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Abstract-A high-resolution raster-graphics display is usually combined with processing power
and a memory organization that facilitates basic graphics operations. For many applications,

including interactive text processing, the ability to quickly move or copy small rectangles of

pixels is essential. This paper proposes a novel organization of raster-graphics memory that
permits all small rectangles to be moved efficiently. The memory oranization is based on a

doubly periodic assignment of pixels to M memory chips according to a Fibonacciwattice. The

memory organization guarantees that if a rectilinearly oriented rectangle contains fewer than
M/ pixels, then all pixels will reside in different memory chips, and thus can be accessed

simu taneously.

', j ,' ,D -;-We also define a continuous analogue of the problem which can be posed as, 'What is the

mazi lum density of a set of points in the plane such that no two points are contained in the

interior of a rectilinearly oriented rectangle of unit area.' show the existence of such a set

with density I/ , and prove this is optimal by giving a ma ching upper bound.
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1. IntroductiondipacabeudtdIfacpieinargomutbupaeidvdaly
The length or one memory cycle is a bound on how quickly a single pixel (picture element) or

the length of a memory cycle will produce a bound which is unacceptable for many real-time or
interactive environments. A natural way to avoid this bound is to access more than a single pixel
at a time. Since the memory is typically partitioned among M random-access memory chips, as
many as M pixels can be accessed simultaneously, provided that no two pixels reside in the same
memory chip.

Figure 1 illustrates a common organization of raster-graphics memory. Each pixel on the
screen is assigned to one of M memory chips in row-major order. Thus in every row, the pixels

~- ..- in column m, M + m, 2M + m, and so forth are stored in the the same memory chip m.
This organization made a good deal of sense when raster-graphic displays were new and the
interface between the raster memory and the CRT was considered complicated. When the screen

'4 is refreshed from memory, the line-by-line horizontal scan accesses M pixels in a row and converts
them into an analog video signal. But although the memory system achieves maximal parallelism
for the screen refresh operation, it can be remarkably inefficient for other operations. Updating
a vertical line of pixels, for example, requires a separate memory access for each pixel.

1 23 4 .. .M 1 234. . .M 1 23 4 .M
1 23 4 .. .M 12 34. . .M 12 3 4 .M
1 23 4. . .H112 3 4 .. . 141 2 3 4.. . M
1 23 4 .. .MN1 23 4 N . 1 23 4 .. .M
1 23 4 .. .MN1 23 4 M 1 M 2 3 4 . . . M

1 234 . .. M 12 34 . . . M 1 234 . . . N

Figure 1. A common organization for raster-graphics memory which is efficient for raster
scanbut inefficient for vertical updates.

For arbitrary patterns of access there is no hope of maximal parallelism since whatever the
4 organization, an adversary can choose to access all the bits in a single memory chip. The best we

can hope for is to achieve high concurrency for a limited set of frequently used operations. And
today, since hardware support for screen refresh is relatively well-understood, attention focuses
on those operations which make the graphics system easier to program.

Most raster-graphics applications rely on the copying or moving of a rectangle of pixels as
a basic operation, which is demonstrated by the fact that this operation is implemented in the

~.. -. *,microcode of most graphics processors. The ability to move small rectangles quickly is especially
important in text-oriented applications.

% Iiccer.tly, ;% display was developed at Carnegie-Mellon University [3,61 that is designed to move
small squares quiic;.ly. Figure 2 shows how pixels are assigned to memory chips in the case of
M -16 memory chips. The screen is tiled with VM,11by--V/f squares, each of which conta ins
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123 41 1234 1234 1234
56 7 8 5678 56 78 56 78
9 10 11 121 9 10 11 12 9 10 11 12 9 10 11 12

13 14 15 16113 14 1516 1314 16 13 14 15 16
T 2 3 4 12 34 23 4 1 23 4

56 78 567 8 56 7856 78
9 10 11 12 9 10 11 112 9 1 12 9 10 11 12

13141516131415 13141T 1613141516

Figure 2. The 4-by-4 organization for raster-graphics memory. Every 4-by-4 square
contains pixels from distinct memory chips.

a pixel assigned to a different memory. The attraction of this scheme is that any v/--W-by-vM
rectilinearly oriented square, whether aligned on tile boundaries or not, contains pixels assigned
to different memories. Thus any square of area M can be accessed in one memory cycle.

Unfortunately, the efficiency of the raster-scan operation is reduced in this scheme compared
with the one of Figure 1. The line-by-line scan will only be able to access IKI pixels in parallel
because every v' -+ 1-by-one horizontal rectangle contains two pixels in the same memory chip.
A possible solution to this problem is to stagger the tiles so that the second column of tiles is
shifted vertically by one raster, the third by two rasters, and so on. This ad hoc solution allows
simultaneous access of all pixels in any M-by-one rectangle as well as simultaneous access of
all pixels in any VXM-by-VMTX square, but it suffers from asymmetry of horizontal and vertical
dimensions and introduces a variety of other complications.

This paper asks the question, "How many memory chips M are required to guarantee that all

pixels can be accesses simultaneously in an arbitrary rectillinearly oriented rectangle of N pizels ?"
A naive organization requires M = N 2 memory chips, but we can do much better.

This paper uses techniques from number theory to produce novel memory organization of M
V/5N chips that allows all pixels in any rectangle of area N to be simultaneously accessed. The
scheme is regular-a doubly periodic function in the plane-and the constant V5 is approached
from below, so that for small values of N, the constant is less than two. Furthermore, for the
frequently-used operation of accessing a horizontal line, our scheme allows simultaneous access
of all M memory chips.

j The remainder of this paper is organized as follows. Section 2 discusses a continuous model
of the problem that prompted our (discrete) solution. Section 3 presents the doubly periodic
"Fibonacci" organization of graphics memory, and Section 4 provides the number theoretic
analysis necessary to prove that the scheme works. The optimality of the Fibonacci organization
is proved in Section 5, and Section 6 discusses the addressing mechanisms needed to make the
scheme work in practice. Section 7 contains some concluding remarks.

2. A continuous analogue

In this section we introduce a continuous analogue to the discrete problem. We define a set of

3
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compatible points as a set or points in the plane such that no two points ini the set are contained in
the interior of a recLilincarly oriented rectangle of unit area. The question we ask in this section
is, "What is the maximusm density of a set of compatible points?" We construct a set of compatible
points whose denisity is I/VF5, and we prove that this density is maximal.

The correspondence between this problem and the discrete problem introduced in the previous
section is as follows. First, the continuous Oroblem deals with rectangles of unit area. A closer
correspondence to the discrete problem uses rectangles of area N. The set of compatible points
then corresponds, in the discrete problem, to the set of pixels which reside in the same memory

* chip, and the density of points corresponds to the reciprocal of the number Ml of memory chips.
The principal difference in formulation is that in the continuous model, we no longer require that-1 the "pixels" fall on grid points.

The statement in the continuous problem that the rectangles have unit area instead of area
N, however, results in no loss of generality. Any set of points such that no two are contained in a
rectangle of area N can be mapped to a set of compatible points by shrinking the coordinates of
each point by a factor of vrN. Observe, however, that this linear transformation does not work
for the discrete case where all points must have integer coordinates.

We shall find it convenient to adopt some standard terminology from geometry of numbers.
A lattice is a set of points that can be expressed as an integral, linear combination of linearly

* e~.independent (over R) basis vectors. If there are only two basis vectors, we define the parallelogram
with the two basis vectors as sides the basic region of the lattice. The fundamental lattice is the
lattice generated by the basis vectors (0, 1) and (1, 0), and we call its points grid points. Many
properties of lattices can be found in 14).

We formally deane a set S of points in R2 as being a set of compatible points if for any pair
of points (xi, yj) and (X2 , Y2) in the set, we have

I(XI - 2)(Y1 -Y2) 1.

Around every point P drawn from a set S of compatible points, there is an infinite-area forbidden
region bounded by two hyperbolae inside which no other point of S may lie. Figure 3 shows the
forbidden region for a point at the origin. The points in that forbidden region satisfy Izyl < 1.

In the discrete model, the problem is to minimize the number M of memory chips required
to allow simultaneous access of any rectangle of N pixels. For an arbitrary scheme of assigning
pixels to memory chips, in a square region of A pixels, there will be some memory chip with the
largest number k of pixels in the area. Therefore, the number of memory chips A! is at least
A/k, or ld where d is the maximum density of pixels from a single memory chip in the square
region.

The analogue to minimizing the number of memory chips is, in the continuous model, to
maximize the density of points in a set of compatible points. Formally, we define the density of
an arbitrary set of points S as

d(S) = lim sup 1( P I P E Sfl (r) )I

9 where D(r) is a disk centered at the origin with radius r.

4



-J.

;: ! Figure 3. The forbidden region around a point at the origin. If the origin is in a compatible
, , ,Iset, then all the other points in the compatible set must fall outside the region defined by

, the hyperbolae.

",.

' "We shall construct a set S of compatible points in the plane whose density is 1/v'5, and
i then demonstrate the optimality of the construction by proving a matching upper bound on the

" density of compatible sets.

Theorem 1. The lattice that is generated by the basis vectors a n v/)ad (-N(-, V1/-0)

form a compatible set whose density is 11V5-, where b -- j(1 -+- v/ ) is the golden ratio.

Proof. For simplicity, denote ( 1,V)by (a, b). The lattice points are compatible if and only

if for all integers u and v, the lattice point v(a, b) + u(-b, a) -- (av - bu, bv + au) is outside the
forbidden region around the origin (since the lattice is invariant under translations by its basis
vectors). Equivalently, for all pairs (u, v) 0 (0, 0), we must have

1(av - bu)(bv + au)l 2! 1.

We can rewrite the product as

(av - bu)(bv + au) = abv s + (a2 -- b2)UV - abu2

, 2_ _U /O)U
2 ,

-"Since the Diophantine equation v 2 _ -Uv - u 2 -- 0 has no solution except u --v --0, it follows
that

[(av- bu)(bv + au)l = Iv2 --uv--uS[ 1,

and thus the lattice points are indeed compatible.
The area of the basic region of the lattice is a 2 + b 2 -- + 1 /0, which is .. $inc there is

.. 3.Fgurt-oe 3coTeforbiden region aunde points ad atheiin sqafs the orignsiy s compai

se, he llth thr oit i tecopailese ms fllotsdeth egondfiedb



This lattice is not the only one that achieves a density of 115. In ract, Tom Leighton has
observed that there are an infinite number of lattices of compatible points that have this density.
For any t the lattice generated by the basis vectors

). and 2 t,3 t

also achieves the bound. The lattice of Theorem I is a member of this family of lattices (choose
t = \/i710), although the basis vectors given in the theorem are different. The advantage of the
basis vectors defined in the theorem is that they define a basic region which is square, which, as
we shall see in Section 4, simplifies somewhat the analysis of the discrete solution.

3. A Fibonacci lattice organization of raster-graphics memory
This section describes an organization of raster-graphics memory which is based on an integer

4 J approximation of the lattice scheme from Theorem 1. This organization has the property that all
pixels in a rectilinearly oriented rectangle can be accessed simultaneously as long as the rectangle
contains no more than N pixels. The number M of memory chips required isa most V5AN, but
for many practical values it is less than 2N.

The real-world problem differs from the continuous analogue given in Section 2 in that the
locations of pixels must have integer coordinates. This subtle constraint causes the problem
to change in two ways. First, the actual bounds are better for the discrete case than for the

* continuous case, although asymptotically they are the same. Second, the proofs become more
involved.

Not surprisingly, the raster-graphics organization is similar to the scheme in Theorem 1, which
suggests two basis vectors be used to generate the locations of all pixels within the same chip of
the raster-graphics memory. Pixels are assigned to chips as follows. Let a and b be two relatively
prime, nonnegative integers which will be specified precisely later. The two orthogonal vectors
(a, b) and (-b, a) determine a lattice in the plane, consisting of all points of the form

v(a, b) + u(-b, a),

where u and v~ are integers. Except for the corners, no other grid point lies on the boundary of
the basic region because a and b are relatively prime. By including exactly one of the four corner
points in the basic region, the region can be used to tile the entire plane. Thus the number of
grid points in the basic region equals its area a 2 + b 2. Each of the grid points in the basic region
is mapped into one of M = a 2 + b 2 distinct memory chips. The grid points in the plane are
partitioned into M equivalence classes. Each equivalence class corresponds to a translation of
the lattice. All points in the same equivalence class are assigned to the same memory chip. Since
each equivalence class has a unique representative in the basic region, Ml memory chips are used.

In the next section, we will show that the choice of successive Fibonacci numbers a = F, and
b = F, +1-, which yields the numnber or memories Al = F2,+,, guarantees that every rectilinearly
oriented rectangl! containing no more than M/vI.- pixels can be accessed simultaneously. Figure

4 illustrates this "Fibonacci lattice" organization for thirteen memory chips (a =2, b =3).

6
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3 -4 5 6 7 8 9 10 11 12 13 1 2 36 7 8 9 10 11 1213 1 Z 3 4 - 6 7 8
11 12 13 1 2 3 4 5 8 7 8 9 10 11 13

3 4 5 6 7 8 9101J 12 13 1 2 345
8 9 10 11 12 ? 5 2/3 4 5 6 7 8 9 10

13 1 2 3 4 5 6'-7 8 9 10 11 12 13 1 2
5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7

10 11 12 6 7 8 9 10 12rs 4_ 6 7 9" 10l 11 T'2-3 1 2 31 4
7 8 9 10 11 12 13 1 2 31 4 51 6 7 0'i

12 i3 1 2 3 4 5 8 7 8 9 0111 12 13 1
4 5 6 7 8 9 10111 213 4 5 6

S13 1 2 3 4 5 6 8 7 8
1 2 31 4 5 6 7 9 10 1 12 13 126 7 89 10 11 12 13 12345 W 8

Figure 4. The Fibonacci lattice organization for M = LS memory chips. Every rec-
tilinearly oriented rectangle having no more than N = I pixels has the property that allII pixels arc from distinct memory chips.

Here, the situation is even better than we promised-any rectangle with at most eleven pixels
contains no two pixels from the same memory chip.

Furthermore, observe in the figure that one-by-13 and 13-by-one rectangles have no conflicts,
which is the best one can do with M = 13 memory chips. This circumstance is not mere luck.

Lemma 2: Let a and b be relatively prime integers, and let M = a2 + b2 . The doubly
periodic memory organization with M memory chips that is based on the lattice generated by
basis vectors (a, b) and (-b, a) has the property that any one-b y-M or M-by-one rectilinearly
oriented rectangle contains no two pizels from the same chip.

Proof. Since the organization is doubly periodic, we can consider a horizontal or vertical line that
starts at the origin and determine the next lattice point that falls on the line. If the line is vertical,
all pixels on it have x-coordinate zero. The general form of lattice points is v(a, b) + u(-b, a) =
(av - bu, bv + au), and thus all lattice points on the line will have av - bu = 0. It follows
that a divides bu, but since a and b are relatively prime, we can conclude that a divides u, and
similarly, b divides v. Furthermore, u and v necessarily have the same sign, which means that the
magnitude lbv + aul of the v-coordinate is Ibvt + laul. Since a divides u, we have Jl ! a, and
by the same reasoning, lvi _ b. Therefore, jbvl + laul > b2 + a2 = M, and the magnitude of
any lattice point on the vertical line is at least M. Thus any one-by-M rectangle cannot contain
two pixels from the same chip. Horizontal lines are treated the same way.3

The following table describes the actual values we get for M and N in the Fibonacci lattice
organization.

M 5 13 34 89 233 610
N 5 11 23 53 125 307

Notice that for all the; , values, the size N of rectangles that are guaranteed to have no
conflicts is, in fa , large, nan M/2. Thus for practical values of A, the overhead in allcwing
fast access to arbi.. - 'y shaped rectangles of pixels is small.

7



41

4. Mathematical analysis

In this section, we analyze the properties of the Fibonacci lattice organization described in
Section 3. The basis vectors for the raster-graphics memory organization are (F,,F,+) and
(-F,+ 1 ,F,), where F, is the rth Fibonacci number. (When we do not rely on the Fibonacci

• .properties basis-vector components, we shall denote the basis vectors by (a, b) and (-b, a).) Ve
show in this section that the number of memory chips M in the organization is approximately

5/_ times the size N of the maximum size rectangle guaranteed to have no conflicts.

The approach in this section is to find the minimum size MIN of a rectilinearly oriented
rectangle containing two distinct lattice points. The size or a rectangle is defined to be the
number of pixels in the rectangle. Notice that this definition of size differs from the continuous
model since the number of pixels in a rectangle determined by two grid points equals its area
plus half its perimeter plus one. Since MIN is the minimum size of any rectilinearly oriented
rectangle containing two lattice points, N = MIN - 1 because no rectangle of size strictly less
than MIN contains two lattice points.

To find MIN, notice that since the lattice is invariant under translations by its basis vectors,
we lose no generality if, instead of discussing all pairs of lattice points, we restrict ourselves to
those pairs one of whose elements is the origin. Furthermore, since we are interested in the
minimal size, it suffices to consider only those rectangles that have the two lattice points at

opposite corners. The first lattice point is the origin and the second lattice point has the form
v(a, b) + u(-b, a), and hence the size of the rectangle, its area plus half its perimeter plus one,
is

S(u, v) = (Iau + bvl + 1)(I-bu + avl + 1).

The value MIN is the minimum of S(u, v) over all integers u and v not both 0. In order to find
MIN, we first translate S(u, v) into a simpler form.

Lemma 3. Let

S(t, v) = (IFu + F,+Ivl + 1)(I-F,+Iu + Fv + 1),

and let §(u, v) = (IF2,u - F2,+Ivl + 1)(Iul + 1). Then

MIN min S(u, v)

min m (u,v).

Proof. We shall show that the range of S is the same as the range of S by using an intermediate
form B. For simplicity, we shall use the notation a = F, and b = F,+i introduced above.

Define the intermediate form

B(u, v) = S(ku - by, -lu + av),

where k and I are integers such that ak - bi = 1. (The integers k and I exist because the greatest
common divisor of a and b is one.) The linear transformation given by

(t)k -b()
V a Kt)

e.~A 2 . . .. " . . . .
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is a bijection since the determinant of the matrix is one. Thus as (u, v) ranges over Z2, the
orJ red pair (ku - by, -lu + av) also takes on all values in Z2 , and hence the range of S is the
same as the range of B. Since the linear transformation is a bijection which maps (0, 0) to (0, 0),
we have

Smin S(u, v) = min B(u, v).""(u,,)X-(o,o) (u,,V) 30 (0,o0)

If we expand B(u, v), we get

B(u, v) = S(ku - bv, -hu + av)

= (la(ku - by) + b(-lu + av)l + 1)(-b(ku - by) + a(-lu + av)j + 1)

= (Jul + 1)(I(a2 + b2 )v - (bk + al)uJ + 1),

which has the form (Jul + 1)(IMv - Cul + 1). (Note that M = a2 +b 2 is the number of memory
chips.)

In order to obtain S(u, v), we first determine the explicit coefficients M and C in B(u, v) when
-. the components of the basis vectors are the Fibonacci numbers a = F. and b F,-. We use

5.'. the following two Fibonacci identities:

F, +, = FjF,-i + F)-IF,,
-. F,+F_ - F,-

i- From the first identity, we get that the number of memories M is

M =a' + b2

r Fr+ 1= F2,+, .F

To find C, observe that the k and I such that ak - bi = 1 are k - (--1)r 'F, and I =

(--1)T+lF,_ 1 . Hence, by using the second identity, we have that

C = bk + aI

= (-1) +(F,+F + FrF,-)
__ (_l)r'F,+,

-X Thus for a F, and b = F,+, we have

B(u, v) = (Jul + 1)(l(-1)'F,u + F2,+Ivl + 1).

The form S was defined in the statement of the lemma as

-(u, v) = (Jul + 1)(IF2ru - F2 ,+1v + 1)

If r is odd, then (-1)' - -1, and therefore B(u,v) = S(u,v). If r is even, on the other hand,
then B(u, -v) S(u, v). Since we have already shown that

min S(u, v)= min B(u, v),'(u, ,,) 7-- (o,o0) (,V) 3. (0,o0)

we get

min S(u, V) = mi :(u, v),:-"(u, ,) / (o o) (,,V) )- (o 0)

which was to be proved.g

--.
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The next lemma gives the exact solution for MIN, which by Lemma 3 is the minimum value

or s(u,v).
Lemma 4. Let S(u,v) - (Jul + 1)(IF 2 ,u - F2,+iI + 1). Then min(,,,,)A(o,o) (u,v) =-

(F, + 1)(F,+I + 1).

Proof. We first show that

MIN = mi S(u, v)

- min (lul + 1)(IF 2,u - F2,+Ivl + 1)

- min (F. + 1)(F 2,-,, + 1),i~i
" : # "

O<n<2r+l

and then show that the latter minimum is (F, + 1)(F,+l + 1).
It suffices to consider nonnegative values of u since S(u, v) = S(-u, -v). The value MIN

cannot exceed S(O, 1) = F2,+1 + 1, but because S(u, v) _> u + 1 (the right factor is at least
one), we need only seek a better value for MIN in the interval 0 < u < F2 ,+,.

- The key idea is to divide the half-open interval [1,F 2 ,+1) into subintervals Fn, F,+ 1 ), for

n = 2,3,...,2r. (Notice that FI = F2 = 1, and thus n starts from 2.) The integer u lies
inside one of these intervals. Consider the fraction F2 7 IFj,+i. The convergents of its continued

fraction expansion are F/F 2 1 F/F 3,..., F27/F 27 +*. By the continued-fraction approximation
theorem (4, Theorem 181, p. 151), if F, u < Fn+ , then for every integer v we have

F2, _ v F2, _F,,. 1

F2,+ u - F2,+ F. "

Multiplying through on both sides yields

I uF2, - vF 2,+I > .F2rF. - F.iF2,+

u2 2+ I F2,+iF,

Using the Fibonacci identity IF.F, - F,+F_-l = F,_-,+, we get

JuF2.- vF2,+iI _ -F 2,F,, -F,,-F 2 ,+I

> IF2,F, - F,,-F 2,+Il

T+ To summarize, if u falls in the interval [Fn,F,), then IuF2, - vF2,+Il F2.-. +l.
,. :. Therefore,

' ("Ul + 1)(IF2,U -F2. Vl + 1) 2! (F. + 1)(F2._,, , + 1),P

and equality is achieved when u = F, and v = F,_-. As a result, we have

min (Jul + 1)(lF 2 ,u - F2, +Iv + 1)

- min (F + 1)(F 2 ,-n+, + 1),

10
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which completes the first part of the proof.
The second part of the proof is to show that indeed

min (F. + 1)(F 2,-.+l + 1) = (F, + 1)(F,+, + 1).
O<<2r-l

If we define
def

E(n, r) = (FR. + 1)(F 2 ._.+ 1 + 1),

then what we want to show is

min E(n, r) = E(r, r).
O<n<2r-+1

.. . Since E(n, r) is invariant when n is replaced by 2r + 1 - n, it suffices to consider values of n in

the interval [0, r].
We now show that E(n, r) is no larger than E(n + 1, r) for n = 1,..., r - 1, after which we

shall complete the proof by demonstrating that E(O,r) 2t E(r,r). We make use of the explicit
formula

F,--r

for a Fibonacci number in terms of the golden ratio 0 and its conjugate J - (1 - V5S) in order
to obtain an alternative expression for the high-order term of E(n, r):

= (A 
+1-n

02,+1 +0 _ 2 r+l-n-, -

5
(O + 5 (.-,.+, + - I,

where C, is a constant depending on r alone. Taking advantage of the fact that ] is less than
1 and using the basic recurrence for Fibonacci numbers, we have

E(nr) - E(n + 1,?)

=F2r+i +Fn+ (-)+ (F2r2-+ +___

-'-F..- .,(, +. A )
_> F2..- ,- - Fn,,+1 - F._ 1

>0,

and hence E(n, r) is at least as large as E(r, r) for n = 1,..., r - 1.
As for the remaining inequality E(O, r) _> E(r, r), it is merely F,F,+I+F,+2 +1 < F2,7+ +1,

and its truth may be verified by using the identity F2 + F29+ = F2 ,+1.1

11



Lemma 5. The minimum size of a rectilinearly oriented rectangle that contains two points of
the lattice generated by the basis vectors (F,, F, +1) and (-F,+, F,) is

MIN - (F, + 1)(F,+I + 1).

Proof. The proof follows directly from Lemmas 3 and 4.1

Theorem 6. Let M = F2,+i, and let N = FF,+l +F, .- 2 . Then there is an organization for
raster-graphics memory with M memory chips such that every rectilinearly oriented rectangle
of size at most N contains pixels from distinct memory chips. Furthermore, N is greater than

Proof. From Lemma 5, we have that MIN = (F, + 1)(F,+, + 1), and since N = MIN - 1,
we get N = FF,, + F,+ 2. All that is left to be proved is that N > M/vf. Using the the
explicit formula for Fibonacci numbers, it can be verified that the sequence

, , ., ' " . {FF,+, + F,+2 00

.'-.k'-'F2,+ 1

converges to I/V5. We now show that this sequence is monotonically decreasing, so each of its
elements is at least as large as the 11V15 limit, which will complete the proof.

It is enough to show that the difference of consecutive terms in the sequence is positive, or
equivalently, by multiplying through that

F2,+ 3(FF,+l + F,+2 ) - F2r+i(F,-1 F,+2 + F,+3) > 0.

Using the explicit formula for Fibonacci numbers, we obtain the identity

F2,+F, - F2 7+IF,+ 2 = (- )'+Iy,+t

, , 'and the identity
and he denity F21+3F1+ 2 -F 21+1 F,+3 = F2,+1 F, + F2 ,F,+ 2

may be derived by induction.
Multiplying both sides of the first identity by F,+, and adding it to the second yields

F2,+3(FF,+i + F,+2 ) - F2,+I(F,+,F,+z + F,+ 3 )

- F2,+lF, + F2,F+ 2 + (-I)' F 2

The right hand side is positive because F,+, is less than both F2 , and F,+.2.1
W .The next section shows that the Fibonacci lattice organization is essentially the best possible.

5. Optimality of the Fibonacci lattice organization
This section shows that the Fibonacci lattice organization from Section 3 is essentially the

best possible by providing bounds for any raster-graphics memory organization. In order to get

12
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the bounds for the memory organization, an upper bound is first proved in the continuous model

for the density of a set of compatible points. In particular, we show that any set S of compatible
points in the plane has density d(S) < 1/V'5.

In order to prove the the density bound for a compatible set S, we consider a bounded region
of S. The points of S in this region are triangulated in such a way that most of the triangles have
large area (at least V:5/2), and hence the density of S in this region is small (at most I/Vf--o(l)).
Taking the limit as the radius of the region tends to infinity then establishes the upper bound of
I/v5. First, however, we introduce some terminology.

Definition. Let P, = (xi,yl) and P2 = (X2,y2) be two points in the plane. We denote
the (open) rectilinearly oriented rectangle defined by P and P2 as R(PI, P2) and its area as
A(PI, P2) = IXI - Z211Y1 - Y2 . We also denote the semiperimeter of the rectangle (the 11

norm) as L(P,,P2) = JXI - X21 + 1Y1 - 21.

If P1 and P2 are compatible points, then A(P,P) _> 1. Also, we have

L(P,, P2) = Iz - X21 + Ii - Y21

>2,

because the arithmetic mean is at least the geometric mean.
We now define the notion of good and bad triangles, and show that a good triangle has area

at least V512.

Definition. Let Pi, P2, and P3 be compatible points in the plane. We say that triangle
AP 1P2P3 is a good triangle if

"P, E(P,P),

* P2 0 R(Pi, P), and

" P3 0 R(P, P2 ),

and a bad triangle otherwise.

Figure 5 gives an example of a good triangle and a bad triangle. In the bad triangle of the figure,
we call the edge P2P3 the bad edge, and we call the angle ZP2PP 3 the bad angle.

The next lemma provides a lower bound on the area of a good triangle.

Lemma 7. Any good triangle has area at leat V// 2 .
Proof.' Without loss of generality, we assume that the triangle is defined by the three points

(0,0), (xi,yi), and (X2, Y2), where 0 < X2 < xi and 0 < yj < /2, because any good triangle can
be brought to this position by translation and reflections about the axes. The areas A, B, and
C of the three rectangles defined by pairs of these points are each constrained to be at least one
since the points at,. compatible, and hence

A = xZ,/i 1,

B = X21/2 1,

'Thanks to Don Copperbmith of INM who provided this proof which is simpler than our original.

13



P,

'a.

figure S. A good triangle (top) and a bad triangle (bottom).

I C = (XI - X2)(Y2 - YI) > I.-

' The area of the triangle is J(XIY2 -- X2YI) which we wish to show is at least ji/2.

, Substituting V, =- A/z, and x2 - B/Y2 into this last inequality yields

C (z, - BIY2)(Y2 - Alz,) .

, Multiplying through by zjy2 gives

• (ZIY2) 2 - (A + B + C)XIY2 + AB = 0.

Similarly, substituting zi = A/y, and Y2 =-- B/X2 into the third equation gives

(X2I)2 -- (A + B + CI.XYI + AD = 0.

Thus both ZIY2 and z2YI are roots of the equation s2 _ (A +l/ -+ C)s +- AD)-- 0, and since

Zl/2 > X2YI, We have

14
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All hough the area of a gool t.riaile is hou nld(ll rroin below, the arva or a hat iriaigle can

le arbit rarily silall. In order to get a good upper boun( oil the density or a colnlmatibie set, we
now show that any disk-shaped portion of such a set has a trianguilation with rew bad triangles.

Lemma 8. Let S be a set of compatible points in the plane, and let P, be a disk of radius
r. Then there is a triangulation of the points in S o , which contains no more than 4r bad
triangles.

Proof. Consider triangulations of the points in Sfl Dr that minimize the number or bad triangles,
and or those pick one that inininiizes the sui of' the bad angles or the bad triangles. Take any
bad triangle Al/i I jl/i with bad edge PTjlTi. 11" the [)ad edge 17 P. does not lie on the boundary of
the convex hull of Sf n,, then there is a fourth point P4 E Sn D, such that triangle AP2 %IP4

shares the edge l2P. The point P4 is lying in the hair plane defined by T2P- which does not
contain Pl.

Figure 6 shows a bad triangle in the triangulation, which is the general case except for
reflections about the axes. The figure also outlines the live possible regions in which P4 couldlie. We shall show by case analysis that in a "minimal" triangulation, the only feasible region for

P4 is Region 5. If j,4 is in any of the other regions, replacing edge P2113 with edge P11'4 would
_* improve the triangulation thus contradicting its niinimality.

Case 1. If P4 is in Region I, we replace the two bad triangles APP2 P3 and AP2P3 P4 by the
two good triangles API P12 P4 and Al, P3 P4 .

Case 2. If P4 is in Region 2, we replace the bad triangle API2P,P and the good triangle APJP3P4
by two good triangles API P2 P4 and API PIP 4.

Case S. Ir P4 is in Region 3, we replace the bad triangles AP1 P2 P3 and A1 2 1'3 P4 by the bad
triangles AI'PIPP 4 and APIP 31'4 . Although this modification (hoes not reduce the number of
bad triangles, it does reduce the sum or the bad angles. We assume without loss of generality
that '4 is in the upper right portion or Region 3. The two bad angles were originally ZP2 'IP3
and LP2P4P3, and they are replaced by the bad angles l 2PP 4 and LP2P4P. This is an
improvement since ZPI1P1 iP < Z.LjPlP and ZPiP4P3 < LP2P 4P3 .

Case 4. If P4 is in the upper right portion or Region 4, we replace the bad triangle APi P2P3 and
the good triangle AP.1I'P4 by the bad triangle AP, P2P 4 and the good triangle AP, P3 P4. The

15
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new ba-d angle LP2 1, P4 is smaller thian the original bad angle LP2 PI Ps. The lower left portion
* is deallt with simiilarly.

Thus we may conclude Ltat Lte point P4 is in Region 5, anti without loss or generality
* we assume it is in the upper right portion or the region. Thle triangle AP3I~jP 4 is bad, and

4~P2, P4) = 14P2, P3) + 14P1~, 14). $11nC the points P3 and 1P4 arc compatibkit, we have already
shown that IAP3,14) :2, and hence 141-I,2, P) !11213) +2.

.4 Applying the sflifl argument.s to Lte triangle A12113114, we obtain a chain or adjacent bad
triangles with increasiing bad-edge lengths in Lte L norm. The chain cannot cycle back on itacir

* because the edge lengths are strictly increa~sing. Thus the chaiun must terminate with a bad
edge 7F.7-1 on the boundary or the convex hull or sf nD,. In ract, the bad edge P7'R can be the
terminating edge of more than one chain because there can be a tree or bad triangles rooted at
the triangle with bad edge 7ii7, on the boundary or the convex hull orlsne

If the tree contains k trianigles, then the boundary edge 17' has length l , r) o 2k + 2,
which we now show by induction on k. For k = 0, the length bound holds ror any two compatible
points. Let k, be the number or bad triangles in the sutre e converging to "111 and let k, be
tie number converging to TjP. (The values ki, and k2 may be zero.) Then k = k + k2 + 1, and

hence ie induction hypothesis holds for both subtrees because k, and k2 are each less than k.
Therefore,

SIt, P) =LM, PO) + I A, PO,

> (2k, + 2) + (2kg + 2)
=2(k, +k 2 +1)+2
- 2k+2,

as desired.
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Figure 7. A tree or four bad triangles which terminate with edge .

We have just shown that if the tree has k triangles, then the boundary edge 7' 7 las length

1 IP,, P*) _> 2k + 2, and hence k < JL(Pi, P). Furthermore, since the trees rooted at two bad
boundary edges consist of disjoint sets of bad triangles, we can bound the total number oC bad
triangles in the whole triangulation in terms of the length (in the L norm) of the boundary of

the convex hull of sfnD,. But the length of the boundary is at most 8r, and therefore, the total
number of bad triangles is less than 8r/2 = 4r.l

Lemma 8 shows that a set or compatible points in a disk ean be triangulated with few bad
triangles. Therefore, most of the triangles are good triangles which, by Lemma 7, have large
area. These results allow us to give a 1/v/5 upper bound on the density of compatible sets.

Theorem 9. Let S be a act of compatible points in the plane. Then the density d(S) of S
satisfies d(S)< t .

Proof. Let D, be a disk of radius r, let n be the number of points in S fl ,, and suppose the
boundary of the convex hull of S fl D, contains m points. By Lemma 8 there exists a triangulation
of the n points with at most 4r bad triangles. Every triangulation of the m points contains
2n - m - 2 triangles, and thus the number of good triangles is at least 2n - m - 2 - 4r. A lower
bound on the length in the L norm or the boundary of the convex hull or sf D, is 2m, and an
upper bound is 8r. Hence m < 4r, and the number of good triangles is at least 2n - 8r - 2.

By Lemma 7 the area of a good triangle is at least /5S/2, an(l thus the total area occupied
by the good triangles is at least (2n - 8r - 2)(V5-/2) = (n - 4r - l)vf5. The area of the good
triangles cannot exceed the circle area, so (n - 4r - I)V 5< Wr2 and n < 7rr-/V + 4r + I. The
density of points within SDl D, is just

-< I 4r+I
-rt2 -- +;r 2

Letting r -- oo implies d(S) < 1//i, as desired.3
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/4 We are now prepared to show that the Fibonacci lattice organization from Section 3 is
essentially the best possible.

Theorem 10. For any organization of raster graphics memory with M memory chips such that
every rectilinearly oriented rectangle of size N contains no two pixels from the same memory
chip, the relation M > v/SN - O(N 3 / 4) holds.

Proof sketch. The proof parallels that of Theorem 9. The principal difference is that the size of
a rectangle includes not only its area, but also halr its perimeter plus 1.

Let S be a set of grid points in the plane such that for every pair of points P = (xI, yl), P2
(X2, Y2) in it, the compatibility condition (lx' - X21 + 1)(1y1 - Y2l + 1) > N holds. Multiplying
through yields lx - X211yI - Y21 _ N - lX - X21 - 1Y1 - Y21 - I. If P, and P2 are two
points "contained within a circle of radius r, then we have lXI - X21 + Y1 - Y21 __ 2vrr, so
14-1 - X211YI - Y21 > N - 2V2_ -1.

Letting c = N - 2V2'r - 1 and using the notation of Section 2, we have A(Pt,P 2 ) ? c.
Using the same techniques as in the proof of Lemma 7, Lemma 8, and Theorem 9, we can prove
that the density d, of points in SfD, satisfies cd, < -L + 4r'+, where r' = r/vc/. Letting

r - N3 1 4 , we have r' > N'1 ' , and hence

, 
(N- 2-N 3 /4 - )d, < I +4N 14 +

"5- 7] rNI/2

Since d, is an upper bound on the density of pixels which can be stored on a single memory chip,
we have M > l/d,, and thus

M 1 - 2VN-114 - 1/N)

= V'gN - O(N3/4) .,

P . 6. Addressing scheme

The organisation for raster-graphics memory proposed in Section 3 guarantees that small rec-

tangles contain pixels from distinct memory chips. In order for the entire system performance to

benefit from this organization, however, the address calculations must be easily implemented. We
% do not try to solve all the engineering problems associated with making this memory organization
.: scheme work, but in this section we give indications of how the address calculations might be

efficiently computed.
The addressing mechanism must be able to take the x- and y-coordinates of a pixel and

*generate the chip number and address within the chip. Suppose the lattice organization is

determined by two basis vectors (a, b) and (-b, a). Two pixels at locations (z0, Yo) and (z, y)
which differ by an integral linear combination of the the basis vectors lie in the same memory
chip. That is, they have the same memory number if there exist (unique) integers U and V such

.4 that

(z, y) - (_o, yo) U(a, b) + V(-b, a).
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One natural, but inefficient, addressing mechanism is based on the fact that each of the
M = a 2 + bV memory chips contains exactly one representative in the basic region with corners
(0, 0), (a, b), (-b, a) and (a - b, a + b). The chip number of a pixel (x, y) can be determined
by computing which pixel (x0, yo) in the basic region is from the same chip, and then using the
ordered pair (x0 , y/o) as the chip number. By letting

a02+1, Va2 +bV
the chip number (xo, yo) of a pixel (x, y) is then (xo, yo) = (x, y) - U(a, b) - V(-b, a). Fur-
thermore, the ordered pair (U, V) forms an appropriate address for the pixel (x, y) within the
chip.

The addressing mechanism can be simplified substantially if we notice that any arbitrary set
of M pixels, no two of which are from the same chip, can be used as a set of representatives, In
particular, any pixel differs by an integral linear combination of the basis vectors from a unique
pixel in the horizontal line extending from (0, 0) to (0, M - 1). This scheme corresponds to
tiling the plane with one-by-M bricks instead of tilted squares. (Holladay [5] uses a similar tiling

scheme for halftone generation.)
To derive an appropriate addressing scheme, we choose an alternative pair of basis vectors

that span the same lattice. Since a and b are relatively prime, there exist integers k and I such
that ak - bI = 1. The two vectors (bk + al, 1) and (a2 + b 2 , 0) generate the same lattice as the
original basis vectors (a, b), (-b, a). Thus any pixel (x, y) can be mapped to a pixel (zo, y/o) where

5'. yo = 0 and xo E [0, Ml), which means x0 alone can serve as the chip number for the pixel. If we
denote C = bk + al, and recalling that M = a 2 + b2 , the chip number for an arbitrary pixel
(x, y) is x - Cy (mod M'). The address of the pixel the ordered pair ([x/MJ, y), which is also
easy to compute.

An advantage of any doubly periodic organization that should be mentioned concerns the
communication among the memory chips. Typically, each chip has a single connection to an
M-pixel buffer. To move a rectangle of pixels, three steps are required. The rectangle or pixels
is read into the buffer, the pixels in the buffer are permuted, and the pixels are written back to
the memory chips at different locations. The advantage of the periodic organization is that the
set of permutations encompasses only circular shifts of the buffer. Thus a standard barrel shifter
can be used for all permutations.

One issue that we have not faced is the problem of generating addresses for each of the M
chips given some standard specification of the rectangle to be accessed. WVhether the address
calculations can be made possible at reasonable cost requires an engineering analysis. The com-
peting concerns are the the strong regularity of the lattice-based organization which should help
the design versus ''-e need to perform modular arithmetic which could require much hardware.

7. Comments
The Fibonacci lattice organization of memory allows all rectilinearly oriented rectangles of

a given size to be accessed. Not surprisingly, some economy in hardware can be gained by
being more restrictive. For example, the memory organization based on the lattice generated by
the basis vectors (1, s) and (-s, 1) allows three types of rectangles-s-by-s, one-by-s'l + 1, and



s2 + 1-by-onc--to be accessed efficiently. The number of memories required by this scheme is
M = s 2 + 1.

The Fibonacci lattice organization can also be used to speed up the access rate in machines
with interleaved memories. For example, the organization might be useful for matrix and image
processing applications.

An interesting question is how to extend the constructions and bounds of this paper to
dimensions higher than two. For example, the analogous question for three dimensions would
be, "How does one construct a dense set of points in the three dimensional space, such that no
two points of the set are contained in the interior of a rectilinearly oriented box of volume 1 ?"
and, if such construction is at all possible, "What is the maximum density possible for such a
set?" In fact, we can construct a lattice whose density is 1/7, satisfying the "compatability"
requirements. Using a tilted cube of edge length vr3, we can show (by an argument similar to
that in [1], Theorem 1) that 1/3v3 is an upper bound on the density of such sets. It remains to
be seen whether the techniques from Section 2 can be applied to achieve a tighter lower bound
for the three-dimensional case.
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