have found parallel distributed processing to be
important to undersiand. Neuroscieatists use the processors to model neurons; psychologists and
computer scicatists use parallel distributed processing to develop formal computational systems with
some of the flexibility, subtlety, and power of human cognition. (For references, sce Anderson &
Hiaton, 1981.)

The past two years have scen the emergence of a new type of parallel distributed processing that
employws stochastic processors and is based on a formal mapping between parnillel computation and
statistical physics (Hopfield, 1982; Kirkpatrick, Gelatt, & Vecchi, 1963; Hinton & Sejnowski, 1983a, b;
Hofstadter, 1983; Smolensky, 1963). I shall call cognitive models of this type thermal models. In this
paper 1 present a particular class of thermal models I call Aarmonien models, with allusion to
pandemonion (Scifridge & Neisser, 1960). I will discuss how harmonium models differ from other
thermal models, s well s how thermal models differ from more traditional parallel distributed
processing models, which [ will refer to as activation models. Characteristic features of harmonium
models include: an architecture that represents a process/data distinction; a global mathematical entity,
the Aermony function, that drives the processing; stochastic processors; a global system parameter, the
computational temperanwe; an algorithmic process, cooling; and a new type of system behavior, freezing.

The harmony function corresponds to what others who work on thermal models have called the
energy function, taking the term from thermal physics. ! The harmony function, which is central to the
processing of harmonium models, hss an interpretation within the general context of the cognitive
tasks thst harmonium models are designed to perform: it measures the self-comsistency of a
computational state (Smolensky, 1963, 1984). This interpretation is what leads to the differences
between harmonium models and other thermal models.

The central goal of this paper is to introduce a partially-developed general analytic framework 1
call Awrmony theory. Within this framework harmonium models emerge with a certain degree of
inevitability as the description is pushed from the abstract to the implementation level. The
preseantation will roughly follow Marr’s (1982) stratification of descriptions of computational devices
into the computational, algorithmic, and implementation levels. Another level, intermediate between
the computational and the algorithmic, will also be needed.

1. The harmony fuaction actually corresponds to the energy function multiplied by -1.
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Smolensky 2 Harmony Theory

Harmonium models of particular cognitive processes acquirc additional interest when viewed
within the general context of harmony theory. The models are not simply an attempt to simulate
buman performance, or to get a machine to “act intelligently”; they are also a wehicle for developing a
geaeral account of cognition that resides at a higher conceptual level than that of the particular
models.

Computational Level

Consider the cognitive tasks of constructing a three—dimensional percept from two-dimensional
images, of constructing a cohereat interpretation of a piece of text, and of solving a problem in a
formal domain. These disparate tasks share an underlying structure: the filling in of missing
information, using knowledge about which items fit together in the task environment. Harmony
theory begins with this abstract “completion task’ and a formalization of this sense of “eavironment,”
and gradually descends in abstraction to the level of implementable models of specific cognitive tasks.
The ultimate goal of the research is to dewelop a precise characterization of a three related
mathematical structures: (a) a cognitive system; (b) an envirommens; (c) the completion task. The cognitive
system posscsses concepts for representing states of the cavironment, and kmowledge about which
concepts fit together in the environment. The goal is to investigate: for a given cognitive system, in a
given environmens, what set of concepts and knowledge relating them will enable the system to perform the
completion task?

To initiate this investigation, | formulate an sappropriate formalization of the term environmens.

Our eavironment can be viewed as a stream of overlapping episodes of all durations, starting at
all moments of time. Cognition enables organisms to predict with some accuracy what episodes are
likely to result from their actions, given the portion of those episodes about which they already have
knowledge. What is critical about the environment is that differems episodes have differem
probabilities. The basic cognitive task of the organism is the prediction of likely episodes given some
partial knowledge.

For my purposes, then, I adopt these definitions. An emvirommemt is a probability space, the
points of which are called episodes. In the completion task, information that partially specifies an
episode is given as input, and the output is a set of the most probable episodes that are consistent with
the input.

Many of the cognitive tasks that are studied in cognitive science can be viewed as specific
instantiations of the general completion task. In the domain of story understanding, an episode is a
sequence of cvents and actors’ goals. The story partially specifies some cpisodes; “understanding the
story” is the completion’ of these to full specifications, including omitted events and goals. The
collection of those episodes that could possibly occur in our world, together with their corresponding
probabilitics, defines the story understanding environment. In the domain of visual perception, an
episode is a sequence of positions of objects in three—dimensional space. Streams of two-dimensional
images directly specify episodes only partially, and the job of perceptual processing is to complete
those specifications.

Rather than tackle the temporal complexities of episodes, I will instead take an environment to
be a probability distribution over static eatities called scenes. The completion task then generalizes
many interesting cognitive tasks that are free of time, such as understanding descriptions of static
sceaes and processing of single, static images.

R R N ‘._-;..-._.-.'-,..,_.-g.._- O P Oy 2 RO A AR TN




* & 0
A
LA,

L

bis Smolensky 3 Harmony Theory
Y
I
n'.\‘

- In Riley and Smolensky (1984), harmony theory is used to study an interesting static task:

{ 4 qualitative analysis of the simple electric circuit shown in Figure 1. The task is to answer questions |
o like, "What happens to the circuit if R, is increased, assuming the voltage of the battery and R, remain ‘
e unchanged?” Here a "scene” is a set of qualitative changes in circuit features. Those sets of changes that ‘
‘:-'1 : are consistent with the circuit laws of eclementary physics define the scenes that have nonzero
. probability in this environment. The given question specifies some of the qualitative changes defining a

scene, namely, the changes in the resistances and in the battery’s voltage. The task is to complete this

e : to a full specification of a “highly probable” scene, i.c., fill in the appropriate changes in the other
:;}.;: circuit quantities like currents and voltage drops. If the information given in the problem uniquely
“ s determines a “correct answer,” then, given the input, one scene has probability one and the others have

2 probability zero.

f 4" o

The probability distribution for the eavironment of clementary physics problems is artificial;
. there is sharp distinction between scenes that are “allowed” and those that are not, i.c., between those
3 that have nonzero probability and those that have zero probability. This characterizes a formal
§ eavironment, one that can be delimited strictly by formal rules like the circuit laws. While
conventional computers are at home in such environments, people are not; at least one can argue that
more training is required for people to perform well in formal eavironments than in informal ones. A

-"t \

central empirical question for this approach is: Whae are the properties of the environments in whick
- natwal cognitive systems can actually perform the completion task with some accwracy? At this stage,
-::J intuition must serve in place of an empirical answer. The environments are most likely sparse, with a
:-:: huge fraction of the space of all possible scenes having an extremely low probability. Furthermore, we
_':3.' perceive scenes (in my generalized sease of the word) as groups of eatities which are in turn groups of
. sub-entitites, and so on. This suggests that the environments with whick the human mind is designed
‘- o to deal exhibit a kind of modularity: the probability of a scene can be computed by describing it in
oot terms of modules of various scales and recursively computing the probability that the modules at one
‘ scale would be combined to make the modules of the next larger scale.

Ay

s Concepts, according to this intuition, correspond to the modules in the eavironment.

Knowledge about these concepts is what enables us to compute the probabilities of wvarious
>, combinations of concepts.

R.-‘.'
<,
'{:.} To formally define, @ rhis compusational level, modular environments, cognitive systems, concepts,
-r:: and knowledge is a major goal of this rescarch. At the moment, however, precise characterizations
—r corresponding to these notions cxist only at the algorithmic level. The next section describes the
= intuitions that lic between the algorithmic-level description and a yet-to-be formulated
o computational-level description.
o
! . Compotational/Algorithmic Level
Ca'd \
Lo
i A completion task can be performed, it is assumed, because prior experience with the
N eavironment has left traces of statistical connections between the information that is given and the
j-.' information that must be filled in. The mechanisms which might maintain such traces in the brain are
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Figure 1. A series circuit with two resistors, R; and R,. What are the effects of an increase in the
resistance of R, assuming that V,, and the resistance of R, remain the same?
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o not considered. 2 Rather, I shall give s strictly formal description of s cognitive system that possesses
, - such traces. This description presupposes a representation of cavironmental scenes within the
\ cognitive system.

S Each scene in the environment is assumed to be described in the cognitive system by a set of

A S represensaion variables {Ry, R, - - ,Ry). Each R, is taken (for simplicity) to have value srue or false |
R for each scene. In the circuit analysis problem, for example, R; and R, might represent whether there |
: is a change in the battery’s voltage and current, respectively; ecach of these will be either true or false !
ey for each scene. The representational variables as a whole are assumed to support represcatations of ‘

N scenes at all the levels of abstraction employed by the cognitive system; assigning values to some of the

s variables may require considerable processing.

iy

L The list of true/false R, values for a scene will be called its represemation vector R. Each R has

some probability in a given environmeat. In the completion task, some of the elemeats of an R vector

a:‘:, are specified as input (c.g., R;), and ss output the system must give values for the remaining clemeats
o (. R2).

) Y

e The crucial question for solving the completion task is, what values of various R, variables go
e together in the environment? A cogpitive system must accumulate the knowledge that answers this
X5 question as it experiences a sample of vectors R. Each R is assumed to leave many traces, which are
.-:? simply copies of pieces of R. Each trace records a single co-ocurrence of the specific values of the R,
ot variables present in that trace. After considerable expericnce with the environment, an ensemble of
(g traces is built up; this ensemble implicitly encodes the environment’s probability distribution.

In this paper we shall not analyze the important question of which picces of R are maintained as
. traces; the issuc is considered in Smolensky (1983). Very roughly, the idea is that each trace records
one of the modules preseat in R. ? For present purposes we assume that the set of traces eacoding the

& ‘:.
"’-;::: system’s knowledge of the eavironment has been produced either by an unspecified training process or
:S' by explicit design of the modeller. In the electric circuit problem, for example, the traces are put in by

hand; each one coansists of one of the possible instances of changes of circuit quantitics that are
consistent with one of the circuit laws. (For instance, one of the traces records the co-occurrence of:
'~ (a) a decrease in the current, (b) a decresse in the voltage drop across resistor 1, and (c) no change in

)
o the resistance of resistor 1; this is one instance of Ohm’s Law for resistor 1.)
. J‘-'
._#Zj The traces are encoded ss 8 set of rrace vectors {T;, Tz, < * - , Ty}. Esch T, is a piece of some
— representation vector R, i.c., a set of true/false values for a subser of the representation variables. T, is
. viewed as a vector of values, one for each R, : cither srue, false, ot unspecified.
7'4-24
-'C'n:;
N ::j 2 A few remarks on possible neural implementations of harmony theory may be found in Smoleasky (1984).
>
L 3. A little more precisely, the idea is this. For easch R experienced by the system, some mechanism transcribes
pieces of R and records them as traces. After experiencing s large number of scenes R, a large collection of
N traces will have accumulated. Some traces will be duplicated many times, others less oftea. Those frequently
O duplicated define the primary conceprs in terms of which scenes will be procemsed by the system. Thus the
et system's concepts emerge from the saistical properties of the traces. Investigation of appropriste mechanisms
e for recording traces must therefore center on analyzing the statisticsl properties of the resulting traces in various
Y environments. What criteria determine whether the traces produced by some recording mechanism have reasoa-
g sble matistics? The primary criterion is the system’s performance on the completion task eaabled by those
. traces. A simpler criterion thought to underly good performance involves the concept of Asrmony to be dis-
W cumed below; this rraining harmony criterion is considered in Smolensky (1983).
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R
e Loosely, here is how completions are performed using the traces T,. The system checks to see
‘ ~'._-': which traces are consistent with the input; these become active. When active traces specify true/false
{. values for missing information, these values are used to decide how to fill in the missing information.
{ Thus, to cach trace vector T, is associated an actrivastion value A.. The list of all activation values
e forms the activation vector A. For simplicity each A, will be taken to be cither active or inactive; these
L binary values will be sufficient for our purposes (uanlike with traditional activation models).

i Actually, the assignment of truc/false values to missing information is done in parallel with the
.»_\f-: sssignment of active/inactive values to the trace variables. To carry out the completion, the system
SOt simultaneously performs scarches in the space of all vectors A and in the space of all vectors R that
::::3_ contain the true/false values given by the input.

The goal of the search is to find those completions R that are highly probable in the
environment. Intuitively, there is a relationship between these R and the traces T,. Highly probable

L .‘.::: completions are those containing combinations of modules that occur frequently in the eavironment.
YA Such a completion will be highly consistent with many traces. This suggests using, in licu of a literal
_:'\n;‘ computation of the probability of a completion R, a measure of its goodness that counts the aumber of
e traces with which R is consistent, and the overall degree of that consistency.
ks
NN A convenient representation for this measure of goodness incorporates the idea that traces that
[<in are consistent with the input should be active. For any activation vector A and completion R, define *
SRS
S
oy HAR)=JAR*T,
.”t P
A
o) Here the following numerical assignments are used: true = 1, false = -1, unspecified = 0; active = 1,
. inactive = 0. * is the inner product: R° T, = 2,&(1'.),; this is just the number of representational
_._.::: variables R, whose values agree with the corresponding values in T,, minus the number that disagree.
N
A H (A,R) measures how consistent R is with the traces active in A: H is called the Aarmony function.
y H is the centrsl player in harmony theory because all the decision-making in the system is driven
) towards achieving maximal consistency, i.c., harmony. If a trace is consistent with the input, it
T becomes active because doing so raises the harmony. If setting a representational varisble to a true or
-::_ false value is consistent with active traces, that sssignment is made because it raises the harmony. In
w.$~ short, the space of activation vectors A and completions R is scarched to find the values that achieve
g high harmony. These should be the completions that are most probable in the environment.
;‘E" An important goal of the theory is to provide a mathematical characterization of modular
?_i-::: cavironments that allows a proof that high harmony completions are high probability completions. At
:’ - the moment, this identification rests on intuition.
‘1
LN
- In a sense, the traces serve during search as anti-conntraints. The good solutions are those that
"V.'
ol
~ '
g
¥
N 4. In Smolensky (1983) and Riley and Smoleasky (1984), a somewhat more complex formula for H is used. Ax-

joms defining the properties 8 harmony fuaction must satisfy will be an important part of the formulation of
harmony theory st the computational level.
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Smolensky 7 Harmmony Theory

satisfy a number of aati-construints, i.c., match a aumber of traces. This has many similarities to
constraint-based search, in which good solutions are those that fall 0 violae 3 aumber of constraints.
However, the differences are more than technmical. It is easy to sce how a system can learn
anti-constraints: these are simply the traces left by experience, records that show what variable values
can go together. It is not 30 easy to learn what values camor go together, when a “teacher” or reiuforcer
is absent. Furthermore, if environmental probability distributions are sparse, as discussed above, then
it scems more feasible to record allowed co-occurrences than forbidden ones.

Algerithmic Level

Having characterized good completions at the computational level (bigh probability) and at the
computational/algorithmic level (high harmony), it is time to specify an algorithm that will construct
good completions. The algorithm used in harmony thoery is a stochastic ome: it coastructs s
completion with a probability related to its harmony. The only mathematically viable relationship
(Smoleasky, 1983) is the camonical distribution:

prob(A, R) = n ¢7ARVT

Here a is a normalization constant, and T is a positive system parameter. If two completions have
differeat harmonies, the more harmonious one will be more probable; if the harmony difference AH is
large compared to T, then the ratio of probabilities (¢4¥ ) will be large. Thus the greater T, the less
will be the bias in favor of the most harmonious completions, and the more random the completions
will secem. The randomness parameter T is called the compusasional temperatwre because its role in the
canonical distribution is identical to that of physical temperature in the strictly isomorphic canonical
distribution (Boltzmann law) of statistical mechanics.

Good completions will be overwhelmingly likely if and oaly if the temperature is very low. Thus
to achieve good performance a low temperature is nceded.

In statistical mechanics there is a well-known Monte Carlo scarch method (the “heat bath
algorithm®) that can be used to stochastically explore the problem space of vectors A and R, visiting
points in the space with the probabilities of the canonical distribution (Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953; Binder, 1979). This algorithm starts at a random point, and
randomly chooses a possibie direction of travel. The change in harmony AN that would result from a
step in that direction is computed; the decision to take the step is then made randomly, with
likelihood ratio for taking or not taking the step set equal to /7. "Choosing a possible direction of
travel® amounts to selecting a single variable A, or R;; "taking a step” amounts to changing the binary
value of the selected variable.

The process of choosing a direction and deciding whether to take a step is iterated. It can be
proved that, eventually, the probability of being at a point is givea by the canonical distribution. The
higher T, the more quickly this “thermal equilibrium® is reached.

The practical difficulty with this algorithm is that for the low T values needed to get good
completions, it takes an unacceptably long time to reach thermal equilibrium. A way to get to good
completions faster is to start with a fairly high temperature, and cool the system down during the
computation (Kirkpatrick, Gelatt, & Vecchi, 1983). Cooling (or “simulated annealing”) is s new
computational process characteristic of thermal models; it brings with it a new computational
behgvior: freezing. As the temperature is lowered, various system variables lock in to values which
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become very resistaat to changs.

What is happening during the cooling proces is that T, the scale on which the significance of
hannony differcnces is messured, is getting smaller and smaller. Barly in the processing, oanly big
harmoay differeaces matter: the system swvoids only states of very low relative harmony; s very crude
cut is made ot the problem. A large region of the problem space is explored. As the processing
continucs, the system gets more exacting, narrowing the search to states with harmony values that are
clossr and closer to the maximum attainsble value. This kind of secarch has the advantage that
wheaever its results are examined, their reliability is as high as can be achieved in the clapsed time

(locsely speaking).

A good theoretical understanding of how to regulate the cooling will be difficult to achieve. At
the moment, certain techniques allow estimates of freezing temperstures in simple situations, but
cooling schedules are still largely defined in ad hoc ways.

Implementation Level

The most natural implementation for harmony theory uses a paralled computing network. This
pansllel device, harmonium, is essily simulated on s serial computer.

To implemeat the Monte Carlo search algorithm discusmed sbove, we set up one processor for
each of the verisbles A, sad R;. According to the discussion ia the previous section, the values of the
activation processors are 1 and 0, while the values for the represcatation processors are +1 and -1.
This set of values is not typical of thermal models.

The algorithm first invoives randomly picking a direction in search space; this smounts to picking
one of the processors. To easure that oaly one processor changes its value at 8 time, the processors are
sssumed ta take s random amount of time to make their decisions and thea instantaneously make their
change; the probability of simultaneous changes is then zero. Once a change is made, the new value
must be available immediately. This type of ssynchronous updating is not typical of activation models,
but is typical of thermal models (Hopfield, 1982).

The slgorithm requires that to decide on its new value, a processor must compute the harmony
change AH that would result from changing its value. To perform this computation, a given processor
must be connected to others in order to read their values. The required patteran of interconnections,
found by inspection of the harmony fuaction, is graphically summarized in Figure 2, in which cach
node is s processor. AN for a given node is a weighted sum of the values of the nodes connected to it;
the weight linking representation node i and trace node a is (T,),, the i* element of the vector T,.

This weight applies to values pamed in eisher direction; bidirectional weights are characteristic of

thermal models.

The architecture shown in Figure 2 is not typical of thermal or activation models. The purpose
of the processing is to set up the sppropriate completion on the represemasion nodes; the trace nodes
serve s0lely to mediste between represention nodes, which are not directly interconnected. It is useful
to regard the representation nodes as a dats blackboard, and the trace vectors T, (or equivaleatly the
psttem of connections) as the program, and the activation values as internal program variables.
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Figure 2. A graphical representation of harmonium. The nodes denote stochastic processors, and
the links denote communication lines.
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’ Smoleasky 10 Harmony Theory
> In particular it should be noted that the traditional hierarchical picture of successive vertical
‘~'.'{ layers of nodes with layer-to-layer vertical conanections does not exist here. One can visualize the
l representational nodes being laid out with abstract representational variables to the right and concrete
o, variables to the left. Input at the leftmost nodes activates traces that are connected to them; these
b7~ traces are also connected to slightly more abstract represeatational nodes, which are thea assigned
o values consistent with the active traces. This in turn activates new traces, and so it goes. Decision- .
v making passes rightward, bouncing back and forth between the lower to upper layers. In place of a

~ - pre-wired, rigid vertical hierarchical architecture is a fluid horizontal architecture that can implement a
hicrarchy when appropriate. (In fact, the statistical propertics of the participation of "nodes on the
right” in the traces that accumulate during experience with an environment are what determine the
“abstract concepts® that dynamically evolve in that environment.)

Once 3 node has computed the difference in harmony AH between its two possible states, the
likelihood ratio for adopting its two states is €A/ . Coaverting this to the absolute probability of
changing value gjves the result shown in Figure 3. This sort of sigmoidal relation between the weighted
sum of the inputs to a node and its decision is common in activation models; however two differences
should be noted. First, in activation models the ordinate of Figure 3 would be a continuous node
value; here, it is & probability for a discrete node value. Second, the slope of the sigmoidal curve at the
origin, 1/T , is not fixed; it increases as the computation proceeds.

b 4 -
v > v 'i 7
X FOXACTN

The processing features visible at the implementation level—i.c., the defining properties of
harmonium—are all strict consequences of the algorithmic-level analysis of harmony theory. Ongoing
development of the theory is aimed at filling the logical and empirical gaps linking the analysis at the
algorithmic level to those at higher levels, and gaining experience applying harmonium to specific
cognitive tasks.
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Figure 3. The sigmoidal relation between the weighted sum of inputs to a harmonium node (AH)
and the probability that the node changes its vaiue.
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